WorldWideScience

Sample records for seismic experiment phase

  1. Seismic load experiments under mean seismic excitation

    International Nuclear Information System (INIS)

    Steinhilber, H.; Jehlicka, P.; Malcher, L.

    1979-01-01

    The seismic load experiments carried out within the framework of the HDR safety programme are aimed at enlarging and verifying the know-how with regard to the design of nuclear power plants so as to protect them against the impact of earth-quakes. One of the main objectives is to find out computing methods yielding sufficiently reliable results defining the actual vibrational behaviour of real structures under high seismic excitation. (orig./GL) [de

  2. Seismic and Infrasound Energy Generation and Propagation at Local and Regional Distances Phase 1 - Divine Strake Experiment

    National Research Council Canada - National Science Library

    Stump, Brian; Burlacu, Relu; Hayward, Chris; Pankow, Kristine; Nava, Sue; Bonner, Jessie; Hock, Sebastin; Whiteman, David; Fisher, Aileen; Kim, Tae-Sung

    2007-01-01

    Eleven single infrasound systems and six infrasound arrays were deployed at existing seismic sites in Utah in order to gather a comprehensive set of seismic and infrasound recordings from rocket motor explosions...

  3. Effect of Phase Transformations on Seismic Velocities

    Science.gov (United States)

    Weidner, D. J.; Li, L.; Whitaker, M.; Triplett, R.

    2017-12-01

    The radial velocity structure of the Earth consists of smooth variations of velocities with depth punctuated by abrupt changes of velocity, which are typically due to multivariant phase transformations, where high - low pressure phases can coexist. In this mixed phase region, both the effective shear and bulk moduli will be significantly reduced by the dynamic interaction of the propagating wave and the phase transition if the period of the wave is long enough relative to the kinetic time so that some of the transition can take place. In this presentation, we will give examples from both laboratory studies of phases transitions of Earth minerals and the calculated velocity profile based on our models. We focus on understanding the time limiting factor of the phase transformation in order to extrapolate laboratory results to Earth observations. Both the olivine to ringwoodite transition and KLB-1 partial melting are explored. We find that when the transformation requires diffusion, the kinetics are often slowed down considerably and as a result the diffusivity of atoms become the limiting factor of characteristic time. Specifically Fe-Mg exchange rate in the olivine-ringwoodite phase transition becomes the limiting factor that seismic waves are likely to sample. On the other hand, partial melting is an extremely fast phase transformation at seismic wave periods. We present evidence that ultrasonic waves, with a period of a few tens of nanoseconds, are slowed by the reduction of the effective elastic moduli in this case.

  4. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  5. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    International Nuclear Information System (INIS)

    Karyono; Mazzini, Adriano; Sugiharto, Anton; Lupi, Matteo; Syafri, Ildrem; Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat

    2015-01-01

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface

  6. Experiments on seismic metamaterials: molding surface waves.

    Science.gov (United States)

    Brûlé, S; Javelaud, E H; Enoch, S; Guenneau, S

    2014-04-04

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  7. Experiments on Seismic Metamaterials: Molding Surface Waves

    Science.gov (United States)

    Brûlé, S.; Javelaud, E. H.; Enoch, S.; Guenneau, S.

    2014-04-01

    Materials engineered at the micro- and nanometer scales have had a tremendous and lasting impact in photonics and phononics. At much larger scales, natural soils civil engineered at decimeter to meter scales may interact with seismic waves when the global properties of the medium are modified, or alternatively thanks to a seismic metamaterial constituted of a mesh of vertical empty inclusions bored in the initial soil. Here, we show the experimental results of a seismic test carried out using seismic waves generated by a monochromatic vibrocompaction probe. Measurements of the particles' velocities show a modification of the seismic energy distribution in the presence of the metamaterial in agreement with numerical simulations using an approximate plate model. For complex natural materials such as soils, this large-scale experiment was needed to show the practical feasibility of seismic metamaterials and to stress their importance for applications in civil engineering. We anticipate this experiment to be a starting point for smart devices for anthropic and natural vibrations.

  8. Multiscale phase inversion of seismic marine data

    KAUST Repository

    Fu, Lei

    2017-08-17

    We test the feasibility of applying multiscale phase inversion (MPI) to seismic marine data. To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. Results with synthetic data and field data from the Gulf of Mexico produce robust and accurate results if the model does not contain strong velocity contrasts such as salt-sediment interfaces.

  9. Permafrost Active Layer Seismic Interferometry Experiment (PALSIE).

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knox, Hunter Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); James, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Rebekah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cole, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We present findings from a novel field experiment conducted at Poker Flat Research Range in Fairbanks, Alaska that was designed to monitor changes in active layer thickness in real time. Results are derived primarily from seismic data streaming from seven Nanometric Trillium Posthole seismometers directly buried in the upper section of the permafrost. The data were evaluated using two analysis methods: Horizontal to Vertical Spectral Ratio (HVSR) and ambient noise seismic interferometry. Results from the HVSR conclusively illustrated the method's effectiveness at determining the active layer's thickness with a single station. Investigations with the multi-station method (ambient noise seismic interferometry) are continuing at the University of Florida and have not yet conclusively determined active layer thickness changes. Further work continues with the Bureau of Land Management (BLM) to determine if the ground based measurements can constrain satellite imagery, which provide measurements on a much larger spatial scale.

  10. The Mars SEIS Experiment: A Mars Seismic Package

    Science.gov (United States)

    Mimoun, D.; Lognonné, P.; Banerdt, W. B.; Schibler, P.; Giardini, D.; Pont, G.

    2005-03-01

    For the incoming Mars missions, IPGP has developed the SEIS experiment. It includes seismic sensors to measure seismic activity and Martian tides. This paper presents a review of the SEIS design & development, & preliminary breadboard performances.

  11. Experiments on seismic isolation in Italy

    International Nuclear Information System (INIS)

    Bonacina, G.; Bettinali, F.; Martelli, A.; Olivieri, M.

    1992-01-01

    Static and dynamic tests have been performed in Italy on high damping steel-laminated elastomer bearings in various scales, rubber specimens and structures isolated by means of such bearings, in the framework of studies in progress to support seismic isolation development. Tests on rubber specimens and bearings have already provided important data (vertical and horizontal stiffness, damping, creep, temperature, aging and scale effects, etc.), necessary for the development and validation of numerical models, comparison with the test results of isolated structure mockups and actual buildings, and improvement of design guidelines. Dynamic experiments of structures concerned both full-scale and scaled isolated structure mock-ups and actual isolated buildings (one of those forming the SIP Administration Center at Ancona, an isolated house at Squillace, Calabria). Both snap-back tests and forced excitation experiments were performed, to rather large displacements. The latter were both sinusoidal and (on a 1/4 scale mock-up) seismic, with one- and multidirectional simultaneous excitations. Test results have already demonstrated the adequacy of seismic isolation and have provided data useful for the comparison with single bearing test results and validation of numerical models for the analysis of isolated structures. This paper reports the main features and results of tests performed or in progress. Further tests planned have been mentioned in the Status Report. Numerical analysis of measured data and guidelines development have been discussed in separate technical papers. (author)

  12. Multiscale Phase Inversion of Seismic Data

    KAUST Repository

    Fu, Lei

    2017-12-02

    We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.

  13. Seismic Phase amplitude decay and implications for event detection rates on Mars

    Science.gov (United States)

    Knapmeyer, M.; Weber, R. C.; Lognonné, P.

    2008-09-01

    The number of seismic events detected by a seismometer during a certain interval of time depends on the sensitivity of the instrument, the level and spatial distribution of seismic activity of the planet, and the internal structure and composition of the planet. The latter controls the focusing/scattering of the seismic waves and their attenuation. We estimate detection rates that can be expected from the ExoMars-Seismometer. We use a Martian seismicity model to estimate the number, size and distribution of marsquakes, and calculate event amplitudes from synthetic seismograms computed using normal mode summation in a standard structure model of Mars. In combination with the expected life times and the known sensitivities of the sensors used in the ExoMars SEIS experiment, we aim to map the expected detection rates for several seismic phases as function of landing site coordinates and to simulate the expected scientific data return from a Seismometer on a given site.

  14. Use of experience data for DOE seismic evaluations

    International Nuclear Information System (INIS)

    Barlow, M.W.; Budnitz, R.; Eder, S.J.; Eli, M.W.

    1993-01-01

    As dictated by DOE Order 5480.28, seismic evaluations of essential systems and components at DOE facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application at nuclear power plants and DOE facilities, and the program being put in place for the seismic verification task ahead for DOE

  15. Seismic safety margins research program. Phase I final report - Overview

    International Nuclear Information System (INIS)

    Smith, P.D.; Dong, R.G.; Bernreuter, D.L.; Bohn, M.P.; Chuang, T.Y.; Cummings, G.E.; Johnson, J.J.; Mensing, R.W.; Wells, J.E.

    1981-04-01

    The Seismic Safety Margins Research Program (SSMRP) is a multiyear, multiphase program whose overall objective is to develop improved methods for seismic safety assessments of nuclear power plants, using a probabilistic computational procedure. The program is being carried out at the Lawrence Livermore National Laboratory and is sponsored by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Phase I of the SSMRP was successfully completed in January 1981: A probabilistic computational procedure for the seismic risk assessment of nuclear power plants has been developed and demonstrated. The methodology is implemented by three computer programs: HAZARD, which assesses the seismic hazard at a given site, SMACS, which computes in-structure and subsystem seismic responses, and SEISIM, which calculates system failure probabilities and radioactive release probabilities, given (1) the response results of SMACS, (2) a set of event trees, (3) a family of fault trees, (4) a set of structural and component fragility descriptions, and (5) a curve describing the local seismic hazard. The practicality of this methodology was demonstrated by computing preliminary release probabilities for Unit 1 of the Zion Nuclear Power Plant north of Chicago, Illinois. Studies have begun aimed at quantifying the sources of uncertainty in these computations. Numerous side studies were undertaken to examine modeling alternatives, sources of error, and available analysis techniques. Extensive sets of data were amassed and evaluated as part of projects to establish seismic input parameters and to produce the fragility curves. (author)

  16. PhasePApy: A robust pure Python package for automatic identification of seismic phases

    Science.gov (United States)

    Chen, Chen; Holland, Austin

    2016-01-01

    We developed a Python phase identification package: the PhasePApy for earthquake data processing and near‐real‐time monitoring. The package takes advantage of the growing number of Python libraries including Obspy. All the data formats supported by Obspy can be supported within the PhasePApy. The PhasePApy has two subpackages: the PhasePicker and the Associator, aiming to identify phase arrival onsets and associate them to phase types, respectively. The PhasePicker and the Associator can work jointly or separately. Three autopickers are implemented in the PhasePicker subpackage: the frequency‐band picker, the Akaike information criteria function derivative picker, and the kurtosis picker. All three autopickers identify picks with the same processing methods but different characteristic functions. The PhasePicker triggers the pick with a dynamic threshold and can declare a pick with false‐pick filtering. Also, the PhasePicker identifies a pick polarity and uncertainty for further seismological analysis, such as focal mechanism determination. Two associators are included in the Associator subpackage: the 1D Associator and 3D Associator, which assign phase types to picks that can best fit potential earthquakes by minimizing root mean square (rms) residuals of the misfits in distance and time, respectively. The Associator processes multiple picks from all channels at a seismic station and aggregates them to increase computational efficiencies. Both associators use travel‐time look up tables to determine the best estimation of the earthquake location and evaluate the phase type for picks. The PhasePApy package has been used extensively for local and regional earthquakes and can work for active source experiments as well.

  17. Earthquake experience suggests new approach to seismic criteria

    International Nuclear Information System (INIS)

    Knox, R.

    1983-01-01

    Progress in seismic qualification of nuclear power plants as reviewed at the 4th Pacific Basin Nuclear Conference in Vancouver, September 1983, is discussed. The lack of experience of earthquakes in existing nuclear plants can be compensated by the growing experience of actual earthquake effects in conventional power plants and similar installations. A survey of the effects on four power stations, with a total of twenty generating units, in the area strongly shaken by the San Fernando earthquake in California in 1971 is reported. The Canadian approach to seismic qualification, international criteria, Canadian/Korean experience, safety related equipment, the Tadotsu test facility and seismic tests are discussed. (U.K.)

  18. The Norwegian Seismic Array (NORSAR). Phase 3

    Science.gov (United States)

    1989-07-01

    MONITORING ORGANIZATION NTNF/NORSAR j (if applicable) HQ/AFTAC/TTS 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Post ...090, 1989. EPX files have been produced on a regular basis since day 038, 1989. All ’interesting’ phases are plotted on an Imagen postscript laser...8217interesting’ phases are plotted on an Imagen postscript laser printer, and such plotting has been performed on regular basis since day 074, 1989. Where

  19. Design experience on seismically isolated buildings

    International Nuclear Information System (INIS)

    Giuliani, G.C.

    1991-01-01

    This paper describes the practical problems associated with the structural design of seismically isolated buildings now under construction in Ancona, Italy. These structures are the first seismically isolated buildings in Italy. The Ancona region is in zone 2 of the Italian Seismic Code. It has a design acceleration of 0.07 g which corresponds to a ground surface acceleration of 0.25 g. The last significant earthquake was recorded on June 14, 1972, having a single shock-type wave with a peak acceleration of 0.53 g. Taking into account the aforesaid earthquake, the structural design of these new buildings was performed according to an acceleration spectrum which was different from the zone 2 seismic code and which provided protection for stronger ground motions. To minimize the cost of the structure, the buildings used ribbed plate decks, thus reducing the amount of material and the mass of the structures to be isolated. The design requirements, dynamic analysis performed, structural design, and practical engineering employed are reported in this paper. A comparison between the costs of a conventionally designed and a base-isolated structure is also reported. It shows a net savings of 7% for the base-isolated structure. The tests undertaken for certifying the mechanical properties of the isolators for both static and dynamic loads are also described, as is the full-scale dynamic test which is scheduled for next year (1990) for one of the completed buildings. (orig.)

  20. Review on improved seismic imaging with closure phase

    KAUST Repository

    Schuster, Gerard T.

    2014-08-13

    The timing and amplitudes of arrivals recorded in seismic traces are influenced by velocity variations all along the associated raypaths. Consequently, velocity errors far from the target can lead to blurred imaging of the target body. To partly remedy this problem, we comprehensively reviewed inverting differential traveltimes that satisfied the closure-phase condition. The result is that the source and receiver statics are completely eliminated in the data and velocities far from the target do not need to be known. We successfully used the phase closure equation for traveltime tomography, refraction statics, migration, refraction tomography, and earthquake location, all of which demonstrated the higher resolution achievable by processing data with differential traveltimes rather than absolute traveltimes. More generally, the stationary version of the closure-phase equation is equivalent to Fermat’s principle and can be derived from the equations of seismic interferometry. In summary, the general closure-phase equation is the mathematical foundation for approximately redatuming sources and/or receivers to the target of interest without the need to accurately know the statics or the velocity model away from the target.

  1. An academic program for experience-based seismic evaluation

    International Nuclear Information System (INIS)

    Nix, S.J.; Meyer, W.; Clemence, S.P.

    1990-01-01

    The authors have been involved in a project, sponsored by the Niagara Mohawk Power Corporation, to develop knowledge-based expert systems to aid in the implementation of the Seismic Qualification Utility Group (SQUG) approach for the seismic qualification of equipment in operating nuclear power plants. This approach, being founded on the use of engineering judgment in the application of prior earthquake experience data, requires comprehensive training. There seems to be general consensus that the experience-based approach is a more cost-effective means of qualifying nuclear power plant equipment when compared to the more traditional analytical methods. The experience-based approach has a number of potential applications in civil engineering, including bridge evaluation and design, seismic adequacy of general structures, foundation design, and water and wastewater treatment plant design and operation. The objective of this paper is to outline an academic curriculum, at the master's level, to educate structural engineers to use and further develop the experience-based approach for seismic evaluation. In the long term, this could lead to the development of academic programs in experience-based assessment and design for a wide range of applications in maintaining the nation's infrastructure

  2. The NARS array : a seismic experiment in Western Europe

    NARCIS (Netherlands)

    Dost, B

    1987-01-01

    Due to the rapid development of portable, digital seismographs it has recently become possible in global seismology to install and operate a large scale temporary array of seismic stations. This thesis describes the design and operation of the first experiment of this kind: the Network of Autonomous

  3. The NARS array : a seismic experiment in Western Europe

    NARCIS (Netherlands)

    Dost, B.

    1987-01-01

    Due to the rapid development of portable, digital seismographs it has recently become possible in global seismology to install and operate a large scale temporary array of seismic stations. This thesis describes the design and operation of the first experiment of this kind: the Network of

  4. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    Science.gov (United States)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  5. Unwrapped phase inversion for near surface seismic data

    KAUST Repository

    Choi, Yun Seok

    2012-11-04

    The Phase-wrapping is one of the main obstacles of waveform inversion. We use an inversion algorithm based on the instantaneous-traveltime that overcomes the phase-wrapping problem. With a high damping factor, the frequency-dependent instantaneous-traveltime inversion provides the stability of refraction tomography, with higher resolution results, and no arrival picking involved. We apply the instantaneous-traveltime inversion to the synthetic data generated by the elastic time-domain modeling. The synthetic data is a representative of the near surface seismic data. Although the inversion algorithm is based on the acoustic wave equation, the numerical examples show that the instantaneous-traveltime inversion generates a convergent velocity model, very similar to what we see from traveltime tomography.

  6. The SEIS Experiment: A Mars Seismic Package

    Science.gov (United States)

    Schibler, P.; Lognonné, P.; Giardini, D.; Banerdt, B.; Karczewski, J. F.; Mimoun, D.; Zweifel, P.; Pike, T.; Ammann, J.; Anglade, A.; Desautez, A.; Gabsi, T.; Gagnepain-Beyneix, J.; Mance, D.; Pont, G.; Pot, O.; Striebig, N.; Vacherat, H.; Weber, F.

    2003-07-01

    The determination of the deep internal structure of Mars will be the goal of the SEIS experiment, which integrates a very broad band two-axis seismometer, a three-axis short period seismometer, and a series of environmental sensors for pressure, infrasounds, and temperature.

  7. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    C. M. Krawczyk

    2013-02-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth

  8. Seismic Attenuation of Sn phase beneath the Ordos Plateau

    Science.gov (United States)

    Pan, J.; Chen, Y.; Chen, Y. J.; Sandvol, E. A.

    2015-12-01

    We have used attenuation tomography of the regional seismic phase Sn to characterize the uppermost mantle shear wave Q (Qs) over a large part of northern China. The Sn phase is often a difficult phase to identify for continental paths since it usually has a relatively small amplitude compared to the regional phase Lg. Also Sn is often a high frequency phase and thus it is often blocked for paths that cross tectonically active regions. We have used the unprecedented amount of national network and temporary stations that were deployed across China over the last five years to be able to successfully identify Sn phases and use them to measure Sn Q using a reverse two station method. The initial waveforms was filtered with the frequency band of 0.5-3 Hz, and Sn time window was computed using velocities range of 4.3-4.7 km/s. Sn waveforms from 43 earthquakes recorded by 63 stations were manually picked out in order to obtain the ratio of Sn amplitude from each two-station pair. Those ratios describe Sn attenuation along each inter-station path. We have used to approaches: the two-station method was used to isolate factors, such as source, and earth response, and calculate inter-station Q value. And LSQR algorithm was used to obtain tomographically map lateral variations in Sn Q. We find relatively low uppermost mantle Q anomaly is consistent with the Weihe graben, a young active rifting system with hot uppermantle. Low Q value also appears in the southern part of the Ordos plateau, which shows the opposite result to the characteristics of lithospheric mantle in a craton. This may be a result of scattering attenuation of Sn or possible thermal erosion of the lithospheric root beneath the southern Ordos.

  9. Free online seismic data from a sand tank experiment

    Science.gov (United States)

    Lorenzo, J. M.; Smolkin, D.; White, C.; Chollett, S.; Sun, T.

    2012-12-01

    Theoretical fluid flow models are used regularly to predict and analyze porous media flow but require verification against natural systems. Seismic monitoring in a controlled laboratory setting at a nominal scale of 1:1000 in the acoustic frequency range can help improve fluid flow models as well as elasto-granular models for uncompacted, saturated-unsaturated soils. A mid-scale sand tank allows for many highly repeatable, yet flexible, experimental configurations with different material compositions and pump rates while still capturing phenomena such as patchy saturation, flow fingering, or layering. The tank (~6 x 9 x 0.44 m) contains a heterogeneous sand pack (1.52-1.7 phi). In a set of eight experiments the water table is raised inside the sand body at increments of ~0.05 m. Seismic events (vertical component) are recorded by a pseudo-walkaway 64-channel accelerometer array (20 Hz-20 kHz), at 78 kS/s, in 100- scan stacks so as to optimize signal-to-noise. Three screened well sites monitor water depth (+/- 3 mm) inside the sand body. Data sets comprise SEG-Y formatted files (seismic) and are publicly downloadable from the internet (http://github.com/cageo/Lorenzo-2012), in order to allow comparisons of different seismic and fluid flow analyses. The capillary fringe does not appear to completely saturate, as expected, because the interpreted compressional-wave velocity values remain so low (< 210 m/s). Even the highest water levels there is no large seismic impedance contrast across the top of the water table to generate a clear reflector. Preliminary results indicate an immediate need for several additional experiments whose data sets will be added to the online database. Future benchmark data sets will grow with a control data set to show conditions in the sand body before water levels rise, and a surface 3D data set. In later experiments, buried sensors will help reduce seismic attenuation effects and in-situ saturation sensors will provide calibration values.

  10. Seismic and volcanic activity during 2014 in the region involved by TOMO-ETNA seismic active experiment

    Directory of Open Access Journals (Sweden)

    Graziella Barberi

    2016-09-01

    Full Text Available This paper presents an overview of the seismic and volcanic activity occurred during 2014 in the region involved by the TOMO-ETNA seismic active experiment (Mt. Etna, Aeolian Islands and Peloritani-Messina Strait areas. To better characterize the seismicity over the year, three-dimensional hypocenter locations and focal mechanism solutions of a dataset of 678 selected small-to-moderate magnitude earthquakes (0.5 ≤ ML ≤ 4.3 were analyzed. In the framework of the TOMO-ETNA experiment, a temporary seismic network was installed on-land from June to November 2014, both to acquire seismic signals produced by shots and to record the local seismicity. Data collected by the temporary network were used to integrate those deriving from the permanent seismic network operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV-Osservatorio Etneo (Etna Observatory, thus obtaining a numerically more robust dataset. In agreement with previous analysis and studies, the distribution of the hypocentral locations is well representative of the seismicity that typically characterizes this area. The selected well-constrained 42 fault plane solutions evidence two domains characterized by different motions and style of deformation. In particular, an extensional domain in the northeastern Sicily and a strike-slip regime in the northernmost part of the studied region have been observed.

  11. Seismic safety-margins research program. Phase I final report - development of seismic input (Project II)

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Chung, D.H.; Mortgat, C.P.

    1982-06-01

    Project II was charged with developing a probabilistic statement of the seismic hazard at the zion site. The definition of the seismic hazard included both the time histories upon which the SMACS computation was based and the hazard curve necessary for the calculation of unconditional release probabilities by SEISIM. In this volume, the application of the probabilistic approach is discussed using expert opinion to obtain estimates of the seismic hazard at the Zion site. The ground motion models used to develop the seismic hazard at the Zion site and the extensive sensitivity studies which were performed to determine the important parameters and the significance of uncertainty in them are described

  12. Peru Subduction Zone Seismic Experiment (PeruSZE): Preliminary Results From a Seismic Network Between Mollendo and Lake Titicaca, Peru.

    Science.gov (United States)

    Guy, R.; Stubailo, I.; Skinner, S.; Phillips, K.; Foote, E.; Lukac, M.; Aguilar, V.; Tavera, H.; Audin, L.; Husker, A.; Clayton, R.; Davis, P. M.

    2008-12-01

    This work describes preliminary results from a 50 station broadband seismic network recently installed from the coast to the high Andes in Peru. UCLA's Center for Embedded Network Sensing (CENS) and Caltech's Tectonic Observatory are collaborating with the IRD (French L'Institut de Recherche pour le Developpement) and the Institute of Geophysics, in Lima Peru in a broadband seismic experiment that will study the transition from steep to shallow slab subduction. The currently installed line has stations located above the steep subduction zone at a spacing of about 6 km. In 2009 we plan to install a line of 50 stations north from this line along the crest of the Andes, crossing the transition from steep to shallow subduction. A further line from the end of that line back to the coast, completing a U shaped array, is in the planning phase. The network is wirelessly linked using multi-hop network software designed by computer scientists in CENS in which data is transmitted from station to station, and collected at Internet drops, from where it is transmitted over the Internet to CENS each night. The instrument installation in Peru is almost finished and we have been receiving data daily from 10 stations (out of total 50) since June 2008. The rest are recording on-site while the RF network is being completed. The software system provides dynamic link quality based routing, reliable data delivery, and a disruption tolerant shell interface for managing the system from UCLA without the need to travel to Peru. The near real-time data delivery also allows immediate detection of any problems at the sites. We are building a seismic data and GPS quality control toolset that would greatly minimize the station's downtime by alerting the users of any possible problems.

  13. Seismic wavefield polarization: a study of spatial coherency within the LSBB 3-component broadband array to extract seismic phases

    Science.gov (United States)

    Labonne, Claire; Sèbe, Olivier; Gaffet, Stéphane; Schindelé, François

    2017-04-01

    In seismology, the key to interpreting data is wavefield characterization independent from the nature of the wavefield whether it is seismogram from earthquake or seismic noise from hydrocarbon production or ocean swell. The seismic wavefield is a combination of polarized waves. These waves are characterized not only by their propagation properties (i.e. velocity and direction of propagation) but also by the local particle motion trajectories they generate. These particle motion trajectories are the polarization properties of the waves and play a large part in identifying and extracting the seismic phases. To study the polarization, 3-component data are required. The LSBB (Low Noise Underground Laboratory) 3-component seismic array offers the possibility to study the spatial coherency of polarization properties of propagating waves through the array. An optimized time-frequency decomposition of the polarization properties, such as the ellipticity, the rectilinearity vector or the planarity vector, is done for each station of the array by approximating each time-frequency contribution by an elliptical motion lying in a plane in the 3D space. By assuming coherent polarization properties for plane waves propagating through a seismic array, these properties' spatial coherency could be integrated in advanced array processing techniques. Applied to teleseismic records, the study of the spatial coherency of the polarization yields three main results: (i) a very precise station orientation (lower than 1 degree) is required to observe a significant spatial coherency, (ii) a relative station orientation can be done by maximizing the spatial coherency of the polarization, and (iii) if the precision of the station orientation is sufficient, identifying seismic phases according to their coherent polarization parameters becomes possible. This type of array polarization analysis can be performed as well on telesismic records as on seismic noise. Our first results demonstrate the

  14. A New Seismic Phase with Ray Parameter = 0: GOOOOOOOOOOOOOAOAOAOAOAOAAAAAAAALLLLLLLLLL!!!

    Science.gov (United States)

    Lofton, K. M.; Euler, G. G.; Wiens, D. A.; Tibi, R.; Shore, P.; Nyblade, A.; Larson, A. M.; Nnange, J. M.; Ateba, B.; Tabod, C.; Tokam, A.

    2006-12-01

    Simultaneous, high-frequency arrivals seemingly unassociated with earthquake activity were recorded on seismometers of the Cameroon Seismic Array (CSA) from January to February, 2006. The CSA is a temporary deployment, initially installed in January of 2005 with 8 stations and expanded to 32 stations after one year, that will continue to record until January 2007. The seismometer spacing is on average about 150 km and is confined to the United Republic of Cameroon. The array is primarily intended to aid in resolving upper mantle and crustal features associated with the Cameroon Volcanic Line. The phase in question exhibits a ray parameter of near zero, onsetting nearly simultaneously at most stations of the array. However, no corresponding earthquake sources have been identified in teleseismic catalogs and no phases with non-zero ray parameter are recorded near the time of the arrivals. The associated arrivals are confined to periods less than 0.5s, have both horizontal and vertical motion, show no waveform coherency except in duration, and have considerable variation in amplitude across the array. Among groups of arrivals, variation is observed in average amplitude, coda duration, temporal spacing, and the number of recording stations. Extensive temporal analysis indicates two levels of clustering: dense clustering within a span of a few hours and clustering of all noted arrivals within a period of roughly 2 weeks. Inspection of an atmospheric or solar relationship showed no significant correlation. However, investigation of anthropogenic activity led to a perfect correlation: the timing of the phases is confined to the period of televised Cameroonian soccer matches during the 2006 African Cup of Nations and the onset of the signals coincide with the kicking of a Cameroonian football into the opponent's goal.

  15. Dead Sea gives life to a unique seismic calibration experiment

    Science.gov (United States)

    Gitterman, Yefim; Shapira, Avi

    An unusual seismic and hydro-acoustic experiment involving large underwater chemical explosions has been conducted in the Dead Sea. The purpose of this creative, cost-efficient venture was to improve monitoring and verification of the Comprehensive Test Ban Treaty (CTBT) in the Middle East.The goals of the experiment were to calibrate the regional travel times of the seismic waves from the explosions; to provide data for source characterization; and to improve detection, location, and discrimination capabilities of the International Monitoring System (IMS) stations. From a seismologist's point of view, the experiment's main 5-ton explosion exceeded expectations. The blast was recorded at 8 IMS stations (including PDYAR in Russia, more than 5000 km away), with the estimated location only 2.3 km from ground truth, and an event magnitude of mb=3.9 [Center for Monitoring Research, 1999]. These results compare to the predicted local magnitude of about 4 and the maximal observable range of about 2600 km [Gitterman, 1998]. A lack of a detectable signal on some nearer stations will likely reveal important path effects.

  16. Subsystem fragility: Seismic Safety Margins Research Program (Phase I)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R. P.; Campbell, R. D.; Hardy, G.; Banon, H.

    1981-10-01

    Seismic fragility levels of safety related equipment are developed for use in a seismic oriented Probabilistic Risk Assessment (PRA) being conducted as part of the Seismic Safety Margins Research Program (SSMRP). The Zion Nuclear Power Plant is being utilized as a reference plant and fragility descriptions are developed for specific and generic safety related equipment groups in Zion. Both equipment fragilities and equipment responses are defined in probabilistic terms to be used as input to the SSMRP event tree/fault tree models of the Zion systems. 65 refs., 14 figs., 11 tabs.

  17. Attenuation of seismic waves in rocks saturated with multiphase fluids: theory and experiments

    Science.gov (United States)

    Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J. P.

    2016-12-01

    Albeit seismic tomography could provide a detailed image of subsurface fluid distribution, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. However, tomographic information is important because the upward migration of multiphase fluids through the crust of the Earth can cause hazardous events such as eruptions, explosions, soil-pollution and earthquakes. In addition, multiphase fluids, such as hydrocarbons, represent important resources for economy. Seismic tomography can be improved considering complex elastic moduli and the attenuation of seismic waves (1/Q) that quantifies the energy lost by propagating elastic waves. In particular, a significant portion of the energy carried by the propagating wave is dissipated in saturated media by the wave-induced-fluid-flow (WIFF) and the wave-induced-gas-exsolution-dissolution (WIGED) mechanism. The latter describes how a propagating wave modifies the thermodynamic equilibrium between different fluid phases causing exsolution and dissolution of gas bubbles in the liquid, which in turn causes a significant frequency-dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but was only recently demonstrated and extended to bubbly water. We report the theory and laboratory experiments that have been performed to confirm the WIGED theory. In particular, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Then, we extend the theory to fluids and pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. This work etends the knowledge of attenuation in rocks saturated with multiphase fluid and

  18. Seismic survey in southeastern Socorro Island: Background noise measurements, seismic events, and T phases

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, Raul W [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Galindo, Marta [Comprehensive Nuclear-Test-Ban Treaty Organization, IMS, Vienna (Austria); Pacheco, Javier F; Iglesias, Arturo; Teran, Luis F [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Barreda, Jose L; Coba, Carlos [Facultad de Ingenieria, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2005-01-15

    We carried out a seismic survey and installed five portable, broadband seismometers in the southeastern corner of Socorro Island during June 1999. Power spectral densities for all five sites were relatively noisy when compared to reference curves around the world. Power spectral densities remain constant regardless of the time of day, or the day of the week. Cultural noise at the island is very small. Quiet and noisy sites were identified to determine the best location of the T phase station to be installed jointly by the Universidad Nacional Autonoma de Mexico and the Comprehensive Nuclear-Test-Ban Treaty Organization. During the survey six earthquakes were recorded at epicentral distances between 42 km and 2202 km, with magnitudes between 2.8 and 7.0. Two small earthquakes (M{sub c} = 2.8 and 3.3) occurred on the Clarion Fracture Zone. The four largest and more distant earthquakes produced T waves. One T wave from an epicenter near the coast of Guatemala had a duration of about 100 s and a frequency content between 2 and 8 Hz, with maximum amplitude at about 4.75 Hz. The Tehuacan earthquake of June 15, 1999 (M{sub w} = 7.0) produced arrivals of P {yields} T and S {yields} T waves, with energy between 2 Hz and 3.75 Hz. The earthquake occurred inland within the subducted Cocos plate at a depth of 60 km; a significant portion of the path was continental. Seismic P and S waves probably propagated upward in the subducted slab, and were converted to acoustic energy at the continental slope. Total duration of the T phase is close to 500 s and reaches its maximum amplitude about 200 s after the P {yields} T arrival. The T wave contains energy at frequencies between 2 and 10 Hz and reaches its maximum amplitude at about 2.5 Hz. T phases were also recorded from two earthquakes in Guerrero, Mexico and in the Rivera Fracture Zone. [Spanish] En junio de 1999 instalamos cinco sismometros portatiles de banda ancha en el sureste de la Isla Socorro. Se encontro que las densidades

  19. Statistical redundancy of instantaneous phases: theory and application to the seismic ambient wavefield

    Science.gov (United States)

    Gaudot, Ianis; Beucler, Éric; Mocquet, Antoine; Schimmel, Martin; Le Feuvre, Mathieu

    2016-04-01

    In order to detect possible signal redundancies in the seismic ambient wavefield, we develop a new method based on pairwise comparisons among a set of synchronous time-series. This approach is based on instantaneous phase coherence statistics. The first and second moments of the pairwise phase coherence distribution are used to characterize the phase randomness. Both theory and synthetic experiments show that, for perfect phase randomness, the theoretical values of the mean and variance are equal to 0 and 1 - 2/π, respectively. As a consequence, any deviation from these values indicates the presence of a redundant phase in the raw continuous signal. Using the ergodicity property of a random signal, we split an initial time-series into a set of synchronous signals. This allows us to detect and to quantify the repetitiveness of any possible temporally persistent and spatially localized source, during a given period of observation. In the case of the detection of a redundant phase, individual coherences (one trace against all others) quantify the contribution of each time-series independently. A previously detected 26 s period microseismic source located near the Gulf of Guinea is used to illustrate one of the possible ways of handling phase coherence statistics. We use the continuous vertical component data recorded during the month of 2004 August by four broad-band stations of the Federation of Digital Seismography Network. To compute coherence statistics among a set composed of a sufficient number of synchronous traces, the raw seismic signal is split into 372 2-hr sliding time windows. Only the basic signal processing steps (including removing the mean, trend and the instrumental response) are applied. After bandpass filtering the data between 23 and 32 s periods, the 2-hr time-series are cross-correlated, leading to a set of 372 synchronous cross-correlations for each station pair. We observe that, for all station pairs, the mean overall coherence value is close

  20. Discrimination between phase and amplitude attributes in time-lapse seismic streamer data

    NARCIS (Netherlands)

    Spetzler, J.; Kvam, O.

    2006-01-01

    Time-lapse seismic experiments aim to obtain information about production-related effects in hydrocarbon reservoirs to increase the recovery percentage. However, nonrepeatability problems such as acquisition differences, overburden effects, and noise are often significantly stronger than the imprint

  1. Seismic Safety Margins Research Program (Phase I). Project IV. Structural building response; Structural Building Response Review

    International Nuclear Information System (INIS)

    Healey, J.J.; Wu, S.T.; Murga, M.

    1980-02-01

    As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities

  2. Seismic Reflectivity Evolution Beneath Sakurajima Volcano, Japan, from 2009 through 2014, Revealed with Rounds of Controlled-source Seismic Experiments

    Science.gov (United States)

    Tsutsui, T.; Iguchi, M.; Tameguri, T.; Nakamichi, H.

    2015-12-01

    Evolution in seismic reflectivity is detected beneath an active volcano, Sakurajima Volcano, from 2009 through 2014 with using controlled seismic experiments . The reflectivity variation is interpreted to associate with discharging magma. Sakurajima Volcano is the target of this study, which is one of the most active volcanoes in Japan. Seven rounds of the seismic experiment with controlled sources have been conducted annually in the volcano. Two seismic reflection profiles tied up are obtained from the datasets under successful reproduction during rounds. Clear annual variation in seismic reflectivity at 6.2km depth is detected in the northeastern part of Sakurajima during the rounds. The reflectivity marked its maximum on December 2009 on the first intrusion of magma and decreased gradually until December 2013, which coincides with inflation and following deflation in Sakurajima Volcano. The active reflector at 6.2km depth occupies a part of embedded clear reflector. A sandwich structure is invoked as the reflector model. Intrusion of fresh and high temperature magma into the intermediate layer of the model and its decline explains the variation range of reflectivity successfully. Our study presents one of new approaches for sensing magma properties instantaneously and for monitoring active volcanoes.

  3. Performance of an island seismic station for recording T-phases

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, J. A., LLNL

    1998-05-01

    As part of the International Monitoring System (IMS) a worldwide hydroacoustic network consisting of 6 hydrophone and 5 island seismic stations has been planned which will monitor for underwater or low altitude atmospheric explosions. Data from this network is to be integrated with other IMS networks monitoring the Comprehensive Nuclear Test-Ban Treaty. The seismic (T-phase) stations are significantly less sensitive than hydrophones to ocean borne acoustic waves. T-phase signal strength at seismic stations depends on the amplitude of the signal in the water column, the hydroacoustic-seismic conversion efficiency, and loss on the seismic portion of the path through the island. In order to understand how these factors influence the performance of T-phase stations seismic and hydroacoustic data are examined from instruments currently deployed on or around Ascension Island in the South Atlantic Ocean. T-phase recordings for the last 3 years have been collected from the GSN seismic station ASCN on Ascension Island. Surrounding the island are 5 hydrophones which are part of the U.S. Air Force Missile Impact Locating System (MILS). Data from this system have been obtained for some of the events observed at ASCN. Four of the hydrophones are located within 30 km of the coast while the fifth instrument is 100 km to the south. Amplitude spectral estimates of the signal-to-noise levels (SNL) are computed and generally peak between 3 and 8 Hz for both the seismometer and hydrophone data. The seismic SNL generally decays to 1 between 10 and 15 Hz while the hydrophone SNL is still large well above 20 Hz. The ratios of the hydrophone-to-seismometer SNL, at their peak in energy, range between 10 and 100 (20-40 dB) unless a hydrophone is partially blocked by the Ascension Island landmass.

  4. Propagation of Regional Seismic Phases in Western Europe

    Science.gov (United States)

    1991-03-08

    and Southeastern France recorded at short period stations of the LDG (Laboratoire de Detection Geophysique , France) and IGG (Istituto Geofisico di...here were provided by the L.D.G. (Laboratoire de Geophysique ). The french seismic network consists of 27 stations with the same features : the

  5. Economies of using seismic experience data qualification methods at Department of Energy facilities

    International Nuclear Information System (INIS)

    Loceff, F.; Antaki, G.; Goen, L.

    1995-01-01

    This paper summarizes the implementation of the seismic qualification of existing equipment using experience data techniques. The emphasis is on the economies of this approach compared with standard qualification methods of analysis and testing or replacement with qualified equipment. Seismic qualification of existing equipment using experience data is a technical necessity and is the most economically attractive of the options. Representative costs for seismic qualification at two facilities show costs are substantially lower than the costs for qualification using conventional methods. Because of the experience to date, the authors recommend that the Department of Energy continue to sponsor the Existing Facilities Program for applying qualification using experience data techniques at DOE facilities

  6. The potential for vault-induced seismicity in nuclear fuel waste disposal: experience from Canadian mines

    International Nuclear Information System (INIS)

    Martin, C.D.; Chandler, N.A.

    1996-12-01

    A seismic event which causes damage to an underground opening is called a rockburst. Practical experience indicates that these damaging seismic events are associated with deep mines where extraction ratios are greater than 0.6. For the arrangement being considered by AECL for nuclear fuel waste disposal vaults, extraction ratios, for the room and pillar design, will be less than 0.3. At this extraction ratio the stress magnitudes will not be sufficient to induce seismic events that can damage the underground openings. Documented world-wide experience shows that unless the underground opening is very close to the source of a naturally occurring seismic event, such as an earthquake, the opening will also not experience any significant damage. Backfilling a disposal vault will improve its resistance to earthquake damage. Backfilling a disposal vault will also reduce the total convergence of the openings caused by thermal loads and hence minimize the potential for thermally-induced seismic events. (author)

  7. Study of local seismic events in Lithuania and adjacent areas using data from the PASSEQ experiment

    Czech Academy of Sciences Publication Activity Database

    Janutyte, I.; Kozlovskaya, E.; Motuza, G.; Plomerová, Jaroslava; Babuška, Vladislav; Gaždová, Renata; Jedlička, Petr; Kolínský, Petr; Málek, Jiří; Novotný, Oldřich; Růžek, Bohuslav

    2013-01-01

    Roč. 170, č. 5 (2013), s. 797-814 ISSN 0033-4553 Institutional support: RVO:67985530 ; RVO:67985891 Keywords : location of local seismic events * East European Craton * PASSEQ passive seismic experiment Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.854, year: 2013

  8. Seismicity and seismotectonics of the Western Lake Ontario Region -relocation of the seismic events phase III

    International Nuclear Information System (INIS)

    Mohajer, A.A.

    1995-12-01

    Earthquake hazard analysis in Canada relies mainly on recorded earthquake data. The ability to record earthquakes of a given magnitude has varied considerably over time as has the accuracy of location determinations. Recomputation of earthquake locations has been suggested as a possible means of improving the existing data base for better definition of seismic sources. In this study, the locations of more than 50 small to moderate magnitude earthquakes (M≤5), in the western Lake Ontario region, were examined. Available seismograph records in the Record Centre of the National Archives of Canada were examined for events that occurred prior to 1978. The events recorded after this date showed increasing accuracy in their location determinations due to initiation and improvements of the Eastern Canada Telemetry Network (ECTN). Data compiled from the study are based on the relocated and/or selected events with the minimum travel time residuals at the Canadian and American stations. Except for a few scattered events in the south-central part of the Lake Ontario region, microearthquakes (M<3.5) cluster along or at the intersection of prominent aeromagnetic and gravity anomalies, within the Toronto-Hamilton Seismic Zone. This is indicative of certain seismotectonic relationships in this region. The depth distribution or the better located events show that a range of 5 to 20 km is dominant and, therefore, they are not near-surface stress relief phenomena. However, details of the structural manifestation of inferred seismogenic features need further ground truthing, backed by long term seismic monitoring. (author) 66 refs., 3 tabs., 6 figs

  9. Preliminary Results from the iMUSH Active Source Seismic Experiment

    Science.gov (United States)

    Levander, Alan; Kiser, Eric; Palomeras, Imma; Zelt, Colin; Schmandt, Brandon; Hansen, Steve; Harder, Steven; Creagar, Kenneth; Vidale, John; Abers, Geoffrey

    2015-04-01

    iMUSH (imaging Magma Under Saint Helens) is a US NSF sponsored multi-disciplinary investigation of Mount Saint Helens (MSH), currently the most active volcano in the Cascades arc in the northwestern United States. The project consists of active and passive seismic experiments, extensive magnetotelluric sounding, and geological/geochemical studies involving scientists at 7 institutions in the U.S. and Europe. The long-term goal of the seismic project is to combine analysis of the active source data with that of data from the 70 element broadband seismograph operating from summer 2014 until 2016. Combining seismic and MT analyses with other data, we hope to image the MSH volcanic plumbing system from the surface to the subducting Juan de Fuca slab. Here we describe preliminary results of the iMUSH active source seismic experiment, conducted in July and August 2014. The active source experiment consisted of twenty-three 454 or 908 kg weight shots recorded by ~3500 seismographs deployed at ~6,000 locations. Of these instruments, ~900 Nodal Seismic instruments were deployed continuously for two weeks in an areal array within 10 km of the MSH summit. 2,500 PASSCAL Texan instruments were deployed twice for five days in 3 areal arrays and 2 dense orthogonal linear arrays that extended from MSH to distances > 80 km. Overall the data quality from the shots is excellent. The seismograph arrays also recorded dozens of micro-earthquakes beneath the MSH summit and along the MSH seismic zone, and numerous other local and regional earthquakes. In addition, at least one low frequency event beneath MSH was recorded during the experiment. At this point we have begun various types of analysis of the data set: We have determined an average 1D Vp structure from stacking short-term/long-term average ratios, we have determined the 2-D Vp structure from ray-trace inversions along the two orthogonal profiles (in the NW-SE and NE-SW directions), and we have made low-fold CMP stacks of the

  10. Finite seismic source parameters inferred from stopping phases for selected events of West Bohemia 2000 swarm

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr; Růžek, Bohuslav

    2012-01-01

    Roč. 9, č. 4 (2012), s. 435-447 ISSN 1214-9705 R&D Projects: GA AV ČR(CZ) IAA300120805; GA ČR GAP210/10/1728 Institutional support: RVO:67985530 Keywords : finite seismic source * stopping phases * West Bohemia earthquke swarm Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.530, year: 2011

  11. 2D seismic tomography of Somma- Vesuvius. Description of the experiment and preliminary results.

    Directory of Open Access Journals (Sweden)

    G. Milano

    1996-06-01

    Full Text Available A multidisciplinary project for the investigation of Mt. Vesuvius Structure was started in 1993. The core of the project is represented by a high resolution seismic tomography study by using controlled and natura1 sources. The main research objective is to investigate the feeding system of the vo1cano and to retrieve details of the upper crustal structure in the area. A first 2D using seismic experiment was performed in May 1994, with the aim of studing the feasibility of lIsing tomographic techniques for exploring the vo1cano interiors. Particularly, this experiment was designed to obtain information on the optimal sources-receivers configuration and on the depth extension of the volume sampled by shot-generated seismic waves. 66 three-component seismic stations and 16 single-component analogue instruments were installed by several Italian and French groups to record signals generated by three on-land, underground explosions. Sources and geophones were deployed along a 30-km NW-SE profile passing through the volcano crater. Receivers were placed at an average spacing of 250 m in the middle of the recording line and at 500 m outside. The arrival time data base was complemented by first P and S readings of micro earthquakes which occurred in the recent past within the volcano. The first arrival data set was preliminary used to determine the shallow structure of the volcano by applying Thurber's (1983 tomographic inversion technique. This analysis shows evidence for a high-velocity body which extends vertically from about 400 m below the crater down to at least 3000 m and for a shallow 300-500 m thick low-velocity cover which borders the edifice. Data from the distant shot show evidence for arrivals of deep reflected/converted phases and provide information on the deeper structure under the volcano. The results from the interpretation of 2D data are used for planning a 3D tomographic survey which will be cauied out in 1996.

  12. Synthetic modelling of acoustical propagation applied to seismic oceanography experiments

    Science.gov (United States)

    Kormann, Jean; Cobo, Pedro; Biescas, Berta; Sallarés, Valentí; Papenberg, Cord; Recuero, Manuel; Carbonell, Ramón

    2010-03-01

    Recent work shows that multichannel seismic (MCS) systems provide detailed information on the oceans' finestructure. The aim of this paper is to analyze if high order numerical algorithms are suitable to accurately model the extremely weak wavefield scattered by the oceans' finestructures. For this purpose, we generate synthetic shot records along a coincident seismic and oceanographic profile acquired across a Mediterranean salt lens in the Gulf of Cadiz. We apply a 2D finite-difference time-domain propagation model, together with second-order Complex Frequency Shifted Perfectly Matched Layers at the numerical boundaries, using as reference a realistic sound speed map with the lateral resolution of the seismic data. We show that our numerical propagator creates an acoustical image of the ocean finestructures including the salt lens that reproduces with outstanding detail the real acquired one.

  13. Phase 1 report: the 4D seismic market from 2000 to 2003

    International Nuclear Information System (INIS)

    Sagary, C.

    2004-01-01

    This report synthesizes the phase 1 results of the joint industrial project, called ''4D Seismic: Technologies, Economics and Issues''. This project was conducted by IFP between November 2003 and April 2004, in collaboration with Compagnie Generale de Geophysique (CGG) and sponsored by Gaz de France and 4. Wave Imaging. Phase 1 offers an objective view of the 4D seismic market over the period 2000-2003. The market has been assessed from IFP extensive databases, gathering 115 4D projects conducted worldwide and from interviews of seven oil companies, both representing 90% of the activity in time-lapse seismic. This study provides sales estimation and sales/projects breakdown by: in-house/subcontracted activity, geography, onshore/offshore, reservoir rocks and recovery methods, technology/methodology, oil companies and service companies. The market of 4D seismic has been split into 4 segments: acquisition, processing, reservoir studies - feasibility, interpretation and seismic history matching -, borehole seismic (acquisition and processing). In addition, the market of passive seismic monitoring, another technique of seismic reservoir monitoring has also been estimated. The main sources, used to build the IFP databases, were: Worldwide Global E and P Service Reports from IHS Energy, World Geophysical News, an extensive bibliographic study through more than 200 articles, abstracts and summaries, a collaboration with CGG. For all market estimations, numbers computed from IFP databases and from interviews of oil companies were extrapolated from 90% to 100%, to quantify the total 4D activity. The estimations obtained were not rounded in order to preserve trends with a consistent computation from one year to another and from one market segment to another, despite uncertainties of about 10%. Quality controls were performed to validate the final estimations: volumes of 4D seismic data, computed from IFP databases, were checked by comparing processed data with acquired data

  14. A strategy for implementation of experience based seismic equipment qualification in IEEE and ASME industry standards

    International Nuclear Information System (INIS)

    Adams, T.M.

    1996-01-01

    In the past 20 years, extensive data on the performance of mechanical and electric equipment during actual strong motion earthquakes and seismic qualification tests has been accumulated. Recognizing that an experience based approach provides a technically sound and cost effective method for the seismic qualification of some or certain equipment, the IEEE Nuclear Power Engineering Committee and the ASME Committee on Qualification of Mechanical Equipment established a Special Working Group to investigate the incorporation of experienced based methods into the industry consensus codes and standards currently used in the seismic qualification of Seismic Category Nuclear Power Plant equipment. This paper presents the strategy (course of action) which was developed by the Special Working Group for meeting this objective of incorporation of experience based seismic qualification standards used in the design and seismic qualification of seismic category nuclear power plant equipment. This strategy was recommended to both chartering organizations, the IEEE Nuclear Power Engineering Committee and the ASME Committee on Qualification of Mechanical Equipment for their consideration and implementation. The status of the review and implementation of the Special Working Group's recommended strategy by the sponsoring organization is also discussed

  15. Regulatory application of seismic experience data for nuclear power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Ying [Nuclear Regulatory Commission, Washington, DC (United States)

    1997-03-01

    On the basis of its review and evaluation (Reference 3) of the SQUG GIP (Reference 2) and on the basis of the differences between current seismic qualification requirements and the criteria and procedures provided in the GIP, the NRC staff does not consider the USI A-46 methodology given in the GIP to be a `seismic qualification` procedure. Rather, the staff considers the GIP methodology to be a seismic adequacy verification procedure, which was developed on the basis of generic equipment earthquake experience data, supplemented by generic equipment test data. The implementation of the GIP approach for USI A-46 plants provides safety enhancement, in certain aspects, beyond the original licensing bases. Therefore, the GIP methodology is an acceptable evaluation method, for USI A-46 plants only, to verify the seismic adequacy of the safe-shutdown equipment installed in the NPPs in the United States. With the new development in the experience-based approach for seismic qualification of equipment currently underway in the U.S. nuclear industry, there is a potential for future regulatory application of an experience-based approach as a seismic qualification method for certain selected equipment installed in NPPs in the United States. However, industry`s use of the experience-based approach will be dependent on the submittal and staff approval of this approach. (J.P.N.)

  16. Regulatory application of seismic experience data for nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Chen, Pei-Ying

    1997-01-01

    On the basis of its review and evaluation (Reference 3) of the SQUG GIP (Reference 2) and on the basis of the differences between current seismic qualification requirements and the criteria and procedures provided in the GIP, the NRC staff does not consider the USI A-46 methodology given in the GIP to be a 'seismic qualification' procedure. Rather, the staff considers the GIP methodology to be a seismic adequacy verification procedure, which was developed on the basis of generic equipment earthquake experience data, supplemented by generic equipment test data. The implementation of the GIP approach for USI A-46 plants provides safety enhancement, in certain aspects, beyond the original licensing bases. Therefore, the GIP methodology is an acceptable evaluation method, for USI A-46 plants only, to verify the seismic adequacy of the safe-shutdown equipment installed in the NPPs in the United States. With the new development in the experience-based approach for seismic qualification of equipment currently underway in the U.S. nuclear industry, there is a potential for future regulatory application of an experience-based approach as a seismic qualification method for certain selected equipment installed in NPPs in the United States. However, industry's use of the experience-based approach will be dependent on the submittal and staff approval of this approach. (J.P.N.)

  17. Improvement of coda phase detectability and reconstruction of global seismic data using frequency-wavenumber methods

    Science.gov (United States)

    Schneider, Simon; Thomas, Christine; Dokht, Ramin M. H.; Gu, Yu Jeffrey; Chen, Yunfeng

    2018-02-01

    Due to uneven earthquake source and receiver distributions, our abilities to isolate weak signals from interfering phases and reconstruct missing data are fundamental to improving the resolution of seismic imaging techniques. In this study, we introduce a modified frequency-wavenumber (fk) domain based approach using a `Projection Onto Convex Sets' (POCS) algorithm. POCS takes advantage of the sparsity of the dominating energies of phase arrivals in the fk domain, which enables an effective detection and reconstruction of the weak seismic signals. Moreover, our algorithm utilizes the 2-D Fourier transform to perform noise removal, interpolation and weak-phase extraction. To improve the directional resolution of the reconstructed data, we introduce a band-stop 2-D Fourier filter to remove the energy of unwanted, interfering phases in the fk domain, which significantly increases the robustness of the signal of interest. The effectiveness and benefits of this method are clearly demonstrated using both simulated and actual broadband recordings of PP precursors from an array located in Tanzania. When used properly, this method could significantly enhance the resolution of weak crust and mantle seismic phases.

  18. Phase space interrogation of the empirical response modes for seismically excited structures

    Science.gov (United States)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  19. Seismic Safety Margins Research Program: Phase II program plan (FY 83-FY 84)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Bernreuter, D.L.; Cover, L.E.; Johnson, J.J.; Shieh, L.C.; Shukla, S.N.; Wells, J.E.

    1982-01-01

    The Seismic Safety Margins Research Program (SSMRP) is an NRC-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its goal is to develop a complete, fully coupled analysis procedure (including methods and computer codes) for estimating the risk of an earthquake-caused radioactive release from a commercial nuclear power plant. The analysis procedure is based upon a state-of-the-art evaluation of the current seismic analysis and design process and explicitly includes the uncertainties inherent in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. As currently planned, the SSMRP will be completed in September, 1984. This document presents the program plan for work to be done during the remainder of the program. In Phase I of the SSMRP, the necessary tools (both computer codes and data bases) for performing a detailed seismic risk analysis were identified and developed. Demonstration calculations were performed on the Zion Nuclear Power Plant. In the remainder of the program (Phase II) work will be concentrated on developing a simplified SSMRP methodology for routine probabilistic risk assessments, quantitative validation of the tools developed and application of the simplified methodology to a Boiling Water Reactor. (The Zion plant is a pressurized water reactor.) In addition, considerable effort will be devoted to making the codes and data bases easily accessible to the public

  20. Chaotic behavior of seismic mechanisms: experiment and observation

    Directory of Open Access Journals (Sweden)

    Mourad Bezzeghoud

    2012-04-01

    Full Text Available

    To simulate the dynamics of earthquakes, a mechanical prototype was constructed that was inspired by the Burridge-Knopoff model and equipped with accurate instrumental devices. The data obtained by the prototype appeared to be consistent with seismic data from the San Andreas Fault, California, USA, which were analyzed using two different methodologies: seismology and modern developments of chaos theory. Perspectives for future work are also presented.

  1. Fault structure, stress, or pressure control of the seismicity in shale? Insights from a controlled experiment of fluid-induced fault reactivation

    Science.gov (United States)

    De Barros, Louis; Daniel, Guillaume; Guglielmi, Yves; Rivet, Diane; Caron, Hervé; Payre, Xavier; Bergery, Guillaume; Henry, Pierre; Castilla, Raymi; Dick, Pierre; Barbieri, Ernesto; Gourlay, Maxime

    2016-06-01

    Clay formations are present in reservoirs and earthquake faults, but questions remain on their mechanical behavior, as they can vary from ductile (aseismic) to brittle (seismic). An experiment, at a scale of 10 m, aims to reactivate a natural fault by fluid pressure in shale materials. The injection area was surrounded by a dense monitoring network comprising pressure, deformation, and seismicity sensors, in a well-characterized geological setting. Thirty-two microseismic events were recorded during several injection phases in five different locations within the fault zone. Their computed magnitude ranged between -4.3 and -3.7. Their spatiotemporal distribution, compared with the measured displacement at the injection points, shows that most of the deformation induced by the injection is aseismic. Whether the seismicity is controlled by the fault architecture, mineralogy of fracture filling, fluid, and/or stress state is then discussed. The fault damage zone architecture and mineralogy are of crucial importance, as seismic slip mainly localizes on the sealed-with-calcite fractures which predominate in the fault damage zone. As no seismicity is observed in the close vicinity of the injection areas, the presence of fluid seems to prevent seismic slips. The fault core acts as an impermeable hydraulic barrier that favors fluid confinement and pressurization. Therefore, the seismic behavior seems to be strongly sensitive to the structural heterogeneity (including permeability) of the fault zone, which leads to a heterogeneous stress response to the pressurized volume.

  2. A comparison of methods to estimate seismic phase delays--Numerical examples for coda wave interferometry

    Science.gov (United States)

    Mikesell, T. Dylan; Malcolm, Alison E.; Yang, Di; Haney, Matthew M.

    2015-01-01

    Time-shift estimation between arrivals in two seismic traces before and after a velocity perturbation is a crucial step in many seismic methods. The accuracy of the estimated velocity perturbation location and amplitude depend on this time shift. Windowed cross correlation and trace stretching are two techniques commonly used to estimate local time shifts in seismic signals. In the work presented here, we implement Dynamic Time Warping (DTW) to estimate the warping function – a vector of local time shifts that globally minimizes the misfit between two seismic traces. We illustrate the differences of all three methods compared to one another using acoustic numerical experiments. We show that DTW is comparable to or better than the other two methods when the velocity perturbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio is low, we find that DTW and windowed cross correlation are more accurate than the stretching method. Finally, we show that the DTW algorithm has better time resolution when identifying small differences in the seismic traces for a model with an isolated velocity perturbation. These results impact current methods that utilize not only time shifts between (multiply) scattered waves, but also amplitude and decoherence measurements. DTW is a new tool that may find new applications in seismology and other geophysical methods (e.g., as a waveform inversion misfit function).

  3. Imaging toThe 2010-2011 CDPapua seismic experiment

    Science.gov (United States)

    Abers, G. A.; Gaherty, J. B.; Jin, G.; Verave, R.; Irarue, P. Y.; Calkins, J. A.; Buck, W. R.

    2011-12-01

    Rifting and ocean-basin forming events are active only in a few places, although they represent the best accessible evidence for the early stages of continental breakup. One such place is the Woodlark Rift, Papua New Guinea, where a transition occurs along strike (with distance to the Euler pole) from limited continental extension, to large extension and formation of metamorphic core complexes, to full sea floor spreading. The exposures here provide access to both horizontal and vertical mass transport associated with rifting; the youngest ultra-high-pressure (UHP) rocks on the planet, 7-8 Ma coesite-eclogite, have been found within the metamorphic core complexes of the D'Entrecasteaux Islands [Baldwin et al., 2008]. These rocks have exhumed from c. 100 km depths at rates that must average 15 km/Ma, at least 50% of horizontal extension rates over this time period. This represents one of the few places where extension is clearly implicated in the exhumation of UHP rocks and perhaps one of the only places where UHP exhumation is still active. In order to understand how such exhumation could occur, we installed a 39-element broadband seismic array across the region of continental rifting of the D'Entrecasteaux Islands and Papuan Peninsula, including 8 ocean-bottom seismographs from the OBSIP broadband pool and 31 IRIS-PASSCAL broadband instruments on land. These data, being recovered in mid-2011, will provide the only sampling of both seismicity and wave propagation through the region of UHP exhumation and core complex formation. They complement a more limited data set collected in 1999-2000 to the east along strike, where continental rifting transitions to seafloor spreading. The latter data showed substantial crustal thinning and removal of mantle lithosphere beneath the axis of core complexes, although the spatial patterns and extension onshore could not be well determined, and seismicity associated with core-complex faulting remained enigmatic. The new, much

  4. Structural evolution beneath Sakurajima Volcano, Japan, revealed through rounds of controlled seismic experiments

    Science.gov (United States)

    Tsutsui, Tomoki; Iguchi, Masato; Tameguri, Takeshi; Nakamichi, Haruhisa

    2016-04-01

    Structural evolution beneath an active volcano is detected as the variation of seismic reflectivity through controlled seismic experiments, which is interpreted as being associated with discharging magma. The target of the present study is Sakurajima Volcano, which is one of the most active volcanoes in Japan. Six rounds of seismic experiments with controlled sources have been conducted annually at the volcano. Two seismic reflection profiles are obtained from the datasets for each successful round of experiments. The experiments reveal clear annual variation in seismic reflectivity at a depth of 6.2 km in the northeastern part of Sakurajima. The reflectivity is maximum in December 2009 upon the first intrusion of magma and decreases gradually until December 2013, which coincides with the inflation and deflation cycle of Sakurajima Volcano. Reflectivity variation occurred in the embedded clear reflector at depth. An evolving sandwiched structure in the intermediate layer is used as the reflector model. Lower-velocity magma embedded in the intermediate layer and its succeeding velocity increment explain the variation range of reflectivity. This is interpreted as a temperature decrease associated with discharging magma at depth. The present study describes a new approach for instantaneously sensing magma properties and for monitoring active volcanoes.

  5. Seismic Safety Margins Research Program (Phase I). Project I. Plant/site selection, plant/site selection assessment report

    International Nuclear Information System (INIS)

    Reed, R.L.

    1979-01-01

    Lawrence Livermore Laboratory (LLL) is conducting research on the seismic risk of nuclear power plants through the Seismic Safety Margins Research Program (SSMRP). Phase I of the SSMRP will include a study of an existing plant and site. Results are presented of a study of existing and planned nuclear power plants in the United States. Selection criteria were developed and a recommendation for a specific plant for the SSMRP Phase I effort is given. Power plant characteristics including types of nuclear steam supply steam, containment structure, electric power capacity, geographic location, site seismicity, and foundation soil properties were evaluated

  6. French experience in seismic risk analysis and associated research works

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1984-11-01

    This communication reviews the basic principles of the seismic risk analysis for nuclear installations in France practiced by the IPSN of the CEA. The presentation of each stage of the analysis includes an account of the methods used, the difficulties met, and a comparison with the recommendations of the AIEA-SG-S1. First, this paper deals with the sismotectonic analysis and with the definition of two reference earthquakes. Then, the calculation of the ground motion corresponding to the reference earthquakes is presented. A particular attention is paid to the problems of calculation of ground motion in the case of important earthquakes near active faults and to the effect of the soil on these movements. Finally, some criticisms, a description of studies undertaken at the moment and some recommendations are presented [fr

  7. Apollo Passive Seismic Experiments: lunar data in SEED format

    Science.gov (United States)

    Nunn, C.; Nakamura, Y.; Igel, H.

    2017-12-01

    As a part of the Apollo lunar missions, five seismometers were deployed on the near side of the Moon between 1969 and 1972, and four of them operated continuously until 1977. Seismic data were collected on the Moon and telemetered to Earth. The data were recorded on digital magnetic tapes, with timestamps representing the time of signal reception on Earth. The taped data have been widely used for many applications. Data from the tapes had also been transferred to SEED (Standard for the Exchange of Earthquake Data) format and these SEED files were previously available at IRIS (Incorporated Research Institutions for Seismology). However, there were some timing-related problems with the original SEED files. We have re-imported the long period data to SEED format, and will make these data available via IRIS. There are many gaps within the data caused by loss of signal or instrument problems. The signal is reconstructed to be read in as a continuous record, with gaps within the seismic trace where necessary. We also record the ground station which received the signal from the Moon, and we preserve the timestamps within the file. The timestamps indicate that the sampling rate varies by up to 0.01 %. We investigate how much this is a change in the apparent sampling rate (due to the orbital parameters of the Moon and the rotation of the Earth) and how much is due to the instrument not maintaining a constant sampling rate. We also provide response files. The new files will be a valuable resource for analyzing the structure of the Moon.

  8. Italy introduces pre and post operation monitoring phases for offshore seismic exploration activities.

    Science.gov (United States)

    Fossati, C; Mussi, B; Tizzi, R; Pavan, G; Pace, D S

    2017-07-15

    Concern is growing that marine fauna can be affected by noise such as naval sonar, pile driving or geophysical surveys, among others. Literature reports a variety of animal reactions to human noise (from apparently null or negligible to strong). However, conclusive results on its effects on marine mammals at individual and population level are still lacking. In 2015, the Italian Environmental Impact Assessment Commission mandated seismic operators apply a standard scientific protocol comparing marine mammal presence before, during, and after offshore seismic survey. For 60days before and after the survey, marine mammals are monitored using visual and acoustic methods. One or more acoustic autonomous recorders, depending on area size, must also be deployed throughout the three phases for continuous monitoring. Consistent data gathered from many surveys will enable robust statistical analysis of results. Diffusion of this monitoring method internationally would improve the study of far-reaching, intense, low frequency noise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simulating the Seismic Signal of Phase Transitions in the Deepest Mantle (Invited)

    Science.gov (United States)

    Walker, A.; Dobson, D. P.; Nowacki, A.; Wookey, J. M.; Forte, A. M.; Kendall, J. M.

    2013-12-01

    The discovery of the perovskite to post-perovskite phase transition in (Mg,Fe)SiO3 explains many of the seismic observations of the lowermost mantle including the presence of multiple seismic discontinuities and significant seismic anisotropy. However, the explanations of many detailed features remain elusive. The recent discovery of a topotactic relationship between the orientation of perovskite and post-perovskite crystals in a partially transformed analogue opens the possibility of texture inheritance through the phase transition [1]. This must be captured in simulations designed to explain the anisotropy of the lowermost mantle, especially those which link mantle dynamics with seismic observations. We have extended our previous work linking models of flow in the lowermost mantle with simulations of texture development and predictions of seismic anisotropy [2] to account for the topotaxy between perovskite and post-perovskite. In particular, we compare four cases: (1) As in [2], anisotropy is only generated in post-perovskite by dislocation mediated deformation dominated by one of a number of slip systems, phase transitions destroy texture and ferropericlase and perovskite dominated rocks are isotropic. (2) Although phase transitions destroy texture, ferropericlase and/or perovskite deform by dislocation motion permitting the generation of seismic anisotropy in warmer regions of the mantle where post-perovskite is unstable. We account for the possibility of the inversion of slip-system activities in ferropericlase at high pressure as suggested by models of dislocation motion based on atomic scale simulations [3]. (3) Allow texture development by dislocation motion in perovskite and post-perovskite and texture inheritance through phase transitions by the mechanism described in [1]. However, we assume that the bulk of the lower mantle deforms by a mechanism that does not lead to the development of texture and so begin the simulation from a random distribution of

  10. Enhancing seismic P phase arrival picking based on wavelet denoising and kurtosis picker

    Science.gov (United States)

    Shang, Xueyi; Li, Xibing; Weng, Lei

    2018-01-01

    P phase arrival picking of weak signals is still challenging in seismology. A wavelet denoising is proposed to enhance seismic P phase arrival picking, and the kurtosis picker is applied on the wavelet-denoised signal to identify P phase arrival. It has been called the WD-K picker. The WD-K picker, which is different from those traditional wavelet-based pickers on the basis of a single wavelet component or certain main wavelet components, takes full advantage of the reconstruction of main detail wavelet components and the approximate wavelet component. The proposed WD-K picker considers more wavelet components and presents a better P phase arrival feature. The WD-K picker has been evaluated on 500 micro-seismic signals recorded in the Chinese Yongshaba mine. The comparison between the WD-K pickings and manual pickings shows the good picking accuracy of the WD-K picker. Furthermore, the WD-K picking performance has been compared with the main detail wavelet component combining-based kurtosis (WDC-K) picker, the single wavelet component-based kurtosis (SW-K) picker, and certain main wavelet component-based maximum kurtosis (MMW-K) picker. The comparison has demonstrated that the WD-K picker has better picking accuracy than the other three-wavelet and kurtosis-based pickers, thus showing the enhanced ability of wavelet denoising.

  11. Seismic structure of the Rivera subduction zone - the MARS experiment

    Science.gov (United States)

    Grand, S. P.; Yang, T.; Sudharja, S.; Wilson, D.; Guzman Speziale, M.; Gomez Gonzalez, J.; Leon-Soto, G.; Ni, J.; Dominguez Reyes, T.

    2007-05-01

    The subduction zone of western Mexico is a unique region on Earth where microplate capture and overriding plate disruption are occurring today. The small Rivera plate is subducting beneath western most Mexico primarily beneath Jalisco state while to the east it is the Cocos plate that is subducting. Above the Rivera plate the Jalisco block of Mexico is bounded by the north trending Colima Rift and the northwest trending Tepic-Chapala Rift and may form a microplate in its own right. Magmatism is present throughout the region and is unusual for a subduction zone in that geochemical analyses indicate an ocean island basalt component to some of the lavas. Also, Colima volcano is offset trenchward from other volcanoes in the Mexican Volcanic Belt. Little is known of the subducting Rivera plate geometry due to the paucity of seismicity within the plate yet the geometry of the Rivera and Cocos plates at depth are likely critical for understanding the tectonic evolution of western Mexico. The MARS (MApping the Rivera Subduction zone) project consists of the deployment of 50 broadband seismometers covering the Jalisco block from the coast to the Tepic-Chapala rift in the north and about 150 km to the west of the Colima rift. The instruments were deployed in January, 2006 and will be removed in June, 2007. The goal of the project is to seismically image the subducting Rivera and Cocos plates at depth as well as the mantle wedge above the plates. A number of different analyses of MARS data are underway including teleseismic tomography, receiver function analysis, and shear wave splitting analysis. The preliminary tomography results clearly show both subducting plates with a sharp change in dip to the east of the Colima rift probably indicating a tear between the two plates along a trend more eastward than the trend of the rift. The images also show extremely slow shallow mantle velocities beneath the Tepic-Chapala rift but not beneath the Colima rift. Receiver functions

  12. Ongoing passive seismic experiments unravel deep lithosphere structure of the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Plomerová, Jaroslava; Vecsey, Luděk; Jedlička, Petr; Růžek, Bohuslav

    2005-01-01

    Roč. 49, č. 3 (2005), s. 423-430 ISSN 0039-3169 R&D Projects: GA ČR GA205/04/0748 Institutional research plan: CEZ:AV0Z30120515 Keywords : deep lithosphere structure * Bohemian Massif * seismic experiments Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.656, year: 2005

  13. Seismological observations at discrete sites during the seismic experiment Sudetes 2003

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Knejzlík, Jaromír; Rušajová, Jana

    2005-01-01

    Roč. 5, č. 2 (2005), s. 45-52 ISSN 1213-1962 R&D Projects: GA ČR(CZ) GA205/03/0999 Institutional research plan: CEZ:AV0Z30860518 Keywords : seismic experiment * Sudetes 2003 Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  14. Stress-dependent elastic properties of shales—laboratory experiments at seismic and ultrasonic frequencies

    Science.gov (United States)

    Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.

    2018-01-01

    Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in

  15. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    International Nuclear Information System (INIS)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  16. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    Science.gov (United States)

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav; AlpArray Working Group

    2017-12-01

    This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB) stations of the Czech (CZ) MOBNET (MOBile NETwork) seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  17. Data quality control and tools in passive seismic experiments exemplified on the Czech broadband seismic pool MOBNET in the AlpArray collaborative project

    Directory of Open Access Journals (Sweden)

    L. Vecsey

    2017-12-01

    Full Text Available This paper focuses on major issues related to the data reliability and network performance of 20 broadband (BB stations of the Czech (CZ MOBNET (MOBile NETwork seismic pool within the AlpArray seismic experiments. Currently used high-resolution seismological applications require high-quality data recorded for a sufficiently long time interval at seismological observatories and during the entire time of operation of the temporary stations. In this paper we present new hardware and software tools we have been developing during the last two decades while analysing data from several international passive experiments. The new tools help to assure the high-quality standard of broadband seismic data and eliminate potential errors before supplying data to seismological centres. Special attention is paid to crucial issues like the detection of sensor misorientation, timing problems, interchange of record components and/or their polarity reversal, sensor mass centring, or anomalous channel amplitudes due to, for example, imperfect gain. Thorough data quality control should represent an integral constituent of seismic data recording, preprocessing, and archiving, especially for data from temporary stations in passive seismic experiments. Large international seismic experiments require enormous efforts from scientists from different countries and institutions to gather hundreds of stations to be deployed in the field during a limited time period. In this paper, we demonstrate the beneficial effects of the procedures we have developed for acquiring a reliable large set of high-quality data from each group participating in field experiments. The presented tools can be applied manually or automatically on data from any seismic network.

  18. Preliminary Results of Seismic Refraction/Reflection Experiment in Northwestern Nevada and Northeastern California

    Science.gov (United States)

    Colgan, J. P.; Lerch, D. L.; Gashawbeza, E. M.; Wilson, C. K.; Klemperer, S. L.; Miller, E. L.

    2004-12-01

    In September 2004, Stanford University is conducting a 260-km seismic refraction/reflection experiment across the northwestern margin of the Basin and Range Province between Winnemucca, Nevada and Alturas, California. This area was the locus of intense mid-Miocene (c. 17-15 Ma) volcanism and subsequent high-angle extensional faulting, and is often thought to be the breakout region of the Yellowstone hotspot. Today the region is characterized by high heat flow and is presumed to have relatively thin crust (c. 25 km), but little is known about the overall structure of the crust and how it relates to magmatism and extensional faulting. Our seismic experiment is designed to collect information on the crustal thickness, velocity structure, and crustal-scale reflectivity of this area, and consists of four parts: 1) A 260-km crustal refraction profile, with five in-line shots (1.25 to 2 tons each) and one 1.25 ton fan shot to the south, with over 1000 receivers spaced 100 to 300 m apart, acquired with ACS/PRF and NSF/EarthScope funding. The goals of the refraction profile are to determine crustal thickness and overall velocity and reflectivity structure. 2) While geophones are deployed along the refraction profile, we will collect reflection data in P, SV and SH modes using the tri-axial "T-Rex" vibrator truck operated by the Network for Earthquake Engineering Seismology (NEES) and the University of Texas at Austin. This experiment will asses the capability of this instrument to collect useful crustal-scale reflection data in conjunction with PASSCAL and EarthScope recorders, and if successful will help constrain the types of rocks and structures present beneath the flat-lying Miocene volcanic rocks that cover much of northwestern Nevada and largely obscure older structures. 3) 48 short-period 3-component receivers will be embedded in the main refraction line, supplemented by two 16-receiver offline deployments perpendicular to the main line. This experiment is designed

  19. Seismic velocity structure and spatial distribution of reflection intensity off the Boso Peninsula, Central Japan, revealed by an ocean bottom seismographic experiment

    Science.gov (United States)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuuya; Hino, Ryota; Azuma, Ryosuke

    2016-04-01

    Off the Boso Peninsula, central Japan, where the Sagami Trough is in the south and the Japan Trench is in the east, there is a triple junction where the Pacific plate (PAC), the Philippine Sea plate (PHS) and the Honshu island arc (HIA) meet each other. In this region, the PAC subducts beneath the PHS and the HIA, and the PHS subducts beneath the HIA. Due to the subduction of 2 oceanic plates, numerous seismic events took place in the past. In order to understand these events, it is important to image structure of these plates. Hence, many researchers attempted to reveal the substructure from natural earthquakes and seismic experiments. Because most of the seismometers are placed inland area and the regular seismicity off Boso is inactive, it is difficult to reveal the precise substructure off Boso area using only natural earthquakes. Although several marine seismic experiments using active sources were conducted, vast area remains unclear off Boso Peninsula. In order to improve the situation, a marine seismic experiment, using airgun as an active source, was conducted from 30th July to 4th of August, 2009. The survey line has 216 km length and 20 Ocean Bottom Seismometers (OBSs) were placed on it. We estimated 2-D P-wave velocity structure from the airgun data using the PMDM (Progressive Model Development Method; Sato and Kenett, 2000) and the FAST (First Arrival Seismic Tomography ; Zelt and Barton, 1998). Furthermore, we identified the probable reflection phases from the data and estimated the location of reflectors using Travel time mapping method (Fujie et al. 2006). We found some reflection phases from the data, and the reflectors are located near the region where P-wave velocity is 5.0 km/s. We interpret that the reflectors indicate the plate boundary between the PHS and the HIA. The variation of the intensity of reflection along the upper surface of PHS seems to be consistent with the result from previous reflection seismic experiment conducted by Kimura et

  20. Automatic picking of direct P, S seismic phases and fault zone head waves

    Science.gov (United States)

    Ross, Z. E.; Ben-Zion, Y.

    2014-10-01

    We develop a set of algorithms for automatic detection and picking of direct P and S waves, as well as fault zone head waves (FZHW), generated by earthquakes on faults that separate different lithologies and recorded by local seismic networks. The S-wave picks are performed using polarization analysis and related filters to remove P-wave energy from the seismograms, and utilize STA/LTA and kurtosis detectors in tandem to lock on the phase arrival. The early portions of P waveforms are processed with STA/LTA, kurtosis and skewness detectors for possible first-arriving FZHW. Identification and picking of direct P and FZHW is performed by a multistage algorithm that accounts for basic characteristics (motion polarities, time difference, sharpness and amplitudes) of the two phases. The algorithm is shown to perform well on synthetic seismograms produced by a model with a velocity contrast across the fault, and observed data generated by earthquakes along the Parkfield section of the San Andreas fault and the Hayward fault. The developed techniques can be used for systematic processing of large seismic waveform data sets recorded near major faults.

  1. LHC Experiments Phase II - TDRs Approval Process

    CERN Document Server

    Forti, F

    2017-01-01

    The overall review process and steps of Phase II were described in CERN-LHCC-2015-077. As experiments submit detailed technical design reports (TDRs), the LHCC and UCG work in close connection to ensure a timely review of the scientific and technical feasibility as well as of the budget and schedule of the upgrade programme.

  2. Scrap the cable: Identification and discrimination of seismic phases by autonomous floats

    Science.gov (United States)

    Simons, F. J.; Nolet, G.; Bohenstiehl, D.

    2003-04-01

    Coverage, resolution and robustness of models of the wave speed distribution in the interior of the Earth, obtained by seismic tomographic inversions of travel times or waveforms, are inherently limited by the areal distribution of seismic stations. Two thirds of Earth's surface are virtually inaccessible to passive-source seismometry, save for expensive ocean-bottom seismometers or moored hydrophones. With the Scripps Institution of Oceanography (Dr.~Jeff Babcock) we are developing a hydroacoustical recording device mounted on SOLO floats, which is able to maintain a constant depth below the sound channel, and will surface only to communicate teleseismic events by a satellite link. A few such instruments, deployed in the Southern Hemisphere and maintained for 1-2 years, will improve the resolution of deep Earth structure more dramatically than the addition of an equivalent number of three-component broadband seismic stations in already densely sampled continental areas. Our work focuses on the design of intelligent algorithms for the automatic identification and discrimination of seismic phases to be recorded by such autonomously floating hydrophones. We aim to recognize teleseismic arrivals in the presence of P, S, and T phases, ship and whale noise, and other contaminating factors such as airgunning. We present approaches in the time domain, by means of spectrogram analysis, and with wavelet methods. We discuss issues related to recording and triggering mechanisms, noise characterization, and methods for the analysis as well as representation of hydroacoustic data by the discrete wavelet transform. We pay special attention to the efficiency of our algorithms and their numerical implementation, and emphasize their impact on power consumption and hence the lifespan of the instrument. Until actual data become available, we test our algorithms on data from tethered hydrophones belonging to two arrays anchored to the Mid-Atlantic Ridge and the East Pacific Rise. We

  3. Earthquake experience and seismic qualification by indirect methods in nuclear installations

    International Nuclear Information System (INIS)

    2003-01-01

    In recent years, many operational nuclear power plants around the world have conducted seismic re-evaluation programmes either as part of a review of seismic hazards or to comply with best international nuclear safety practices. In this connection, Member States have called on the IAEA to carry out several seismic review missions at their plants, primarily those of WWER and RBMK design. One of the critical safety issues that arose during these missions was that of seismic qualification (determination of fitness for service) of already installed plant distribution systems, equipment and components. The qualification of new components, equipment and distribution systems cannot be replicated for equipment that is already installed and operational in plants, as this process is neither feasible nor appropriate. For this reason, seismic safety experts have developed new procedures for the qualification of installed equipment: these procedures seek to demonstrate that installed equipment, through a process of comparison with new equipment, is apt for service. However, these procedures require large sets of criteria and qualification databases and call for the use of engineering judgement and experience, all of which open the door to wide margins of interpretation. In order to guarantee a sound technical basis for the qualification of in-plant equipment, currently applied to 70% to 80% of all plant equipment, the regulatory review of this type of qualification process calls for a detailed assessment of the technical procedures applied. Such an assessment is the first step towards eliminating the risk of large differences in qualification results between different plants, operators and countries, and guaranteeing the reliability of seismic re-evaluation programmes. Bearing this in mind, in 1999, the IAEA convened a seminar and technical meeting on seismic qualification under the auspices of the IAEA Technical Co-operation programme. Altogether 66 senior experts attended the

  4. CarbonSAFE Rocky Mountain Phase I : Seismic Characterization of the Navajo Reservoir, Buzzard Bench, Utah

    Science.gov (United States)

    Haar, K. K.; Balch, R. S.; Lee, S. Y.

    2017-12-01

    The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage

  5. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples; Jerome Eyer

    2001-05-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a 14 month proof of concept study to determine the location and distribution of subsurface Dense Nonaqueous Phase Liquid (DNAPL) carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, Department of Energy (DOE) Hanford Site, Washington by use of two-dimensional high resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are a noninvasive means towards site characterization and direct free-phase DNAPL detection. This report covers the results of Task 3 and change of scope of Tasks 4-6. Task 1 contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task 2 is the design and acquisition of 2-D seismic reflection data designed to image areas of probable high concentration of DNAPL. Task 3 is the processing and interpretation of the 2-D data. Task 4, 5, and 6 were designing, acquiring, processing, and interpretation of a three dimensional seismic survey (3D) at the Z-9 crib area at 200 west area, Hanford.

  6. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    Science.gov (United States)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  7. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    Science.gov (United States)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  8. Seismic reliability assessment methodology for CANDU concrete containment structures-phase 11

    International Nuclear Information System (INIS)

    Hong, H.P.

    1996-07-01

    This study was undertaken to verify a set of load factors for reliability-based seismic evaluation of CANDU containment structures in Eastern Canada. Here, the new, site-specific, results of probabilistic seismic hazard assessment (response spectral velocity) were applied. It was found that the previously recommended load factors are relatively insensitive to the new seismic hazard information, and are adequate for a reliability-based seismic evaluation process. (author). 4 refs., 5 tabs., 9 figs

  9. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    Science.gov (United States)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  10. Evolution of b-value during the seismic cycle: Insights from laboratory experiments on simulated faults

    Science.gov (United States)

    Rivière, J.; Lv, Z.; Johnson, P. A.; Marone, C.

    2018-01-01

    We investigate the evolution of the frequency-magnitude b-value during stable and unstable frictional sliding experiments. Using a biaxial shear configuration, we record broadband acoustic emissions (AE) while shearing layers of simulated granular fault gouge under normal stresses of 2-8 MPa and shearing velocity of 11 μm/s. AE event amplitude ranges over 3-4 orders of magnitude and we find an inverse correlation between b and shear stress. The reduction of b occurs systematically as shear stress rises prior to stick-slip failure and indicates a greater proportion of large events when faults are more highly stressed. For quasi-periodic stick-slip events, the temporal evolution of b has a characteristic saw-tooth pattern: it slowly drops as shear stress increases and quickly jumps back up at the time of failure. The rate of decrease during the inter-seismic period is independent of normal stress but the average value of b decreases systematically with normal stress. For stable sliding, b is roughly constant during shear, however it exhibits large variability. During irregular stick-slip, we see a mix of both behaviors: b decreases during the interseismic period between events and then remains constant when shear stress stabilizes, until the next event where a co-seismic increase is observed. Our results will help improve seismic hazard assessment and, ultimately, could aid earthquake prediction efforts by providing a process-based understanding of temporal changes in b-value during the seismic cycle.

  11. Crustal Structure, Seismic Anisotropy and Deformations of the Ediacaran/Cambrian of the Małopolska Block in SE Poland Based on Data from Two Seismic Wide-Angle Experiments

    Science.gov (United States)

    Środa, Piotr

    2017-04-01

    The area of SE Poland represents a complex contact of tectonic units of different consolidation age—from the Precambrian East European Craton, through Palaeozoic West European Platform (including Małopolska Block) to Cenozoic Carpathians and Carpathian Foredeep. In order to investigate the anisotropic properties of the upper crust of the Małopolska Block and their relation to tectonic evolution of the area, two seismic datasets were used: seismic wide-angle off-line recordings from POLCRUST-01 deep seismic reflection profile and recordings from active deep seismic experiment CELEBRATION 2000. During acquisition of deep reflection seismic profile POLCRUST-01 in 2010, a 35-km-long line of 14 recorders (PA-14), oriented perpendicularly to the profile, was deployed to record the refractions from the upper crust (Pg) at wide range of azimuths. These data were used for an analysis of the azimuthal anisotropy of the MB with the modified delay-time inversion method. The results of modelling of the off-line refractions from the MB suggest 6% HTI anisotropy of the Cambrian/Ediacaran basement, with 130º azimuth of the fast velocity axis and mean Vp of 4.9 km/s. To compare this result with previous, independent information about anisotropy at larger depth, a subset of previously modelled data from CELEBRATION 2000 experiment, recorded in the MB area, was also analysed by inversion. The recordings of Pg phase at up to 120 km offsets were analysed using anisotropic delay-time inversion, providing information down to 12 km depth. The CELEBRATION 2000 model shows 9% HTI anisotropy with 126º orientation of the fast axis. Thus, local-scale anisotropy of this part of MB confirms the large-scale anisotropy suggested by previous studies based on data from a broader area and larger depth interval. The azimuthal anisotropy (i.e. HTI symmetry of the medium) is interpreted as a result of strong compressional deformation during the accretion of terranes to the EEC margin, leading to

  12. A Gravity data along LARSE (Los Angeles Regional Seismic Experiment) Line II, Southern California

    Science.gov (United States)

    Wooley, R.J.; Langenheim, V.E.

    2001-01-01

    The U.S. Geological Survey conducted a detailed gravity study along part of the Los Angeles Regional Seismic Experiment (LARSE) transect across the San Fernando Basin and Transverse Ranges to help characterize the structure underlying this area. 249 gravity measurements were collected along the transect and to augment regional coverage near the profile. An isostatic gravity low of 50-60 mGal reflects the San Fernando-East Ventura basin. Another prominent isostatic gravity with an amplitude of 30 mGal marks the Antelope Valley basin. Gravity highs occur over the Santa Monica Mountains and the Transverse Ranges. The highest isostatic gravity values coincide with outcrops of Pelona schist.

  13. Field Report on the iMUSH Active Source Seismic Experiment

    Science.gov (United States)

    Kiser, E.; Levander, A.; Schmandt, B.; Palomeras, I.; Harder, S. H.; Creager, K. C.; Vidale, J. E.; Malone, S. D.

    2014-12-01

    In the second half of July we completed the iMUSH active source seismic experiment, one component of the Imaging Magma Under Saint Helens project. A team of ~75 volunteers deployed 3500 seismographs to ~5920 locations on and around Mount St. Helens over the course of 3 weeks. This instrument deployment was accompanied by 23 shots distributed around the volcano. Instrumentation consisted of ~2550 Reftek 125A (Texan) seismographs with 4.5 Hz geophones, and 920 Nodal Seismic recorders with 10 Hz geophones. The shots were also recorded by the permanent stations of the Pacific Northwest Seismograph Network and 70 iMUSH broadband seismographs. Fifteen of the shots, 424 kg each, formed two rings around Mount Saint Helens at 15 km and 30 km radius from the summit. Eight of the shots, 828 kg each, were fired at distances of 50 to 80 km from MSH on NW-SE and NE-SW azimuths. The deployment geometry consisted of two lines oriented NW/SE and NE/SW, and three arrays. The offset of the lines ranged from 150 km to 190 km with an average spacing of 200 m. The first array was centered on the volcano with a radius of 30 km, and required both driving and hiking to deploy. Arrays two and three were set out with, and centered on, the NW/SE line. These arrays had a distance range from MSH of 30-75 km and an azimuth range of about 100 degrees. In addition to this large-scale deployment, we set out 7 beamforming arrays approximately collocated with iMUSH broadband seismographs, and above clusters of seismicity in the region. The aperture of these arrays was about 1 km with an instrument spacing of 100 m. The final deployment ended only days before the AGU abstract deadline, so we have not yet examined all of the data. However, the preliminary indications are that signal to noise is excellent: The shots, several of which registered on PNSN as ML>2.1, carried across the entire array, and were recorded as far away as Seattle and Corvallis on permanent stations. The array also recorded a

  14. Seismic Safety Margins Research Program (Phase I). Project VII. Systems analysis specification of computational approach

    International Nuclear Information System (INIS)

    Wall, I.B.; Kaul, M.K.; Post, R.I.; Tagart, S.W. Jr.; Vinson, T.J.

    1979-02-01

    An initial specification is presented of a computation approach for a probabilistic risk assessment model for use in the Seismic Safety Margin Research Program. This model encompasses the whole seismic calculational chain from seismic input through soil-structure interaction, transfer functions to the probability of component failure, integration of these failures into a system model and thereby estimate the probability of a release of radioactive material to the environment. It is intended that the primary use of this model will be in sensitivity studies to assess the potential conservatism of different modeling elements in the chain and to provide guidance on priorities for research in seismic design of nuclear power plants

  15. Brief Introduction on the Korea-China Collaborative Research on the Wide-angle Seismic Experiment of the Yellow Sea

    Science.gov (United States)

    Kim, J.; Kim, K. H.; Kim, H. J.; Hao, T.; Zhang, X.

    2016-12-01

    Small to moderate earthquakes occurred in the Yellow Sea, such as Seogyuckryulbi-do earthquake (ML 5.1, April 1, 2014) and Heuksan-do earthquake (ML 4.9, April 21, 2013). Although the earthquakes occurred in a region of apparent low seismicity, they attracted much attention for the seismic hazards and rose questions about the reevaluation the seismicity of the Yellow Sea. Although several tectonic models have been proposed from the observations in China and Korea, it is still not clear which one can answer the tectonic problem. Furthermore, the seismicity of the Yellow Sea has been rarely investigated since the region is located outside seismic networks. It is suspected that the seismicity of the region is related to basin boundary faults created by rifting and tectonic inverting. In order to evaluate earthquake hazard of the Yellow Sea, it is required to identify spatial distribution of the faults. In this study, a deep seismic profile was carried out using ocean bottom seismometers (OBS's) to investigate the crust and upper mantle structure beneath the Yellow Sea and their relationship with shallower structures. The deep seismic profile was conducted by M/V Discoverer and R/V Eardo from June 21 to July 3, 2016. The air-gun array of 6,640 cu. in. shot along the 405 km profile across the Yellow Sea, which was recorded by 31 OBS's at a 13.5 km spacing. Besides, 10 temporary land stations were also installed onshore along the profile. This Korea-China collaborative wide-angle seismic experiment was first time across the Yellow Sea. Through this study, it is expected that Korea and China would build a credible cooperation on the study of the Yellow Sea region in future, and it's helpful to verify previously proposed tectonic evolution models for northeastern Asia including the Yellow Sea.

  16. Slowness Anomalies of PKP Phases Recorded at the Seismic Array in Eielson, Alaska (ILAR)

    Science.gov (United States)

    Koper, K. D.; Parker, V.

    2005-12-01

    The Eielson, Alaska seismic array (ILAR) is well situated to record PKPDF waves from earthquakes occurring in the South Sandwich Islands (SSI) region. Such ray paths are nearly aligned with Earth's rotation axis and are useful for constraining models of inner core anisotropy. The many previous studies of PKPDF waves traversing the SSI-Alaska corridor generally find waves that arrive several seconds faster than expected, with highly attenuated and often complicated shapes. Simple radially or cylindrically symmetric Earth models cannot explain these observations, and it may be the case that mantle heterogeneities are biasing the SSI-Alaska PKPDF waves. In this study, we take advantage of the small aperture of ILAR to make independent measurements of differential PKPDF-PKPBC travel times and differential PKPDF-PKPBC horizontal slowness vectors for 37 SSI earthquakes that occurred from 1996-2004. Anomalies in slowness (ray parameter and backazimuth) of a phase reflect heterogeneous Earth structure in a manner complementary to travel time anomalies. At a reference distance of 152°, we find a mean differential travel time residual of 3.1 ± 0.1~s, a mean differential ray parameter of 2.9±0.2~s/deg, and that PKPDF waves arrive from a backazimuth rotated approximately 10° counterclockwise relative to corresponding PKPBC waves. Joint modeling of the differential travel times and differential ray parameters indicates that (1) lower mantle heterogeneities are not responsible for the properties of PKPDF from SSI-ILAR, (2) the lower several hundred kilometers of the outer core has a slightly lower velocity, and/or velocity gradient, than current reference models, and (3) there is a strong, radial velocity gradient within the inner core at a radius of 600-900~km. However, the differential slowness anomalies cannot be fully explained by variations in deep Earth structure, implying that local site effects at ILAR are somewhat different for PKPDF and PKPBC phases.

  17. Notes on some experiments on the application of subtractive compensation to USGS seismic magnetic tape recording and playback systems

    Science.gov (United States)

    Eaton, Jerry P.

    1975-01-01

    The purpose of these experiments is to lay the groundwork for the implementation of subtractive compensation of the USGS seismic network tape playbacks utilizing the Develco model 6203 discriminators at a x1 playback speed. Although the Develco discriminators were designed for this application and a matching Develco compensation discriminator was purchased, effective use of this system for subtractive compensation has been blocked by the inadequate (frequency dependent) matching of the phase of the compensation signal to that of the data signal at the point compensation is carried out in the data discriminators. John Van Schaack has ameliorated the phase mismatch problem by an empirical alteration of the compensation discriminator input bandpass filter. We have selected a set (of eight) Develco discriminators and adjusted their compensation signal input levels to minimize spurious signals (noise) originating from tape speed irregularities. The sensitivity of the data discriminators was adjusted so that deviations of +125 Hz and -125 Hz produced output signals of +2.00 volts and -2.00 volts, respectively. The eight data discriminators are driven by a multiplex signal on a single tape track (subcarriers 680, 1020, 1360, 1700, 2040, 2380, 2720, and 3060 Hz). The Develco-supplied compensation discriminator requires an unmodulated 3125 Hz signal on a separate tape track.

  18. A Precursory Phase to a Sudden Enhanced Activity at Yasur volcano (Vanuatu) : Insights from Simultaneous Infrasonic and Seismic Records

    Science.gov (United States)

    Vergniolle, S.; Zielinski, C.; Battaglia, J.; Metaxian, J. P.; Bani, P.; LE Pichon, A.; Lardy, M.; Millier, P.; Frogneux, M.; Gallois, F.; Herry, P.; Todman, S.; Garaebiti, E.

    2015-12-01

    The permanent activity at Yasur (Vanuatu), characterised by a close series of Strombolian explosions, is analysed using simultaneous infrasonic and seismic recordings (6-25 Nov 2008) close to the vents. The RMS amplitudes per hour, the number of explosions and the peak-to-peak amplitudes of each signal show that the initial quiet phase (11 days) is followed by a precursory phase (7 days) prior to an enhanced activity (17 hours). Three periods exist during the strong activity: (1) a rapid increase leading to the paroxysm (3 hours), (2) a first (5 hours) and (3) a second decrease (9 hours), each having an excellent correlation between seismic and infrasonic RMS amplitudes per hour (correlation coefficient > 0.96) when using the band associated to explosions (1-5 Hz and 1.8-4 Hz for seismic and infrsonic recordings, respectively). The ratio between infrasonic and seismic RMS amplitudes, assumed to be a proxy for the magma level, increases strongly during the week before the paroxysm. This is explained by the arrival of an additional gas flux at the top of the reservoir. The foam accumulated there, whose partial coalescence and spreading towards the conduit are responsible for the permanent Strombolian activity, thickens. This enhances both the viscous massive foam coalescence and the foam spreading. This leads to an increase in the gas flux in the conduit, ultimately responsible for the formation of a shallow foam at the surface. This foam acts as a viscous cap overlying the magma column, thereby increasing the radiated infrasonic pressure and the strength of the explosions. The first decrease in the relationship between infrasonic and seismic RMS amplitudes is associated with the stopping of the additionnal gas flux in the magma reservoir and the rapid decrease of the top of the magma column due to the previous intense degassing. The second decrease corresponds to the time neccessary to restore the convective motions in the conduit at their normal velocities.

  19. ENAM: A community seismic experiment targeting rifting processes and post-rift evolution of the Mid Atlantic US margin

    Science.gov (United States)

    Van Avendonk, H. J.; Magnani, M. B.; Shillington, D. J.; Gaherty, J. B.; Hornbach, M. J.; Dugan, B.; Long, M. D.; Lizarralde, D.; Becel, A.; Benoit, M. H.; Harder, S. H.; Wagner, L. S.; Christeson, G. L.

    2014-12-01

    The continental margins of the eastern United States formed in the Early Jurassic after the breakup of supercontinent Pangea. The relationship between the timing of this rift episode and the occurrence of offshore magmatism, which is expressed in the East Coast Magnetic Anomaly, is still unknown. The possible influence of magmatism and existing lithospheric structure on the rifting processes along margin of the eastern U.S. was one of the motivations to conduct a large-scale community seismic experiment in the Eastern North America (ENAM) GeoPRISMS focus site. In addition, there is also a clear need for better high-resolution seismic data with shallow penetration on this margin to better understand the geological setting of submarine landslides. The ENAM community seismic experiment is a project in which a team of scientists will gather both active-source and earthquake seismic data in the vicinity of Cape Hatteras on a 500 km wide section of the margin offshore North Carolina and Virginia. The timing of data acquisition in 2014 and 2015 facilitates leveraging of other geophysical data acquisition programs such as Earthscope's Transportable Array and the USGS marine seismic investigation of the continental shelf. In April of 2014, 30 broadband ocean-bottom seismometers were deployed on the shelf, slope and abyssal plain of the study site. These instruments will record earthquakes for one year, which will help future seismic imaging of the deeper lithosphere beneath the margin. In September and October of 2014, regional marine seismic reflection and refraction data will be gathered with the seismic vessel R/V Marcus Langseth, and airgun shots will also be recorded on land to provide data coverage across the shoreline. Last, in the summer of 2015, a land explosion seismic refraction study will provide constraints on the crustal structure in the adjacent coastal plain of North Carolina and Virginia. All seismic data will be distributed to the community through IRIS

  20. Seismic experience in power and industrial facilities as it relates to small magnitude earthquakes

    International Nuclear Information System (INIS)

    Swan, S.W.; Horstman, N.G.

    1987-01-01

    The data base on the performance of power and industrial facilities in small magnitude earthquakes (M = 4.0 - 5.5) is potentially very large. In California alone many earthquakes in this magnitude range occur every year, often near industrial areas. In 1986 for example, in northern California alone, there were 76 earthquakes between Richter magnitude 4.0 and 5.5. Experience has shown that the effects of small magnitude earthquakes are seldom significant to well-engineered facilities. (The term well-engineered is here defined to include most modern industrial installations, as well as power plants and substations.) Therefore detailed investigations of small magnitude earthquakes are normally not considered worthwhile. The purpose of this paper is to review the tendency toward seismic damage of equipment installations representative of nuclear power plant safety systems. Estimates are made of the thresholds of seismic damage to certain types of equipment in terms of conventional means of measuring the damage potential of an earthquake. The objective is to define thresholds of damage that can be correlated with Richter magnitude. In this manner an earthquake magnitude might be chosen below which damage to nuclear plant safety systems is not considered credible

  1. Love wave phase velocity models of the southeastern margin of Tibetan Plateau from a dense seismic array

    Science.gov (United States)

    Han, Fengqin; Jia, Ruizhi; Fu, Yuanyuan V.

    2017-08-01

    Love wave dispersion maps across the southeastern margin of the Tibetan Plateau are obtained using earthquake data recorded by the temporary ChinArray and permanent China Digital Seismic Array. Fundamental mode Love wave phase velocity curves are measured by inverting Love wave amplitude and phase with the two-plane-wave method. The phase velocity maps with resolution better than 150 km are presented at periods of 20-100 s, which is unprecedented in the study area. The maps agree well with each other and show clear correlations with major tectonic structures. The Love wave phase velocity could provide new information about structures in the crust and upper mantle beneath the southeast margin of Tibetan Plateau, like the radial anisotropy.

  2. Mars Internal Structure: Seismic Predictions for Core Phase Arrivals in Anticipation of the InSight Mission

    Science.gov (United States)

    Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.

    2016-12-01

    We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar

  3. Seismic attenuation in the African LLSVP estimated from PcS phases

    Science.gov (United States)

    Liu, Chujie; Grand, Stephen P.

    2018-05-01

    Seismic tomography models have revealed two broad regions in the lowermost mantle marked by ∼3% slower shear velocity than normal beneath the south central Pacific and southern Africa. These two regions are known as large-low-shear-velocity provinces (LLSVP). There is debate over whether the LLSVPs can be explained by purely thermal variations or whether they must be chemically distinct from normal mantle. Elastic properties alone, have been unable to distinguish the thermal from chemical interpretations. Anelastic structure, however, can help discriminate among models of the LLSVPs since intrinsic attenuation is more sensitive to temperature than to chemical variations. Here we estimate Qμ (the shear wave quality factor) in the African LLSVP using PcS waves generated from a Scotia Arc earthquake, recorded by broadband seismometers deployed in Southern Africa during the Kaapvaal experiment. The upward leg of the PcS waves sweeps from normal mantle into the African LLSVP across the array. We use the spectral ratio (SR) and instantaneous frequency matching (IFM) techniques to measure the differential attenuation (Δt*) between waves sampling the African LLSVP and the waves that sample normal lower mantle. Using both methods for estimating Δt* we find that PcS waves sampling the LLSVP are more attenuated than the waves that miss the LLSVP yielding a Δt* difference of more than 1 s. Using the Δt* measurements we estimate the average Qμ in the LLSVP to be about 110. Using a range of activation enthalpy (H*) estimates, we find an average temperature anomaly within the LLSVP ranging from +250 to +800 K. Our estimated temperature anomaly range overlaps previous isochemical geodynamic studies that explain the LLSVP as a purely thermal structure although the large uncertainties cannot rule out chemical variations as well.

  4. Phase camera experiment for Advanced Virgo

    NARCIS (Netherlands)

    Agatsuma, Kazuhiro; Van Beuzekom, Martin; Van Der Schaaf, Laura; Van Den Brand, Jo

    2016-01-01

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser

  5. Seismic appraisal test of control rod drive mechanism of China experiment fast reactor

    International Nuclear Information System (INIS)

    Song Qing; Yang Hongyi; Jing Yueqing; Wen Jing; Liu Guijuan; Sun Lei

    2008-01-01

    The structure of the control rod drive mechanism in pool type sodium-cooled fast reactor is the characterized by long, thin, and geometric nonlinearity, and the seismic load is multiple activation. The anti-seismic evaluation is always paid great attention by the countries developing the technology worldwide. This article introduces the seismic appraisal test of the control rod drive mechanism of China Experimental Fast Reactor (CEFR) performed on a seismic platform which is vertical shaft style and multiple activation. The result of the test shows the structural integrity and the function of the control rod drive mechanism could meet the design requirements of the earthquake intensity. (authors)

  6. Seismic Safety Margins Research Program Phase I final report: fragilities development (Project VI)

    International Nuclear Information System (INIS)

    Bohn, M.P.; Cover, L.E.; Dong, R.G.; Vagliente, V.N.; Campbell, R.D.; Wesley, D.A.

    1982-12-01

    The Seismic Safety Margins Research Program is an NRC-funded program directed towards estimating the conservatism in the NRC Standard Review Plan seismic safety requirements with the ultimate goal of developing improved requirements. As part of this program, calculations of the seismic risk from a typical commercial nuclear reactor are being made. These calculations require a knowledge of the probability of failure (fragility) of safety-related components in the reactor system which actively participate in the hypothesized accident scenarios. This report describes the development of the required fragility relations and the data sources and data reduction techniques upon which they are based. Both building and component fragilities are covered. The building fragilities are for the Zion Unit 1 reactor which was the specific plant used for development of methodology in the program. Some of the component fragilities are site-specific also, but most have been developed to apply to generic categories of components

  7. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    International Nuclear Information System (INIS)

    Waddell, Michael G.; Domoracki, William J.; Eyer, Jerome

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl 4 ) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl 4 . Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  8. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  9. Concordia, Antarctica, seismic experiment for the International Polar Year (CASE-IPY

    Directory of Open Access Journals (Sweden)

    Alessia Maggi

    2014-06-01

    Full Text Available The CASE-IPY project, part of the larger POLENET initiative of geophysical observations for the International Polar Year, was built on our extensive experience of running seismological stations in Antarctica, both on rock sites (Dumont d’Urville station, and directly on the ice plateau (Concordia station. For CASE-IPY, we deployed 8 temporary seismic stations on the Antarctic plateau: 3 situated near Concordia itself (starting 2008, and the other 5 regularly spaced between Concordia and Vostok (2010-2012, following the maximum in ice topography. The technical problems we have encountered in our field deployments were essentially due to a combination of extreme environmental conditions and isolation of deployment sites. The 3 stations near Concordia were used as test sites to experiment different solutions, and to converge on a design for the 5 main stations. Results from the nearest stations, which transmit data regularly to Concordia, are very promising. The data recorded by our stations will be distributed widely in the scientific community. We expect them to be exploited essentially for structural studies involving Antarctica itself (its ice-cap, crust and lithosphere via receiver functions, noise correlation, and surface-wave tomography, but also for studies of the Earth’s core.

  10. Pseudo-Static Experiment and Analysis on Seismic Behavior of the RC Columns Strengthened by GHPFRCC

    Directory of Open Access Journals (Sweden)

    Li Xiuling

    2015-09-01

    Full Text Available Green high performance fiber reinforced cementitious composites (GHPFRCC are a new class of sustainable cementitious composites, employing a high volume of fly ash to replace cement. In addition to increasing the sustainability of the construction environment, GHPFRCC exhibits a high tensile ductility and multiple cracking behaviors in the strainhardening state. These materials can effectively improve the structural energy dissipation capacity and structural durability. In this study, the optimum mixture ratio of GHPFRCC is presented established using an orthogonal experiment for a specific engineering application. The described GHPFRCC sustains the mechanical performance of concrete and is employed as the outer cladding to strengthen concrete columns. The finite element analysis of the material was based on the software ABAQUS and pseudo static experiments were conducted to exhibit retrofitting of GHPFRCC applied in the rehabilitation of seismic-damaged concrete columns. The computed and experimental results showed that GHPFRCC, while incorporating high volume fly ash, can retain significant multiple cracking behaviors. The energy dissipation capacity of the GHPFRCC reinforced concrete (RC column is better than the comparable unreinforced column.

  11. Phase camera experiment for Advanced Virgo

    International Nuclear Information System (INIS)

    Agatsuma, Kazuhiro; Beuzekom, Martin van; Schaaf, Laura van der; Brand, Jo van den

    2016-01-01

    We report on a study of the phase camera, which is a frequency selective wave-front sensor of a laser beam. This sensor is utilized for monitoring sidebands produced by phase modulations in a gravitational wave (GW) detector. Regarding the operation of the GW detectors, the laser modulation/demodulation method is used to measure mirror displacements and used for the position controls. This plays a significant role because the quality of controls affect the noise level of the GW detector. The phase camera is able to monitor each sideband separately, which has a great benefit for the manipulation of the delicate controls. Also, overcoming mirror aberrations will be an essential part of Advanced Virgo (AdV), which is a GW detector close to Pisa. Especially low-frequency sidebands can be affected greatly by aberrations in one of the interferometer cavities. The phase cameras allow tracking such changes because the state of the sidebands gives information on mirror aberrations. A prototype of the phase camera has been developed and is currently tested. The performance checks are almost completed and the installation of the optics at the AdV site has started. After the installation and commissioning, the phase camera will be combined to a thermal compensation system that consists of CO 2 lasers and compensation plates. In this paper, we focus on the prototype and show some limitations from the scanner performance. - Highlights: • The phase camera is being developed for a gravitational wave detector. • A scanner performance limits the operation speed and layout design of the system. • An operation range was found by measuring the frequency response of the scanner.

  12. Enhancing micro-seismic P-phase arrival picking: EMD-cosine function-based denoising with an application to the AIC picker

    Science.gov (United States)

    Shang, Xueyi; Li, Xibing; Morales-Esteban, A.; Dong, Longjun

    2018-03-01

    Micro-seismic P-phase arrival picking is an elementary step into seismic event location, source mechanism analysis, and seismic tomography. However, a micro-seismic signal is often mixed with high frequency noises and power frequency noises (50 Hz), which could considerably reduce P-phase picking accuracy. To solve this problem, an Empirical Mode Decomposition (EMD)-cosine function denoising-based Akaike Information Criterion (AIC) picker (ECD-AIC picker) is proposed for picking the P-phase arrival time. Unlike traditional low pass filters which are ineffective when seismic data and noise bandwidths overlap, the EMD adaptively separates the seismic data and the noise into different Intrinsic Mode Functions (IMFs). Furthermore, the EMD-cosine function-based denoising retains the P-phase arrival amplitude and phase spectrum more reliably than any traditional low pass filter. The ECD-AIC picker was tested on 1938 sets of micro-seismic waveforms randomly selected from the Institute of Mine Seismology (IMS) database of the Chinese Yongshaba mine. The results have shown that the EMD-cosine function denoising can effectively estimate high frequency and power frequency noises and can be easily adapted to perform on signals with different shapes and forms. Qualitative and quantitative comparisons show that the combined ECD-AIC picker provides better picking results than both the ED-AIC picker and the AIC picker, and the comparisons also show more reliable source localization results when the ECD-AIC picker is applied, thus showing the potential of this combined P-phase picking technique.

  13. 3D seismic experiment in difficult area in Japan; Kokunai nanchiiki ni okeru sanjigen jishin tansa jikken

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M.; Nakagami, K.; Tanaka, H. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1997-05-27

    Difficult area in this context means an exploration-difficult area supposed to store oil/gas but retarded in exploration for the lack of knowledge about the geological structure due to poor quality of available seismic survey records. Discussed in this paper is a survey conducted into an area covering the southern part of Noshiro-shi, Akita-ken, and Yamamoto-cho, Yamamoto-gun, Akita-ken. An area size suitable for data collection at a target depth of 2500m is determined using an interpretation structure compiled on the basis of available well data and 2D seismic survey data. The plan for siting shock points and receiving points is modified case by case as restrictive factors come to the surface (resulting from the complicated hilly terrain, presence of pipes for agricultural water, etc.). The peculiarities of seismic waves in the terrain are studied through the interpretation of the available well data and 2D seismic survey data for the construction of a 3D velocity model for the confirmation of the appropriateness of the plan for siting shock points and receiving points. Efforts are exerted through enhanced coordination with the contractor to acquire data so that a technologically best design may be won within the limits of the budget. The quality of the data obtained from this experiment is in general better than those obtained from previous experiments, yet many problems remain to be settled in future studies about exploration-difficult areas. 4 refs., 4 figs., 1 tab.

  14. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    Science.gov (United States)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  15. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    Science.gov (United States)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  16. Tectonic and climatic controls on seafloor sedimentary processes from analysis of multi-beam sonar and multi-channel seismic data collected during the Galicia 3D seismic experiment.

    Science.gov (United States)

    Gibson, J. C.; Shillington, D. J.; Sawyer, D. S.; Morgan, J.; Ranero, C. R.; Reston, T. J.; Dash, R. K.; Payne, B. A.

    2016-12-01

    Due to a very low sedimentation rate, the deep Galicia Basin provides a unique opportunity to gain insight into the control by recent tectonic and/or climatic processes on deep-sea sediment delivery. In order to study the sediment delivery system we use morphological and geophysical attributes drawn from multi-beam (MB) sonar bathymetry/backscatter data supplemented with 3D multi-channel seismic (MCS) surface seismic attributes collected using R/V Marcus G. Langseth during the Galicia 3D seismic experiment (2013). We observe a submarine canyon that is controlled by rift-block geometry and connected to the Galicia Bank. Relatively low reflectivity is associated with the canyon, but a large ( 125 km2) tongue-shaped area of high reflectively is seen in the deep abyssal plain seaward of the canyon mouth. This suggests that processes such as flow stripping are taking place resulting in relatively coarse grain deposition in the basin. This interpretation is further supported by the presence of variable wavelength (400m-5km) sediment waves and discrete linear bands of high reflectivity. Spectral analysis of the sediment waves reveals short-wavelength overprinting of relatively long-wavelength features suggesting a relatively recent shift in the flow regime. The spectrums also provide quantitative measurement of the wavelength, amplitude, and phase of the reflectivity relative to the bathymetry from which we make estimations as to grain size and flow velocity. Additionally, attributes drawn from MB (e.g., slope, aspect) and MCS (e.g., instantaneous frequency) spanning the sediment wave field are used for multivariate least squares analysis of the spatial distribution of reflectivity in respect to the morphology of the sediment waves, which further supports the spectral analysis. The large tongue shaped high reflectivity feature extending 30km into the basin is analyzed in respect to geometry and variable reflectivity. The results of the above analyses along with

  17. Experience with seismic instrumentation and real earthquake data at nuclear power plant Beznau Switzerland

    International Nuclear Information System (INIS)

    Sahgal, S.; Tinic, S.

    2005-01-01

    This paper deals with the aspects of design specification, bid evaluation and, seismic criteria used for the generation of seismic alarms etc. The paper also describes how the recorded data is utilized to check the various assumptions made in conjunction with the seismic plant design and seismic load generation. Out of some 8 seismic events registered so far only one event had the maximum recorded acceleration of approximately 28% of OBE Peak Ground Acceleration (PGA). From the real earthquakes experienced and the in-situ free-field ground accelerations recorded, the free-field response spectra were calculated. The calculated spectra are compared to the Regulatory Guide 1.60 Design Response Spectra scaled linearly to the site peak ground acceleration. The free field data recording units on the weathered rock and at the top of the soil provided a real data to calculate the site amplification factors. The in-situ amplification calculated is then compared to that used in the seismic design. The recorded acceleration time history at various plant grades were used to generate response spectra. The calculated response spectra were in turn compared to the spectra used in the seismic design. (authors)

  18. Seismic Safety Margins Research Program. Phase I final report - Subsystem response (Project V)

    International Nuclear Information System (INIS)

    Shieh, L.C.; Chuang, T.Y.; O'Connell, W.J.

    1981-10-01

    This document reports on (1) the computation of the responses of subsystems, given the input subsystem support motion for components and systems whose failure can lead to an accident sequence (radioactive release), and (2) the results of a sensitivity study undertaken to determine the contributions of the several links in the seismic methodology chain (SMC) - seismic input (SI), soil-structure interaction (SSI), structure response (STR), and subsystem response (SUB) - to the uncertainty in subsystem response. For the singly supported subsystems (e.g., pumps, turbines, electrical control panels, etc.), we used the spectral acceleration response of the structure at the point where the subsystem components were mounted. For the multiple supported subsystems, we developed 13 piping models of five safety-related systems, and then used the pseudostatic-mode method with multisupport input motion to compute the response parameters in terms of the parameters used in the fragility descriptions (i.e., peak resultant accelerations for valves and peak resultant moments for piping). Damping and frequency were varied to represent the sources of modeling and random uncertainty. Two codes were developed: a modified version of SAPIV which assembles the piping supports into groups depending on the support's location relative to the attached structure, and SAPPAC a stand-alone modular program from which the time-history analysis module is extracted. On the basis of our sensitivity study, we determined that the variability in the combined soil-structure interaction, structural response, and subsystem response areas contribute more to uncertainty in subsystem response than does the variability in the seismic input area, assuming an earthquake within the limited peak ground acceleration range, i.e., 0.15 to 0.30g. The seismic input variations were in terms of different earthquake time histories. (author)

  19. Seismic Safety Margins Research Program. Phase I. Interim definition of terms

    International Nuclear Information System (INIS)

    Smith, P.D.; Dong, R.G.

    1980-01-01

    This report documents interim definitions of terms in the Seismic Safety Margins Research Program (SSMRP). Intent is to establish a common-based terminology integral to the probabilistic methods that predict more realistically the behavior of nuclear power plants during an earthquake. These definitions are a response to a request by the Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards at its meeting held November 15-16, 1979

  20. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    Science.gov (United States)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  1. Seismic studies for nuclear installations sites

    International Nuclear Information System (INIS)

    Mohammadioun, B.; Faure, J.

    1988-01-01

    The french experience in seismic risks assessment for french nuclear installations permits to set out the objectives, the phases the geographic extensions of workings to be realized for the installation safety. The data to be collected for the safety analysis are specified, they concern the regional seismotectonics, the essential seismic data for determining the seism level to be taken into account and defining the soil movement spectra adapted to the site. It is necessary to follow up the seismic surveillance during the installation construction and life. 7 refs. (F.M.)

  2. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...... phases. This effect may be crucial for acquisition of reflection seismic profiles on ice caps. Our experience shows that it is essential to use optimum depth for the charges and to seal the boreholes carefully....

  3. Effect of H2O on Upper Mantle Phase Transitions in MgSiO3: is the Seismic X-discontinuity an Indicator of Mantle Water Content

    Energy Technology Data Exchange (ETDEWEB)

    S Jacobsen; Z Liu; T Boffa Ballaran; E Littlefield; L Ehm; R Hemley

    2011-12-31

    The mantle X-discontinuity, usually assigned to positive seismic velocity reflectors in the 260-330 km depth range, has proved difficult to explain in terms of a single mineralogical phase transformation in part because of its depth variability. The coesite to stishovite transition of SiO{sub 2} matches deeper X-discontinuity depths but requires 5-10% free silica in the mantle to match observed impedance contrast. The orthoenstatite (OEn) to high-pressure clinoenstatite (HPCen) transformation of MgSiO{sub 3} also broadly coincides with depths of the X but requires chemically depleted and orthoenstatite-rich lithology at 300 km depth in order to match observed seismic impedance contrast. On the basis of high-pressure infrared spectroscopy, X-ray diffraction, and Raman spectroscopy, we show that 1300 ppm variation of H{sub 2}O content in MgSiO{sub 3} can displace the transition of low-pressure clinoenstatite (LPCen) to HPCen by up to 2 GPa, similar to previous quench experiments on the OEn to HPCen phase transition, where about 30-45 km (1.0-1.5 GPa) of deflection could occur per 0.1 wt% H{sub 2}O. If the mantle X-discontinuity results from pyroxene transitions in a depleted harzburgite layer, because of the strong influence of minor amounts of water on the transformation boundary, the depth of the mantle X-discontinuity could serve as a potentially sensitive indicator of water content in the uppermantle.

  4. Microgravity Multi-Phase Flow Experiment for Suborbital Testing (MFEST)

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary objective is to conduct a pathfinder, suborbital flight experiment for two-phase fluid flow and separator operations.The primary purpose of this test...

  5. The PROTEUS Experiment: Active Source Seismic Imaging of the Crustal Magma Plumbing Structure of the Santorini Arc Volcano

    Science.gov (United States)

    Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.

    2016-12-01

    The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.

  6. Seismic safety margins research program. Phase I. Project VII: systems analysis specifications of computational approach

    International Nuclear Information System (INIS)

    Collins, J.D.; Hudson, J.M.; Chrostowski, J.D.

    1979-02-01

    A computational methodology is presented for the prediction of core melt probabilities in a nuclear power plant due to earthquake events. The proposed model has four modules: seismic hazard, structural dynamic (including soil-structure interaction), component failure and core melt sequence. The proposed modules would operate in series and would not have to be operated at the same time. The basic statistical approach uses a Monte Carlo simulation to treat random and systematic error but alternate statistical approaches are permitted by the program design

  7. Seismic fragility of nuclear power plant components (Phase 2): A fragility handbook on eighteen components

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Shteyngart, S.

    1991-06-01

    Fragility estimates of seven equipment classes were published in earlier reports. This report presents fragility analysis results from eleven additional equipment categories. The fragility levels are expressed in probabilistic terms. For users' convenience, this concluding report includes a summary of fragility results of all eighteen equipment classes. A set of conversion factors based on judgment is recommended for use of the information for early vintage equipment. The knowledge gained in conducting the Component Fragility Program and similar other programs is expected to provide a new direction for seismic verification and qualification of equipment. 15 refs., 12 tabs

  8. Seismic instrumentation

    International Nuclear Information System (INIS)

    Maubach, K.

    1982-01-01

    For better understanding of the specification for seismic instrumentation of a nuclear power plant, the lecture gives some fundamental remarks to the seismic risk in the Federal Republic of Germany and to the data characterizing an earthquake event. Coming from the geophysical properties of an earthquake, the quantities are explained which are used in the design process of nuclear power plants. This process is shortly described in order to find the requirements for the specification of the seismic instrumentation. In addition the demands of licensing authorities are given. As an example the seismic instrumentation of KKP-1, BWR, is shown. The paper deals with kind and number of instruments, their location in the plant and their sensitivity and calibration. Final considerations deal with the evaluation of measured data and with plant operation after an earthquake. Some experience concerning the earthquake behaviour of equipment not designed to withstand earthquake loads is mentioned. This experience has initiated studies directed to quantification of the degree of conservatism of the assumptions in the seismic design of nuclear power plants. A final garget of these studies are more realistic design rules. (RW)

  9. The Phoretic Motion Experiment (PME) definition phase

    Science.gov (United States)

    Eaton, L. R.; Neste, S. L. (Editor)

    1982-01-01

    The aerosol generator and the charge flow devices (CFD) chamber which were designed for zero-gravity operation was analyzed. Characteristics of the CFD chamber and aerosol generator which would be useful for cloud physics experimentation in a one-g as well as a zero-g environment are documented. The Collision type of aerosol generator is addressed. Relationships among the various input and output parameters are derived and subsequently used to determine the requirements on the controls of the input parameters to assure a given error budget of an output parameter. The CFD chamber operation in a zero-g environment is assessed utilizing a computer simulation program. Low nuclei critical supersaturation and high experiment accuracies are emphasized which lead to droplet growth times extending into hundreds of seconds. The analysis was extended to assess the performance constraints of the CFD chamber in a one-g environment operating in the horizontal mode.

  10. Passive seismic experiment in the Olduvai Gorge and Laetoli region (Ngorongoro Conservation Area), Northern Tanzania.

    Science.gov (United States)

    Parisi, Laura; Lombardo, Luigi; Tang, Zheng; Mai, P. Martin

    2017-04-01

    The Olduvai Gorge and Laetoli basins, located within the Ngorogoro Conservation Area (NCA), are a cornerstone for understanding the evolution of early humans and are two paleo-antropological excavation sites of global importance. NCA is located at the boundary between the Tanzanian Craton and East African Rift (EAR), in the vicinity of Ngorongoro Crater and other major volcanic edifices. Thus, understanding the geology and tectonics of the NCA may shed light onto the question why early Hominins settled in this region. Environmental and geological conditions in the Olduvai and Laetoli region that promoted human settlement and development are still debated by geologists and paleo-anthropologists. Paleo-geographical reconstructions of the study area of the last 2 million years may take advantage of modern passive seismology. Therefore, we installed a dense seismic network covering a surface of approximately 30 x 40 km within the NCA to map the depth extent of known faults, and to identify seismically active faults that have no surface expression. Our ten seismic stations, equipped with Trillium Compact 120 s sensors, started to operate in June 2016 and will continue for a total of 2 years. At the end of the first year, other 5 stations will densify our network. Here we analyse data quality of the first four months of continuous recordings. Our network provides good quality 3-C waveforms in the frequency range of 0.7-50 Hz. Vertical component seismograms record frequencies reliably down to 8 mHz. Preliminary results of the seismicity obtained with standard location procedures show that NCA is characterised by frequent tectonic seismicity (not volcano-related) with Ml between 0.5 and 2.0. Seismic activity is more frequent in the South (Laetoli region) where major fault systems have not been recognised at the surface yet.

  11. Ghana's experience in the establishment of a national digital seismic network observatory

    Science.gov (United States)

    Ahulu, Sylvanus; Danuor, Sylvester Kojo

    2015-07-01

    The Government of Ghana has established a National Digital Seismic Network Observatory in Ghana with the aim of monitoring events such as earthquakes, blasts from mining and quarrying, nuclear tests, etc. The Digital Observatory was commissioned on 19 December 2012, and was dedicated to Geosciences in Ghana. Previously Ghana did not have any operational, digital seismic network acquisition system with the capability of monitoring and analysing data for planning and research purposes. The Ghana Geological Survey has been monitoring seismic events with an analogue system which was not efficient and does not deliver real-time data. Hence, the importance of setting up the National Digital Seismic Network System which would enable the Geological Survey to constantly monitor, manage and coordinate both natural and man-made seismic activities in the country and around the globe, to some extent on real-time basis. The Network System is made up of six remote digital stations that transmit data via satellite to the central observatory. Sensors used are 3× Trillium Compact and 3× Trillium 120PA with Trident digitizers. The department has also acquired strong motion equipment: Titan accelerometers with Taurus digitizers from Nanometrics. Three of each of these instruments have been installed at the Akosombo and Kpong hydrodams, and also at the Weija water supply dam. These instruments are used to monitor dams. The peak ground acceleration (PGA) values established from the analysed data from the accelerometers will be used to retrofit or carry out maintenance work of the dam structures to avoid collapse. Apart from these, the observatory also assesses and analyses seismic waveforms relevant to its needs from the Global Seismographic Network (GSN) system operated by the US Geological Survey. The Ghana Geological Survey, through its Seismic Network Observatory makes data available to its stakeholder institutions for earthquake disaster mitigation; reports on all aspects of

  12. U.S. experience in seismic re-evaluation and verification programs

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-01-01

    The purpose of this paper is to present a summary of the development of a seismic re-evaluation program for older nuclear power plants in the U.S. The principal focus of this reevaluation is the use of actual strong motion earthquake response data for structures and mechanical and electrical systems and components. These data are supplemented by generic shake table test results. Use of this type of seismic re-evaluation has led to major cost reductions as compared to more conventional analytical and component specific testing procedures. (author)

  13. Moonquakes and lunar tectonism results from the Apollo passive seismic experiment.

    Science.gov (United States)

    Latham, G.; Ewing, M.; Dorman, J.; Lammlein, D.; Press, F.; Toksoz, N.; Sutton, G.; Duennebier, F.; Nakamura, Y.

    1972-01-01

    The natural seismicity of the moon appears to be very low relative to that of the earth. However, moonquakes do occur. They are detected by the stations of the Apollo seismic network at an average rate of 1800/yr at Station 14 and at lower rates at Stations 12 and 15. All of the moonquakes are small, and in the few cases for which the foci have been located, they occur at great depth (about 800 km). The frequency of occurrence of moonquakes is strongly correlated with lunar tides. The dynamic processes that generate quakes are clearly much less vigorous within the moon than they are within the earth.

  14. Seismic safety margins research program. Phase I final report - Major structure response (Project IV)

    International Nuclear Information System (INIS)

    Benda, B.J.; Johnson, J.J.; Lo, T.Y.

    1981-08-01

    The primary task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain. The containment shell was modeled as a series of beam elements with the shear and bending characteristics of a circular cylindrical shell. Masses and rotary inertias were lumped at nodal points; thirteen modes were included in the analysis. The internal structure was modeled with three-dimensional finite elements, with masses again lumped at selected nodes; sixty modes were included in the analysis. The model of the AFT complex employed thin plate and shell elements to represent the concrete shear walls and floor diaphragms, and beam and truss elements to model the braced frames. Because of the size and complexity of the model, and the potentially large number of degrees of freedom, masses were lumped at a limited number of node points. These points were selected so as to minimize the effect of the discrete mass distribution on structural response. One hundred and thirteen modes were extracted. A second objective of Project IV was to investigate the effects of uncertainty and variability on structural response. To this end, four side studies were conducted. Three of them, briefly summarized in this volume, addressed themselves respectively to an investigation of sources of random variability in the dynamic response of nuclear power plant structures; formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of major nuclear power plant structures and substructures; and a preliminary evaluation of nonlinear responses in shear-wall structures. A fourth side study, reported in detail in this volume, quantified variations in dynamic characteristics and seismic

  15. Modelling Active Faults in Probabilistic Seismic Hazard Analysis (PSHA) with OpenQuake: Definition, Design and Experience

    Science.gov (United States)

    Weatherill, Graeme; Garcia, Julio; Poggi, Valerio; Chen, Yen-Shin; Pagani, Marco

    2016-04-01

    The Global Earthquake Model (GEM) has, since its inception in 2009, made many contributions to the practice of seismic hazard modeling in different regions of the globe. The OpenQuake-engine (hereafter referred to simply as OpenQuake), GEM's open-source software for calculation of earthquake hazard and risk, has found application in many countries, spanning a diversity of tectonic environments. GEM itself has produced a database of national and regional seismic hazard models, harmonizing into OpenQuake's own definition the varied seismogenic sources found therein. The characterization of active faults in probabilistic seismic hazard analysis (PSHA) is at the centre of this process, motivating many of the developments in OpenQuake and presenting hazard modellers with the challenge of reconciling seismological, geological and geodetic information for the different regions of the world. Faced with these challenges, and from the experience gained in the process of harmonizing existing models of seismic hazard, four critical issues are addressed. The challenge GEM has faced in the development of software is how to define a representation of an active fault (both in terms of geometry and earthquake behaviour) that is sufficiently flexible to adapt to different tectonic conditions and levels of data completeness. By exploring the different fault typologies supported by OpenQuake we illustrate how seismic hazard calculations can, and do, take into account complexities such as geometrical irregularity of faults in the prediction of ground motion, highlighting some of the potential pitfalls and inconsistencies that can arise. This exploration leads to the second main challenge in active fault modeling, what elements of the fault source model impact most upon the hazard at a site, and when does this matter? Through a series of sensitivity studies we show how different configurations of fault geometry, and the corresponding characterisation of near-fault phenomena (including

  16. Experiment and analysis of a fuzzy-controlled piezoelectric seismic isolation system

    Science.gov (United States)

    Lu, Lyan-Ywan; Lin, Chi-Chang; Lin, Ging-Long; Lin, Chen-Yu

    2010-05-01

    Because a conventional seismic isolation system is usually a long-period dynamic system, it may easily incur an excessive seismic response when subjected to near-fault earthquakes, which usually contain strong long-period wave components. In order to alleviate this near-fault isolation problem, this paper investigates the possible use of a fuzzy-controlled semi-active isolation system, called a piezoelectric seismic isolation system (PSIS), whose seismic response is attenuated by a variable friction damper driven by an embedded piezoelectric actuator. The studied PSIS adopts a fuzzy controller whose control logic is similar to that of the anti-lock braking systems (ABS) widely used in the automobile industry. This ABS-type fuzzy controller has the advantages of being simple and easily implemented, because it only requires the measurement of the PSIS sliding velocity. In order to investigate its feasibility and isolation effectiveness, in this work both theoretical and experimental studies were carried out on a prototype PSIS. It is observed that the experimental responses of the PSIS can be well predicted by the theoretical responses simulated by the mathematical model and numerical procedure. Furthermore, both theoretical and experimental results have demonstrated that in either a near-fault or a far-field earthquake, the PSIS with the ABS-type fuzzy controller is very effective in suppressing simultaneously the isolator displacement and the acceleration response of the isolated object.

  17. Potential seismic structural failure modes associated with the Zion Nuclear Plant. Seismic safety margins research program (Phase I). Project VI. Fragilities

    International Nuclear Information System (INIS)

    1979-10-01

    The Zion 1 and 2 Nuclear Power Plant consists of a number of structures. The most important of these from the viewpoint of safety are the containment buildings, the auxiliary building, the turbine building, and the crib house (or intake structure). The evaluation of the potential seismic failure modes and determination of the ultimate seismic capacity of the structures is a complex undertaking which will require a large number of detailed calculations. As the first step in this evaluation, a number of potential modes of structural failure have been determined and are discussed. The report is principally directed towards seismically induced failure of structures. To some extent, modes involving soil foundation failures are discussed in so far as they affect the buildings. However, failure modes involving soil liquefaction, surface faulting, tsunamis, etc., are considered outside the scope of this evaluation

  18. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  19. Crustal structure due to collisional and escape tectonics in the Eastern Alps region based on profiles Alp01 and Alp02 from the ALP 2002 seismic experiment

    Czech Academy of Sciences Publication Activity Database

    Brückl, E.; Bleibinhaus, F.; Gosar, A.; Grad, M.; Guterch, A.; Hrubcová, Pavla; Keller, G. R.; Majdański, M.; Šumanovac, F.; Tiira, T.; Yliniemi, J.; Hegedüs, E.; Thybo, H.

    2007-01-01

    Roč. 112, č. B6 (2007), B06308/1-B06308/25 ISSN 0148-0227 R&D Projects: GA MŽP SB/630/3/02 Institutional research plan: CEZ:AV0Z30120515 Keywords : crustal structure * ALP 2002 seismic experiment * seismic refraction Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.953, year: 2007

  20. Attenuation of regional seismic phases (Lg and Sn) in Eastern Mongolia

    Science.gov (United States)

    He, Jing; Sandvol, Eric; Wu, Qingju; Gao, Mengtan; Gallegos, Andrea; Ulziibat, Munkhuu; Demberel, Sodnomsambuu

    2017-11-01

    We present tomographic models of frequency-dependent Lg and Sn attenuation in eastern Mongolia using data from 228 local earthquakes that were recorded by 69 broad-band seismic stations. We adopt the two-station method (TSM) and reverse two-station method (RTM) to measure the frequency-dependent Sn and Lg Q values, respectively. The RTM has the advantage of allowing us to make attenuation measurements that are independent of site effects, instrument responses and source parameters. We have tomographically mapped Lg Q and η in order to understand spatial variations in crustal attenuation across eastern Mongolia and the surrounding regions. High Lg attenuation and low η are found in the volcanic region of the Middle Gobi Desert, while high Lg attenuation and high η are found in and around the tectonically active regions of the South Gobi Desert. We have also examined uppermost mantle attenuation by mapping the variation in Sn attenuation and η values. Regions of high Sn attenuation are found in the mountainous and volcanically active regions of the Middle Gobi Desert. Our Lg and Sn attenuation models correlate well with lateral variations in velocity as well as with the major tectonic units that make up eastern Mongolia. High attenuation regions seem to be associated with low velocities, Quaternary volcanoes and Cenozoic tectonic activity.

  1. Petrological and seismic precursors of the paroxysmal phase of the last Vesuvius eruption on March 1944

    Science.gov (United States)

    Pappalardo, Lucia; D'Auria, Luca; Cavallo, Andrea; Fiore, Stefano

    2014-09-01

    Abrupt transitions in style and intensity are common during volcanic eruptions, with an immediate impact on the surrounding territory and its population. Defining the factors trigger such sudden shifts in the eruptive behavior as well as developing methods to predict such changes during volcanic crises are crucial goals in volcanology. In our research, the combined investigation of both petrological and seismic indicators has been applied for the first time to a Vesuvius eruption, that of March 1944 that caused the present dormant state of the volcano. Our results contribute to elucidate the evolution of the conduit dynamics that generated a drastic increase in the Volcanic Explosivity Index, associated to the ejection of huge amount of volcanic ash. Remarkably, our study shows that the main paroxysm was announced by robust changes in petrology consistent with seismology, thus suggesting that the development of monitoring methods to assess the nature of ejected juvenile material combined with conventional geophysical techniques can represent a powerful tool for forecasting the evolution of an eruption towards violent behavior. This in turn is a major goal in volcanology because this evidence can help decision-makers to implement an efficient safety strategy during the emergency (scale and pace of evacuation).

  2. Seismic responses of N-Reactor core. Independent review of Phase II work

    International Nuclear Information System (INIS)

    Chen, J.C.; Lo, T.; Chinn, D.J.; Murray, R.C.; Johnson, J.J.; Maslenikov, O.R.

    1985-08-01

    Seismic response of the N-Reactor core was independently analyzed to validate the results of Impell's analysis. The analysis procedure consists of two major stages: linear soil-structure interaction (SSI) analysis of the overall N-Reactor structure complex and nonlinear dynamic analysis of the reactor core. In the SSI analysis, CLASSI computer codes were used to calculate the SSI response of the structures and to generate the input motions for the nonlinear reactor core analysis. In addition, the response was compared to the response from the SASSI analysis under review. The impact of foundation modeling techniques and the effect of soil stiffness variation on SSI response were also investigated. In the core analysis, a nonlinear dynamic analysis model was developed. The stiffness representation of the model was calculated through a finite element analysis of several local core geometries. Finite element analyses were also used to study the block to block interaction characteristics. Using this nonlinear dynamic model along with the basemat time histories generated from CLASSI and SASSI, several dynamic analyses of the core were performed. A series of sensitivity studies was performed to investigate the discretization of the core, the effect of vertical acceleration, the effect of basemat rocking, and modeling assumptions. In general, our independent analysis of core response validates the order of magnitude of the displacement calculated by Impell. 11 refs., 110 figs., 12 tabs

  3. Seismic fragility of nuclear power plant components: Phase 2, Motor control center, switchboard, panelboard and power supply

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Hofmayer, C.H.; Kassir, M.K.; Pepper, S.E.

    1987-12-01

    In Phase I of the Component Fragility Program, Brookhaven National Laboratory (BNL) has developed a procedure to establish the seismic fragility of nuclear power plant equipment by use of existing test data and demonstrated its application by considering two equipment pieces. In Phase II of the program, BNL has collected additional test data, and has further advanced and is applying the methodology to determine the fragility levels of selected essential equipment categories. The data evaluation of four equipment families, namely, motor control center, switchboard, panelboard and power supply has been completed. Fragility levels have been determined for various failure modes of each equipment class and the deterministic results are presented in terms of test response spectra. In addition, the test data have been analyzed for determination of the respective probabilistic fragility levels. To this end, a single g-value has been selected to approximately represent the test vibration level and a statistical analysis has been performed with the g-values corresponding to a particular failure mode. The zero period acceleration and the average spectral acceleration over a frequency range of interest are separately used as the single g-value. The resulting parameters are presented in terms of a median value, an uncertainty coefficient and a randomness coefficient. Ultimately, each fragility level is expressed in terms of a single descriptor called an HCLPF value corresponding to a high (95%) confidence of a low (5%) probability of failure. The important observations made in the process of data analysis are included in this report

  4. The CAFE Experiment: A Joint Seismic and MT Investigation of the Cascadia Subduction System

    Science.gov (United States)

    2013-02-01

    same range over which the low velocity signature of the subducting crust disappears. While serpentinized peridotite in the upper mantle is only...While serpentinization is normally the most important hydration mechanism associated with peridotites , the stability zone for serpentine is...with dry peridotite at the temperatures expected in the wedge. This is consistent with the seismic image, as this resistor corresponds to the

  5. Theory and experiment of an inertia-type vertical isolation system for seismic protection of equipment

    Science.gov (United States)

    Lu, Lyan-Ywan; Chen, Pei-Rong; Pong, Kuan-Wen

    2016-03-01

    Although it has been proven that seismic isolation is an effective technology for seismic protection of structures and equipment, most existing isolation systems are for mitigating horizontal ground motions, and in practice there are very few vertical isolation systems. Part of the reason is due to the conflict with regard to the demand for isolation stiffness. In other words, a vertical isolation system must have sufficient vertical rigidity to sustain the weight of the isolated object, while it must also have sufficient flexibility in order to elongate the vibration period under seismic excitation. In order to overcome this difficulty, a novel system is proposed in this study, called an inertia-type vertical isolation system (IVIS). The primary difference between the IVIS and a traditional system is that the former has an additional leverage mechanism with a counterweight. The counterweight will provide a static uplifting force and an extra dynamic inertia force, such that the effective vertical stiffness of the IVIS becomes higher in its static state and lower in the dynamic one. The theory underlying the IVIS is developed and verified experimentally by a seismic simulation test in this work. The results show that the IVIS leads to a less static settlement and at the same time a lower effective isolation frequency. The test results also demonstrate that the isolator displacement demand of the IVIS is only about 30-40 percent that of the traditional one in all kinds of earthquakes. With regard to the reduction of acceleration response, the IVIS is particularly effective for near-fault earthquakes or near-resonant excitations, but is less effective for far-field earthquakes with more high-frequency contents, as compared with the traditional system.

  6. Seismic evaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    2003-01-01

    seismic safety. Rational feasible criteria for resolving the main issues have been developed in some Member States. The main purpose of this report is to provide guidance for conducting seismic safety evaluation programmes for existing NPPs in a manner consistent with internationally recognized practice. This report may be used as a tool for regulatory organizations and other organizations responsible for the execution of seismic safety evaluation programmes, giving a clear definition to different parties, organizations and specialists involved in their implementation of: (a) The objectives of the seismic evaluation programme; (b) The phases, tasks and priorities in accordance with specific plant conditions; (c) A common and integrated technical framework for acceptance criteria and capacity evaluation. The scope of this report covers the seismic safety evaluation programmes to be performed on NPPs so as to ensure that the required basic safety functions are available, with particular application to the safe shutdown of reactors. Seismic safety evaluation programmes should contain three important parts, which are discussed in this Safety Report: (1) The assessment of the seismic hazard as an external event, specific to the seismotectonic and soil conditions of the site, and of the associated input motion; (2) The safety analysis of the NPP resulting in an identification of the selected structures, systems and components (SSSCs) appropriate for dealing with a seismic event with the objective of a safe shutdown; (3) The evaluation of the plant specific seismic capacity to withstand the loads generated by such an event, possibly resulting in upgrading. Seismic evaluation of existing NPPs relies much more on feedback experience than qualification of new NPPs does; and the feedback experience is mainly revealed through the practice referred to as walkdowns. Both outlines of feedback experience and conducting of walkdowns are also discussed in this Safety Report. Evaluation

  7. Seismic Safety Margins Research Program. Phase 1. Project V. Structural sub-system response: subsystem response review

    International Nuclear Information System (INIS)

    Fogelquist, J.; Kaul, M.K.; Koppe, R.; Tagart, S.W. Jr.; Thailer, H.; Uffer, R.

    1980-03-01

    This project is directed toward a portion of the Seismic Safety Margins Research Program which includes one link in the seismic methodology chain. The link addressed here is the structural subsystem dynamic response which consists of those components and systems whose behavior is often determined decoupled from the major structural response. Typically the mathematical model utilized for the major structural response will include only the mass effects of the subsystem and the main model is used to produce the support motion inputs for subsystem seismic qualification. The main questions addressed in this report have to do with the seismic response uncertainty of safety-related components or equipment whose seismic qualification is performed by (a) analysis, (b) tests, or (c) combinations of analysis and tests, and where the seismic input is assumed to have no uncertainty

  8. SIMMER-II analysis of transition-phase experiments

    International Nuclear Information System (INIS)

    Wehner, T.R.; Bell, C.R.

    1985-01-01

    Analyses of Los Alamos transition-phase experiments with the SIMMER-II computer code are reported. These transient boilup experiments simulated the recriticality-induced transient motion of a boiling pool of molten fuel, molten steel and steel vapor, within a subassembly duct in a liquid-metal fast breeder reactor during the transition phase of a core-disruptive accident. The two purposes of these experiments were to explore and reach a better understanding of fast reactor safety issues, and to provide data for SIMMER-II verification. Experimental data, consisting of four pressure traces and a high-speed movie, were recorded for four sets of initial conditions. For three of the four cases, SIMMER-II-calculated pressures compared reasonably well with the experimental pressures. After a modification to SIMMER-II's liquid-vapor drag correlation, the comparison for the fourth case was reasonable also. 12 refs., 4 figs

  9. Some remarks on the specification of seismic conditions for NPPs, based on the Romanian experience

    International Nuclear Information System (INIS)

    Sandi, H.

    1993-01-01

    Some introductory remarks are devoted to the importance of revising the level of earthquake protection of NPPs, given the new knowledge at hand. Some summary data on the seismicity of Romania are given, with emphasis on the implications of instrumental data obtained during the recent strong intermediate depth earthquake of 1986 and 1990. Some problems raised by the new data in connection with the Cernavoda NPP (currently under construction), from the viewpoint of ground and floor design conditions, are discussed. Some proposals are then presented in connection with the future activities related to the verification of NPPs of the region. (author)

  10. New observations of displacement steps associated with volcano seismic long-period events, constrained by step table experiments

    Science.gov (United States)

    Thun, Johannes; Lokmer, Ivan; Bean, Christopher J.

    2015-05-01

    Long-period (LP) volcano seismic events often precede volcanic eruptions and are viewed with considerable interest in hazard assessment. They are usually thought to be associated with resonating fluid-filled conduits although alternative models involving material failure have recently been proposed. Through recent field experiments, we uncovered a step-like displacement component associated with some LP events, outside the spectral range of the typically narrow-band analysis for this kind of event. Bespoke laboratory experiments with step tables show that steps of the order of a few micrometers can be extracted from seismograms, where long-period noise is estimated and removed with moving median filters. Using these constraints, we observe step-like ground deformation in LP recordings near the summits of Turrialba and Etna Volcanoes. This represents a previously unobserved static component in the source time history of LP events, with implications for the underlying source process.

  11. Seismic observation of a sharp post-garnet phase transition within the Farallon crust: Evidence for oceanic plateau subduction

    Science.gov (United States)

    Maguire, R.; Ritsema, J.

    2017-12-01

    The tectonic evolution of North America over the past 150 million years was heavily influenced by the complex subduction history of the Farallon plate. In particular, Laramide mountain building may have been triggered by the initiation of flat slab subduction in the late Cretaceous. While it has been proposed that the cause of slab flattening is related to the subduction of an oceanic plateau[1], direct geophysical evidence of a subducted oceanic plateau is lacking. Here, using P-to-S receiver functions, we detect a sharp seismic discontinuity at 720-km depth beneath the southeastern United States and Gulf of Mexico. We interpret this discontinuity as a garnet-to-bridgmanite phase transition occurring within a thickened Farallon crust. Our results are consistent with a subducted oceanic plateau (likely the conjugate half of the Hess rise) which is foundering below the base of the mantle transition zone. Additionally, we find a strong 520-km discontinuity beneath the southeastern United States which may indicate a hydrous transition zone due to the release of H2O from the Farallon slab. These results provide insight into the dynamics of flat slab subduction as well as the tectonic history of North America. [1] Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, v. 289, p. 276-278, doi: 10.1038/289276a0

  12. Results of high resolution seismic imaging experiments for defining permeable pathways in fractured gas reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Peterson, J.E.; Daley, T. [and others

    1997-10-01

    As part of its Department of Energy (DOE) Industry cooperative program in oil and gas, Berkeley Lab has an ongoing effort in cooperation with Industry partners to develop equipment, field techniques, and interpretational methods to further the practice of characterizing fractured heterogeneous reservoirs. The goal of this work is to demonstrate the combined use of state-of-the-art technology in fluid flow modeling and geophysical imaging into an interdisciplinary approach for predicting the behavior of heterogeneous fractured gas reservoirs. The efforts in this program have mainly focused on using seismic methods linked with geologic and reservoir engineering analysis for the detection and characterization of fracture systems in tight gas formations, i.e., where and how to detect the fractures, what are the characteristics of the fractures, and how the fractures interact with the natural stresses, lithology, and their effect on reservoir performance. The project has also integrated advanced reservoir engineering methods for analyzing flow in fractured systems such that reservoir management strategies can be optimized. The work at Berkeley Lab focuses on integrating high resolution seismic imaging, (VSP, crosswell, and single well imaging), geologic information and well test data to invert for flow paths in fractured systems.

  13. Two-phase LMMHD mixer-development experiments

    International Nuclear Information System (INIS)

    Fabris, G.; Dunn, P.F.; Chow, J.C.F.

    1978-01-01

    The results of a series of experiments conducted to evaluate the fluid mechanical performance of various two-phase LMMHD mixer designs are presented. The results from both flow visualization studies of the local two-phase flows downstream from various mixer-element configurations and local measurements performed to characterize these flows are presented. A conceptual LMMHD mixer design is described that insures the generation of small bubbles, prevents the formation of gas slugs and separated regions, and favors the stabilization of a homogeneous foam flow

  14. Seismic verification methods for structures and equipment of VVER-type and RBMK-type NPPs (summary of experiences)

    International Nuclear Information System (INIS)

    Masopust, R.

    2003-01-01

    The main verification methods for structures and equipment of already existing VVER-type and RBMK-type NPPs are briefly described. The following aspects are discussed: fundamental seismic safety assessment principles for VVER/RBMK-type NPPs (seismic safety assessment procedure, typical work plan for seismic safety assessment of existing NPPs, SMA (HCLPF) calculations, modified GIP (GIP-VVER) procedure, similarity of VVER/RBMK equipment to that included in the SQUG databases and seismic interactions

  15. Simulation of Local Seismic Ground Motions from the FLASK Underground Nuclear Explosion near the Source Physics Experiment Dry Alluvium Geology Site

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Wagoner, J. L.; Helmberger, D. V.

    2017-12-01

    The FLASK underground nuclear explosion (UNE) was conducted in Area 2 of Yucca Flat at the Nevada Test Site on May 26, 1970. The yield was 105 kilotons (DOE/NV-209-Rev 16) and the working point was 529 m below the surface. This test was detonated in faulted Tertiary volcanic rocks of Yucca Flat. Coincidently, the FLASK UNE ground zero (GZ) is close (conducting Phase II of its chemical high explosives test series in the so-called Dry Alluvium Geology (DAG) site. Ground motions from FLASK were recorded by twelve (12) three-component seismic stations in the near-field at ranges 3-4 km. We digitized the paper records and used available metadata on peak particle velocity measurements made at the time to adjust the amplitudes. These waveforms show great variability in amplitudes and waveform complexity with azimuth from the shot, likely due to along propagation path structure such as the geometry of the hard-rock/alluvium contact above the working point. Peak particle velocities at stations in the deeper alluvium to the north, east and south of GZ have larger amplitudes than those to the west where the basement rock is much shallower. Interestingly, the transverse components show a similar trend with azimuth. In fact, the transverse component amplitudes are similar to the other components for many stations overlying deeper basement. In this study, we simulated the seismic response at the available near-field stations using the SW4 three-dimensional (3D) finite difference code. SW4 can simulate seismic wave propagation in 3D inelastic earth structure, including surface topography. SW4 includes vertical mesh refinement which greatly reduces the computational resources needed to run a specific problem. Simulations are performed on high-performance computers with grid spacing as small as 10 meters and resolution to 6 Hz. We are testing various subsurface models to identify the role of 3D structure on path propagation effects from the source. We are also testing 3D models to

  16. Phase change in uranium: Discrepancy between experiment and theory

    International Nuclear Information System (INIS)

    Akella, J.

    1996-01-01

    Using a diamond-anvil cell (DAC) phase transformation and room temperature Equation of State (EOS) for some actinides and lanthanides were studied to multimegabar (megabar = 100 GPa) pressures. Experimental data are compared with the theoretically predicted crystal structural changes and the pressure-volume relationships. There is a general agreement between theory and experiment for the structural changes in the lighter actinides, however in detail there are some discrepancies still. A generalized trend for the phase transformations in the lanthanides can be seen, which again has broad agreement with theory. We conclude that an accurate and robust theoretical base for predicting the phase transformations in the f-electron metals can be developed by incorporating the DAC data

  17. Phased Array Radar Network Experiment for Severe Weather

    Science.gov (United States)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  18. Strike-slip fault Kinematics and mechanics at the seismic cycle time-scale : Results from new analogue model experiments.

    Science.gov (United States)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Cattin, Rodolphe; Peyret, Michel; Chéry, Jean; Romano, Christian

    2013-04-01

    The average seismic cycle duration extends from hundred to a few thousands years but geodetic measurements, including trilateration, GPS, Insar and seismological data extend over less than one century. This short time observation scale renders difficult, then, to constrain the role of key parameters such as fault friction and geometry, crust rheology, stress and strain rate that control the kinematics and mechanics of active faults. To solve this time scale issue, we have developed a new experimental set-up that reproduces scaled micro-earthquakes and several hundreds of seismic cycles along a strike-slip fault. The model is constituted by two polyurethane foam plates laterally in contact, lying on a basal silicone layer, which simulate the mechanical behaviour of an elastoplastic upper crust over a ductile lower crust, respectively. To simulate the boundary conditions of a strike-slip fault, a computerized motoreductor system moves the two compartments on an opposite sens and at a constant very low velocity (a few µm/s). The model spatial and temporal scaling, deduces from analog material physical and mechanical parameters, implies that 1 cm in the model represents 2-3 km in the nature and 1 s is equivalent to 5-15 years. Surface-horizontal strain field is quantified by sub-pixel correlation of digital camera pictures recorded every 16 µm of displacement. For each experience about 2000 horizontal-velocity field measurements are recorded. The analysis of model-interseismic and coseismic surface displacements and their comparison to seismogenic natural faults demonstrate that our analog model reproduces correctly both near and far-field surface strains. To compare the experiences, we have developed several algorithms that allow studying the main spatial and temporal evolution of the physical parameters and surface deformation processes that characterise the seismic cycle (magnitudes, stress, strain, friction coefficients, interseismic locking depth, recurrence

  19. Phase transition in traffic jam experiment on a circuit

    Science.gov (United States)

    Tadaki, Shin-ichi; Kikuchi, Macoto; Fukui, Minoru; Nakayama, Akihiro; Nishinari, Katsuhiro; Shibata, Akihiro; Sugiyama, Yuki; Yosida, Taturu; Yukawa, Satoshi

    2013-10-01

    The emergence of a traffic jam is considered to be a dynamical phase transition in a physics point of view; traffic flow becomes unstable and changes phase into a traffic jam when the car density exceeds a critical value. In order to verify this view, we have been performing a series of circuit experiments. In our previous work (2008 New J. Phys. 10 033001), we demonstrated that a traffic jam emerges even in the absence of bottlenecks at a certain high density. In this study, we performed a larger indoor circuit experiment in the Nagoya Dome in which the positions of cars were observed using a high-resolution laser scanner. Over a series of sessions at various values of density, we found that jammed flow occurred at high densities, whereas free flow was conserved at low densities. We also found indications of metastability at an intermediate density. The critical density is estimated by analyzing the fluctuations in speed and the density-flow relation. The value of this critical density is consistent with that observed on real expressways. This experiment provides strong support for physical interpretations of the emergence of traffic jams as a dynamical phase transition.

  20. Phase transition in traffic jam experiment on a circuit

    International Nuclear Information System (INIS)

    Tadaki, Shin-ichi; Kikuchi, Macoto; Fukui, Minoru; Yosida, Taturu; Nakayama, Akihiro; Nishinari, Katsuhiro; Shibata, Akihiro; Sugiyama, Yuki; Yukawa, Satoshi

    2013-01-01

    The emergence of a traffic jam is considered to be a dynamical phase transition in a physics point of view; traffic flow becomes unstable and changes phase into a traffic jam when the car density exceeds a critical value. In order to verify this view, we have been performing a series of circuit experiments. In our previous work (2008 New J. Phys. 10 033001), we demonstrated that a traffic jam emerges even in the absence of bottlenecks at a certain high density. In this study, we performed a larger indoor circuit experiment in the Nagoya Dome in which the positions of cars were observed using a high-resolution laser scanner. Over a series of sessions at various values of density, we found that jammed flow occurred at high densities, whereas free flow was conserved at low densities. We also found indications of metastability at an intermediate density. The critical density is estimated by analyzing the fluctuations in speed and the density–flow relation. The value of this critical density is consistent with that observed on real expressways. This experiment provides strong support for physical interpretations of the emergence of traffic jams as a dynamical phase transition. (paper)

  1. ONKALO POSE experiment. Phase 1 and 2: execution and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland); Siren, T. [Posiva Oy, Helsinki (Finland); Hakala, M. [KMS-Hakala Oy, Nokia (Finland); Kantia, P. [Geofcon Oy, Rovaniemi (Finland)

    2014-02-15

    Posiva has conducted in the ONKALO rock characterisation facility during 2010 - 2011 an in situ experiment named POSE (Posiva's Olkiluoto Spalling Experiment). The POSE experiment had three objectives: to establish the in situ spalling/damage strength of Olkiluoto migmatitic gneiss, to establish the state of in situ stress at the -345 m depth level, and to act as a Prediction-Outcome (P-O) exercise. The POSE experiment consisted of drilling with full-face boring machine two near fullscale deposition holes, diameter 1.52 m (compared to 1.75 m for the actual deposition holes), to a depth of 7.2 m, leaving a 0.9 m pillar between the holes. The holes were planned to be located in such way that maximum excavation-induced stresses could act in the pillar and damage could then take place. Boring of the two holes in 2010 was called Phase 1 (Pillar test). This was followed in 2011 by Phase 2 (Pillar heating test) where four heaters with a length of 7.5 m heated the test area to increase the stresses around the experimental holes. In the heating phase the other hole was back-filled with sand. The test was extensively monitored during the execution using temperature monitoring, strain gauge monitoring, video monitoring, microseismic monitoring and pressure monitoring. In addition, the holes were after the test measured using ground penetration radar (GPR) and 3D photogrammetry for detailed modelling. The outcomes from the test showed that no damage, except for three opened/sheared fractures, was noticed during the boring of the holes (Phase 1). Surface damage was, though, induced by heating (Phase 2). The damage was well localized around the holes and controlled by the foliation (mica rich layers) and rock type contacts which were known to be relatively weak. Surface type failures were not observed in the gneiss, but it was noticed in limited areas in the pegmatite-granite. The depths of the damaged areas due to heating were less than 100 mm. The depths and sizes of the

  2. An in-situ stimulation experiment in crystalline rock - assessment of induced seismicity levels during stimulation and related hazard for nearby infrastructure

    Science.gov (United States)

    Gischig, Valentin; Broccardo, Marco; Amann, Florian; Jalali, Mohammadreza; Esposito, Simona; Krietsch, Hannes; Doetsch, Joseph; Madonna, Claudio; Wiemer, Stefan; Loew, Simon; Giardini, Domenico

    2016-04-01

    A decameter in-situ stimulation experiment is currently being performed at the Grimsel Test Site in Switzerland by the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE). The underground research laboratory lies in crystalline rock at a depth of 480 m, and exhibits well-documented geology that is presenting some analogies with the crystalline basement targeted for the exploitation of deep geothermal energy resources in Switzerland. The goal is to perform a series of stimulation experiments spanning from hydraulic fracturing to controlled fault-slip experiments in an experimental volume approximately 30 m in diameter. The experiments will contribute to a better understanding of hydro-mechanical phenomena and induced seismicity associated with high-pressure fluid injections. Comprehensive monitoring during stimulation will include observation of injection rate and pressure, pressure propagation in the reservoir, permeability enhancement, 3D dislocation along the faults, rock mass deformation near the fault zone, as well as micro-seismicity. The experimental volume is surrounded by other in-situ experiments (at 50 to 500 m distance) and by infrastructure of the local hydropower company (at ~100 m to several kilometres distance). Although it is generally agreed among stakeholders related to the experiments that levels of induced seismicity may be low given the small total injection volumes of less than 1 m3, detailed analysis of the potential impact of the stimulation on other experiments and surrounding infrastructure is essential to ensure operational safety. In this contribution, we present a procedure how induced seismic hazard can be estimated for an experimental situation that is untypical for injection-induced seismicity in terms of injection volumes, injection depths and proximity to affected objects. Both, deterministic and probabilistic methods are employed to estimate that maximum possible and the maximum expected induced

  3. The experience of the Antarctic Seismic Data Library System (SDLS) as a hub for researchers in antarctic crustal studies.

    Science.gov (United States)

    Diviacco, Paolo; Wardell, Nigel

    2010-05-01

    The SDLS was created in April 1991 under the auspices of the Scientific Committee on Antarctic Research to provide open access to Antarctic multichannel seismic-reflection data (MCS) for use in cooperative research projects. The SDLS operates under the mandates of the Antarctic Treaty System, by which all institutions that collect MCS data in Antarctica must submit their MCS data to the SDLS. The SDLS has library branches worldwide at which researchers may view and study the MCS data. MCS data are submitted to the SDLS within 4 years of collection and remain in the library under SDLS guidelines until 8 years after collection. Thereafter, the data go to World Data Centers or equivalents for unrestricted use. The SDLS offers a clearing house, based at Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) where data are processed when needed and georeferenced, so that the end user can be provided with usable, although basic, post-stack seismic sections. Re-processing of data is beyond the scope of the SDLS, so that if a researcher is interested in reviewing pre-stack data he/she must resort to the data owner. So far 228,000 km of seismic data have been made public in all sectors of the Antarctic region. To augment the concept of physical repositories where data can be accessed by researchers travelling to one of the branches or from where data could be copied to digital media and sent to users, in 2003 it was decided to develop a web interface where data could be searched for and accessed directly. At that moment no previous non-commercial experience was available in this data field, so that the system was designed from scratch. Several technologies were introduced, tested, and after a period of use, reviewed and tuned. Particular attention was devoted to the seismic data viewing facility, which was tailored to the needs of a community with specific practices and legacies. Seismic data are sensitive data that are very important for the E&P industry, so

  4. Ultramylonite generation via phase mixing in high-strain experiments

    Science.gov (United States)

    Cross, A. J.; Skemer, P.

    2017-03-01

    Dynamic recrystallization and phase mixing are considered to be important processes in ductile shear zone formation, as they collectively enable a permanent transition to the strain-weakening, grain-size sensitive deformation regime. While dynamic recrystallization is well understood, the underlying physical processes and timescales required for phase mixing remain enigmatic. Here, we present results from high-strain phase mixing experiments on calcite-anhydrite composites. A poorly mixed starting material was synthesized from fine-grained calcite and anhydrite powders. Samples were deformed in the Large Volume Torsion apparatus at 500°C and shear strain rates of 5 × 10-5 to 5 × 10-4 s-1, to finite shear strains of up to γ = 57. Microstructural evolution is quantified through analysis of backscattered electron images and electron backscatter diffraction data. During deformation, polycrystalline domains of the individual phases are geometrically stretched and thinned, causing an increase in the spatial density of interphase boundaries. At moderate shear strains (γ ≥ 6), domains are so severely thinned that they become "monolayers" of only one or two grain's width and form a thin compositional layering. Monolayer formation is accompanied by a critical increase in the degree of grain boundary pinning and, consequently, grain-size reduction below the theoretical limit established by the grain-size piezometer or deformation mechanism field boundary. Ultimately, monolayers neck and disaggregate at high strains (17 <γ <57) to complete the phase mixing process. This "geometric" phase mixing mechanism is consistent with observations of mylonites, where layer (i.e., foliation) formation is associated with strain localization, and layers are ultimately destroyed at the mylonite-ultramylonite transition.

  5. Layer rotation around vertical fault overlap zones: observations from seismic data, field examples, and physical experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rykkelid, E. [Norsk Hydro ASA, Oslo (Norway); Fossen, H. [University of Bergen (Norway). Dept. of Geology

    2002-02-01

    Vertically overlapping fault segments are common structures in faulted hydrocarbon reservoirs. Experimental work and field observations show a close relationship between the rotation of layers in the region of overlap, the type of overlap (restraining vs. releasing) and fault curvature. In general, releasing overlap zones (where the normal fault steps upward into the hanging-wall) show normal rotation or drag, thus decreasing the effective throw on the fault. In contrast, restraining overlaps tend to develop reverse rotation in the overlap zone, particularly if the normal fault tips curve toward each other. Releasing overlap zones seem to be more common than the restraining zones, and the overlaps tend to form in shaly layers between thicker sandstones. Narrow overlaps of this type typically develop zones of drag or shale smear that could seal or reduce communication across the adjacent sandstone layers. Hence, overlap zones may significantly influence communication in a reservoir, depending on the fault arrangement, geometry, and lithological properties. Seismic interpreters and structural geologists should pay particular attention to layer rotation to identify vertical overlap structures and to evaluate their influence on reservoir performance. (author)

  6. Seismic-refraction field experiments on Galapagos Islands: A quantitative tool for hydrogeology

    Science.gov (United States)

    Adelinet, M.; Domínguez, C.; Fortin, J.; Violette, S.

    2018-01-01

    Due to their complex structure and the difficulty of collecting data, the hydrogeology of basaltic islands remains misunderstood, and the Galapagos islands are not an exception. Geophysics allows the possibility to describe the subsurface of these islands and to quantify the hydrodynamical properties of its ground layers, which can be useful to build robust hydrogeological models. In this paper, we present seismic refraction data acquired on Santa Cruz and San Cristobal, the two main inhabited islands of Galapagos. We investigated sites with several hydrogeological contexts, located at different altitudes and at different distances to the coast. At each site, a 2D P-wave velocity profile is built, highlighting unsaturated and saturated volcanic layers. At the coastal sites, seawater intrusion is identified and basal aquifer is characterized in terms of variations in compressional sound wave velocities, according to saturation state. At highlands sites, the limits between soils and lava flows are identified. On San Cristobal Island, the 2D velocity profile obtained on a mid-slope site (altitude 150 m), indicates the presence of a near surface freshwater aquifer, which is in agreement with previous geophysical studies and the hydrogeological conceptual model developed for this island. The originality of our paper is the use of velocity data to compute field porosity based on poroelasticity theory and the Biot-Gassmann equations. Given that porosity is a key parameter in quantitative hydrogeological models, it is a step forward to a better understanding of shallow fluid flows within a complex structure, such as Galapagos volcanoes.

  7. Seismic Experiment at North Arizona To Locate Washington Fault - 3D Field Test

    KAUST Repository

    Hanafy, Sherif M

    2008-10-01

    No. of receivers in the inline direction: 80, Number of lines: 6, Receiver Interval: 1 m near the fault, 2 m away from the fault (Receivers 1 to 12 at 2 m intervals, receivers 12 to 51 at 1 m intervals, and receivers 51 to 80 at 2 m intervals), No. of shots in the inline direction: 40, Shot interval: 2 and 4 m (every other receiver location). Data Recording The data are recorded using two Bison equipment, each is 120 channels. We shot at all 240 shot locations and simultaneously recorded seismic traces at receivers 1 to 240 (using both Bisons), then we shot again at all 240 shot locations and we recorded at receivers 241 to 480. The data is rearranged to match the receiver order shown in Figure 3 where receiver 1 is at left-lower corner, receivers increase to 80 at right lower corner, then receiver 81 is back to left side at Y = 1.5 m, etc.

  8. Compendium of Phase-I Mini-SHINE Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Kalensky, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad A. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Hafenrichter, Lohman [Argonne National Lab. (ANL), Argonne, IL (United States); Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States); Jonah, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Micklich, Brad [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Schneider, John [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    Argonne National Laboratory is assisting SHINE Medical Technologies in their efforts to develop the technology to become a domestic Mo-99 producer using low-enriched uranium (LEU). Mini-SHINE experiments are being performed with the high-current electron linear accelerator (linac) at Argonne. The target solution is a 90-150 g-U/L LEU uranyl sulfate at pH 1. In Phase 1, the convertor was tantalum with a maximum beam power on the convertor of 10 kW, and the target solution was limited to 5 L. This configuration generated a peak fission power density of 0.05 W/mL. Nine experiments were performed between February and October 2015. Results are reported and discussed for each experiment regarding the off-gas analysis system, the sampling and Mo-recovery operation, and the Mo-product concentration and purification system. In Phase 2, the convertor will be depleted uranium; beam power will increase to 20 kW; and the solution volume will be 18 L. This configuration will generate a fission power density of up to 1 W/mL.

  9. First phase of small diameter heater experiments in tuff

    International Nuclear Information System (INIS)

    Zimmerman, R.M.

    1983-01-01

    As part of the Nevada Nuclear Waste Storage Investigations (NNWSI) project, we have undertaken small diameter heater experiments in the G-Tunnel Underground Facility on the Nevada Test Site (NTS). These experiments are to evaluate the thermal and hydrothermal behavior which might be encountered if heat producing nuclear waste were disposed of in welded and nonwelded tuffs. The two Phase I experiments discussed have focused on vertical borehole emplacements. In each experiment, temperatures were measured along the surface of the 10.2-cm-dia heater and the 12.7-cm-dia boreholes. For each experiment, measurements were compared with computer model representations. Maximum temperatures reached were: 196 0 C for the welded tuff after 21 days of operations at 800W and 173 0 C for the nonwelded tuff after 35 days of operations at 500W. Computed results indicate that the same heat transfer model (includes conduction and radiation only) can describe the behavior of both tuffs using empirical techniques to describe pore water vaporization. Hydrothermal measurements revealed heat-indiced water migration. Results indicated that small amounts of liquid water migrated into the welded tuff borehole early in the heating period. Once the rock-wall temperatures exceeded 94 0 C, in both tuffs, there was mass transport of water vapor as evidence indicated condensation cooler regions. Borehole pressures remained essentially ambient during the thermal periods

  10. Puerto Rico Seismic Network Operations During and After the Hurricane Maria: Response, Continuity of Operations, and Experiences

    Science.gov (United States)

    Vanacore, E. A.; Baez-Sanchez, G.; Huerfano, V.; Lopez, A. M.; Lugo, J.

    2017-12-01

    The Puerto Rico Seismic Network (PRSN) is an integral part of earthquake and tsunami monitoring in Puerto Rico and the Virgin Islands. The PRSN conducts scientific research as part of the University of Puerto Rico Mayaguez, conducts the earthquake monitoring for the region, runs extensive earthquake and tsunami education and outreach programs, and acts as a Tsunami Warning Focal Point Alternate for Puerto Rico. During and in the immediate aftermath of Hurricane Maria, the PRSN duties and responsibilities evolved from a seismic network to a major information and communications center for the western side of Puerto Rico. Hurricane Maria effectively destroyed most communications on island, critically between the eastern side of the island where Puerto Rico's Emergency Management's (PREMA) main office and the National Weather Service (NWS) is based and the western side of the island. Additionally, many local emergency management agencies on the western side of the island lost a satellite based emergency management information system called EMWIN which provides critical tsunami and weather information. PRSN's EMWIN system remained functional and consequently via this system and radio communications PRSN became the only information source for NWS warnings and bulletins, tsunami alerts, and earthquake information for western Puerto Rico. Additionally, given the functional radio and geographic location of the PRSN, the network became a critical communications relay for local emergency management. Here we will present the PRSN response in relation to Hurricane Maria including the activation of the PRSN devolution plan, adoption of duties, experiences and lessons learned for continuity of operations and adoption of responsibilities during future catastrophic events.

  11. Discrimination between NTS explosions, earthquakes and the non-proliferation experiment at the Pinedale Seismic Research Facility

    International Nuclear Information System (INIS)

    Carr, D.

    1994-09-01

    As the United States moves into an atmosphere of concern about the spread of nuclear weapons to non-nuclear countries, the focus on monitoring nuclear explosions is changing from looking at specific test sites and yields to looking for tests of large and small yields from anywhere in the world. Discrimination of small events then becomes important and regional seismic monitoring the best method to detect and identify suspicious events. At the Pinedale Seismic Research Facility (PSRF) in Wyoming we have the opportunity to try different regional discriminants with nuclear tests from NTS, western US (W-US) earthquakes and the Non-Proliferation Experiment (NPE). Four discriminants that gave the best results in a study by Taylor et al. were tried: m b :M s , M b :M s h , log(L g /P g ) and spectral ratios. The different discriminants were applied to the data (14 NTS explosions, the NPE, one Department of Defense (DOB) explosion and 34 NWS earthquakes) regardless of signal-to-noise. When the NTS explosions and NPE were only compared to four earthquakes located on or near the Test Site, all the discriminants except log(L g /P g ) worked fairly well at PSRF. When the other WUS earthquakes and DOD explosion are included, only m b :M s shows any promise. Because of frequent physical variations in the earth's crust, regional signals are complex and easily influenced by site and path characteristics. Looking at events from one specific area reduces the effects of the path, which is why three discriminants work well when the data set is restricted to events on or near NTS. The only discriminant not adversely affected from variations in path is m b :M s . This is probably because it is believed that source dimension, source time function and/or source mechanism is the cause for the differences between earthquakes and explosions with this discriminant, rather than any path effects

  12. Gouy Phase Radial Mode Sorter for Light: Concepts and Experiments

    Science.gov (United States)

    Gu, Xuemei; Krenn, Mario; Erhard, Manuel; Zeilinger, Anton

    2018-03-01

    We present an in principle lossless sorter for radial modes of light, using accumulated Gouy phases. The experimental setups have been found by a computer algorithm, and can be intuitively understood in a geometric way. Together with the ability to sort angular-momentum modes, we now have access to the complete two-dimensional transverse plane of light. The device can readily be used in multiplexing classical information. On a quantum level, it is an analog of the Stern-Gerlach experiment—significant for the discussion of fundamental concepts in quantum physics. As such, it can be applied in high-dimensional and multiphotonic quantum experiments.

  13. Monitoring gas reservoirs by seismic interferometry

    Science.gov (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico

    2014-05-01

    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  14. Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Oski Energy, LLC,

    2013-03-28

    A five-line (23 mile) reflection- seismic survey was conducted at the Hot Pot geothermal prospect area in north-central Nevada under the USDOE (United States Department of Energy) Geothermal Technologies Program. The project objective was to utilize innovative seismic data processing, integrated with existing geological, geophysical and geochemical information, to identify high-potential drilling targets and to reduce drilling risk. Data acquisition and interpretation took place between October 2010 and April 2011. The first round of data processing resulted in large areas of relatively poor data, and obvious reflectors known from existing subsurface information either did not appear on the seismic profiles or appeared at the wrong depth. To resolve these issues, the velocity model was adjusted to include geologic input, and the lines were reprocessed. The resulting products were significantly improved, and additional detail was recovered within the high-velocity and in part acoustically isotropic basement. Features visible on the improved seismic images include interpreted low angle thrust faults within the Paleozoic Valmy Formation, which potentially are reactivated in the current stress field. Intermediate-depth wells are currently targeted to test these features. The seismic images also suggest the existence of Paleogene sedimentary and volcanic rocks which potentially may function as a near- surface reservoir, charged by deeper structures in Paleozoic rocks.

  15. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  16. Good practices for the operational safety management in the early recovery phase of a seismic event using GPR

    Science.gov (United States)

    Bianchini Ciampoli, Luca; Giulia Brancadoro, Maria; Benedetto, Andrea; D'Amico, Fabrizio; Calvi, Alessandro; Alani, Amir M.; Tosti, Fabio

    2017-04-01

    This study deals with a case report about the planning and the performance of GPR surveys carried out in the town of Amatrice, in the district of Rieti, Italy. As sadly known, the town has been hit by a 6.9 magnitude earthquake in the nighttime of August 24th 2016. The strength of the seism, along with the age and the deterioration rate of the structural asset, have caused the razing to the ground and the critical damaging of the majority of the buildings within the "red zone area", corresponding to the historical town center. In the early recovery phase taking place afterwards, the strong seismic swarm subsequent the main shake has sensitively slowed down the rescue and rehabilitation operations. Moreover, the main issue was related to the unsafety operational conditions of volunteers and firemen. To this effect, the geotechnical stability of the roads and the large operational areas represented critical issues, as up to 40 tons crane trucks were needed to put in safety the highest buildings, such as three-floor buildings and historical towers. In this framework, ground-penetrating radar (GPR) provided a valuable help in preliminary assessing the stability of the areas where the crane trucks were planned to operate as well as to be parked over. The main objective of the GPR tests was to verify the absence of possible cavities beneath the ground surface that could undermine the strength of the surface under heavy loadings. To that effect, a multi-frequency ground-coupled GPR system was used. This radar system can simultaneously collect data at both the frequencies of 600 MHz and 1600 MHz. Four different sites were surveyed, namely, two sections of the main road passed on by the cranes, and two machinery depot areas down by the towers. In the former case, the surveys were performed by parallel longitudinal scans, due to the significant longitudinal length of the sections, whereas in the latter, two grids with differing sizes were realized and scanned for producing

  17. Multifractal investigation of continuous seismic signal recorded at El Hierro volcano (Canary Islands) during the 2011-2012 pre- and eruptive phases

    Science.gov (United States)

    Telesca, Luciano; Lovallo, Michele; Martì Molist, Joan; López Moreno, Carmen; Abella Meléndez, Rafael

    2015-02-01

    The Multifractal Detrended Fluctuation Analysis (MF-DFA) is an effective method that allows detecting multifractality in non-stationary signals. We applied the MF-DFA to the continuous seismic signal recorded at El Hierro volcano (Canary Islands), which was affected by a submarine monogenetic eruption in October 2011. We investigated the multifractal properties of the continuous seismic signal before the onset of the eruption and after. We analysed three frames of the signal, one measured before the onset of eruption that occurred on October 10, 2011; and two after, but corresponding to two distinct eruptive episodes, the second one started on November 22, 2011 and lasting until late February 2012. The results obtained show a striking difference in the width of the multifractal spectrum, which is generally used to quantify the multifractal degree of a signal: the multifractal spectra of the signal frames recorded during the eruptive episodes are almost identical and much narrower than that of the signal frame measured before the onset of the eruption. Such difference indicates that the seismic signal recorded during the unrest reflects mostly the fracturing of the host rock under the overpressure exerted by the intruding magma, while that corresponding to the eruptive phases was mostly influenced by the flow of magma through the plumbing system, even some fracturing remains, not being possible to distinguish among the two eruptive episodes in terms of rock fracture mechanics.

  18. How astronauts would conduct a seismic experiment on the planet Mars

    Science.gov (United States)

    Pletser, V.; Lognonne, P.; Dehant, V.

    During the Summer 2001 Flashline Mars Arctic Research Station (M.A.R.S.) campaign in Devon Island, Nunavut, Canada, the crew of the second rotation conducted a geophysics experiment aiming at assessing the feasibility of an active seismology method to detect subsurface water on Mars. A crew of three deployed a line of 24 sensors. Reflected and refracted signals produced by mini-quakes generated by a sledge hammer were recorded by a seismograph. The experiment was conducted three times, once in a dry run and twice during simulated Extra-Vehicular Activities (EVA) on the edge of the Haughton crater, allowing a three dimensional characterization of the subsurface ground to a depth of several hundred meters. Data were recorded for later detailed processing. A third EVA attempt inside the crater had to be aborted because of the poor weather and terrain conditions. Despite this failed attempt, a large amount of results were collected. Several operational lessons were learned from conducting this experiment under simulated EVA conditions. This paper presents the experiment and the methodology used, reviews the experiment performance and summarizes the results obtained and the operational lessons learned.

  19. Offshore double-planed shallow seismic zone in the NE Japan forearc region revealed by sP depth phases recorded by regional networks

    Science.gov (United States)

    Gamage, S.S.N.; Umino, N.; Hasegawa, A.; Kirby, S.H.

    2009-01-01

    We detected the sP depth phase at small epicentral distances of about 150 km or more in the seismograms of shallow earthquakes in the NE Japan forearc region. The focal depths of 1078 M > 3 earthquakes that occurred from 2000 to 2006 were precisely determined using the time delay of the sP phase from the initial P-wave arrival. The distribution of relocated hypocentres clearly shows the configuration of a double-planed shallow seismic zone beneath the Pacific Ocean. The upper plane has a low dip angle near the Japan Trench, increasing gradually to ???30?? at approximately 100 km landward of the Japan Trench. The lower plane is approximately parallel to the upper plane, and appears to be the near-trench counterpart of the lower plane of the double-planed deep seismic zone beneath the land area. The distance between the upper and lower planes is 28-32 km, which is approximately the same as or slightly smaller than that of the double-planed deep seismic zone beneath the land area. Focal mechanism solutions of the relocated earthquakes are determined from P-wave initial motion data. Although P-wave initial motion data for these offshore events are not ideally distributed on the focal sphere, we found that the upper-plane events that occur near the Japan Trench are characterized by normal faulting, whereas lower-plane events are characterized by thrust faulting. This focal mechanism distribution is the opposite to that of the double-planed deep seismic zone beneath the land area. The characteristics of these focal mechanisms for the shallow and deep doubled-planed seismic zones can be explained by a bending-unbending model of the subducting Pacific plate. Some of relocated earthquakes took place in the source area of the 1933 Mw8.4 Sanriku earthquake at depths of 10-23 km. The available focal mechanisms for these events are characterized by normal faulting. Given that the 1933 event was a large normal-fault event that occurred along a fault plane dipping landward, the

  20. Seismic-source corner frequencies from the depth of burial experiment

    International Nuclear Information System (INIS)

    Denny, M.D.

    1998-01-01

    The results from the depth of burial experiment (DOB) are consistent with cube-root scaling and with previous observations that the source corner frequency for underground explosions increases with depth. The corner frequencies, however, were overpredicted by Mueller and Murphy (1971) and underpredicted by Denny and Johnson (1991). (author)

  1. Dynamical phase separation using a microfluidic device: experiments and modeling

    Science.gov (United States)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  2. Seismic Methods

    Science.gov (United States)

    Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.

  3. Data quality control and tools in passive seismic experiments exemplified on Czech broad-band seismic pool MOBNET in the AlpArray collaborative project

    Czech Academy of Sciences Publication Activity Database

    Vecsey, Luděk; Plomerová, Jaroslava; Jedlička, Petr; Munzarová, Helena; Babuška, Vladislav

    2017-01-01

    Roč. 6, č. 2 (2017), s. 505-521 ISSN 2193-0856 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079; GA MŠk(CZ) LD15029; GA MŠk(CZ) EF16_013/0001800 Grant - others:AV ČR(CZ) M100121201 Program:Program interní podpory projektů mezinárodní spolupráce AV ČR Institutional support: RVO:67985530 Keywords : Rayleigh-wave polarization * seismometer orientation * data quality * AlpArray * seismic noise Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 1.023, year: 2016

  4. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  5. Automatic Event Detection and Picking of P, S Seismic Phases for Earthquake Early Warning: A Case Study of the 2008 Wenchuan Earthquake

    Science.gov (United States)

    WANG, Z.; Zhao, B.

    2015-12-01

    We develop an automatic seismic phase arrival detection and picking algorithm for the impending earthquakes occurred with diverse focal mechanisms and depths. The polarization analysis of the three-component seismograms is utilized to distinguish between P and S waves through a sliding time window. When applying the short term average/long term average (STA/LTA) method to the polarized data, we also construct a new characteristics function that can sensitively reflect the changes of signals' amplitude and frequency, providing a better detection for the phase arrival. Then an improved combination method of the higher order statistics and the Akaike information criteria (AIC) picker is applied to the refined signal to lock on the arrival time with a higher degree of accuracy. We test our techniques to the aftershocks of the Ms8.0 Wenchuan earthquake, where hundreds of three-component acceleration records with magnitudes of 4.0 to 6.4 are treated. In comparison to the analyst picks, the results of the proposed detection algorithms are shown to perform well and can be applied from a single instrument within a network of stations for the large seismic events in the Earthquake Early Warning System (EEWS).

  6. Detection of seismic phases by wavelet transform. Dependence of its performance on wavelet functions; Wavelet henkan ni yoru jishinha no iso kenshutsu. Wavelet ni yoru sai

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, X.; Yamazaki, K. [Tokyo Gakugei University, Tokyo (Japan); Oguchi, Y. [Hosei University, Tokyo (Japan)

    1997-10-22

    A study has been performed on wavelet analysis of seismic waves. In the wavelet analysis of seismic waves, there is a possibility that the results according to different wavelet functions may come out with great difference. The study has carried out the following analyses: an analysis of amplitude and phase using wavelet transform which uses wavelet function of Morlet on P- and S-waves generated by natural earthquakes and P-wave generated by an artificial earthquake, and an analysis using continuous wavelet transform, which uses a constitution of complex wavelet function constructed by a completely diagonal scaling function of Daubechies and the wavelet function. As a result, the following matters were made clear: the result of detection of abnormal components or discontinuity depends on the wavelet function; if the Morlet wavelet function is used to properly select angular frequency and scale, equiphase lines in a phase scalogram concentrate on the discontinuity; and the result of applying the complex wavelet function is superior to that of applying the wavelet function of Morlet. 2 refs., 5 figs.

  7. Two-phase simulation of a variable rate infiltration experiment

    Science.gov (United States)

    Luvisotto, V.; Manoli, G.; Cainelli, O.; Bellin, A.; Marani, M.; Putti, M.

    2012-04-01

    Flow and transport processes in unsaturated soils are typically modeled through Richards' equation with retention and hydraulic conductivity curves obtained under static and stationary conditions, respectively. This model is commonly applied to quantify infiltration at the hillslope scale under strongly varying rainfall intensity, which leads to varying infiltration rates. To our knowledge detailed laboratory experiments reproducing this situation in large columns of length comparable with the soil thickness in Alpine hillslopes are lacking. In the present work we analyze and model variable rate infiltration experiments performed in a sand column accurately instrumented with tensiometers and TDR probes. Previous analyses revealed that data collected during transient experiments are not falling within the main wetting and drying curves obtained with careful analysis under static conditions. On the other hand, as expected, the same retention curves were able to reproduce with high accuracy experiments conducted under quasi-static conditions. As a consequence, the Richards' model was unable to reproduce the pressure distribution along the column during transient experiments conducted with variable rainfall rates. These findings have important consequences, e.g. for the prediction of runoff production and hill-slope stability. We propose that this discrepancy may be due to the influence of air flow on water pressure which is expected to be much higher under variable rainfall conditions when rapid saturation of the top soil may limit air to escape from above. In the present work, we numerically investigated this hypothesis using a two-phase air-water flow model. The numerical solver is based on a linear FEM-based pressure-pressure formulation where accurate mass balance is preserved by careful choice of spatial and temporal discretization of the nonlinear terms. The pressure-pressure formulation is chosen to ensure proper implementation of the pressure-based boundary

  8. Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy

    Czech Academy of Sciences Publication Activity Database

    Stierle, E.; Vavryčuk, Václav; Kwiatek, G.; Charalampidou, E.-M.; Bohnhoff, M.

    2016-01-01

    Roč. 205, č. 1 (2016), s. 38-50 ISSN 0956-540X R&D Projects: GA ČR(CZ) GAP210/12/1491; GA ČR(CZ) GC16-19751J Institutional support: RVO:67985530 Keywords : earthquake source observations * seismic anisotropy * seismic attenuation * wave propagation * acoustic properties Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.414, year: 2016

  9. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume

  10. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site

  11. Seafloor surface processes and subsurface paleo-channel unconformities mapped using multi-channel seismic and multi-beam sonar data from the Galicia 3D seismic experiment.

    Science.gov (United States)

    Gibson, J. C.; Shillington, D. J.; Sawyer, D. S.; Jordan, B.; Morgan, J. K.; Ranero, C.; Reston, T. J.

    2015-12-01

    In this study we use geophysical methods, stratigraphic relationships, and coring/drilling leg results to assess possible controls on deep-sea channel formation in order to further constrain paleo-channel (PC) and associated unconformity timing/source processes. A series of cut and fill PC are mapped in 3D multi-channel seismic (MCS) data and compared with multi-beam (MB) sonar bathymetry/backscatter data collected during the Galicia 3D survey with the R/V Marcus G. Langseth (2013). The MCS data were collected using four 6 km streamers spaced at 200 m resulting in 25 m x 25 m common mid-point bins within the ~67 km x 20 km 3D volume. The MB data were collected at an average depth of ~4900 m with a constrained swath width of 4.5 km resulting in 11.25x overlap while enabling 25-m bathymetry and 10-m backscatter grids. The PC lie below the mouth of a submarine canyon at the edge of the Galicia abyssal plain and cut pre/syn-rift sediments; they are bound by a rift block to the north and paleo-levees to the south (maximum height of ~180m). From drilling results, the most recent PC is late Miocene in age. In this study, four PC are traced into the basin as unconformities. Several of the PC/unconformities are tentatively correlated with previously interpreted Pyrenean orogeny/compressional Miocene/Oligocene tectonic events. However, one PC/unconformity within this interval has not been previously interpreted. In order test the hypothesis that the unconformities are the result of a significant change in base level indicated by a low shale/sand (SS) ratio, we use seismic surface attributes to calculate the SS ratio and trace the horizontal extent of the unconformities. Additionally, the MB/MCS seafloor morphology reveals sedimentary waves outboard of the canyon mouth. We use backscatter data to compare the extent of recent processes (e.g., Pleistocene glaciation/de-glaciation) with the unconformities by mapping the surface/shallow subsurface SS ratio (volume scattering).

  12. Acquisition and preliminary analysis of multi-channel seismic reflection data, acquired during the oceanographic cruises of the TOMO-ETNA experiment

    Directory of Open Access Journals (Sweden)

    Marco Firetto Carlino

    2016-09-01

    Full Text Available The TOMO-ETNA experiment was performed in the framework of the FP7 “MED-SUV” (MEDiterranean SUpersite Volcanoes in order to gain a detailed geological and structural model of the continental and oceanic crust concerning Etna and Aeolian Islands volcanoes (Sicily, Italy, by means of active and passive seismic exploration methodologies. Among all data collected, some 1410 km of marine multi-channel seismic (MCS reflection profiles were acquired in the Ionian and Tyrrhenian Seas during two of the three oceanographic cruises of the TOMO-ETNA experiment, in July and November 2014, with the aim of shading light to deep, intermediate and shallow stratigraphy and crustal structure of the two above mentioned areas. The MCS sections, targeted to deep exploration, were acquired during the oceanographic cruise on board the R/V “Sarmiento de Gamboa”, using an active seismic source of 16 air-guns, for a total volume of 4340 cu. in., and a 3000 m long, 240-channels digital streamer as receiving system. High-resolution seismic profiles were instead collected through the R/V “Aegaeo”, using two smaller air-guns (overall 270 cu. in. volume and a 96 channels, 300 m long digital streamer. This paper provides a detailed description of the acquisition parameters and main processing steps adopted for the MCS data. Some processed lines are shown and preliminarily interpreted, to highlight the overall good quality and the high potential of the MCS sections collected during the TOMO-ETNA experiment.

  13. Kick & cook experiments on natural dunite: simulating episodic creep below the seismogenic zone during the seismic cycle

    Science.gov (United States)

    Druiventak, A.; Trepmann, C.; Matysiak, A. K.; Renner, J.

    2010-12-01

    The microfabric development in dunite is analyzed in deformation and annealing experiments, which are designed to simulate the natural stress history in the upper mantle of the oceanic lithosphere just below the seismogenic zone during the seismic cycle. The samples are deformed in a servohydraulically-controlled solid medium deformation apparatus at 600°C, a constant strain rate of 10-4s-1 and confining pressure of 1.0 GPa and 2.0 GPa (“kick” experiment). In some experiments deformation is followed by annealing for 15 h to 70 h at zero nominal differential stress, temperatures of 700°C to 1000°C and 2.0 GPa confining pressure (“kick & cook” experiment). We use coarse-grained dunite from the Almklovdalen peridotite complex (Western Norway) as starting material. The dunite comprises ca. 90% olivine, kick” experiments yield maximum differential stresses of ca. 1.2 GPa to 1.6 GPa. The resulting microfabrics are analyzed by optical and electron microscopic techniques. Shear zones and microcracks developed in the dunites during deformation. The microfabric indicates brittle and crystal-plastic deformation of olivine. Intragranular microfaults, which can be crystallographically controlled, and deformation lamellae parallel to (100) occur in deformed olivine crystals. In TEM, the optical visible deformation lamellae are represented by a high density of straight dislocations aligned parallel to [001], indicating that they are [001] screw dislocations. Thus, the deformation lamellae in (100) imply an operating glide system of (100)[001]. Cataclastically deformed olivine is characterized in TEM by domains with a high dislocation density, which are bound by poorly-ordered dislocation walls. After annealing at 1000°C, the microfabric is characterized by very fine-grained (a few µm in diameter) recrystallized olivine grains arranged along microfaults and surrounding olivine porphyroclasts. The area fraction of recrystallized grains is varying but generally

  14. Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)

    2016-10-19

    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  15. Co-ordinated research programme on benchmark study for the seismic analysis and testing of WWER-type nuclear power plants. V. 5C. Experience data. Working material

    International Nuclear Information System (INIS)

    1999-01-01

    In August 1991, following the SMiRT-11 Conference in Tokyo, a Technical Committee Meeting was held on the 'Seismic safety issues relating to existing NPPs'. The Proceedings of this TCM was subsequently compiled in an IAEA Working Material. One of the main recommendations of this TCM, called for the harmonization of criteria and methods used in Member States in seismic reassessment and upgrading of existing NPPs. Twenty four institutions from thirteen countries participated in the CRP named 'Benchmark study for the seismic analysis and testing of WWER type NPPs'. Two types of WWER reactors (WWER-1000 and WWER-440/213) selected for benchmarking. Kozloduy NPP Units 5/6 and Paks NPP represented these respectively as prototypes. Consistent with the recommendations of the TCM and the working paper prepared by the subsequent Consultants' Meeting, the focal activity of the CRP was the benchmarking exercises. A similar methodology was followed both for Paks NPP and Kozloduy NPP Unit 5. Firstly, the NPP (mainly the reactor building) was tested using a blast loading generated by a series of explosions from buried TNT charges. Records from this test were obtained at several free field locations (both downhole and surface), foundation mat, various elevations of structures as well as some tanks and the stack. Then the benchmark participants were provided with structural drawings, soil data and the free field record of the blast experiment. Their task was to make a blind prediction of the response at preselected locations. The analytical results from these participants were then compared with the results from the test. Although the benchmarking exercises constituted the focus of the CRP, there were many other interesting problems related to the seismic safety of WWER type NPPs which were addressed by the participants. These involved generic studies, i.e. codes and standards used in original WWER designs and their comparison with current international practice; seismic analysis

  16. Using Safety Margins for a German Seismic PRA

    Directory of Open Access Journals (Sweden)

    Ralf Obenland

    2008-07-01

    Full Text Available The German regulatory guide demands the performance of a probabilistic risk assessment (PRA including external events. In 2005, a new methodology guideline (Methodenband based on the current state of science and technology was released to provide the analyst with a set of suitable tools and methodologies for the analysis of all PRA events. In the case of earthquake, a multilevel verification procedure is suggested. The verification procedure which has to be used depends on the seismic risk at the site of the plant. For sites in areas with low seismic activity no analysis or only a reduced analysis is proposed. This paper describes the evaluation of safety margins of buildings, structures, components and systems for plants at sites with high seismic risk, corresponding to the German methodology guideline. The seismic PRA results in an estimation of core damage frequencies caused by earthquakes. Additionally, the described approach can also be adapted for the usage in a reduced analysis for sites with lower earthquake risks. Westinghouse has wide experience in performing seismic PRA for both BWR as well as PWR plants. Westinghouse uses the documented set of seismic design analyses dating from construction phase and from later updates, if done, as a basis for a seismic PRA, which means that usually no costly new structural mechanics calculations have to be performed.

  17. Using safety margins for a German seismic PRA

    International Nuclear Information System (INIS)

    Obenland, R.; Bloem, T.; Tietsch, W.; Singh, J.-B.

    2007-01-01

    The German regulatory guide demands the performance of a Probabilistic Risk Assessment (PRA) including External Events. In 2005, a new Methodology Guideline (Methodenband) [1] based on the current state of science and technology was released to provide the analyst with a set of suitable tools and methodologies for the analysis of all PRA events. In the case of earthquake, a multilevel verification procedure is suggested. The verification procedure which has to be used depends on the seismic risk at the site of the plant. For sites in areas with low seismic activity no analysis or only a reduced analysis is proposed. This paper describes the evaluation of safety margins of buildings, structures, components and systems for plants at sites with high seismic risk, corresponding to the German Methodology Guideline. The seismic PRA results in an estimation of core damage frequencies caused by earthquakes. Additionally, the described approach can also be adapted for the usage in a reduced analysis for sites with lower earthquake risks. Westinghouse has wide experience in performing seismic PRA for both, BWR as well as PWR plants. Westinghouse uses the documented set of seismic design analyses dating from construction phase and from later updates, if done, as a basis for a seismic PRA, which means that usually no costly new structural mechanics calculations have to be performed. (author)

  18. Experiences in seismic upgrading of equipment and structures in Kozloduy nuclear power plant (440 WWER-PWR)

    International Nuclear Information System (INIS)

    Ordonez Villalobos, A.

    1993-01-01

    Within the framework of the 'Emergency programme for Nuclear Safety of Kozloduy NPP' it has been concluded that the increase in seismic safety of a NPP can be achieved by upgrading the key equipment in a cost effective way. Essential and vulnerable equipment has to be identified. Seismic capacity should be evaluated base don realistic state of the art criteria. Seismic review teams ef experienced engineers should conduct planned walk-downs in order to propose effective upgrading solutions. Team work of plan engineers and construction engineers would enhance the effectiveness of the solutions. It is recommended that all the participants be motivated and have a clear understanding of the objectives of the upgrading

  19. Recognition and detection of seismic phases by artificial neural network detector; Jinko neural network ni yoru jishinha no ninshiki to kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Wang, W. [Tokyo Gakugei University, Tokyo (Japan)

    1997-05-27

    Initial parts of P-waves, medium or high in intensity, are detected using an artificial neural network (ANN). The ANN is the generic name given to information processing systems of the non-Neumann type configured to human brain in point of information processing function, and is packaged into computers in the form of software capable of parallel processing, self-organizing, learning, etc. In this paper, a hierarchical ANN-assisted seismic motion recognition system is constructed on the basis of an error reverse propagation algorithm. It is reported here, with a remark that this study wants much more data from tests for the evaluation of the quality of the recognition, that P-wave recognition has been achieved. When this technique is applied to the S-wave, much more real-time information will become available. For the improvement of the system, a number of problems have to be solved, including the establishment of automatic refurbishment through adaptation-and-learning and configuration that incorporates frequency-related matters. It is found that this system is effective in seismic wave phase recognition but that it is not suitable for precision measurement. 7 refs., 4 figs.

  20. SEG Advances in Rotational Seismic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Robert; Laughlin, Darren; Brune, Bob

    2016-10-17

    Significant advancements in the development of sensors to enable rotational seismic measurements have been achieved. Prototypes are available now to support experiments that help validate the utility of rotational seismic measurements.

  1. Machine-Learning Inspired Seismic Phase Detection for Aftershocks of the 2008 MW7.9 Wenchuan Earthquake

    Science.gov (United States)

    Zhu, L.; Li, Z.; Li, C.; Wang, B.; Chen, Z.; McClellan, J. H.; Peng, Z.

    2017-12-01

    Spatial-temporal evolution of aftershocks is important for illumination of earthquake physics and for rapid response of devastative earthquakes. To improve aftershock catalogs of the 2008 MW7.9 Wenchuan earthquake in Sichuan, China, Alibaba cloud and China Earthquake Administration jointly launched a seismological contest in May 2017 [Fang et al., 2017]. This abstract describes how we handle this problem in this competition. We first used Short-Term Average/Long-Term Average (STA/LTA) and Kurtosis function to obtain over 55000 candidate phase picks (P or S). Based on Signal to Noise Ratio (SNR), about 40000 phases (P or S) are selected. So far, these 40000 phases have a hit rate of 40% among the manually picks. The causes include that 1) there exist false picks (neither P nor S); 2) some P and S arrivals are mis-labeled. To improve our results, we correlate the 40000 phases over continuous waveforms to obtain the phases missed by during the first pass. This results in 120,000 events. After constructing an affinity matrix based on the cross-correlation for newly detected phases, subspace clustering methods [Vidal 2011] are applied to group those phases into separated subspaces. Initial results show good agreement between empirical and clustered labels of P phases. Half of the empirical S phases are clustered into the P phase cluster. This may be a combined effect of 1) mislabeling isolated P phases to S phases and 2) clustering errors due to a small incomplete sample pool. Phases that were falsely detected in the initial results can be also teased out. To better characterize P and S phases, our next step is to apply subspace clustering methods directly to the waveforms, instead of using the cross-correlation coefficients of detected phases. After that, supervised learning, e.g., a convolutional neural network, can be employed to improve the pick accuracy. Updated results will be presented at the meeting.

  2. Reproducibility in Seismic Imaging

    Directory of Open Access Journals (Sweden)

    González-Verdejo O.

    2012-04-01

    Full Text Available Within the field of exploration seismology, there is interest at national level of integrating reproducibility in applied, educational and research activities related to seismic processing and imaging. This reproducibility implies the description and organization of the elements involved in numerical experiments. Thus, a researcher, teacher or student can study, verify, repeat, and modify them independently. In this work, we document and adapt reproducibility in seismic processing and imaging to spread this concept and its benefits, and to encourage the use of open source software in this area within our academic and professional environment. We present an enhanced seismic imaging example, of interest in both academic and professional environments, using Mexican seismic data. As a result of this research, we prove that it is possible to assimilate, adapt and transfer technology at low cost, using open source software and following a reproducible research scheme.

  3. Seismic verification of mechanical and electrical components installed on WWER-type nuclear power plants using earthquake experience data

    International Nuclear Information System (INIS)

    Masopust, R.; Zeman, P.; Cerny, J.; Monette, P.; Dellopoulos, G.; Milanov, E.

    2001-01-01

    The purpose of this presentation is to describe the modified GIP titled as GIP-WWER which can be used to verify seismic adequacy of the safe shutdown mechanical and electrical equipment and also distribution systems of operating or constructed WWER-type NPPs, namely WWER-440/213 type NPPs. (author)

  4. 3D seismic experiment in the Minaminoshiro area, Akita. Data processing; Akitaken Minaminoshiro chiiki ni okeru sanjigen jishin tansa jikken. Data shori

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Minegishi, M. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Nakagami, K. [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)

    1997-10-22

    A 3D seismic experiment was carried out in the Minaminoshiro area in Akita Prefecture, an area difficult of performing seismic exploration. This paper reports progresses during data processing and future problems. The data processing has executed static correction of 3D refraction, 3D DMO correction, and an F-X prediction filter processing on the data in time domain in the 3D seismic exploration as acquired in a spread of 4 km times 5 km in the subject area. The result of the data processing verified existence of a folding structure and the Noshiro thrust fault groups in the east to west direction, and locations of the Sakagawa fault associated therewith. Seen particularly noticeably was a structure having a slope falling north-ward at 15 to 35 degrees in shallow and deep portions on the east side of the Sakagawa fault in the south to north direction. In addition, the Dogiri fault was identified, which has been though to exist in a direction crossing perpendicularly the Noshiro thrust fault groups. It is scheduled that spatial velocity will be analyzed, and data processing will be conducted for deep regions. 7 figs.

  5. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for part of Task 4 (site evaluation), on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The Second deployment site is the Department of Defense (DOD) Charleston Navy Weapons Station, Solid Waste Management Unit 12 (SWMU-12) Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Base upon the review of existing data and due to the shallow target depth the project team has collected three Vertical Seismic Profiles (VSP) and experimental reflection line. At the time of preparing this report VSP data and experimental reflection line data has been collected and has have preliminary processing on the data sets.

  6. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  7. Constraints on crustal structure in the Southeastern United States from the SUGAR 2 refraction seismic refraction experiment

    Science.gov (United States)

    Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.

    2016-12-01

    The Southeastern United States is an ideal location to study the interactions between continental collision, extensive but short-lived magmatism, and continental rifting. Continental collision during the Alleghenian Orogeny ( 290 Ma) formed the supercontinent Pangea. Extension leading to the breakup of Pangea began 230 Ma, forming the South Georgia Basin and other rift basins. The extensive Central Atlantic Magmatic Province (CAMP) magmatism was emplaced at 200 Ma, and continental separation occurred afterwards. During these processes, part of the African continent was added to North America. Prior work has raised questions including (1) the location and geometry of the suture zone and implications for the style of collision (thin-skinned versus thick-skinned), (2) the role of pre-existing structures on later rifting, and (3) the distribution of magmatism, and possible relationships between magmatism and rifting. To address these questions, we present preliminary velocity models for the 400-km-long refraction seismic line from the SUwanee Suture and GA Rift basin experiment (SUGAR) Line 2. This line is central to CAMP magmatism, and crosses the South Georgia rift basin and two hypothesized locations for the ancient suture zone. The data were collected in August 2015 by a team of over 40 students and scientists. Fifteen shots spaced at 20-40 km were recorded by 1981 Texans spaced at 250 m. We observe refractions from the basin, crust, and upper mantle, and wide-angle reflections from the base of the sediments, within the crust, and from the Moho. Prominent mid crustal reflections may arise from the top of elevated lower crustal velocities and possible lower crustal layering. The starting velocity model and constraints on the upper sedimentary basin velocity structure are obtained through forward modeling, which show basin sediment thickness increasing to the South. We then invert for smooth 2D velocity structure using first arrivals (FAST) and a layered velocity

  8. In-step Two-phase Flow (TPF) Thermal Control Experiment

    Science.gov (United States)

    1992-01-01

    The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.

  9. UltraSail Solar Sail Flight Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A team of CU Aerospace, the University of Illinois, and ManTech SRS Technologies proposes Phase II development of a 3 kg CubeSat spacecraft for initial flight test...

  10. Cu–Ni nanoalloy phase diagram – Prediction and experiment

    Czech Academy of Sciences Publication Activity Database

    Sopoušek, J.; Vřešťál, J.; Pinkas, J.; Brož, P.; Buršík, Jiří; Stýskalík, A.; Škoda, D.; Zobač, O.; Lee, J.

    2014-01-01

    Roč. 45, June (2014), s. 33-39 ISSN 0364-5916 Institutional support: RVO:68081723 Keywords : nanoalloy * phase diagram * thermodynamic modeling Subject RIV: BJ - Thermodynamics Impact factor: 1.370, year: 2014

  11. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  12. Inversion of travel times obtained during active seismic refraction experiments CELEBRATION 2000, ALP 2002 and SUDETES 2003

    Czech Academy of Sciences Publication Activity Database

    Růžek, Bohuslav; Hrubcová, Pavla; Novotný, Miroslav; Špičák, Aleš; Karousová, Olga

    2007-01-01

    Roč. 51, č. 1 (2007), s. 141-164 ISSN 0039-3169 R&D Projects: GA MŽP SB/630/3/02; GA ČR GA205/03/0999 Institutional research plan: CEZ:AV0Z30120515 Keywords : seismic tomography * kinematic velocity inversion * Bohemian Massif Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.733, year: 2007

  13. Complex researches on substantiation of construction and seismic stability of large dams in seismic region

    International Nuclear Information System (INIS)

    Negmatullaev, S.Kh.; Yasunov, P.A.

    2001-01-01

    This article is devoted to complex researches on substantiation of construction and seismic stability of large dams (Nurec hydroelectric power station) in seismic region. Geological, seismological, model, and engineering investigations are discussed in this work. At construction of Nurec hydroelectric power station the rich experience is accumulated. This experience can be used in analogous seismically active regions at construction similar hydroelectric power stations.

  14. Large block migration experiments: INTRAVAL phase 1, Test Case 9

    Energy Technology Data Exchange (ETDEWEB)

    Gureghian, A.B.; Noronha, C.J. (Battelle, Willowbrook, IL (USA). Office of Waste Technology Development); Vandergraaf, T.T. (Atomic Energy of Canada Ltd., Ottawa, ON (Canada))

    1990-08-01

    The development of INTRAVAL Test Case 9, as presented in this report, was made possible by a past subsidiary agreement to the bilateral cooperative agreement between the US Department of Energy (DOE) and Atomic Energy of Canada Limited (AECL) encompassing various aspects of nuclear waste disposal research. The experimental aspect of this test case, which included a series of laboratory experiments designed to quantify the migration of tracers in a single, natural fracture, was undertaken by AECL. The numerical simulation of the results of these experiments was performed by the Battelle Office of Waste Technology Development (OWTD) by calibrating an in-house analytical code, FRACFLO, which is capable of predicting radionuclide transport in an idealized fractured rock. Three tracer migration experiments were performed, using nonsorbing uranine dye for two of them and sorbing Cs-137 for the third. In addition, separate batch experiments were performed to determine the fracture surface and rock matrix sorption coefficients for Cs-137. The two uranine tracer migration experiment were used to calculate the average fracture aperture and to calibrate the model for the fracture dispersivity and matrix diffusion coefficient. The predictive capability of the model was then tested by simulating the third, Cs-137, tracer test without changing the parameter values determined from the other experiments. Breakthrough curves of both the experimental and numerical results obtained at the outlet face of the fracture are presented for each experiment. The reported spatial concentration profiles for the rock matrix are based solely on numerical predictions. 22 refs., 12 figs., 8 tabs.

  15. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    Science.gov (United States)

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  16. First results from the LWR-Proteus phase I experiments

    International Nuclear Information System (INIS)

    Jatuff, F.; Murphy, M.; Luethi, A.; Seiler, R.; Grimm, P.; Joneja, O.; Meister, A.; Brogli, R.; Chawla, R.; Jacot-Guillarmod, R.; Williams, T.; Helmersson, S.; Boerresen, S.

    2000-01-01

    Within the framework of a joint research programme, PSI and the Swiss Nuclear Utilities are conducting experimental reactor physics investigations related to modern Light Water Reactor (LWR) fuel assemblies employed in the Swiss nuclear power plants. The current phase of the programme, LWR-PROTEUS Phase I, is focused on the characterisation of highly heterogeneous Boiling Water Reactor (BWR) fuel elements, and the validation of calculational codes used for the evaluation of BWR core management, operational limits and safety assessment. This contribution describes the first set of experimental results generated (fuel pin power distributions and reactivity effects), along with their analysis and interpretation. The reported measurements were made in two of the six test configurations which have been investigated to date, and are representative of full-water-density moderation. (authors)

  17. First results from the LWR-Proteus phase I experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Murphy, M.; Luethi, A.; Seiler, R.; Grimm, P.; Joneja, O.; Meister, A.; Brogli, R.; Chawla, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Jacot-Guillarmod, R.; Williams, T. [Elektrizitaetsgesellschaft Laufenburg (EGL), Laufenburg (Switzerland); Helmersson, S. [ABB Atom AB, Vaesteraas (Sweden); Boerresen, S. [Studsvik Scandpower AB (SSP), SE-611 82 Nykoeping (Sweden)

    2000-07-01

    Within the framework of a joint research programme, PSI and the Swiss Nuclear Utilities are conducting experimental reactor physics investigations related to modern Light Water Reactor (LWR) fuel assemblies employed in the Swiss nuclear power plants. The current phase of the programme, LWR-PROTEUS Phase I, is focused on the characterisation of highly heterogeneous Boiling Water Reactor (BWR) fuel elements, and the validation of calculational codes used for the evaluation of BWR core management, operational limits and safety assessment. This contribution describes the first set of experimental results generated (fuel pin power distributions and reactivity effects), along with their analysis and interpretation. The reported measurements were made in two of the six test configurations which have been investigated to date, and are representative of full-water-density moderation. (authors)

  18. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    Science.gov (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  19. Seismic waves and seismic barriers

    Science.gov (United States)

    Kuznetsov, S. V.

    2011-05-01

    The basic idea of seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers are suggested. For example, vertical barriers resembling a wall in a soil can protect from Rayleigh and bulk waves. The FEM simulation reveals that to be effective, such a barrier should be (i) composed of layers with contrast physical properties allowing "trapping" of the wave energy inside some of the layers, and (ii) depth of the barrier should be comparable or greater than the considered seismic wave length. Another type of seismic barrier represents a relatively thin surface layer that prevents some types of surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning non-propagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of non-existence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  20. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  1. Is the Caribbean plate subducting underneath Hispaniola? Preliminary results from Caribe Norte wide-angle seismic experiment

    Science.gov (United States)

    Llanes Estrada, M.; ten Brink, U. S.; Carbo-Gorosabel, A.; Granja Bruña, J.; Flores, C. H.; Davila, J. M.; Pazos, A.; Quijano, J.

    2010-12-01

    A 200 km long, wide-angle seismic refraction transect was collected in the spring of 2009, across the widest part of the Muertos compressive margin (longitude 69°W). The transect was designed to test the hypothesized subduction of the Caribbean plate’s interior beneath the eastern Greater Antilles island arc. Shots were fired every 90 seconds from the R/V Hesperides’ 3850 cubic inches water-gun array, which, towed at 5 knots, resulted in a shot spacing of ~ 230 m. The seismic signal was recorded by 5 ocean-bottom seismometers deployed at distances varying from 25 to 50 km. Gravity, bathymetry and magnetic data were also acquired along that transect. Published and reprocessed reflection seismic lines nearby provided an initial model of the sediment column and on the pattern of upper crustal reflectors. Preliminary results of a 2-D forward ray-tracing model have enabled us to outline the broad-scale crustal structure across the Muertos margin. The Caribbean oceanic slab shows considerable variations in crustal thickness in the Venezuelan basin area (Caribbean plate’s interior). Farther north, the slab is imaged underneath the Muertos margin to about 60 km north of the deformation front and up to 19 km depth,. A change in crustal p wave velocity at about 60 km from the deformation front (or 70 km from the southern coast of the Dominican Republic) is interpreted to be the boundary between the arc crust and the accretionary prism. Caribbean oceanic crust does not appear to extend farther north. We interpret the results to indicate limited overthrusting of the Caribbean slab in the muertos Trough, rather than subduction.

  2. Tropospheric ozone lidar intercomparison experiment, TROLIX '91, field phase report

    International Nuclear Information System (INIS)

    Boesenberg, J.; Ancellet, G.; Bergwerff, H.; Cossart, G. v.; Fiedler, J.; Jonge, C. de; Mellqvist, J.; Mitev, V.; Sonnemann, G.; Swart, D.; Wallinder, E.

    1993-01-01

    The Tropospheric Ozone Lidar Intercomparison Experiment TROLIX '91 has been initiated as part of the TESLAS subproject of the cooperative programme EUROTRAC. It has been performed in June 1991 at the Rijksinstitut voor Volksgezondheid en Milieuhygiene (RIVM) in Bilthoven, The Netherlands. The experiment was based on the simultaneous operation of different types of differential absorption lidars (DIAL), a special version of a Differential Optical Absorption Spectroscopy Instrument (DOAS), helicopter borne in situ instruments, and many other supporting measurements. After a short introduction to the general methodology the instruments are described, the experimental operations are explained, and a selection of data are presented. Some examples are given for the results of the intercomparison, as far as they have been available at the present stage of evaluation. The main purpose of this report, however, is to provide an overview over the material collected during the experiment, on order to facilitate further detailed studies in cooperation between the different groups which have participated. (orig.)

  3. Evolution of seismic signals and slip patterns along subduction zones: Insights from a friction lab scale experiment

    Science.gov (United States)

    Voisin, Christophe; Grasso, Jean-Robert; Larose, Eric; Renard, François

    2008-04-01

    We investigate the influence of the cumulative slip on the frictional and acoustic patterns of a lab scale subduction zone. Shallow loud earthquakes, medium depth slow, deeper silent quakes and deepest steady-state creep are reproduced by the ageing of contact interface with cumulative displacement. The Acoustic Emission evolves with cumulative displacement and interface ageing, following a trend from strong impulsive events similar to earthquake seismic signals, to a collection of smaller amplitude and longer duration signals similar to NVT. The latter emerge as the local recollection of the unstable behaviour of the contact interface globally evolving towards the stable sliding regime.

  4. Determining material parameters using phase-field simulations and experiments

    DEFF Research Database (Denmark)

    Zhang, Jin; Poulsen, Stefan O.; Gibbs, John W.

    2017-01-01

    A method to determine material parameters by comparing the evolution of experimentally determined 3D microstructures to simulated 3D microstructures is proposed. The temporal evolution of a dendritic solid-liquid mixture is acquired in situ using x-ray tomography. Using a time step from these data...... as an initial condition in a phase-field simulation, the computed structure is compared to that measured experimentally at a later time. An optimization technique is used to find the material parameters that yield the best match of the simulated microstructure to the measured microstructure in a global manner...

  5. Crustal thickness and velocity structure across the Moroccan Atlas from long offset wide-angle reflection seismic data: The SIMA experiment

    Science.gov (United States)

    Ayarza, P.; Carbonell, R.; Teixell, A.; Palomeras, I.; Martí, D.; Kchikach, A.; Harnafi, M.; Levander, A.; Gallart, J.; Arboleya, M. L.; Alcalde, J.; Fernández, M.; Charroud, M.; Amrhar, M.

    2014-05-01

    The crustal structure and topography of the Moho boundary beneath the Atlas Mountains of Morocco has been constrained by a controlled source, wide-angle seismic reflection transect: the SIMA experiment. This paper presents the first results of this project, consisting of an almost 700 km long, high-resolution seismic profile acquired from the Sahara craton across the High and the Middle Atlas and the Rif Mountains. The interpretation of this seismic data set is based on forward modeling by raytracing, and has resulted in a detailed crustal structure and velocity model for the Atlas Mountains. Results indicate that the High Atlas features a moderate crustal thickness, with the Moho located at a minimum depth of 35 km to the S and at around 31 km to the N, in the Middle Atlas. Upper crustal shortening is resolved at depth through a crustal root where the Saharan crust underthrusts the northern Moroccan crust. This feature defines a lower crust imbrication that, locally, places the Moho boundary at ˜40-41 km depth in the northern part of the High Atlas. The P-wave velocity model is characterized by relatively low velocities, mostly in the lower crust and upper mantle, when compared to other active orogens and continental regions. These low deep crustal velocities together with other geophysical observables such as conductivity estimates derived from MT measurements, moderate Bouguer gravity anomaly, high heat flow, and surface exposures of recent alkaline volcanism lead to a model where partial melts are currently emplaced at deep crustal levels and in the upper mantle. The resulting model supports the existence of a mantle upwelling as mechanism that would contribute significantly to sustain the High Atlas topography. However, the detailed Moho geometry deduced in this work should lead to a revision of the exact geometry and position of this mantle feature and will require new modeling efforts.

  6. Plasticity induced by phase transformation in steel: experiment vs modeling

    International Nuclear Information System (INIS)

    Tahimi, Abdeladhim

    2011-01-01

    The objectives of this work are: (i) understand the mechanisms and phenomena involved in the plasticity of steels in the presence of a diffusive or martensitic phase transformation. (ii) develop tools for predicting TRIP, which are able to correctly reproduce the macroscopic deformation for cases of complex loading and could also provide information about local elasto-visco-plastic interactions between product and parent phases. To this purpose, new experimental tests are conducted on 35NCD16 steel for austenite to martensite transformation and on 100C6 steel for austenite to pearlite transformation. The elasto viscoplastic properties of austenite and pearlite of the 100C6 steel are characterized through tension compression and relaxation tests. The parameters of macro-homogeneous and crystal-based constitutive laws could then be identified such as to analyse different models with respect to the experimental TRIP: the analytical models of Leblond (1989) and Taleb and Sidoroff (2003) but also, above all, different numerical models which can be distinguished by the prevailing assumptions concerning the local kinetics and the constitutive laws. An extension of the single-grain model dedicated to martensitic transformations developed during the thesis of S. Meftah (2007) is proposed. It consists in introducing the polycrystalline character of the austenite through a process of homogenization based on a self-consistent scheme by calculating the properties of an Equivalent Homogeneous Medium environment (EHM). (author)

  7. Gas-phase experiments on Au(III) photochemistry.

    Science.gov (United States)

    Marcum, Jesse C; Kaufman, Sydney H; Weber, J Mathias

    2011-04-14

    Irradiation of AuCl(4)(-) and AuCl(2)(OH)(2)(-) in the gas-phase using ultraviolet light (220-415 nm) leads to their dissociation. Observed fragment ions for AuCl(4)(-) are AuCl(3)(-) and AuCl(2)(-) and for AuCl(2)(OH)(2)(-) are AuCl(2)(-) and AuClOH(-). All fragment channels correspond to photoreduction of the gold atom to either Au(II) or Au(I) depending on the number of neutral ligands lost. Fragment branching ratios of AuCl(4)(-) are observed to be highly energy dependent and can be explained by comparison of the experimental data to calculated threshold energies obtained using density functional theory. The main observed spectral features are attributed to ligand-to-metal charge transfer transitions. These results are discussed in the context of the molecular-level mechanisms of Au(III) photochemistry.

  8. Seismic response and resistance capacity of 'as built' WWER 440-230 NPP Kozloduy: Verification of the results by experiments and real earthquake

    International Nuclear Information System (INIS)

    Sachanski, S.

    1993-01-01

    Although Kozloduy NPP units 1 and 2 were not designed for earthquakes they have withstood successfully the Vrancea Earthquake in 1977 with sire peak ground acceleration of 83 sm/s 2 . Both units as well as units 3 and 4 were later recalculated for maximum peak acceleration of 0.1 g. According to values calculated by two-dimensional model, in 1980 reactor buildings had sufficient earthquake resistance capacity for the accepted design seismic excitation. The non symmetric design of WWER-440 structures in plan and elevation, the large eccentricity between the center of rigidities and masses as well as technological connections between the separate substructures and units led to complicated space response and rotational effects which cannot be calculated by two-dimensional models. Three dimensional detailed 'as built' mathematical models were established and verified by series of experiments and real earthquake for: detailed analysis of 'as built' structural response, comparing the results of two and three dimensional models, detailed analyses of seismic safety margins

  9. Investigation of intraplate seismicity near the sites of the 2012 major strike-slip earthquakes in the eastern Indian Ocean through a passive-source OBS experiment

    Science.gov (United States)

    Guo, L.; Lin, J.; Yang, H.

    2017-12-01

    The 11 April 2012 Mw8.6 earthquake off the coast of Sumatra in the eastern Indian Ocean was the largest strike-slip earthquake ever recorded. The 2012 mainshock and its aftershock sequences were associated with complex slip partitioning and earthquake interactions of an oblique convergent system, in a new plate boundary zone between the Indian and Australian plates. The detail processes of the earthquake interactions and correlation with seafloor geological structure, however, are still poorly known. During March-April 2017, an array of broadband OBS (ocean bottom seismometer) were deployed, for the first time, near the epicenter region of the 2012 earthquake sequence. During post-expedition data processing, we identified 70 global earthquakes from the National Earthquake Information Center (NEIC) catalog that occurred during our OBS deployment period. We then picked P and S waves in the seismic records and analyzed their arrival times. We further identified and analyzed multiple local earthquakes and examined their relationship to the observed seafloor structure (fracture zones, seafloor faults, etc.) and the state of stresses in this region of the eastern Indian Ocean. The ongoing analyses of the data obtained from this unique seismic experiment are expected to provide important constraints on the large-scale intraplate deformation in this part of the eastern Indian Ocean.

  10. Earth Analog Seismic Deployment for InSight's Mars seismic installation

    Science.gov (United States)

    Kedar, S.; Bradford, S. C.; Clayton, R. W.; Davis, P. M.; Ervin, J.; Kawamura, T.; Lognonne, P. H.; Lorenz, R. D.; Mimoun, D.; Murdoch, N.; Roberson, T.; Stubailo, I.; Van Buren, D.

    2014-12-01

    InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is a NASA Discovery Program mission that will place a single geophysical lander on Mars to study its deep interior. InSight's main experiment is the Seismic Experiment for Interior Structure (SEIS), which will robotically place a broadband seismometer provided by the French Space Agency (CNES) on the Martian surface. SEIS will operate on the surface for a full Mars year. Installing and operating a seismometer on Mars imposes constraints rarely considered in terrestrial seismic installations. The InSight project has therefore conducted a terrestrial analog field deployment exercise to better understand and prepare for the distinctive challenges that placing a broadband seismometer in a Mars-like configuration and environment would pose. The exercise was conducted in two phases at NASA's Goldstone facility in the Southern California Mojave desert. In the first phase we have installed a surface geophysical station including a broadband seismometer, a microbarometer, anemometer, and thermal sensors in a configuration resembling the InSight's geophysical station. The site was located in an exposed location with rough surface and subsurface terrain. It was in close proximity to Goldstone permanent seismic station (GSC) that provided a ground-truth measurement. In the second phase, the installation was moved to a dry lakebed where the geophysical conditions mimic the expected geophysical environment of InSight's target landing site on Mars. We will present a summary of lessons learned so far from our analog deployment exercise. The data analysis emphasizes several aspects of key importance to the InSight mission: (1) Exploring strategies to mitigate environmental noise sources; (2) Recognizing noise sources that might be introduced by the InSight lander (solar panel flutter); (3) Identifying weak geophysical signals with low SNR above the environmental noise; (4) Using non tectonic

  11. Benchmark enclosure fire suppression experiments - phase 1 test report.

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  12. Seismically imaging the Afar plume

    Science.gov (United States)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings

  13. Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion

    Science.gov (United States)

    Bell, Rebecca; Morgan, Joanna; Warner, Michael

    2016-04-01

    There are many outstanding plate-tectonic scale questions that require us to know information about sub-surface physical properties, for example ascertaining the geometry and location of magma chambers and estimating the effective stress along plate boundary faults. These important scientific targets are often too deep, impractical and expensive for extensive academic drilling. Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become feasible in three dimensions, and has been widely adopted by the oil and gas industry to image reservoir-scale targets at shallow-to-moderate depths. In this presentation we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for sub-sedimentary targets within the crystalline crust and uppermost mantle. Using existing geological and geophysical models, we construct P-wave velocity models over three potential sub-sedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the downgoing oceanic plate beneath the Nankai subduction margin, and the oceanic crust-uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore the resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We will show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined

  14. Innovation design of beta test loop system for heat transfer experiments in single-phase and two-phase flows

    International Nuclear Information System (INIS)

    Kiswanta; Edy Sumarno; Joko Prasetio W; Ainur Rosidi; G B Heru K

    2013-01-01

    Innovation design of BETA test loop has been done. BETA test loop is a research facility used as a support for experiments of reactor accident simulation. The innovation was performed to prepare experimental facilities in order to study flow of heat transfer in single-phase and two-phase flows. The design was executed by modifying new piping of UUB's primary system, addition of heat flux measurements and imaging thermal for easiness of experimental result analysis. UUB development and experiments were carried out to understand heat transfer process in the narrow gap of two-phase flow considering this phenomenon is one of the conditions postulated in PWR typed nuclear power plant accident scenario. The innovation design of BETA test loop is still in the planning stages so that the design has not been constructed. Piping systems made of SS-304 with the ability to use a maximum pressure of 10 bar with a diameter of % inch pipe to, from the calculation of minimal design that is 7.27 mm. If the tube SS-304 - ASTM B88 is the wall thickness of 0.083 inches. From this design it is indicated that the design is able to be fabricated and used for experimental study of heat transfer in single-phase and two-phase flows. (author)

  15. Objective-function Hybridization in Adjoint Seismic Tomography

    Science.gov (United States)

    Yuan, Y. O.; Bozdag, E.; Simons, F.; Gao, F.

    2016-12-01

    In the realm of seismic tomography, we are at the threshold of a new era of huge seismic datasets. However, how to assimilate as much information as possible from every seismogram is still a challenge. Cross-correlation measurements are generally tailored to some window selection algorithms, such as FLEXWIN (Maggie et al. 2008), to balance amplitude differences between seismic phases. However, these measurements naturally favor maximum picks in selected windows. It is also difficult to select all usable portions of seismograms in an optimum way that lots of information is generally lost, particularly the scattered waves. Instantaneous phase type of misfits extract information from every wiggle without cutting seismograms into small pieces, however, dealing with cycle skips at short periods can be challenging. For this purpose, we introduce a flexible hybrid approach for adjoint seismic tomography, to combine various objective functions. We initially focus on phase measurements and propose using instantaneous phase to take into account relatively small-magnitude scattered waves at long periods while using cross-correlation measurements on FLEXWIN windows to select distinct body-wave arrivals without complicating measurements due to non-linearities at short periods. To better deal with cycle skips and reliably measure instantaneous phases we design a new misfit function that incorporates instantaneous phase information implicitly instead of measuring it explicitly, through using normalized analytic signals. We present in our synthetic experiments how instantaneous phase, cross-correlation and their hybridization affect tomographic results. The combination of two different phase measurements in a hybrid approach constitutes progress towards using "anything and everything" in a data set, addressing data quality and measurement challenges simultaneously. We further extend hybridisation of misfit functions for amplitude measurements such as cross-correlation amplitude

  16. Intraoperative ultrasound using phase inversion harmonic imaging: first experiences.

    Science.gov (United States)

    Hölscher, Thilo; Ozgur, Burak; Singel, Soren; Wilkening, Wilko G; Mattrey, Robert F; Sang, Hoi

    2007-04-01

    To study the feasibility of intraoperative ultrasound using the phase inversion harmonic imaging (PIHI) technique. Eight patients with intracranial middle cerebral artery aneurysms and five patients with arteriovenous malformations were studied after written informed consent. A first ultrasound study was performed through the intact dura mater after cranial trepanation to assess the pathology, its feeding artery, and downstream segments. A second ultrasound study was performed immediately after intervention to monitor the success of the procedure. All patients were studied using a Siemens Sonoline Antares ultrasound machine (Siemens Medical Solutions USA, Inc., Malvern, PA) before and after intravenous administration of an ultrasound contrast agent (Optison; GE Healthcare, Milwaukee, WI). Other than conventional brightness mode, PIHI is sensitive to the nonlinear acoustic response of tissue, and especially to ultrasound contrast agent microbubbles. The latter enables contrast-specific vascular imaging. PIHI provided anatomically detailed information. In combination with an ultrasound contrast agent, angiography-like views of the vascular pathologies, including their surrounding vessels, could be obtained. Flow velocities in afferent and downstream vascular segments, as well as inside the pathology, could be assessed. Flow dynamics inside the aneurysm sac or the arteriovenous malformation could be studied in real-time. Postintervention, contrast-enhanced PIHI could be used to immediately monitor the success of the surgical procedure. PIHI enables intraoperative visualization and morphological assessment of neurovascular pathologies, such as middle cerebral artery aneurysms or arteriovenous malformations. In combination with an ultrasound contrast agent, the flow dynamics of these lesions can be displayed in real-time.

  17. Seismic and hydroacoustic investigations near Ascension Island

    Science.gov (United States)

    Hanson, Jeffrey Acton

    A local seismicity study is conducted observing earthquakes near Ascension Island including a segment of the Mid-Atlantic Ridge (MAR). We use data collected from permanently deployed hydroacoustic and seismic instruments over a 2 year period to determine patterns in the ridge seismicity. Earthquakes are observed on the MAR 1 to 2 orders of magnitude smaller than the global catalogs can in this part of the world. Epicenters are determined for 77 of the events using the seismic and hydroacoustic data. Ridge seismicity is mainly confined to the median valley although systematic errors could give mislocations up to 10 km in one direction. The seismicity is infrequent at the segment center and increases towards the segment ends. Seismicity is not seen at the inside corner high. We do not observe direct evidence for seismicity along an anomalous shallow section of the MAR which also appears aseismic in the global catalogs. A simple method is described whereby station-to-source azimuths are estimated by fitting a plane wave to envelope functions of T-phases observed on 5 hydrophones surrounding Ascension Island, South Atlantic Ocean. When applied to a data set of 55 earthquakes with T-phases observed on at least 3 instruments, estimated azimuths have a standard deviation of 3.6 degrees compared to azimuths predicted from global catalog epicentral locations. The standard deviation decreases to 2 degrees if T-phase data from all 5 hydrophones are used. The performance of a seismic T-phase station for recording hydroacoustic phases is examined by comparing seismic and hydrophone T-phases from MAR earthquakes at Ascension Island. Variations between the corrected hydroacoustic amplitudes and seismic amplitudes are compared with physical parameters such as the gradient of the topography at the island-ocean interface. T-phases can have various modal structures which will couple into the island differently. Thus events from the same direction have different signal loss.

  18. Seismic isolation in New Zealand

    International Nuclear Information System (INIS)

    Skinner, R.I.; Robinson, W.H.; McVerry, G.H.

    1989-01-01

    Bridges, buildings, and industrial equipment can be given increased protection from earthquake damage by limiting the earthquake attack through seismic isolation. A broad summary of the seismic responses of base-isolated structures is of considerable assistance for their preliminary design. Seismic isolation as already used in New Zealand consists of a flexible base or support combined with some form of energy-dissipating device, usually involving the hysteretic working of steel or lead. This paper presents examples of the New Zealand experience, where seismic isolation has been used for 42 bridges, 3 buildings, a tall chimney, and high-voltage capacitor banks. Additional seismic response factors, which may be important for nuclear power plants, are also discussed briefly

  19. Integrated system for seismic evaluations

    International Nuclear Information System (INIS)

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  20. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  1. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  2. Overview of seismic margin insights gained from seismic PRA results

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  3. Stord Orographic Precipitation Experiment (STOPEX: an overview of phase I

    Directory of Open Access Journals (Sweden)

    A. Sandvik

    2007-04-01

    Full Text Available STOPEX (Stord Orographic Precipitation Experiment is a research project of the Geophysical Institute, University of Bergen, Norway, dedicated to the investigation of orographic effects on fine scale precipitation patterns by a combination of numerical modelling and tailored measurement campaigns. Between 24 September and 16 November 2005 the first field campaign STOPEX I has been performed at and around the island of Stord at the west coast of Norway, about 50 km south of Bergen. 12 rain gauges and 3 autonomous weather stations have been installed to measure the variability of precipitation and the corresponding meteorological conditions. This paper gives an overview of the projects motivation, a description of the campaign and a presentation of the precipitation measurements performed. In addition, the extreme precipitation event around 14 November with precipitation amounts up to 240 mm in less than 24 h, is described and briefly discussed. In this context preliminary results of corresponding MM5 simulations are presented, that indicate the problems as well as potential improvement strategies with respect to modelling of fine scale orographic precipitation.

  4. FALSIRE Phase II. CSNI project for Fracture Analyses of Large-Scale International Reference Experiments (Phase II). Comparison report

    International Nuclear Information System (INIS)

    Sievers, J.; Schulz, H.; Bass, R.; Pugh, C.; Keeney, J.

    1996-11-01

    A summary of Phase II of the Project for Fracture Analysis of Large-Scale International Reference Experiments (FALSIRE) is presented. A FALSIRE II Workshop focused on analyses of reference fracture experiments. More than 30 participants representing 22 organizations from 12 countries took part in the workshop. Final results for 45 analyses of the reference experiments were received from the participating analysts. For each experiment, analysis results provided estimates of variables that include temperature, crack-mouth-opening displacement, stress, strain, and applied K and J values. The data were sent electronically to the Organizing Committee, who assembled the results into a comparative data base using a special-purpose computer program. A comparative assessment and discussion of the analysis results are presented in the report. Generally, structural responses of the test specimens were predicted with tolerable scatter bands. (orig./DG)

  5. Results of two-phase natural circulation in hot-leg U-bend simulation experiments

    International Nuclear Information System (INIS)

    Ishii, M.; Lee, S.Y.; Abou El-Seoud, S.

    1987-01-01

    In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed using two different thermal-hydraulic loops. The main focus of the experiment was the two-phase flow behavior in the hot-leg U-bend typical of BandW LWR systems. The first group of experiments was carried out in the nitrogen gas-water adiabatic simulation loop and the second in the Freon 113 boiling and condensation loop. Both of the loops have been designed as a flow visualization facility and built according to the two-phase flow scaling criteria developed under this program. The nitrogen gas-water system has been used to isolate key hydrodynamic phenomena such as the phase distribution, relative velocity between phases, two-phase flow regimes and flow termination mechanisms, whereas the Freon loop has been used to study the effect of fluid properties, phase changes and coupling between hydrodynamic and heat transfer phenomena. Significantly different behaviors have been observed due to the non-equilibrium phase change phenomena such as the flashing and condensation in the Freon loop. The phenomena created much more unstable hydrodynamic conditions which lead to cyclic or oscillatory flow behaviors

  6. Structure, energetics, and elasticity of phase Egg: insights from theory and experiments

    Science.gov (United States)

    Mookherjee, M.; Panero, W. R.; Wunder, B.; Jahn, S.; Koch-Müller, M.

    2017-12-01

    Phase Egg is a hydrous aluminosilicate mineral with AlSiO3(OH) stoichiometry. It is likely to be stable in subducted sediments that could be modeled in a Al2O­3-SiO2-H2O (ASH) ternary system. Therefore, phase Egg is an important candidate phase for transporting water into the deep Earth. In order to constrain the amount of water subducted and the degree of slab hydration, we need to understand the elasticity of hydrous phases including phase Egg and correlate them to geophysical observations. The elasticity of phase Egg is related to the crystal structure and its response to pressure and temperature. The crystal structure of phase Egg has a monoclinic (P21/n) space group symmetry. Based on high-pressure experiments and phase relations in the ASH ternary, phase Egg is likely to be stable above 11 GPa. In this study we explored the elasticity of phase Egg using first principles simulations based on density functional theory. We notice anomalous behavior of elasticity of phase Egg at mantle transition zone depths ( 15 GPa). Such anomalous behavior in the elasticity is related to changes in the hydrogen bonding O-H…O configurations and has also been documented with spectroscopic methods. Acknowledgement: MM is supported by US NSF awards EAR-1634422.

  7. In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase

    Science.gov (United States)

    Pohner, John A.; Dempsey, Brian P.; Herold, Leroy M.

    1990-01-01

    Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger.

  8. Bubbles attenuate elastic waves at seismic frequencies

    Science.gov (United States)

    Tisato, Nicola; Quintal, Beatriz; Chapman, Samuel; Podladchikov, Yury; Burg, Jean-Pierre

    2016-04-01

    The vertical migration of multiphase fluids in the crust can cause hazardous events such as eruptions, explosions, pollution and earthquakes. Although seismic tomography could potentially provide a detailed image of such fluid-saturated regions, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. Seismic tomography should be improved considering seismic wave attenuation (1/Q) and the dispersive elastic moduli which allow accounting for the energy lost by the propagating elastic wave. In particular, in saturated media a significant portion of the energy carried by the propagating wave is dissipated by the wave-induced-fluid-flow and the wave-induced-gas-exsolution-dissolution (WIGED) mechanisms. The WIGED mechanism describes how a propagating wave modifies the thermodynamic equillibrium between different fluid phases causing the exsolution and the dissolution of the gas in the liquid, which in turn causes a significant frequency dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but only recently was extended to bubbly water and experimentally demonstrated. Here we report these theory and laboratory experiments. Specifically, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Finally, we will extend the theory to fluids and to pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we will compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. With the present contribution we extend the knowledge about attenuation in rocks which are saturated with multiphase fluid demonstrating that the WIGED mechanism could be extremely important to image subsurface gas plumes.

  9. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  10. Seismic precursory patterns before a cliff collapse and critical point phenomena

    Science.gov (United States)

    Amitrano, D.; Grasso, J.-R.; Senfaute, G.

    2005-01-01

    We analyse the statistical pattern of seismicity before a 1-2 103 m3 chalk cliff collapse on the Normandie ocean shore, Western France. We show that a power law acceleration of seismicity rate and energy in both 40 Hz-1.5 kHz and 2 Hz-10kHz frequency range, is defined on 3 orders of magnitude, within 2 hours from the collapse time. Simultaneously, the average size of the seismic events increases toward the time to failure. These in situ results are derived from the only station located within one rupture length distance from the rock fall rupture plane. They mimic the "critical point" like behavior recovered from physical and numerical experiments before brittle failures and tertiary creep failures. Our analysis of this first seismic monitoring data of a cliff collapse suggests that the thermodynamic phase transition models for failure may apply for cliff collapse. Copyright 2005 by the American Geophysical Union.

  11. Seismic explosion sources on an ice cap - Technical considerations

    Science.gov (United States)

    Shulgin, Alexey; Thybo, Hans

    2015-03-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary phases. This effect may be crucial for acquisition of reflection seismic profiles on ice caps. Our experience shows that it is essential to use optimum depth for the charges and to seal the boreholes carefully.

  12. Seismic Holography of Solar Activity

    Science.gov (United States)

    Lindsey, Charles

    2000-01-01

    The basic goal of the project was to extend holographic seismic imaging techniques developed under a previous NASA contract, and to incorporate phase diagnostics. Phase-sensitive imaging gives us a powerful probe of local thermal and Doppler perturbations in active region subphotospheres, allowing us to map thermal structure and flows associated with "acoustic moats" and "acoustic glories". These remarkable features were discovered during our work, by applying simple acoustic power holography to active regions. Included in the original project statement was an effort to obtain the first seismic images of active regions on the Sun's far surface.

  13. LANL seismic screening method for existing buildings

    International Nuclear Information System (INIS)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  14. LANL seismic screening method for existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O. [and others

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method.

  15. Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.

    1997-01-01

    The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)

  16. Thermal modeling with solid/liquid phase change of the thermal energy storage experiment

    Science.gov (United States)

    Skarda, J. Raymond Lee

    1991-01-01

    A thermal model which simulates combined conduction and phase change characteristics of thermal energy storage (TES) materials is presented. Both the model and results are presented for the purpose of benchmarking the conduction and phase change capabilities of recently developed and unvalidated microgravity TES computer programs. Specifically, operation of TES-1 is simulated. A two-dimensional SINDA85 model of the TES experiment in cylindrical coordinates was constructed. The phase change model accounts for latent heat stored in, or released from, a node undergoing melting and freezing.

  17. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment

    Science.gov (United States)

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P.

    2015-10-01

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z6 order.

  18. Seismic Discrimination

    Science.gov (United States)

    1979-09-30

    Plate Tectonics ,’ in The Earth: Its Origin. Structure and Evolution (Academic Press. London. f9-79). pp. 491-542. 185. M. A. Chinnery. "A Comparison of...stations in Eurasia-SHIO (Shillong, india), ANTO ( Ankara , Turkey), GRFO (Graefenberg, Germany), and KONO (Kongsberg, Norway) started producing data, and we...34 Tectonics of the Caribbean and Middle America Regions from Focal Mechanisms and Seismicity." Geol. Soc. Am. Bull. 80. 1639-1684 (1969). 10. T. J

  19. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  20. High Voltage Seismic Generator

    Science.gov (United States)

    Bogacz, Adrian; Pala, Damian; Knafel, Marcin

    2015-04-01

    This contribution describes the preliminary result of annual cooperation of three student research groups from AGH UST in Krakow, Poland. The aim of this cooperation was to develop and construct a high voltage seismic wave generator. Constructed device uses a high-energy electrical discharge to generate seismic wave in ground. This type of device can be applied in several different methods of seismic measurement, but because of its limited power it is mainly dedicated for engineering geophysics. The source operates on a basic physical principles. The energy is stored in capacitor bank, which is charged by two stage low to high voltage converter. Stored energy is then released in very short time through high voltage thyristor in spark gap. The whole appliance is powered from li-ion battery and controlled by ATmega microcontroller. It is possible to construct larger and more powerful device. In this contribution the structure of device with technical specifications is resented. As a part of the investigation the prototype was built and series of experiments conducted. System parameter was measured, on this basis specification of elements for the final device were chosen. First stage of the project was successful. It was possible to efficiently generate seismic waves with constructed device. Then the field test was conducted. Spark gap wasplaced in shallowborehole(0.5 m) filled with salt water. Geophones were placed on the ground in straight line. The comparison of signal registered with hammer source and sparker source was made. The results of the test measurements are presented and discussed. Analysis of the collected data shows that characteristic of generated seismic signal is very promising, thus confirms possibility of practical application of the new high voltage generator. The biggest advantage of presented device after signal characteristics is its size which is 0.5 x 0.25 x 0.2 m and weight approximately 7 kg. This features with small li-ion battery makes

  1. A New 4D Imaging Method for Three-Phase Analogue Experiments in Volcanology (and Other Three-Phase Systems)

    Science.gov (United States)

    Oppenheimer, J.; Patel, K. B.; Lev, E.; Hillman, E. M. C.

    2017-12-01

    Bubbles and crystals suspended in magmas interact with each other on a small scale, which affects large-scale volcanic processes. Studying these interactions on relevant scales of time and space is a long-standing challenge. Therefore, the fundamental explanations for the behavior of bubble- and crystal-rich magmas are still largely speculative. Recent application of X-ray tomography to experiments with synthetic magmas has already improved our understanding of small-scale 4D (3D + time) phenomena. However, this technique has low imaging rates live biological processes at high speed and in 3D. It allows imaging rates of up to several hundred vps and image volumes up to 1 x 1 x 0.5 mm3, with a trade-off between speed and spatial resolution. We ran two sets of experiments with silicone oil and soda-lime glass beads of <50 µm diameter, contained within a vertical glass casing 50 x 5 x 4 mm3. We used two different bubble generation methods. In the first set of experiments, small air bubbles (< 1 mm) were introduced through a hole at the bottom of the sample and allowed to rise through a suspension with low-viscosity oil. We successfully imaged bubble rise and particle movements around the bubble. In the second set, bubbles were generated by mixing acetone into the suspension and decreasing the surface pressure to cause a phase change to gaseous acetone. This bubble generation method compared favorably with previous gum rosin-acetone experiments: they provided similar degassing behaviors, along with more control on suspension viscosity and optimal optical properties for laser transmission. Large volumes of suspended bubbles, however, interfered with the laser path. In this set, we were able to track bubble nucleation sites and nucleation rates in 4D. This promising technique allows the study of small-scale interactions in two- and three-phase systems, at high imaging rates and at low cost.

  2. Patients' experiences and care needs during the diagnostic phase of an Integrated Brain Cancer Pathway

    DEFF Research Database (Denmark)

    Vedelø, Tina Wang; Sørensen, Jens Christian Hedemann; Delmar, Charlotte

    2018-01-01

    AIM AND OBJECTIVE: To identify and describe patients' experiences and care needs throughout the diagnostic phase of an Integrated Brain Cancer Pathway. BACKGROUND: A malignant brain tumour is a devastating diagnosis, which may cause psychical symptoms and cognitive deficits. Studies have shown th...

  3. An FPGA-based trigger for the phase II of the MEG experiment

    International Nuclear Information System (INIS)

    Baldini, A.; Bemporad, C.; Cei, F.; Galli, L.; Grassi, M.; Morsani, F.; Nicolò, D.; Ritt, S.; Venturini, M.

    2016-01-01

    For the phase II of MEG, we are going to develop a combined trigger and DAQ system. Here we focus on the former side, which operates an on-line reconstruction of detector signals and event selection within 450 μs from event occurrence. Trigger concentrator boards (TCB) are under development to gather data from different crates, each connected to a set of detector channels, to accomplish higher-level algorithms to issue a trigger in the case of a candidate signal event. We describe the major features of the new system, in comparison with phase I, as well as its performances in terms of selection efficiency and background rejection. - Highlights: • A new, two-level trigger scheme for the phase-II of the MEG experiment is presented. • Improvements with respect to phase-I are underlined. • The role of detector upgrades and the use of a new generation of FPGA as well are emphasized.

  4. Innovative Approaches for Seismic Studies of Mars (Invited)

    Science.gov (United States)

    Banerdt, B.

    2010-12-01

    In addition to its intrinsic interest, Mars is particularly well-suited for studying the full range of processes and phenomena related to early terrestrial planet evolution, from initial differentiation to the start of plate tectonics. It is large and complex enough to have undergone most of the processes that affected early Earth but, unlike the Earth, has apparently not undergone extensive plate tectonics or other major reworking that erased the imprint of early events (as evidenced by the presence of cratered surfaces older than 4 Ga). The martian mantle should have Earth-like polymorphic phase transitions and may even support a perovskite layer near the core (depending on the actual core radius), a characteristic that would have major implications for core cooling and mantle convection. Thus even the most basic measurements of planetary structure, such as crustal thickness, core radius and state (solid/liquid), and gross mantle velocity structure would provide invaluable constraints on models of early planetary evolution. Despite this strong scientific motivation (and several failed attempts), Mars remains terra incognita from a seismic standpoint. This is due to an unfortunate convergence of circumstances, prominent among which are our uncertainty in the level of seismic activity and the relatively high cost of landing multiple long-lived spacecraft on Mars to comprise a seismic network for body-wave travel-time analysis; typically four to ten stations are considered necessary for this type of experiment. In this presentation I will address both of these issues. In order to overcome the concern about a possible lack of marsquakes with which to work, it is useful to identify alternative methods for using seismic techniques to probe the interior. Seismology without quakes can be accomplished in a number of ways. “Unconventional” sources of seismic energy include meteorites (which strike the surface of Mars at a relatively high rate), artificial projectiles

  5. High-Resolution Seismic Imaging of Near-Surface Voids

    Science.gov (United States)

    Gritto, R.; Korneev, V. A.; Elobaid, E. A.; Mohamed, F.; Sadooni, F.

    2017-12-01

    A major hazard in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. We present a suite of seismic techniques applied to a controlled experiment to detect, locate and estimate the size of a karst analog in form of a man-made water shaft on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation, we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We use the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys

  6. Unsteady Aerodynamics Experiment Phase V: Test Configuration and Available Data Campaigns; TOPICAL

    International Nuclear Information System (INIS)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.

    2001-01-01

    The main objective of the Unsteady Aerodynamics Experiment is to provide information needed to quantify the full-scale, three-dimensional, unsteady aerodynamic behavior of horizontal-axis wind turbines (HAWTs). To accomplish this, an experimental wind turbine configured to meet specific research objectives was assembled and operated at the National Renewable Energy Laboratory (NREL). The turbine was instrumented to characterize rotating-blade aerodynamic performance, machine structural responses, and atmospheric inflow conditions. Comprehensive tests were conducted with the turbine operating in an outdoor field environment under diverse conditions. Resulting data are used to validate aerodynamic and structural dynamics models, which are an important part of wind turbine design and engineering codes. Improvements in these models are needed to better characterize aerodynamic response in both the steady-state post-stall and dynamic-stall regimes. Much of the effort in the first phase of the Unsteady Aerodynamics Experiment focused on developing required data acquisition systems. Complex instrumentation and equipment was needed to meet stringent data requirements while operating under the harsh environmental conditions of a wind turbine rotor. Once the data systems were developed, subsequent phases of experiments were then conducted to collect data for use in answering specific research questions. A description of the experiment configuration used during Phase V of the experiment is contained in this report

  7. Salt Tectonics of the Abenaki Graben and Central Sable Subbasin: Insights from Regional Seismic Interpretation and Four-Dimensional Scaled Physical Experiments

    Science.gov (United States)

    Campbell, Clarke

    The tectono-stratigraphic evolution of the Abenaki graben and central Sable Subbasin of the north-central Scotian margin has been highly influenced by salt deformation. Shimeld (2004) has identified five salt subprovinces defined by varying salt structural styles across the margin. Although it has been hypothesized these varying structural styles are the result of complex salt basin morphologies and variable Mesozoic post-rift sedimentation patterns, there is still a lack of understanding of how these first order controlling factors specifically controlled the tectono-stratigraphic evolution across the margin. Disappointing petroleum exploration results from the last round of deepwater drilling supports the further need to investigate how variable salt basin morphologies, and depositional rates and patterns controlled salt deformation as well as the evolution of the margin. The purpose of this project is to integrate regional 2D seismic reflection data including the ION-GXT NovaSPAN dataset, with 4D scaled physical experiments to better understand the tectono-stratigraphic evolution of the Abenaki Graben and central Sable Subbasin. The study area is located in Shimeld's salt Subprovince III that comprises an extensive salt tongue-canopy system that has spread upwards of 80 km on the secondary detachment level. Seismic interpretation indicates an original salt basin characterized by a landward tapering wedge representing the Abenaki Graben, an intermediate high referred to as the North Sable High (NSH), and a symmetric graben with basin step representing the Sable Subbasin. The geometry of the salt basin floor is composed of rifted basement blocks and syn-rift fill that was originally been infilled with upwards of 2 km of Argo salt. Scaled 4D physical experiments simulating the study area indicate the presence of 4 kinematic domains from the shelf to slope including a: (1) Salt Weld and Pillow, (2) Normal Fault and Reactive Diapir, (3) Passive Diapir and Expulsion

  8. Long Term Sorption Diffusion Experiment (LTDE-SD). Performance of main in situ experiment and results from water phase measurements

    Energy Technology Data Exchange (ETDEWEB)

    Widestrand, Henrik; Byegaard, Johan; Nilsson, Kersti; Hoeglund, Susanne; Gustafsson, Erik (Geosigma AB, Uppsala (Sweden)); Kronberg, Magnus (Swedish Nuclear Fuel and Waste Management Co. (Sweden))

    2010-12-15

    The LTDE-SD experiment, (Long Term Sorption Diffusion Experiment) aimed at increasing the scientific knowledge of sorption and diffusion under in situ conditions and to provide data for performance and safety assessment calculations. Performance and results of the in situ experiment phase are presented in the report. In total, 21 radionuclide trace elements and one stable trace element were injected, circulated and sampled for approx6.5 months in a closed borehole section. The trace elements represented non-sorbing tracers and sorbing tracers for which the sorption was dominated by a cation exchange mechanism, a surface complexation mechanism, or dependent on an electrochemical reduction in order to reach the tetravalent state (oxidation state IV) considered very strongly sorbing. The borehole section in contact with the tracer labelled groundwater consisted in part of a natural fracture surface and a borehole section in the unaltered matrix rock, devoid of natural fractures. Water samples were regularly extracted and analysed for trace element concentration and a few ion exchange speciation and filtered samplings were also conducted. Independent colloid filtering and chemical speciation calculations were performed in support the evaluation. Sorption was demonstrated for a series of elements present in the experiment. The amounts lost of the different respective tracers from the aqueous phase follow very well the general understanding of the relative sorption strength of the tracers, as inferred from e.g. batch sorption experiments and dynamic in situ tracer experiments. The chemical speciation calculations of the different tracers were in line with the results of the ion exchange speciation performed during the experiment. With the exception of UO{sub 2} 2+ carbonate complexes formed, no strong indications were obtained that aqueous complexation prevents adsorption under the chemical conditions of the experiment. The 20 nm filtered sampling indicated that

  9. Meteoroid impacts as seismic sources on Mars

    Science.gov (United States)

    Davis, Paul M.

    1993-10-01

    Lunar Apollo seismic experiment results reflecting asteroid fragment impacts are presently used to estimate the seismic signals that can be expected on Mars, with allowances for impact-rate differences due to a different impactor population, and the combined effect of ablation and deceleration in the Martian atmosphere on impact energy. The entry flux at Mars is 2.6 times that at the earth. The net result for such seismic activity, which has an uncertainty factor of 3, is that the number of large impacts/year detected at a Mars seismic station comparable to Apollo's in sensitivity will be 116 events/year, compared to the moon's 76 events/year.

  10. Infrasound Generation from the HH Seismic Hammer.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  11. Seismic proof test of shielding block walls

    International Nuclear Information System (INIS)

    Ohte, Yukio; Watanabe, Takahide; Watanabe, Hiroyuki; Maruyama, Kazuhide

    1989-01-01

    Most of the shielding block walls used for building nuclear facilities are built by dry process. When a nuclear facility is designed, seismic waves specific at each site are set as input seismic motions and they are adopted in the design. Therefore, it is necessary to assure safety of the shielding block walls for earthquake by performing anti-seismic experiments under the conditions at each site. In order to establish the normal form that can be applied to various seismic conditions in various areas, Shimizu Corp. made an actual-size test samples for the shielding block wall and confirmed the safety for earthquake and validity of normalization. (author)

  12. Comparison of seismic margin assessment and probabilistic risk assessment in seismic IPE

    International Nuclear Information System (INIS)

    Reed, J.W.; Kassawara, R.P.

    1993-01-01

    A comparison of technical requirements and managerial issues between seismic margin assessment (SMA) and seismic probabilistic risk assessment (SPRA) in a seismic Individual Plant Examination (IPE) is presented and related to requirements for an Unresolved Safety Issue (USI) A-46 review which is required for older nuclear power plants. Advantages and disadvantages are discussed for each approach. Technical requirements reviewed for a seismic IPE include: scope of plants covered, seismic input, scope of review, selection of equipment, required experience and training of engineers, walkdown procedure, evaluation of components, relay review, containment review, quality assurance, products, documentation requirements, and closure procedure. Managerial issues discussed include regulatory acceptability, compatibility with seismic IPE, compliance with seismic IPE requirements, ease of use by utilities, and relative cost

  13. Movie of phase separation during physics of colloids in space experiment

    Science.gov (United States)

    2002-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  14. Phase separation during the Experiment on Physics of Colloids in Space

    Science.gov (United States)

    2003-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  15. Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase

    Science.gov (United States)

    Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro

    2005-09-01

    Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.

  16. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  17. Two-phase reduced gravity experiments for a space reactor design

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-08-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed, to coordinate all ongoing and planned reduced gravity flow experiments

  18. The study of membrane formation via phase inversion method by cloud point and light scattering experiment

    Science.gov (United States)

    Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah

    2017-01-01

    The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.

  19. Phase changes in f-electron metals: discrepancies between experiment and theory

    International Nuclear Information System (INIS)

    Akella, Jagannadham; Weir, Samuel T.; Ruddle, Chantel

    1997-01-01

    Using a diamond-anvil cell (DAC) phase transformation and equation of state (EOS) at room temperature for some lanthanides and actinides were studied to multimegabar (megabar = 100 GPa) pressures. Experimental data are compared with the theoretically predicted crystal structural changes and the pressure-volume relationships. A generalized trend for the phase transformations in the lanthanides can be seen, which has broad agreement with theory. There is a general agreement between theory and experiment for the structural changes in the lighter actinides, however in detail there are some discrepancies still. We conclude that an accurate and robust theoretical base for predicting the phase transformations in the f-electron metals can be developed by incorporating the DAC data as markers for fine tuning the theory. (author)

  20. Study of phase transitions in cerium in shock-wave experiments

    Directory of Open Access Journals (Sweden)

    Zhernokletov M.V.

    2015-01-01

    Full Text Available Cerium has a complex phase diagram that is explained by the presence of structure phase transitions. Planar gauges were used in various combinations in experiments for determination of sound velocity dependence on pressure in cerium by the technique of PVDF gauge. The data of time dependence on pressure profiles with use of x(t diagrams and the D(u relation for cerium allowed the definition of the Lagrangian velocity of the unloading wave CLagr and the Eulerian velocity CEul by taking into account the compression σ. These results accords with data obtained by using the technique of VISAR and a manganin-based gauge, and calculated pressure dependence of isentropic sound velocity according to the VNIITF EOS. Metallography analysis of post-experimental samples did not find any changes in a phase composition.

  1. The Iquique 2014 sequence: understanding its nucleation and propagation from the seismicity evolution

    Science.gov (United States)

    Fuenzalida, A.; Rietbrock, A.; Woollam, J.; Tavera, H.; Ruiz, S.

    2017-12-01

    The Northern Chile and Southern Peru region is well known for its high seismic hazard due to the lack of recent major ruptures along long segments of the subduction interface. For this reason the 2014 Iquique Mw 8.1 earthquake that occurred in the Northern Chile seismic gap was expected and high quality seismic and geodetic networks were operating at the time of the event recording the precursory phase of a mega-thrust event with unprecedented detail. In this study we used seismic data collected during the 2014 Iquique sequence to generate a detailed earthquake catalogue. This catalogue consists of more than 15,000 events identified in Northern Chile during the period between 1/3/14 and 31/5/14 and provides full coverage of the immediate foreshock sequence, the main-shock and early after-shock series. The initial catalogue was obtained by automatic data processing and only selecting events with at least two associate S phases to improve the reliability of initial locations. Subsequently, this subset of events was automatically processed again using an optimized STA/LTA triggering algorithm for both P and S-waves and constraining the detection times by estimated arrival times at each station calculated for the preliminary locations. Finally, all events were relocated using a recently developed 1D velocity model and associated station corrections. For events Mw 4 or larger that occurred between the 15/3/14 and 10/04/14, we estimated it regional moment tensor by full-waveform inversion. Our results confirm the seismic activation of the upper plate during the foreshock sequence, as well highlight a crustal activity on the fore-arc during the aftershock series. The seismicity distribution was compared to the previous inter-seismic coupling studies obtained in the region, in which we observe interplay between high and low coupling areas, which are correlated to the seismicity rate. The spatial distribution of the seismicity and the complexities on the mechanisms observed

  2. Annual report for fiscal 1995, Kamaishi in-situ experiments (phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Kazuhiro; Araki, Ryusuke; Koide, Kaoru; Sawada, Atsushi; Shimizu, Isao; Fujita, Asao; Yoshida, Eiichi [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan)

    1996-04-01

    The Kamaishi in-situ experiments (Phase 2) have strived to ascertain geological characteristics of the deep underground and the various phenomenon occurring therein and to improve technologies and methodologies required for such studies since fiscal 1993. Fiscal 1995 is the third year of Phase 2. The in-situ experiments are conducted at the northern most end of the Kamaishi mine in order to minimize the effect of the already excavated drifts totaling approximately 140 km long. The studies are conducted in Kurihashi granodiorite of Early Cretaceous widely distributed in this area. Major activities performed in this fiscal year are summarized below: (1) TASK 1 (Characterization of the deep underground geological environment). (2) TASK 2 (Study of excavation disturbance in fractured rock). (3) TASK 3 (Study of groundwater flow and solute transport in crystalline rock). (4) TASK 4 (Study of engineered barrier). (5) TASK 5 (Study of earthquakes). (J.P.N.)

  3. Horonobe underground research laboratory project. The plan for the in-situ experiments in Phase 2 and Phase 3 in/around URL

    International Nuclear Information System (INIS)

    Matsui, Hiroya

    2005-09-01

    This report describes for preliminary research plan in Phase 2 and Phase 3 taken into consideration of expected geological environment at location of URL based on the results of the investigations until FY 2003/2004. Duration of construction phase and total cost are considered as important factors for planning as well. The below items are planned for in-situ experiments in Phase 2 and Phase 3 in/around URL are planning. Phase 2. (In-situ experiments for understanding of geological environment) Geological survey at tunnel. Inflow measurement in shafts. Water pressure monitoring and groundwater sampling around shafts during excavation of URL. Investigation for EDZ around shafts. Stress measurement on support. Detail investigations for geological environment around drifts. Excavation disturbance experiment in a drift. Investigation for desaturation zone and REDOX condition around drifts. (Engineered barrier system) In-situ experiment on low-alkali concrete. In-situ experiment for gas migration in engineering barrier system. Phase 3. (In-situ experiments for understanding of geological environment) EDZ experiment for stress interference. Investigation of long-term behavior of EDZ around drifts. Detail investigation on fault/fault zone. Monitoring for the change of geological environment at earthquake. Backfill test in boreholes. (Engineered barrier system) T-H-M-C experiment. In-situ experiment for corrosion of overpack. Investigation of the influence of a concrete to engineering barrier system and geological environment. In-situ experiment for interference between backfill material and geological environment. Backfill test in a drift. (Safety assessment) Tracer tests in engineering barrier system, natural barrier and fault/fault zone. (author)

  4. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  5. The deep Algerian margin structure revisited by the Algerian-French SPIRAL research program, stage 2 : Wide-ange seismic experiment

    Science.gov (United States)

    Klingelhoefer, Frauke; Yellès, Abdelkarim; Bracène, Rabah; Graindorge, David; Ouabadi, Aziouz; Schnürle, Philippe; Scientific Party, Spiral

    2010-05-01

    During the second leg of the Algerien - French SPIRAL (Sismique Profonde et Investigation Regionale du Nord de l'ALgerie) cruise conducted on the R/V Atalante in October and November 2009 an extensive wide-angle seismic data-set was acquired on 5 regional transects off Algeria, from Arzew bay to the west, to Annaba to the east. The profiles are between 80 and 180 km in length and around 40 ocean-bottom seismometers were deployed on each profile. A 8350 cu. inch tuned airgun array consisting of 10 Bolt airguns was used to generate of deep frequency to allow for a good penetration. All profiles were extended on land up to 150 km by land-stations to better constrain the structure of the margin and the nature of the ocean-continent transition zone. Coincident reflection seismic, gravity and magnetic data were acquired on all profiles during the first leg of the cruise. The resulting data quality is very good with deep penetrating arrivals on most of the instruments. Only on very few instruments a deep salt layer inhibits deeper penetration of the seismic energy. Two instruments were lost and all other yielded useful information on geophone and hydrophone channels. Instruments located close to the coast show arrivals from thick sedimentary layers. Instruments located on oceanic crust indicate a relatively thin crust overlying a mantle layer characterised by seismic velocities of 8 km/s. Forward and inverse modelling of the wide-angle seismic data will help constrain the deep structure of the margin, the nature of the crust and might help to constrain possible existence of a detached slab in the upper mantle. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will enable us to better understand the tectonic history and the structure of the Algerian margin.

  6. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  7. Seismic Signature of the Continental Crust: What Thermodynamics Says. An Example From the Italian Peninsula

    Science.gov (United States)

    Diaferia, G.; Cammarano, F.

    2017-12-01

    Unraveling the temperature distribution and composition of Earth's crust is key for understanding its origin, evolution, and mechanical behavior. Models of compressional (VP) and shear wave (VS) velocity are obtained from seismological studies and can be interpreted in terms of temperature and composition, using relationship defined through laboratory experiments. These empirical evidences often do not properly account for the effects driven by temperature, pressure, water content, and phase change of minerals. In this study, we use thermodynamic modeling to properly investigate the role of these variables in affecting seismic properties, as a tool to guide (joint) inversion and interpretation of geophysical data. We find that mineralogical phase transitions can be more seismically relevant than a change in chemical composition. In particular, the α-β quartz transition would cause a jump in acoustic impedance and VP/VS ratio >8%, occurring in the 15-25 km depth range, depending on the thermal gradient. Moreover, in the case of a cold lower crust, the consumption of plagioclase in favor of high-velocity minerals might represent another relevant seismic discontinuity. Different chemical compositions proposed for the Italian crust would be seismically indistinguishable, since they give overlapping seismic properties. Values of VS VS/density ratio shows a narrow variability, suggesting that densities at depth can be directly derived in first approximation from VS.

  8. Seismic evaluation of existing nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    1995-01-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies

  9. High resolution seismic data coupled to Multibeam bathymetry of Stromboli island collected in the frame of the Stromboli geophysical experiment: implications with the marine geophysics and volcanology of the Aeolian Arc volcanic complex (Sicily, Southern Tyrrhenian sea, Italy).

    Science.gov (United States)

    Aiello, Gemma; Di Fiore, Vincenzo; Marsella, Ennio; Passaro, Salvatore

    2014-01-01

    New high resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording active seismic data and tomography of the Stromboli Island are here presented. The Stromboli geophysical experiment has been already carried out based on onshore and offshore data acquisition in order to investigate the deep structure and the location of the magma chambers of the Stromboli volcano. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area compared to the volcanologic setting of the Aeolian Arc volcanic complex. Due to its high resolution the new Digital Terrain Model of the Stromboli Island gives interesting information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified based on the geologic interpretation of Subbottom Chirp profiles recorded around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the intriguing geology of the Aeolian Arc, a volcanic area still in activity and needing improved research interest.

  10. Sideband separation experiments in NMR with phase incremented echo train acquisition.

    Science.gov (United States)

    Walder, Brennan J; Dey, Krishna K; Kaseman, Derrick C; Baltisberger, Jay H; Grandinetti, Philip J

    2013-05-07

    A general approach for enhancing sensitivity of nuclear magnetic resonance sideband separation experiments, such as Two-Dimensional One Pulse (TOP), Magic-Angle Turning (MAT), and Phase Adjust Spinning Sidebands (PASS) experiments, with phase incremented echo-train acquisition (PIETA) is described. This approach is applicable whenever strong inhomogeneous broadenings dominate the unmodulated frequency resonances, such as in non-crystalline solids or in samples with large residual frequency anisotropy. PIETA provides significant sensitivity enhancements while also eliminating spectral artifacts would normally be present with Carr-Purcell-Meiboom-Gill acquisition. Additionally, an intuitive approach is presented for designing and processing echo train acquisition magnetic resonance experiments on rotating samples. Affine transformations are used to relate the two-dimensional signals acquired in TOP, MAT, and PASS experiments to a common coordinate system. Depending on sequence design and acquisition conditions two significant artifacts can arise from truncated acquisition time and discontinuous damping in the T2 decay. Here we show that the former artifact can always be eliminated through selection of a suitable affine transformation, and give the conditions in which the latter can be minimized or removed entirely.

  11. Phase-IIC experiments of the JAERI/USDOE collaborative program on fusion blanket neutronics

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1992-12-01

    Neutronics experiments on two types of heterogeneous blankets have been performed as the Phase-IIC experiment of JAERI/USDOE collaborative program on fusion blanket neutronics. The experimental system was used in the same geometry as the previous Phase-IIA series which was a closed geometry using neutron source enclosure of lithium carbonate. The heterogeneous blankets selected here are the beryllium edge-on and the water coolant channel assemblies. In the former the beryllium and lithium-oxide layers are piled up alternately in the front part of test blanket. In the latter, the three simulated water cooling channels are settled in the Li 2 O blanket. These are producing steep gradient of neutron flux around material boundary. The calculation accuracy and measurement method for these features is a key of interest in the experiments. The measurements were performed for tritium production rate and the other nuclear parameters as well as the previous experiments. This report describes the experimental detail and the results enough to use for the benchmark data for testing the data and method of design calculation of fusion reactors. (author)

  12. The phase diagram and transport properties of MgO from theory and experiment

    Science.gov (United States)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Seismic failure modes and seismic safety of Hardfill dam

    Directory of Open Access Journals (Sweden)

    Kun Xiong

    2013-04-01

    Full Text Available Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and greater seismic safety.

  14. Validation of seismic soil-structure interaction analysis methods: EPRI [Electric Power Research Institute]/NRC [Nuclear Regulatory Commission] cooperation in Lotung, Taiwan, experiments

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Tang, Y.K.; Kassawara, R.P.

    1986-01-01

    The cooperative program between NRC/ANL and EPRI on the validation of soil-structure interaction analysis methods with actual seismic response data is described. A large scale-model of a containment building has been built by EPRI/Taipower in a highly seismic region of Taiwan. Vibration tests were performed, first on the basemat before the superstructure was built and then on the completed structure. Since its completion, the structure has experienced many earthquakes. The site and structural response to these earthquakes have been recorded with field (surface and downhole) and structural instrumentation. The validation program involves blind predictions of site and structural response during vibration tests and a selected seismic event, and subsequent comparison between the predictions and measurements. The predictive calculations are in progress. The results of the correlation are expected to lead to the evaluation of the methods as to their conservatisms and sensitivities

  15. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  16. Permeability and seismic velocity and their anisotropy across the Alpine Fault, New Zealand: An insight from laboratory measurements on core from the Deep Fault Drilling Project phase 1 (DFDP-1)

    Science.gov (United States)

    Allen, M. J.; Tatham, D.; Faulkner, D. R.; Mariani, E.; Boulton, C.

    2017-08-01

    The Alpine Fault, a transpressional plate boundary between the Australian and Pacific plates, is known to rupture quasiperiodically with large magnitude earthquakes (Mw 8). The hydraulic and elastic properties of fault zones are thought to vary over the seismic cycle, influencing the nature and style of earthquake rupture and associated processes. We present a suite of laboratory permeability and P (Vp) and S (Vs) wave velocity measurements performed on fault lithologies recovered during the first phase of the Deep Fault Drilling Project (DFDP-1), which sampled principal slip zone (PSZ) gouges, cataclasites, and fractured ultramylonites, with all recovered lithologies overprinted by abundant secondary mineralization, recording enhanced fluid-rock interaction. Core material was tested in three orthogonal directions, orientated relative to the down-core axis and, when present, foliation. Measurements were conducted with pore pressure (H2O) held at 5 MPa over an effective pressure (Peff) range of 5-105 MPa. Permeabilities and seismic velocities decrease with proximity to the PSZ with permeabilities ranging from 10-17 to 10-21 m2 and Vp and Vs ranging from 4400 to 5900 m/s in the ultramylonites/cataclasites and 3900 to 4200 m/s at the PSZ. In comparison with intact country rock protoliths, the highly variable cataclastic structures and secondary phyllosilicates and carbonates have resulted in an overall reduction in permeability and seismic wave velocity, as well as a reduction in anisotropy within the fault core. These results concur with other similar studies on other mature, tectonic faults in their interseismic period.

  17. New seismic images of the crust across the Rivera Plate and Jalisco Block (Mexico)

    Science.gov (United States)

    Cordoba, Diego; Núñez-Cornú, Francisco Javier; Bartolomé, Rafael; José Dañobeitia, Juan; Bandy, William Lee; Núñez, Diana; Prada, Manel; Escudero-Ayala, Christian; Espíndola, Juan Manuel; Zamora, Araceli; Gómez, Adán; Ortiz, Modesto; Tsujal Working Group

    2015-04-01

    During the spring and summer of 2014, we achieved an extensive offshore geophysical experiment at West Coast of México entitled "Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment (TSUJAL)". The project is the result of continuous scientific collaboration between institutions in Mexico and Spain, whose main objective is to study the lithospheric structure at the collision zone between Rivera, North America Plates and the Jalisco Block, and identifying submarine structures which can potentially be tsunamigenic sources The active phase of this project carried out in February and March of 2014, we acquired around 5200 km of Multichannel Seismic Reflection (MCS) together with multibeam bathymetry and potential fields (gravity and magnetism) data. Moreover, a wide angle experiment was performed, deploying 16 OBS in 32 locations in Jalisco and Nayarit offshore regions, also recorded on a terrestrial network of 100 portable seismic stations in 240 locations across 5 seismic profiles of 200-300 km in length combined with the Seismological Network of the State of Jalisco (SisVOc). In addition, 8 land seismic stations were installed in Marías Islands and Isabel Island. These instruments registered, in continuous mode, the airgun shots generated by airgun array of 5800 ci, shooting every 120 s. The UK vessel RRS James Cook participated in this project as a part of the exchange program between Spanish and English scientific vessels, she was responsible of marine seismic experiment (MCS & WA) using a 6 km length streamer and a high capacity airgun array. Furthermore, the ARM Holzinger and RV El Puma participated in this project and were provided by the Mexican Navy and UNAM, respectively. The second phase of this project was achieved in June 2014, where 100 short period seismic stations were installed along a 200 km seismic profile from La Caldera de la Primavera (Guadalajara) to Barra de Navidad

  18. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions.

    Science.gov (United States)

    Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith

    2016-04-01

    Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.

  19. Phase IIC experiments of the USDOE/JAERI collaborative program on fusion blanket neutronics

    International Nuclear Information System (INIS)

    Youssef, M.Z.

    1992-12-01

    Effort in Phase IIC of the US/JAERI Collaborative Program on Fusion Neutronics was focused on performing integral experiments and post analyses on blankets that include the actual heterogeneities found in several blanket designs. Two geometrical arrangements were considered for the blanket assembly, namely multi-layers of Li 2 O and beryllium in an edge-on, horizontally alternating configuration for a front depth of 30 cm, followed by the Li 2 O breeding zone (Be edge-on, BEO, experiment), and vertical water coolant channels arrangement (WCC experiment). The objectives are to examine the accuracy of predicting tritium production. In the BEO system, it was shown that, with the zonal method to measure tritium production from natural lithium (Tn), the calculated-to-measured values (C/E) are 0.95-1.05 (JAERI) and 0.98-0.9 (U.S.), which is consistent with the results obtained in other Phases of the Program (Phases IIA and IIb)). In the WCC experiment, there is a noticeable change in C/E values for T 6 near the coolant channels where steep gradients in T 6 production are observed. The C/E values obtained with the Li-foil detectors are on the average closer to unity than those obtained by the Li-glass method. As for T 7 , the values obtained by NE213 method are within ±15% in JAERI's calculations, but larger values (∼20-25%) are obtained in the U.S. calculations due to the differences of cross-sections data files. Around heterogeneities, the prediction accuracy for T 7 is better than for T 6 . (J.P.N.)

  20. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep.

    Science.gov (United States)

    Poe, G R; Nitz, D A; McNaughton, B L; Barnes, C A

    2000-02-07

    The idea that sleep could serve a cognitive function has remained popular since Freud stated that dreams were "not nonsense" but a time to sort out experiences [S. Freud, Letter to Wilhelm Fliess, May 1897, in The Origins of Psychoanalysis - Personal Letters of Sigmund Freud, M. Bonaparte, A. Freud, E. Kris (Eds.), Translated by E. Mosbacher, J. Strachey, Basic Books and Imago Publishing, 1954]. Rapid eye movement (REM) sleep, which is associated with dream reports, is now known to be is important for acquisition of some tasks [A. Karni, D. Tanne, B.S. Rubenstein, J.J.M. Askenasy, D. Sagi, Dependence on REM sleep of overnight improvement of a perceptual skill, Science 265 (1994) 679-682; C. Smith, Sleep states and learning: a review of the animal literature, Biobehav. Rev. 9 (1985) 157-168]; although why this is so remains obscure. It has been proposed that memories may be consolidated during REM sleep or that forgetting of unnecessary material occurs in this state [F. Crick, G. Mitchison, The function of dream sleep, Nature 304 (1983) 111-114; D. Marr, Simple memory: a theory for archicortex, Philos. Trans. R. Soc. B. 262 (1971) 23-81]. We studied the firing of multiple single neurons in the hippocampus, a structure that is important for episodic memory, during familiar and novel experiences and in subsequent REM sleep. Cells active in familiar places during waking exhibited a reversal of firing phase relative to local theta oscillations in REM sleep. Because firing-phase can influence whether synapses are strengthened or weakened [C. Holscher, R. Anwyl, M.J. Rowan, Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo, J. Neurosci. 15 (1977) 6470-6477; P.T. Huerta, J.E. Lisman, Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro, Neuron 15 (1995) 1053-1063; C. Pavlides, Y

  1. Molten salt steam generator subsystem research experiment. Volume I. Phase 1 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-10-01

    A study was conducted for Phase 1 of a two-phase project whose objectives were to develop a reliable, cost-effective molten salt steam generating subsystem for solar thermal plants, minimize uncertainty in capital, operating, and maintenance costs, and demonstrate the ability of molten salt to generate high-pressure, high-temperature steam. The Phase 1 study involved the conceptual design of molten salt steam generating subsystems for a nominal 100-MWe net stand-alone solar central receiver electric generating plant, and a nominal 100-MWe net hybrid fossil-fueled electric power generating plant that is 50% repowered by a solar central receiver system. As part of Phase 1, a proposal was prepared for Phase 2, which involves the design, construction, testing and evaluation of a Subsystem Research Experiment of sufficient size to ensure successful operation of the full-size subsystem designed in Phase 1. Evaluation of several concepts resulted in the selection of a four-component (preheater, evaporator, superheater, reheater), natural circulation, vertically oriented, shell and tube (straight) heat exchanger arrangement. Thermal hydraulic analysis of the system included full and part load performance, circulation requirements, stability, and critical heat flux analysis. Flow-induced tube vibration, tube buckling, fatigue evaluation of tubesheet junctions, steady-state tubesheet analysis, and a simplified transient analysis were included in the structural analysis of the system. Operating modes and system dynamic response to load changes were identified. Auxiliary equipment, fabrication, erection, and maintenance requirements were also defined. Installed capital costs and a project schedule were prepared for each design.

  2. SEISMIC DISCRIMINATION

    Science.gov (United States)

    a potential new discriminant , and to study depth phases. Surface- and body-wave magnitude data have been obtained and used to study regionalization...and signal equalization studies initiated. Upgrading of software and hardware facilities has continued. (Author)

  3. Search for solar axions with the X-ray telescope of the CAST experiment (phase II)

    International Nuclear Information System (INIS)

    Nordt, Annika

    2009-01-01

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ( 4 He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with 4 He inside the magnet. The result for the coupling constant of axions to photons is: g αγγ -10 GeV -1 (95%C.L.) for m a =0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  4. Seismic sources

    Science.gov (United States)

    Green, Michael A.; Cook, Neville G. W.; McEvilly, Thomas V.; Majer, Ernest L.; Witherspoon, Paul A.

    1992-01-01

    Apparatus is described for placement in a borehole in the earth, which enables the generation of closely controlled seismic waves from the borehole. Pure torsional shear waves are generated by an apparatus which includes a stator element fixed to the borehole walls and a rotor element which is electrically driven to rapidly oscillate on the stator element to cause reaction forces transmitted through the borehole walls to the surrounding earth. Logitudinal shear waves are generated by an armature that is driven to rapidly oscillate along the axis of the borehole relative to a stator that is clamped to the borehole, to cause reaction forces transmitted to the surrounding earth. Pressure waves are generated by electrically driving pistons that press against opposite ends of a hydraulic reservoir that fills the borehole. High power is generated by energizing the elements at a power level that causes heating to over 150.degree. C. within one minute of operation, but energizing the elements for no more than about one minute.

  5. Simulation experiments for hot-leg U-bend two-phase flow phenomena

    International Nuclear Information System (INIS)

    Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.

    1986-01-01

    In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions

  6. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments

    Directory of Open Access Journals (Sweden)

    Gonzalo Macias-Bobadilla

    2016-03-01

    Full Text Available Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10−9 Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  7. Dual-Phase Lock-In Amplifier Based on FPGA for Low-Frequencies Experiments.

    Science.gov (United States)

    Macias-Bobadilla, Gonzalo; Rodríguez-Reséndiz, Juvenal; Mota-Valtierra, Georgina; Soto-Zarazúa, Genaro; Méndez-Loyola, Maurino; Garduño-Aparicio, Mariano

    2016-03-16

    Photothermal techniques allow the detection of characteristics of material without invading it. Researchers have developed hardware for some specific Phase and Amplitude detection (Lock-In Function) applications, eliminating space and unnecessary electronic functions, among others. This work shows the development of a Digital Lock-In Amplifier based on a Field Programmable Gate Array (FPGA) for low-frequency applications. This system allows selecting and generating the appropriated frequency depending on the kind of experiment or material studied. The results show good frequency stability in the order of 1.0 × 10(-9) Hz, which is considered good linearity and repeatability response for the most common Laboratory Amplitude and Phase Shift detection devices, with a low error and standard deviation.

  8. Physics of Hard Spheres Experiment (PhaSE) or "Making Jello in Space"

    Science.gov (United States)

    Ling, Jerri S.; Doherty, Michael P.

    1998-01-01

    The Physics of Hard Spheres Experiment (PHaSE) is a highly successful experiment that flew aboard two shuttle missions to study the transitions involved in the formation of jellolike colloidal crystals in a microgravity environment. A colloidal suspension, or colloid, consists of fine particles, often having complex interactions, suspended in a liquid. Paint, ink, and milk are examples of colloids found in everyday life. In low Earth orbit, the effective force of gravity is thousands of times less than at the Earth's surface. This provides researchers a way to conduct experiments that cannot be adequately performed in an Earth-gravity environment. In microgravity, colloidal particles freely interact without the complications of settling that occur in normal gravity on Earth. If the particle interactions within these colloidal suspensions could be predicted and accurately modeled, they could provide the key to understanding fundamental problems in condensed matter physics and could help make possible the development of wonderful new "designer" materials. Industries that make semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. Atomic interactions determine the physical properties (e.g., weight, color, and hardness) of ordinary matter. PHaSE uses colloidal suspensions of microscopic solid plastic spheres to model the behavior of atomic interactions. When uniformly sized hard spheres suspended in a fluid reach a certain concentration (volume fraction), the particle-fluid mixture changes from a disordered fluid state, in which the spheres are randomly organized, to an ordered "crystalline" state, in which they are structured periodically. The thermal energy of the spheres causes them to form ordered arrays, analogous to crystals. Seven of the eight PHaSE samples ranged in volume fraction from 0.483 to 0.624 to cover the range of interest, while one sample, having a concentration of 0.019, was included for

  9. Co-ordinated research programme on benchmark study for the seismic analysis and testing of WWER-type nuclear power plants. V. 5B. Experience data. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    The Co-ordinated research programme on the benchmark study for the seismic analysis and testing of WWER-type nuclear power plants was initiated subsequent to the request from representatives of Member States. The conclusions adopted at the Technical Committee Meeting on Seismic Issues related to existing nuclear power plants held in Tokyo in 1991 called for the harmonization of methods and criteria used in Member States in issues related to seismic safety. The Consulltants' Meeting which followed resulted in producing a working document for CRP. It was decided that a benchmark study is the most effective way to achieve the principal objective. Two types of WWER reactors (WWER-440/213 and WWER-1000) were selected as prototypes for the benchmark exercise to be tested on a full scale using explosions and/or vibration generators. The two prototypes are Kozloduy Units 5/6 for WWER-1000 and Paks for WWER-440/213 nuclear power plants. This volume of Working material contains reports on the effects of Armenia earthquakes on selected power, industry and commercial facilities and seismic functional qualification of active mechanical and electrical components tested on shaking table

  10. Design of a comprehensive biochemistry and molecular biology experiment: phase variation caused by recombinational regulation of bacterial gene expression.

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about Salmonella enterica serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation, antibody agglutination test, and PCR analysis. Phase variation was observed by baterial motility assay and identified by antibody agglutination test and PCR analysis. This comprehensive experiment can be performed to help students improve their ability to use the knowledge acquired in Biochemistry and Molecular Biology. Copyright © 2014 by The International Union of Biochemistry and Molecular Biology.

  11. Tutorial review of seismic surface waves' phenomenology

    Science.gov (United States)

    Levshin, A. L.; Barmin, M. P.; Ritzwoller, M. H.

    2018-03-01

    In recent years, surface wave seismology has become one of the leading directions in seismological investigations of the Earth's structure and seismic sources. Various applications cover a wide spectrum of goals, dealing with differences in sources of seismic excitation, penetration depths, frequency ranges, and interpretation techniques. Observed seismic data demonstrates the great variability of phenomenology which can produce difficulties in interpretation for beginners. This tutorial review is based on the many years' experience of authors in processing and interpretation of seismic surface wave observations and the lectures of one of the authors (ALL) at Workshops on Seismic Wave Excitation, Propagation and Interpretation held at the Abdus Salam International Center for Theoretical Physics (Trieste, Italy) in 1990-2012. We present some typical examples of wave patterns which could be encountered in different applications and which can serve as a guide to analysis of observed seismograms.

  12. Small aperture seismic arrays for studying planetary interiors and seismicity

    Science.gov (United States)

    Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.

    2017-12-01

    Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure

  13. Phase diagram of the anisotropic Anderson transition with the atomic kicked rotor: theory and experiment

    Science.gov (United States)

    Lopez, Matthias; Clément, Jean-François; Lemarié, Gabriel; Delande, Dominique; Szriftgiser, Pascal; Garreau, Jean Claude

    2013-06-01

    We realize experimentally a cold-atom system, the quasiperiodic kicked rotor, equivalent to the three-dimensional Anderson model of disordered solids where the anisotropy between the x direction and the y-z plane can be controlled by adjusting an experimentally accessible parameter. This allows us to study experimentally the disorder versus anisotropy phase diagram of the Anderson metal-insulator transition. Numerical and experimental data compare very well with each other and a theoretical analysis based on the self-consistent theory of localization correctly describes the observed behavior, illustrating the flexibility of cold-atom experiments for the study of transport phenomena in complex quantum systems.

  14. GOTHIC-IST model of ISP-47 phase B MISTRA experiment

    International Nuclear Information System (INIS)

    Chin, Y.S.

    2006-01-01

    International Standard Problem 47 examined the ability of computer codes to predict local gas distributions during experiments simulating Loss of Coolant Accidents with Loss of Emergency Core Coolant (LOCA/LOECC) or Pressurized Water Reactor severe accident scenarios that involve hydrogen release to containment. It involved three experimental test facilities (TOSQAN, MISTRA and ThAI) located in France and Germany. This report documents AECL's GOTHIC-IST 6.1bp2 model of Phase B of the MISTRA experiment with steam condensation in an air-helium atmosphere. The GOTHIC-IST model used to model the TOSQAN test (open simulation) was scaled up to model the MISTRA test (blind simulation). The GOTHIC-IST results are in good agreement with the MISTRA results, except for some anomalies in the experimental results. (author)

  15. Seismic imaging of the shallow subsurface with high frequency seismic measurements

    International Nuclear Information System (INIS)

    Kaelin, B.; Lawrence Berkeley National Lab., CA

    1998-07-01

    Elastic wave propagation in highly heterogeneous media is investigated and theoretical calculations and field measurements are presented. In the first part the dynamic composite elastic medium (DYCEM) theory is derived for one-dimensional stratified media. A self-consistent method using the scattering functions of the individual layers is formulated, which allows the calculation of phase velocity, attenuation and waveform. In the second part the DYCEM theory has been generalized for three-dimensional inclusions. The specific case of spherical inclusions is calculated with the exact scattering functions and compared with several low frequency approximations. In the third part log and VSP data of partially water saturated tuffs in the Yucca Mountain region of Nevada are analyzed. The anomalous slow seismic velocities can be explained by combining self-consistent theories for pores and cracks. The fourth part analyzes an air injection experiment in a shallow fractured limestone, which has shown large effects on the amplitude, but small effects on the travel time of the transmitted seismic waves. The large amplitude decrease during the experiment is mainly due to the impedance contrast between the small velocities of gas-water mixtures inside the fracture and the formation. The slow velocities inside the fracture allow an estimation of aperture and gas concentration profiles

  16. Seismic Reflection Methods

    Science.gov (United States)

    Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.

  17. Proposal for a seismic facility for reactor safety research

    International Nuclear Information System (INIS)

    Anderson, C.A.; Dove, R.C.; Rhorer, R.L.

    1976-07-01

    Certain problem areas in the seismic analysis and design of nuclear reactors are enumerated and the way in which an experimental program might contribute to each area is examined. The use of seismic simulation testing receives particular attention, especially with regard to the verification of structural response analysis. The importance of scale modeling used in conjunction with seismic simulation is also stressed. The capabilities of existing seismic simulators are summarized, and a proposed facility is described which would considerably extend the ability to conduct, with confidence, confirmatory experiments on the behavior of reactor components when subjected to seismic excitation. Particular applications to gas-cooled and other reactor types are described

  18. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  19. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  20. Phase-locking of tearing modes in the reversed field experiment

    Science.gov (United States)

    Fitzpatrick, Richard; Zanca, Paolo

    2002-06-01

    In the reversed field experiment (RFX) [F. Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)], the m=1 and m=0 tearing modes present in the plasma are observed to phase-lock together to form a highly peaked, strongly toroidally localized, pattern in the perturbed magnetic field. This pattern, which is commonly known as the "slinky" pattern, gives rise to severe edge loading problems which limit the maximum achievable toroidal current. A theory is presented which explains virtually all salient features of the RFX slinky pattern. The central premise of this theory is that at high ambient mode amplitude the various tearing modes occurring in the plasma phase-lock together in a configuration which minimizes the magnitudes of the electromagnetic torques exerted at the various mode rational surfaces. The theory successfully predicts the profiles of the edge radial and toroidal magnetic fields generated by the m=0 and m=1 modes, the phase relations between the various modes, the presence of a small toroidal offset between the peaks of the m=0 and m=1 contributions to the overall slinky pattern, and the response of the pattern to externally generated m=0 and m=1 magnetic perturbations.

  1. Phase-locking of tearing modes in the reversed field experiment

    International Nuclear Information System (INIS)

    Fitzpatrick, Richard; Zanca, Paolo

    2002-01-01

    In the reversed field experiment (RFX) [F. Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)], the m=1 and m=0 tearing modes present in the plasma are observed to phase-lock together to form a highly peaked, strongly toroidally localized, pattern in the perturbed magnetic field. This pattern, which is commonly known as the 'slinky' pattern, gives rise to severe edge loading problems which limit the maximum achievable toroidal current. A theory is presented which explains virtually all salient features of the RFX slinky pattern. The central premise of this theory is that at high ambient mode amplitude the various tearing modes occurring in the plasma phase-lock together in a configuration which minimizes the magnitudes of the electromagnetic torques exerted at the various mode rational surfaces. The theory successfully predicts the profiles of the edge radial and toroidal magnetic fields generated by the m=0 and m=1 modes, the phase relations between the various modes, the presence of a small toroidal offset between the peaks of the m=0 and m=1 contributions to the overall slinky pattern, and the response of the pattern to externally generated m=0 and m=1 magnetic perturbations

  2. Experiment of the downcomer effective water head during a reflood phase of PWR LOCA

    International Nuclear Information System (INIS)

    Sudo, Yukio; Murao, Yoshio

    1978-12-01

    The results and analysis are described of a downcomer effective water head experiment. Downcomer effective water head is the driving force to feed an emergency coolant to the core during a reflood phase of PWR LOCA. The test rig has dimensions of the full-scale height and gap. Experimental conditions are: downcomer wall temperature = 250 0 -- 300 0 C, back pressure = 1 atm, coolant temperature = 98 0 -- 100 0 C, extraction water velocity = 0 -- 2 cm/s, and gap size = 200 mm. The effective water head histories obtained by experiment were compared with those predicted from the heat release from the downcomer walls. The heat release was calculated from the temperature histories indicated by thermocouples instrumented in and on the walls during experiment. The following were revealed: (1) The relation of heat flux and superheat (q vs ΔT sub(s)) obtained in the experiment is much different from that in pool boiling. (2) The predicted effective water head is in good agreement with the experimental one after 120 sec from the initiation of coolant injection. (3) The effect of extraction water velocity is negligible. (4) The effect of initial wall temperatures is evident. (author)

  3. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  4. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  5. Seismic risk perception test

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro

    2013-04-01

    The perception of risks involves the process of collecting, selecting and interpreting signals about uncertain impacts of events, activities or technologies. In the natural sciences the term risk seems to be clearly defined, it means the probability distribution of adverse effects, but the everyday use of risk has different connotations (Renn, 2008). The two terms, hazards and risks, are often used interchangeably by the public. Knowledge, experience, values, attitudes and feelings all influence the thinking and judgement of people about the seriousness and acceptability of risks. Within the social sciences however the terminology of 'risk perception' has become the conventional standard (Slovic, 1987). The mental models and other psychological mechanisms which people use to judge risks (such as cognitive heuristics and risk images) are internalized through social and cultural learning and constantly moderated (reinforced, modified, amplified or attenuated) by media reports, peer influences and other communication processes (Morgan et al., 2001). Yet, a theory of risk perception that offers an integrative, as well as empirically valid, approach to understanding and explaining risk perception is still missing". To understand the perception of risk is necessary to consider several areas: social, psychological, cultural, and their interactions. Among the various research in an international context on the perception of natural hazards, it seemed promising the approach with the method of semantic differential (Osgood, C.E., Suci, G., & Tannenbaum, P. 1957, The measurement of meaning. Urbana, IL: University of Illinois Press). The test on seismic risk perception has been constructed by the method of the semantic differential. To compare opposite adjectives or terms has been used a Likert's scale to seven point. The test consists of an informative part and six sections respectively dedicated to: hazard; vulnerability (home and workplace); exposed value (with reference to

  6. Seismic stimulation for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pride, S.R.; Flekkoy, E.G.; Aursjo, O.

    2008-07-22

    The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.

  7. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  8. A test of a global seismic system for monitoring earthquakes and underground nuclear explosions

    International Nuclear Information System (INIS)

    Bowman, J.R.; Muirhead, K.; Spiliopoulos, S.; Jepsen, D.; Leonard, M.

    1993-01-01

    Australia is a member of the Group of Scientific Experts (GSE) to consider international cooperative measures to detect and identify events, an ad hoc group of the United Nations Conference on Disarmament. The GSE conducted a large-scale technical test (GSETT-2) from 22 April to 9 June 1991 that focused on the exchange and analysis of seismic parameter and waveform data. Thirty-four countries participated in GSETT-2, and data were contributed from 60 stations on all continents. GSETT-2 demonstrated the feasibility of collecting and transmitting large volumes (around 1 giga-byte) of digital data around the world, and of producing a preliminary bulletin of global seismicity within 48 hours and a final bulletin within 7 days. However, the experiment also revealed the difficulty of keeping up with the flow of data and analysis with existing resources. The Final Event Bulletins listed 3715 events for the 42 recording days of the test, about twice the number reported routinely by another international agency 5 months later. The quality of the Final Event Bulletin was limited by the uneven spatial distribution of seismic stations that contributed to GSETT-2 and by the ambiguity of associating phases detected by widely separated stations to form seismic events. A monitoring system similar to that used in GSETT-2 could provide timely and accurate reporting of global seismicity. It would need an improved distribution of stations, application of more conservative event formation rules and further development of analysis software. 8 refs., 9 figs

  9. An evaluation of methodology for seismic qualification of equipment, cable trays, and ducts in ALWR plants by use of experience data

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Kana, D.D.; Kennedy, R.P.; Schiff, A.J.

    1997-07-01

    Advanced Reactor Corporation (ARC) has developed a methodology for seismic qualification of equipment, cable trays and ducts in Advanced Light Water Reactor plants. A Panel (members of which acted as individuals) supported by the Office of Nuclear Regulatory Research of the Nuclear Regulatory Commission has evaluated this methodology. The review approach and observations are included in this report. In general, the Panel supports the ARC methodology with some exceptions and provides recommendations for further improvements. 26 refs., 10 figs., 1 tab

  10. Seismic anisotropy of the lithosphere around the Trans-European Suture Zone (TESZ) based on teleseismic body-wave data of the TOR experiment

    Czech Academy of Sciences Publication Activity Database

    Plomerová, Jaroslava; Babuška, Vladislav; Vecsey, Luděk; Kouba, Daniel

    2002-01-01

    Roč. 360, 1/4 (2002), s. 89-114 ISSN 0040-1951 R&D Projects: GA AV ČR IAA3012908; GA ČR GV205/98/K004 Institutional research plan: CEZ:AV0Z3012916 Keywords : shear-wave splitting * seismic anisotropy * subcrustal lithosphere Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.409, year: 2002

  11. Seismic investigations - The Viking Mars Lander.

    Science.gov (United States)

    Anderson, D. L.; Kovach, R. L.; Latham, G.; Press, F.; Nafi Toksoz, M.; Sutton, G.

    1972-01-01

    A lightweight three-component short period seismometer has been developed for preliminary seismic investigations of Mars. Because of weight and data-rate constraints the Viking seismic experiment is far from optimal but it should, at a minimum, provide information about the microseismic level and an upper bound on the seismicity of the planet. If Mars is tectonically active a start can be made on the problem of the internal structure, dynamics, and composition of the planet. A good distribution of modest sized Marsquakes will make it possible to determine if Mars has a core. The size of the core is related to the conditions of planetary formation.

  12. Criteria for the PNE seismic network

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1978-01-01

    A 1976 treaty between the United States and the Soviet Union permits a local seismic network to be deployed at the site of a peaceful nuclear explosion to monitor the event. Criteria for the design and selection of the data-acquisition equipment for such a network are provided. Constraints imposed by the protocol of the treaty, the environment, and the expected properties of seismic signals (based on experiences at the Nevada Test Site) are discussed. Conclusions are drawn about the desired operating mode. Criteria for a general seismic instrumentation system are described

  13. Seismic safety of Paks nuclear power plant

    International Nuclear Information System (INIS)

    Katona, T.

    1995-01-01

    This paper contains an overview of the results concerning the following activities: investigation of methods, regulations and techniques for reassessment of seismic safety of operating NPPs and upgrading of safety; investigation of earthquake hazards; development of concept for creation of the seismic safety location of earthquake warning system; determination of dynamic features of systems and facilities determined by the concept and preliminary evaluation of the seismic safety. It is limited on investigation of dynamic features of building structures, the building dynamical experiments and experimental investigation of the equipment

  14. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  15. Discrimination of Earthquake and Blast Seismicity in Western Alberta

    Science.gov (United States)

    Spriggs, N.; Law, A.; Yenier, E.; Reynen, A.; Baturan, D.

    2015-12-01

    Recorded seismicity in western Alberta is caused by natural and induced earthquakes or blast events from mining and quarry operations. Accurate discrimination of earthquakes from blast events is crucial for evaluating recent seismicity with respect to the historical catalog and for assessing seismic hazards associated with naturally occurring or induced seismicity. In general, blast events are discriminated from earthquakes based on their proximity to active mines and quarries in addition to day-of-week and time-of-day timing patterns. In some parts of western Alberta, however, seismicity originates in regions with active mines, historical earthquake seismicity, and hydraulic fracturing operations. Based on timing patterns or event locations alone, natural or induced seismicity may be misidentified as mining activity. Several studies report that relative differences in Fourier or response spectra can be used to discriminate blast and earthquake events. Other studies report that the relative timing and amplitude of seismic phases may provide useful metrics for classifying blast events. Here we propose an alternative method that accounts for both differences in phase spectra and phase timing and amplitude. In particular, we evaluate the normalized time integral for characteristic functions of particle motion from confirmed blast and earthquake events recorded by regional Alberta seismic networks. We then use these time-integral profiles to re-classify events that are initially categorized as suspected blasts based on timing pattern and event location indicators.

  16. Laboratory seismic anisotropy in mylonites

    Science.gov (United States)

    Almqvist, B. S. G.; Herwegh, M.; Hirt, A. M.; Ebert, A.; Linckens, J.; Precigout, J.; Leiss, B.; Walter, J. M.; Burg, J.-P.

    2012-04-01

    match the calculated seismic anisotropy. However, anisotropy may be reinforced by the contribution of grain-boundary effects and calcite SPO, as is indicated by microCT imaging and SEM analysis. This is evident in one case where the measured P wave anisotropy exceeded the calculated anisotropy by more than 5%, and by ~4 % higher shear-wave splitting. An even greater discrepancy can be found when comparing measured and calculated seismic anisotropy in mylonitized peridotites from shear zones in the Lanzo (Italy) and Ronda (Spain) massifs. This is in part related to serpentinization of olivine, which remains a challenge for laboratory measurements of peridotites. Highest values of calculated anisotropy, for both the calcite and peridotite mylonites, are found in near monomineralic specimens (i.e., 8 - 10% P wave anisotropy). In comparison, polymineralic specimens have calculated P wave anisotropy ranging between <2 - 5%. In contrast, the laboratory measured seismic anisotropy do not display a simple relationship as a function of mono- versus polymineralic composition. Seismic properties and anisotropy are discussed in light of conditions and mechanisms of deformation, and the possible role and influence of second-phase minerals. Laboratory measurements offers a venue for exploring the relationship between deformation and seismic anisotropy. Such investigation may, in combination with high-resolution geophysical methods and increasingly sophisticated numerical models, yield further insight on remote active deformation in the mid and lower crust, and in the upper mantle.

  17. Relative and probabilistic non linear relocation of the seismicity of El Hierro (Canary Islands, Spain): Implications for the 2011-2012 eruption.

    Science.gov (United States)

    Diaz-Moreno, Alejandro; Garcia-Yeguas, Araceli; De Angelis, Silvio; Prudencio, Janire; Ibañez, Jesus M.; Morales, José; Koulakov, Ivan

    2014-05-01

    El Hierro Island (Canary Islands, SPAIN) has recently attracted the interest of the international volcanological community. During a prolonged period of seismic and volcanic unrest, between July 2011 and April 2013, the local seismic network recorded more than 15,000 earthquakes accompanied by a submarine eruption. In this study we present an exhaustive relocation analysis of the original seismic catalog using two well established methods double-difference relative relocation (HypoDD), and probalistic non-linear location (NLLoc). Our relocations are based on 3D velocity models that were obtained from an active-source tomography experiment in the Canary Islands. The relocations constrain the spatial and temporal distribution of seismicity, and help to shed light on the patterns of stress propagation, and areas of crustal weakness under the island. The results show that the seismicity each of unrest recorded during this period is located within a small region close to the center of the island and located around 12 to 14 km depth. Then, the seismicity migrates away from the island. We confirm the presence of a high-velocity block centered underneath El Hierro (up to 15km depth) observed by other authors. This block may represent a barrier to magma propagation and it corresponds to the location of the bulk of seismicity at the beginning of each phase.

  18. Simulating and assessing boson sampling experiments with phase-space representations

    Science.gov (United States)

    Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.

    2018-04-01

    The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.

  19. Structure and dynamics of gas phase ions: Interplay between experiments and computations in IRMPD spectroscopy

    Science.gov (United States)

    Coletti, Cecilia; Corinti, Davide; Paciotti, Roberto; Re, Nazzareno; Crestoni, Maria Elisa; Fornarini, Simonetta

    2017-11-01

    The investigation of the molecular structure and dynamics of ions in gas phase is an item of increasing interest, due the role such species play in many areas of chemistry and physics, not to mention that they often represent elusive intermediates in more complex reaction mechanisms. Infrared Multiple Photon Dissociation spectroscopy is today one of the most advanced technique to this purpose, because of its high sensitivity to even small structure changes. The interpretation of IRMPD spectra strongly relies on high level quantum mechanical computations, so that a close interplay is needed for a detailed understanding of structure and kinetics properties which can be gathered from the many applications of this powerful technique. Recent advances in experiment and theory in this field are here illustrated, with emphasis on recent progresses for the elucidation of the mechanism of action of cisplatin, one of the most widely used anticancer drugs.

  20. Towards the LISA backlink: experiment design for comparing optical phase reference distribution systems

    Science.gov (United States)

    Isleif, Katharina-Sophie; Bischof, Lea; Ast, Stefan; Penkert, Daniel; Schwarze, Thomas S.; Fernández Barranco, Germán; Zwetz, Max; Veith, Sonja; Hennig, Jan-Simon; Tröbs, Michael; Reiche, Jens; Gerberding, Oliver; Danzmann, Karsten; Heinzel, Gerhard

    2018-04-01

    LISA is a proposed space-based laser interferometer detecting gravitational waves by measuring distances between free-floating test masses housed in three satellites in a triangular constellation with laser links in-between. Each satellite contains two optical benches that are articulated by moving optical subassemblies for compensating the breathing angle in the constellation. The phase reference distribution system, also known as backlink, forms an optical bi-directional path between the intra-satellite benches. In this work we discuss phase reference implementations with a target non-reciprocity of at most 2π μrad \\sqrtHz-1 , equivalent to 1 pm \\sqrtHz-1 for a wavelength of 1064 nm in the frequency band from 0.1 mHz to 1 Hz. One phase reference uses a steered free beam connection, the other one a fiber together with additional laser frequencies. The noise characteristics of these implementations will be compared in a single interferometric set-up with a previously successfully tested direct fiber connection. We show the design of this interferometer created by optical simulations including ghost beam analysis, component alignment and noise estimation. First experimental results of a free beam laser link between two optical set-ups that are co-rotating by  ±1° are presented. This experiment demonstrates sufficient thermal stability during rotation of less than 10‑4 K \\sqrtHz-1 at 1 mHz and operation of the free beam steering mirror control over more than 1 week.

  1. Fatigue effect on phase transition of pedestrian movement: experiment and simulation study

    Science.gov (United States)

    Luo, Lin; Fu, Zhijian; Zhou, Xiaodong; Zhu, Kongjin; Yang, Hongtai; Yang, Lizhong

    2016-10-01

    How to model pedestrian movement is an intriguing problem in the area of statistical physics. As a common phenomenon of pedestrian movement, fatigue has a significant negative effect on pedestrian movement, especially when pedestrians move or run with heavy luggage, rescue the wounded in disaster, climb stairs and etc. According to the field observations and previous researches, fatigue coefficient is defined as the decrease of desired velocity in this study. However, previous researches lacked quantitative analysis of the effect of fatigue on pedestrian speed. It has been a great challenge to study the effect of fatigue on pedestrian flow, since pedestrians of heterogeneous walking abilities and the change of pedestrians’ moving properties need to be taken into consideration. Thus, at first, a series of pedestrian experiments, under three different conditions, were conducted to formulate the empirical relationship among fatigue, average free velocity, and walking distance. Then the empirical formulation of pedestrian fatigue was imported into the multi-velocity field floor cellular automata (FFCA) model for following pedestrian dynamics analysis. The velocity ratio was adjusted dynamically to adapt the change of pedestrians’ velocity due to fatigue. The fatigue, entrance flow rate and pedestrian’s initial desired velocity are found to have significant effects on the pedestrian flow. The space-time distributions of pedestrian density and velocity were explored in detail, with phase transition analyses from a free flow phase to a congestion phase. Additionally, the ‘density wave’ in the system can be observed if a certain ratio of burdened pedestrians lay in the high density region. The envelope of the ‘density wave’ reaches its maximum amplitude around the entrance position, and gradually diminishes away from the entrance.

  2. Design and construction of an experiment for two-phase flow in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  3. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    Science.gov (United States)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The fate of methane bubbles escaping from seafloor seeps remains an important research question, as it directly concerns our understanding of the impact of seafloor methane leakage on ocean biogeochemistry. While the physics of rising bubbles in a water column has been studied extensively, the process is poorly understood when the gas bubbles form a hydrate ``crust" during their ascent. Understanding bubble rise, expansion and dissolution under these conditions is essential to determine the fate of bubble plumes of hydrate-forming gases such as methane and carbon dioxide from natural and man-made accidental releases. Here, we first present experimental observations of the dynamics of a bubble of Xenon in a water-filled and pressurized Hele-Shaw cell. The evolution is controlled by two processes: (1) the formation of a hydrate "crust" around the bubble, and (2) viscous fingering from bubble expansion (Figure 1). To reproduce the experimental observations, we propose a phase-field model that describes the nucleation and thickening of a porous solid shell on a moving gas-liquid interface. We design the free energy of the three-phase system (gas-liquid-hydrate) to rigorously account for interfacial effects, mutual solubility, and phase transformations (hydrate formation and disappearance). We introduce a pseudo-plasticity model with large viscosity variations to describe the plate-like rheology of the hydrate shell. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex "crustal fingering" patterns as a result of gas fingering dynamics modulated by hydrate growth at the interface. Figure caption: Snapshot of the Hele-Shaw cell experiment. As the bubble expands from depressurization of the cell, gas fingers move through the liquid and Xe-hydrate readily forms at the gas-liquid interface, giving rise to complex "crustal fingering" patterns.

  4. Using of Group-Modeling in Predesign Phase of New Healthcare Environments: Stakeholders Experiences.

    Science.gov (United States)

    Elf, Marie; Eldh, Ann Catrine; Malmqvist, Inga; Öhrn, Kerstin; von Koch, Lena

    2016-01-01

    Current research shows a relationship between healthcare architecture and patient-related outcomes. The planning and designing of new healthcare environments is a complex process. The needs of the various end users of the environment must be considered, including the patients, the patients' significant others, and the staff. The aim of this study was to explore the experiences of healthcare professionals participating in group modeling utilizing system dynamics in the predesign phase of new healthcare environments. We engaged healthcare professionals in a series of workshops using system dynamics to discuss the planning of healthcare environments in the beginning of a construction and then interviewed them about their experience. An explorative and qualitative design was used to describe participants' experiences of participating in the group-modeling projects. Participants (N = 20) were recruited from a larger intervention study using group modeling and system dynamics in planning and designing projects. The interviews were analyzed by qualitative content analysis. Two themes were formed, representing the experiences in the group-modeling process: "Participation in the group modeling generated knowledge and was empowering" and "Participation in the group modeling differed from what was expected and required the dedication of time and skills." The method can support participants in design teams to focus more on their healthcare organization, their care activities, and their aims rather than focusing on detailed layout solutions. This clarification is important when decisions about the design are discussed and prepared and will most likely lead to greater readiness for future building process. © The Author(s) 2015.

  5. Technical summary of AECL's Mine-by Experiment phase I: Excavation response

    International Nuclear Information System (INIS)

    Read, R.S.; Martin, C.D.

    1996-02-01

    The first phase of the Mine-by Experiment was conducted at the 420 Level of the Underground Research Laboratory (URL) to investigate the response induced in the rock mass by excavating a 3.5-m-diameter circular tunnel using a non-explosive technique. The main objective of the experiment was to study the processes involved in progressive failure and the development of excavation-induced damage around underground openings. To this end, state-of-the-art geomechanical and geophysical instrumentation was used to monitor the excavation of the 46-m-long Mine-by Experiment test tunnel. The results from the experiment show that progressive failure in compressive regions around the tunnel initiates at stresses about 50% of the rock strength measured in uniaxial compression tests in the laboratory. The difference between the laboratory and in situ behaviour is attributed to complex stress changes that occur during excavation of the tunnel, especially in the vicinity of the advancing face. These effects are not simulated in standard laboratory tests. Numerical modelling and in situ characterization studies were conducted to establish the extent and characteristics of the damaged zone around the test tunnel. As part of this study, in situ stresses and material properties were established through back analysis of measured displacements and strains. Using these boundary conditions, it was shown that the damaged zone was limited to within 1 m of the original tunnel perimeter. The characteristics of the damaged zone, however, were found to be highly variable around the tunnel, and were dependent on the nature of the stress concentrations, geology, stress magnitudes and orientations and, to a lesser extent, the excavation method and sequence. (author) 136 refs., 14 tabs., 103 figs

  6. The Banat seismic network: Evolution and performance

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    In the Banat Seismic Region, with its important seismogenic zones (Banat and Danube), operates today the Banat Seismic Network. This network has four short period seismic stations telemetered at the Timisoara Seismological Observatory (since 1995): Siria, Banloc, Buzias and Timisoara. The stations are equipped with short-period S13 seismometers (1 second). The data recorded by the short-period stations are telemetered to Timisoara where they are digitized at 50 samples per second, with 16 bit resolution. At Timisoara works SAPS, an automated system for data acquisition and processing, which performs real-time event detection (based on Allen algorithm), discrimination between local and teleseismic events, automatic P and S waves picking, location and magnitude determination for local events and teleseisms, 'feeding' of an Automatic Data Request Manager with phases, locations and waveforms, sending of earthquake information (as phases and location), by e-mail to Bucharest. The beginning of the seismological observations in Banat is in the 1880's (Timisoara Meteorological Observatory). The first seismograph was installed in Timisoara in 1901, and its systematic observations began in 1902. The World War I interrupted its work. In 1942 Prof. I. Curea founded the Seismic Station Timisoara, and since 1967 until today this station worked into a special building. After 1972 two stations with high amplification were installed in Retezat Mts (Gura Zlata) and on Nera Valey (Susara), as a consequence of the research results. Since 1982 Buzias station began to work completing the Banat Seismic Network. Therefore, the network could detect and locate any local seismic event with M > 2.2. Moreover, up to 20 km distance from each station any seismic event could be detected over M = 0.5. The paper also presents the quality of the locations versus different local seismic sources. (author)

  7. The Phase-2 Upgrade of the Silicon Strip Tracker of the ATLAS experiment

    CERN Document Server

    Kuehn, S; The ATLAS collaboration

    2014-01-01

    The Large Hadron Collider (LHC) performs extremely well in operation. About 26 fb-1 of data have been collected at a center-of-mass energy of 7 TeV in 2011 and at 8 TeV in 2012. Meanwhile, a phased upgrade of the LHC is planned and in about ten years from now the High-Luminosity LHC (HL-LHC) is foreseen. By luminosity levelling and a ten times higher LHC design luminosity the delivery of about 3000 fb-1 is envisaged. To cope with the severe radiation dose and high particle rates, an upgrade of several detector components of the ATLAS experiment is required. The inner detector and transition radiation tracker will be replaced by an all silicon tracking detector. The report focuses on the Phase-2 upgrade of the ATLAS silicon strip detector. It gives an overview of the concept and highlight technology choices for the upgrade strip tracker. The developments towards low mass and modular double-sided structures for the barrel and forward region are discussed. The current status of prototyping, assembly procedures a...

  8. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment

    Science.gov (United States)

    Udalski, A.; Szymański, M. K.; Szymański, G.

    2015-03-01

    We present both the technical overview and main science drivers of the fourth phase of the Optical Gravitational Lensing Experiment (hereafter OGLE-IV). OGLE-IV is currently one of the largest sky variability surveys worldwide, targeting the densest stellar regions of the sky. The survey covers over 3000 square degrees in the sky and monitors regularly over a billion sources. The main targets include the inner Galactic Bulge and the Magellanic System. Their photometry spans the range of 12System and the Galactic disk. OGLE-IV provides the astronomical community with a number of real time services. The Early Warning System (EWS) contains information on two thousand gravitational microlensing events being discovered in real time annually, the OGLE Transient Detection System (OTDS) delivers over 200 supernovae a year. We also provide the real time photometry of unpredictable variables such as optical counterparts to the X-ray sources and R Coronae Borealis stars. Hundreds of thousands new variable stars have already been discovered and classified by the OGLE survey. The number of new detections will be at least doubled during the current OGLE-IV phase. The survey was designed and optimized primarily to conduct the second generation microlensing survey for exoplanets. It has already contributed significantly to the increase of the discovery rate of microlensing exoplanets and free-floating planets.

  9. Capturing the guest experience in hotels phase one : theoretical background and development of the guest experience scan

    NARCIS (Netherlands)

    Marle, van R.S.F. (Rienk); Pijls, R. (Ruth); Schreiber, G.H. (Gerrit)

    2011-01-01

    The goal for the coming years is to get insight in the guest experience in hotels. What is guest experience? How to measure guest experience? What is the relation between guest experience and guest loyalty? And finally, what tangible elements in the physical environment of hotels and the contact

  10. Experiment for deep seismic reflections in Hidaka, Hokkaido. Comparison between Vibroseis and explosive data; Hidaka chiiki ni okeru shinbu hanno data no shutoku jikken. Vibroseis to dynamite no hikaku

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, N.; Ikawa, T. [Japex Jeoscience Institute, Tokyo (Japan); Ito, T.; Tsumura, N.; Shinohara, M.; Ikawa, T. Ikawa, H.; Asano, Y.; Tanaka, Y.; Miyazono, N. [Chiba University, Chiba (Japan); Arita, K.; Moriya, T.; Otsuka, K.; Omura, T. [Hokkaido University, Sapporo (Japan); Kimura, M. [Osaka Prefectural University, Osaka (Japan); Hirata, N. [The University of Tokyo, Tokyo (Japan); Okuike, S.

    1997-05-27

    This is a prompt report. These days the importance of acquiring knowledge about the structure from the lower crust down to the upper mantle is often discussed with reference taken to Hyogo-ken Nanbu Earthquake. The Hidaka collision belt where the lower crust is exposed on the surface is a rare phenomenon in the world and has been the subject of seismic survey. As a part of the survey, experiments are conducted by the use of vibrations produced by Vibroseis and dynamite sources. Every one of the shot records (20-second record) from the two types of vibration sources contains a clear echo in the vicinity of 16 seconds supposedly from a level deeper than 40 kilometers, not to mention reflections from shallow levels. Although some studies have to be conducted before the reflecting geological boundary (possibly the upper mantle) of the echo near the 16-second point can be identified, yet this is probably the reflection from the deepest level ever obtained in the seismic reflection survey conducted in Japan`s land area. It is proved by this experiment that vibration from a vibrator can reach as far as that from explosion if the vibrator specifications are rightly chosen. 4 refs., 3 figs.

  11. DISPLACEMENT BASED SEISMIC DESIGN CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    HOFMAYER,C.H.

    1999-03-29

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.

  12. Displacement Based Seismic Design Criteria

    International Nuclear Information System (INIS)

    Costello, J.F.; Hofmayer, C.; Park, Y.J.

    1999-01-01

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration

  13. Study of Multi-phase Flow in Porous Media : Comparison of SPH Simulations with Micro-model Experiments

    OpenAIRE

    Kunz, P.; Zarikos, I. M.; Karadimitriou, N. K.; Huber, M.; Nieken, U.; Hassanizadeh, S. M.

    2016-01-01

    We present simulations and experiments of drainage processes in a micro-model. A direct numerical simulation is introduced which is capable of describing wetting phenomena on the pore scale. A numerical smoothed particle hydrodynamics model was developed and used to simulate the two-phase flow of immiscible fluids. The experiments were performed in a micro-model which allows the visualization of interface propagation in detail. We compare the experiments and simulations of a quasistatic drain...

  14. Challenges in modeling unstable two-phase flow experiments in porous micromodels

    Science.gov (United States)

    Meheust, Y.; Ferrari, A.; Jimenez-Martinez, J.; Le Borgne, T.; Lunati, I.

    2014-12-01

    The simulation of unstable invasion patterns in porous media flow is challenging since small perturbations tend to grow in time, so that slight differences in geometry or initial conditions potentially give rise to significantly different solutions. Here we present a detailed comparison of pore scale simulations and experiments of unstable primary drainage in porous micromodels. The porous medium consists of a Hele-Shaw cell containing cylindrical obstacles. Two experimental flow cells have been constructed by soft lithography, with different degrees of heterogeneity in the grain size distribution. To model two-phase flow at the pore scale, we solve Navier-Stokes equations for mass and momentum conservation in the discretized pore space and employ the Volume of Fluid (VOF) method to track the evolution of the interface. During drainage, if the defending fluid is the most viscous, viscous forces destabilize the interface, giving rise to the formation of preferential flow paths, in the form of a branched fingering structure. We test different numerical models (a 2D vertical integrated model and a full 3D model) and different initial conditions, studying their impact on the simulated spatial distributions of the fluid phases. Although due to the unstable nature of the invasion, small discrepancies between the experimental setup and the numerical model can result in different fluids patterns (see figure), simulations show a satisfactory agreement with the structures observed experimentally. To estimate the ability of the numerical approach to reproduce unstable displacement, we compare several quantities in both the statistical and deterministic sense. We demonstrate the impact of three main sources of uncertainty : i) the uncertainty on the pore space geometry, ii) the interface initialization and ii) three dimensional effects [1]. Simulations in weakly heterogeneous geometries are found to be more challenging because uncertainties on pore neck widths are on the same

  15. Structural concepts and details for seismic design

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This manual discusses building and building component behavior during earthquakes, and provides suggested details for seismic resistance which have shown by experience to provide adequate performance during earthquakes. Special design and construction practices are also described which, although they might be common in some high-seismic regions, may not be common in low and moderate seismic-hazard regions of the United States. Special attention is given to describing the level of detailing appropriate for each seismic region. The UBC seismic criteria for all seismic zones is carefully examined, and many examples of connection details are given. The general scope of discussion is limited to materials and construction types common to Department of Energy (DOE) sites. Although the manual is primarily written for professional engineers engaged in performing seismic-resistant design for DOE facilities, the first two chapters, plus the introductory sections of succeeding chapters, contain descriptions which are also directed toward project engineers who authorize, review, or supervise the design and construction of DOE facilities. 88 refs., 188 figs.

  16. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  17. LABORATORY EXPERIMENTS ON HEAT-DRIVEN TWO-PHASE FLOWS IN NATURAL AND ARTIFICIAL ROCK FRACTURES

    International Nuclear Information System (INIS)

    TIMOTHY J. KNEAFSEY AND KARSTEN PRUESS

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed, but not when liquid-vapor counterflow was hindered by very narrow apertures, and when inadequate working fluid volume was used

  18. Water experiment on phased array acoustic leak detection system for sodium-heated steam generator

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka; Yoshiuji, Takahiro

    2015-01-01

    Highlights: • An acoustic leak detection system for sodium heated steam generator is proposed. • The new system can separate leak source from steam generator background noise. • Performance of the new system has been confirmed in water experiments. - Abstract: A phased array acoustic leak detection system for sodium heated steam generator has been proposed. The major advantage of the new system is it could provide information of acoustic source direction. An acoustic source of a sodium–water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the new system could separate the target leak source from steam generator background noise. In the previous study, the methodology was proposed and basic performance was confirmed by numerical analysis. However, in the numerical analysis, acoustic transportation through the SG tube bundle was not modeled. In the present study, performance the proposed system has been confirmed in water experiments with mockup tube bundles

  19. Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures

    International Nuclear Information System (INIS)

    Kneafsey, Timothy J.; Pruess, Karsten

    1998-01-01

    Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used

  20. Validation of two-phase flow code THYC on VATICAN experiment

    International Nuclear Information System (INIS)

    Maurel, F.; Portesse, A.; Rimbert, P.; Thomas, B.

    1997-01-01

    As part of a comprehensive program for THYC validation (THYC is a 3-dimensional two-phase flow computer code for PWR core configuration), an experimental project > has been initiated by the Direction des Etudes et Recherches of Electricite de France. Two mock-ups tested in Refrigerant-114, VATICAN-1 (with simple space grids) and VATICAN-2 (with mixing grids) were set up to investigate void fraction distributions using a single beam gamma densitometer. First, experiments were conducted with the VATICAN-1 mock-up. A set of constitutive laws to be used in rod bundles was determined but some doubts still remain for friction losses closure laws for oblique flow over tubes. From VATICAN-2 tests, calculations were performed using the standard set of correlations. Comparison with the experimental data shows an underprediction of void fraction by THYC in disturbed regions. Analyses highlight the poor treatment of axial relative velocity in these regions. A fitting of the radial and axial relative velocity values in the disturbed region improves the prediction of void fraction by the code but without any physical explanation. More analytical experiments should be carried out to validate friction losses closure laws for oblique flows and relative velocity downstream of a mixing grid. (author)

  1. Validation of two-phase flow code THYC on VATICAN experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maurel, F.; Portesse, A.; Rimbert, P.; Thomas, B. [EDF/DER, Dept. TTA, 78 - Chatou (France)

    1997-12-31

    As part of a comprehensive program for THYC validation (THYC is a 3-dimensional two-phase flow computer code for PWR core configuration), an experimental project <> has been initiated by the Direction des Etudes et Recherches of Electricite de France. Two mock-ups tested in Refrigerant-114, VATICAN-1 (with simple space grids) and VATICAN-2 (with mixing grids) were set up to investigate void fraction distributions using a single beam gamma densitometer. First, experiments were conducted with the VATICAN-1 mock-up. A set of constitutive laws to be used in rod bundles was determined but some doubts still remain for friction losses closure laws for oblique flow over tubes. From VATICAN-2 tests, calculations were performed using the standard set of correlations. Comparison with the experimental data shows an underprediction of void fraction by THYC in disturbed regions. Analyses highlight the poor treatment of axial relative velocity in these regions. A fitting of the radial and axial relative velocity values in the disturbed region improves the prediction of void fraction by the code but without any physical explanation. More analytical experiments should be carried out to validate friction losses closure laws for oblique flows and relative velocity downstream of a mixing grid. (author)

  2. Silicon strip tracking detector development and prototyping for the Phase-2 Upgrade of the ATLAS experiment

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2015-01-01

    In about ten years from now, the Phase-2 upgrade of the LHC is planned. This will result in a severe radiation dose and high particle rates for the multipurpose exeperiments because of a foreseen luminosity of ten times higher the LHC design luminosity. Several detector components will have to be upgraded in the experiments. In the ATLAS experiment the current inner detector will be replaced by an all silicon tracking detector aiming for high performance. The poster will present the development and the latest prototyping of the upgrade silicon strip tracking detector. Its layout foresees low mass and modular double-sided structures for the barrel and forward region. Silicon sensors and readout electronics, so-called modules, are planned to be assembled double-sided on larger carbon-core structures. The modularity allows assembly and testing at multiple sites. Many components need to be developed and their prototyping towards full-size components is ongoing. New developments and test results will be presented....

  3. Tegresstrade mark Urethral Implant Phase III Clinical Experience and Product Uniqueness.

    Science.gov (United States)

    Dmochowski, Roger R

    2005-01-01

    Advances in materials technology, coupled with a heightened understanding of wound healing and tissue-materials interactions in the lower urinary tract, have led to the development of a variety of new urethral bulking agents that are expected to be available in the near future. Experience with such bulking agents continues to grow and study results are disseminated as more clinical trials are initiated and completed. The intention of this report is to review the characteristics and initial clinical results for one of these new agents: Tegresstrade mark Urethral Implant (C. R. Bard, Inc., Murray Hill, NJ). This material, with unique phase-change properties upon exposure to body temperature fluids, offers ease of injection and requires less volume for clinical effect than bovine collagen. Additionally, Tegress Urethral Implant performance in clinical trials has suggested improved durability and correspondingly higher continence and improvement rates versus bovine collagen. As these materials evolve, an understanding of preferential implant techniques is being gained also. Delivery method and implant site may prove to substantially alter the biologic activity of these compounds. As outlined in this review, experience with Tegress Implant resulted in changes in delivery technique that translated into improved materials and tissue interaction.

  4. Estimation of finite seismic source parameters for selected events of the West Bohemia year 2008 seismic swarm

    Czech Academy of Sciences Publication Activity Database

    Kolář, Petr; Růžek, Bohuslav

    2015-01-01

    Roč. 19, č. 2 (2015), s. 403-421 ISSN 1383-4649 R&D Projects: GA ČR GAP210/10/1728 Institutional support: RVO:67985530 Keywords : West Bohemia year 2008 seismic swarm * finite seismic source * stopping phases * stress drop Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.550, year: 2015

  5. The New Italian Seismic Hazard Model

    Science.gov (United States)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme

  6. Laboratory meter-scale seismic monitoring of varying water levels in granular media

    Science.gov (United States)

    Pasquet, S.; Bodet, L.; Bergamo, P.; Guérin, R.; Martin, R.; Mourgues, R.; Tournat, V.

    2016-12-01

    Laboratory physical modelling and non-contacting ultrasonic techniques are frequently proposed to tackle theoretical and methodological issues related to geophysical prospecting. Following recent developments illustrating the ability of seismic methods to image spatial and/or temporal variations of water content in the vadose zone, we developed laboratory experiments aimed at testing the sensitivity of seismic measurements (i.e., pressure-wave travel times and surface-wave phase velocities) to water saturation variations. Ultrasonic techniques were used to simulate typical seismic acquisitions on small-scale controlled granular media presenting different water levels. Travel times and phase velocity measurements obtained at the dry state were validated with both theoretical models and numerical simulations and serve as reference datasets. The increasing water level clearly affects the recorded wave field in both its phase and amplitude, but the collected data cannot yet be inverted in the absence of a comprehensive theoretical model for such partially saturated and unconsolidated granular media. The differences in travel time and phase velocity observed between the dry and wet models show patterns that are interestingly coincident with the observed water level and depth of the capillary fringe, thus offering attractive perspectives for studying soil water content variations in the field.

  7. U.S./JAERI collaborative program on fusion neutronics, phase 1 fusion integral experiments, (2)

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Youssef, M.Z.

    1988-09-01

    The U.S./JAERI Collaborative Program on Fusion Neutronics is in progress using the FNS facility at JAERI. Phase I experiments of the program have been completed and independently analyzed. The predictions of key neutronics parameters were compared to measurements to derive information on the accuracy involved in the calculations of these parameters. First, measurements were performed to characterize the neutron field by the foil activations method and spectrum measurements using both TOF technique as well as NE213 and proton recoil counters. The measurements inside the Li 2 O assembly included tritium production rate (TPR), foil activation and neutron spectrum measurements above 1 MeV. Analyses for these measured parameters were performed by using two-dimensional discrete ordinates codes, DOT3.5(JAERI) and DOT4.3(U.S.) and Monte Carlo codes, MORSE-DD(JAERI) and MCNP(U.S.). The nuclear data used by JAERI were based on JENDL3/PR1 and PR2 while the U.S. calculations were based on ENDF/B-V and data evaluated at LANL for 7 Li and Be. The configurations considered for the test assembly were: (a) a reference Li 2 O assembly, (b) first wall preceded the Li 2 O assembly with and without a coolant channel simulated by polyethylene, and (c) beryllium zone in front of the assembly as well as sandwiched between a front Li 2 O zone and the main assembly. In this document, results of the analysis for these experiments are reported as Volume II. Details of the experiments and the experimental techniques applied are reported separately as Volume I. (author)

  8. Erosion influences the seismicity of active thrust faults.

    Science.gov (United States)

    Steer, Philippe; Simoes, Martine; Cattin, Rodolphe; Shyu, J Bruce H

    2014-11-21

    Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

  9. High-level seismic tests of piping at the HDR [Heissdampfreaktor

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

    1989-01-01

    As part of the second-phase testing at the Heissdampfreaktor (HDR) Test Facility in Kahl/Main, Federal Republic of Germany (FRG), high-level seismic experiments, designated SHAM, were performed on an in-plant piping system during the period of 19 April to 27 May 1988. The objectives of the SHAM experiments were to (1) study the response of piping subjected to seismic excitation levels that exceed design levels manifold and which may result in failure/plastification of pipe supports and pipe elements; (2) provide data for the validation of linear and nonlinear pipe response analyses; (3) compare and evaluate, under identical loading conditions, the performance of various dynamic support system, ranging from very flexible to very stiff support configurations; (4) establish seismic margins for piping, dynamic pipe supports, and pipe anchorages; and (5) investigate the response, operability, and fragility of dynamic supports and of a typical US gate valve under extreme levels of seismic excitation. A brief description of the SHAM tests is provided, followed by highlights of the test results that are given primarily in the form of maximum response values. Also presented are very limited comparisons of experimental data and pretest analytical predictions. 6 refs., 8 figs

  10. Tracing the Farallon plate through seismic imaging with USArray

    Science.gov (United States)

    Porritt, Robert William

    The Farallon plate system has been subducting off the western United States since at least the middle Mesozoic. This plate has undergone virtually every subduction process during this time including a long episode of flat-slab subduction, generation of microplates, and formation of oceanic plateaus. The shallow remains of this plate are two small microplates, the Gorda and Juan de Fuca, in the Pacific Northwest. The anomalous nature of these two small plates and the missing deeper evidence of subduction has motivated this study. The USArray seismic experiment has provided unprecedented spatial sampling of the seismic wavefield in the continuous United States. Utilizing this dataset, new imaging methods have been implemented and older imaging methods have been revitalized. This study first uses ambient seismic noise in the Pacific Northwest to extract short period Rayleigh waves which are sensitive to lithospheric scale structure. Phase velocities from this model are then combined with teleseismic delay times of body waves and surface waves to image the structure of the continuous United States from the surface through the mantle transition zone. The resolving power of this model allows tracing of the Farallon plate from the trench to the lower mantle. The seismic velocity structure of the continuous United States is broadly composed of a slow western half and fast eastern half separated by the Rocky Mountain Front. The low velocity of the western U.S. contains several high velocity anomalies. While previous work has focused on individual anomalies and suggested they represent lithospheric instabilities, a larger regional view indicates that these are the western remnants of the Farallon plate. Below the thick cratonic lithosphere of the eastern U.S., the Farallon plate contains significant topography due to a subducted heterogeneity of the oceanic plate and a viscosity contrast through the mantle transition zone. The velocity models presented herein provide a

  11. Securing technological equipment against uncommon seismic effects

    International Nuclear Information System (INIS)

    Podrouzek, J.

    1987-01-01

    Practical possibilities are discussed of seismic modifications of power plant structures and systems with a view to ancillary equipment providing such modifications. Briefly outlined are the possibilities of reinforcing technological equipment and systems operating at normal temperatures, where the basic precondition of seismic resistance is strong and reliable anchorage. Attention is paid to equipment handling high temperature media. In these cases, in selecting seismic protection thermal expansion should be considered as an accompanying effect. Different types are described in detail of hydraulic and mechanical limiters of foreign makes. It is stated on the basis of practical experience that hydraulic limiters involve a number of problems. Mechanical limiters seem to be more appropriate in spite of the complexity of their operation. Viscous dampers are another suitable element for the seismic protection of power plant technological equipment. (Z.M.). 22 figs., 3 tabs., 19 refs

  12. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    Science.gov (United States)

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  13. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    International Nuclear Information System (INIS)

    Almen, Karl-Erik; Stenberg, Leif

    2005-12-01

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  14. Aespoe Hard Rock Laboratory. Characterisation methods and instruments. Experiences from the construction phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-12-15

    This report describes the different investigation methods used during the Aespoe HRL construction phase which commenced 1990 and ended 1995. The investigation methods are described with respect to performance, errors, uncertainty and usefulness in determined, analysed and/or calculated parameter values or other kind of geoscientific information. Moreover, other comments of the different methods, like those related to the practical performance of the measurements or tests are given. The practical performance is a major task as most of the investigations were conducted in parallel with the construction work. Much of the wide range of investigations carried out during the tunnelling work required special efforts of the personnel involved. Experiences and comments on these operations are presented in the report. The pre-investigation methods have been evaluated by comparing predictions based on pre-investigation models with data and results from the construction phase and updated geoscientific models. In 1997 a package of reports describe the general results of the pre-investigations. The investigation methods are in this report evaluated with respect to usefulness for underground characterisation of a rock volume, concerning geological, geohydrological, hydrochemical and rock mechanical properties. The report describes out opinion of the methods after the construction phase, i.e. the same platform of knowledge as for the package of reports of 1997. The evaluation of usefulness of the underground investigation methods are structured according to the key issues used for the preinvestigation modelling and predictions, i.e. Geological-structural model, Groundwater flow (hydrogeology), Groundwater chemistry (hydrochemistry), Transport of solutes and Mechanical stability models (or rock mechanics). The investigation methods selected for the different subjects for which the predictions were made are presented. Some of the subjects were slightly modified or adjusted during

  15. Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions

    Science.gov (United States)

    Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.

    2016-10-01

    Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability

  16. RAYLEIGH-TAYLOR STRENGTH EXPERIMENTS OF THE PRESSURE-INDUCED alpha->epsilon->alpha' PHASE TRANSITION IN IRON

    Energy Technology Data Exchange (ETDEWEB)

    Belof, J L; Cavallo, R M; Olson, R T; King, R S; Gray, G T; Holtkamp, D B; Chen, S R; Rudd, R E; Barton, N R; Arsenlis, A; Remington, B A; Park, H; Prisbrey, S T; Vitello, P A; Bazan, G; Mikaelian, K O; Comley, A J; Maddox, B R; May, M J

    2011-08-10

    We present here the first dynamic Rayleigh-Taylor (RT) strength measurement of a material undergoing solid-solid phase transition. Iron is quasi-isentropically driven across the pressure-induced bcc ({alpha}-Fe) {yields} hcp ({var_epsilon}-Fe) phase transition and the dynamic strength of the {alpha}, {var_epsilon} and reverted {alpha}{prime} phases have been determined via proton radiography of the resulting Rayleigh-Taylor unstable interface between the iron target and high-explosive products. Simultaneous velocimetry measurements of the iron free surface yield the phase transition dynamics and, in conjunction with detailed hydrodynamic simulations, allow for determination of the strength of the distinct phases of iron. Forward analysis of the experiment via hydrodynamic simulations reveals significant strength enhancement of the dynamically-generated {var_epsilon}-Fe and reverted {alpha}{prime}-Fe, comparable in magnitude to the strength of austenitic stainless steels.

  17. High spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments

    CERN Document Server

    Kohmura, Y; Takeuchi, A; Takano, H; Suzuki, Y; Ishikawa, T; Ohigashi, T; Yokosuka, H

    2001-01-01

    A high spatial resolution X-ray microscope was constructed using an X-ray refractive lens as an objective. The spatial resolution was tested using 18 keV X-ray. A 0.4 mu m line and 0.4 mu m space tantalum test pattern was successfully resolved. Using the similar setup with the addition of a phase plate, a Zernike type phase-contrast microscopy experiment was carried out for the phase retrieval of the samples. Two-dimensional phase-contrast images were successfully taken for the first time in the hard X-ray region. Images of a gold mesh sample were analyzed and the validity of this method was indicated. An improvement of the lens, however, is required for the precise phase retrieval of the samples.

  18. A new optimization procedure for the accurate characterization of thermal phase transformation curves based on controlled quenching experiments

    Directory of Open Access Journals (Sweden)

    Peterli Maurice

    2016-01-01

    Full Text Available Precise hardness and phase content prediction for quenched steel with the finite element method requires optimal material data, which is usually obtained from measured continuous cooling transformation (CCT diagrams. However, most software packages that are able to predict final phase composition require time temperature transformation (TTT diagrams. TTT diagrams can be calculated from the chemical composition of the material. With this methods the numerical prediction often result in deviations to reality. A newly developed optimization method can improve the accuracy of phase content and hardness prediction after quenching by optimizing the TTT diagram with measured data of controlled quenching experiments.

  19. Using Impactors for Active Seismic Investigation of the Interior of Mars with a Single Seismic Station

    Science.gov (United States)

    Webb, F.; Kedar, S.; Wolf, A.; Harvey, N.; Sklyanskiy, E.; Chu, R.

    2010-12-01

    A mission feasibility study to determine the interior structure of Mars with an active seismic experiment has demonstrated that a single lander with a seismometer placed on Mars and recording signals from several high-energy impactors that strike the planet in different locations can provide valuable information on the interior structure on Mars. A seismic sensitivity analysis was conducted, simulating seismic wave propagation through generic Martian interior models, and using a range of impact seismic efficiency factors and a variety of candidate seismometers. Both regional (~100km) and planet-scale seismic studies were simulated. More than any other factor, the scientific success of the concept depends on the correct assessment of the impact’s seismic efficiency. Our calculations show that a 500Kg projectile, hitting the planet at 5km/s with seismic efficiency of 10-3, will likely be observed at a distance of 50° away from the impact. This concept demonstrates that an active impact experiment could provide additional operational value to Mars seismometry missions.

  20. From Sound Morphing to the Synthesis of Starlight. Musical experiences with the Phase Vocoder over 25 years

    Directory of Open Access Journals (Sweden)

    Trevor Wishart

    2013-08-01

    Full Text Available The article reports the author’s experiences with the phase vocoder. Starting from the first attempts during the years 1973-77 – in connection with a speculative project to morph the sounds of a speaking voice into sounds from the natural world, project subsequently developed at Ircam in Paris between 1979 and 1986 – up to the most recent experiences in 2011-12 associated with the realization of Supernova, an 8-channel sound-surround piece, where the phase vocoder data format is used as a synthesis tool.

  1. Toward Reanalysis of the Tight-Pitch HCLWR-PROTEUS Phase II Experiments

    Science.gov (United States)

    Perret, Grégory; Vlassopoulos, Efstathios; Hursin, Mathieu; Pautz, Andreas

    2016-03-01

    The HCLWR-Proteus Phase II experiments were conducted from 1985 to 1990 in the zero-power reactor Proteus at PSI in Switzerland. The experimental program was dedicated to the physics of high conversion light water reactors and in particular to the measurement of reactor parameters such as reaction rate traverses, spectral indices, absorber reactivity worths and void coefficients. The HCLWR experiments are especially interesting because they generated knowledge in the epithermal range of the neutron flux spectrum, for which little integral experimental data is available. In an effort to assess the interest of this experimental data to validate modern nuclear data and improve their uncertainties, a preliminary re-analysis of selected configurations was conducted with Monte-Carlo codes (MCNP6/SERPENT2) and modern nuclear data libraries (ENDF/B-VII.0, JEFF-3.1.1 and JENDL-4.0). The spectral ndices, flux spectra and sensitivity coefficients on k∞ were calculated using cell models representative of the tight-pitch measurement configurations containing 11% PuO2-UO2 fuel rods in different moderation conditions (air, water and dowtherm). Spectral index predictions using the three nuclear data libraries agreed within two standard deviations with the measured values. The only exception is the Pu-242-capture-to-Pu-239-fission ratio, which was overestimated with all libraries by more than four standard deviations, i.e. 13%, in the non-moderated configuration. In this configuration, Pu-242 captures are few since the flux spectrum in the Pu-242 capture resonance region (between 1eV and 1keV) is small making this spectral index hard to measure. Sensitivity coefficient predictions with both MCNP6 and SERPENT2 were in good agreement.

  2. In-pile observations of fuel and clad relocation during LMFBR initiation phase accident experiments - the STAR experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Schumacher, G.; Henkel, P.R.; Royl, P.

    1987-01-01

    A series of seven in-pile experiments (the STAR experiments) were performed in which clad motion and fuel dispersal were observed in small pin bundles with high-speed cinematography. The experimental heating conditions reproduced a range of Loss of Flow (LOF) accident scenarios for the lead subassemblies in LMFBRs. The experiments show strong tendencies for limited clad motion in multiple pin bundles, early fuel disruption and dispersal (prior to fuel melting) in moderate power transients having simultaneous clad melting and fuel disruption. The more recent experiments indicate a possibility of steel vapor driven fuel dispersal after fuel breakup and intimate fuel/steel mixing. (author)

  3. Phase behavior of casein micelles/exocellular polysaccharide mixtures: Experiment and theory

    Science.gov (United States)

    Tuinier, R.; de Kruif, C. G.

    1999-05-01

    Dispersions of casein micelles and an exocellular polysaccharide (EPS), obtained from Lactococcus lactis subsp. cremoris NIZO B40 EPS, show a phase separation. The phase separation is of the colloidal gas-liquid type. We have determined a phase diagram that describes the separation of skim milk with EPS into a casein-micelle rich phase and an EPS rich phase. We compare the phase diagram with those calculated from theories developed by Vrij, and by Lekkerkerker and co-workers, showing that the experimental phase boundary can be predicted quite well. From dynamic light scattering measurements of the self-diffusion of the casein micelles in the presence of EPS the spinodal could be located and it corresponds with the experimental phase boundary.

  4. Modeling and Field Results from Seismic Stimulation

    International Nuclear Information System (INIS)

    Majer, E.; Pride, S.; Lo, W.; Daley, T.; Nakagawa, Seiji; Sposito, Garrison; Roberts, P.

    2006-01-01

    Modeling the effect of seismic stimulation employing Maxwell-Boltzmann theory shows that the important component of stimulation is mechanical rather than fluid pressure effects. Modeling using Biot theory (two phases) shows that the pressure effects diffuse too quickly to be of practical significance. Field data from actual stimulation will be shown to compare to theory

  5. Seismic Catalogue and Seismic Network in Haiti

    Science.gov (United States)

    Belizaire, D.; Benito, B.; Carreño, E.; Meneses, C.; Huerfano, V.; Polanco, E.; McCormack, D.

    2013-05-01

    The destructive earthquake occurred on January 10, 2010 in Haiti, highlighted the lack of preparedness of the country to address seismic phenomena. At the moment of the earthquake, there was no seismic network operating in the country, and only a partial control of the past seismicity was possible, due to the absence of a national catalogue. After the 2010 earthquake, some advances began towards the installation of a national network and the elaboration of a seismic catalogue providing the necessary input for seismic Hazard Studies. This paper presents the state of the works carried out covering both aspects. First, a seismic catalogue has been built, compiling data of historical and instrumental events occurred in the Hispaniola Island and surroundings, in the frame of the SISMO-HAITI project, supported by the Technical University of Madrid (UPM) and Developed in cooperation with the Observatoire National de l'Environnement et de la Vulnérabilité of Haiti (ONEV). Data from different agencies all over the world were gathered, being relevant the role of the Dominican Republic and Puerto Rico seismological services which provides local data of their national networks. Almost 30000 events recorded in the area from 1551 till 2011 were compiled in a first catalogue, among them 7700 events with Mw ranges between 4.0 and 8.3. Since different magnitude scale were given by the different agencies (Ms, mb, MD, ML), this first catalogue was affected by important heterogeneity in the size parameter. Then it was homogenized to moment magnitude Mw using the empirical equations developed by Bonzoni et al (2011) for the eastern Caribbean. At present, this is the most exhaustive catalogue of the country, although it is difficult to assess its degree of completeness. Regarding the seismic network, 3 stations were installed just after the 2010 earthquake by the Canadian Government. The data were sent by telemetry thought the Canadian System CARINA. In 2012, the Spanish IGN together

  6. Salvo: Seismic imaging software for complex geologies

    Energy Technology Data Exchange (ETDEWEB)

    OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

    2000-03-01

    This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

  7. Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation.

    Science.gov (United States)

    Sinha, Santanu; Bender, Andrew T; Danczyk, Matthew; Keepseagle, Kayla; Prather, Cody A; Bray, Joshua M; Thrane, Linn W; Seymour, Joseph D; Codd, Sarah L; Hansen, Alex

    2017-01-01

    We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate ( Q ) and the total pressure difference ([Formula: see text]) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers at the interfaces effectively creates a yield threshold ([Formula: see text]), making the fluids reminiscent of a Bingham viscoplastic fluid in the porous medium. In this regime, Q depends quadratically on an excess pressure drop ([Formula: see text]). While increasing the flow rate, there is a transition, beyond which the overall flow is Newtonian and the relationship is linear. In our experiments, we build a model porous medium using a column of glass beads transporting two fluids, deionized water and air. For the numerical study, reconstructed 3D pore networks from real core samples are considered and the transport of wetting and non-wetting fluids through the network is modeled by tracking the fluid interfaces with time. We find agreement between our numerical and experimental results. Our results match with the mean-field results reported earlier.

  8. Experiments on one-phase thermally stratified flows in nuclear reactor pipe lines

    International Nuclear Information System (INIS)

    Rezende, Hugo Cesar; Navarro, Moyses Alberto; Jordao, Elizabete; Santos, Andre Augusto Campagnole dos

    2009-01-01

    The phenomenon of thermal stratified flows occurs when two different layers of the same liquid at different temperatures flow separately in horizontal pipes without appreciable mixing. This phenomenon was not considered in the design stage of most of the operating nuclear power plants, but in last two decades it has become apparent due to the temperature monitoring of piping systems. The occurrence of temperature differences of about 200 deg C have been found in a narrow band around the hot and cold water interface in components under stratified flows. Loadings due to thermal stratification affected the integrity of safety related piping systems. This paper presents the results of a range of experiments performed to simulate one phase thermally stratified flows in geometry and flow condition representing a nuclear reactor steam generator injection nozzle. They have the objective of studying the flow configurations and understanding the evolution of the thermal stratification process. The driving parameter considered to characterize flow under stratified regime due to difference in specific masses is the Froude number. Different Froude numbers, from 0.018 to 0.22, were obtained in different testes by setting injection cold water flow rates and hot water initial temperatures as planned in the test matrix. Results are presented showing the influence of Froude number on the hot and cold water interface position, temperature gradients and striping phenomenon. (author)

  9. Phase Change Materials-Assisted Heat Flux Reduction: Experiment and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2016-01-01

    Full Text Available Phase change materials (PCM in the construction industry became attractive because of several interesting attributes, such as thermo-physical parameters, open air atmospheric condition usage, cost and the duty structure requirement. Thermal performance optimization of PCMs in terms of proficient storage of a large amount of heat or cold in a finite volume remains a challenging task. Implementation of PCMs in buildings to achieve thermal comfort for a specific climatic condition in Iraq is our main focus. From this standpoint, the present paper reports the experimental and numerical results on the lowering of heat flux inside a residential building using PCM, which is composed of oil (40% and wax (60%. This PCM (paraffin, being plentiful and cost-effective, is extracted locally from waste petroleum products in Iraq. Experiments are performed with two rooms of identical internal dimensions in the presence and absence of PCM. A two-dimensional numerical transient heat transfer model is developed and solved using the finite difference method. A relatively simple geometry is chosen to initially verify the numerical solution procedure by incorporating in the computer program two-dimensional elliptic flows. It is demonstrated that the heat flux inside the room containing PCM is remarkably lower than the one devoid of PCM.

  10. Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment

    Science.gov (United States)

    Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.

    1999-11-01

    The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).

  11. Automating Shallow Seismic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Steeples, Don W.

    2004-12-09

    -access environments, this device could make SSR surveying considerably more efficient and less expensive, particularly when geophone intervals of 25 cm or less are required. The most recent research analyzed the difference in seismic response of the geophones with variable geophone spike length and geophones attached to various steel media. Experiments investigated the azimuthal dependence of the quality of data relative to the orientation of the rigidly attached geophones. Other experiments designed to test the hypothesis that the data are being amplified in much the same way that an organ pipe amplifies sound have so far proved inconclusive. Taken together, the positive results show that SSR imaging within a few meters of the earth's surface is possible if the geology is suitable, that SSR imaging can complement GPR imaging, and that SSR imaging could be made significantly more cost effective, at least in areas where the topography and the geology are favorable. Increased knowledge of the Earth's shallow subsurface through non-intrusive techniques is of potential benefit to management of DOE facilities. Among the most significant problems facing hydrologists today is the delineation of preferential permeability paths in sufficient detail to make a quantitative analysis possible. Aquifer systems dominated by fracture flow have a reputation of being particularly difficult to characterize and model. At chemically contaminated sites, including U.S. Department of Energy (DOE) facilities and others at Department of Defense (DOD) installations worldwide, establishing the spatial extent of the contamination, along with the fate of the contaminants and their transport-flow directions, is essential to the development of effective cleanup strategies. Detailed characterization of the shallow subsurface is important not only in environmental, groundwater, and geotechnical engineering applications, but also in neotectonics, mining geology, and the analysis of petroleum reservoir

  12. Phase III (and maybe IV of the SIMPLE dark matter search experiment at the LSBB

    Directory of Open Access Journals (Sweden)

    Girard T.A.

    2014-01-01

    Full Text Available with the recent conclusion of Phase II, SIMPLE has ended its use of Superheated Droplet Detectors (SDD in the WIMP search effort. An in-progress Phase III comprises a transition to larger mass bubble chamber technology, using many of the lessons gained from the previous phase since the underlying physics is identical. We describe the progress of the activities, to include several ∼1 kg prototype chambers, each 4× the total Phase II active mass, which are undergoing testing, prior to a rescaling to a 50 kg capacity within a Phase IV modular 1 ton detector for a definitive astroparticle search effort.

  13. Maturity of nearby faults influences seismic hazard from hydraulic fracturing

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R.; Friberg, Paul; Skoumal, Robert J.; Baxter, Nicholas D.; Currie, Brian S.

    2018-02-01

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: (i) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post–shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ˜1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  14. Maturity of nearby faults influences seismic hazard from hydraulic fracturing.

    Science.gov (United States)

    Kozłowska, Maria; Brudzinski, Michael R; Friberg, Paul; Skoumal, Robert J; Baxter, Nicholas D; Currie, Brian S

    2018-02-20

    Understanding the causes of human-induced earthquakes is paramount to reducing societal risk. We investigated five cases of seismicity associated with hydraulic fracturing (HF) in Ohio since 2013 that, because of their isolation from other injection activities, provide an ideal setting for studying the relations between high-pressure injection and earthquakes. Our analysis revealed two distinct groups: ( i ) deeper earthquakes in the Precambrian basement, with larger magnitudes (M > 2), b-values 1.5, and few post-shut-in earthquakes. Based on geologic history, laboratory experiments, and fault modeling, we interpret the deep seismicity as slip on more mature faults in older crystalline rocks and the shallow seismicity as slip on immature faults in younger sedimentary rocks. This suggests that HF inducing deeper seismicity may pose higher seismic hazards. Wells inducing deeper seismicity produced more water than wells with shallow seismicity, indicating more extensive hydrologic connections outside the target formation, consistent with pore pressure diffusion influencing seismicity. However, for both groups, the 2 to 3 h between onset of HF and seismicity is too short for typical fluid pressure diffusion rates across distances of ∼1 km and argues for poroelastic stress transfer also having a primary influence on seismicity.

  15. Deblending of seismic data

    NARCIS (Netherlands)

    Mahdad, A.

    2012-01-01

    Seismic imaging is one of the most common geophysical techniques for hydrocarbon exploration. Seismic acquisition is a trade-off between economy and quality. In conventional acquisition, the time intervals between successively firing sources are large enough to avoid interference in time. To obtain

  16. EVOLUTION OF SOUTHERN AFRICAN CRATONS BASED ON SEISMIC IMAGING

    DEFF Research Database (Denmark)

    Thybo, Hans; Soliman, Mohammad Youssof Ahmad; Artemieva, Irina

    2014-01-01

    present a new seismic model for the structure of the crust and lithospheric mantle of the Kalahari Craton, constrained by seismic receiver functions and finite-frequency tomography based on the seismological data from the South Africa Seismic Experiment (SASE). The combination of these two methods...... since formation of the craton, and (3) seismically fast lithospheric keels are imaged in the Kaapvaal and Zimabwe cratons to depths of 300-350 km. Relatively low velocity anomalies are imaged beneath both the paleo-orogenic Limpopo Belt and the Bushveld Complex down to depths of ~250 km and ~150 km...

  17. Bergermeer Seismicity Study

    Energy Technology Data Exchange (ETDEWEB)

    Muntendam-Bos, A.G.; Wassing, B.B.T.; Geel, C.R.; Louh, M.; Van Thienen-Visser, K.

    2008-11-15

    The Bergermeer seismicity study has been carried out with the objective to provide the required insight in the seismic risks of re-pressurization of the Bergermeer field. This requires a thorough analysis of the geomechanical behaviour of the field, in particular the processes related to pressure variations leading to seismic activity. At a later stage (23.04.2008), the scope was extended with scrutinizing the geomechanical consequences of thermal variations in the reservoir due to cold gas injection on the processes leading to seismic activity. This report describes the general background of the Bergermeer field and the processes inducing seismicity. This is followed by a description of the geological model of the Bergermeer field, the subsidence modelling, reservoir engineering and geomechanical analysis.

  18. Probabilistic Safety Goals. Phase 1 Status and Experiences in Sweden and Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Jan-Erik (VTT, FI-02044 VTT (Finland)); Knochenhauer, Michael (Relcon Scandpower AB, SE-172 25 Sundbyberg (Sweden))

    2007-02-15

    The outcome of a probabilistic safety assessment (PSA) for a nuclear power plant is a combination of qualitative and quantitative results. Quantitative results are typically presented as the Core Damage Frequency (CDF) and as the frequency of an unacceptable radioactive release. In order to judge the acceptability of PSA results, criteria for the interpretation of results and the assessment of their acceptability need to be defined. Ultimately, the goals are intended to define an acceptable level of risk from the operation of a nuclear facility. However, safety goals usually have a dual function, i.e., they define an acceptable safety level, but they also have a wider and more general use as decision criteria. The exact levels of the safety goals differ between organisations and between different countries. There are also differences in the definition of the safety goal, and in the formal status of the goals, i.e., whether they are mandatory or not. In this first phase of the project, the aim has been on providing a clear description of the issue of probabilistic safety goals for nuclear power plants, to define and describe important concepts related to the definition and application of safety goals, and to describe experiences in Finland and Sweden. Based on a series of interviews and on literature reviews as well as on a limited international over-view, the project has described the history and current status of safety goals in Sweden and Finland, and elaborated on a number of issues, including the following: The status of the safety goals in view of the fact that they have been exceeded for much of the time they have been in use, as well as the possible implications of these exceedances. Safety goals as informal or mandatory limits. Strategies for handling violations of safety goals, including various graded approaches, such as ALARP (As Low As Reasonably Practicable). Relation between safety goals defined on different levels, e.g., for core damage and for

  19. Probabilistic safety goals. Phase 1 - Status and experiences in Sweden and Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, J.E. [VTT (Finland); Knochenhauer, M. [Relcon Scandpower AB (Sweden)

    2007-03-15

    The outcome of a probabilistic safety assessment (PSA) for a nuclear power plant is a combination of qualitative and quantitative results. Quantitative results are typically presented as the Core Damage Frequency (CDF) and as the frequency of an unacceptable radioactive release. In order to judge the acceptability of PSA results, criteria for the interpretation of results and the assessment of their acceptability need to be defined. Ultimately, the goals are intended to define an acceptable level of risk from the operation of a nuclear facility. However, safety goals usually have a dual function, i.e., they define an acceptable safety level, but they also have a wider and more general use as decision criteria. The exact levels of the safety goals differ between organisations and between different countries. There are also differences in the definition of the safety goal, and in the formal status of the goals, i.e., whether they are mandatory or not. In this first phase of the project, the aim has been on providing a clear description of the issue of probabilistic safety goals for nuclear power plants, to define and describe important concepts related to the definition and application of safety goals, and to describe experiences in Finland and Sweden. Based on a series of interviews and on literature reviews as well as on a limited international over-view, the project has described the history and current status of safety goals in Sweden and Finland, and elaborated on a number of issues, including the following: 1) The status of the safety goals in view of the fact that they have been exceeded for much of the time they have been in use, as well as the possible implications of these exceedances. 2) Safety goals as informal or mandatory limits. 3) Strategies for handling violations of safety goals, including various graded approaches, such as ALARP (As Low As Reasonably Practicable). 4) Relation between safety goals defined on different levels, e.g., for core damage

  20. Probabilistic Safety Goals. Phase 1 Status and Experiences in Sweden and Finland

    International Nuclear Information System (INIS)

    Holmberg, Jan-Erik; Knochenhauer, Michael

    2007-02-01

    The outcome of a probabilistic safety assessment (PSA) for a nuclear power plant is a combination of qualitative and quantitative results. Quantitative results are typically presented as the Core Damage Frequency (CDF) and as the frequency of an unacceptable radioactive release. In order to judge the acceptability of PSA results, criteria for the interpretation of results and the assessment of their acceptability need to be defined. Ultimately, the goals are intended to define an acceptable level of risk from the operation of a nuclear facility. However, safety goals usually have a dual function, i.e., they define an acceptable safety level, but they also have a wider and more general use as decision criteria. The exact levels of the safety goals differ between organisations and between different countries. There are also differences in the definition of the safety goal, and in the formal status of the goals, i.e., whether they are mandatory or not. In this first phase of the project, the aim has been on providing a clear description of the issue of probabilistic safety goals for nuclear power plants, to define and describe important concepts related to the definition and application of safety goals, and to describe experiences in Finland and Sweden. Based on a series of interviews and on literature reviews as well as on a limited international over-view, the project has described the history and current status of safety goals in Sweden and Finland, and elaborated on a number of issues, including the following: The status of the safety goals in view of the fact that they have been exceeded for much of the time they have been in use, as well as the possible implications of these exceedances. Safety goals as informal or mandatory limits. Strategies for handling violations of safety goals, including various graded approaches, such as ALARP (As Low As Reasonably Practicable). Relation between safety goals defined on different levels, e.g., for core damage and for

  1. Probabilistic safety goals. Phase 1 - Status and experiences in Sweden and Finland

    International Nuclear Information System (INIS)

    Holmberg, J.E.; Knochenhauer, M.

    2007-03-01

    The outcome of a probabilistic safety assessment (PSA) for a nuclear power plant is a combination of qualitative and quantitative results. Quantitative results are typically presented as the Core Damage Frequency (CDF) and as the frequency of an unacceptable radioactive release. In order to judge the acceptability of PSA results, criteria for the interpretation of results and the assessment of their acceptability need to be defined. Ultimately, the goals are intended to define an acceptable level of risk from the operation of a nuclear facility. However, safety goals usually have a dual function, i.e., they define an acceptable safety level, but they also have a wider and more general use as decision criteria. The exact levels of the safety goals differ between organisations and between different countries. There are also differences in the definition of the safety goal, and in the formal status of the goals, i.e., whether they are mandatory or not. In this first phase of the project, the aim has been on providing a clear description of the issue of probabilistic safety goals for nuclear power plants, to define and describe important concepts related to the definition and application of safety goals, and to describe experiences in Finland and Sweden. Based on a series of interviews and on literature reviews as well as on a limited international over-view, the project has described the history and current status of safety goals in Sweden and Finland, and elaborated on a number of issues, including the following: 1) The status of the safety goals in view of the fact that they have been exceeded for much of the time they have been in use, as well as the possible implications of these exceedances. 2) Safety goals as informal or mandatory limits. 3) Strategies for handling violations of safety goals, including various graded approaches, such as ALARP (As Low As Reasonably Practicable). 4) Relation between safety goals defined on different levels, e.g., for core damage

  2. Advance model for seismic base isolation Systems of building ...

    African Journals Online (AJOL)

    We set up some numerical experiment to evaluate our method and compare viability of the two main isolator types (i.e. sliding and elastomeric) for building. Keywords: Seismic Isolation, Base Isolation, Earthquake Resistant Design, Seismic Protective Systems J. Appl. Sci. Environ. Manage. Dec., 2012, Vol. 16 (4) 309-316 ...

  3. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California

    International Nuclear Information System (INIS)

    1978-01-01

    This report presents the results of a seismic risk analysis that focuses on all possible sources of seismic activity, with the exception of the postulated Verona Fault. The best estimate curve indicates that the Vallecitos facility will experience 30% g with a return period of roughly 130 years and 60% g with a return period of roughly 700 years

  4. Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments

    DEFF Research Database (Denmark)

    Udby, Linda; Andersen, Niels Hessel; Chou, F.C.

    2009-01-01

    We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting...

  5. Implementation of a complex multi-phase equation of state for cerium and its correlation with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, Frank J [Los Alamos National Laboratory; Jensen, Brian J [Los Alamos National Laboratory; Elkin, Vyacheslav M [VNIITF

    2009-01-01

    The complexity of cerium combined with its interesting material properties makes it a desirable material to examine dynamically. Characteristics such as the softening of the material before the phase change, low pressure solid-solid phase change, predicted low pressure melt boundary, and the solid-solid critical point add complexity to the construction of its equation of state. Currently, we are incorporating a feedback loop between a theoretical understanding of the material and an experimental understanding. Using a model equation of state for cerium we compare calculated wave profiles with experimental wave profiles for a number of front surface impact (cerium impacting a plated window) experiments. Using the calculated release isentrope we predict the temperature of the observed rarefaction shock. These experiments showed that the release state occurs at different magnitudes, thus allowing us to infer where dynamic {gamma} - {alpha} phase boundary is.

  6. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  7. Coarsening of Dendrites in Solid-Liquid Mixtures under Microgravity: Experiments and Phase Field Simulations

    Science.gov (United States)

    Cool, Thomas

    The morphological and topological evolution of dendritic structures during coarsening remains poorly understood. In particular, predicting the fissioning of secondary arms from the main dendrite stem and coalescence and retraction events remains controversial. We perform experiments on the International Space Station (ISS) since arms that fission from the stem do not sediment and thus can be detected. In addition, it is also possible to follow the morphological evolution of the structure in the absence of convection. 30% Pb-Sn samples were coarsened for different lengths of time from 10 min to 48 hrs. The morphology of the structure and the number of fissioned arms were determined using three-dimensional reconstructions. The evolution of the microstructure, the change in length scale, the number of independent bodies, the evolution of the anisotropy of the structure and the interfacial shape distributions as a function of time during coarsening were studied. Key findings are that 1) the inverse of surface area per unit volume SV -1 increases with time as t1/3 that is almost identical to a sample coarsened on earth; 2) independent bodies were found in all samples; 3) the number of independent bodies per unit volume multiplied by SV-3 is independent of coarsening time. Thus it is possible to predict the number of fragments during coarsening by a measurement of SV; 4) the genus scaled by SV{-3}$ is independent of coarsening time. A 3D reconstruction of a PbSn sample, 30% solid, that was coarsened aboard the ISS was used as an initial condition in a phase-field model to study pinching (fisioning), retraction and coalescence (fusioning) of secondary dendrite arms. The overall simulation box was 472x496x248 voxels; the phase field model was coded in OpenCL to run on a D700 FirePro GPU. In spite of the high speed of the simulations, evolving the PbSn structure from 10 min to 1.6 hrs still required 23 days. Two variants were run of the model that differ along the length of

  8. Mine-by experiment committee report phase 1: excavation response summary and implications

    International Nuclear Information System (INIS)

    Martin, C.D.; Kaiser, P.K.

    1996-05-01

    The first phase of the Mine-by Experiment, i.e., excavation of a 3.5-m-diameter tunnel, was carried out at the 420 Level of the Underground Research Laboratory to investigate rock mass damage and progressive failure around a circular opening in brittle unfractitred Lac du Bonnet granite. The tunnel was excavated without explosives, and state-of-the-art instrumentation comprising both geomechanical and geophysical instruments was used to monitor the failure process. The experiment showed that rock mass damage begins once the deviatoric stress (0'1 - 0'3) near the advancing face of the tunnel exceeds a critical level. Crack propagation can lead to progressive failure around the tunnel; however, it is limited to a region, referred to as the excavation damaged zone, of less than one tunnel radius. Within the damaged zone, stabbing (a typical form of brittle failure) began at stress levels equivalent to about 50% of the short-term laboratory unconfined compressive strength. This reduction in strength between laboratory and in situ conditions occurs because the in situ loading path is far more complex than the monotonic loading path used to test laboratory samples. There is no evidence to suggest that the stabbing failure process would extend beyond the depth of damage defined by the deviatoric stress criterion. The stabbing process stops when the tunnel face has advanced sufficiently (approximately 2 tunnel diameters) such that the rock mass is no longer subjected to excavation-induced stress changes. The strength of the rock mass in the damaged zone must be back-calculated from in situ tests, because the loading path cannot be duplicated readily in the laboratory. Thus, the back-calculated damaged strength must be used to evaluate the stability of the excavation. Sealing systems to reduce the permeability in the axial direction of a tunnel must be keyed into the rock mass beyond the radial extent of the damaged zone. The shape of the seals must be designed so as to

  9. Preliminary experiments on phase conjugation for flow visualization. [barium titanate single crystals

    Science.gov (United States)

    Weimer, D.; Howes, W. L.

    1984-01-01

    Barium titanate single crystals are discussed in the context of: the procedure for polarizing a crystal; a test for phase conjugation; transients in the production of phase conjugation; real time readout by a separate laser of a hologram induced within the crystal, including conjugation response times to on-off switching of each beam; and a demonstration of a Twyman-Green interferometer utilizing phase conjugation.

  10. The evolution of the seismic qualification utility group methodology for assessing seismic adequacy of nuclear plant equipment

    International Nuclear Information System (INIS)

    Kassawara, R.P.; Schmidt, W.R.; Smith, N.P.

    1992-01-01

    This paper reports that in 19890, the NRC established Unresolved Safety Issue (USI) A-46, Seismic Qualification of Equipment in Operating Nuclear Power Plants, to evaluate the seismic adequacy of equipment in plants which were designed prior to the development of current seismic qualification criteria. The evaluation, concurred with by the independent expert judgment of the Senior Seismic Review and Advisory Panel (SSRAP), showed that adequately anchored equipment in these classes are inherently rugged under seismic ground motions less than bounding spectra having peak ground accelerations of up to aoubt 0.3g. It also demonstrated the feasibility of applying earthquake experience data to verify the seismic ruggedness of certain classes of equipment used in both conventional and nuclear power plants

  11. Co-ordinated research programme on benchmark study for the seismic analysis and testing of WWER-type nuclear power plants. V. 5A. Experience data. Working material. Experience database of Romanian facilities subjected to the last three Vrancea earthquakes. Final report from November 1994 - October 1995

    International Nuclear Information System (INIS)

    Coman, O.; Stevenson, J.D.

    1996-01-01

    The Co-ordinated research programme on the benchmark study for the seismic analysis and testing of WWER-type nuclear power plants was initiated subsequent to the request from representatives of Member States. The conclusions adopted at the Technical Committee Meeting on Seismic Issues related to existing nuclear power plants held in Tokyo in 1991 called for the harmonization of methods and criteria used in Member States in issues related to seismic safety. The Consulltants' Meeting which followed resulted in producing a working document for CRP. It was decided that a benchmark study is the most effective way to achieve the principal objective. Two types of WWER reactors (WWER-440/213 and WWER-1000) were selected as prototypes for the benchmark exercise to be tested on a full scale using explosions and/or vibration generators. The two prototypes are Kozloduy Units 5/6 for WWER-1000 and Paks for WWER-440/213 nuclear power plants. This volume of Working material contains the report experience database for Romanian facilities contingent to the three Vrancea earthquakes

  12. New Technology Changing The Face of Mobile Seismic Networks

    Science.gov (United States)

    Brisbourne, A.; Denton, P.; Seis-Uk

    SEIS-UK, a seismic equipment pool and data management facility run by a consortium of four UK universities (Leicester, Leeds, Cambridge and Royal Holloway, London) completed its second phase in 2001. To compliment the existing broadband equipment pool, which has been deployed to full capacity to date, the consortium undertook a tender evaluation process for low-power, lightweight sensors and recorders, for use on both controlled source and passive seismic experiments. The preferred option, selected by the consortium, was the Guralp CMG-6TD system, with 150 systems ordered. The CMG-6TD system is a new concept in temporary seismic equipment. A 30s- 100Hz force-feedback sensor, integral 24bit digitiser and 3-4Gbyte of solid-state memory are all housed in a single unit. Use of the most recent technologies has kept the power consumption to below 1W and the weight to 3.5Kg per unit. The concept of the disk-swap procedure for obtaining data from the field has been usurped by a fast data download technique using firewire technology. This allows for rapid station servicing, essential when 150 stations are in use, and also ensures the environmental integrity of the system by removing the requirement for a disk access port and envi- ronmentally exposed data disk. The system therefore meets the criteria for controlled source and passive seismic experiments: (1) the single unit concept and low-weight is designed for rapid deployment on short-term projects; (2) the low power consumption reduces the power-supply requirements facilitating deployment; (3) the low self-noise and bandwidth of the sensor make it applicable to passive experiments involving nat- ural sources. Further to this acquisition process, in collaboration with external groups, the SEIS- UK data management procedures have been streamlined with the integration of the Guralp GCF format data into the PASSCAL PDB software. This allows for rapid dissemination of field data and the production of archive-ready datasets

  13. Parameters and criteria for repair and strengthening of buildings in the old town core of Dubrovnik based on seismic risk analysis

    Directory of Open Access Journals (Sweden)

    M. Vladimir

    1995-06-01

    Full Text Available Definition of the seismicity conditions, the design seismic parameters and the seismic risk level are important and inevitable phases ol the complex process of repair and strengthening of existing structures in certain towns located in seismically active areas. These should be studied in all necessary details in order to provide corresponding bases and define the necessary preventive measures against expected strong earthquakes. Such an approach becomes even nlore necessary arter the experience regarding the last catastrophic earthquakes that occurred in Former Yugoslavia (Skopje. Banja Luka, Montenegro coast and Kopaonik and inflicted heavy losses of human lives and material properties. The old town core of Dubrovnik is known for the large concentration of buildings of enorrnous cultural-historic importance. Considering the high seismic activity of this area. all these buildings are very likely to experience heavy damage and failure. Tlie history of the town records many catastrophic earthquakes that inflicted heavy material losses and loss of human lives. Here, we can rnention the great Dubrovnik earthquake of 1667 and the last Montenegro earthquake of April 15, 1979 with an epicenter in the Ulcinj-Bar area. The consequences of the latter are well known. The purpose of this paper is to present some results and experience gained from the investigations performed for the area of Dubro~nikil lustrated by several examples of buildings existing in the old town core of Dubrovnik.

  14. Seismic probabilistic safety analysis of unit 1 of the Loviisa nuclear power plant

    International Nuclear Information System (INIS)

    Varpasuo, P.; Puttonen, J.; Ravindra, M.K.

    1996-01-01

    The seismic probabilistic safety assessment consists of five phases. In the seismic hazard analysis the seismicity of the plant site is quantified. In the second phase, the structural response of plant buildings is evaluated. On the basis of structural response, the seismic fragilities of selected plant components are developed. In the following phase, the plant logic in the form of fault trees and event trees is established. In the last step, quantification of the core damage risk on the basis of the above information is carried out. For the median value of the annual core damage frequency, a value of 4.4 x 10 -7 was determined. (orig.)

  15. SHAM: High-level seismic tests of piping at the HDR

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Malcher, L.; Schrammel, D.; Steinhilber, H.; Costello, J.F.

    1988-01-01

    As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) in-plant piping system with two servohydraulic actuators, each capable of generating 40 tons of force. The purpose of these experiments was to study the behavior of piping subjected to seismic excitation levels that exceed design levels manifold and may result in failure/plastification of pipe supports and pipe elements, and to establish seismic margins for piping and pipe supports. The performance of six different dynamic pipe support systems was compared in these tests and the response, operability, and fragility of dynamic supports and of a typical US gate valve were investigated. Data obtained in the tests are used to validate analysis methods. Very preliminary evaluations lead to the observation that, in general, failures of dynamic supports (in particular snubbers) occur only at load levels that substantially exceed the design capacity. Pipe strains at load levels exceeding the design level threefold are quite small, and even when exceeding the design level eightfold are quite tolerable. Hence, under seismic loading, even at extreme levels and in spite of multiple support failures, pipe failure is unlikely. 5 refs., 16 figs

  16. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  17. The Seismic Analyzer: Interpreting and Illustrating 2D Seismic Data

    OpenAIRE

    Patel, Daniel; Giertsen, Christopher; Thurmond, John; Gjelberg, John; Gröller, Eduard

    2008-01-01

    We present a toolbox for quickly interpreting and illustrating 2D slices of seismic volumetric reflection data. Searching for oil and gas involves creating a structural overview of seismic reflection data to identify hydrocarbon reservoirs. We improve the search of seismic structures by precalculating the horizon structures of the seismic data prior to interpretation. We improve the annotation of seismic structures by applying novel illustrative rendering algorithms tailored to seism...

  18. Using Seismic Interferometry to Investigate Seismic Swarms

    Science.gov (United States)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  19. Areal seismic reflection

    International Nuclear Information System (INIS)

    Bading, R.

    1977-01-01

    Areal seismic-reflection-survey techniques lead to areally equally spaced density of seismic subsurface information, whereby the miniumum spacing may be as narrow as 10 m, compared to the relatively wide gridding based on conventional line-seismic surveys. The seismic data bank reulting from an areal survey - as a consequence of the narrowly and equally spaced density of the subsurface points - allows the extraction of: 1) arbitrarily selectable plane seismic sections presenting the true image of the subsurface structure after 3 D-migration processing; 2) large series in arbitrary direction of subsequent seismic cross-section, socalled echelon profiles. The immense informational density enables for interpretation without need of interpolations, leading to up-to-now unusual reliability. - The variety in types of building-block systems of the field survey methods grants optimum adaption to the respective exploration target. Application of multichannel recording instruments is the prerequisite of economy. The areas covered up-to-now with this kind of seismic field survey extended to about 10 - 20 km 2 each time. (orig.) [de

  20. The young's modulus of two phase and porous materials theory and experiment

    International Nuclear Information System (INIS)

    Nazare, S.; Ondracek, G.

    1977-01-01

    Theoretical methods to calculate the Young's modulus of two phase materials are discussed taking into account the concentration, shape and orientation of the phases. The results are simplified for the special case of porous materials and compared with experimental data. (author) [pt

  1. Tools for educational access to seismic data

    Science.gov (United States)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time

  2. Key issues in european reactor seismic design

    International Nuclear Information System (INIS)

    Cicognani, G.; Martelli, A.

    1984-01-01

    The paper focuses on the main problems which have arisen in FBR design in Europe due to seismic conditions. Its first part, derived from the final report of a CEC-Belgonucleaire study contract, clarifies how ''real'' is the seismic problem for each site. Then, the second and main part deals with the studies carried out in the european countries on the relevant subjects, typical of FBRs or related to specific needs of single FBRs: these studies, for which contributions were provided by ENEA, CEA, NNC and INTERATOM, concern mainly the numerical and experimental analysis of the core, the reactor vessel, the shut-down system and the reactor building of FBRs under construction or in advanced design phase. Attention is also paid to the studies started for future purposes, the feed-backs on the design due to seismic conditions, and the instructions for future reactors

  3. TOPFLOW-experiments, development and validation of CFD models for steam-water flows with phase transfer. Final report

    International Nuclear Information System (INIS)

    Lucas, D.; Beyer, M.; Krepper, E.

    2011-11-01

    The aim of the project was the qualification of CFD codes for steam-water flows with phase transfer. While CFD methods for single-phase flows are already widely used for industrial applications, a corresponding use for two-phase flows is only at the beginning due to the complex structure of the interface and the related interactions between the phases. For the further development and validation of appropriate closure models, experimental data with high spatial and temporal resolution are required. Such data were obtained at the TOPFLOW test facility of HZDR by combination of experiments at realistic parameters for the nuclear reactor safety (large scales, high pressures and temperatures) with innovative measuring techniques. The wire-mesh sensor technology, which provides detailed information on the structure of the interface, was applied in adiabatic air-water experiments as well as in condensation and pressure relief experiments in a large DN200 pipe. As the result of the project, extensive databases with high quality are available. The technology for the fast X-ray tomography, which allows measurements without influencing the flow, was further developed and successfully applied in a first test series. High-resolution data were also obtained from experiments in a model of the hot leg of a pressurized water reactor for different flow situations, including counter-current flow limitation. For the corresponding steam-water experiments conducted at pressures of up to 5 MPa, the newly developed pressure tank technology was successfully used for the first time. For the qualification of CFD codes for two-phase flows the Inhomogeneous MUSIG model was extended in co.operation with ANSYS to consider phase transfer and validated on the basis of the above mentioned TOPFLOW experiments. In addition, improvements were achieved e.g. for turbulence modelling in bubbly flows and simulations were done to validate models for bubble forces and bubble coalescence and breakup. A

  4. A Simple Model for Probabilistic Seismic Hazard Analysis of Induced Seismicity Associated With Deep Geothermal Systems

    Science.gov (United States)

    Schlittenhardt, Joerg; Spies, Thomas; Kopera, Juergen; Morales Aviles, Wilhelm

    2014-05-01

    In the research project MAGS (Microseismic activity of geothermal systems) funded by the German Federal Ministry of Environment (BMU) a simple model was developed to determine seismic hazard as the probability of the exceedance of ground motion of a certain size. Such estimates of the annual frequency of exceedance of prescriptive limits of e.g. seismic intensities or ground motions are needed for the planning and licensing, but likewise for the development and operation of deep geothermal systems. For the development of the proposed model well established probabilistic seismic hazard analysis (PSHA) methods for the estimation of the hazard for the case of natural seismicity were adapted to the case of induced seismicity. Important differences between induced and natural seismicity had to be considered. These include significantly smaller magnitudes, depths and source to site distances of the seismic events and, hence, different ground motion prediction equations (GMPE) that had to be incorporated to account for the seismic amplitude attenuation with distance as well as differences in the stationarity of the underlying tectonic and induced processes. Appropriate GMPE's in terms of PGV (peak ground velocity) were tested and selected from the literature. The proposed model and its application to the case of induced seismicity observed during the circulation period (operation phase of the plant) at geothermal sites in Germany will be presented. Using GMPE's for PGV has the advantage to estimate hazard in terms of velocities of ground motion, which can be linked to engineering regulations (e.g. German DIN 4150) which give prescriptive standards for the effects of vibrations on buildings and people. It is thus possible to specify the probability of exceedance of such prescriptive standard values and to decide whether they can be accepted or not. On the other hand hazard curves for induced and natural seismicity can be compared to study the impact at a site. Preliminary

  5. Eating disorders: challenges in the later phases of the recovery process: a qualitative study of patients' experiences.

    Science.gov (United States)

    Pettersen, Gunn; Thune-Larsen, Kari-Brith; Wynn, Rolf; Rosenvinge, Jan H

    2013-03-01

    Scand J Caring Sci; 2013; 27; 92-98 Eating disorders: challenges in the later phases of the recovery process Little is known about how patients experience the later recovery phases of eating disorders. The aim of this study was to describe such experiences using an explorative and descriptive design based on content analysis. Thirteen female patients participated in qualitative interviews. The analysis resulted in four main categories, that is, (i) realising negative consequences, (ii) searching for alternative coping, (iii) searching for normality and identity and (iv) accepting the losses. The categories represent normal psychological processes related to grief, commitment and reconciliation. Such processes may be functionally or dysfunctionally resolved. The clinical implication is that patients in the later recovery phases may need professional help or counselling to accomplish a functional resolving. While in the initial phases of illness and recovery, a focus is on controlling symptoms and the changing of overvalued ideas about weight and shape, therapy in the later recovery phases should focus on the psychological management of the challenges represented in the four categories resulting from the present study. © 2012 The Authors. Scandinavian Journal of Caring Sciences © 2012 Nordic College of Caring Science.

  6. Methods for developing seismic and extreme wind-hazard models for evaluating critical structures and equipment at US Department of Energy facilities and commercial plutonium facilities in the United States

    International Nuclear Information System (INIS)

    Coats, D.W.; Murray, R.C.; Bernreuter, D.L.

    1981-01-01

    Lawrence Livermore National Laboratory (LLNL) is developing seismic and wind hazard models for the US Department of Energy (DOE). The work is part of a three-phase effort to establish building design criteria developed with a uniform methodology for seismic and wind hazards at the various DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. Phase 2 - development of seismic and wind hazard models - is discussed in this paper, which summarizes the methodologies used by seismic and extreme-wind experts and gives sample hazard curves for the first sites to be modeled. These hazard models express the annual probability that the site will experience an earthquake (or windspeed) greater than some specified magnitude. In the final phase, the DOE will use the hazards models and LLNL-recommended uniform design criteria to evaluate critical facilities. The methodology presented in this paper also was used for a related LLNL study - involving the seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC). Details and results of this reassessment are documented in reference

  7. Involvement of activated leukocytes in the regulation of plasma levels of acute phase proteins in microgravity simulation experiments

    Science.gov (United States)

    Larina, Olga; Bekker, Anna; Turin-Kuzmin, Alexey

    2016-07-01

    Earth-based studies of microgravity effects showed the induction of the mechanisms of acute phase reaction (APR). APR comprises the transition of stress-sensitive protein kinases of macrophages and other responsive cells into the active state and the phosphorylation of transcription factors which in turn stimulate the production of acute-phase reaction cytokines. Leukocyte activation is accompanied by the acceleration of the formation of oxygen radicals which can serve a functional indice of leukocyte cell state. The series of events at acute phase response result in selective changes in the synthesis of a number of secretory blood proteins (acute phase proteins, APPs) in liver cells thus contributing the recovery of homeostasis state in the organism. Earlier experiment with head-down tilt showed the increase in plasma concentrations of two cytokine mediators of acute phase response, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) being the outcome of the activation of producer cells, foremost, leukocytes. In experiment with 4-day dry immersion chemiluminescent (ChL) reply of the whole blood samples to a test stimulus were studied along with the measurements of plasma levels of APPs, namely, alpha1-antitrypsin (alpha1-AT), alpha1-acid glycoprotein (alpha1-AGP), alpha2-macroglobulin (alpha2-M), ceruloplasmin (Cer), haptoglobin (Hp), C3-complement component (C3), C-reactive protein (CRP). Eight individuals aged 21.2 ± 3.2 years were the test subjects in the investigation. Protein studies showed a noticeable increase in the mean plasma levels of all APPs measured in experiment thus producing the evidence of the activation of acute phase response mechanisms while individual patterns revealed variability during the immersion period. The overall trends were similar to these in the previous immersion series. The augment in the strength of signal in stimulated light emission tests was higher after 1- and 2-day of immersion exposure than before the

  8. What doesn’t work with Phase IV studies? A real experience from an Ethics Committee

    Directory of Open Access Journals (Sweden)

    F. Grigoletto

    2013-05-01

    Full Text Available Phase IV studies are conducted in real-life conditions to expand the knowledge on the efficacy and safety of an approved drug. Carried out either in hospital or general practice setting, they can be distinguished in Phase IV trials and post-marketing surveillance studies. Limited information is available in Italy about their characteristics as the proportion of observational studies, the average size and the importance of the non-sponsored research. In order to investigate these and other features, we analysed 1,881 protocols presented to the Ethics Committee of a large size University Hospital in the decade 1999-2008. Out of the 188 (10% Phase IV studies, about three fourths were controlled clinical trials, 48.4% had an active drug and 16.0% a placebo as comparator; only 8.5% was presented as observational. Most of the Phase IV studies could be classifiable as Phase IIIb. The median sample size value was 200 patients, while the Phase III studies reported a median of 360 patients, this contradicting the “large-scale” characteristic of the Phase IV studies reported in the literature.

  9. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.

    2018-01-15

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  10. Influence of the mode of deformation on recrystallisation behaviour of titanium through experiments, mean field theory and phase field model

    Science.gov (United States)

    Athreya, C. N.; Mukilventhan, A.; Suwas, Satyam; Vedantam, Srikanth; Subramanya Sarma, V.

    2018-04-01

    The influence of the mode of deformation on recrystallisation behaviour of Ti was studied by experiments and modelling. Ti samples were deformed through torsion and rolling to the same equivalent strain of 0.5. The deformed samples were annealed at different temperatures for different time durations and the recrystallisation kinetics were compared. Recrystallisation is found to be faster in the rolled samples compared to the torsion deformed samples. This is attributed to the differences in stored energy and number of nuclei per unit area in the two modes of deformation. Considering decay in stored energy during recrystallisation, the grain boundary mobility was estimated through a mean field model. The activation energy for recrystallisation obtained from experiments matched with the activation energy for grain boundary migration obtained from mobility calculation. A multi-phase field model (with mobility estimated from the mean field model as a constitutive input) was used to simulate the kinetics, microstructure and texture evolution. The recrystallisation kinetics and grain size distributions obtained from experiments matched reasonably well with the phase field simulations. The recrystallisation texture predicted through phase field simulations compares well with experiments though few additional texture components are present in simulations. This is attributed to the anisotropy in grain boundary mobility, which is not accounted for in the present study.

  11. Application of a non-equilibrium drift flux model to two-phase blowdown experiments

    International Nuclear Information System (INIS)

    Kroeger, P.G.

    1976-08-01

    A vapor drift-flux model has been applied to the discharge of two-phase mixtures under choked flow conditions, including equilibrium as well as non-equilibrium vapor generation models. The system of four conservation equations is being solved, using the method of characteristics. Closed form expressions have been obtained for the propagation velocities from approximate solutions of the system's characteristic determinant. Treatment of the phase change front as a discontinuity, similar to the treatment of shocks in single phase gas dynamics, permitted very accurate solutions. Good agreement with experimental data is shown

  12. Seismic qualification for water chillers of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Chunming

    2005-01-01

    Water chillers are important components of the electric building chilled water system of Nuclear Power Plant. In this article, we describe the seismic qualification methodology. A united method of seismic analysis and experiment testing were applied. Since the seismic classification of the evaporator, condenser and oil separator is 1F, the chillers must satisfy the function criteria. The functional and performance of the control panel were qualified by seismic test. In order to get the seismic time histories of the base of the motor, compressor and control panel, we did time histories analysis for the whole chillers using the seismic acceleration time history of the building floor on which the water chillers was located. Then, these curves were translated into required response spectrum (RRS), which were used by the seismic test of water chillers compressor sets. All passive components, such as evaporator, condenser, oil separator and support, were qualified by seismic stress analysis method. These components were verified to satisfy the standard when they were subjected to the seismic, gravitational, operational pressure and nozzle loads. The Chillers' components were qualified to the specification and the standard. The motor-compressor set and control panel were qualified to the functional and performance criteria. The applied of this methodology qualified the function of the water chillers compressor sets effectively, especially after the aging test. (author)

  13. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  14. Seismic anisotropy - Introduction

    Czech Academy of Sciences Publication Activity Database

    Grechka, V.; Pšenčík, Ivan; Ravve, I.; Tsvankin, I.

    2017-01-01

    Roč. 82, č. 4 (2017), WAI-WAII ISSN 0016-8033 Institutional support: RVO:67985530 Keywords : seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.391, year: 2016

  15. Seismic Creep, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  16. PSMG switchgear seismic analysis

    International Nuclear Information System (INIS)

    Kuehster, C.J.

    1977-01-01

    LOFT primary coolant system motor generator (PSMG) switchgear boxes were analyzed for sliding and overturning during a seismic event. Boxes are located in TAN-650, Room B-239, with the PSMG generators. Both boxes are sufficiently anchored to the floor

  17. Lightweight Design of an HTS Coil for the VASIMR Experiment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR contract Tai-Yang Research Company of Tennessee proposes to design, fabricate, and test an ultra-lightweight High Temperature Superconducting...

  18. Movable intraoperative magnetic resonance imaging incorporating a seismic system.

    Science.gov (United States)

    Akutsu, Hiroyoshi; Yamamoto, Tetsuya; Masuda, Yosuke; Ishikawa, Eiichi; Masumoto, Tomohiko; Matsuda, Masahide; Matsumura, Akira

    2015-08-01

    A high-field ceiling-mounted and movable intraoperative MR imaging (iMRI) can minimize additional risks for MRI and enhance safety by not moving the patient. In this system, hanging the heavy magnet from the ceiling requires structural stability; this stability was confirmed in earlier studies, but not proved during a seismic event. We have installed a 1.5 T movable iMRI system with an incorporated seismic system in our hospital in Japan, a seismic event-prone region. This arrangement is the first in the world, to our knowledge. The objective of this study was to describe the mechanism of this seismic system and the first clinical experience using this system. The seismic system consists of a stabilizer pad that is mounted directly under the magnet, in addition to the structural stability. The seismic system was tested with using a shaker table testing at a test laboratory. Ninety-one patients underwent neurosurgical intervention using this iMRI and seismic system at our hospital. In all patients, intra-, pre, and/or postoperative MR images were successfully obtained, and image quality was excellent. The workflow of moving the magnet and scanning were smooth and unproblematic. We had 169 seismic events in our city during this time period, but had no incidental or accidental events related to the seismic events. With the use of the seismic system, a ceiling-mounted, movable iMRI system can be more safely used. This seismic system may contribute to the spread of movable iMRI systems in countries where seismic events occur. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The lithospheric structure of the Western Carpathian-Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modelling

    Science.gov (United States)

    Tašárová, Alasonati; Afonso, J. C.; Bielik, M.; Götze, H.-J.; Hók, J.

    2009-10-01

    The lithospheric structure of the Western Carpathian-Pannonian Basin region was studied using 3-D modelling of the Bouguer gravity anomaly constrained by seismic models and other geophysical data. The thermal structure and density distribution in the shallow upper mantle were also estimated using a combination of petrological, geophysical, and mineral physics information (LitMod). This approach is necessary if the more complicated structure of the Pannonian Basin is to be better constrained. As a result, we have constructed the first 3-D gravity model of the region that combines various geophysical datasets and is consistent with petrological data. The model provides improved estimates of both the density distribution within the lithosphere and the depth to major density discontinuities. We present new maps of the thickness of major sedimentary basins and of the depth to the Moho and the lithosphere-asthenosphere boundary. In our best-fitting model, the Pannonian Basin is characterised by extremely thin crust and lithospheric mantle, both of which have low density. A low-density uppermost asthenospheric mantle layer is also included at depths of 60-100 km. The Western Carpathians have only a thin crustal root and moderate densities. In contrast, the European Platform and Eastern Alps are characterised by lithosphere that is considerably thicker and denser. This inference is also supported by stripped gravity anomalies from which sediment, Moho and asthenospheric gravity contributions have been removed. These residual anomalies are characteristically low in the Western Carpathian-Pannonian Basin region, which suggests that both the ALCAPA and Tisza-Dacia microplates are 'exotic terranes' that are markedly different to the European Platform.

  20. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    Science.gov (United States)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  1. Solar Pilot Plant Phase I, detailed design report: thermal storage subsystem research experiment. CDRL Item No. 8 (Approved)

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-17

    The Thermal Storage Subsystem Research Experiment is designed to give maximum information for evaluating the design, performance, and operating parameters of the Barstow Solar Pilot Plant. The experiment is summarized, and the experiment components detail design and integration are described. The experiment test and operation is described which is designed to collect engineering data to allow the design, performance, and operational characteristics to be specified for the Pilot Plant. Appended are: design documentation; pressure drop calculations; materials studies for thermal energy storage; flow charts for data acquisition and control; condenser detail design; instrumentation error analysis; logic diagrams for the control system; literature survey to evaluate the two-phase forced convection heat transfer; and the vaporizer performance model. (LEW)

  2. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  3. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  4. Reducing Systematic Errors for Seismic Event Locations Using a Model Incorporating Anisotropic Regional Structures

    National Research Council Canada - National Science Library

    Smith, Gideon P; Wiens, Douglas A

    2006-01-01

    ...) to predict travel times of P-wave propagation at distances of 2 - 14 degrees. At such distances, the phase Pn is in the seismic phase that is most frequently reported and that thus controls the location accuracy...

  5. Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment

    International Nuclear Information System (INIS)

    Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher; Euh, Dong-Jin

    2015-01-01

    In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow

  6. Protrusive intrusion, dehydration and polymorphism in minerals as possible reason of seismic activity, relation between ophiolite belts and seismic zonation of the territory of Armenia

    Science.gov (United States)

    Harutyunyan, A. V.; Petrosyan, H. M.

    2010-05-01

    In the basis of multiple geological and geophysical data, also on the results of investigations seismic and density properties of rocks at high termobaric conditions, we proposed the petrophisical section and model of evolution of Earth crust of the territory of Armenia. On the proposed model the following interrelated problems are debated: forming of ophiolite belts and volcanic centers, genesis of hydrocarbons by organic and inorganic ways, and also reasons of originating of seismic centers. The reasons of originating of seismic centers in different depths of Earth crust, are miscellaneous. According to the model of Earth crust evolution the ophiolite belts are formed due to permanent protrusive intrusion of serpentinized masses from the foot of the crust (35-50km) into upper horizons. It is natural to assume, that the permanent intrusion of serpentinizd masses through deep faults has drastically occurred accompanying with seismic shakings. This process encourages the development of deep faults. The protrusive intrusion of serpentinized masse accompanied with partial dehydration of serpentinites and serpentinized ultrabasites and new mineral formation. The processes was accompanied also with drastic change of seismic waves and volumes up to 30%. Experiments at high termobaric conditions show, that some minerals undergone polymorphous transformations, accompanied with phase change and drastic change of rocks volume. Particularly plastic calcite, included in the composition of metamorphic rocks to run into the cracks expends and diversifies them. The process described cause some general effects similar to those of the process of dilatancy. Therefore, the protrusive intrusion of serpentinized masses into upper horizons, it dehydrations and polymorphous transformations in different minerals, may be cause of geo-dynamic processes at different depths of Earth crust. It may be assumed, that those processes permanently occur nowadays as well. Comparing the maps of

  7. Biodegradation of vapor-phase toluene in unsaturated porous media: Column experiments

    International Nuclear Information System (INIS)

    Khan, Ali M.; Wick, Lukas Y.; Harms, Hauke; Thullner, Martin

    2016-01-01

    Biodegradation of organic chemicals in the vapor phase of soils and vertical flow filters has gained attention as promising approach to clean up volatile organic compounds (VOC). The drivers of VOC biodegradation in unsaturated systems however still remain poorly understood. Here, we analyzed the processes controlling aerobic VOC biodegradation in a laboratory setup mimicking the unsaturated zone above a shallow aquifer. The setup allowed for diffusive vapor-phase transport and biodegradation of three VOC: non-deuterated and deuterated toluene as two compounds of highly differing biodegradability but (nearly) identical physical and chemical properties, and MTBE as (at the applied experimental conditions) non-biodegradable tracer and internal control. Our results showed for toluene an effective microbial degradation within centimeter VOC transport distances despite high gas-phase diffusivity. Degradation rates were controlled by the reactivity of the compounds while oxic conditions were found everywhere in the system. This confirms hypotheses that vadose zone biodegradation rates can be extremely high and are able to prevent the outgassing of VOC to the atmosphere within a centimeter range if compound properties and site conditions allow for sufficiently high degradation rates. - Highlights: • The column setup allows resolving vapor-phase VOC concentration gradients at cm scale resolution. • Vapor-phase and liquid-phase concentrations are measured simultaneously. • Isotopically labelled VOC was used as reference species of low biodegradability. • Biodegradation rates in the unsaturated zone can be very high and act at a cm scale. • Unsaturated material can be an effective bio-barrier avoiding biodegradable VOC emissions. - Microbial degradation activity can be sufficient to remove VOC from unsaturated porous media after a few centimeter of vapor-phase diffusive transport and mayeffectively avoid atmospheric emissions.

  8. Observations on seismic design of piping systems

    International Nuclear Information System (INIS)

    Habip, L.M.; Schrammel, D.

    1992-01-01

    Practical aspects of piping system design for seismic loads are considered. Main topics are structural effects of natural earth-quakes, full-scale dynamic tests - with emphasis on work performed at the HDR plant - and implications for the design and qualification of industrial systems and equipment. Experimental evidence and past experience indicate that design-by-rule or qualification-by-inspection can be used at this time to achieve dependable seismic performance, pending the development of piping failure criteria for cyclic overloads of short duration. (orig.)

  9. CFD code development for incompressible two-phase flow using two-fluid model: preliminary calculation and plume validation experiment

    International Nuclear Information System (INIS)

    Heo, B. G.; Jung, C. H.; Yoon, H. Y.; Yeo, D. J.; Song, C. H.

    2002-01-01

    A multidimensional numerical code for solving incompressible two-fluid is presented based on the Finite Volume Method (FVM) and the Simplified Marker And Cell (SMAC) method. Details of the present method and comparisons between the calculation and experiment are described for two-dimensional flow patterns of bubbly flow which show good agreement. Further implementations of the interfacial correlations are required for the application of the present code to various two-phase problems

  10. Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress

    International Nuclear Information System (INIS)

    Simmons, D.W.; Munday, E.B.

    1995-05-01

    Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF 3 for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF 3 , planning and preparation for experiments to assess hazard of rapid reaction of ClF 3 and hydrated UO 2 F 2 or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material

  11. Matching time and spatial scales of rapid solidification: dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations

    Science.gov (United States)

    Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.

    2018-01-01

    A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).

  12. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  13. LITHOSPHERIC STRUCTURE OF THE CARPATHIAN-PANNONIAN REGION BASED ON THE GRAVITY MODELING BY INTEGRATING THE CELEBRATION2000 SEISMIC EXPERIMENT AND NEW GEOPHYSICAL RESULTS

    Science.gov (United States)

    Bielik, M.; Alasonati Tašárová, Z.; Zeyen, H. J.; Afonso, J.; Goetze, H.; Dérerová, J.

    2009-12-01

    Two different methods for the 3-D interpretation of the gravity field have been applied to the study of the structure and tectonics of the Carpathian-Pannonian lithosphere. The first (second) method provided a set of the different stripped gravity maps (the new lithosphere thickness map). The contribution presents the interpretation of the gravity field, which takes into account the CELEBRATION2000 seismic as well as new geophysical results. The sediment stripped gravity map is characterized by gravity minima in the Eastern Alps and Western Carpathians, and gravity maxima in the Pannonian Back-arc Basin system and the European platform. The gravity low in the Eastern Alps is produced by the thick crust (more than 45 km). The Western Carpathian gravity minimum is a result of the interference of two main gravitational effects. The first one comes from the low-density sediments of the Outer Western Carpathians and Carpathian Foredeep. The second one is due to the thick low-density upper and middle crust, reaching up to 25 km. In the Pannonian Back-arc Basin system can be observed the regional gravity high which is a result of the gravity effect of the anomalously shallow Moho. The most dominant feature of the complete 3-D stripped gravity map (crustal gravity effect map) is the abrupt change of the gravity field along the Klippen Belt zone. While the European platform is characterized by positive anomalies, the Western Carpathian orogen and the Pannonian Back-arc Basin system by relatively long-wavelength gravity low (several hundred kilometers). The lowest values are associated with the thick low-density upper and middle crust of the Inner Western Carpathians. That is why we suggest that the European Platform consists of the significantly denser crust with respect to the less dense crust of the microplates ALCAPA and Tisza-Dacia. The contrast in the gravity fields over the European platform and microplates ALCAPA and Tisza-Dacia reflect also their different crustal

  14. Technical development of seismic imaging prospecting

    International Nuclear Information System (INIS)

    Xu Guilai

    2006-01-01

    Geophysical methods and apparatus for shallow engineering geophysical prospecting and mining related in-roadway geophysical prospecting are important research fields which has been studied for long time, unfortunately, little significant advancement has been made compared with the demand of engineering geology. The seismic imaging method and its corresponding equipment are viewed as the most hopeful choice for 0-50 m depth and are studied in this research systematically. The recording equipment CSA is made and the related in-situ data processing software is also developed. Field application experiment for shallow seismic prospecting has been finished, the results show that the CSA seismic imaging and its application technology are effective and practical for the engineering geophysical prospecting of 0-50 m depth, and can meet the demand of engineering geology investigation. Hence, the geophysical method and equipment, which can meet the demand for 0-50 m depth engineering geology investigation have been formed through this research. (authors)

  15. Clinical Experience of Dual-phase Cone Beam Computed Tomography during Hepatic Arteriography to Apply 3D-DSA.

    Science.gov (United States)

    Takao, Yoshinori; Kakimi, Akihiko; Katayama, Yutaka; Sasaki, Shohei; Norimasa, Toshiyo; Izuta, Shinichiro; Himoto, Daisuke; Ichida, Takao

    2016-01-01

    We report on the methods and experiences of the dual-phase cone beam computed tomography during hepatic arteriography (CBCTHA) to apply the 3D-DSA. A total of 32 ml contrast medium (150 mgI/ml) was injected at the rate of 2.0 ml/s for 16 s. The early phase scan was initiated 10 s after the start of contrast media injection. The delayed phase scan was started 40 s after that (24 s after the end of CM injection). When using the dual phase CBCTHA, it was able to obtain the classical hepatocellular carcinoma (HCC) images same as computed tomography during hepatic arteriography (CTHA). In the early phase, the tumor can be highly enhanced against the liver parenchyma. In delayed phase, corona enhancement was clearly appeared at the liver parenchyma. Of 58 cases of acquisitions, we experienced six cases with miss breath holding and 14 cases with over the field of view (FOV) due to hepatomegaly. We evaluated the tumor contrast in 18 cases because the other 40 cases were not applied to our criteria. The pixel values of ROIs on the tumor, coronal enhancement, and liver parenchyma were measured, respectively. Then, we calculated tumor-parenchyma contrast (T-P contrast), corona-tumor contrast (C-T contrast), and corona-parenchyma contrast (C-P contrast). The T-P contrast was 358±112, the C-T contrast was 132±51, and the C-P contrast was 168±66. The contrast was clearly visualized among them. The dual-phase CBCTHA that applies the 3D-DSA is a simple and useful technique for hepatocellular carcinoma treatment.

  16. Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization

    International Nuclear Information System (INIS)

    Phan, Anh Thu; Paek, Min-Kyu; Kang, Youn-Bae

    2014-01-01

    In order to provide an efficient tool to design alloy chemistry and processing conditions for high-strength, lightweight steel, an investigation of the Fe–Al–C ternary system was carried out by experimental phase diagram measurement and a CALPHAD thermodynamic analysis. Discrepancies between previously available experimental results and thermodynamic calculations were identified. The Fe–Al sub-binary system was re-optimized in order to obtain an accurate description of the liquid phase, while Gibbs energies of solid phases were mainly taken from a previous thermodynamic modeling. Phase equilibria among face-centered cubic (fcc)/body-centered cubic (bcc)/graphite/κ-carbide/liquid phases in the Fe–Al–C system in the temperature range from 1000 to 1400 °C were obtained by chemical equilibration followed by quenching, and subsequent composition analysis using electron probe microanalysis/inductively coupled plasma spectroscopy. By merging the revised Fe–Al binary description with existing Fe–C and Al–C binary descriptions, a complete thermodynamic description of the Fe–Al–C system was obtained in the present study. The modified quasi-chemical model in the pair approximation was used to model the liquid phase, while solid solutions were modeled using compound energy formalism. A2/B2 order/disorder transition in the bcc phase was taken into account. Compared with previously known experiments/thermodynamic modeling, a better agreement was obtained in the present study, regarding the stable region of fcc and the solidification thermal peak of a ternary alloy near the liquidus temperature. The obtained thermodynamic description also reproduced various types of experimental data in the Fe–Al–C system such as isothermal sections, vertical sections, liquidus projection, etc. The solidification of various steel grades was predicted and discussed

  17. The Two-Phase Flow Separator Experiment Breadboard Model: Reduced Gravity Aircraft Results

    Science.gov (United States)

    Rame, E; Sharp, L. M.; Chahine, G.; Kamotani, Y.; Gotti, D.; Owens, J.; Gilkey, K.; Pham, N.

    2015-01-01

    Life support systems in space depend on the ability to effectively separate gas from liquid. Passive cyclonic phase separators use the centripetal acceleration of a rotating gas-liquid mixture to carry out phase separation. The gas migrates to the center, while gas-free liquid may be withdrawn from one of the end plates. We have designed, constructed and tested a breadboard that accommodates the test sections of two independent principal investigators and satisfies their respective requirements, including flow rates, pressure and video diagnostics. The breadboard was flown in the NASA low-gravity airplane in order to test the system performance and design under reduced gravity conditions.

  18. Seismic scatterer distribution beneath the Wellington region, southernmost part of New Zealand's North Island

    Science.gov (United States)

    Kurashimo, E.; Sato, H.; Iidaka, T.; Ishiyama, T.; Iwasaki, T.; Henrys, S. A.; Sutherland, R.; Stern, T. A.; Savage, M. K.; Okaya, D. A.

    2012-12-01

    A detailed crustal and upper mantle structure of the subducting oceanic lithosphere and the overlying continental crust is inevitably important to constrain the physical process of earthquake occurrence. Structural images of many subduction zones have been obtained: for example, the Kanto region, central Japan (e.g., Sato et al., 2005). In the Kanto region, the Philippine Sea Plate subducts beneath the Tokyo Metropolitan area. Similar tectonic situation is found in the southernmost North Island, New Zealand, where the Pacific plate subducts beneath the Australian plate. It is also noted that capital cities are situated in both the regions. In May of 2011, the second phase of the Seismic Array Hikurangi Experiment (SAHKE) was conducted to obtain the detailed subduction structure beneath the southern North Island. The transect line ran from the Wairarapa coast to Kapiti coast over an 80 km profile. Twelve explosives were fired as controlled seismic source on the survey line between 6-10 km apart. The energy was recorded on 878 seismic stations (294 three-component and 584 vertical sensors) deployed at 100 m spacing and 50 m between Kaitoke and Featherston. Data collected on the survey line have high signal-to-noise ratio, from which we can easily recognize, not only the first arrival phases, but also latter phases. The seismic coda waves are generally interpreted as scattered waves from inhomogeneities in the Earth [e.g., Aki, 1969]. Array recordings of seismic events are useful to locate scatterers. In this study, semblance analysis [Neidell and Tarner, 1971] is applied to our waveform data for imaging seismic scatterer distribution, assuming an isotropic scattering model. To locate scatterers, we established 3-D imaginary grid points beneath the survey area. The velocity structure beneath the survey area was derived by refraction tomography method [Zelt and Barton, 1998], which was used to calculate travel times between a source/receiver to a grid point. If a

  19. Search for solar axions with the X-ray telescope of the CAST experiment (phase II); Suche nach solaren Axionen mit dem Roentgenteleskop des CAST-Experiments (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Nordt, Annika

    2009-10-14

    The CAST (CERN Solar Axion Telescope) experiment is searching for solar axions by their conversion into photons inside a transverse magnetic field. So far, no solar axionsignal has been detected, but a new upper limit could be given (CAST Phase I). Since 2005, CAST entered in its second phase where it operates with a buffer gas ({sup 4}He) in the conversion region to extend the sensitivity of the experiment to higher axionmasses. For the first time it is possible to enter the theoretically favored axion massrange and to give an upper limit for this solar axion mass-range (>0.02 eV). This thesis is about the analysis of the X-ray telescope data Phase II with {sup 4}He inside the magnet. The result for the coupling constant of axions to photons is: g{sub {alpha}}{sub {gamma}}{sub {gamma}}<1.6-6.0 x 10{sup -10} GeV{sup -1} (95%C.L.) for m{sub a}=0.02-0.4 eV. (2) This result is better than any result that has been given before in this mass range for solar axions. (orig.)

  20. Two applications of time reversal mirrors: seismic radio and seismic radar.

    Science.gov (United States)

    Hanafy, Sherif M; Schuster, Gerard T

    2011-10-01

    Two seismic applications of time reversal mirrors (TRMs) are introduced and tested with field experiments. The first one is sending, receiving, and decoding coded messages similar to a radio except seismic waves are used. The second one is, similar to radar surveillance, detecting and tracking a moving object(s) in a remote area, including the determination of the objects speed of movement. Both applications require the prior recording of calibration Green's functions in the area of interest. This reference Green's function will be used as a codebook to decrypt the coded message in the first application and as a moving sensor for the second application. Field tests show that seismic radar can detect the moving coordinates (x(t), y(t), z(t)) of a person running through a calibration site. This information also allows for a calculation of his velocity as a function of location. Results with the seismic radio are successful in seismically detecting and decoding coded pulses produced by a hammer. Both seismic radio and radar are highly robust to signals in high noise environments due to the super-stacking property of TRMs. © 2011 Acoustical Society of America

  1. Novel Motion Sensorless Control of Single Phase Brushless D.C. PM Motor Drive, with experiments

    DEFF Research Database (Denmark)

    Lepure, Liviu Ioan; Boldea, Ion; Andreescu, Gheorghe Daniel

    2010-01-01

    A motion sensorless control for single phase permanent magnet brushless d.c. (PM-BLDC) motor drives, based on flux integration and prior knowledge of the PM flux/position characteristic is proposed here and an adequate correction algorithm is adopted, in order to increase the robustness to noise...

  2. Formation of residual NAPL in three-phase systems: Experiments and numerical simulations

    NARCIS (Netherlands)

    Hofstee, C.; Oostrom, M.

    2002-01-01

    The formation of residual, discontinuous nonaqueous phase liquids (NAPLs) in the vadose zone is a process that is not well understood. The simulators have conveniently implemented the Leverett concept (Leverett and Lewis, 1941) which states that in a water-wet porous media, when fluid wettabilities

  3. Flow generated by an aerated rushton impeller: two-phase PIV experiments and numerical simulations

    NARCIS (Netherlands)

    Deen, N.G.; Solberg, Tron; Hjertager, H.

    2002-01-01

    A two-camera PIV technique was used to obtain angle resolved velocity and turbulence data of the flow in a lab-scale stirred tank, equipped with a Rushton turbine. Two cases were investigated: a single-phase flow and a gas-liquid flow. In the former case, the classical radial jet flow pattern

  4. Mutual Phase Locking of Fluxons in Stacked Long Josephson Junctions: Simulations and Experiment

    DEFF Research Database (Denmark)

    Carapella, Giovanni; Costabile, Giovanni; Filatrella, Giovanni

    1997-01-01

    We report on the experimental observation of reciprocal phase-locking in stacked $Nb-AlO_x-Nb$ Josephson junctions having overlap geometry. When the junctions are independently biased in zero external magnetic field, they each exhibit several Zero Field Steps. Biasing both the junctions on the Ze...

  5. Implementing an assessment-based communication skills training in pre-clinical phase: an IMU experience.

    Science.gov (United States)

    Lukman, H; Beevi, Z; Mohamadou, G; Yeap, R

    2006-06-01

    This article describes the communication skills programme of the International Medical University, which adopts an integrated medical curriculum. The programme, implemented in February 2005, is based on a systematic framework aimed at teaching students basic interpersonal communication skills progressively and continuously throughout the pre-clinical phase.

  6. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    Science.gov (United States)

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-12-30

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  7. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    Directory of Open Access Journals (Sweden)

    Qiang Zhou

    2015-12-01

    Full Text Available A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid.

  8. Reproductive experience does not persistently alter prefrontal cortical-dependent learning but does alter strategy use dependent on estrous phase.

    Science.gov (United States)

    Workman, Joanna L; Crozier, Tamara; Lieblich, Stephanie E; Galea, Liisa A M

    2013-08-01

    Reproductive experiences in females comprise substantial hormonal and experiential changes and can exert long lasting changes in cognitive function, stress physiology, and brain plasticity. The goal of this research was to determine whether prior reproductive experience could alter a prefrontal-cortical dependent form of learning (strategy set shifting) in an operant box. In this study, female Sprague-Dawley rats were mated and mothered once or twice to produce either primiparous or biparous dams, respectively. Age-matched nulliparous controls (reproductively-naïve females with no exposure to pup cues) were also used. Maternal behaviors were also assessed to determine whether these factors would predict cognitive flexibility. For strategy set shifting, rats were trained in a visual-cue discrimination task on the first day and on the following day, were required to switch to a response strategy to obtain a reward. We also investigated a simpler form of behavioral flexibility (reversal learning) in which rats were trained to press a lever on one side of the box the first day, and on the following day, were required to press the opposite lever to obtain a reward. Estrous phase was determined daily after testing. Neither parity nor estrous phase altered total errors or trials to reach criterion in either the set-shifting or reversal-learning tasks, suggesting that PFC-dependent cognitive performance remains largely stable after 1 or 2 reproductive experiences. However, parity and estrous phase interacted to alter the frequency of particular error types, with biparous rats in estrus committing more perseverative but fewer regressive errors during the set-shifting task. This suggests that parity and estrous phase interfere with the ability to disengage from a previously used, but no longer relevant strategy. These data also suggest that parity alters the behavioral sensitivity to ovarian hormones without changing overall performance. Copyright © 2013 Elsevier Inc. All

  9. Seismic isolation - efficient procedure for seismic response assessement

    International Nuclear Information System (INIS)

    Zamfir, M. A.; Androne, M.

    2016-01-01

    The aim of this analysis is to reduce the dynamic response of a structure. The seismic isolation solution must take into consideration the specific site ground motion. In this paper will be presented results obtained by applying the seismic isolation method. Based on the obtained results, important conclusions can be outlined: the seismic isolation device has the ability to reduce seismic acceleration of the seismic isolated structure to values that no longer present a danger to people and environment; the seismic isolation solution is limiting devices deformations to safety values for ensuring structural integrity and stability of the entire system; the effective seismic energy dissipation and with no side effects both for the seismic isolated building and for the devices used, and the return to the initial position before earthquake occurence are obtained with acceptable permanent displacement. (authors)

  10. Seismic fragility analyses

    International Nuclear Information System (INIS)

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  11. Estimating Fault Friction From Seismic Signals in the Laboratory

    Science.gov (United States)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.

    2018-02-01

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  12. Pickering seismic safety margin

    International Nuclear Information System (INIS)

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  13. Landslide seismic magnitude

    Science.gov (United States)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or sa