WorldWideScience

Sample records for seismic capacity evaluation

  1. Seismic capacity of switchgear

    Bandyopadhyay, K.; Hofmayer, C.; Kassir, M.; Pepper, S.

    1989-01-01

    As part of a component fragility program sponsored by the USNRC, BNL has collected existing information on the seismic capacity of switchgear assemblies from major manufacturers. Existing seismic test data for both low and medium voltage switchgear assemblies have been evaluated and the generic results are presented in this paper. The failure modes are identified and the corresponding generic lower bound capacity levels are established. The test response spectra have been used as a measure of the test vibration input. The results indicate that relays chatter at a very low input level at the base of the switchgear cabinet. This change of state of devices including relays have been observed. Breaker tripping occurs at a higher vibration level. Although the structural failure of internal elements have been noticed, the overall switchgear cabinet structure withstands a high vibration level. 5 refs., 2 figs., 2 tabs

  2. Seismic fragility capacity of equipment

    Iijima, Toru; Abe, Hiroshi; Suzuki, Kenichi

    2006-01-01

    Seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risks of nuclear plants that are designed on definitive seismic conditions. From our preliminary seismic PSA analysis, horizontal shaft pumps are important components that have significant influences on the core damage frequency (CDF). An actual horizontal shaft pump and some kinds of elements were tested to evaluate realistic fragility capacities. Our test results showed that the realistic fragility capacity of horizontal shaft pump would be at least four times as high as a current value, 1.6 x 9.8 m/s 2 , used for our seismic PSA. We are going to incorporate the fragility capacity data that were obtained from those tests into our seismic PSA analysis, and we expect that the reliability of seismic PSA should increase. (author)

  3. Seismic capacity evaluation of a group of vertical U-tube heat exchanger with support frames for seismic PSA

    Watanabe, Yuichi; Muramatsu, Ken; Oikawa, Tetsukuni

    2005-01-01

    This paper presents an evaluation of seismic capacity of a group of vertical U-tube type heat exchangers (HXs) with support frames to contribute to refinement of seismic capacity data for seismic Probabilistic Safety Assessment (PSA) in Japan. According to usual practice of seismic PSAs, capacity of component is represented as a log-normally distributed random variable defined by a median and logarithmic standard deviations (LSDs), which represent inherent randomness about the median, β r , and uncertainty in the median due to lack of knowledge, β u . Using design specifications of four HXs for residual heat removal systems of 1100 MWe BWRs, the authors evaluated a generic capacity of HXs with a LSD for uncertainty due to lack of knowledge to take into account design variability. The median capacity was evaluated by the use of a time history response analysis with a detailed model for a selected representative HX, which was extended from a model used in seismic design. The LSD for uncertainty due to lack of knowledge was evaluated with consideration of the variabilities in three influential design parameters, i.e., diameter of anchor bolt, weight of HX and position of center of gravity of HX with the detailed model and a simplified static model. The LSD for uncertainty due to randomness was determined from the variability in material property. The dominant failure mode of HXs was identified as the failure of anchor bolts of lugs mainly due to shearing stress. The capacity expressed in terms of zero period acceleration on the foundation of HX was evaluated to be 4180 Gal (4.3 g) for median, LSD for uncertainty due to randomness was 0.11 and LSD due to lack of knowledge was 0.21-0.53 depending on combination of the variabilities in design parameters to be considered

  4. Seismic analysis and structure capacity evaluation of the Belene nuclear power plant

    Johnson, J.J.; Hashimoto, P.S.; Campbell, R.D.; Baltus, R.S.

    1993-01-01

    The seismic analysis and structure capacity evaluation of the Belene Nuclear Power Plant, a two-unit WWER 1000, was performed. The principal objective of the study was to review the major aspects of the seismic design including ground motion specification, foundation concept and materials, and the Unit I main reactor building structure response and capacity. The main reactor building structure /foundation/soil were modeled and analyzed by a substructure approach to soil-structure interaction (SSI) analysis. The elements of the substructure approach, implemented in the family of computer programs CLASSI, are: Specification of the free-field ground motion; Modeling the soil profile; SSI parameters; Modeling the structure; SSI-response analyses. Each of these aspects is discussed. The Belene Unit 1 main reactor building structure was evaluated to verify the seismic design with respect to current western criteria. The structural capacity evaluation included criteria development, element load distribution analysis, structural element selection, and structural element capacity evaluation. Equipment and commodity design criteria were similarly reviewed and evaluated. Methodology results and recommendations are presented. (author)

  5. Evaluation of high frequency ground motion effects on the seismic capacity of NPP equipments

    Choi, In Kil; Seo, Jeong Moon; Choun, Young Sun

    2003-04-01

    In this study, the uniform hazard spectrum for the example Korean nuclear power plants sites were developed and compared with various response spectra used in past seismic PRA and SMA. It shows that the high frequency ground motion effects should be considered in seismic safety evaluations. The floor response spectra were developed using the direct generation method that can develop the floor response spectra from the input response spectrum directly with only the dynamic properties of structures obtained from the design calculation. Most attachment of the equipments to the structure has a minimum distortion capacity. This makes it possible to drop the effective frequency of equipment to low frequency before it is severely damaged. The results of this study show that the high frequency ground motion effects on the floor response spectra were significant, and the effects should be considered in the SPRA and SMA for the equipments installed in a building. The high frequency ground motion effects are more important for the seismic capacity evaluation of functional failure modes. The high frequency ground motion effects on the structural failure of equipments that attached to the floor by welding can be reduced by the distortion capacity of welded anchorage

  6. Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures

    Faella, C.; Lima, C.; Martinelli, E.; Nigro, E.

    2008-01-01

    Seismic vulnerability assessment of existing buildings is one of the most common tasks in which Structural Engineers are currently engaged. Since, its is often a preliminary step to approach the issue of how to retrofit non-seismic designed and detailed structures, it plays a key role in the successful choice of the most suitable strengthening technique. In this framework, the basic information for both seismic assessment and retrofitting is related to the formulation of capacity models for structural members. Plenty of proposals, often contradictory under the quantitative standpoint, are currently available within the technical and scientific literature for defining the structural capacity in terms of force and displacements, possibly with reference to different parameters representing the seismic response. The present paper shortly reviews some of the models for capacity of RC members and compare them with reference to two case studies assumed as representative of a wide class of existing buildings

  7. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  8. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  9. Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect

    Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2005-12-15

    Several recent improved methods for the EGFM are introduced in order to avoid artificial holes seen in the synthetic acceleration spectrum. Furthermore evaluation of input ground motions at Wolsung NPP are performed by varying the source parameters that may control the high-frequency wave radiation and the deviation of the synthetic motions are revealed. The PSHA case studies for four NPP sites (Wolsung, Kori, Uljin, Younggwang) are performed. In the analysis, site-specific attenuation equations developed for Korean NPP sites are employed, and the seismic hazards for the target sites are evaluated in the case where the four kind of seismic source models are considered. Moreover, the PSHA for Wolsung and Younggwang are conducted by using the site-specific attenuation equation with the index of response spectra and the uniform hazard spectra are evaluated for the two sites. The supporting tool for seismic response analysis and the evaluation tool for evaluating annual probability of failure were integrated in the frame of the seismic risk assessment system. Then, the tools were applied to the seismic risk assessment of the conventional EDG and isolated EDG. General information such as earthquake parameters and regional distribution of seismic intensity is summarized on the 2005 West Off Fukuoka earthquake. Then, the observed strong motion records in Japan and Korea sites are compiled, and regional distribution of peak accelerations are represented. Moreover, the peak accelerations of the records are compared with the values estimated from the existing attenuation equations.

  10. Study on structural seismic margin and probabilistic seismic risk. Development of a structural capacity-seismic risk diagram

    Nakajima, Masato; Ohtori, Yasuki; Hirata, Kazuta

    2010-01-01

    Seismic margin is extremely important index and information when we evaluate and account seismic safety of critical structures, systems and components quantitatively. Therefore, it is required that electric power companies evaluate the seismic margin of each plant in back-check of nuclear power plants in Japan. The seismic margin of structures is usually defined as a structural capacity margin corresponding to design earthquake ground motion. However, there is little agreement as to the definition of the seismic margin and we have no knowledge about a relationship between the seismic margin and seismic risk (annual failure probability) which is obtained in PSA (Probabilistic Safety Assessment). The purpose of this report is to discuss a definition of structural seismic margin and to develop a diagram which can identify a relation between seismic margin and seismic risk. The main results of this paper are described as follows: (1) We develop seismic margin which is defined based on the fact that intensity of earthquake ground motion is more appropriate than the conventional definition (i.e., the response-based seismic margin) for the following reasons: -seismic margin based on earthquake ground motion is invariant where different typed structures are considered, -stakeholders can understand the seismic margin based on the earthquake ground motion better than the response-based one. (2) The developed seismic margin-risk diagram facilitates us to judge easily whether we need to perform detailed probabilistic risk analysis or only deterministic analysis, given that the reference risk level although information on the uncertainty parameter beta is not obtained. (3) We have performed numerical simulations based on the developed method for four sites in Japan. The structural capacity-risk diagram differs depending on each location because the diagram is greatly influenced by seismic hazard information for a target site. Furthermore, the required structural capacity

  11. Uncertainty in Seismic Capacity of Masonry Buildings

    Nicola Augenti

    2012-07-01

    Full Text Available Seismic assessment of masonry structures is plagued by both inherent randomness and model uncertainty. The former is referred to as aleatory uncertainty, the latter as epistemic uncertainty because it depends on the knowledge level. Pioneering studies on reinforced concrete buildings have revealed a significant influence of modeling parameters on seismic vulnerability. However, confidence in mechanical properties of existing masonry buildings is much lower than in the case of reinforcing steel and concrete. This paper is aimed at assessing whether and how uncertainty propagates from material properties to seismic capacity of an entire masonry structure. A typical two-story unreinforced masonry building is analyzed. Based on previous statistical characterization of mechanical properties of existing masonry types, the following random variables have been considered in this study: unit weight, uniaxial compressive strength, shear strength at zero confining stress, Young’s modulus, shear modulus, and available ductility in shear. Probability density functions were implemented to generate a significant number of realizations and static pushover analysis of the case-study building was performed for each vector of realizations, load combination and lateral load pattern. Analysis results show a large dispersion in displacement capacity and lower dispersion in spectral acceleration capacity. This can directly affect decision-making because both design and retrofit solutions depend on seismic capacity predictions. Therefore, engineering judgment should always be used when assessing structural safety of existing masonry constructions against design earthquakes, based on a series of seismic analyses under uncertain parameters.

  12. Korea-Japan Joint Research on Development of Seismic Capacity Evaluation and Enhancement Technology Considering Near-Fault Effect (Final Report)

    Choun, Young Sun; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of); Ohtori, Yasuki; Shiba, Yoshiaki; Nakajima, Masato [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2006-12-15

    We compiled the results of the source analysis obtained under the collaboration research. Recent construction scheme for source modeling adopted in Japan is described, and strong-motion prediction is performed assuming the scenario earthquakes occurring in the Ulsan fault system, Korea. Finally Qs values beneath the Korean inland crust are estimated using strong-motion records in Korea from the 2005 Off West Fukuoka earthquake (M7.0). Probabilistic seismic hazard for four NPP sites in Korea are evaluated, in which the site specific attenuation equations with Index SA developed for NPP sites are adopted. Furthermore, the uniform hazard spectra for the four NPP sites in Korea are obtained by conducting the PSHA by using the attenuation equations with the index of response spectra and seismic source model cases with maximum weights. The supporting tools for seismic response analysis, the evaluation tool for evaluating annual probability of failure, and system analysis program were developed for the collaboration. The tools were verified with theoretical results, the results written in the reference document of EQESRA, and so forth. The system analysis program was applied for the investigation of the effect of improving the seismic capacity of equipment. We evaluated the annual probability of failure of isolated and non-isolated EDG at Younggwang NPP site as the results of the collaboration. The input ground motion for generating the seismic fragility curve was determined based on the seismic hazard analysis. It was found that the annual probability of failure of isolated EDG is lower than that of non-isolated EDG.

  13. BUILDING 341 Seismic Evaluation

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.

  14. Seismic fragility capacity of equipment--horizontal shaft pump test

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  15. Seismic evaluation of existing nuclear facilities. Proceedings

    NONE

    1995-07-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies.

  16. Seismic evaluation of existing nuclear facilities. Proceedings

    1995-01-01

    Programmes for re-evaluation and upgrading of safety of existing nuclear facilities are presently under way in a number of countries around the world. An important component of these programmes is the re-evaluation of the seismic safety through definition of new seismic parameters at the site and evaluation of seismic capacity of structures, equipment and distribution systems following updated information and criteria. The Seminar is intended to provide a forum for the exchange of information and discussion of the state-of-the-art on seismic safety of nuclear facilities in operation or under construction. Both analytical and experimental techniques for the evaluation of seismic capacity of structures, equipment and distribution systems are discussed. Full scale and field tests of structures and components using shaking tables, mechanical exciters, explosive and shock tests, and ambient vibrations are included in the seminar programme with emphasis on recent case histories. Presentations at the Seminar also include analytical techniques for the determination of dynamic properties of soil-structure systems from experiments as well as calibration of numerical models. Methods and criteria for seismic margin assessment based on experience data obtained from the behaviour of structures and components in real earthquakes are discussed. Guidelines for defining technical requirements for capacity re-evaluation (i.e. acceptable behaviour limits and design and implementation of structure and components upgrades are also presented and discussed. The following topics were covered during 7 sessions: earthquake experience and seismic re-evaluation; country experience in seismic re-evaluation programme; generic WWER studies; analytical methods for seismic capacity re-evaluation; experimental methods for seismic capacity re-evaluation; case studies

  17. Seismic capacity of a reinforced concrete frame structure without seismic detailing and limited ductility seismic design in moderate seismicity

    Kim, J. K.; Kim, I. H.

    1999-01-01

    A four-story reinforced concrete frame building model is designed for the gravity loads only. Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape, moment and shear distribution are calculated. Based on these results limited ductility seismic design concept is proposed as an alternative seismic design approach in moderate seismicity resign

  18. Seismic evaluation of existing nuclear power plants

    2003-01-01

    The IAEA nuclear safety standards publications address the site evaluation and the design of new nuclear power plants (NPPs), including seismic hazard assessment and safe seismic design, at the level of the Safety Requirements as well as at the level of dedicated Safety Guides. It rapidly became apparent that the existing nuclear safety standards documents were not adequate for handling specific issues in the seismic evaluation of existing NPPs, and that a dedicated document was necessary. This is the purpose of this Safety Report, which is written in the spirit of the nuclear safety standards and can be regarded as guidance for the interpretation of their intent. Worldwide experience shows that an assessment of the seismic capacity of an existing operating facility can be prompted for the following: (a) Evidence of a greater seismic hazard at the site than expected before, owing to new or additional data and/or to new methods; (b) Regulatory requirements, such as periodic safety reviews, to ensure that the plant has adequate margins for seismic loads; (c) Lack of anti-seismic design or poor anti-seismic design; (d) New technical finding such as vulnerability of some structures (masonry walls) or equipment (relays), other feedback and new experience from real earthquakes. Post-construction evaluation programmes evaluate the current capability of the plant to withstand the seismic concern and identify any necessary upgrades or changes in operating procedures. Seismic qualification is distinguished from seismic evaluation primarily in that seismic qualification is intended to be performed at the design stage of a plant, whereas seismic evaluation is intended to be applied after a plant has been constructed. Although some guidelines do exist for the evaluation of existing NPPs, these are not established at the level of a regulatory guide or its equivalent. Nevertheless, a number of existing NPPs throughout the world have been and are being subjected to review of their

  19. Reserve seismic capacity determination of a nuclear power plant braced frame with piping

    Nelson, T.A.

    1979-01-01

    The Lawrence Livermore Laboratory has been asked by the U.S. Nuclear Regulatory Commission to investigate the inelastic behavior of a representative non-category I structure to determine the amount of reserve seismic capacity that is available beyond elastic design levels. This reserve capacity can be an important consideration when evaluating the ability of existing structures to withstand upgraded seismic hazards. (orig.)

  20. Integrated system for seismic evaluations

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the seismic module of the CARES system (computer analysis for rapid evaluation of structures). This system was developed to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structural in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the seismic module in particular. The development of the seismic modules of the CARES system is based on an approach which incorporates major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities

  1. Seismic evaluation of large flat-bottomed tanks

    Kennedy, R.P.; Kassawara, R.P.

    1990-01-01

    This paper presents a procedure for conservatively evaluating the seismic capacity of flat-bottom fluid storage tanks. The authors know of no case of tank failures at capacity levels less than those predicted by this procedure. Thus, the predicted capacity represents a High Confidence Low Probability of Failure (HCLPF) capacity consistent with earthquake experience. (orig.)

  2. Integrated system for seismic evaluations

    Xu, J.; Philippacopoulos, A.J.; Miller, C.A.; Costantino, C.J.; Graves, H.

    1989-01-01

    This paper describes the various features of the Seismic Module of the CARES system (Computer Analysis for Rapid Evaluation of Structures). This system was developed by Brookhaven National Laboratory (BNL) for the US Nuclear Regulatory Commission to perform rapid evaluations of structural behavior and capability of nuclear power plant facilities. The CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the features of the Seismic Module in particular. The development of the Seismic Module of the CARES system is based on an approach which incorporates all major aspects of seismic analysis currently employed by the industry into an integrated system that allows for carrying out interactively computations of structural response to seismic motions. The code operates on a PC computer system and has multi-graphics capabilities. It has been designed with user friendly features and it allows for interactive manipulation of various analysis phases during the seismic design process. The capabilities of the seismic module include (a) generation of artificial time histories compatible with given design ground response spectra, (b) development of Power Spectral Density (PSD) functions associated with the seismic input, (c) deconvolution analysis using vertically propagating shear waves through a given soil profile, and (d) development of in-structure response spectra or corresponding PSD's. It should be pointed out that these types of analyses can also be performed individually by using available computer codes such as FLUSH, SAP, etc. The uniqueness of the CARES, however, lies on its ability to perform all required phases of the seismic analysis in an integrated manner. 5 refs., 6 figs

  3. Status report on seismic re-evaluation

    1998-01-01

    In May 1997, a meeting of the PWG 3 Sub Group on the Seismic Behaviour of Structures agreed several priority objectives, of which one was the production of a status report on seismic re-evaluation. Seismic re-evaluation is identified as the process of carrying out a re-assessment of the safety of existing nuclear power plants for a specified seismic hazard. This may be necessary when no seismic hazard was considered in the original design of the plant, the relevant codes and regulations have been revised, the seismic hazard for the site has been re-assessed or there is a need to assess the capacity of the plant for severe accident conditions and behaviour beyond the design basis. Re-evaluation may also be necessary to resolve an issue, or to assess the impact of new findings or knowledge. A questionnaire on the subject was issued to all members of the Seismic Sub Group in the summer of 1997, and responses to the questionnaire had been received from most members by the end of 1997. This report is based on the responses to the questionnaire, together with comment and discussion within the group. The questionnaire covered the following main topics of interest in relation to seismic re-evaluation: General and Legislative Framework, Overall Approach, Input Definition and Analysis Methods, Scope of Plant and Assessment of As-built Situation, Assessment criteria, Outcome of Re-evaluations, Research. The responses to the questionnaire have been collated and reviewed with the objective of comparing current practice in the field of seismic re-evaluation in member countries, and a number of important points have been identified in relation to the position of seismic re-evaluation in the nuclear power industry throughout the world. It is evident that seismic re-evaluation is a relatively mature process that has been developing for some time, with most countries adopting similar practices, often based on principles which have been developed in the US nuclear industry. Seismic

  4. Burar seismic station: evaluation of seismic performance

    Ghica, Daniela; Popa, Mihaela

    2005-01-01

    A new seismic monitoring system, the Bucovina Seismic Array (BURAR), has been established since July 2002, in the Northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics (NIEP), Romania. The small-aperture array consists of 10 seismic sensors (9 vertical short-period and one three-component broad band) located in boreholes and distributed in a 5 x 5 km 2 area. At present, the seismic data are continuously recorded by the BURAR and transmitted in real-time to the Romanian National Data Center in Bucharest and National Data Center of the USA, in Florida. Based on the BURAR seismic information gathered at the National Data Center, NIEP (ROM N DC), in the August 2002 - December 2004 time interval, analysis and statistical assessments were performed. Following the preliminary processing of the data, several observations on the global performance of the BURAR system were emphasized. Data investigation showed an excellent efficiency of the BURAR system particularly in detecting teleseismic and regional events. Also, a statistical analysis for the BURAR detection capability of the local Vrancea events was performed in terms of depth and magnitude for the year 2004. The high signal detection capability of the BURAR resulted, generally, in improving the location solutions for the Vrancea seismic events. The location solution accuracy is enhanced when adding BURAR recordings, especially in the case of low magnitude events (recorded by few stations). The location accuracy is increased, both in terms of constraining hypocenter depth and epicentral coordinates. Our analysis certifies the importance of the BURAR system in NIEP efforts to elaborate seismic bulletins. Furthermore, the specific procedures for array data processing (beam forming, f-k analysis) increase significantly the signal-to-noise ratio by summing up the coherent signals from the array components, and ensure a better accuracy

  5. Seismic evaluation of reinforced masonry walls

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  6. Seismic evaluation of a hot cell structure

    Srinivasan, M.G.; Kot, C.A.

    1995-01-01

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake

  7. Seismic evaluation of nuclear installations

    Mattar Neto, Miguel

    1997-01-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs

  8. Program outline of seismic fragility capacity tests on nuclear power plant equipment

    Lijima, T.; Abe, H.; Fujita, T.

    2004-01-01

    A seismic probabilistic safety assessment (PSA) is an available method to evaluate residual risk of nuclear plant that is designed with definitive seismic design condition. Seismic fragility capacity data are necessary for seismic PSA, but we don't have sufficient data of active components of nuclear plants in Japan. This paper describes a plan of seismic fragility capacity tests on nuclear power plant equipment. The purpose of those tests is to obtain seismic fragility capacity of important equipment from a safety design point of view. And the equipment for the fragility capacity tests were selected considering effect on core damage frequency (CDF) that was evaluated by our preliminary seismic PSA. Consequently horizontal shaft pump, electric cabinets, Control Rod Drive system (CRD system) of BWR and PWR plant and vertical shaft pump were selected. The seismic fragility capacity tests are conducted from phase-1 to phase-3, and horizontal shaft pump and electric cabinets are tested on phase-1. The fragility capacity test consists of two types of tests. One is actual equipment test and another is element test. On actual equipment test, a real size model is tested with high-level seismic motion, and critical acceleration and failure mode are investigated. Regarding fragility test phase-1, we selected typical type horizontal shaft pump and electric cabinets for the actual equipment test. Those were Reactor Building Closed Cooling Water (RCW) Pump and eight kinds of electric cabinets such as relay cabinet, motor control center. On the test phase-1, maximum input acceleration for the actual equipment test is intended to be 6-G-force. Since the shaking table of TADOTSU facility did not have capability for high acceleration, we made vibration amplifying system. In this system, amplifying device is mounted on original shaking table and it moves in synchronization with original table. The element test is conducted with many samples and critical acceleration, median and

  9. Seismic design and evaluation criteria based on target performance goals

    Murray, R.C.; Nelson, T.A.; Kennedy, R.P.; Short, S.A.

    1994-04-01

    The Department of Energy utilizes deterministic seismic design/evaluation criteria developed to achieve probabilistic performance goals. These seismic design and evaluation criteria are intended to apply equally to the design of new facilities and to the evaluation of existing facilities. In addition, the criteria are intended to cover design and evaluation of buildings, equipment, piping, and other structures. Four separate sets of seismic design/evaluation criteria have been presented each with a different performance goal. In all these criteria, earthquake loading is selected from seismic hazard curves on a probabilistic basis but seismic response evaluation methods and acceptable behavior limits are deterministic approaches with which design engineers are familiar. For analytical evaluations, conservatism has been introduced through the use of conservative inelastic demand-capacity ratios combined with ductile detailing requirements, through the use of minimum specified material strengths and conservative code capacity equations, and through the use of a seismic scale factor. For evaluation by testing or by experience data, conservatism has been introduced through the use of an increase scale factor which is applied to the prescribed design/evaluation input motion

  10. Seismic Capacity Estimation of Steel Piping Elbow under Low-cycle Fatigue Loading

    Jeon, Bub Gyu; Kim, Sung Wan; Choi, Hyoung Suk; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of); Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In some cases, this large relative displacement can increase seismic risk of the isolated facility. Especially, a inelastic behavior of crossover piping system to connect base isolated building and fixed base building can caused by a large relative displacement. Therefore, seismic capacity estimation for isolated piping system is needed to increase safety of nuclear power plant under seismic condition. Dynamic behavior analysis of piping system under seismic condition using shake table tests was performed by Touboul et al in 1995. In accordance with their study, plastic behavior could be occurred at pipe elbow under seismic condition. Experimental researches for dynamic behavior of typical piping system in nuclear power plant have been performed for several years by JNES(Japan Nuclear Energy Safety Organization) and NUPEC(Nuclear Power Engineering Corporation). A low cycle ratcheting fatigue test was performed with scaled model of elbow which is a weakest component in piping system by Mizuno et al. In-plane cyclic loading tests under internal pressure condition were performed to evaluate the seismic capacity of the steel piping elbow. Leakage phenomenon occurred on and near the crown in piping elbow. Those cracks grew up in axial direction. The fatigue curve was estimated from test results. In the fatigue curve, loading amplitude exponentially decreased as the number of cycles increased. A FEM model of piping elbow was modified with test results. The relationships between displacement and force from tests and numerical analysis was well matched.

  11. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  12. Upgrading the seismic capacity of existing RC buildings using buckling restrained braces

    Hamdy Abou-Elfath

    2017-06-01

    Full Text Available Many existing RC buildings do not meet the lateral strength requirements of current seismic codes and are vulnerable to significant damage or collapse in the event of future earthquakes. In the past few decades, buckling-restrained braces have become increasingly popular as a lateral force resisting system because of their capability of improving the strength, the stiffness and the energy absorbing capacity of structures. This study evaluates the seismic upgrading of a 6-story RC-building using single diagonal buckling restrained braces. Seismic evaluation in this study has been carried out by static pushover analysis and time history earthquake analysis. Ten ground motions with different PGA levels are used in the analysis. The mean plus one standard deviation values of the roof-drift ratio, the maximum story drift ratio, the brace ductility factors and the member strain responses are used as the basis for the seismic performance evaluations. The results obtained in this study indicate that strengthening of RC buildings with buckling restrained braces is an efficient technique as it significantly increases the PGA capacity of the RC buildings. The results also indicate the increase in the PGA capacity of the RC building with the increase in the amount of the braces.

  13. NRC systematic evaluation program: seismic review

    Levin, H.A.

    1980-01-01

    The NRC Systematic Evaluation Program is currently making an assessment of the seismic design safety of 11 older nuclear power plant facilities. The general review philosophy and review criteria relative to seismic input, structural response, and equipment functionability are presented, including the rationale for the development of these guidelines considering the significant evolution of seismic design criteria since these plants were originally licensed. Technical approaches thought more realistic in light of current knowledge are utilized. Initial findings for plants designed to early seismic design procedures suggest that with minor exceptions, these plants possess adequate seismic design margins when evaluated against the intent of current criteria. However, seismic qualification of electrical equipment has been identified as a subject which requires more in-depth evaluation

  14. Destructiveness criteria for seismic risk evaluation of nuclear power plant

    Saragoni, G.R.

    1995-01-01

    Two criteria of destructiveness for seismic risk evaluation of nuclear power plant are presented. The first one is a simple linear criterion that allows to compute average response spectra in terms of earthquake accelerogram characteristics. The second defines the destructiveness potential factor P D which measures the capacity of earthquake to produce nonlinear damage. This second criterion that shows large differences of destructiveness capacity for earthquake accelerograms of different seismic environment, specially between subductive and transcursive, is strongly recommended. (author). 8 refs., 1 fig. 1 tab

  15. Aging evaluation of class 1E batteries: Seismic testing

    Edson, J.L.

    1990-08-01

    This report presents the results of a seismic testing program on naturally aged class 1E batteries obtained from a nuclear plant. The testing program is a Phase 2 activity resulting from a Phase 1 aging evaluation of class 1E batteries in safety systems of nuclear power plants, performed previously as a part of the US Nuclear Regulatory Commission's Nuclear Plant Aging Research Program and reported in NUREG/CR-4457. The primary purpose of the program was to evaluate the seismic ruggedness of naturally aged batteries to determine if aged batteries could have adequate electrical capacity, as determined by tests recommended by IEEE Standards, and yet have inadequate seismic ruggedness to provide needed electrical power during and after a safe shutdown earthquake (SSE) event. A secondary purpose of the program was to evaluate selected advanced surveillance methods to determine if they were likely to be more sensitive to the aging degradation that reduces seismic ruggedness. The program used twelve batteries naturally aged to about 14 years of age in a nuclear facility and tested them at four different seismic levels representative of the levels of possible earthquakes specified for nuclear plants in the United States. Seismic testing of the batteries did not cause any loss of electrical capacity. 19 refs., 29 figs., 7 tabs

  16. Seismic capacities of existing nuclear power plant structures

    Wesley, D.A.; Hashimoto, P.S.; Narver, R.B.

    1983-01-01

    The paper presents a discussion of the more important conservatisms and some of the results obtained when this methodology has been applied to various nuclear plants. Results are shown for both BWR and PWR plants, on both rock and soil sites, and for plants and soil sites, and for plants that were designed in the late 1960s to plants that have yet to load fuel. Safe shutdown earthquake design levels of 0.1 g to 0.25 g were used for these plants. Overall median structural factors of safety for the lowest significant seismic failure capacity at each plant ranged from 3.5 to 8.5. The lowest containment-related failure capacity at each plant ranged from 4.6 to 31. The types of failure corresponding to each safety factor are also tabulated. (orig./HP)

  17. Evaluating Capacity Development

    She also had the dubious pleasure of checking and correcting the text numerous ... Has your organization received training or other types of support for capacity ...... processors, and consumer groups in its research and development work.

  18. Evaluation of railway capacity

    Landex, Alex; Kaas, Anders H.; Schittenhelm, Bernd

    2006-01-01

    capacity consumptions. This paper describes the UIC 406 method and how it is expounded in Denmark. The paper describes the importance of choosing the right length of the line sections examined and how line sections with multiple track sections are examined. Furthermore, the possibility of using idle...

  19. Performance-based methodology for assessing seismic vulnerability and capacity of buildings

    Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li

    2010-06-01

    This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.

  20. Seismic fragility evaluation of unreinforced masonry walls

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used at various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. (author)

  1. Seismic capacities of masonry walls at the big rock point nuclear generating plant

    Wesley, D.A.; Bunon, H.; Jenkins, R.B.

    1984-01-01

    An evaluation to determine the ability of selected concrete block walls in the vicinity of essential equipment to withstand seismic excitation was conducted. The seismic input to the walls was developed in accordance with the Systematic Evaluation Program (SEP) site-specific response spectra for the site. Time-history inputs to the walls were determined from the response of the turbine building complex. Analyses were performed to determine the capacities of the walls to withstand both in-plane and transverse seismic loads. Transverse load capacities were determined from time-history analyses of nonlinear two-dimensional analytical models of the walls. Separate inputs were used at the tops and bottoms of the walls to reflect the amplification through the building. The walls were unreinforced vertically with one exception, and have unsupported heights as high as 20'-8''. Also, cantilever walls as high as 11'-2'' were included in the evaluation. Factors of safety based on stability of the walls were determined for the transverse response, and on code allowable stresses (Reference 1) for the in-plane response

  2. Evaluating Seismic Activity in Ethiopia

    map is constructed from which seismic risks in a given sector ... troyed (10, 11) and the people of Eritrea remember these years ... terms of damage caused to man-made structures; they refer to .... walls of a well designed modern building were deta- ched from ... Although, at present, no theory is satisfactory, the fact remains.

  3. Systems considerations in seismic margin evaluations

    Buttermer, D.R.

    1987-01-01

    Increasing knowledge in the geoscience field has led to the understanding that, although highly unlikely, it is possible for a nuclear power plant to be subjected to earthquake ground motion greater than that for which the plant was designed. While it is recognized that there are conservatisms inherent in current design practices, interest has developed in evaluating the seismic risk of operating plants. Several plant-specific seismic probabilistic risk assessments (SPRA) have been completed to address questions related to the seismic risk of a plant. The results from such SPRAs are quite informative, but such studies may entail a considerable amount of expensive analysis of large portions of the plant. As an alternative to an SPRA, it may be more practical to select an earthquake level above the design basis for which plant survivability is to be demonstrated. The principal question to be addressed in a seismic margin evaluation is: At what ground motion levels does one have a high confidence that the probability of seismically induced core damage is sufficiently low? In a seismic margin evaluation, an earthquake level is selected (based on site-specific geoscience considerations) for which a stable, long-term safe shutdown condition is to be demonstrated. This prespecified earthquake level is commonly referred to as the seismic margin earthquake (SME). The Electric Power Research Institute is currently supporting a research project to develop procedures for use by the utilities to allow them to perform nuclear plant seismic margin evaluations. This paper describes the systems-related aspects of these procedures

  4. Effect of the selected seismic energy dissipation capacity on the materials quantity for reinforced concrete walls

    José Miguel Benjumea Royero

    2017-02-01

    Full Text Available Context: Regarding their design of reinforced concrete structural walls, the Colombian seismic design building code allows the engineer to select one of the three seismic energy dissipation capacity (ordinary, moderate, and special depending on the seismic hazard of the site. Despite this, it is a common practice to choose the minor requirement for the site because it is thought that selecting a higher requirement will lead to larger structural materials amounts and, therefore, cost increments.  Method: In this work, an analytical study was performed in order to determine the effect of the selected energy dissipation capacity on the quantity of materials and ductility displacement capacity of R/C walls. The study was done for a region with low seismic hazard, mainly because this permitted to explore and compare the use of the three seismic energy dissipations capacities. The effect of different parameters such as the wall total height and thickness, the tributary loaded area, and the minimum volumetric steel ratio were studied. Results: The total amount of steel required for the walls with moderate and special energy dissipation capacity corresponds, on average, to 77% and 89%, respectively, of the quantity required for walls with minimum capacity. Conclusions: it is possible to achieve reductions in the total steel required weight when adopting either moderated or special seismic energy dissipation instead of the minimum capacity.  Additionally, a significant increment in the seismic ductility displacements capacity of the wall was obtained.

  5. Seismic evaluation and strengthening of Bohunice nuclear power plant structures

    Shipp, J.G.; Short, S.A.; Grief, T.; Borov, V.; Kuzma, J.

    2001-01-01

    A seismic assessment and strengthening investigation is being performed for selected structures at the Bohunice V1 Nuclear Power Plant in Slovakia. Structures covered in this paper include the reactor building complex and the emergency generator station. The emergency generator station is emphasized in the paper as work is nearly complete while work on the reactor building complex is ongoing at this time. Seismic evaluation and strengthening work is being performed by a cooperative effort of Siemens and EQE along with local contractors. Seismic input is the interim Review Level Earthquake (horizontal peak ground acceleration of 0.3 g). The Bohunice V1 reactor building complex is a WWER 4401230 nuclear power plant that was originally built in the mid-1970s but had extensive seismic upgrades in 1991. Siemens has performed three dimensional dynamic analyses of the reactor building complex to develop seismic demand in structural elements. EQE is assessing seismic capacities of structural elements and developing strengthening schemes, where needed. Based on recent seismic response analyses for the interim Review Level Earthquake which account for soil-structure interaction in a rigorous manner, the 1991 seismic upgrade has been found to be inadequate in both member/connection strength and in providing complete load paths to the foundation. Additional strengthening is being developed. The emergency generator station was built in the 1970s and is a two-story unreinforced brick masonry (URM) shear wall building above grade with a one story reinforced concrete shear wall basement below grade. Seismic analyses and testing of the URM walls has been performed to assess the need for building strengthening. Required structural strengthening for in-plane forces consists of revised and additional vertical steel framing and connections, stiffening of horizontal roof bracing, and steel connections between the roof and supporting walls and pointing of two interior transverse URM

  6. Seismic fragility evaluation of unreinforced masonry walls

    Park, Y.J.; Hofmayer, C.H.; Reich, M.; Lee, S.K.

    1991-01-01

    A practical analysis scheme to evaluate the seismic fragility of unreinforced masonry walls which are used to various places in older reactor facilities is presented. Among the several failure modes for such walls, the out-of-plane bending failure is considered to be a major risk contributor in seismic PRA studies. In order to evaluate this failure mode, the use of an equivalent linear approximation method is examined based on comparisons with available test data and nonlinear time history analyses. 6 refs., 4 figs., 3 tabs

  7. Upgrading of seismic capacity of WWER equipment including reactor control rods and distribution systems

    Kostarev, V.

    1993-01-01

    This paper concerns the experience of CKTI VIBROSEISM firm (CVS) in seismic capacity upgrading of the WWER equipment and pipings. During the last 15 years CVS has accumulated a lot of experimental and analysis results on many of WWER units 'in former Soviet Union. That might be very useful in seismic protecting of East European Nuclear Power Plants. (author)

  8. A proposal for seismic evaluation index of mid-rise existing RC buildings in Afghanistan

    Naqi, Ahmad; Saito, Taiki

    2017-10-01

    Mid-rise RC buildings gradually rise in Kabul and entire Afghanistan since 2001 due to rapid increase of population. To protect the safety of resident, Afghan Structure Code was issued in 2012. But the building constructed before 2012 failed to conform the code requirements. In Japan, new sets of rules and law for seismic design of buildings had been issued in 1981 and severe earthquake damage was disclosed for the buildings designed before 1981. Hence, the Standard for Seismic Evaluation of RC Building published in 1977 has been widely used in Japan to evaluate the seismic capacity of existing buildings designed before 1981. Currently similar problem existed in Afghanistan, therefore, this research examined the seismic capacity of six RC buildings which were built before 2012 in Kabul by applying the seismic screening procedure presented by Japanese standard. Among three screening procedures with different capability, the less detailed screening procedure, the first level of screening, is applied. The study founds an average seismic index (IS-average=0.21) of target buildings. Then, the results were compared with those of more accurate seismic evaluation procedures of Capacity Spectrum Method (CSM) and Time History Analysis (THA). The results for CSM and THA show poor seismic performance of target buildings not able to satisfy the safety design limit (1/100) of the maximum story drift. The target buildings are then improved by installing RC shear walls. The seismic indices of these retrofitted buildings were recalculated and the maximum story drifts were analyzed by CSM and THA. The seismic indices and CSM and THA results are compared and found that building with seismic index larger than (IS-average =0.4) are able to satisfy the safety design limit. Finally, to screen and minimize the earthquake damage over the existing buildings, the judgement seismic index (IS-Judgment=0.5) for the first level of screening is proposed.

  9. Evaluation of Seismic Risk of Siberia Territory

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The outcomes of modern geophysical researches of the Geophysical Survey SB RAS, directed on study of geodynamic situation in large industrial and civil centers on the territory of Siberia with the purpose of an evaluation of seismic risk of territories and prediction of origin of extreme situations of natural and man-caused character, are pre- sented in the paper. First of all it concerns the testing and updating of a geoinformation system developed by Russian Emergency Ministry designed for calculations regarding the seismic hazard and response to distructive earthquakes. The GIS database contains the catalogues of earthquakes and faults, seismic zonation maps, vectorized city maps, information on industrial and housing fund, data on character of building and popula- tion in inhabited places etc. The geoinformation system allows to solve on a basis of probabilistic approaches the following problems: - estimating the earthquake impact, required forces, facilities and supplies for life-support of injured population; - deter- mining the consequences of failures on chemical and explosion-dangerous objects; - optimization problems on assurance technology of conduct of salvage operations. Using this computer program, the maps of earthquake risk have been constructed for several seismically dangerous regions of Siberia. These maps display the data on the probable amount of injured people and relative economic damage from an earthquake, which can occur in various sites of the territory according to the map of seismic zona- tion. The obtained maps have allowed determining places where the detailed seismo- logical observations should be arranged. Along with it on the territory of Siberia the wide-ranging investigations with use of new methods of evaluation of physical state of industrial and civil establishments (buildings and structures, hydroelectric power stations, bridges, dams, etc.), high-performance detailed electromagnetic researches of ground conditions of city

  10. Seismic evaluation of commercial plutonium fabrication plants in the United States

    Bernreuter, D.L.; Coats, D.W.; Murray, R.C.; Tokarz, F.J.

    1979-01-01

    This report is an overview of Lawrence Livermore National Laboratory's seismic assessment of six commercial plutonium fabrication plants licensed by the US Nuclear Regulatory Commission (NRC) before September 2, 1971. The seismic assessment generally has three parts: (1) documentation of the structural condition of each facility and its critical equipment; (2) characterization of the seismic hazard (i.e., determination of peak ground acceleration vs return period for each site); and (3) evaluation of seismic capacity to determine ground motion levels at which critical structures and equipment fail. The failure evaluation used structural capacities of median-centered strength characteristics of the as-built configurations from (1) and seismic hazard input from (2). Results of the assessment were partial input for an overall natural risks study by the NRC

  11. Development of Probabilistic Performance Evaluation Procedure for Umbilical Lines of Seismically Isolated NPPs

    Hahm, Daegi; Park, Junhee; Choi, Inkil

    2013-01-01

    In this study, we proposed a procedure to perform the probabilistic performance evaluation of interface piping system for seismically isolated NPPs, and carried out the preliminary performance evaluation of the target example umbilical line. For EDB level earthquakes, the target performance goal cannot be fulfilled, but we also find out that the result can be changed with respect to the variation of the assumed values, i. e., the distribution of response, and the limit state of piping system. Recently, to design the nuclear power plants (NPPs) more efficiently and safely against the strong seismic load, many researchers focus on the seismic isolation system. For the adoption of seismic isolation system to the NPPs, the seismic performance of isolation devices, structures, and components should be guaranteed firstly. Hence, some researches were performed to determine the seismic performance of such items. For the interface piping system between isolated structure and non-isolated structure, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. Nowadays, in NUREG report, the probabilistic performance criteria for isolated NPP structures and components are proposed. Hence, in this study, we developed the probabilistic performance evaluation method and procedure for interface piping system, and applied the method to an example pipe. The detailed procedure and main results are summarized in next section. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system

  12. 78 FR 13097 - Electric Power Research Institute; Seismic Evaluation Guidance

    2013-02-26

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0038] Electric Power Research Institute; Seismic... Electric Power Research Institute (EPRI)-1025287, ``Seismic Evaluation Guidance: Screening, Prioritization... guidance and clarification of an acceptable approach to assist nuclear power reactor licensees when...

  13. Consideration of time-evolving capacity distributions and improved degradation models for seismic fragility assessment of aging highway bridges

    Ghosh, Jayadipta; Sood, Piyush

    2016-01-01

    This paper presents a methodology to develop seismic fragility curves for deteriorating highway bridges by uniquely accounting for realistic pitting corrosion deterioration and time-dependent capacity distributions for reinforced concrete columns under chloride attacks. The proposed framework offers distinct improvements over state-of-the-art procedures for fragility assessment of degrading bridges which typically assume simplified uniform corrosion deterioration model and pristine limit state capacities. Depending on the time in service life and deterioration mechanism, this study finds that capacity limit states for deteriorating bridge columns follow either lognormal distribution or generalized extreme value distributions (particularly for pitting corrosion). Impact of column degradation mechanism on seismic response and fragility of bridge components and system is assessed using nonlinear time history analysis of three-dimensional finite element bridge models reflecting the uncertainties across structural modeling parameters, deterioration parameters and ground motion. Comparisons are drawn between the proposed methodology and traditional approaches to develop aging bridge fragility curves. Results indicate considerable underestimations of system level fragility across different damage states using the traditional approach compared to the proposed realistic pitting model for chloride induced corrosion. Time-dependent predictive functions are provided to interpolate logistic regression coefficients for continuous seismic reliability evaluation along the service life with reasonable accuracy. - Highlights: • Realistic modeling of chloride induced corrosion deterioration in the form of pitting. • Time-evolving capacity distribution for aging bridge columns under chloride attacks. • Time-dependent seismic fragility estimation of highway bridges at component and system level. • Mathematical functions for continuous tracking of seismic fragility along service

  14. Reducing Seismic Hazard and Building Capacity Through International Cooperation

    Vergino, E. S.; Arakelyan, A.; Babayan, H.; Durgaryan, R.; Elashvili, M.; Godoladze, T.; Javakhishvili, Z.; Kalogeras, I.; Karakhanyan, A.; Martin, R. J.; Yetirmishli, G.

    2012-12-01

    During the last 50 years, the Caucasus, Central Asia and the Caspian Sea regions have experienced several devastating earthquakes. While each country in the region has worked with its neighbors on small, ad-hoc projects to improve preparedness, deeply ingrained political and ethnic rivalries, and severely stressed economies have severely hindered sustained regional cooperation. Future damaging earthquakes are inevitable and without proper planning the negative impact on public safety, security, economics and stability in these regions will be devastating. We have, through twelve years of international scientific cooperation, focused on the development of an expanded skill base and infrastructure, through the installation of new, modern, digital seismic monitoring networks, building of historic databases, sharing seismic, geologic and geophysical data, conducting joint scientific investigations utilizing the new digital data and applying modern techniques, as well as the development of regional hazard models that the scientists of the region share with their governments and use to advise them on the best ways to mitigate the impact of a damaging earthquake. We have established specialized regional scientific task-force teams who can carry out seismological, geological and engineering studies in the epicentral zone, including the collection of new scientific data, for better understanding of seismic and geodynamic processes as well to provide emergency support in crisis and post-crisis situations in the Southern Caucasus countries. "Secrecy" in crisis and post-crisis situations in the former Soviet Union countries, as well as political instabilities, led to an absence of seismic risk reduction and prevention measures as well as little to no training of scientific-technical personnel who could take action in emergency situations. There were few opportunities for the development of a next generation of scientific experts, thus we have placed emphasis on the inclusion

  15. Preliminary Seismic Performance Evaluation of RPS Cabinet in a Research Reactor

    Kwag, Shinyoung; Oh, Jinho; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    This RPS cabinet mainly provides the operators with the physical interface to monitor and handle the RPS. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the RPS cabinet. For this purpose, a 3-D finite element model of the RPS cabinet is developed and its modal analyses are carried out for analyzing the dynamic characteristics. Response time history analyses and related safety evaluation are performed for the RPS cabinet subjected to seismic loads. Finally, the seismic margin and seismic fragility of the RPS cabinet are investigated. The seismic analysis, and preliminary structural integrity and seismic margin of the RPS cabinet under self weight and seismic load have been evaluated. For this purpose, 3-D finite element models of the RPS cabinet were developed. A modal analysis, response time history analysis, and seismic fragility analysis were then performed. From the structural analysis results, the RPS cabinet is below the structural design limit under PGA 0.3g (hor.) and 0.2g (ver.) and structurally withstands until PGA 3g (hor.) and 2g (ver.)

  16. Bayesian methodology for generic seismic fragility evaluation of components in nuclear power plants

    Yamaguchi, Akira; Campbell, R.D.; Ravindra, M.K.

    1991-01-01

    Bayesian methodology for updating the seismic fragility of components in nuclear power plants is presented. The generic fragility data which have been evaluated based on the past SPSAs are combined with the seismic experience data. Although the seismic experience is limited to the acceleration range below the median capacity of the components, it has been found that the evidence is effective to update the fragility tail. In other words, the uncertainty of the fragility is reduced although the median capacity itself is not modified to a great extent. The annual frequency of failure is also reduced as a result of the updating of the fragility tail. The PDF of the seismic capacity is handled in discrete form, which enables the use of arbitrary type of prior distribution. Accordingly, the Log-N prior can be used which is consistent with the widely used fragility model. For evaluating posterior fragility parameters (A m and B U ), two methods have been proposed. Furthermore, it has been found that the importance of evidence used in the Bayesian methodology can be quantified by the entropy of the evidence. Only the events with high entropy need to be considered in the Bayesian updating of the fragility. The currently available seismic experience database for typical components can be utilized to develop the fragility tail which is contributive to the seismically-induced failure frequency. The combined use of generic fragility and seismic experience data, with the aid of Bayesian methodology, provides refined generic fragility curves which are useful for SPSA studies. (author)

  17. Analytical Study on the Beyond Design Seismic Capacity of Reinforced Concrete Shear Walls

    Nugroho, Tino Sawaldi Adi [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chi, Ho-Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The OECD-NEA has organized an international benchmarking program to better understand this critical issue. The benchmark program provides test specimen geometry, test setup, material properties, loading conditions, recorded measures, and observations of the test specimens. The main objective of this research is to assess the beyond design seismic capacity of the reinforced concrete shear walls tested at the European Laboratory for Structural Assessment between 1997 and 1998 through participation in the OECD-NEA benchmark program. In this study, assessing the beyond design seismic capacity of reinforced concrete shear walls is performed analytically by comparing numerical results with experimental results. The seismic shear capacity of the reinforced concrete shear wall was predicted reasonably well using ABAQUS program. However, the proper calibration of the concrete material model was necessary for better prediction of the behavior of the reinforced concrete shear walls since the response was influenced significantly by the material constitutive model.

  18. Overview of seismic re-evaluation methodologies

    Campbell, R.D.; Johnson, J.J.

    1993-01-01

    Several seismic licensing and safety issues have emerged over the past fifteen years for commercial U.S. Nuclear Power Plants and U.S. Government research reactors, production reactors and process facilities. The methodologies for resolution of these issues have been developed in numerous government and utility sponsored research programs. The resolution criteria have included conservative deterministic design criteria, deterministic seismic margins assessments criteria (SMA) and seismic probabilistic safety assessment criteria (SPSA). The criteria for SMAs and SPSAs have been based on realistically considering the inelastic energy absorption capability of ductile structures, equipment and piping and have incorporated the use of earthquake and testing experience to evaluate the operability of complex mechanical and electrical equipment. Most of the applications to date have been confined to the U.S. but there have been several applications to Asian, Western and Eastern Europe reactors. This paper summarizes the major issues addressed, the development of reevaluation criteria and selected applications to non U.S. reactors including WWER reactors. (author)

  19. Seismic risk evaluation for high voltage air insulated substations

    Camensig, Carlo; Bresesti, Luca; Clementel, Stefano; Salvetti, Maurizio

    1997-01-01

    This paper describes the results of the analytical and experimental activities performed by ISMES for the evaluation of the structural reliability of electrical substations with respect to seismic events. In the following, the reference station is described along with the methods used to define the site seismic input, the analytical and experimental evaluation of the components' fragility curves and the whole station seismic risk evaluation

  20. Seismic bearing capacity of strip footings on rock masses using the Hoek–Brown failure criterion

    Amin Keshavarz

    2016-04-01

    Full Text Available In this paper, the bearing capacity of strip footings on rock masses has been studied in the seismic case. The stress characteristics or slip line method was used for analysis. The problem was analyzed in the plane strain condition using the Hoek–Brown failure criterion. First, the equilibrium equations along the stress characteristics were obtained and the rock failure criterion was applied. Then, the equations were solved using the finite difference method. A computer code has been provided for analysis. Given the footing and rock parameters, the code can calculate the stress characteristics network and obtain the stress distribution under the footing. The seismic effects have been applied as the horizontal and vertical pseudo-static coefficients. The results of this paper are very close to those of the other studies. The seismic bearing capacity of weightless rock masses can be obtained using the proposed equations and graphs without calculating the whole stress characteristics network.

  1. The Experimental Research on Seismic Capacity of the Envelope Systems with Steel Frame

    Li, Jiuyang; Wang, Bingbing; Li, Hengxu

    2017-09-01

    In this paper, according to the present application situation of the external envelope systems steel frame in the severe cold region, the stuffed composite wall panels are improved, the flexible connection with the steel frame is designed, the reduced scale specimens are made, the seismic capacity test is made and some indexes of the envelope systems such as bearing capacity, energy consumption and ductility, etc. are compared, which provide reference for the development and application of the steel frame envelope systems.

  2. Ground motion input in seismic evaluation studies

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  3. Seismic evaluation of the Mors Dome

    Kreitz, E.

    1982-01-01

    The ''Seismic Case History'' of the Mors saltdome was already published in detail by ELSAM/ELKRAFT so only a few important points need to be mentioned here: (a) Processing and interpretation of the seismic material. (b) Stratigraphic classification of the most important seismic reflection horizons. (c) Construction of the depth sections and description of the saltdome model. (d) Investigations of the problematic salt overhang using interactive seismic modelling. (EG)

  4. Evaluation of seismic margins for an in-plant piping system

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    Earthquake experience as well as experiments indicate that, in general, piping systems are quite rugged in resisting seismic loadings. Therefore there is a basis to hold that the seismic margin against pipe failure is very high for systems designed according to current practice. However, there is very little data, either from tests or from earthquake experience, on the actual margin or excess capacity (against failure from seismic loading) of in-plant piping systems. Design of nuclear power plant piping systems in the US is governed by the criteria given in the ASME Boiler and Pressure Vessel (B ampersand PV) Code, which assure that pipe stresses are within specified allowable limits. Generally linear elastic analytical methods are used to determine the stresses in the pipe and forces in pipe supports. The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. Note that in the present context, seismic margin refers to the deterministic excess capacities of piping or supports compared to their design capacities. The excess seismic capacities or margins of a prototypical in-plant piping system and its components are evaluated by comparing measured inputs and responses from high-level simulated seismic experiments with design loads and allowables. Large excess capacities are clearly demonstrated against pipe and overall system failure with the lower bound being about four. For snubbers the lower bound margin is estimated at two and for rigid strut supports at five. 4 refs., 2 figs., 2 tabs

  5. Mentoring approach improves evaluation capacity of ICTD ...

    2016-06-09

    Jun 9, 2016 ... ... initiative is improving evaluation capacities of researchers studying Information and ... Capacity in ICTD (DECI) provides researchers from five IDRC-funded projects in ... Using technology to deliver quality education in Asia.

  6. Use of experience data for DOE seismic evaluations

    Barlow, M.W.; Budnitz, R.; Eder, S.J.; Eli, M.W.

    1993-01-01

    As dictated by DOE Order 5480.28, seismic evaluations of essential systems and components at DOE facilities will be conducted over the next several years. For many of these systems and components, few, if any, seismic requirements applied to the original design, procurement, installation, and maintenance process. Thus the verification of the seismic adequacy of existing systems and components presents a difficult challenge. DOE has undertaken development of the criteria and procedures for these seismic evaluations that will maximize safety benefits in a timely and cost effective manner. As demonstrated in previous applications at DOE facilities and by the experience from the commercial nuclear power industry, use of experience data for these evaluations is the only viable option for most existing systems and components. This paper describes seismic experience data, the needs at DOE facilities, the precedent of application at nuclear power plants and DOE facilities, and the program being put in place for the seismic verification task ahead for DOE

  7. Evaluation of seismic stability of near field

    Taniguchi, Wataru; Takaji, Kazuhiko; Sugino, Hiroyuki; Mori, Koji

    1999-11-01

    For the buffer material of geological disposal of high-level radioactive waste (HLW) in Japan, it is considered to use a compacted bentonite or a compacted sand-mixture bentonite that is one kind of clay. The buffer material is expected to maintain long-term mechanical stability, to hold the waste in designated place, and to avoid the effects on the radionuclides migration. It is considered that the cyclic load due to seismic activities affects long-term mechanical stability in Japan, where many earthquakes have been occurring. In this report, aseismic mechanical stability of engineered barrier of HLW is studied by dynamic analysis based on equation of vibration, mainly in the view point of mechanical stability of the buffer. The analytical computer code that has been developed by JNC in cooperative project with National Research Institute for Earth Science and Disaster Prevention Science and Technology Agency is used in this study. Seismic wave at the disposal depth in the assumed geological environment is established by multiple reflection theory analysis, and then seismic wave at the disposal depth is used for the aseismic mechanical stability analysis. For the aseismic mechanical stability, total stress analyses (single-phase system) with the target field of near field are conducted to evaluate the shear failure of the buffer, the displacement of overpack, and vibrational behavior of the engineered barrier, and then effective stress analyses (two-phase system) with the target field of the engineered barrier are conducted to evaluate excursion in the pore water pressure within the buffer (i. e. liquefaction), concerning the non-linear dynamic properties of the buffer material. From the results, the following conclusions are obtained. (1) From the results of the total stress analyses, it is confirmed that the buffer must not reach a shear failure condition from the stresses caused by an earthquake and the overpack must not move significantly due to the inertial

  8. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-15

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions.

  9. A Study of Seismic Capacity of Nuclear Equipment with Seismic Isolation System

    Kim, Min Kyu; Choun, Young Sun; Choi, In Kil; Seo, Jeong Moon

    2004-05-01

    In this study, the base isolation systems for equipment are presented and the responses of each isolation system are investigated. As for the base isolation systems, a natural rubber bearing (NRB), a high damping rubber bearing (HDRB) and a friction pendulum system (FPS) are selected. The shaking table tests are carried out for three kinds of structural types. As input motions, artificial time histories enveloping the US NRC RG 1.60 spectrum and the probability-based scenario earthquake spectra developed for the Korean nuclear power plant site as well as a typical near-fault earthquake record are used. Uniaxial, biaxial, and triaxial excitations are conducted with PGAs of 0.05, 0.1, 0.2 and 0.25g. Acceleration responses are measured at the top of the equipment model and the floors using an accelerometer. The reduction of the seismic forces transmitted to the equipment models are determined for different isolation systems and input motions

  10. Some Underexamined Aspects of Evaluation Capacity Building

    Leviton, Laura C.

    2014-01-01

    Evaluation capacity building (ECB) has progressed as a concept since it was the conference theme of the American Evaluation Association in the year 2000. This commentary poses some questions about underexamined issues in ECB about organizations, evaluators, and funders.

  11. Seismic re-evaluation of French nuclear power plants

    Andrieu, R.

    1995-01-01

    After a presentation of the seismic inputs which have been taken into account in the design of the French Nuclear Power Plants, the re-assessed values of these inputs are shown. Some considerations about the specificity of the French PWR program with regard to the standardisation of plants are given together with the present objectives of seismic re-evaluations. Finally the main results of the seismic re-analysis being performed for the Phenix Fast Reactor are considered. (author)

  12. Lower bound earthquake magnitude for probabilistic seismic hazard evaluation

    McCann, M.W. Jr.; Reed, J.W.

    1990-01-01

    This paper presents the results of a study that develops an engineering and seismological basis for selecting a lower-bound magnitude (LBM) for use in seismic hazard assessment. As part of a seismic hazard analysis the range of earthquake magnitudes that are included in the assessment of the probability of exceedance of ground motion must be defined. The upper-bound magnitude is established by earth science experts based on their interpretation of the maximum size of earthquakes that can be generated by a seismic source. The lower-bound or smallest earthquake that is considered in the analysis must also be specified. The LBM limits the earthquakes that are considered in assessing the probability that specified ground motion levels are exceeded. In the past there has not been a direct consideration of the appropriate LBM value that should be used in a seismic hazard assessment. This study specifically looks at the selection of a LBM for use in seismic hazard analyses that are input to the evaluation/design of nuclear power plants (NPPs). Topics addressed in the evaluation of a LBM are earthquake experience data at heavy industrial facilities, engineering characteristics of ground motions associated with small-magnitude earthquakes, probabilistic seismic risk assessments (seismic PRAs), and seismic margin evaluations. The results of this study and the recommendations concerning a LBM for use in seismic hazard assessments are discussed. (orig.)

  13. Seismic Performance Evaluation of Steel Moment Resisting Frames with WUF-B Connections

    Moon, Ki-Hoon; Han, Sang-Whan

    2008-01-01

    The purpose of this study is to evaluate the seismic performance of the moment resisting steel frames having Welded Unreinforced Flange-Bolted web (WUF-B) connections. The connections are designed and detailed in compliance with FEMA 350 recommended seismic design criteria. To conduct the seismic performance evaluation this study developed an analytical model for the pre- and post-Northridge connections based on test results. Three different frames are considered which have three-, nine- and twenty-story. Incremental Dynamic Analysis (IDA is conducted to estimate limit state capacities The performance of the frames having either pre- or post-Northridge connections is compared with the corresponding frame with ductile connections which do not experience connection fracture. The analytical results showed that buildings with post-Northridge WUF-B connections provide superior strength and interstory drift ratio capacity than buildings with pre-Northridge WUF-B connections

  14. Seismic re-evaluation process in Medzamor-2 NPP

    Zadoyan, P.

    2000-01-01

    Seismic re-evaluation process for Medzamor-2 NPP describes the following topics: program implementation status; re-evaluation program structure; regulatory procedure and review plan; current tasks and practice; and regulatory assessment and research programs

  15. Evaluation and assessment of nuclear power plant seismic methodology

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.

    1977-03-01

    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology.

  16. Evaluation and assessment of nuclear power plant seismic methodology

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.

    1977-01-01

    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology

  17. Functional Capacity Evaluation Research : Report from the Third International Functional Capacity Evaluation Research Meeting

    James, C. L.; Reneman, M. F.; Gross, D. P.

    Introduction Functional capacity evaluations are an important component of many occupational rehabilitation programs and can play a role in facilitating reintegration to work thus improving health and disability outcomes. The field of functional capacity evaluation (FCE) research has continued to

  18. Development and seismic evaluation of the seismic monitoring analysis system for HANARO

    Ryu, J. S.; Youn, D. B.; Kim, H. G.; Woo, J. S.

    2003-01-01

    Since the start of operation, the seismic monitoring system has been utilized for monitoring an earthquake at the HANARO site. The existing seismic monitoring system consists of field sensors and monitoring panel. The analog-type monitoring system with magnetic tape recorder is out-of-date model. In addition, the disadvantage of the existing system is that it does not include signal-analyzing equipment. Therefore, we have improved the analog seismic monitoring system except the field sensors into a new digital Seismic Monitoring Analysis System(SMAS) that can monitor and analyze earthquake signals. To achieve this objective for HANARO, the digital type hardware of the SMAS has been developed. The seismic monitoring and analysis programs that can provide rapid and precise information for an earthquake were developed. After the installation of the SMAS, we carried out the Site Acceptance Test (SAT) to confirm the functional capability of the newly developed system. The results of the SAT satisfy the requirements of the fabrication technical specifications. In addition, the seismic characteristics and structural integrity of the SMAS were evaluated. The results show that the cabinet of SMAS can withstand the effects of seismic loads and remain functional. This new SMAS is operating in the HANARO instrument room to acquire and analyze the signal of an earthquake

  19. Seismic re-evaluation of Kozloduy NPP criteria, methodology, implementation

    Kostov, M.

    2003-01-01

    The paper describes some features of the methodology applied for seismic upgrading of civil structures at the site of the Kozloduy NPP. The essence of the methodology is the use of as-build data, realistic damping and inelastic reduction factors. As an example of seismic upgrading the analyses of units 3 and 4 are presented. The analyses are showing that for effective seismic upgrading detailed investigations are needed in order to understand the significant response modes of the structures. In the presented case this is the rotation of the attached flexible structures to the stiff reactor building. Based on this an upgrading approach is applied to increase the seismic resistance for the predominant motion. The second significant approach applied is the strengthening of the prefabricated element joints. Although it is very simple it allows use of the available element capacity. (author)

  20. A quantitative evaluation of seismic margin of typical sodium piping

    Morishita, Masaki

    1999-05-01

    It is widely recognized that the current seismic design methods for piping involve a large amount of safety margin. From this viewpoint, a series of seismic analyses and evaluations with various design codes were made on typical LMFBR main sodium piping systems. Actual capability against seismic loads were also estimated on the piping systems. Margins contained in the current codes were quantified based on these results, and potential benefits and impacts to the piping seismic design were assessed on possible mitigation of the current code allowables. From the study, the following points were clarified; 1) A combination of inelastic time history analysis and true (without margin)strength capability allows several to twenty times as large seismic load compared with the allowable load with the current methods. 2) The new rule of the ASME is relatively compatible with the results of inelastic analysis evaluation. Hence, this new rule might be a goal for the mitigation of seismic design rule. 3) With this mitigation, seismic design accommodation such as equipping with a large number of seismic supports may become unnecessary. (author)

  1. Simplified inelastic seismic response analysis of piping system using improved capacity spectrum method

    Iijima, Tadashi

    2005-01-01

    We applied improved capacity spectrum method (ICSM) to a piping system with an asymmetric load-deformation relationship in a piping elbow. The capacity spectrum method can predict an inelastic response by balancing the structural capacity obtained from the load-deformation relationship with the seismic demand defined by an acceleration-displacement response spectrum. The ICSM employs (1) effective damping ratio and period that are based on a statistical methodology, (2) practical procedures necessary to obtain a balance between the structural capacity and the seismic demand. The effective damping ratio and period are defined so as to maximize the probability that predicted response errors lie inside the -10 to 20% range. However, without taking asymmetry into consideration the displacement calculated by using the load-deformation relationship on the stiffer side was 39% larger than that of a time history analysis by a direct integral method. On the other hand, when asymmetry was taken into account, the calculated displacement was only 14% larger than that of a time history analysis. Thus, we verified that the ICSM could predict the inelastic response with errors lying within the -10 to 20% range, by taking into account the asymmetric load-deformation relationship of the piping system. (author)

  2. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    Yuxian, Hu [State Seismological Bureau, Beijing, BJ (China). Inst. of Geophysics

    1997-03-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  3. Seismic site evaluation practice and seismic design guide for NPP in Continent of China

    Hu Yuxian

    1997-01-01

    Energy resources, seismicity, NPP and related regulations of the Continent of China are briefly introduced in the beginning and two codes related to the seismic design of NPP, one on siting and another on design, are discussed in some detail. The one on siting is an official code of the State Seismological Bureau, which specifies the seismic safety evaluation requirements of various kinds of structures, from the most critic and important structures such as NPP to ordinary buildings, and including also engineering works in big cities. The one on seismic design of NPP is a draft subjected to publication now, which will be an official national code. The first one is somewhat unique but the second one is quite similar to those in the world. (author)

  4. Seismic design and evaluation criteria for DOE facilities (DOE-STD-1020-XX)

    Short, S.A.; Kennedy, R.P.; Murray, R.C.

    1993-01-01

    Seismic design and evaluation criteria for DOE facilities are provided in DOE-STD-1020-XX. The criteria include selection of design/evaluation seismic input from probabilistic seismic hazard curves combined with commonly practiced deterministic response evaluation methods and acceptance criteria with controlled levels of conservatism. Conservatism is intentionally introduced in specification of material strengths and capacities, in the allowance of limited inelastic behavior and by a seismic load factor. These criteria are based on the performance or risk goals specified in DOE 5480.28. Criteria have been developed following a graded approach for several performance goals ranging from that appropriate for normal-use facilities to that appropriate for facilities involving hazardous or critical operations. Performance goals are comprised of desired behavior and of the probability of not achieving that behavior. Following the seismic design/evaluation criteria of DOE-STD-1020-XX is sufficient to demonstrate that the probabilistic performance or risk goals are achieved. The criteria are simple procedures but with a sound, rigorous basis for the achievement of goals

  5. Research items regarding seismic residual risk evaluation

    NONE

    2013-08-15

    After learning the Fukushima Dai-ichi NPP severe accidents in 2011, the government investigation committee proposed the effective use of probabilistic safety assessment (PSA), and now it is required to establish new safety rules reflecting the results of probabilistic risk assessment (PRA) and proposed severe accident measures. Since the Seismic Design Guide has been revised on September 19, 2006, JNES has been discussing seismic PRA (Levels 1-3) methods to review licensees' residual risk assessment while preparing seismic PRA models. Meanwhile, new safety standards for light water reactors are to be issued and enforced on July 2013, which require the residual risk of tsunami, in addition to earthquakes, should be lowered as much as possible. The Fukushima accidents raised the problems related to risk assessment, e.g. approaches based on multi-hazard (earthquake and tsunami), multi-unit, multi-site, and equipment's common cause failure. This fiscal year, while performing seismic and/or tsunami PRA to work on these problems, JNES picked up the equipment whose failure greatly contribute to core damage, surveyed accident management measures on those equipment as well as effectiveness to reduce core damage probability. (author)

  6. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  7. Seismic re-evaluation of Heavy Water Plant, Kota

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-10-01

    This report deals with seismic re-evaluation of Heavy Water Plant, Kota. Heavy Water Plant, Kota handles considerable amount of H 2 S gas, which is very toxic. During the original design stage as per IS 1893-1966 seismic coefficient for zone-I was zero. Therefore earthquake and its effects were not considered while designing the heavy water plant structures. However as per IS 1893 (1984) the seismic coefficient for zone-I is 0.01 g. Hence seismic re-evaluation of various structures of the heavy water plant is carried out. Analysis of the heavy water plant structures was carried out for self weight, equipment load and earthquake load. Pressure loading was also considered in case of H 2 S storage tanks. Soil structure interaction effect was considered in the analysis. The combined stresses in the structures due to earthquake and dead load were checked with the allowable stresses. (author)

  8. Technical evaluation of seismic qualification of safety-related equipment

    Cho, Yang Hui; Park, Heong Gee; Park, Yeong Seok [Univ. of Incheon, Incheon (Korea, Republic of)

    1994-04-15

    This study is purposed to evaluate the technical acceptability of the procedures and techniques of seismic qualifications which were performed for the YGN 3 and 4 safety-related equipment.This study is also targeted to suggest a systematized technical procedure guide for the effective performance and review of the seismic qualification, which reflects the most up-to-date licensing requirements and state-of the-art.

  9. Evaluation of seismic hazard at the northwestern part of Egypt

    Ezzelarab, M.; Shokry, M. M. F.; Mohamed, A. M. E.; Helal, A. M. A.; Mohamed, Abuoelela A.; El-Hadidy, M. S.

    2016-01-01

    The objective of this study is to evaluate the seismic hazard at the northwestern Egypt using the probabilistic seismic hazard assessment approach. The Probabilistic approach was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. The doubly-truncated exponential model was adopted for calculations of the recurrence parameters. Ground-motion prediction equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 0.2° × 0.2° covering the study area, seismic hazard curves for every node were calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to six spectral periods (0.1, 0.2, 0.3, 1.0, 2.0 and 3.0 s) for return periods of 72, 475 and 2475 years. The unified hazard spectra of two selected rock sites at Alexandria and Mersa Matruh Cities were provided. Finally, the hazard curves were de-aggregated to determine the sources that contribute most of hazard level of 10% probability of exceedance in 50 years for the mentioned selected sites.

  10. Capacity value evaluation of photovoltaic power generation

    Kurihara, I.

    1993-01-01

    The paper presents an example of capacity value (kW-value) evaluation of photovoltaic generation from power companies generation planning point of view. The method actually applied to evaluate the supplying capability of conventional generation plants is briefly described. 21 figs, 1 tab

  11. Developing Evaluation Capacity in Information and Communication ...

    17 août 2009 ... The nuanced ways in which information and communication technologies (ICTs) interact with developing country societies necessitate thoughtful, systematic evaluation of their effects, grounded in the concepts of utility, outcome and ownership. This grant will allow Developing Evaluation Capacity in ICT4D ...

  12. Mentoring approach improves evaluation capacity of ICTD ...

    Developing Evaluation Capacity in ICTD (DECI) provides researchers from five IDRC-funded projects in Asia ongoing mentorship to learn and apply the Utilization Focused Evaluation (UFE) approach to their projects. DECI demonstrates the value of mentoring as a training approach, where researchers are coached as they ...

  13. International symposium on seismic evaluation of existing nuclear facilities

    Orbovic, N.; Bouchon, M. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Vendel, J.; Gelain, T. [IRSN/DPEA/SERAC, 91 - Gif sur Yvette (France)

    2003-10-01

    revealed a strong influence of the slab plates and a torsion in the structure. Also, masonry in-fills can significantly alter the seismic behavior of the building. The building is being subjected to a very large retrofit program submitted for approval to IRSN and the Nuclear Safety Authority. The acceptance criteria used to define deficiencies and to retrofit the building were design criteria. Evaluation of existing nuclear facility structures must be conducted with the appropriate level of conservatism. Therefore, even though modern performance-based evaluation procedures for conventional structures are available, they must be rigorously examined before they are used to evaluate nuclear facility structures. This paper presents selected results of an evaluation of various nonlinear static and dynamic demand analysis and FEMA-356 capacity measures on a test-bed nuclear facility reinforced concrete frame structure built in 1960's. It is shown that these modern procedures can be used. Furthermore, they revealed deficiencies of the test-bed structure that could not be easily found using the conventional linear-and-elastic evaluation methods. Nevertheless, more work is needed to calibrate these new procedures for the risk reduction levels required for nuclear facilities before they can be used in nuclear facility design and evaluation practice. The test program consisted of mechanical testy performed on reinforced concrete walls subjected to alternating shear loads. The aim of the program was to define crack geometry (length, width, and spacing). Tests were carried out on 3 low-rise reinforced concrete walls with varying percentages of rebars. Each wall was subjected to a sequence of three increasing loads. One of the three walls was loaded to failure. The main results of the program were measurements of displacement as a function of horizontal force (displacements, variations in diagonal lengths), cracking states during the loading cycle, and deformation of rebars. The

  14. International symposium on seismic evaluation of existing nuclear facilities

    Orbovic, N.; Bouchon, M.; Vendel, J.; Gelain, T.

    2003-10-01

    strong influence of the slab plates and a torsion in the structure. Also, masonry in-fills can significantly alter the seismic behavior of the building. The building is being subjected to a very large retrofit program submitted for approval to IRSN and the Nuclear Safety Authority. The acceptance criteria used to define deficiencies and to retrofit the building were design criteria. Evaluation of existing nuclear facility structures must be conducted with the appropriate level of conservatism. Therefore, even though modern performance-based evaluation procedures for conventional structures are available, they must be rigorously examined before they are used to evaluate nuclear facility structures. This paper presents selected results of an evaluation of various nonlinear static and dynamic demand analysis and FEMA-356 capacity measures on a test-bed nuclear facility reinforced concrete frame structure built in 1960's. It is shown that these modern procedures can be used. Furthermore, they revealed deficiencies of the test-bed structure that could not be easily found using the conventional linear-and-elastic evaluation methods. Nevertheless, more work is needed to calibrate these new procedures for the risk reduction levels required for nuclear facilities before they can be used in nuclear facility design and evaluation practice. The test program consisted of mechanical testy performed on reinforced concrete walls subjected to alternating shear loads. The aim of the program was to define crack geometry (length, width, and spacing). Tests were carried out on 3 low-rise reinforced concrete walls with varying percentages of rebars. Each wall was subjected to a sequence of three increasing loads. One of the three walls was loaded to failure. The main results of the program were measurements of displacement as a function of horizontal force (displacements, variations in diagonal lengths), cracking states during the loading cycle, and deformation of rebars. The measurements

  15. Groundwater environmental capacity and its evaluation index.

    Xing, Li Ting; Wu, Qiang; Ye, Chun He; Ye, Nan

    2010-10-01

    To date, no unified and acknowledged definition or well-developed evaluation index system of groundwater environment capacity can be found in the academia at home or abroad. The article explores the meaning of water environment capacity, and analyzes the environmental effects caused by the exploitation of groundwater resources. This research defines groundwater environmental capacity as a critical value in terms of time and space, according to which the groundwater system responds to the external influences within certain goal constraint. On the basis of observing the principles of being scientific, dominant, measurable, and applicable, six level 1 evaluation indexes and 11 constraint factors are established. Taking Jinan spring region for a case study, this research will adopt groundwater level and spring flow as constraint factors, and the allowable groundwater yield as the critical value of groundwater environmental capacity, prove the dynamic changeability and its indicating function of groundwater environmental capacity through calculation, and finally point out the development trends of researches on groundwater environmental capacity.

  16. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    Stevenson, J.D.

    1995-01-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, components for which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation

  17. Criteria for seismic evaluation and potential design fixes for WWER type nuclear power plants

    Stevenson, J D [Stevenson and Associates, Cleveland, OH (United States)

    1995-07-01

    The purpose for this document is to provide a criteria for the seismic evaluation and development of potential design fixes for structures, systems and components for the WWER type Nuclear power plants. The design fixes are divided into two categories, detailed and easy fixes. Detailed fixes are typically applicable to building structures, componentsfor which there is little or no seismic capacity information, large tanks and vital systems and components which make up the reactor cooling system and components which perform support or auxiliary functions. In case of the design of 'easy fixes', the criteria presented may be used for both the seismic design as well as for the evaluation of structures, systems and components to which easy fix design applies. Easy fixes are situations where seismic capacities of structures, systems and components can be significantly increased with relatively minor, inexpensive fixes usually associated with anchorage modification of safety related structures, systems and components or those that could interact with safety related structures, systems and components. Often these fixes can be accomplished while the plant is in operation.

  18. Evaluation of seismic hazards for nuclear power plants. Safety guide

    2002-01-01

    The main objective of this Safety Guide is to provide recommendations on how to determine the ground motion hazards for a plant at a particular site and the potential for surface faulting, which could affect the feasibility of construction and safe operation of a plant at that site. The guidelines and procedures presented in this Safety Guide can appropriately be used in evaluations of site suitability and seismic hazards for nuclear power plants in any seismotectonic environment. The probabilistic seismic hazard analysis recommended in this Safety Guide also addresses the needs for seismic hazard analysis of external event PSAs conducted for nuclear power plants. Many of the methods and processes described may also be applicable to nuclear facilities other than power plants. Other phenomena of permanent ground displacement (liquefaction, slope instability, subsidence and collapse) as well as the topic of seismically induced flooding are treated in Safety Guides relating to foundation safety and coastal flooding. Recommendations of a general nature are given in Section 2. Section 3 discusses the acquisition of a database containing the information needed to evaluate and address all hazards associated with earthquakes. Section 4 covers the use of this database for construction of a seismotectonic model. Sections 5 and 6 review ground motion hazards and evaluations of the potential for surface faulting, respectively. Section 7 addresses quality assurance in the evaluation of seismic hazards for nuclear power plants

  19. Seismic evaluation of safety systems at the Savannah River reactors

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.M.; Ketcham, D.R.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table testing which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its ''Generic Safety Evaluation Report'' approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the United States and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluating program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  20. Seismic evaluation of safety systems at the Savannah River reactors

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.; Ketcham, D.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table tested which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its Generic Safety Evaluation Report approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the US and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective approach developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluation program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  1. Preliminary evaluation of the seismic hazard at Cernavoda NPP site

    Mingiuc, C.; Serban, V.; Androne, M.

    2001-01-01

    The probabilistic seismic hazard analysis (PSHA) is a methodology by which one evaluates the probability of exceeding different parameters of the ground motions (the maximum ground acceleration - PGA and the ground response spectrum - SA) as effect of the seismic action, on a given site at a future time moment. Due to the large uncertainties in the geological, geophysical, seismological input data, as well as, in the models utilised, various interpretation schemes are applied in the PSHA analyses. This interpretation schemes lead to opinion discrepancies among specialists which finally lead to disagreements in estimating the values of the seismic design for a given site. In order to re-evaluate the methodology and to improve the PSHA result stability, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) and Electric Power Research Institute (EPRI) sponsored a project for defining methodological guides of performing PSHA analyses. The project was implemented by a panel of 7 experts, the Senior Seismic Hazard Analysis Committee - SSHAC. This paper presents a preliminary evaluation of the seismic hazard for the Cernavoda NPP site by application of the methodology mentioned, by taking into account the possible sources which could affect the site (the Vrancea focus, Galati - Tulcea fault, Sabla - Dulovo fault and local earthquakes)

  2. Normative Values for a Functional Capacity Evaluation

    Soer, Remko; van der Schans, Cees P.; Geertzen, Jan H.; Groothoff, Johan W.; Brouwer, Sandra; Dijkstra, Pieter U.; Reneman, Michiel F.

    2009-01-01

    Objective: To establish normative values for a functional capacity evaluation (FCE) of healthy working subjects. Design: Descriptive. Setting: Rehabilitation center. Participants: Healthy working subjects (N=701; 448 men, 253 women) between 20 and 60 years of age, working in more than 180

  3. A progressive methodology for seismic safety evaluation of gravity dams

    Ghrib, F.; Leger, P.; Tinawi, R.; Lupien, R.; Veilleux, M.

    1995-01-01

    A progressive methodology for the seismic safety evaluation of existing concrete gravity dams was described. The methodology was based on five structural analysis levels with increasing complexity to represent inertia forces, dam-foundation and dam-interaction mechanisms, as well as concrete cracking. The five levels were (1) preliminary screening, (2) pseudo-static method, (3) pseudo-dynamic method, (4) linear time history analysis, and (5) non-linear history analysis. The first four levels of analysis were applied for the seismic safety evaluation of Paugan gravity dam (Quebec). Results showed that internal forces from pseudo-dynamic, response spectra and transient finite element analyses could be used to interpret the dynamic stability of dams from familiar strength-based criteria. However, as soon as the base was cracked, the seismically induced forces were modified, and level IV analyses proved more suitable to handle rationally these complexities. 8 refs., 7 figs., 1 tab

  4. Seismic evaluation of piping systems using screening criteria

    Campbell, R.D.; Landers, D.F.; Minichiello, J.C.; Slagis, G.C.; Antaki, G.A.

    1994-01-01

    This document may be used by a qualified review team to identify potential sources of seismically induced failure in a piping system. Failure refers to the inability of a piping system to perform its expected function following an earthquake, as defined in Table 1. The screens may be used alone or with the Seismic Qualification Utility Group -- Generic Implementation Procedure (SQUG-GIP), depending on the piping system's required function, listed in Table 1. Features of a piping system which do not the screening criteria are called outliers. Outliers must either be resolved through further evaluations, or be considered a potential source of seismically induced failure. Outlier evaluations, which do not necessarily require the qualification of a complete piping system by stress analysis, may be based on one or more of the following: simple calculations of pipe spans, search of the test or experience data, vendor data, industry practice, etc

  5. Seismic Performance Evaluation of Reinforced Concrete Frames Subjected to Seismic Loads

    Zameeruddin, Mohd.; Sangle, Keshav K.

    2017-06-01

    Ten storied-3 bays reinforced concrete bare frame designed for gravity loads following the guidelines of IS 456 and IS 13920 for ductility is subjected to seismic loads. The seismic demands on this building were calculated by following IS 1893 for response spectra of 5% damping (for hard soil type). Plastic hinges were assigned to the beam and column at both ends to represent the failure mode, when member yields. Non-linear static (pushover) analysis was performed to evaluate the performance of the building in reference to first (ATC 40), second (FEMA 356) and next-generation (FEMA 440) performance based seismic design procedures. Base shear against top displacement curve of structure, known as pushover curve was obtained for two actions of plastic hinge behavior, force-controlled (brittle) and deformation-controlled (ductile) actions. Lateral deformation corresponding to performance point proves the building capability to sustain a certain level of seismic loads. The failure is represented by a sequence of formation of plastic hinges. Deformation-controlled action of hinges showed that building behaves like strong-column-weak-beam mechanism, whereas force-controlled action showed formation of hinges in the column. The study aims to understand the first, second and next generation performance based design procedure in prediction of actual building responses and their conservatism into the acceptance criteria.

  6. Structural evaluation of the 2736Z Building for seismic loads

    Giller, R.A.

    1994-01-01

    The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements

  7. Comparison of evaluation guidelines for life-safety seismic hazards

    Wyllie, L.A.; Love, R.J.

    1989-01-01

    The guidelines presented in Design Evaluation guidelines for Department of Energy Facilities Subjected to natural Phenomena Hazards (UCRL 15910 Draft; May 1989) include evaluation criteria for existing Department of Energy buildings subjected to earthquakes. These criteria were developed at the Lawrence Livermore National Laboratory for use in both the seismic design of new structures and the evaluation of existing structures. ATC-14: Evaluating The Seismic Resistance of Existing Buildings developed by the Applied Technology Council, consists of guidelines and criteria for identifying the buildings or building components that present unacceptable risk to human lives. This paper compares and contrasts the two evaluation guidelines for existing buildings using a prototype building as an example. The prototype building is a seven story, concrete shear wall building assuming a General Use Occupancy

  8. Multi-lane Roundabout Capacity Evaluation

    Ammar Šarić

    2017-07-01

    Full Text Available Although two-lane roundabouts theoretically exhibit excellent operating performance, in practice, safety problems arise because of inappropriate driving behavior. Turbo roundabouts, which are characterized by a much higher level of safety, are alternatives to classic two-lane roundabouts, but the capacity-related benefits derived from such roundabouts remain an open issue. Accordingly, this study uses an equilibrium traffic flow allocation approach to evaluate multi-lane roundabout capacity based on gap acceptance theory. Capacity levels are calculated and compared for different gap acceptance parameters, including local parameters, and different traffic flow scenarios. It is found that the capacity of minor approaches on turbo roundabouts is always higher than on two-lane roundabouts, but that the main approaches on two-lane roundabouts exhibit better performance in terms of fully equilibrium traffic allocation. This state, however, cannot be achieved for every demand scenario. The results depend strongly on traffic movements and gap acceptance parameters indicating the need for local calibration processes.

  9. Seismic and tsunami safety margin assessment

    NONE

    2013-08-15

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  10. Seismic and tsunami safety margin assessment

    2013-01-01

    Nuclear Regulation Authority is going to establish new seismic and tsunami safety guidelines to increase the safety of NPPs. The main purpose of this research is testing structures/components important to safety and tsunami resistant structures/components, and evaluating the capacity of them against earthquake and tsunami. Those capacity data will be utilized for the seismic and tsunami back-fit review based on the new seismic and tsunami safety guidelines. The summary of the program in 2012 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. PWR emergency diesel generator partial-model seismic capacity tests have been conducted and quantitative seismic capacities have been evaluated. 2. Seismic capacity evaluation of switching-station electric equipment. Existing seismic test data investigation, specification survey and seismic response analyses have been conducted. 3. Tsunami capacity evaluation of anti-inundation measure facilities. Tsunami pressure test have been conducted utilizing a small breakwater model and evaluated basic characteristics of tsunami pressure against seawall structure. (author)

  11. Normative values for a functional capacity evaluation.

    Soer, Remko; van der Schans, Cees P; Geertzen, Jan H; Groothoff, Johan W; Brouwer, Sandra; Dijkstra, Pieter U; Reneman, Michiel F

    2009-10-01

    Soer R, van der Schans CP, Geertzen JH, Groothoff JW, Brouwer S, Dijkstra PU, Reneman MF. Normative values for a functional capacity evaluation. To establish normative values for a functional capacity evaluation (FCE) of healthy working subjects. Descriptive. Rehabilitation center. Healthy working subjects (N=701; 448 men, 253 women) between 20 and 60 years of age, working in more than 180 occupations. Subjects performed a 2-hour FCE consisting of 12 work-related tests. Subjects were classified into categories based on physical demands according to the Dictionary of Occupational Titles. Means, ranges, SDs, and percentiles were provided for normative values of FCE, and a regression analysis for outcome of the 12 tests was performed. Normative FCE values were established for 4 physical demand categories. The normative values enable comparison of patients' performances to these values. If a patient's performance exceeds the lowest scores in his/her corresponding demand category, then the patient's capacity is very likely to be sufficient to meet the workload. Further, clinicians can make more precise return-to-work recommendations and set goals for rehabilitation programs. A comparison of the normative values can be useful to the fields of rehabilitation, occupational, and insurance medicine. Further research is needed to test the validity of the normative values with respect to workplace assessments and return-to-work recommendations.

  12. An academic program for experience-based seismic evaluation

    Nix, S.J.; Meyer, W.; Clemence, S.P.

    1990-01-01

    The authors have been involved in a project, sponsored by the Niagara Mohawk Power Corporation, to develop knowledge-based expert systems to aid in the implementation of the Seismic Qualification Utility Group (SQUG) approach for the seismic qualification of equipment in operating nuclear power plants. This approach, being founded on the use of engineering judgment in the application of prior earthquake experience data, requires comprehensive training. There seems to be general consensus that the experience-based approach is a more cost-effective means of qualifying nuclear power plant equipment when compared to the more traditional analytical methods. The experience-based approach has a number of potential applications in civil engineering, including bridge evaluation and design, seismic adequacy of general structures, foundation design, and water and wastewater treatment plant design and operation. The objective of this paper is to outline an academic curriculum, at the master's level, to educate structural engineers to use and further develop the experience-based approach for seismic evaluation. In the long term, this could lead to the development of academic programs in experience-based assessment and design for a wide range of applications in maintaining the nation's infrastructure

  13. Evaluation of seismic criteria used in design of INEL facilities

    Young, G.A.

    1977-01-01

    This report provides the results of an independent evaluation of seismic studies that were made to establish the seismic acceleration levels and the response spectra used in the design of vital facilities at Idaho National Engineering Laboratory. A comparison of the procedures used to define the seismic acceleration values and response spectra at INEL with the requirements of the Nuclear Regulatory Commission showed that additional geologic studies would probably be required in order to fulfill NRC regulations. Recommendations are made on justifiable changes in the acceleration values and response spectra used at INEL. The geologic, geophysical, and seismological studies needed to provide a better understanding of the tectonic processes in the Snake River plains and the surrounding region are identified. Both potential and historical acceleration values are evaluated on a probability basis to permit a risk assessment approach to the design of new facilities and facility modifications. Studies conducted to develop seismic criteria for the design of the Loss of Fluid Test reactor and the New Waste Calcining Facility were selected as typical examples of criteria development previously used in the design of INEL facilities

  14. Rethinking ASME III seismic analysis for piping operability evaluations

    Adams, T.M.; Stevenson, J.D.

    1994-01-01

    It has been recognized since the mid 1980's that there are very large seismic margins to failure for nuclear piping systems when designed using current industry practice, design criteria, and methods. As a result of this realization there are or have been approximately eighteen initiatives within the ASME , Boiler and Pressure Vessel Code Section III, Division 1, in the form of proposed code cases and proposed code text changes designed to reduce these failure margins to more realistic values. For the most part these initiatives have concentrated on reclassifying seismic inertia stresses in the piping as secondary and increasing the allowable stress limits permitted by Section III of the ASME, Boiler Code. This paper focuses on the application of non-linear spectral analysis methods as a method to reduce the input seismic demand determination and thereby reduce the seismic failure margins. The approach is evaluated using the ASME Boiler Pressure Vessel Code Section III Subgroup on Design benchmark procedure as proposed by the Subgroup's Special Task Group on Integrated Piping Criteria. Using this procedure, criteria are compared to current code criterion and analysis methods, and several other of the currently proposed Boiler and Pressure Vessel, Section III, changes. Finally, the applicability of the non-linear spectral analysis to continued Safe Operation Evaluations is reviewed and discussed

  15. Seismic re-evaluation of Mochovce nuclear power plant. Seismic reevaluation of civil structures

    Podrouzek, P.

    1997-01-01

    In this contribution, an overview of seismic design procedures used for reassessment of seismic safety of civil structures at the Mochovce NPP in Slovak Republic presented. As an introduction, the objectives, history, and current status of seismic design of the NPP have been explained. General philosophy of design methods, seismic classification of buildings, seismic data, calculation methods, assumptions on structural behavior under seismic loading and reliability assessment were described in detail in the subsequent section. Examples of calculation models used for dynamic calculations of seismic response are given in the last section. (author)

  16. Seismic evaluation of non-seismically designed existing Magnox nuclear power plants

    Kunar, R.R.

    1984-01-01

    The philosophy and method adopted for the seismic assessment of three existing Magnox nuclear stations in the United Kingdom are presented in this paper. The plants were not seismically designed. The particular procedures that were applied were tailored to suit the difficulties of lack of data which is somewhat inevitable for plants designed and built about 25 to 30 years ago. Special procedures included on-site testing with a portable shake table, low vibration testing using a structural dynamics analyser, and on-site inspections. The low vibration testing was most invaluable in detecting differences between 'as-built' conditions and the engineering drawings. From the point of view of economics, this was more effective than conducting full structural surveys to determine the as-built conditions. The testing results also provided confidence in the answers from numerical models. The philosophy adopted for the Magnox reactors in the seismic assessment was to determine what peak ground accelerations the sites can sustain and then evaluate the chances of exceeding the ground accelerations over the remaining lifetime of the plants. The peak ground acceleration for each site was determined on the basis of the criteria of safe shutdown and prevention of significant off-site radiological exposure

  17. Seismic demand evaluation based on actual earthquake records

    Jhaveri, D.P.; Czarnecki, R.M.; Kassawara, R.P.; Singh, A.

    1990-01-01

    Seismic input in the form of floor response spectra (FRS) are needed in seismic design and evaluation of equipment in nuclear power plants (NPPs). These are typically determined by analytical procedures using mathematical models of NPP structures and are known to be very conservative. Recorded earthquake data, in the form of acceleration response spectra computed from the recorded acceleration time histories, have been collected from NPP structures located in seismically active areas. Statistics of the ratios, or amplification factors, between the FRS at typical floors and the acceleration response spectra at the basemat or in the freefield, are obtained for typical NPP structures. These amplification factors are typically in terms of the peak spectral and zero period values, as well as a function of frequency. The average + 1σ values of these ratios, for those cases where enough data are available, are proposed to be used as limits to analytically calculated FRS, or for construction of simplified FRS for determining seismic input or demand in equipment qualification. (orig.)

  18. Seismic evaluation and ranking of embankments for bridges on and over the parkways in Western Kentucky.

    2008-06-01

    This study represents one of the Seismic Evaluation of Bridges on and over the Parkways in Western Kentucky investigative series. The effort is focused on the seismic vulnerability of bridge embankments against slope instability and liquefaction pote...

  19. Seismic safety margin assessment program (Annual safety research report, JFY 2010)

    Suzuki, Kenichi; Iijima, Toru; Inagaki, Masakatsu; Taoka, Hideto; Hidaka, Shinjiro

    2011-01-01

    Seismic capacity test data, analysis method and evaluation code provided by Seismic Safety Margin Assessment Program have been utilized for the support of seismic back-check evaluation of existing plants. The summary of the program in 2010 is as follows. 1. Component seismic capacity test and quantitative seismic capacity evaluation. Many seismic capacity tests of various snubbers were conducted and quantitative seismic capacities were evaluated. One of the emergency diesel generator partial-model seismic capacity tests was conducted and quantitative seismic capacity was evaluated. Some of the analytical evaluations of piping-system seismic capacities were conducted. 2. Analysis method for minute evaluation of component seismic response. The difference of seismic response of large components such as primary containment vessel and reactor pressure vessel when they were coupled with 3-dimensional FEM building model or 1-dimensional lumped mass building model, was quantitatively evaluated. 3. Evaluation code for quantitative evaluation of seismic safety margin of systems, structures and components. As the example, quantitative evaluation of seismic safety margin of systems, structures and components were conducted for the reference plant. (author)

  20. Seismic evaluation of nuclear installations; Avaliacao sismica de instalacoes nucleares

    Mattar Neto, Miguel [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-10-01

    Some considerations regarding extreme external events, natural or man-induce, such as earthquakes, floods, air crashes, etc, shall be done for nuclear facilities to minimizing the potential impact of the installation on the public and the environment. In this paper the main aspects of the seismic evaluation of nuclear facilities (except the nuclear power reactors) will be presented based on different codes and standards. (author). 7 refs., 2 tabs.

  1. Seismic evaluation of critical facilities at the Lawrence Livermore Laboratory

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    The performance of critical facilities at the Lawrence Livermore Laboratory (LLL) are being evaluated for severe earthquake loading. Facilities at Livermore, Site-300 and the Nevada Test Site are included in this study. These facilities are identified, the seismic criteria used for the analysis are indicated, the various methods used for structural analysis are discussed and a summary of the results of facilities analyzed to date are presented

  2. Development of urban planning guidelines for improving emergency response capacities in seismic areas of Iran.

    Hosseini, Kambod Amini; Jafari, Mohammad Kazem; Hosseini, Maziar; Mansouri, Babak; Hosseinioon, Solmaz

    2009-10-01

    This paper presents the results of research carried out to improve emergency response activities in earthquake-prone areas of Iran. The research concentrated on emergency response operations, emergency medical care, emergency transportation, and evacuation-the most important issues after an earthquake with regard to saving the lives of victims. For each topic, some guidelines and criteria are presented for enhancing emergency response activities, based on evaluations of experience of strong earthquakes that have occurred over the past two decades in Iran, notably Manjil (1990), Bam (2003), Firouz Abad-Kojour (2004), Zarand (2005) and Broujerd (2006). These guidelines and criteria are applicable to other national contexts, especially countries with similar seismic and social conditions as Iran. The results of this study should be incorporated into comprehensive plans to ensure sustainable development or reconstruction of cities as well as to augment the efficiency of emergency response after an earthquake.

  3. Aspects of the Iea-R1 research reactor seismic evaluation

    Mattar Neto, Miguel

    1996-01-01

    Codes and standards for the seismic evaluation of the research reactor IEA-R1 are presented. An approach to define the design basis earthquake based on the local seismic map and on simplified analysis methods is proposed. The site seismic evaluation indicates that the design earthquake intensity is IV MM. Therefore, according to the used codes and standards, no buildings, systems, and components seismic analysis are required. (author)

  4. Nonlinear seismic analysis of a thick-walled concrete canyon structure

    Winkel, B.V.; Wagenblast, G.R.

    1989-01-01

    Conventional linear seismic analyses of a thick-walled lightly reinforced concrete structure were found to grossly underestimate its seismic capacity. Reasonable estimates of the seismic capacity were obtained by performing approximate nonlinear spectrum analyses along with static collapse evaluations. A nonlinear time history analyses is planned as the final verification of seismic adequacy

  5. Overview on seismic evaluation and retrofitting within JICA Technical Cooperation Project on reduction of seismic risk in Romania

    Seki, M.; Vacareanu, R.; Pavel, M.; Lozinca, E.; Cotofana, D.; Chesca, B.; Georgescu, B.; Kaminosono, T.

    2007-01-01

    The objective of this paper is to give an overview on the seismic evaluation and retrofitting procedures of reinforced concrete buildings within JICA technical cooperation project in Romania. The content of the paper covers a) an outline of the seismic evaluation; history and comparison of Romanian seismic design codes with the Japanese seismic evaluation guidelines, b) an outline of the retrofitting techniques which were transferred from Japan to Romania and structural tests for retrofitting techniques employed in Romania and c) retrofitting details that were used by JICA/NCSRR in the retrofitting design of two vulnerable buildings in Bucharest. The above-mentioned retrofitting projects are now under development of detailed design and therefore, in the near future, refining and improvement of solutions will be performed. (authors)

  6. Relevance of normative values for functional capacity evaluation

    Soer, R.; Van Der Schans, C.; Geertzen, J.; Groothoff, J.; Brouwer, Sandra; Dijkstra, P.; Reneman, M.

    2009-01-01

    Background: Functional Capacity Evaluations (FCEs) are evaluations designed to measure capacity to perform activities and are used to make recommendations for participation in work. Normative values of healthy working subjects' performances are unavailable, thus patients' performances cannot be

  7. Using Evaluation for CBNRM Capacity Development (Southeast Asia)

    Using Evaluation for CBNRM Capacity Development (Southeast Asia) ... for evaluating both the process and outcome of capacity development efforts in CBNRM. ... Cluster Case Studies Planning Workshop, Beijing, September 21-23, 2006; ...

  8. Synthesis of analytical and experimental data, capacity evaluation

    Lin Chiwenn

    2001-01-01

    This part of the presentation deals with the synthesis of analytical and experimental data and capacity evaluation. First, a typical test flow diagram will be discussed to identify key aspects of the test program where analysis is to be performed. Next, actual component test and analysis programs will be presented to illustrate some important parameters to be considered in the modelling process. Then, two combined test and analysis projects will be reviewed to demonstrate the potential use of substructuring in the model testing to reduce the size of the model to be tested. This will be followed by an inelastic response spectral reactor coolant loop analysis, which was used to study a high level seismic test conducted for a PWR reactor coolant system. The potential use of an improved impact calculation method will be discussed after that. As a closure to the test and analysis synthesis process, a reactor internal qualification process will be discussed. Finally, capacity evaluation will be discussed, following the requirements of ASME section III code for class 1 pressure vessel, class 1 piping which includes the reactor coolant loop piping, and the reactor internals. The subsections included in this part of presentation which cover the above mentioned subjects: typical component test and analysis results; combined test and analysis process; a simplified inelastic response spectral; analysis of reactor coolant loop; an improved impact analysis methodology; reactor coolant system and core internal qualification process; ASME section III code, design by analysis of class 1 pressure vessel; design by analysis of class 1 piping; SME section III code, design by analysis of reactor core internals

  9. Probabilistic seismic hazards: Guidelines and constraints in evaluating results

    Sadigh, R.K.; Power, M.S.

    1989-01-01

    In conducting probabilistic seismic hazard analyses, consideration of the dispersion as well as the upper bounds on ground motion is of great significance. In particular, the truncation of ground motion levels at some upper limit would have a major influence on the computed hazard at the low-to-very-low probability levels. Additionally, other deterministic guidelines and constraints should be considered in evaluating the probabilistic seismic hazard results. In contrast to probabilistic seismic hazard evaluations, mean plus one standard deviation ground motions are typically used for deterministic estimates of ground motions from maximum events that may affect a structure. To be consistent with standard deterministic maximum estimates of ground motions values should be the highest level considered for the site. These maximum values should be associated with the largest possible event occurring at the site. Furthermore, the relationships between the ground motion level and probability of exceedance should reflect a transition from purely probabilistic assessments of ground motion at high probability levels where there are multiple chances for events to a deterministic upper bound ground motion at very low probability levels where there is very limited opportunity for maximum events to occur. In Interplate Regions, where the seismic sources may be characterized by a high-to-very-high rate of activity, the deterministic bounds will be approached or exceeded by the computer probabilistic hazard values at annual probability of exceedance levels typically as high as 10 -2 to 10 -3 . Thus, at these or lower values probability levels, probabilistically computed hazard values could be readily interpreted in the light of the deterministic constraints

  10. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  11. Investigation of optimal seismic design methodology for piping systems supported by elasto-plastic dampers. Part 1. Evaluation functions

    Ito, Tomohiro; Michiue, Masashi; Fujita, Katsuhisa

    2009-01-01

    In this study, the optimal seismic design methodology that can consider the structural integrity of not only the piping systems but also elasto-plastic supporting devices is developed. This methodology employs a genetic algorithm and can search the optimal conditions such as the supporting location, capacity and stiffness of the supporting devices. Here, a lead extrusion damper is treated as a typical elasto-plastic damper. Four types of evaluation functions are considered. It is found that the proposed optimal seismic design methodology is very effective and can be applied to the actual seismic design for piping systems supported by elasto-plastic dampers. The effectiveness of the evaluation functions is also clarified. (author)

  12. Seismic evaluation of vulnerability for SAMA educational buildings in Tehran

    Amini, Omid Nassiri; Amiri, Javad Vaseghi

    2008-01-01

    Earthquake is a destructive phenomenon that trembles different parts of the earth yearly and causes many destructions. Iran is one of the (high seismicity) quack- prone parts of the world that has received a lot of pecuniary damages and life losses each year, schools are of the most important places to be protected during such crisis.There was no special surveillance on designing and building of school's building in Tehran till the late 70's, and as Tehran is on faults, instability of such buildings may cause irrecoverable pecuniary damages and especially life losses, therefore preventing this phenomenon is in an urgent need.For this purpose, some of the schools built during 67-78 mostly with Steel braced frame structures have been selected, first, by evaluating the selected Samples, gathering information and Visual Survey, the prepared questionnaires were filled out. With the use of ARIA and SABA (Venezuela) Methods, new modified combined method for qualified evaluations was found and used.Then, for quantified evaluation, with the use of computer 3D models and nonlinear statically analysis methods, a number of selected buildings of qualified evaluation, were reevaluated and finally with nonlinear dynamic analysis method the real behavior of structures on the earthquakes is studied.The results of qualified and quantified evaluations were compared and a proper Pattern for seismic evaluation of Educational buildings was presented. Otherwise the results can be a guidance for the person in charge of retrofitting or if necessary rebuilding the schools

  13. Methodology to evaluate the site standard seismic motion for a nuclear facility

    Soares, W.A.

    1983-03-01

    An overall view of the subjects involved in the determination of the site standard seismic motion to a nuclear facility is presented. The main topics discussed are: basic priciples of seismic instrumentation; dynamic and spectral concepts; design earthquakes definitions; fundamentals of seismology; empirical curves developed from prior seismic data; avalable methodologies and recommended procedures to evaluate the site standard seismic motion. (E.G.) [pt

  14. Reanalysis and evaluation of seismic response of reactor building

    Li Zhongcheng; Li Zhongxian

    2005-01-01

    For the Ling Ao phase-I (LA-I) Nuclear Power Plant (NPP), its' seismic analysis of nuclear island was in accordance with the approaches in RCC-G standard for the model M310 in France, in which the Simplified impedance method was employed for the consideration of SSI. Thanks to the rapid progress being made in upgrading the evaluation technology and the capability of data processing systems, methods and software tools for the SSI analysis have experienced significant development all over the world. Focused on the model of reactor building of the LA-I NPP, in this paper the more sophisticated 3D half-space continuum impedance method based on the Green functions is used to analyze the functions of the soil, and then the seismic responses of the coupled SSI system are calculated and compared with the corresponding design values. It demonstrates that the design method provides a set of conservatively safe results. The conclusions from the study are hopefully to provide some important references to the assessment of seismic safety margin for LA-I NPP. (authors)

  15. Procedure for seismic evaluation and design of small bore piping

    Bilanin, W.; Sills, S.

    1991-01-01

    Simplified methods for the seismic design of small bore piping in nuclear power plants have teen used for many years. Various number of designers have developed unique methods to treat the large number of class 2 and 3 small bore piping systems. This practice has led to a proliferation of methods which are not standardized in the industry. These methods are generally based on enveloping the results of rigorous dynamic or conservative static analysis and result in an excessive number of supports and unrealistically high support loadings. Experience and test data have become available which warranted taking another look at the present methods for analysis of small bore piping. A recently completed Electric Power Research Institute and NCIG (a utility group) activity developed a new procedure for the seismic design and evaluation of small bore piping which provides significant safety and cost benefits. The procedure streamlines the approach to inertial stresses, which is the main feature that achieves the new benefits. Criteria in the procedure for seismic anchor movement and support design are based analysis and focus the designer on credible failure mechanisms. A walkdown of the as-constructed piping system to identify and eliminate undesirable piping features such as adverse spatial interaction is required

  16. Seismic scoping evaluation of high level liquid waste tank vaults at the Idaho Chemical Processing Plant

    Hashimoto, P.S.; Uldrich, E.D.; McGee, W.D.

    1991-01-01

    A seismic scoping evaluation of buried vaults enclosing high level liquid waste storage tanks at the Idaho Chemical Processing Plant has been performed. The objective of this evaluation was to scope out which of the vaults could be demonstrated to be seismically adequate against the Safe Shutdown Earthquake (SSE). Using approximate analytical methods, earthquake experience data, and engineering judgement, this study determined that one vault configuration would be expected to meet ICPP seismic design criteria, one would not be considered seismically adequate against the SSE, and one could be shown to be seismically adequate against the SSE using nonlinear analysis

  17. Seismic risk evaluation within the technology neutral framework

    Johnson, B.C.; Apostolakis, G.E.

    2012-01-01

    Highlights: ► We examine seismic risk within the Technology Neutral Framework (TNF). ► We find that the risk goals in the TNF to be stringent compared with current goals. ► We note that the current fleet reactors would not meet the TNF goals. ► We recommend that an initiating frequency cutoff of 10 −5 per year be use in evaluating seismic risk. - Abstract: The NRC Office of Nuclear Regulatory Research has proposed a risk-informed and performance-based licensing process that is referred to as the technology neutral framework (TNF). In the TNF, licensing basis events (LBEs), determined using probabilistic risk assessment methods, take the place of design basis accidents. These LBEs are constructed by grouping together accident sequences with similar phenomenology. All event sequences with a mean frequency greater than 10 −7 per reactor year are to be considered as part of the licensing basis. Imposing such a limit would require that earthquakes with a mean return period of ten million years be considered as part of the licensing basis. It is difficult to get seismic hazards (i.e., ground accelerations) from expert seismologists at such low frequencies. This is because it is difficult or impossible to confidently say what the seismic hazard might be at these extremely low frequencies. A linear extrapolation in log-log space of hazard curves at the Clinton site down to 10 −7 per year leads to a peak ground acceleration of about 4.5 g. A Weibull distribution is also used to fit the curve leading to a peak ground acceleration of about 2.6 g. These extrapolations demonstrate the extreme nature of rare earthquakes. Even when seismic isolation is implemented, the TNF goal is not met. The problem appears to be that there is no limit on initiating event frequency in the TNF. Demonstrating that a design meets the goals of the TNF would be nearly impossible. A frequency limit for earthquakes could be imposed at a frequency of about 10 −5 per year to focus on

  18. Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench

    Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan

    2016-04-01

    Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.

  19. Some preliminary results of a worldwide seismicity estimation: a case study of seismic hazard evaluation in South America

    C. V. Christova

    2000-06-01

    Full Text Available Global data have been widely used for seismicity and seismic hazard assessment by seismologists. In the present study we evaluate worldwide seismicity in terms of maps of maximum observed magnitude (Mmax, seismic moment (M 0 and seismic moment rate (M 0S. The data set used consists of a complete and homogeneous global catalogue of shallow (h £ 60 km earthquakes of magnitude MS ³ 5.5 for the time period 1894-1992. In order to construct maps of seismicity and seismic hazard the parameters a and b derived from the magnitude-frequency relationship were estimated by both: a the least squares, and b the maximum likelihood, methods. The values of a and b were determined considering circles centered at each grid point 1° (of a mesh 1° ´1° and of varying radius, which starts from 30 km and moves with a step of 10 km. Only a and b values which fulfill some predefined conditions were considered in the further procedure for evaluating the seismic hazard maps. The obtained worldwide M max distribution in general delineates the contours of the plate boundaries. The highest values of M max observed are along the circum-Pacific belt and in the Himalayan area. The subduction plate boundaries are characterized by the largest amount of M 0 , while areas of continental collision are next. The highest values of seismic moment rate (per 1 year and per equal area of 10 000 km 2 are found in the Southern Himalayas. The western coasts of U.S.A., Northwestern Canada and Alaska, the Indian Ocean and the eastern rift of Africa are characterized by high values of M 0 , while most of the Pacific subduction zones have lower values of seismic moment rate. Finally we analyzed the seismic hazard in South America comparing the predicted by the NUVEL1 model convergence slip rate between Nazca and South America plates with the average slip rate due to earthquakes. This consideration allows for distinguishing between zones of high and low coupling along the studied convergence

  20. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  1. Seismic assessment and upgrading of Paks nuclear power plant

    Tamas, K.

    2001-01-01

    A comprehensive programme for seismic assessment and upgrading is currently in progress at Hungary's Paks NPP. The re-evaluation of the site seismic hazard had been already completed. The technology of safe shut down and heat removal is established and the systems and structures relevant for seismic safety are identified. A seismic instrumentation is installed. The pre-earthquake preparedness and post-earthquake actions are elaborated. The methods for seismic capacity assessment are selected. The seismic capacity evaluation and the design of upgrading measures are currently in progress. The easy to perform upgrading covering the most urgent measures had been already performed. (author)

  2. Seismic analysis, evaluation and upgrade design for a nuclear facility exhaust stack building

    Malik, L.E.; Kabir, A.F.

    1991-01-01

    This paper reports on an exhaust stack building of a nuclear reactor facility with complex structural configuration that has been analyzed and evaluated for seismic forces. This building was built in the 1950's and had not been designed to resist seismic forces. A very rigorous analysis and evaluation program was implemented to minimize the costly retrofits required to upgrade the building to resist high seismic forces. The seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, base mat flexibility and the influence of the nearby reactor building have been considered in the seismic analyses. The rigorous analyses and evaluation enabled limited upgrades to qualify the stack building for the seismic forces

  3. Study on the application of ambient vibration tests to evaluate the effectiveness of seismic retrofitting

    Liang, Li; Takaaki, Ohkubo; Guang-hui, Li

    2018-03-01

    In recent years, earthquakes have occurred frequently, and the seismic performance of existing school buildings has become particularly important. The main method for improving the seismic resistance of existing buildings is reinforcement. However, there are few effective methods to evaluate the effect of reinforcement. Ambient vibration measurement experiments were conducted before and after seismic retrofitting using wireless measurement system and the changes of vibration characteristics were compared. The changes of acceleration response spectrum, natural periods and vibration modes indicate that the wireless vibration measurement system can be effectively applied to evaluate the effect of seismic retrofitting. The method can evaluate the effect of seismic retrofitting qualitatively, it is difficult to evaluate the effect of seismic retrofitting quantitatively at this stage.

  4. Using Evaluation for CBNRM Capacity Development (Southeast Asia)

    Using Evaluation for CBNRM Capacity Development (Southeast Asia). Recently, capacity development has regained a central place on the agenda of many donor organizations, including IDRC. The challenge is to measure the results of capacity development initiatives. In Asia, there are a few ongoing efforts to document ...

  5. Guideline for the seismic technical evaluation of replacement items for nuclear power plants

    Harris, S.P.; Cushing, R.W.; Johnson, H.W.; Abeles, J.M.

    1993-02-01

    Seismic qualification for equipment originally installed in nuclear power plants was typically performed by the original equipment suppliers or manufactures (OES/OEM). Many of the OES/OEM no longer maintain quality assurance programs with adequate controls for supplying nuclear equipment. Utilities themselves must provide reasonable assurance in the continued seismic adequacy of such replacement items. This guideline provides practical, cost-effective techniques which can be used to provide reasonable assurance that replacement items will meet seismic performance requirements necessary to maintain the seismic design basis of commercial nuclear power plants. It also provides a method for determining when a seismic technical evaluation of replacement items (STERI) is required as part of the procurement process for spare and replacement items. Guidance on supplier program requirements necessary to maintain continued seismic adequacy and on documentation of maintaining required seismic adequacy is also included

  6. The Seismic Fragility Evaluation of an Offsite Transformer according to Aging Effects

    Kim, Min Kyu; Choi, In Kil

    2008-01-01

    A seismic fragility analysis was performed, especially for an aged electric power transmission system, in this study. A real electric transformer system for Korean Nuclear Power Plants was selected for the seismic fragility evaluation. In the case of a seismic fragility analysis we should use design material properties and conditions. However material properties and environmental conditions of most structures and equipment are changed according to a lapse of time. Aging conditions greatly affect the integrity of the structures and equipment at NPP sites, but it is very difficult to estimate them qualitatively. Integrity of an anchor bolt system was considered with the aging conditions for an electric transformer system. At first, a seismic fragility analysis was performed for a fine condition for an electric transformer system. After that, a seismic fragility analysis according to the fastener of an anchor bolt system was conducted. This study showed that a looser anchor bolt creates seismic responses and seismic fragility changes of more 10%

  7. Bearing capacity evaluation of rubblized concrete pavements

    González, M.

    2009-03-01

    Full Text Available The paper presents the findings of a research work performed on a real scale concrete pavement project where Rubblizing technology was used for its structural rehabilitation. Rubblizing may be defined as a fracture technique in which a concrete pavement slab is transformed in a granular base with a very high Modulus. This technique, fractures the concrete slab in angular pieces by using a concentrated dynamic load of low amplitude and high frequency. The research work was based on field study on the rehabilitation of 5 km motorway. The structural evaluations where made, before, during and after one year construction. Measurements and site evaluation where made by using DCP, Light Weight Deflectometer and FWD (on top of asphalt layer and excavating inside pits. The structural capacity of the Rubblized layer was evaluated through theoretical analysis. Because of the anisotropic properties of the Rubblized layer the results are presented using AASHTO structural layer coefficient. The structural layer coefficients recommended are between the range of 0.25 and 0.30 for concrete slabs with thickness grater than 220 mm.El trabajo presenta los resultados de un estudio a escala real de la capacidad estructural de un firme de hormigón rehabilitado utilizando la técnica de Rubblizing. La técnica de Rubblizing ha sido traducida como el pulverizado del firme de hormigón pero, es más bien un efecto combinado de trituración y fracturación de la losa de hormigón en todo su espesor para convertir esta en una base granular de alto módulo. Esta tecnica fractura la losa de hormigón en trozos angulares y entrelazados empleando una carga dinámica concentrada, de baja amplitud y alta frecuencia. La investigación se basó en el estudio de la rehabilitación de 5 km de autopista. Los estudios de la capacidad estructural fueron realizados durante, al término y un año después de la construcción. Para las mediciones y evaluaciones de terreno se utilizó, el

  8. Seismic analysis, evaluation and upgrade design for a DOE exhaust stack building

    Malik, L.E.; Maryak, M.E.

    1991-01-01

    An exhaust stack building of a nuclear reactor facility with complex structural configuration has been analyzed and evaluated and retrofitted for seismic forces. The building was built in the 1950's and had not been designed to resist seismic forces. A rigorous analysis and evaluation program was implemented to minimize costly retrofits required to upgrade the building to resist high seismic forces. Seismic evaluations were performed for the building in its as-is configuration, and as modified for several upgrade schemes. Soil-structure-interaction, basemat flexibility and the influence of the nearby reactor building were considered in rigorous seismic analyses. These analyses and evaluations enabled limited upgrades to qualify the stack building for the seismic forces. Some of the major conclusions of this study are: (1) a phased approach of seismic analyses, utilizing simplified models to evaluate practicable upgrade schemes, and, then incorporating the most suitable scheme in a rigorous model to obtain design forces for upgrades, is an efficient and cost-effective approach for seismic qualification of nuclear facilities to higher seismic criteria; and, (2) finalizing the upgrade of a major nuclear facility is an iterative process, which continues throughout the construction of the upgrades

  9. A framework of risk-informed seismic safety evaluation of nuclear power plants in Japan

    Kondo, S.; Sakagami, M.; Hirano, M.; Shiba, M.

    2001-01-01

    A framework of risk-informed seismic design and safety evaluation of nuclear power plants is under consideration in Japan so as to utilize the progress in the seismic probabilistic safety assessment methodology. Issues resolved to introduce this framework are discussed after the concept, evaluation process and characteristics of the framework are described. (author)

  10. Lessons learned from NRC systematic evaluation program seismic review

    Cheng, T.M.; Hermann, R.A.; Russell, W.T.

    1983-01-01

    In October 1977, the Nuclear Regulatory Commission approved initiation of Phase II of the Systematic Evaluation Program (SEP) which consists of a plant-specific reassessment of the safety of 11 older operating nuclear reactors. Many safety criteria have rapidly evolved since the time of initial licensing of these plants. The purpose of the SEP is to develop a current documented basis for the safety of these older facilities by comparing them to current criteria. Phase I of the SEP developed a comprehensive list of 137 topics of safety significance which collectively affect the plant's capability to respond to various Design Basis Events (DBEs). Seismic Design Consideration is one of the 137 safety topics. (orig./GL)

  11. Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing

    Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin

    2018-04-01

    Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.

  12. Seismic assessment of air-cooled type emergency electric power supply system

    NONE

    2013-08-15

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  13. Seismic assessment of air-cooled type emergency electric power supply system

    2013-01-01

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  14. Methodology to evaluate the site standard seismic motion to a nuclear facility

    Soares, W.A.

    1983-01-01

    For the seismic design of nuclear facilities, the input motion is normally defined by the predicted maximum ground horizontal acceleration and the free field ground response spectrum. This spectrum is computed on the basis of records of strong motion earthquakes. The pair maximum acceleration-response spectrum is called the site standard seismic motion. An overall view of the subjects involved in the determination of the site standard seismic motion to a nuclear facility is presented. The main topics discussed are: basic principles of seismic instrumentation; dynamic and spectral concepts; design earthquakes definitions; fundamentals of seismology; empirical curves developed from prior seismic data; available methodologies and recommended procedures to evaluate the site standard seismic motion. (Author) [pt

  15. Developing Evaluation and Communication Capacity in Information ...

    It will result in a trained cadre of regional mentors who are able to facilitate advanced methodologies in both evaluation and communications. Participating flagship project teams will develop their evaluation and communication skills, and gain opportunities for policy and practice change. More will be learned about practical ...

  16. 76 FR 57767 - Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for...

    2011-09-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0204] Proposed Generic Communication; Draft NRC Generic Letter 2011-XX: Seismic Risk Evaluations for Operating Reactors AGENCY: Nuclear Regulatory Commission... FR 54507), that requested public comment on Draft NRC Generic Letter 2011- XX: Seismic Risk...

  17. Developing Evaluation and Communication Capacity in Information ...

    Evaluation and communication are essential to ensuring that research has an impact. The two fields share common elements: the importance of engaging users from the beginning, the significance of ... New Economy Development Group, Inc.

  18. Using Linear Spectral Method when Calculating Seismic Resistance of Large-Capacity Vertical Steel Tanks

    Tarasenko Alexandr

    2016-01-01

    Full Text Available The paper is aimed at determining the possibility of applying the simplified method proposed by the authors to calculate the tank seismic resistance in compliance with current regulations and scientific provisions. The authors propose a highly detailed numerical model for a common oil storage tank RVSPK-50000 that enables static operational loads and dynamic action of earthquakes to be calculated. Within the modal analysis the natural oscillation frequencies in the range of 0-10 Hz were calculated; the results are given for the first ten modes. The model takes into account the effect of impulsive and convective components of hydrodynamic pressure during earthquakes. Within the spectral analysis by generalized response spectra was calculated a general stress-strain state of a structure during earthquakes of 7, 8, 9 intensity degrees on the MSK-64 scale for a completely filled up, a half-filled up to the mark of 8.5 m and an empty RVSPK-50000 tank. The developed finite element model can be used to perform calculations of seismic resistance by the direct dynamic method, which will give further consideration to the impact of individual structures (floating roof, support posts, adjoined elements of added stiffness on the general stress-strain state of a tank.

  19. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  20. Seismic evaluation of a diesel generator system at the Savannah River Site using earthquake experience data

    Griffin, M.J.; Tong, Wen H.; Rawls, G.B.

    1990-01-01

    New equipment and systems have been seismically qualified traditionally by either two methods, testing or analysis. Testing programs are generally expensive and their input loadings are conservative. It is generally recognized that standard seismic analysis techniques produce conservative results. Seismic loads and response levels for equipment that are typically calculated exceed the values actually experienced in earthquakes. An alternate method for demonstrating the seismic adequacy of equipment has been developed which is based on conclusions derived from studying the performance of equipment that has been subjected to actual earthquake excitations. The conclusion reached from earthquake experience data is that damage or malfunction to most types of equipment subjected to earthquakes is less than that predicted by traditional testing and analysis techniques. The use of conclusions derived from experience data provides a realistic approach in assessing the seismic ruggedness of equipment. By recognizing the inherently higher capacity that exists in specific classes of equipment, commercial ''off-the-shelf'' equipment can be procured and qualified without the need to perform expensive modifications to meet requirements imposed by traditional conservative qualification analyses. This paper will present the seismic experience data methodology applied to demonstrate the seismic adequacy of several commercially supplied 800KW diesel powered engine driven generator sets with peripheral support components installed at the Savannah River Site (SRS)

  1. A report on seismic re-evaluation of Cirus systems

    Varma, Veto; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-06-01

    Cirus was initiated way back in 1955 and its design was made with the methods prevailing at that time. The design codes and safety standards have changed since then, particularly with respect to seismic design criteria. As the structure is an important safety related structure it is mandatory to meet the present statutory requirement. This report contains the seismic qualification for some of the Cirus systems. The report has four parts. Part I gives the analytical studies performed in the containment building, Part II describes of experimental studies carried out to validate the analytical studies for containment builaing, Part III explains the seismic retrofitting of Battery bank, and Part IV summarizes the seismic qualification of inlet and exhaust damper of Cirus. (author)

  2. Numerical evaluation of seismic response of shallow foundation on ...

    Young's modulus of concrete ν. Poisson's ratio n. Porosity φ. Friction angle. C. Cohesion ..... which may occur due to plastic flow during seismic loading. Step 3. ... foundations, free-field boundary conditions in the ..... infinite media; J. Geotech.

  3. Evaluation of Fourier integral. Spectral analysis of seismic events

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  4. Use of seismic experience data for technical evaluation of commercial grade replacement items

    Cushing, R.W.; Campbell, R.D.

    1991-01-01

    This paper reports that the purchase of commercial grade replacement items which are dedicated for use in nuclear safety related systems requires a technical evaluation for those items which cannot be purchased as like-for-like replacements. One of the requirements for performing a technical evaluation is verification of seismic adequacy. Studying the performance and failure modes of equipment which has been subjected to strong motion earthquakes has provided the industry with the ability to predict the behavior characteristics of many types of commonly replaced components and parts. The use of Seismic Experience Data has developed into an efficient means of satisfying the seismic adequacy requirement

  5. Study on seismic reliability for foundation grounds and surrounding slopes of nuclear power plants. Proposal of evaluation methodology and integration of seismic reliability evaluation system

    Ohtori, Yasuki; Kanatani, Mamoru

    2006-01-01

    This paper proposes an evaluation methodology of annual probability of failure for soil structures subjected to earthquakes and integrates the analysis system for seismic reliability of soil structures. The method is based on margin analysis, that evaluates the ground motion level at which structure is damaged. First, ground motion index that is strongly correlated with damage or response of the specific structure, is selected. The ultimate strength in terms of selected ground motion index is then evaluated. Next, variation of soil properties is taken into account for the evaluation of seismic stability of structures. The variation of the safety factor (SF) is evaluated and then the variation is converted into the variation of the specific ground motion index. Finally, the fragility curve is developed and then the annual probability of failure is evaluated combined with seismic hazard curve. The system facilitates the assessment of seismic reliability. A generator of random numbers, dynamic analysis program and stability analysis program are incorporated into one package. Once we define a structural model, distribution of the soil properties, input ground motions and so forth, list of safety factors for each sliding line is obtained. Monte Carlo Simulation (MCS), Latin Hypercube Sampling (LHS), point estimation method (PEM) and first order second moment (FOSM) implemented in this system are also introduced. As numerical examples, a ground foundation and a surrounding slope are assessed using the proposed method and the integrated system. (author)

  6. International symposium on seismic evaluation of existing nuclear facilities. Book of invited and contributed papers

    2003-08-01

    In the past decade, seismic evaluation of existing Nuclear Power Plants (NPPs) has been an issue in western countries (particularly for the east of North America and for older NPPs in Europe) as well as in eastern European countries where systematic reviews of NPPs were carried out. Several Member States have still on-going seismic upgrading programmes. Presently. projects of plant life extension create an additional interest in safety evaluation of existing NPPs. Seismic evaluation is also an issue for other nuclear facilities. In western countries. some older facilities (laboratories, research reactors, fuel plants...) have been designed without taking into account (or poorly taking into account) earthquake input, even on seismic sites. In eastern countries, the situation is not yet clearly evaluated. In several countries concerns are expressed regarding research reactors. Generally speaking, the seismic evaluation of these nuclear facilities is not so advanced as the evaluation of NPPs and presents a wider range of different situations. Those safety issues raised by the seismic evaluation of existing NPPs are addressed in an IAEA Safety Report 'Seismic Evaluation of Existing Nuclear Power Plants' (2003). Other nuclear facilities are, at least partly, covered by IAEA-TECDOC 1347 'Design of Nuclear Facilities other than NPPs in Relation to External Events, with a Special Emphasis on Earthquake' (2003) that supersedes the former TECDOC 348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985). Concurrently with the publishing of relevant documentation, the IAEA has organized this Symposium in order to foster the exchange of information on topical issues in seismic evaluation of existing nuclear facilities, with the aim of: consolidating an international consensus on the present status of these issues; promoting a homogeneous engineering approach of their resolution; identifying the needs for strengthening international co

  7. International symposium on seismic evaluation of existing nuclear facilities. Book of invited and contributed papers

    NONE

    2003-08-01

    In the past decade, seismic evaluation of existing Nuclear Power Plants (NPPs) has been an issue in western countries (particularly for the east of North America and for older NPPs in Europe) as well as in eastern European countries where systematic reviews of NPPs were carried out. Several Member States have still on-going seismic upgrading programmes. Presently. projects of plant life extension create an additional interest in safety evaluation of existing NPPs. Seismic evaluation is also an issue for other nuclear facilities. In western countries. some older facilities (laboratories, research reactors, fuel plants...) have been designed without taking into account (or poorly taking into account) earthquake input, even on seismic sites. In eastern countries, the situation is not yet clearly evaluated. In several countries concerns are expressed regarding research reactors. Generally speaking, the seismic evaluation of these nuclear facilities is not so advanced as the evaluation of NPPs and presents a wider range of different situations. Those safety issues raised by the seismic evaluation of existing NPPs are addressed in an IAEA Safety Report 'Seismic Evaluation of Existing Nuclear Power Plants' (2003). Other nuclear facilities are, at least partly, covered by IAEA-TECDOC 1347 'Design of Nuclear Facilities other than NPPs in Relation to External Events, with a Special Emphasis on Earthquake' (2003) that supersedes the former TECDOC 348 'Earthquake Resistant Design of Nuclear Facilities with Limited Radioactive Inventory' (1985). Concurrently with the publishing of relevant documentation, the IAEA has organized this Symposium in order to foster the exchange of information on topical issues in seismic evaluation of existing nuclear facilities, with the aim of: consolidating an international consensus on the present status of these issues; promoting a homogeneous engineering approach of their resolution; identifying the needs for strengthening international co

  8. An integrated approach to evaluate food antioxidant capacity.

    Sun, T; Tanumihardjo, S A

    2007-11-01

    Many methods are available for determining food antioxidant capacity, which is an important topic in food and nutrition research and marketing. However, the results and inferences from different methods may vary substantially because each complex chemical reaction generates unique values. To get a complete and dynamic picture of the ranking of food antioxidant capacity, relative antioxidant capacity index (RACI), a hypothetical concept, is created from the perspective of statistics by integrating the antioxidant capacity values generated from different in vitro methods. RACI is the mean value of standard scores transformed from the initial data generated with different methods for each food item. By comparing the antioxidant capacity of 20 commonly consumed vegetables in the U.S. market that were measured with 7 chemical methods, we demonstrated that the RACI correlated strongly with each method. The significant correlation of RACI with an independent data set further confirmed that RACI is a valid tool to assess food antioxidant capacity. The key advantage of this integrated approach is that RACI is in a numerical scale with no units and has consistent agreement with chemical methods. Although it is a relative index and may not represent a specific antioxidant property of different food items, RACI provides a reasonably accurate rank of antioxidant capacity among foods. Therefore, it can be used as an integrated approach to evaluate food antioxidant capacity.

  9. Seismic evaluation of existing nuclear power plants and other facilities V. 2. Proceedings of the technical committee meeting. Working material

    2002-01-01

    The objectives of this TCM are: to review the IAEA Safety Report on Seismic Evaluation of Existing Nuclear Power Plants in order to achieve a consensus among Member States on this matter and to discuss the outlines of an IAEA Co-ordinated Research Programme on specific topics related to this subject. This volume includes presentations of the member states describing the practical approach to evaluation of seismic equipment of the existing NPPs, validation of innovative systems for earthquake protection; seismic re-evaluation of the NPPs, seismic regulations and safety standards; and other activities related to seismic safety in Member States

  10. Seismic evaluation of existing nuclear power plants and other facilities V. 2. Proceedings of the technical committee meeting. Working material

    NONE

    2002-01-01

    The objectives of this TCM are: to review the IAEA Safety Report on Seismic Evaluation of Existing Nuclear Power Plants in order to achieve a consensus among Member States on this matter and to discuss the outlines of an IAEA Co-ordinated Research Programme on specific topics related to this subject. This volume includes presentations of the member states describing the practical approach to evaluation of seismic equipment of the existing NPPs, validation of innovative systems for earthquake protection; seismic re-evaluation of the NPPs, seismic regulations and safety standards; and other activities related to seismic safety in Member States.

  11. Seismic Evaluation of A Historical Structure In Kastamonu - Turkey

    Pınar, USTA; Işıl ÇARHOĞLU, Asuman; EVCİ, Ahmet

    2018-01-01

    The Kastomonu province is a seismically active zone. the city has many historical buildings made of stone-masonry. In case of any probable future earthquakes, existing buildings may suffer substantial or heavy damages. In the present study, one of the historical traditional house located in Kastamonu were structurally investigated through probabilistic seismic risk assessment methodology. In the study, the building was modeled by using the Finite Element Modeling (FEM) software, SAP2000. Time history analyses were carried out using 10 different ground motion data on the FEM models. Displacements were interpreted, and the results were displayed graphically and discussed.

  12. A Catalyst-for-Change Approach to Evaluation Capacity Building

    Garcia-Iriarte, Edurne; Suarez-Balcazar, Yolanda; Taylor-Ritzler, Tina; Luna, Maria

    2011-01-01

    Evaluation capacity building (ECB) has become a popular approach for helping community-based organizations (CBOs) to meet their funders' demands for accountability. This case study reports the ECB process with one staff member using a catalyst-for-change approach. The authors analyzed the role of the catalyst in diffusing evaluation knowledge and…

  13. Promoting evaluation capacity building in a complex adaptive system.

    Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie

    2018-04-10

    This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Seismic evaluation of K basin bridge cranes (HOI-320 ampersand HOI-418) and supporting structure

    Winkel, B.V.; Kanjilad, S.K.

    1996-03-01

    The Safety Class 1 100-K fuel storage basins are vulnerable to impact damage if a bridge crane were to fall during a seismic event. The pupose of this report is to address the adequacy of the K Basin bridge cranes to resist a seismic-induced fall. The approach used to demonstrate adequacy against falling, was to evaluate the crane structural components relative to requirements specified in ASME NOG-1, Rules for Construction of Overhead and Gantry Cranes. Additionally, wheel lift-off and the adequacy of the crane supporting structure, are addressed. Seismic adequacy of the mechanical hoist equipment is not addressed in this report

  15. 78 FR 29159 - Electric Power Research Institute; Seismic Evaluation Guidance

    2013-05-17

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0038] Electric Power Research Institute; Seismic... U.S. Nuclear Regulatory Commission (NRC) is issuing an endorsement letter of Electric Power Research... Fukushima Dai-ichi nuclear power plant in March 2011. Enclosure 1 to the 50.54(f) letter requests licensees...

  16. Evaluation of seismic damage to bridges and highway systems in Shelby County, Tennessee

    Jernigan, John Bailey

    Past earthquakes have demonstrated that bridges are one of the most vulnerable components of highway transportation systems. In addition to bridges, roadways may also be subject to damage, particularly in an area prone to earthquake-induced liquefaction. As a consequence, the highway transportation systems after an earthquake might be impaired and the post-earthquake emergency response might be compromised. Furthermore, the impact on the regional economy might be very significant from the damage to highway systems. Since highway transportation systems are critical lifelines for people living in an urban area, it is important to evaluate the vulnerability of bridges and highway systems in earthquake-prone regions. Memphis and Shelby County, Tennessee are located close to the southwestern segment of the New Madrid seismic zone (NMSZ). This zone produced three of the largest earthquakes in North America in 1811--1812. Presently, the NMSZ is still active and is considered by engineers, seismologists, and public officials as the most hazardous seismic zone in the central and eastern United States. Bridges in the Memphis area were generally not designed for seismic resistance until 1990. Therefore, the majority of existing bridges might suffer damage from earthquakes occurring in the NMSZ. The overall objective of this study is to evaluate the expected damage to bridges and roadways on the major routes in Memphis and Shelby County resulting from New Madrid earthquakes with the aid of geographic information system (GIS) technology. The road network selected for this study includes all the Interstate highway system, all the primary and secondary routes maintained by the state, and most of the major arterial routes. There are 452 bridges on the selected roadway systems and data pertinent to these bridges and roadway systems were collected and implemented as a GIS database. The bridges in the Memphis area were classified into several types and damage states were determined

  17. Assessment of seismic margin calculation methods

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs

  18. [Criteria for forensic medical evaluation of professional working capacity loss].

    Kapustin, A V; Tomilin, V V; Ol'khovik, V P; Panfilenko, O A; Serebriakova, V G

    2000-01-01

    The main and additional criteria used in evaluation (in percent) of loss of professional working capacity are characterized. Criteria common for forensic medical and medical social expert evaluations and differences between them are discussed. These differences are due to the fact that forensic medical expert evaluations are based on the Civil and Civil Processual Codes of the Russian Federation but not on the departamental norm-setting documents.

  19. Organizational Capacity to Do and Use Evaluation: Results of a Pan-Canadian Survey of Evaluators

    Cousins, J. Bradley; Elliott, Catherine; Amo, Courtney; Bourgeois, Isabelle; Chouinard, Jill; Goh, Swee C.; Lahey, Robert

    2008-01-01

    Despite increasing interest in the integration of evaluative inquiry into organizational functions and culture, the availability of empirical research addressing organizational capacity building to do and use evaluation is limited. This exploratory descriptive survey of internal evaluators in Canada asked about evaluation capacity building in the…

  20. Reserve seismic capacity determination of a nuclear power plant braced frame with piping

    Nelson, T.A.

    1979-01-01

    A typical diagonal braced steel frame was developed to determine the amount of reserve capacity that is available beyond elastic design levels. The frame was analyzed first using elastic static and dynamic analyses. The loadings included dead and live load, an equivalent static lateral earthquake load, two response spectra and a suite of eight earthquake time history records. The response spectra used were the Housner and Regulatory Guide 1.60. The time histories represented different site conditions, distances to causative faults and magnitudes. The lateral static load and Housner spectrum represent vintage design criteria, while the R.G. 1.60 and time history analyses reflect current methodology. The elastic limit responses of the structure were determined along with the accompanying threshold peak ground accelerations (threshold g values). The frame was then analyzed using the program DRAIN-2D to perform two-dimensional elastic--plastic analyses for the eight time histories

  1. The Contribution of Palaeoseismology to Seismic Hazard Assessment in Site Evaluation for Nuclear Installations

    2015-06-01

    IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations, published in 2010, covers all aspects of site evaluation relating to seismic hazards and recommends the use of prehistoric, historical and instrumental earthquake data in seismic hazard assessments. Prehistoric data on earthquakes cover a much longer period than do historical and instrumental data. However, gathering such data is generally difficult in most regions of the world, owing to an absence of human records. Prehistoric data on earthquakes can be obtained through the use of palaeoseismic techniques. This publication describes the current status and practices of palaeoseismology, in order to support Member States in meeting the recommendations of SSG-9 and in establishing the necessary earthquake related database for seismic hazard assessment and reassessment. At a donors’ meeting of the International Seismic Safety Centre Extrabudgetary Project in January 2011, it was suggested to develop detailed guidelines on seismic hazards. Soon after the meeting, the disastrous Great East Japan Earthquake and Tsunami of 11 March 2011 and the consequent accident at the Fukushima Daiichi nuclear power plant occurred. The importance of palaeoseismology for seismic hazard assessment in site evaluation was highlighted by the lessons learned from the Fukushima Daiichi nuclear power plant accident. However, no methodology for performing investigations using palaeoseismic techniques has so far been available in an IAEA publication. The detailed guidelines and practical tools provided here will be of value to nuclear power plant operating organizations, regulatory bodies, vendors, technical support organizations and researchers in the area of seismic hazard assessment in site evaluation for nuclear installations, and the information will be of importance in support of hazard assessments in the future

  2. Seismic Vulnerability Evaluation of a Three-Span Continuous Beam Railway Bridge

    Chongwen Jiang

    2017-01-01

    Full Text Available In order to evaluate the seismic vulnerability of a railway bridge, a nonlinear finite element model of typical three-span continuous beam bridge on the Sichuan-Tibet railway in China was built. It further aimed at performing a probabilistic seismic demand analysis based on the seismic performance of the above-mentioned bridge. Firstly, the uncertainties of bridge parameters were analyzed while a set of finite element model samples were formulated with Latin hypercube sampling method. Secondly, under Wenchuan earthquake ground motions, an incremental dynamic method (IDA analysis was performed, and the seismic peak responses of bridge components were recorded. Thirdly, the probabilistic seismic demand model for the bridge principal components under the prerequisite of two different kinds of bearing, with and without seismic isolation, was generated. Finally, comparison was drawn to further ascertain the effect of two different kinds of bearings on the fragility components. Based on the reliability theory, results were presented concerning the seismic fragility curves.

  3. Seismic safety review mission to assist in the evaluation of the design of seismic upgrading for Kozloduy NPP. Sofia, Bulgaria, 19-23 October 1992

    Ma, D.; Prato, C.; Godoy, A.

    1992-10-01

    A seismic Safety Review Mission to assist in the evaluation of the design of seismic upgrading for Kozloduy NPP was performed in Sofia from 19-23 October 1992. The objectives of the mission were to assist the Bulgarian authorities in: the evaluation of the floor response spectra of the main buildings of units 1-4 at Kozloduy NPP, calculated for the new defined seismic parameters at site (Review Level Earthquake - RLE); the evaluation of the remedial and strengthening measures proposed for the seismic upgrading of the pump house and diesel generator buildings to the new defined RLE. This mission completed the scope of previous IAEA mission - BUL/9/012-18b - (see Report 3262) performed from 3-7 August 1992, with regard to tasks which were not evaluated at that time because they had not been finished. 2 tabs

  4. Seismic hazard evaluation for major cities in Madagascar

    Razafindrakoto, Hoby N.T.; Rambolamanana, Gerard; Panza, Giuliano F.

    2009-09-01

    The seismic hazard in some areas in Madagascar has been assessed at regional scale in terms of peak ground motion values (displacement, velocity, acceleration) and their periods, following the Neodeterministic approach, based on the computation of realistic synthetic seismograms. The main data input integrates all available tectonic, seismicity and structural model information. The largest peak values are 1.6cm/s for the velocity, 0.03g for the acceleration and more than 0.5cm for the displacement. These values are consistent within a range of macroseismic intensity from VI to VII MCS, and indicate that relatively simple prevention measures and retrofitting actions may guarantee a high safety level and a well sustainable development. (author)

  5. Recent development of seismic evaluation for Swedish NPPs

    Bennemo, L [Vattenfall Energisystem, Stockholm (Sweden)

    1997-03-01

    In Scandinavia seismic activity is generally low. Only a few incidents have been registered in historic time, which might have damaged an industrial plant of today. There has been no earthquakes in Sweden strong enough to affect a NPP during our nuclear era (and not for very long time before either). So the risk for an nuclear accident i Sweden, caused by an earthquake, may thus be considered to be low. The basis and the methodology used in the design of Forsmark 3 and Oskarshamn 3 with respect to seismic safety is not in all parts suited to be employed for the older reactors. The methods implies a number of simplifications which may be a practical approach in connection with a new design but which might cause too conservative judgements of existing designs. The development of methods is therefore a vital part in the analysis. The Swedish nuclear Power Inspectorate (SKI), Vattenfall AB, Sydkraft AB and Oskarshams Kraftgrupp AB (OKG) have performed such a development of methods in a joint research program: `Project Seismic Safety`. The aim of the project was to develop methods for calculating the ground response to be used in the safety analysis of nuclear power plants in Sweden, as well as to demonstrate its application to the power plants at Ringhals and Barseback. The study also included a survey of geological and seismological conditions in the regions around the power plants studied. Since the large scale geological and seismological conditions around the individual nuclear plant sites are not very different as regards their expected effects on the seismic ground motion, the results obtained for the `typical hard rock site` can be taken as a basis for the characterization of the ground motions at the individual sites, after appropriate transformations to account for specific load conditions, seismological as well as geological. (J.P.N.)

  6. Evaluation of Seismic Behaviors of Partially Deteriorated Reinforced Concrete Circular Columns Retrofitted with CFRP

    Dongxu Hou

    2014-01-01

    Full Text Available Deficiency of the concrete strength in some regions of reinforced concrete (RC columns in practice may weaken the seismic behaviors of columns. Its effects on RC columns should be well understood. This paper aims to investigate the influences of deteriorated segment on the seismic behaviors of partially deteriorated RC columns and attempts to recover the seismic behaviors of partially deteriorated columns with Carbon Fiber Reinforced Polymer (CFRP composites. A finite element analysis was carried out to simulate the seismic behaviors of CFRP-confined partially deteriorated RC columns. The numerical results were verified by the laboratory tests of six specimens. Based on the finite element results, the failure location of partially deteriorated columns in an earthquake was predicted, and the effectiveness of CFRP retrofitted on partially deteriorated columns was evaluated.

  7. Relationship between kinesiophobia and performance in a functional capacity evaluation

    Reneman, MF; Jorritsma, W; Dijkstra, SJ; Dijkstra, PU

    2003-01-01

    Fear of movement and (re) injury (kinesiophobia) has been postulated to play an important role in the performance in a Functional Capacity Evaluation (FCE). This study was performed to analyze the relationship between kinesiophobia and performance in an FCE. Kinesiophobia and FCE performance of 54

  8. Evaluation of Neutralizing Capacity of Different Commercial Brands ...

    MBI

    2015-10-31

    Oct 31, 2015 ... This study is based on the evaluation of acid neutralizing capacity of five different commercial brands ... Titration of each sample tablet (0.5 g) dissolved in 20 cm3 of 0.1 M HCl with ... Antacid is any substance, generally a base.

  9. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    Ha, Jeong Gon, E-mail: jgha87@kaist.ac.kr; Kim, Dong-Soo, E-mail: dskim@kaist.ac.kr

    2014-10-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI.

  10. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    Ha, Jeong Gon; Kim, Dong-Soo

    2014-01-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI

  11. Seismic Hazards in Site Evaluation for Nuclear Installations. Specific Safety Guide

    NONE

    2010-08-15

    This Safety Guide was prepared under the IAEA programme for safety standards for nuclear installations. It supplements the Safety Requirements publication on Site Evaluation for Nuclear Installations. The present publication provides guidance and recommends procedures for the evaluation of seismic hazards for nuclear power plants and other nuclear installations. It supersedes Evaluation of Seismic Hazards for Nuclear Power Plants, IAEA Safety Standards Series No. NS-G-3.3 (2002). In this publication, the following was taken into account: the need for seismic hazard curves and ground motion spectra for the probabilistic safety assessment of external events for new and existing nuclear installations; feedback of information from IAEA reviews of seismic safety studies for nuclear installations performed over the previous decade; collective knowledge gained from recent significant earthquakes; and new approaches in methods of analysis, particularly in the areas of probabilistic seismic hazard analysis and strong motion simulation. In the evaluation of a site for a nuclear installation, engineering solutions will generally be available to mitigate, by means of certain design features, the potential vibratory effects of earthquakes. However, such solutions cannot always be demonstrated to be adequate for mitigating the effects of phenomena of significant permanent ground displacement such as surface faulting, subsidence, ground collapse or fault creep. The objective of this Safety Guide is to provide recommendations and guidance on evaluating seismic hazards at a nuclear installation site and, in particular, on how to determine: (a) the vibratory ground motion hazards, in order to establish the design basis ground motions and other relevant parameters for both new and existing nuclear installations; and (b) the potential for fault displacement and the rate of fault displacement that could affect the feasibility of the site or the safe operation of the installation at

  12. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth

  13. Seismic test for safety evaluation of low level radioactive wastes containers

    Ohoka, Makoto; Horikiri, Morito

    1998-08-01

    Seismic safety of three-piled container system used in Tokai reprocessing center was confirmed by seismic test and computational analysis. Two types of container were evaluated, for low level noninflammable radioactive solid wastes, and for used filters wrapped by large plastic bags. Seismic integrity of three-piled containers was confirmed by evaluating response characteristics such as acceleration and displacement under the design earthquake condition S1, which is the maximum earthquake expected at the stored site during the storage time. Computational dynamic analysis was also performed, and several conclusions described below were made. (1) Response characteristics of the bottom board and the side board were different. The number of pile did not affect the response characteristics of the bottom board of each container. They behaved as a rigid body. (2) The response of the side board was larger than that of the bottom board. (3) The response depended on the direction in each board, either side or bottom. The response acceleration became larger to the seismic wave perpendicular to the plane which has the entrance for fork lift and the radioactive warning mark. (4) The maximum horizontal response displacement under the S1 seismic wave was approximately 10 mm. It is so small that it does not affect the seismic safety. (5) The stoppers to prevent fall down had no influence to the response acceleration. (6) There was no fall down to the S1 seismic wave and 2 times of S1 seismic wave, which was the maximum input condition of the test. (7) The response of the bottom board of the containers, which are main elements of fall down, had good agreements both in the test and in the computational analysis. (author)

  14. Seismic re-evaluation criteria for Bohunice V1 reconstruction

    Campbell, R.; Schlund, H.; Warnken, L.

    2001-01-01

    Bohunice V1 in Slovakia is a Russian designed two unit WWER 440, Model 230 Pressurized Water Reactor. The plant was not originally designed for earthquake. Subsequent and ongoing reassessments now confirm that the seismic hazard at the site is significant. EBO, the plant owner has contracted with a consortium lead by Siemens AG (REKON) to do major reconstruction of the plant to significantly enhance its safety systems by the addition of new systems and the upgrading of existing systems. As part of the reconstruction, a complete seismic assessment and upgrading is required for existing safety relevant structures, systems and components. It is not practical to conduct this reassessment and upgrading using criteria applied to new design of nuclear power plants. Alternate criteria may be used to achieve adequate safety goals. Utilities in the U.S. have faced several seismic issues with operating NPPs and to resolve these issues, alternate criteria have been developed which are much more cost effective than use of criteria for new design. These alternate criteria incorporate the knowledge obtained from investigation of the performance of equipment in major earthquakes and include provisions for structures and passive equipment to deform beyond the yield point, yet still provide their essential function. IAEA has incorporated features of these alternate criteria into draft Technical Guidelines for application to Bohunice V1 and V2. REKON has developed plant specific criteria and procedures for the Bohunice V1 reconstruction that incorporate major features of the U.S. developed alternate criteria, comply to local codes and which envelop the draft IAEA Technical Guidelines. Included in these criteria and procedures are comprehensive walkdown screening criteria for equipment, piping, HVAC and cable raceways, analytical criteria which include inelastic energy absorption factors defined on an element basis and testing criteria which include specific guidance on interpretation

  15. Seismic Response and Performance Evaluation of Self-Centering LRB Isolators Installed on the CBF Building under NF Ground Motions

    Junwon Seo

    2016-01-01

    Full Text Available This paper mainly treats the seismic behavior of lead-rubber bearing (LRB isolation systems with superealstic shape memory alloy (SMA bending bars functioning as damper and self-centering devices. The conventional LRB isolators that are usually installed at the column bases supply extra flexibility to the centrically braced frame (CBF building with a view to elongate its vibration period, and thus make a contribution to mitigating seismic acceleration transferred from ground to structure. However, these base isolation systems are somehow susceptible to shear failure due to the lack of lateral resistance. In the construction site, they have been used to be integrated with displacement control dampers additionally withstanding lateral seismic forces. For this motivation, LRB isolation systems equipped with superelastic SMA bending bars, which possess not only excellent energy dissipation but also outstanding recentering capability, are proposed in this study. These reinforced and recentering LRB base isolators are modeled as nonlinear component springs, and then assigned into the bases of 2D frame models used for numerical simulation. Their seismic performance and capacity in the base-isolated frame building can be evaluated through nonlinear dynamic analyses conducted with historic ground motion data. After comparative study with analyses results, it is clearly shown that 2D frame models with proposed LRB isolators generally have smaller maximum displacements than those with conventional LRB isolators. Furthermore, the LRB isolation systems with superelastic SMA bending bars effectively reduce residual displacement as compared to those with steel bending bars because they provide more flexibility and recentering force to the entire building structure.

  16. Containment performance evaluation for the GESSAR-II plant for seismic initiating events

    Shiu, K.K.; Chu, T.; Ludewig, H.; Pratt, W.T.

    1986-01-01

    As a part of the overall effort undertaken by Brookhaven National Laboratory (BNL) to review the GESSAR-II probabilistic risk assessment, an independent containment performance evaluation was performed using the containment event tree approach. This evaluation focused principally on those accident sequences which are initiated by seismic events. This paper reports the findings of this study. 1 ref

  17. Re-evaluation and updating of the seismic hazard of Lebanon

    Huijer, Carla; Harajli, Mohamed; Sadek, Salah

    2016-01-01

    This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.

  18. On development and improvement of evaluation techniques for seismic ground motion

    NONE

    2013-08-15

    Issues regarding evaluation of active fault and ground motion for formulation of design basis ground motion (Ss) were prescribed in 'NSC seismic and tsunami safety reviewing manual' in 2012. Moreover, Nuclear Regulation Authority (NRA) is establishing the new seismic safety guideline. In this theme following four subjects were investigated to resolve the important problems for ground motion evaluation, (1) advanced evaluation of ground motion using fault model and uncertainty; (2) improving evaluation of ground motion using attenuation relation of response spectrum; (3) development of advanced and generic techniques for ground motion observation and observation tool in deep borehole; (4) improving the evaluation of site effect and seismic wave propagation characteristics. In addition as emergency requirements from NRA following two subjects were also investigated; (5) hazard evaluation development on fault displacement; (6) ground motion evaluation at near-by source location. Obtained results will be reflected not only in the domestic guideline established by NRA but in the national safety review and also in the safety standard guidelines of the International Atomic Energy Agency (IAEA) through its Extra-Budgetary Program (EBP), thereby contributing to technical cooperation in global nuclear seismic safety. (author)

  19. Evaluation of methods for seismic analysis of nuclear fuel reprocessing and fabrication facilities

    Arthur, D.F.; Dong, R.G.; Murray, R.C.; Nelson, T.A.; Smith, P.D.; Wight, L.H.

    1978-01-01

    Methods of seismic analysis for critical structures and equipment in nuclear fuel reprocessing plants (NFRPs) and mixed oxide fuel fabrication plants (MOFFPs) are evaluated. The purpose of this series of reports is to provide the NRC with a technical basis for assessing seismic analysis methods and for writing regulatory guides in which methods ensuring the safe design of nuclear fuel cycle facilities are recommended. The present report evaluates methods of analyzing buried pipes and wells, sloshing effects in large pools, earth dams, multiply supported equipment, pile foundations, and soil-structure interactions

  20. U.S. experience in seismic re-evaluation and verification programs

    Stevenson, J.D.

    1995-01-01

    The purpose of this paper is to present a summary of the development of a seismic re-evaluation program for older nuclear power plants in the U.S. The principal focus of this reevaluation is the use of actual strong motion earthquake response data for structures and mechanical and electrical systems and components. These data are supplemented by generic shake table test results. Use of this type of seismic re-evaluation has led to major cost reductions as compared to more conventional analytical and component specific testing procedures. (author)

  1. Non-linear transient behavior during soil liquefaction based on re-evaluation of seismic records

    Kamagata, S.; Takewaki, Izuru

    2015-01-01

    Focusing on soil liquefaction, the seismic records during the Niigata-ken earthquake in 1964, the southern Hyogo prefecture earthquake in 1995 and the 2011 off the Pacific coast of Tohoku earthquake are analyzed by the non-stationary Fourier spectra. The shift of dominant frequency in the seismic record of Kawagishi-cho during the Niigata-ken earthquake is evaluated based on the time-variant property of dominant frequencies. The reduction ratio of the soil stiffness is evaluated from the shif...

  2. SEISMIC EVALUATION OF EXISTING MID-RISE REINFORCED CONCRETE BUILDINGS ACCORDING TO SPECIFICATION FOR BUILDING STRUCTURES TO BE BUILT IN DISASTER AREAS

    Mehmet İNEL

    2007-01-01

    Full Text Available Over the past several decades, Turkey has been hit by devastating earthquakes and remarkable number of reinforced concrete buildings has been damaged in the high seismicity regions of our country. The aim of this study is to evaluate the seismic performance of the mid-rise reinforced concrete buildings that are major part of building stock of our earthquake-prone country, according to recent Turkish Earthquake Code. 4- and 7-story buildings were selected to represent mid-rise building stock. After determining the structural parameters, each building was subjected to pushover analysis and the capacity curves were obtained. Earthquake performance of each building was determined in the light of their capacity curves according to the recent Turkish Earthquake Code.

  3. Seismic re-evaluation of piping systems of heavy water plant, Kota

    Mishra, Rajesh; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    2002-05-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic event. The aim of this exercise is to assess the effects of the maximum probable earthquake at the plant site on the various systems and components of the plant. This exercise is further aimed at ensuring the adequacy of seismic supports to maintain the integrity of the system in case of a seismic event and to suggest some retrofitting measures, if required. Seismic re-evaluation of the piping of Heavy Water Plant, Kota has been performed taking into account the interaction effects from the connected equipment. Each layout has been qualified using the latest provisions of ASME Code Section III, Subsection ND wherein the earthquake loading has been considered as a reversing dynamic load. The maximum combined stresses for all the layouts due to pressure, weight and seismic loadings have been found to be well within the code allowable limit. Therefore, it has been concluded that during a maximum probable seismic event, the possibility of pipe rupture can be safely

  4. [Evaluation of exercise capacity in pulmonary arterial hypertension].

    Demir, Rengin; Küçükoğlu, Mehmet Serdar

    2010-12-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by increased pulmonary vascular resistance that leads to right ventricular failure. The most common clinical features of PAH are dyspnea and exercise intolerance. Measurement of exercise capacity is of considerable importance for the assessment of disease severity as well as routine monitoring of disease. Maximal, symptom-limited, cardiopulmonary exercise test (CPET) is the gold standard for the evaluation of exercise capacity, whereby functions of several systems involved in exercise can be assessed, including cardiovascular, respiratory, and metabolic systems. However, in order to derive the most useful diagnostic information on physiologic limitations to exercise, CPET requires maximal effort of the patient, which can be difficult and risky for some severely ill patients. Moreover, it requires specific exercise equipment and measurement systems, and experienced and trained personnel. Thus, routine clinical use of CPET to assess exercise capacity in patients with PAH may not always be feasible. A practical and simple alternative to CPET to determine exercise capacity is the 6-minute walk test (6MWT). It is simple to perform, safe, and reproducible. In contrast to CPET, the 6MWT reflects a submaximal level of exertion that is more consistent with the effort required for daily physical activities. This review focuses on the role of CPET and 6MWT in patients with PAH.

  5. Seismic response and fragility evaluation for an Eastern US NPP including soil-structure interaction effects

    Ghiocel, Dan M.; Wilson, Paul R.; Thomas, Gary G.; Stevenson, John D.

    1998-01-01

    The paper discusses methodological aspects involved in a probabilistic seismic soil-structure interaction (SSI) analysis for a Seismic Probabilistic Risk Assessment (SPRA) review. An example of an Eastern US nuclear power plant (NPP) is presented. The approach presented herein follows the current practice of the Individual Plant Examination for External Events (IPEEE) program in the US. The NPP is founded on a relatively soft soil deposit, and thus the SSI effects on seismic responses are significant. Probabilistic models used for the idealization of the seismic excitation and the surrounding soil deposit are described. Using a lognormal format, computed random variability effects were combined with those proposed in the SPRA methodology guidelines. Probabilistic floor response spectra and structural fragilities for different NPP buildings were computed. Structural capacities were determined following the current practice which assumes independent median safety factors for strength and inelastic absorption. Limitations of the IPEEE practice for performing SPRA are discussed and alternate procedures, more rigorous and simple to implement, are suggested

  6. Integrated software system for seismic evaluation of nuclear power plant structures

    Xu, J.; Graves, H.L.

    1993-01-01

    The computer software CARES (Computer Analysis for Rapid Evaluation of Structures) was developed by the Brookhaven National Laboratory for the U.S. Nuclear Regulatory Commission. It represents an effort to utilize established numerical methodologies commonly employed by industry for structural safety evaluations of nuclear power plant facilities and incorporates them into an integrated computer software package operated on personal computers. CARES was developed with the objective of including all aspects of seismic performance evaluation of nuclear power structures. It can be used to evaluate the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants by various utilities. CARES has a modular format, each module performing a specific type of analysis. The seismic module integrates all the steps of a complete seismic analysis into a single package with many user-friendly features such as interactiveness and quick turnaround. Linear structural theory and pseudo-linear convolution theory are utilized as the bases for the development with a special emphasis on the nuclear regulatory requirements for structural safety of nuclear plants. The organization of the seismic module is arranged in eight options, each performing a specific step of the analysis with most of input/output interfacing processed by the general manager. Finally, CARES provides comprehensive post-processing capability for displaying results graphically or in tabular form so that direct comparisons can be easily made. (author)

  7. Seismic safety review mission for the follow-up of the seismic upgrading of Kozloduy NPP (Units 1-4). Sofia, Bulgaria, 16-20 November 1992

    David, M.; Shibata, H.; Stevenson, J.D.; Godoy, A.; Gurpinar, A.

    1992-11-01

    A Seismic Safety Review Mission for the follow-up of the design and implementation of the seismic upgrading of Kozloduy NPP was performed in Sofia from 16-20 November 1992. This mission continued the second task of the follow-up activities of the design and implementation of the seismic upgrading (Phases 1 and 2), which is being carried out in Units 1 and 2 of the NPP. Thus the objectives of the mission was to assist the Bulgarian authorities in the technical evaluation of the design tasks defined for Phases 1 and 2 item HB of WANO 6 Month Programme, as follows: anchorage upgrades of low seismic capacity components; list of seismic safety related systems and components; detailed walkdown to assess seismic capacity of components and define priorities for the upgrading; determination of seismic structural capacity of pump house, diesel generator building and turbine building and design of required upgrades; liquefaction potential evaluation. Tabs

  8. Seismic evaluation of buildings in the Eastern and Central United States

    Malley, J.O.; Poland, C.D.

    1991-01-01

    The vast majority of the existing buildings in the Central and Eastern United States have not been designed to resist seismic forces, even though it is becoming widely accepted that there is a potential for damaging earthquakes in these regions for the country. These buildings, therefore, may constitute a serious threat to life safety in the event of a major earthquake. The ATC-14 procedure for the seismic evaluation of existing buildings has begun to gain wide acceptance since its publication in 1987. The National Center for Earthquake Engineering Research (NCEER) funded a project to critically assess the applicability of ATC-14 to buildings in the Eastern and Central United States. This NCEER project developed a large volume of recommended modifications to ATC-14 which are intended to improve the modifications to ATC-14 procedure's recommendations for the seismic evaluation of buildings in regions of low siesmicity. NCEER is sponsoring a second project which will produce a separate document for the seismic evaluation of existing buildings which specifically focuses on structures in these areas of the country. This report, which should be completed in 1991, will provide a valuable tool for practicing engineers performing these evaluations in the Eastern and Central United States. This paper will present the results of these NCEER projects and introduce the revised ATC-14 methodology

  9. CARES (Computer Analysis for Rapid Evaluation of Structures) Version 1.0, seismic module

    Xu, J.; Philippacopoulas, A.J.; Miller, C.A.; Costantino, C.J.

    1990-07-01

    During FY's 1988 and 1989, Brookhaven National Laboratory (BNL) developed the CARES system (Computer Analysis for Rapid Evaluation of Structures) for the US Nuclear Regulatory Commission (NRC). CARES is a PC software system which has been designed to perform structural response computations similar to those encountered in licensing reviews of nuclear power plant structures. The documentation of the Seismic Module of CARES consists of three volumes. This report is Volume 2 of the three volume documentation of the Seismic Module of CARES and represents the User's Manual. 14 refs

  10. CARES (Computer Analysis for Rapid Evaluation of Structures) Version 1.0, seismic module

    Xu, J.; Philippacopoulas, A.J.; Miller, C.A.; Costantino, C.J.

    1990-07-01

    During FY's 1988 and 1989, Brookhaven National Laboratory (BNL) developed the CARES system (Computer Analysis for Rapid Evaluation of Structures) for the US Nuclear Regulatory Commission (NRC). CARES is a PC software system which has been designed to perform structural response computations similar to those encountered in licensing reviews of nuclear power plant structures. The documentation of the Seismic Module of CARES consists of three volumes. This report represents Volume 3 of the volume documentation of the Seismic Module of CARES. It presents three sample problems typically encountered in the Soil-Structure Interaction analyses. 14 refs., 36 figs., 2 tabs

  11. CARES (Computer Analysis for Rapid Evaluation of Structures) Version 1.0, seismic module

    Xu, J.; Philippacopoulas, A.J.; Miller, C.A.; Costantino, C.J.

    1990-07-01

    During FY's 1988 and 1989, Brookhaven National Laboratory (BNL) developed the CARES system (Computer Analysis for Rapid Evaluation of Structures) for the US Nuclear Regulatory Commission (NRC). CARES is a PC software system which has been designed to perform structural response computations similar to those encountered in licencing reviews of nuclear power plant structures. The docomentation of the Seismic Module of CARES consists of three volumes. This report represents Volume 1 of the three volume documentation of the Seismic Module of CARES. It concentrates on the theoretical basis of the system and presents modeling assumptions and limitations as well as solution schemes and algorithms of CARES. 31 refs., 6 figs

  12. Evaluation of Seismic Behavior of Steel Braced Frames with Controlled Rocking System and Energy Dissipating Fuses

    Hassan Amirzehni

    2016-12-01

    Full Text Available The self-centering rocking steel braced frames are new type of seismic lateral-force resisting systems that are developed with aim to limiting structural damages, minimizing residual drifts on systems and creating easy and inexpensive reconstruction capability, after sever earthquakes. In Steel braced frames with controlled rocking system, column bases on seismic resisting frame are not attached to the foundation and the frame allowed to rock freely. The task of restoring the rotated frame to its initial location is on post-tensioned cables, which attaches top of the frame to foundation. The design of post tensioned stands and braced frame members is such that during earthquakes they remain in elastic region. Seismic energy, dissipates by plastic deformations in replaceable elements on each rock of frame. In current research work, the seismic behavior of this type of lateral resisting systems is evaluated. The research conducted on a one bay steel braced frame with controlled rocking system that is analyzed using nonlinear dynamic time history analysis (NLTHA procedure. The frame is subjected to JMA-Kobe and Northridge ground motions records that are scaled to unit, 1.2 and 1.5 times of maximum considered earthquake (MCE ground motion level intensity. Extracted results show that seismic behavior of this type of lateral force resisting systems are so desirable even under MCE ground motion levels. The only anxiety is about occurring fatigue in post-tensioned strands that endangers overall stability of system.

  13. Seismic hazard for the Savannah River Site: A comparative evaluation of the EPRI and LLNL assessments

    Wingo, H.E.

    1992-01-01

    This report was conducted to: (1) develop an understanding of causes for the vast differences between the two comprehensive studies, and (2) using a methodology consistent with the reconciled methods employed in the two studies, develop a single seismic hazard for the Savannah River Site suitable for use in seismic probabilistic risk assessments with emphasis on the K Reactor. Results are presented for a rock site which is a typical because detailed evaluations of soil characteristics at the K Reactor are still in progress that account for the effects of a soil stablizing grouting program. However when the soils analysis is completed, the effects of soils can be included with this analysis with the addition of a single factor that will decrease slightly the seismic hazard for a rock site

  14. LANL seismic screening method for existing buildings

    Dickson, S.L.; Feller, K.C.; Fritz de la Orta, G.O.

    1997-01-01

    The purpose of the Los Alamos National Laboratory (LANL) Seismic Screening Method is to provide a comprehensive, rational, and inexpensive method for evaluating the relative seismic integrity of a large building inventory using substantial life-safety as the minimum goal. The substantial life-safety goal is deemed to be satisfied if the extent of structural damage or nonstructural component damage does not pose a significant risk to human life. The screening is limited to Performance Category (PC) -0, -1, and -2 buildings and structures. Because of their higher performance objectives, PC-3 and PC-4 buildings automatically fail the LANL Seismic Screening Method and will be subject to a more detailed seismic analysis. The Laboratory has also designated that PC-0, PC-1, and PC-2 unreinforced masonry bearing wall and masonry infill shear wall buildings fail the LANL Seismic Screening Method because of their historically poor seismic performance or complex behavior. These building types are also recommended for a more detailed seismic analysis. The results of the LANL Seismic Screening Method are expressed in terms of separate scores for potential configuration or physical hazards (Phase One) and calculated capacity/demand ratios (Phase Two). This two-phase method allows the user to quickly identify buildings that have adequate seismic characteristics and structural capacity and screen them out from further evaluation. The resulting scores also provide a ranking of those buildings found to be inadequate. Thus, buildings not passing the screening can be rationally prioritized for further evaluation. For the purpose of complying with Executive Order 12941, the buildings failing the LANL Seismic Screening Method are deemed to have seismic deficiencies, and cost estimates for mitigation must be prepared. Mitigation techniques and cost-estimate guidelines are not included in the LANL Seismic Screening Method

  15. Seismic re-evaluation of the Tarapur atomic power plants 1 and 2

    Ingole, S.M.; Kumar, B.S.; Gupta, S.; Singh, U.P.; Giridhar, K.; Bhawsar, S.D.; Samota, A.; Chhatre, A.G.; Dixit, K.B.; Bhardwaj, S.A.

    2004-01-01

    Two Boiling Water Reactors (BWR) of 210 MWe each at Tarapur Atomic Power Station, Units-1 and 2 (TAPS-1-2) were commissioned in the year 1969. The safety related civil structures at TAPS had been designed for a seismic coefficient of 0.2 g and other structures for 0.1 g. The work of seismic re-evaluation of the TAPS-1-2 has been taken up in the year 2002. As two new Pressurized Heavy Water Reactor (PHWR) plants of 540 MWe each, Tarapur Atomic Power Project Units-3 and 4 (TAPP-3-4), are coming up in the vicinity of TAPS-1-2, detailed geological and seismological studies of the area around TAPS-1-2 are available. The same free-field ground motion as generated for TAPP-3-4 has been used for TAPS-1-2. The seismic re-evaluation of the plant has been performed as per the procedure given in IAEA, Safety Reports Series entitled 'Seismic Evaluation of Existing Nuclear Power Plants', and meeting the various codes and standards, viz., ASME, ASCE, IEEE standards etc. The Safety Systems (SS) and Safety Support Systems (SSS) are qualified by adopting detailed analysis and testing methods. The equipment in the SS and SSS have been qualified by conducting a walk-down as per the procedure given in Generic Implementation Procedure, Dept. of Energy (GIP--DOE), USA. The safety systems include the systems required for safe shutdown of the plant, one chain of decay heat removal and containment of activity. The safety support systems viz., Electrical, Instrumentation and Control and systems other than SS and SSS have been qualified by limited analysis, testing and mostly by following the procedure of walk-down. The paper brings out the details of the work accomplished during seismic re-evaluation of the two units of BWR at Tarapur. (authors)

  16. Seismic evaluation of Tank 241C106 in support of retrieval activities

    Wallace, D.A.

    1994-01-01

    Tank 241C106 (C106) is a domed, single-shell high-level waste storage tank that has been in service in the 200 East Area of the Hanford Site since 1947. Tank C106 is one of twelve tanks in a 4 x 3 array with a 100-ft center-to-center spacing. Each of the tanks is approximately 75 ft in diameter, 24-ft high at the haunch, and 33-ft high at the dome apex. The level of waste in C106 and the associated thermal environment have varied throughout the life of the tanks with the peak temperature in the concrete reaching approximately 300 F at the base of the tank in the mid-1970's (Bander 1992). The calculated peak temperature in the concrete has decreased since that time to approximately 200 F. The peak temperature occurs at the inside bottom of the tank; concrete temperatures in the wall and dome are less than 130 F. The waste inside the tank is primarily solid matter approximately 7- to 8-ft deep. The tank is completely buried in dry, sandy soil to a depth of approximately 6 ft at the dome apex. The in situ evaluation of C106 documented in July 1994 includes only the effects of gravity and thermal loads. A preliminary seismic evaluation of C106 considering only horizontal excitation demonstrated the finite-element program SASSI (A System for Analysis of Soil-Structure Interaction) and provided an estimate of seismic effects including soil-to-structure interaction. This final seismic evaluation expands on the preliminary seismic evaluation to include further verification and refinement of analysis parameters, quantification to tank-to-tank and waste-to-tank interaction, and examination of the effects of vertical seismic excitation. The concrete structure of tank C106 is classified as a Safety Class 1 non-reactor structure

  17. Seismic fatigue life evaluation of mechanical structures using energy balance equation

    Minagawa, Keisuke; Fujita, Satoshi; Kitamura, Seiji; Okamura, Shigeki

    2009-01-01

    Evaluation of seismic resistant performance for severe earthquakes is required, because of occurrence of earthquakes which exceed the design criteria. Additionally, quantitative evaluation of cumulative damage by earthquake is also required. In this study, the energy balance equation is applied to the evaluation. The energy balance equation expresses integral information of response, so that the energy balance equation is adequate for the evaluation of the influence of cumulative load such as seismic response. At first, vibration experiment that leads experimental model to fatigue failure by continuous vibration disturbance is conducted. As a result of the experiment, relation between fatigue failure and energy balance equation is confirmed. Then the relation is proved from the viewpoint of hysteresis energy, and consistency between energy balance equation and hysteresis energy is confirmed. Finally, we adopted cumulative damage rule to energy balance equation in order to expect the fatigue life under random waves that have various input acceleration. (author)

  18. Seismic qualification of equipment

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  19. Evaluation of Multi Canister Overpack (MCO) Handling Machine Uplift Restraint for a Seismic Event During Repositioning Operations

    SWENSON, C.E.

    2000-01-01

    Insertion of the Multi-Canister Overpack (MCO) assemblies into the Canister Storage Building (CSB) storage tubes involves the use of the MCO Handling Machine (MHM). During MCO storage tube insertion operations, inadvertent movement of the MHM is prevented by engaging seismic restraints (''active restraints'') located adjacent to both the bridge and trolley wheels. During MHM repositioning operations, the active restraints are not engaged. When the active seismic restraints are not engaged, the only functioning seismic restraints are non-engageable (''passive'') wheel uplift restraints which function only if the wheel uplift is sufficient to close the nominal 0.5-inch gap at the uplift restraint interface. The MHM was designed and analyzed in accordance with ASME NOG-1-1995. The ALSTHOM seismic analysis reported seismic loads on the MHM uplift restraints and EDERER performed corresponding structural calculations to demonstrate structural adequacy of the seismic uplift restraint hardware. The ALSTHOM and EDERER calculations were performed for a parked MHM with the active seismic restraints engaged, resulting in uplift restraint loading only in the vertical direction. In support of development of the CSB Safety Analysis Report (SAR), an evaluation of the MHM seismic response was requested for the case where the active seismic restraints are not engaged. If a seismic event occurs during MHM repositioning operations, a moving contact at a seismic uplift restraint would introduce a friction load on the restraint in the direction of the movement. These potential horizontal friction loads on the uplift restraints were not included in the existing restraint hardware design calculations. One of the purposes of the current evaluation is to address the structural adequacy of the MHM seismic uplift restraints with the addition of the horizontal friction associated with MHM repositioning movements

  20. A personal computer code for seismic evaluations of nuclear power plant facilities

    Xu, J.; Graves, H.

    1990-01-01

    A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to: operate on a PC, have user friendly input/output interface, and have quick turnaround. The CARES program is structured in a modular format. Each module performs a specific type of analysis. The basic modules of the system are associated with capabilities for static, seismic and nonlinear analyses. This paper describes the various features which have been implemented into the Seismic Module of CARES version 1.0. In Section 2 a description of the Seismic Module is provided. The methodologies and computational procedures thus far implemented into the Seismic Module are described in Section 3. Finally, a complete demonstration of the computational capability of CARES in a typical soil-structure interaction analysis is given in Section 4 and conclusions are presented in Section 5. 5 refs., 4 figs

  1. Review of Seismic Evaluation Methodologies for Nuclear Power Plants Based on a Benchmark Exercise

    2013-11-01

    Niigataken-chuetsu-oki (NCO) earthquake (Mw = 6.6) occurred on 16 July 2007 and affected the Kashiwazaki-Kariwa (K-K) NPP in Japan. Although there was significant loss of main shock data due to transmission problems, a significant number of instruments were still able to measure the acceleration at different locations in soil (boreholes) and in structures at the K-K NPP during the main shock and the aftershocks. The availability of all these instrumental data provided an excellent background for initiating a benchmarking exercise known as the KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment (KARISMA). The main objective of the KARISMA benchmark exercise is to study a comparison between analytical seismic response versus real response of selected structure, system and components (SSCs) of K-K NPP Unit 7. The KARISMA benchmark exercise includes benchmarking the analytical tools and numerical simulation techniques used for predicting seismic response of NPP structures (in linear and non-linear ranges), site response, soil-structure interaction phenomena, seismic response of piping systems, 'sloshing' in the spent fuel pool and buckling of tanks. The benchmark is primarily based on data provided by Tokyo Electric Power Company (TEPCO). It is not linked to the seismic re-evaluation of K-K NPP carried out by TEPCO. Twenty-one organizations, comprising researchers, operating organizations, regulatory authorities, vendors and technical support organizations from 14 countries, participated in the benchmarking exercises. This publication, including a CD-ROM, summarizes the analyses of the main results of the benchmarking exercise for the K-K NPP reactor building (including static and modal analyses of the fixed base model, soil column analyses, analyses of the soil-structure models and margin assessment of the K-K NPP reactor building), the analyses of the main results of the benchmarking exercise for the residual heat removal piping system (including

  2. Comparison Of Different Methods For The Swimming Aerobic Capacity Evaluation.

    Pelarigo, Jailton Gregório; Fernandes, Ricardo Jorge; Ribeiro, João; Denadai, Benedito Sérgio; Greco, Camila Coelho; Vilas-Boas, João Paulo

    2017-02-23

    This study compared velocity (v) and bioenergetical factors using different methods applied for the swimming aerobic capacity evaluation. Ten elite female swimmers (17.6 ± 1.9 yrs., 1.70 ± 0.05 m and 61.3 ± 5.8 kg) performed an intermittent incremental velocity protocol until voluntary exhaustion to determine the v associated to the individual anaerobic threshold (IAnT), ventilatory threshold (VT), heart rate threshold (HRT), lactate threshold fixed in 3.5 mmol.L (LT3.5) and maximal oxygen uptake (V[Combining Dot Above]O2max). Two-to-three 30 min submaximal constant tests for the v assessment at maximal lactate steady state (MLSS). The v, gas exchange, heart rate and blood lactate concentration variables were monitored in all tests. The values of all parameters at the v corresponding to MLSS, IAnT, VT and HRT were similar (p 0.400), except for carbon dioxide (V[Combining Dot Above]CO2) that was higher for MLSS compared to VT (p higher when compared to other methods for v and bioenergetical factors. It is suggested that IAnT, VT and HRT methods are better predictors of the intensity corresponding to the commonly accepted gold-standard method (i.e. MLSS) for the aerobic capacity evaluation compared to LT3.5.

  3. Polanyi Evaluation of Adsorptive Capacities of Commercial Activated Carbons

    Monje, Oscar; Surma, Jan M.

    2017-01-01

    Commercial activated carbons from Calgon (207C and OVC) and Cabot Norit (RB2 and GCA 48) were evaluated for use in spacecraft trace contaminant control filters. The Polanyi potential plots of the activated carbons were compared using to those of Barnebey-Cheney Type BD, an untreated activated carbon with similar properties as the acid-treated Barnebey-Sutcliffe Type 3032 utilized in the TCCS. Their adsorptive capacities under dry conditions were measured in a closed loop system and the sorbents were ranked for their ability to remove common VOCs found in spacecraft cabin air. This comparison suggests that these sorbents can be ranked as GCA 48 207C, OVC RB2 for the compounds evaluated.

  4. New Evaluation of Seismic Hazard in Cental America and la Hispaniola

    Benito, B.; Camacho, E. I.; Rojas, W.; Climent, A.; Alvarado-Induni, G.; Marroquin, G.; Molina, E.; Talavera, E.; Belizaire, D.; Pierristal, G.; Torres, Y.; Huerfano, V.; Polanco, E.; García, R.; Zevallos, F.

    2013-05-01

    The results from seismic hazard studies carried out in two seismic scenarios, Central America Region (CA) and La Hispaniola Island, are presented here. Both cases follow the Probabilistic Seismic Hazard Assessment (PSHA) methodology and they are developed in terms of PGA, and SA (T), for T of 0.1, 0.2, 0.5, 1 and 2s. In both anaysis, hybrid zonation models are considered, integrated by seismogenic zones and faults where data of slip rate and recurrence time are available. First, we present a new evaluation of seismic hazard in CA, starting with the results of a previous study by Benito et al (2011). Some improvements are now included, such as: updated catalogue till 2011, corrections in the zonning model in particular for subduction regime taken into account the variation of the dip in Costa Rica and Panama, and modelization of some faults as independent units for the hazard estimation. The results allow us to carry out a sensitivity analysis comparing the ones obtained with and without faults. In a second part we present the results of the PSHA in La Hispaniola, carried out as part of the cooperative project SISMO-HAITI supported by UPM and developed in cooperation with ONEV. It started a few months after the 2010 event, as an answer to a required help from the Haitian government to UPM. The study was aimed at obtaining results suitable for seismic design purposes and started with the elaboration of a seismic catalogue for the Hispaniola, requiring an exhaustive revision of data reported by around 30 seismic agencies, apart from these from Puerto Rico and Dominican Republic Seismic Networks. Seismotectonic models for the region were reviewed and a new regional zonation was proposed, taking into account different geophysical data. Attenuation models for subduction and crustal zones were also reviewed and the more suitable were calibrated with data recorded inside the Caribbean plate. As a result of the PSHA, different maps were generated for the quoted parameters

  5. Seismic Evaluation of Structural Insulated Panels in Comparison with Wood-Frame Panels

    Stefanie Terentiuk

    2014-07-01

    Full Text Available Structural Insulated Panel (SIP wall systems have been used in residential and light commercial buildings for the past sixty years. Lack of sufficient published research on racking load performance and limited understanding of the influence of fastener types on seismic response has been a deterrent in widespread use of the wall system in seismically active areas. This paper presents the results of a study involving a total of twenty one 2.4 m × 2.4 m shear walls tested under monotonic and cyclic loading. Four different 114 mm thick SIP panel configurations and one traditional wood frame wall were tested under monotonic loading according to ASTM E 564-06; and thirteen 114 mm thick SIP panels and three wood frame walls were tested under the CUREE loading protocol according to ASTM E 2126-11. Parameters such as fastener type; spline design; hold-down anchor location; and sheathing bearing were adjusted throughout the testing in order to determine their effects on the SIP’s performance. Performance parameters such as peak load and displacement; energy dissipation; allowable drift load capacity and seismic compatibility were determined for all of the specimens. Such parameters were then used to demonstrate the SIP walls’ compatibility with the wood frame walls and to determine the efficiency of the different SIP wall configuration and spline systems employed.

  6. A perturbational approach for evaluating the brain's capacity for consciousness.

    Massimini, Marcello; Boly, Melanie; Casali, Adenauer; Rosanova, Mario; Tononi, Giulio

    2009-01-01

    How do we evaluate a brain's capacity to sustain conscious experience if the subject does not manifest purposeful behaviour and does not respond to questions and commands? What should we measure in this case? An emerging idea in theoretical neuroscience is that what really matters for consciousness in the brain is not activity levels, access to sensory inputs or neural synchronization per se, but rather the ability of different areas of the thalamocortical system to interact causally with each other to form an integrated whole. In particular, the information integration theory of consciousness (IITC) argues that consciousness is integrated information and that the brain should be able to generate consciousness to the extent that it has a large repertoire of available states (information), yet it cannot be decomposed into a collection of causally independent subsystems (integration). To evaluate the ability to integrate information among distributed cortical regions, it may not be sufficient to observe the brain in action. Instead, it is useful to employ a perturbational approach and examine to what extent different regions of the thalamocortical system can interact causally (integration) and produce specific responses (information). Thanks to a recently developed technique, transcranial magnetic stimulation and high-density electroencephalography (TMS/hd-EEG), one can record the immediate reaction of the entire thalamocortical system to controlled perturbations of different cortical areas. In this chapter, using sleep as a model of unconsciousness, we show that TMS/hd-EEG can detect clear-cut changes in the ability of the thalamocortical system to integrate information when the level of consciousness fluctuates across the sleep-wake cycle. Based on these results, we discuss the potential applications of this novel technique to evaluate objectively the brain's capacity for consciousness at the bedside of brain-injured patients.

  7. CFD evaluation of SFP cooling capacity during normal operating conditions

    Yoon, Dong Hyeog; Kim, Jin Hyuck; Seul, Kwang Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    In Fukushima nuclear accident, due to earthquake, the cooling system of the spent fuel pool failed and the safety issue of the spent fuel pool (SFP) generated. Because of the unavailability of offsite storage for spent nuclear fuel in Korea, the spent fuel should be placed in storage at specially designed facilities, kept and monitored in the plant. In recent years, spent fuel storage racks are being replaced with high density racks due to the lack of storage capacity. For the above reasons, the necessity is felt to analyze the safety of the spent fuel pool. Hence, to evaluate the safety of spent fuel pools, in case of loss of offsite power like the Fukushima nuclear accident, the safety analysis was conducted for Gori Unit 1 and Ulchin unit3 in order to estimate the time it takes for nuclear fuels to be uncovered, when water in the pool evaporated by decay heat of spent fuels. In addition, there are some researches evaluating heat removal, thermal hydraulic behaviors and accident circumstances in the spent fuel pool with system thermal hydraulic codes, such as RELAP, TRACE and ASTEC. Some researchers are attempting to carry out 3D CFD analysis. In this study, thermal hydraulic characteristics of the spent fuel pool of Ulchin unit 3 are investigated by using ANSYS CFX 13 which is a commercial CFD code. Three dimensional fluid flow and heat removal capacity of the spent fuel pool are evaluated by 3 D CFD simulation, while carrying out comparative analysis with the multi D analysis of MARS KS.

  8. EVALUATION ON THE SEISMIC RESPONSE CHARACTERISTICS OF A ROAD EMBANKMENT BASED ON THE MODERATE EARTHQUAKE OBSERVATION AND THE MICROTREMOR MEASUREMENT

    Hata, Yoshiya; Ichii, Koji; Yamada, Masayuki; Tokida, Ken-Ichi; Takezawa, Koichiro; Shibao, Susumu; Mitsushita, Junji; Murata, Akira; Furukawa, Aiko; Koizumi, Keigo

    Accurate evaluation on the seismic response characteristics of a road embankment is very important for the rational seismic assessment. However, in a lot of previous studies, the seismic response characteristics of an embankment were evaluated based on the results of shaking table test, centrifuge model test and dynamic FEM analysis. In this study, the transfer function and the shear wave velocity of a road embankment were evaluated based on the in-situ records of moderate earthquake observation and microtremor measurement. Test results show the possibility that the shear wave velocity of an embankment can be estimated by the earthquake observation or the microtremor measurement and the dynamic linear FEM analysis.

  9. Studies on the seismic buckling design guideline of FBR main vessels. 9. Buckling evaluation under elastic-plastic seismic response

    Hagiwara, Yutaka; Yamamoto, Kohsuke; Kawamoto, Yoji; Nakagawa, Masaki; Akiyama, Hiroshi

    1998-01-01

    Plastic shear-bending buckling under seismic loadings is one of the major problems in the structural design of FBR main vessels. Pseudo-dynamic and dynamic buckling tests of cylinders were performed in order to study the effects of nonlinear seismic response on buckling strength, ductility, and plastic response reduction. The buckling strength formulae and the rule for ductility factors both derived from static tests were confirmed to be valid for the tests under dynamic loads. The displacement-constant rule for response reduction effect was modified by acceleration amplification factor in order to maintain applicability for various spectral profiles of seismic excitations. The response reduction estimated by the proposed rule was reasonably conservative for all cases of the pseudo-dynamic and the dynamic tests. Finally, a seismic safety assessment rule was proposed for plastic shear-bending buckling of cylinders, which include the proposed response reduction rule. (author)

  10. Evaluation of the main parameters affecting seismic performance of ...

    The current study considers forty eight (48) 3-D RC building models to .... Acceptance criteria for members and performance level criteria for buildings are ..... Evaluation and Retrofit of Concrete Buildings, Applied Technology Council, Vol 1.

  11. Seismic evaluation of the LLNL plutonium facility (Building 332)

    Hall, W.J.; Sozen, M.A.

    1982-03-01

    The expected performance of the Lawrence Livermore National Laboratory (LLNL) Plutonium Facility (Building 332) subjected to earthquake ground motion has been evaluated. Anticipated behavior of the building, glove boxes, ventilation system and other systems critical for containment of plutonium is described for three severe postulated earthquake excitations. Based upon this evaluation, some damage to the building, glove boxes and ventilation system would be expected but no collapse of any structure is anticipated as a result of the postulated earthquake ground motions

  12. Seismic performance evaluation of high natural frequency mechanical structure from the viewpoint of energy balance

    Minagawa, Keisuke; Fujita, Satoshi; Endo, Rokuro; Amemiya, Mitsuhiko

    2009-01-01

    In this study, vibration characteristics of mechanical structure having high natural frequency are investigated from the viewpoint of energy balance. Mechanical structures having high natural frequency in a nuclear power plant are generally designed statically and elastically. However it has been reported that fracture of ordinary piping is produced not by momentary large load but by cumulative fatigue damage. Therefore it is very important to grasp seismic performance dynamically by considering cyclic load. This paper deals with an investigation regarding seismic performance evaluation of high natural frequency mechanical structure. The energy balance equation that is one of valid methods for structural calculation is applied through the investigation. The main feature of the energy balance equation is that it explains accumulated information of motion. Therefore the energy balance equation is adequate for the investigation of the influence of cumulative load such as seismic response. In this paper, vibration experiment and simulation using sinusoidal waves and artificial seismic waves were examined in order to investigate relationship between natural frequency of structure and energy. As a result, we found that input energy decreases with an increase in the natural frequency. (author)

  13. Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 2. Evaluation of seismic designs: a review of seismic design requirements for Nuclear Power Plant Piping

    1985-04-01

    This document reports the position and recommendations of the NRC Piping Review Committee, Task Group on Seismic Design. The Task Group considered overlapping conservation in the various steps of seismic design, the effects of using two levels of earthquake as a design criterion, and current industry practices. Issues such as damping values, spectra modification, multiple response spectra methods, nozzle and support design, design margins, inelastic piping response, and the use of snubbers are addressed. Effects of current regulatory requirements for piping design are evaluated, and recommendations for immediate licensing action, changes in existing requirements, and research programs are presented. Additional background information and suggestions given by consultants are also presented.

  14. Pickering seismic safety margin

    Ghobarah, A.; Heidebrecht, A.C.; Tso, W.K.

    1992-06-01

    A study was conducted to recommend a methodology for the seismic safety margin review of existing Canadian CANDU nuclear generating stations such as Pickering A. The purpose of the seismic safety margin review is to determine whether the nuclear plant has sufficient seismic safety margin over its design basis to assure plant safety. In this review process, it is possible to identify the weak links which might limit the seismic performance of critical structures, systems and components. The proposed methodology is a modification the EPRI (Electric Power Research Institute) approach. The methodology includes: the characterization of the site margin earthquake, the definition of the performance criteria for the elements of a success path, and the determination of the seismic withstand capacity. It is proposed that the margin earthquake be established on the basis of using historical records and the regional seismo-tectonic and site specific evaluations. The ability of the components and systems to withstand the margin earthquake is determined by database comparisons, inspection, analysis or testing. An implementation plan for the application of the methodology to the Pickering A NGS is prepared

  15. Capacity Expansion and Reliability Evaluation on the Networks Flows with Continuous Stochastic Functional Capacity

    F. Hamzezadeh

    2014-01-01

    Full Text Available In many systems such as computer network, fuel distribution, and transportation system, it is necessary to change the capacity of some arcs in order to increase maximum flow value from source s to sink t, while the capacity change incurs minimum cost. In real-time networks, some factors cause loss of arc’s flow. For example, in some flow distribution systems, evaporation, erosion or sediment in pipes waste the flow. Here we define a real capacity, or the so-called functional capacity, which is the operational capacity of an arc. In other words, the functional capacity of an arc equals the possible maximum flow that may pass through the arc. Increasing the functional arcs capacities incurs some cost. There is a certain resource available to cover the costs. First, we construct a mathematical model to minimize the total cost of expanding the functional capacities to the required levels. Then, we consider the loss of flow on each arc as a stochastic variable and compute the system reliability.

  16. Development of system design and seismic performance evaluation for reactor pool working platform of a research reactor

    Kwag, Shinyoung; Lee, Jong-Min; Oh, Jinho; Ryu, Jeong-Soo

    2014-01-01

    Highlights: • Design of reactor pool working platform (RPWP) is newly proposed for an open-tank-in-pool type research reactor. • Main concept of RPWP is to minimize the pool top radiation level. • Framework for seismic performance evaluation of nuclear SSCs in a deterministic and a probabilistic manner is proposed. • Structural integrity, serviceability, and seismic margin of the RPWP are evaluated during and after seismic events. -- Abstract: The reactor pool working platform (RPWP) has been newly designed for an open-tank-in-pool type research reactor, and its seismic response, structural integrity, serviceability, and seismic margin have been evaluated during and after seismic events in this paper. The main important concept of the RPWP is to minimize the pool top radiation level by physically covering the reactor pool of the open-tank-in-pool type research reactor and suppressing the rise of flow induced by the primary cooling system. It is also to provide easy handling of the irradiated objects under the pool water by providing guide tubes and refueling cover to make the radioisotopes irradiated and protect the reactor structure assembly. For this concept, the new three dimensional design model of the RPWP is established for manufacturing, installation and operation, and the analytical model is developed to analyze the seismic performance. Since it is submerged under and influenced by water, the hydrodynamic effect is taken into account by using the hydrodynamic added mass method. To investigate the dynamic characteristics of the RPWP, a modal analysis of the developed analytical model is performed. To evaluate the structural integrity and serviceability of the RPWP, the response spectrum analysis and response time history analysis have been performed under the static load and the seismic load of a safe shutdown earthquake (SSE). Their stresses are analyzed for the structural integrity. The possibility of an impact between the RPWP and the most

  17. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  18. Technical guidelines for the seismic safety re-evaluation at Eastern European NPPs

    Godoy, A.R.; Guerpinar, A.

    2001-01-01

    The paper describes one of the outcomes of the Engineering Safety Review Services (ESRS) that the IAEA provides as an element of the Agency's national, regional and interregional technical assistance and co-operation programmes and other extrabudgetary programmes to assess the safety of nuclear facilities. This refers to the establishment of detailed guidelines for conducting the seismic safety re-evaluation of existing nuclear power plants in Eastern European countries in line with updated criteria and current international practice. (author)

  19. Understanding and Measuring Evaluation Capacity: A Model and Instrument Validation Study

    Taylor-Ritzler, Tina; Suarez-Balcazar, Yolanda; Garcia-Iriarte, Edurne; Henry, David B.; Balcazar, Fabricio E.

    2013-01-01

    This study describes the development and validation of the Evaluation Capacity Assessment Instrument (ECAI), a measure designed to assess evaluation capacity among staff of nonprofit organizations that is based on a synthesis model of evaluation capacity. One hundred and sixty-nine staff of nonprofit organizations completed the ECAI. The 68-item…

  20. An Ensemble Approach for Improved Short-to-Intermediate-Term Seismic Potential Evaluation

    Yu, Huaizhong; Zhu, Qingyong; Zhou, Faren; Tian, Lei; Zhang, Yongxian

    2017-06-01

    Pattern informatics (PI), load/unload response ratio (LURR), state vector (SV), and accelerating moment release (AMR) are four previously unrelated subjects, which are sensitive, in varying ways, to the earthquake's source. Previous studies have indicated that the spatial extent of the stress perturbation caused by an earthquake scales with the moment of the event, allowing us to combine these methods for seismic hazard evaluation. The long-range earthquake forecasting method PI is applied to search for the seismic hotspots and identify the areas where large earthquake could be expected. And the LURR and SV methods are adopted to assess short-to-intermediate-term seismic potential in each of the critical regions derived from the PI hotspots, while the AMR method is used to provide us with asymptotic estimates of time and magnitude of the potential earthquakes. This new approach, by combining the LURR, SV and AMR methods with the choice of identified area of PI hotspots, is devised to augment current techniques for seismic hazard estimation. Using the approach, we tested the strong earthquakes occurred in Yunnan-Sichuan region, China between January 1, 2013 and December 31, 2014. We found that most of the large earthquakes, especially the earthquakes with magnitude greater than 6.0 occurred in the seismic hazard regions predicted. Similar results have been obtained in the prediction of annual earthquake tendency in Chinese mainland in 2014 and 2015. The studies evidenced that the ensemble approach could be a useful tool to detect short-to-intermediate-term precursory information of future large earthquakes.

  1. Development of seismic PSA methodology at JAERI

    Muramatsu, K.; Ebisawa, K.; Matsumoto, K.; Oikawa, T.; Kondo, M.

    1995-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing a methodology for seismic probabilistic safety assessment (PSA) of nuclear power plants, aiming at providing a set of procedures, computer codes and data suitable for performing seismic PSA in Japan. In order to demonstrate the usefulness of JAERI's methodology and to obtain better understanding on the controlling factors of the results of seismic PSAs, a seismic PSA for a BWR is in progress. In the course of this PSA, various improvements were made on the methodology. In the area of the hazard analysis, the application of the current method to the model plant site is being carried out. In the area of response analysis, the response factor method was modified to consider the non-linear response effect of the building. As for the capacity evaluation of components, since capacity data for PSA in Japan are very scarce, capacities of selected components used in Japan were evaluated. In the systems analysis, the improvement of the SECOM2 code was made to perform importance analysis and sensitivity analysis for the effect of correlation of responses and correlation of capacities. This paper summarizes the recent progress of the seismic PSA research at JAERI with emphasis on the evaluation of component capacity and the methodology improvement of systems reliability analysis. (author)

  2. Evaluating Seismic Site Effects at Cultural Heritage Sites in the Mediterranean Area

    Imposa, S.; D'Amico, S.; Panzera, F.; Lombardo, G.; Grassi, S.; Betti, M.; Muscat, R.

    2017-12-01

    Present study concern integrated geophysical and numerical simulation aiming at evaluate the seismic vulnerability of cultural heritage sites. Non-invasive analysis targeted to characterize local site effects as well as dynamic properties of the structure were performed. Data were collected at several locations in the Maltese Archipelago (central Mediterranean) and in some historical buildings located in Catania (Sicily). In particular, passive seismic techniques and H/V data where used to derive 1D velocity models and amplification functions. The dynamic properties of a building are usually described through its natural frequency and the damping ratio. This latter is important in seismic design since it allows one to evaluate the ability of a structure to dissipate the vibration energy during an earthquake. The fundamental frequency of the investigated structure was obtained using ambient vibrations recorded by two or more sensors monitoring the motion at different locations in the building. Accordingly, the fundamental period of several Maltese Watchtowers and some historical buildings of Catania were obtained by computing the ratio between the amplitudes of the Fourier spectrum of horizontal (longitudinal and transverse) components recorded on the top and on the ground floors. Using ANSYS code, the modal analysis was performed to evaluate the first 50 vibration modes with the aim to check the activation of the modal masses and to assess the seismic vulnerability of the tower. The STRATA code was instead adopted in the Catania heritage buildings using as reference earthquake moderate to strong shocks that struck south-eastern Sicily. In most of the investigated buildings is was not possible to identify a single natural frequency but several oscillation modes. These results appear linked to the structural complexity of the edifices, their irregular plan shape and the presence of adjacent structures. The H/V outside the buildings were used to determine predominant

  3. The ESI scale, an ethical approach to the evaluation of seismic hazards

    Porfido, Sabina; Nappi, Rosa; De Lucia, Maddalena; Gaudiosi, Germana; Alessio, Giuliana; Guerrieri, Luca

    2015-04-01

    The dissemination of correct information about seismic hazard is an ethical duty of scientific community worldwide. A proper assessment of a earthquake severity and impact should not ignore the evaluation of its intensity, taking into account both the effects on humans, man-made structures, as well as on the natural evironment. We illustrate the new macroseismic scale that measures the intensity taking into account the effects of earthquakes on the environment: the ESI 2007 (Environmental Seismic Intensity) scale (Michetti et al., 2007), ratified by the INQUA (International Union for Quaternary Research) during the XVII Congress in Cairns (Australia). The ESI scale integrates and completes the traditional macroseismic scales, of which it represents the evolution, allowing to assess the intensity parameter also where buildings are absent or damage-based diagnostic elements saturate. Each degree reflects the corresponding strength of an earthquake and the role of ground effects, evaluating the Intensity on the basis of the characteristics and size of primary (e.g. surface faulting and tectonic uplift/subsidence) and secondary effects (e.g. ground cracks, slope movements, liquefaction phenomena, hydrological changes, anomalous waves, tsunamis, trees shaking, dust clouds and jumping stones). This approach can be considered "ethical" because helps to define the real scenario of an earthquake, regardless of the country's socio-economic conditions and level of development. Here lies the value and the relevance of macroseismic scales even today, one hundred years after the death of Giuseppe Mercalli, who conceived the homonymous scale for the evaluation of earthquake intensity. For an appropriate mitigation strategy in seismic areas, it is fundamental to consider the role played by seismically induced effects on ground, such as active faults (size in length and displacement) and secondary effects (the total area affecting). With these perspectives two different cases

  4. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  5. Seismic simulation and functional performance evaluation of a safety related, seismic category I control room emergency air cleaning system

    Manley, D.K.; Porco, R.D.; Choi, S.H.

    1985-01-01

    Under a nuclear contract MSA was required to design, manufacture, seismically test and functionally test a complete Safety Related, Seismic Category I, Control Room Emergency Air Cleaning System before shipment to the Yankee Atomic Electric Company, Yankee Nuclear Station in Rowe, Massachusetts. The installation of this system was required to satisfy the NRC requirements of NUREG-0737, Section III, D.3.4, ''Control Room Habitability''. The filter system tested was approximately 3 ft. wide by 8 ft. high by 18 ft. long and weighed an estimated 8300 pounds. It had a design flow rate of 3000 SCFM and contained four stages of filtration - prefilters, upstream and downstream HEPA filters and Type II sideload charcoal adsorber cells. The filter train design followed the guidelines set forth by ANSI/ASME N509-1980. Seismic Category I Qualification Testing consisted of resonance search testing and triaxial random multifrequency testing. In addition to ANSI/ASME N510-1980 testing, triaxial response accelerometers were placed at specific locations on designated prefilters, HEPA filters, charcoal adsorbers and test canisters along with accelerometers at the corresponding filter seal face locations. The purpose of this test was to demonstrate the integrity of the filters, filter seals, and monitor seismic response levels which is directly related to the system's ability to function during a seismic occurrence. The Control Room Emergency Air Cleaning System demonstrated the ability to withstand the maximum postulated earthquake for the plant site by remaining structurally sound and functional

  6. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  7. Integral Analysis of Seismic Refraction and Ambient Vibration Survey for Subsurface Profile Evaluation

    Hazreek, Z. A. M.; Kamarudin, A. F.; Rosli, S.; Fauziah, A.; Akmal, M. A. K.; Aziman, M.; Azhar, A. T. S.; Ashraf, M. I. M.; Shaylinda, M. Z. N.; Rais, Y.; Ishak, M. F.; Alel, M. N. A.

    2018-04-01

    Geotechnical site investigation as known as subsurface profile evaluation is the process of subsurface layer characteristics determination which finally used for design and construction phase. Traditionally, site investigation was performed using drilling technique thus suffers from several limitation due to cost, time, data coverage and sustainability. In order to overcome those problems, this study adopted surface techniques using seismic refraction and ambient vibration method for subsurface profile depth evaluation. Seismic refraction data acquisition and processing was performed using ABEM Terraloc and OPTIM software respectively. Meanwhile ambient vibration data acquisition and processing was performed using CityShark II, Lennartz and GEOPSY software respectively. It was found that studied area consist of two layers representing overburden and bedrock geomaterials based on p-wave velocity value (vp = 300 – 2500 m/s and vp > 2500 m/s) and natural frequency value (Fo = 3.37 – 3.90 Hz) analyzed. Further analysis found that both methods show some good similarity in term of depth and thickness with percentage accuracy at 60 – 97%. Consequently, this study has demonstrated that the application of seismic refractin and ambient vibration method was applicable in subsurface profile depth and thickness estimation. Moreover, surface technique which consider as non-destructive method adopted in this study was able to compliment conventional drilling method in term of cost, time, data coverage and environmental sustainaibility.

  8. Independent review of Oak Ridge HCTW test program and development of seismic evaluation criteria

    1995-05-01

    Many of the existing buildings at the Oak Ridge Y-12 Plant are steel frame construction with unreinforced hollow clay tile infill walls (HCTW). The HCTW infill provides some lateral seismic resistance to the design/evaluation basis earthquake; however acceptance criteria for this construction must be developed. The basis for the development of seismic criteria is the Oak Ridge HCTW testing and analysis program and the target performance goals of DOE 5480.28 and DOE-STD-1020-94. This report documents and independent review of the testing and analysis program and development of recommended acceptance criteria for Oak Ridge HCTW construction. The HCTW test program included ''macro'' wall in-plane and out-of-plane tests, full-scale wall in-plane and out-of-plane tests, in-situ out-of-plane test, shake table tests, and masonry component tests

  9. [Assessment of Functioning when Conducting Occupational Capacity Evaluations--What is "Evidence-Based"?].

    Canela, Carlos; Schleifer, Roman; Dube, Anish; Hengartner, Michael P; Ebner, Gerhard; Seifritz, Erich; Liebrenz, Michael

    2016-03-01

    Occupational capacity evaluations have previously been subject to criticism for lacking in quality and consistency. To the authors' knowledge, there is no clear consensus on the best way to formally assess functioning within capacity evaluations. In this review we investigated different instruments that are used to assess functioning in occupational capacity evaluations. Systematic review of the literature. Though several instruments that assess functional capacity were found in our search, a specific validated instrument assessing occupational capacity as part of a larger psychiatric evaluation was not found. The limitations of the existing instruments on assessing functional capacity are discussed. Medical experts relying on instruments to conduct functional capacity evaluations should be cognizant of their limitations. The findings call for the development and use of an instrument specifically designed to assess the functional and occupational capacity of psychiatric patients, which is also likely to improve the quality of these reports. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Test and evaluation about damping characteristics of hanger supports for nuclear power plant piping systems (Seismic Damping Ratio Evaluation Program)

    Shibata, H.; Ito, A.; Tanaka, K.; Niino, T.; Gotoh, N.

    1981-01-01

    Generally, damping phenomena of structures and equipments is caused by very complex energy dissipation. Especially, as piping systems are composed of many components, it is very difficult to evaluate damping characteristics of its system theoretically. On the other hand, the damping value for aseismic design of nuclear power plants is very important design factor to decide seismic response loads of structures, equipments and piping systems. The very extensive studies titled SDREP (Seismic Damping Ratio Evaluation Program) were performed to establish proper damping values for seismic design of piping as a joint work among a university, electric companies and plant makers. In SDREP, various systematic vibration tests were conducted to investigate factors which may contribute to damping characteristics of piping systems and to supplement the data of the pre-operating tests. This study is related to the component damping characteristics tests of that program. The object of this study is to clarify damping characteristics and mechanism of hanger supports used in piping systems, and to establish the evaluation technique of dispersing energy at hanger support points and its effect to the total damping ability of piping system. (orig./WL)

  11. Seismic hazard review for the systematic evaluation program: a use of probability in decision making

    Reiter, L.; Jackson, R.E.

    1983-03-01

    This document presents the US Nuclear Regulatory Commission (NRC) Geosciences Branch review and recommendations with respect to earthquake ground motion considerations in the Systematic Evaluation Program (SEP) Phases I and II. It evaluates the probabilistic estimates presented in the 5-volume report entitled Seismic Hazard Analysis (NUREG/CR-1582) and compares and modifies them to take into account deterministic estimates. It presents the NRC's Geosciences Branch first approach to utilizing complex state-of-the-art probabilistic studies in an area where probabilistic criteria have not yet been set and where decisions for specific plants have been previously made in a non-probabilistic way

  12. A personal computer code for seismic evaluations of nuclear power plants facilities

    Xu, J.; Philippacopoulos, A.J.; Graves, H.

    1990-01-01

    The program CARES (Computer Analysis for Rapid Evaluation of Structures) is an integrated computational system being developed by Brookhaven National Laboratory (BNL) for the U.S. Nuclear Regulatory Commission. It is specifically designed to be a personal computer (PC) operated package which may be used to determine the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants. CARES is structured in a modular format. Each module performs a specific type of analysis i.e., static or dynamic, linear or nonlinear, etc. This paper describes the various features which have been implemented into the Seismic Module of CARES

  13. Failure Capacity Evaluation for Anchor System of NPP Facilities by using a Shaking Table Test

    Kwon, Hyung O; Jung, Min Ki; Park, Jin Wan; Lim, Ji Hoon

    2010-02-01

    This study investigate the destructive influence of crack locations on the anchor performance to evaluate the seismic performance of NPP equipment anchored on damaged concrete. For this purpose, small-scale specimens were fabricated according to the following three cases: 1) with a non-damaged anchor; 2) with cracks running through the anchor; and 3) with cracks along the expected corn-shape fracture away from the anchor. The result verified with the finite element method is as follows: In the first and second cases that is, with a non-damaged anchor and with cracks running through the anchor destruction occurred at the anchor steel. In the third case that is, with cracks around the anchor, a 30% decline in the seismic performance was identified. This result indicates that evaluation of seismic performance and relevant reinforcement are required when cracks occur away from the anchor along the expected destructive surface

  14. Evaluating total carrying capacity of tourism using impact indicators

    R. Sharma

    2016-03-01

    Full Text Available The carrying capacity is well identified tool to manage problems due to uncontrolled tourism for any destination. This report highlights the carrying capacity estimation of Kerwa tourism area, Bhopal, India. The methodology used in this report is a new two-tier mechanism of impact analysis using index numbers derived from a survey of 123 stakeholders. From this the individual component impact analysis and the total carrying capacity of the area is computed in order to state the insight of the total carrying capacity left for the tourism activities in Kerwa tourism area. It is calculated from, the results so obtained, that the Kerwa catchment area falls in “very low impact category” and hence in a healthy state of the artwork in terms of total carrying capacity. The study conveys the current need in the destination management and tourism development as a road map for the destination managers for implementing sustainable tourism.

  15. Evaluation of response factors for seismic probabilistic safety assessment of nuclear power plants

    Ebisawa, K.; Abe, K.; Muramatsu, K.; Itoh, M.; Kohno, K.; Tanaka, T.

    1994-01-01

    This paper presents a method for evaluating 'response factors' of components in nuclear power plants for use in a seismic probabilistic safety assessment (PSA). The response factor here is a measure of conservatism included in response calculations in seismic design analysis of components and is defined as a ratio of conservative design resonse to actual response. This method has the following characteristic features: (1) The components are classified into several groups based on the differences in their location and in the vibration models used in design response analyses; (2) the response factors are decomposed into subfactors corresponding to the stages of the seismic response analyses in the design practices; (3) the response factors for components are calculated as products of subfactors; (4) the subfactors are expressed either as a single value or as a function of parameters that influence the response of components. This paper describes the outline of this method and results from an application to a sample problem in which response factors were quantified for examples of components selected from the groups. (orig.)

  16. Analysis and evaluation of seismic response of reactor building for Daya Bay Nuclear Power Plant

    Li Zhongcheng; China Guangdong Nuclear Power Company, Shenzhen; Li Zhongxian

    2005-01-01

    Daya Bay NPP has been operating safely and stably over 10 years since 1994, and its' seismic analysis of nuclear island was in accordance with the approaches in RCC-G standard for the model M310, in which the Simplified Impedance Matrix Method (SIMM) was employed for the consideration of SSI. Thanks to the rapid progress being made in upgrading the evaluation technology and the capability of data processing systems, methods and software tools for the SSI analysis have experienced significant development all over the world. Focused on the model of reactor building of the Daya Bay NPP, in his paper the more sophisticated 3D half-space continuum impedance method based on the Green functions is used to analyze the functions of the soil, and then the seismic responses of the coupled SSI system are calculated and compared with the corresponding design values. It demonstrates that the design method provides a set of conservatively safe results. The conclusions from the study is hopefully to provide some important references to the assessment of seismic safety margin for the operating NPPs. (authors)

  17. Nuclear power plant of Fessenheim: evaluation of the seismic risk; Centrale Nucleaire de Fessenheim: appreciation du risque sismique

    NONE

    2007-07-01

    The seismic risk taken into account during the sizing of the nuclear power plant of Fessenheim seems to have been under evaluated at this time. The revaluation of the seismic risk, as proposed, until this day by EDF in order to the third ten-year visit of the power plant, planned for 2009, leads to a significant under evaluation of the risk and then is not acceptable. The present expertise details point by point the weaknesses of these revaluation. The power plant has been sized in an elastic manner that is generally strongly for the safety side. It is imperative to proceed the most quickly as possible to a deep control of the seismic resistance of the power plant of Fessenheim and then after having proceeded to a revision of the seismic risk in taking into account the actual knowledge in this field. (N.C.)

  18. Seismic performance evaluation of multi-span existing masonry arch bridge

    Laterza, Michelangelo; D'Amato, Michele; Casamassima, Vito Michele

    2017-07-01

    Existing old masonry arch bridges represent an architectural and cultural heritage of inestimable value, assuming nowadays an important strategic role since most of them are still in service and link roads of primary importance for vehicular traffic. They were mostly built in the last century without considering any horizontal action, and nowadays are serving roads characterized by a transit loads certainly heavier and more frequent than the ones of past. Moreover, very often due to absence of maintenance and to weathering conditions, the elements deteriorate more and more with a consequent loss of integrity and reduction of their carrying capacity. In this paper the seismic assessment of an old multi span masonry arch bridge still in service is illustrated. Pushover analyses are performed with the aim to investigate the numerical model sensitivity and the influence on the global nonlinear response of the bridge components.

  19. Seismic response and resistance capacity of 'as built' WWER 440-230 NPP Kozloduy: Verification of the results by experiments and real earthquake

    Sachanski, S.

    1993-01-01

    Although Kozloduy NPP units 1 and 2 were not designed for earthquakes they have withstood successfully the Vrancea Earthquake in 1977 with sire peak ground acceleration of 83 sm/s 2 . Both units as well as units 3 and 4 were later recalculated for maximum peak acceleration of 0.1 g. According to values calculated by two-dimensional model, in 1980 reactor buildings had sufficient earthquake resistance capacity for the accepted design seismic excitation. The non symmetric design of WWER-440 structures in plan and elevation, the large eccentricity between the center of rigidities and masses as well as technological connections between the separate substructures and units led to complicated space response and rotational effects which cannot be calculated by two-dimensional models. Three dimensional detailed 'as built' mathematical models were established and verified by series of experiments and real earthquake for: detailed analysis of 'as built' structural response, comparing the results of two and three dimensional models, detailed analyses of seismic safety margins

  20. Seismic evaluation of existing nuclear facilities. Proceedings of the SMiRT-14 post conference seminar no. 16

    2001-03-01

    Since 1992 the IAEA has been assisting Member States to develop NPP specific guidelines used in post-construction seismic safety reevaluation. Technical guidelines were developed with the aim to establish a general framework within which a seismic reevaluation of an operating NPP can be carried out. These guidelines will form the basis of an IAEA Safety Report on seismic evaluation of the existing nuclear facilities. Forty papers from 26 countries were presented. Most of the papers reviewed activities in the field of seismic reevaluation and upgrading of existing plants carried out in recent years. This is essential for the IAEA in the development of a unified approach to the seismic reevaluation of existing facilities applicable to WWERs, CANDU, PWRs, etc. A number of papers deal with the CRP benchmark study for the seismic analysis and testing of WWER type NPPs organized by the IAEA (1993-1997). The focal activities of the CRP were benchmarking exercises, applying similar methodology both for Paks NPP and Kozloduy NPP Unit 5 to test the NPP (mainly reactor building) using blast loading generated by a series of artificially generated underground explosions. This work highlighted the reliability of the available numerical tools, the need for further research, and a general judgement on the best compromise between experimental and numerical tools in the seismic reevaluation process. The final results of the CRP were presented in IAEA-TECDOC-1176

  1. Seismic evaluation of existing nuclear facilities. Proceedings of the SMiRT-14 post conference seminar no. 16

    NONE

    2001-03-01

    Since 1992 the IAEA has been assisting Member States to develop NPP specific guidelines used in post-construction seismic safety reevaluation. Technical guidelines were developed with the aim to establish a general framework within which a seismic reevaluation of an operating NPP can be carried out. These guidelines will form the basis of an IAEA Safety Report on seismic evaluation of the existing nuclear facilities. Forty papers from 26 countries were presented. Most of the papers reviewed activities in the field of seismic reevaluation and upgrading of existing plants carried out in recent years. This is essential for the IAEA in the development of a unified approach to the seismic reevaluation of existing facilities applicable to WWERs, CANDU, PWRs, etc. A number of papers deal with the CRP benchmark study for the seismic analysis and testing of WWER type NPPs organized by the IAEA (1993-1997). The focal activities of the CRP were benchmarking exercises, applying similar methodology both for Paks NPP and Kozloduy NPP Unit 5 to test the NPP (mainly reactor building) using blast loading generated by a series of artificially generated underground explosions. This work highlighted the reliability of the available numerical tools, the need for further research, and a general judgement on the best compromise between experimental and numerical tools in the seismic reevaluation process. The final results of the CRP were presented in IAEA-TECDOC-1176.

  2. Seismic Design of a Single Bored Tunnel: Longitudinal Deformations and Seismic Joints

    Oh, J.; Moon, T.

    2018-03-01

    The large diameter bored tunnel passing through rock and alluvial deposits subjected to seismic loading is analyzed for estimating longitudinal deformations and member forces on the segmental tunnel liners. The project site has challenges including high hydrostatic pressure, variable ground profile and high seismic loading. To ensure the safety of segmental tunnel liner from the seismic demands, the performance-based two-level design earthquake approach, Functional Evaluation Earthquake and Safety Evaluation Earthquake, has been adopted. The longitudinal tunnel and ground response seismic analyses are performed using a three-dimensional quasi-static linear elastic and nonlinear elastic discrete beam-spring elements to represent segmental liner and ground spring, respectively. Three components (longitudinal, transverse and vertical) of free-field ground displacement-time histories evaluated from site response analyses considering wave passage effects have been applied at the end support of the strain-compatible ground springs. The result of the longitudinal seismic analyses suggests that seismic joint for the mitigation measure requiring the design deflection capacity of 5-7.5 cm is to be furnished at the transition zone between hard and soft ground condition where the maximum member forces on the segmental liner (i.e., axial, shear forces and bending moments) are induced. The paper illustrates how detailed numerical analyses can be practically applied to evaluate the axial and curvature deformations along the tunnel alignment under difficult ground conditions and to provide the seismic joints at proper locations to effectively reduce the seismic demands below the allowable levels.

  3. Seismic evaluation of existing nuclear power plants and other facilities V. 1. Proceedings of the technical committee meeting. Working material

    2002-01-01

    The objectives of this Tcm are: to review the IAEA Safety Report on Seismic Evaluation of Existing Nuclear Power Plants in order to achieve a consensus among Member States on this matter and to discuss the outlines of an IAEA Co-ordinated Research Programme on specific topics related to this subject. Today the nuclear industry relies much more on existing facilities than on the design of new ones. Nevertheless it appears that safety evaluation against external hazards is not a decreasing activity. The reason being that maintaining an acceptable level of nuclear safety requires periodic re-assessments of facilities, either because of modifications of the environment due to human activity or because of new data or new approaches in the assessment of natural hazards. In this regard, seismic re-evaluation has increasingly become a key issue for several existing nuclear facilities, including not only nuclear power plants but also other plants of the fuel cycle, as well as research reactors or laboratories. The IAEA has already supported development of engineering practices in this field by managing a Co-ordinated Research Programme, launched in 1992, on a Benchmark Study for the seismic analysis and testing of WWER 1000 type NPPs. It is now proposed to investigate other aspects of this issue. Many of these facilities were built according to older standards which did not take into account seismic hazard. Consequently, the seismic re-evaluation of existing facilities is a real challenge for earthquake engineers. In most of the cases, it is impossible to re-evaluate according to the up to date standards because entering these standards implies that some design rules are met, what is generally not the case for older facilities. In the best cases some rules exist for non nuclear buildings. In order to achieve a consensus on this matter, the IAEA intends to edit a Safety Report on 'Seismic Evaluation of existing NPPs'. The TCM will offer the opportunity to review the draft of

  4. Evaluation of fatigue-ratcheting damage of a pressurised elbow undergoing damage seismic inputs

    Dang Van, K.

    2000-01-01

    We present a simplified method to calculate the plastic ratchet of elbow-shaped pipes submitted to seismic loading and an internal pressure. This method is simplified in the sense that the value of the ratchet is obtained without the use of finite element method (FEM) calculations. Here we derive a formula and use it to evaluate the fatigue-ratcheting damage of an elbow. This approach is applicable to complex plastic response appropriately described by non-linear kinematics hardening, which is more realistic for stainless steel such as 316-L. (orig.)

  5. Evaluation of methods for seismic analysis of nuclear fuel reprocessing plants, part 1

    Tokarz, F.J.; Murray, R.C.; Arthur, D.F.; Feng, W.W.; Wight, L.H.; Zaslawsky, M.

    1975-01-01

    Currently, no guidelines exist for choosing methods of structural analysis to evaluate the seismic hazard of nuclear fuel reprocessing plants. This study examines available methods and their applicability to fuel reprocessing plant structures. The results of this study should provide a basis for establishing guidelines recommending methods of seismic analysis for evaluating future fuel reprocessing plants. The approach taken is: (1) to identify critical plant structures and place them in four categories (structures at or near grade; deeply embedded structures; fully buried structures; equipment/vessels/attachments/piping), (2) to select a representative structure in each of the first three categories and perform static and dynamic analysis on each, and (3) to evaluate and recommend method(s) of analysis for structures within each category. The Barnwell Nuclear Fuel Plant is selected as representative of future commercial reprocessing plants. The effect of site characteristics on the structural response is also examined. The response spectra method of analysis combined with the finite element model for each category is recommended. For structures founded near or at grade, the lumped mass model could also be used. If a time history response is required, a time-history analysis is necessary. (U.S.)

  6. Performance Evaluation of Submerged Floating Tunnel Subjected to Hydrodynamic and Seismic Excitations

    Naik Muhammad

    2017-10-01

    Full Text Available Submerged floating tunnels (SFTs are innovative structural solutions to waterway crossings, such as sea-straits, fjords and lakes. As the width and depth of straits increase, the conventional structures such as cable-supported bridges, underground tunnels or immersed tunnels become uneconomical alternatives. For the realization of SFT, the structural response under extreme environmental conditions needs to be evaluated properly. This study evaluates the displacements and internal forces of SFT under hydrodynamic and three-dimensional seismic excitations to check the global performance of an SFT in order to conclude on the optimum design. The formulations incorporate modeling of ocean waves, currents and mooring cables. The SFT responses were evaluated using three different mooring cable arrangements to determine the stability of the mooring configuration, and the most promising configuration was then used for further investigations. A comparison of static, hydrodynamic and seismic response envelope curves of the SFT is provided to determine the dominant structural response. The study produces useful conclusions regarding the structural behavior of the SFT using a three-dimensional numerical model.

  7. Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities

    Lin, Chi-Wen; Antaki, G.; Bandyopadhyay, K.; Bush, S.H.; Costantino, C.; Kennedy, R.

    1995-01-01

    This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic-foundation analysis principle and the inertial response calculation method, respectively, for piping directly in contact with the soil or contained in a jacket. A standard analysis procedure is described along with the discussion of factors deemed to be significant for the design of the underground piping. The following key considerations are addressed: the design feature and safety requirements for the inner (core) pipe and the outer pipe; the effect of soil strain and wave passage; assimilation of the necessary seismic and soil data; inertial response calculation for the inner pipe; determination of support anchor movement loads; combination of design loads; and code comparison. Specifications and justifications of the key parameters used, stress components to be calculated and the allowable stress and strain limits for code evaluation are presented

  8. Mechanical property test of natural rubber bearing for the evaluation of uncertainty value of seismic isolation devices

    Kim, Min Kyu; Kim, Jung Han; Choi, In Kil

    2012-01-01

    Seismic safety of NPP is one of the most important issues in a nuclear field after great east Japan earthquake in 2011. For the improvement of seismic safety of nuclear power plant, seismic isolation is the easiest solution for increasing the seismic safety. Otherwise, the application of seismic isolation devices for nuclear power plants doesn't make the seismic risk of NPP increases always. The rubber bearing have many uncertainties of material properties and large displacement should absorb according to the application of isolation devices. In this study, for the evaluation of uncertainty of the material properties of rubber bearing, material tests for rubber and mechanical properties test for natural rubber bearing were performed. For the evaluation of effect of hardness of rubber, 4 kinds of rubber hardness for material property tests and 2 kinds of rubber hardness for mechanical property test were considered. As a result, the variation of material properties is higher than that of mechanical properties of natural rubber bearings

  9. Evaluation of potential surface rupture and review of current seismic hazards program at the Los Alamos National Laboratory. Final report

    1991-01-01

    This report summarizes the authors review and evaluation of the existing seismic hazards program at Los Alamos National Laboratory (LANL). The report recommends that the original program be augmented with a probabilistic analysis of seismic hazards involving assignment of weighted probabilities of occurrence to all potential sources. This approach yields a more realistic evaluation of the likelihood of large earthquake occurrence particularly in regions where seismic sources may have recurrent intervals of several thousand years or more. The report reviews the locations and geomorphic expressions of identified fault lines along with the known displacements of these faults and last know occurrence of seismic activity. Faults are mapped and categorized into by their potential for actual movement. Based on geologic site characterization, recommendations are made for increased seismic monitoring; age-dating studies of faults and geomorphic features; increased use of remote sensing and aerial photography for surface mapping of faults; the development of a landslide susceptibility map; and to develop seismic design standards for all existing and proposed facilities at LANL

  10. Evaluation of Water Resources Carrying Capacity in Shandong Province Based on Fuzzy Comprehensive Evaluation

    Zhao Qiang

    2018-01-01

    Full Text Available Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.

  11. Evaluation of antioxidant capacity of Chinese five-spice ingredients.

    Bi, Xinyan; Soong, Yean Yean; Lim, Siang Wee; Henry, Christiani Jeyakumar

    2015-05-01

    Phenolic compounds in spices were reportedly found to possess high antioxidant capacities (AOCs), which may prevent or reduce risk of human diseases such as cardiovascular disease, cancer and diabetes. The potential AOC of Chinese five-spice powder (consist of Szechuan pepper, fennel seed, cinnamon, star anise and clove) with varying proportion of individual spice ingredients was investigated through four standard methods. Our results suggest that clove is the major contributor to the AOC of the five-spice powder whereas the other four ingredients contribute to the flavour. For example, the total phenolic content as well as ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) values increased linearly with the clove percentage in five-spice powder. This observation opens the door to use clove in other spice mixtures to increase their AOC and flavour. Moreover, linear relationships were also observed between AOC and the total phenolic content of the 32 tested spice samples.

  12. Ethical Aspects of Evaluating a Patient's Mental Capacity.

    Howe, Edmund

    2009-07-01

    When a patient's mental capacity to make decisions is open to question, the physician often calls in a psychiatrist to help make the determination. The psychiatrist's conclusions may be taken to a court to determine the patient's legal competency. In this article, the author presents several clinical criteria psychiatrists may use when determining patients' mental capacities. The author discusses two critical ethical questions psychiatrists should consider when they use this criteria: (1) whether they should use a fixed or sliding standard and (2) if they adopt a sliding standard, what clinical factors should be given the greatest weight. The author also discusses whether psychiatrists should take initiative to obtain a second opinion from another psychiatrist or mental health professional. Finally, the author discusses research regarding patients who are likely to have more impaired capacity for performing executive functions, patients requesting surgical procedures that are ethically without precedent, and patients possibly having inner awareness under conditions that previously were not considered possible.

  13. Evaluation of carrying capacity and territorial environmental sustainability

    Giuseppe Ruggiero

    2012-09-01

    Full Text Available Land use has a great impact on environmental quality, use of resources, state of ecosystems and socio-economic development. Land use can be considered sustainable if the environmental pressures of human activities do not exceed the ecological carrying capacity. A scientific knowledge of the capability of ecosystems to provide resources and absorb waste is a useful and innovative means of supporting territorial planning. This study examines the area of the Province of Bari to estimate the ecosystems’ carrying capacity, and compare it with the current environmental pressures exerted by human activities. The adapted methodology identified the environmentally sustainable level for one province.

  14. Evaluation of adsorption capacity of acetaminophen on activated ...

    Purpose: To investigate varying dosage forms of activated charcoal obtained from community pharmacy outlets in Nigeria for their adsorption capacity when challenged with acetaminophen. Methods: Equilibruim kinetics of acetaminophen adsorption onto activated charcoal surface was determined via batch studies at ...

  15. Building and Evaluating Research Capacity in Healthcare Systems ...

    2016-06-29

    Jun 29, 2016 ... Research capacity is considered an essential foundation for a ... of the world, including Sub-Saharan Africa, the Caribbean, Latin America, and Asia. ... Nancy Edwards is a nurse epidemiologist and a professor in the School of ...

  16. Evaluation of structural fragilities for an IPEEE seismic probabilistic risk assessment study

    Ghiocel, D.M.; Wilson, P.R.; Stevenson, J.D.

    1995-01-01

    The paper presents the main issues and results of a structural fragility analysis for a Seismic Probabilistic Risk Assessment (SPRA) study of a nuclear power plant (NPP) in the Eastern US. The fragility evaluations were performed for the Reactor Building, Auxiliary Building, Intake Structure and Diesel Generator Building. The random seismic input is defined in terms of the Uniform Hazard Spectrum (UHS) earthquake on the NPP site anchored to a reference level of 0.40 g Zero Period Ground Acceleration (ZPGA). Because of the soft soil conditions new Soil-Structure Interaction (SSI) analyses were performed using the original finite element (stick) structural models and the complex frequency approach. The soil deposit randomness was described by the variations in both the low strain soil shear modules and in its dependence with the shear strain. The probabilistic SSI analyses were performed using digital simulation techniques. The critical failure modes for each structure are investigated and the fragility evaluations are discussed. Concluding remarks and recommendations for improving the quality of the structural fragility analyses are included

  17. Evaluation of seismic reliability of steel moment resisting frames rehabilitated by concentric braces with probabilistic models

    Fateme Rezaei

    2017-08-01

    Full Text Available Probability of structure failure which has been designed by "deterministic methods" can be more than the one which has been designed in similar situation using probabilistic methods and models considering "uncertainties". The main purpose of this research was to evaluate the seismic reliability of steel moment resisting frames rehabilitated with concentric braces by probabilistic models. To do so, three-story and nine-story steel moment resisting frames were designed based on resistant criteria of Iranian code and then they were rehabilitated based on controlling drift limitations by concentric braces. Probability of frames failure was evaluated by probabilistic models of magnitude, location of earthquake, ground shaking intensity in the area of the structure, probabilistic model of building response (based on maximum lateral roof displacement and probabilistic methods. These frames were analyzed under subcrustal source by sampling probabilistic method "Risk Tools" (RT. Comparing the exceedance probability of building response curves (or selected points on it of the three-story and nine-story model frames (before and after rehabilitation, seismic response of rehabilitated frames, was reduced and their reliability was improved. Also the main effective variables in reducing the probability of frames failure were determined using sensitivity analysis by FORM probabilistic method. The most effective variables reducing the probability of frames failure are  in the magnitude model, ground shaking intensity model error and magnitude model error

  18. Seismic re-evaluation of piping systems of heavy water plant, Kota

    Mishra, R; Soni, R S; Venkat-Raj, V

    2002-01-01

    Heavy Water Plant, Kota is the first indigenous heavy water plant built in India. The plant started operation in the year 1985 and it is approaching the completion of its originally stipulated design life. In view of the excellent record of plant operation for the past so many years, it has been planned to carry out various exercises for the life extension of the plant. In the first stage, evaluation of operation stresses was carried out for the process critical piping layouts and equipment, which are connected with 25 process critical nozzle locations, identified based on past history of the plant performance. Fatigue life evaluation has been carried out to fmd out the Cumulative Usage Factor, which helps in arriving at a decision regarding the life extension of the plant. The results of these exercises have been already reported separately vide BARC/200I /E/O04. In the second stage, seismic reevaluation of the plant has been carried out to assess its ability to maintain its integ:rity in case of a seismic e...

  19. A regulatory view of the seismic re-evaluation of existing nuclear power plants in the United Kingdom

    Inkester, J.E.; Bradford, P.M.

    1995-01-01

    The paper describes the background to the seismic re-evaluation of existing nuclear power plants in the United Kingdom. Nuclear installations in this country were not designed specifically to resist earthquakes until the nineteen-seventies, although older plants were robustly constructed. The seismic capability of these older installations is now being evaluated as part of the periodic safety reviews which nuclear licensees are required to carry out. The regulatory requirements which set the framework for these studies are explained and the approaches being adopted by the licensees for their assessment of the seismic capability of existing plants are outlined. The process of hazard appraisal is reported together with a general overview of UK seismicity. The paper then discusses the methodologies used to evaluate the response of plant to the hazard. Various other types of nuclear installation besides power plants are subject to licensing in the UK and the application of seismic evaluation to some of these is briefly described. Finally the paper provides some comments on future initiatives and possible areas of development. (author)

  20. Evaluation of Tourism Water Capacity in Agricultural Heritage Sites

    Mi Tian

    2015-11-01

    Full Text Available Agricultural heritage sites have been gaining popularity as tourism destinations. The arrival of large numbers of tourists, however, has created serious challenges to these vulnerable ecosystems. In particular, water resources are facing tremendous pressure. Thus, an assessment of tourism water footprint is suggested before promoting sustainable tourism. This paper uses the bottom-up approach to construct a framework on the tourism water footprint of agricultural heritage sites. The tourism water footprint consists of four components, namely accommodation water footprint, diet water footprint, transportation water footprint and sewage dilution water footprint. Yuanyang County, a representative of the Honghe Hani rice terraces, was selected as the study area. Field surveys including questionnaires, interviews and participant observation approaches were undertaken to study the tourism water footprint and water capacity of the heritage site. Based on the results, measures to improve the tourism water capacity have been put forward, which should provide references for making policies that aim to maintain a sustainable water system and promote tourism development without hampering the sustainability of the heritage system. The sewage dilution water footprint and the diet water footprint were top contributors to the tourism water footprint of the subject area, taking up 38.33% and 36.15% of the tourism water footprint, respectively, followed by the transportation water footprint (21.47%. The accommodation water footprint had the smallest proportion (4.05%. The tourism water capacity of the heritage site was 14,500 tourists per day. The water pressure index was 97%, indicating that the water footprint was still within the water capacity, but there is a danger that the water footprint may soon exceed the water capacity. As a consequence, we suggest that macro and micro approaches, including appropriate technologies, awareness enhancement and diversified

  1. Levers supporting program evaluation culture and capacity in Romanian public administration: The role of leadership

    Cristina Mora; Raluca Antonie

    2012-01-01

    Program evaluation culture and capacity is at the very beginning of its development in Romania. In this article we highlight one of the fundamental, but not always obvious, connections that support sustainable evaluation culture and capacity building and development: the link between leadership and program evaluation. If properly used, program evaluation results can be a strong instrument in leadership, just as leadership can fundamentally encourage the development of evaluation culture and c...

  2. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Seismic design analysis methods for crossover piping system

    Tai, Koichi; Sasajima, Keisuke; Fukushima, Shunsuke; Takamura, Noriyuki; Onishi, Shigenobu

    2014-01-01

    This paper provides seismic design analysis methods suitable for crossover piping system, which connects between seismic isolated building and non-isolated building in the seismic isolated nuclear power plant. Through the numerical study focused on the main steam crossover piping system, seismic response spectrum analysis applying ISM (Independent Support Motion) method with SRSS combination or CCFS (Cross-oscillator, Cross-Floor response Spectrum) method has found to be quite effective for the seismic design of multiply supported crossover piping system. (author)

  3. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  4. Seismic rupture modelling, strong motion prediction and seismic hazard assessment: fundamental and applied approaches; Modelisation de la rupture sismique, prediction du mouvement fort, et evaluation de l'alea sismique: approches fondamentale et appliquee

    Berge-Thierry, C

    2007-05-15

    The defence to obtain the 'Habilitation a Diriger des Recherches' is a synthesis of the research work performed since the end of my Ph D. thesis in 1997. This synthesis covers the two years as post doctoral researcher at the Bureau d'Evaluation des Risques Sismiques at the Institut de Protection (BERSSIN), and the seven consecutive years as seismologist and head of the BERSSIN team. This work and the research project are presented in the framework of the seismic risk topic, and particularly with respect to the seismic hazard assessment. Seismic risk combines seismic hazard and vulnerability. Vulnerability combines the strength of building structures and the human and economical consequences in case of structural failure. Seismic hazard is usually defined in terms of plausible seismic motion (soil acceleration or velocity) in a site for a given time period. Either for the regulatory context or the structural specificity (conventional structure or high risk construction), seismic hazard assessment needs: to identify and locate the seismic sources (zones or faults), to characterize their activity, to evaluate the seismic motion to which the structure has to resist (including the site effects). I specialized in the field of numerical strong-motion prediction using high frequency seismic sources modelling and forming part of the IRSN allowed me to rapidly working on the different tasks of seismic hazard assessment. Thanks to the expertise practice and the participation to the regulation evolution (nuclear power plants, conventional and chemical structures), I have been able to work on empirical strong-motion prediction, including site effects. Specific questions related to the interface between seismologists and structural engineers are also presented, especially the quantification of uncertainties. This is part of the research work initiated to improve the selection of the input ground motion in designing or verifying the stability of structures. (author)

  5. Evaluation of space capacities of the respiratory muscles during hypokinesia

    Baranov, V. M.; Aleksandrova, N. P.; Tikhonov, M. A.

    2005-08-01

    Nowdays, the phenomenon of physical performance degradation after a long period of motor restraint or microgravity is universally interpreted as a result of deconditioning of the cardiovascular system and anti- gravity skeletal muscles.Yet, deconditioning affects not only the skeletal but also respiratory muscles exhaustion of which by relative hypoventilation brings about hypercapnia, hypoxia and pulmonary acidosis conducive to the sensations of painful breathlessness impacting the capacity for physical work. It should be emphasized that these developments are little known in spite of their theoretical and practical significance; therefore, our purpose was to study the functional state and spare capacity of the respiratory muscles in laboratory animals (Wistar rats) following 3-wk tail-suspension.The experiment strengthened the hypothesis according to which simulation of the physiological effects of motor restraint and microgravity leads to fatigue and deconditioning of the respiratory muscles.

  6. A framework to evaluate research capacity building in health care

    Cooke Jo

    2005-10-01

    Full Text Available Abstract Background Building research capacity in health services has been recognised internationally as important in order to produce a sound evidence base for decision-making in policy and practice. Activities to increase research capacity for, within, and by practice include initiatives to support individuals and teams, organisations and networks. Little has been discussed or concluded about how to measure the effectiveness of research capacity building (RCB Discussion This article attempts to develop the debate on measuring RCB. It highlights that traditional outcomes of publications in peer reviewed journals and successful grant applications may be important outcomes to measure, but they may not address all the relevant issues to highlight progress, especially amongst novice researchers. They do not capture factors that contribute to developing an environment to support capacity development, or on measuring the usefulness or the 'social impact' of research, or on professional outcomes. The paper suggests a framework for planning change and measuring progress, based on six principles of RCB, which have been generated through the analysis of the literature, policy documents, empirical studies, and the experience of one Research and Development Support Unit in the UK. These principles are that RCB should: develop skills and confidence, support linkages and partnerships, ensure the research is 'close to practice', develop appropriate dissemination, invest in infrastructure, and build elements of sustainability and continuity. It is suggested that each principle operates at individual, team, organisation and supra-organisational levels. Some criteria for measuring progress are also given. Summary This paper highlights the need to identify ways of measuring RCB. It points out the limitations of current measurements that exist in the literature, and proposes a framework for measuring progress, which may form the basis of comparison of RCB

  7. Introduction of conditional mean spectrum and conditional spectrum in the practice of seismic safety evaluation in China

    Ji, Kun; Bouaanani, Najib; Wen, Ruizhi; Ren, Yefei

    2018-05-01

    This paper aims at implementing and introducing the use of conditional mean spectrum (CMS) and conditional spectrum (CS) as the main input parameters in the practice of seismic safety evaluation (SSE) in China, instead of the currently used uniform hazard spectrum (UHS). For this purpose, a procedure for M-R-epsilon seismic hazard deaggregation in China was first developed. For illustration purposes, two different typical sites in China, with one to two dominant seismic zones, were considered as examples to carry out seismic hazard deaggregation and illustrate the construction of CMS/CS. Two types of correlation coefficients were used to generate CMS and the results were compared over a vibration period range of interest. Ground motion records were selected from the NSMONS (2007-2015) and PEER NGA-West2 databases to correspond to the target CMS and CS. Hazard consistency of the spectral accelerations of the selected ground motion records was evaluated and validated by computing the annual exceedance probability rate of the response spectra and comparing the results to the hazard curve corresponding to each site of concern at different periods. The tools developed in this work and their illustrative application to specific case studies in China are a first step towards the adoption of CMS and CS into the practice of seismic safety evaluation in this country.

  8. NRC-BNL Benchmark Program on Evaluation of Methods for Seismic Analysis of Coupled Systems

    Chokshi, N.; DeGrassi, G.; Xu, J.

    1999-01-01

    A NRC-BNL benchmark program for evaluation of state-of-the-art analysis methods and computer programs for seismic analysis of coupled structures with non-classical damping is described. The program includes a series of benchmarking problems designed to investigate various aspects of complexities, applications and limitations associated with methods for analysis of non-classically damped structures. Discussions are provided on the benchmarking process, benchmark structural models, and the evaluation approach, as well as benchmarking ground rules. It is expected that the findings and insights, as well as recommendations from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving licensing applications of these alternate methods to coupled systems

  9. A personal computer code for seismic evaluations of nuclear power plant facilities

    Xu, J.; Graves, H.

    1991-01-01

    In the process of review and evaluation of licensing issues related to nuclear power plants, it is essential to understand the behavior of seismic loading, foundation and structural properties and their impact on the overall structural response. In most cases, such knowledge could be obtained by using simplified engineering models which, when properly implemented, can capture the essential parameters describing the physics of the problem. Such models do not require execution on large computer systems and could be implemented through a personal computer (PC) based capability. Recognizing the need for a PC software package that can perform structural response computations required for typical licensing reviews, the US Nuclear Regulatory Commission sponsored the development of a PC operated computer software package CARES (Computer Analysis for Rapid Evaluation of Structures) system. This development was undertaken by Brookhaven National Laboratory (BNL) during FY's 1988 and 1989. A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to operate on a PC, have user friendly input/output interface, and have quick turnaround. This paper describes the various features which have been implemented into the seismic module of CARES version 1.0

  10. Seismic Evaluation of a Multitower Connected Building by Using Three Software Programs with Experimental Verification

    Deyuan Zhou

    2016-01-01

    Full Text Available Shanghai International Design Center (SHIDC is a hybrid structure of steel frame and reinforced concrete core tube (SF-RCC. It is a building of unequal height two-tower system and the story lateral stiffness of two towers is different, which may result in the torsion effect. To fully evaluate structural behaviors of SHIDC under earthquakes, NosaCAD, ABAQUS, and Perform-3D, which are widely applied for nonlinear structure analysis, were used to perform elastoplastic time history analyses. Numerical results were compared with those of shake table testing. NosaCAD has function modules for transforming the nonlinear analysis model to Perform-3D and ABAQUS. These models were used in ABAQUS or Perform-3D directly. With the model transformation, seismic performances of SHIDC were fully investigated. Analyses have shown that the maximum interstory drift can satisfy the limits specified in Chinese code and the failure sequence of structural members was reasonable. It meant that the earthquake input energy can be well dissipated. The structure keeps in an undamaged state under frequent earthquakes and it does not collapse under rare earthquakes; therefore, the seismic design target is satisfied. The integrated use of multisoftware with the validation of shake table testing provides confidence for a safe design of such a complex structure.

  11. Evaluation model for safety capacity of chemical industrial park based on acceptable regional risk

    Guohua Chen; Shukun Wang; Xiaoqun Tan

    2015-01-01

    The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose of exploring the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity of chemical industrial park, and then by combining with the safety storage capacity, a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized in the regional risk control of the park effectively.

  12. Building Staff Capacity to Evaluate in Museum Education

    Kubarek, Joy

    2015-01-01

    For years, museums of all varieties, including art museums, science centers, history museums, zoos, and aquariums, have conducted education evaluation. However, museums are all too often faced with the challenge of allocating staff time, expertise, and other resources toward conducting evaluation, particularly evaluation that moves beyond program…

  13. Government and voluntary sector differences in organizational capacity to do and use evaluation.

    Cousins, J Bradley; Goh, Swee C; Elliott, Catherine; Aubry, Tim; Gilbert, Nathalie

    2014-06-01

    Research on evaluation capacity is limited although a recent survey article on integrating evaluation into the organizational culture (Cousins, Goh, Clark, & Lee, 2004) revealed that interest in the topic is increasing. While knowledge about building the capacity to do evaluation has developed considerably, less is understood about building the organizational capacity to use evaluation. This article reports on the results of a pan-Canadian survey of evaluators working in organizations (internal evaluators or organization members with evaluation responsibility) conducted in 2007. Reliability across all constructs was high. Responses from government evaluators (N=160) were compared to responses from evaluators who work in the voluntary sector (N=89). The former were found to self-identify more highly as 'evaluators' (specialists) whereas the latter tended to identify as 'managers' (non-specialists). As a result, government evaluators had significantly higher self-reported levels of evaluation knowledge (both theory and practice); and they spent more time performing evaluation functions. However, irrespective of role, voluntary sector respondents rated their organizations more favorably than did their government sector counterparts with respect to the antecedents or conditions supporting evaluation capacity, and the capacity to use evaluation. Results are discussed in terms of their implications for evaluation practice and ongoing research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    Conrads, T.J.

    1993-06-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP is comprised of a number of consultants known for their knowledge of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation Guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects which might employ the TSEP guidelines

  15. Implementation of seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    Conrads, T.J.

    1993-01-01

    In the fall of 1992, a draft of the Seismic Design and Evaluation Guidelines for the U.S. Department of Energy (DOE) High-level Waste Storage Tanks and Appurtenances was issued. The guidelines were prepared by the Tanks Seismic Experts Panel (TSEP) and this task was sponsored by DOE, Environmental Management. The TSEP comprises a number of consultants known for their understanding of seismic ground motion and expertise in the analysis of structures, systems and components subjected to seismic loads. The development of these guidelines was managed by staff from Brookhaven National Laboratory, Engineering Research and Applications Division, Department of Nuclear Energy. This paper describes the process used to incorporate the Seismic Design and Evaluation guidelines for the DOE High-Level Waste Storage Tanks and Appurtenances into the design criteria for the Multi-Function Waste Tank Project at the Hanford Site. This project will design and construct six new high-level waste tanks in the 200 Areas at the Hanford Site. This paper also discusses the vehicles used to ensure compliance to these guidelines throughout Title 1 and Title 2 design phases of the project as well as the strategy used to ensure consistent and cost-effective application of the guidelines by the structural analysts. The paper includes lessons learned and provides recommendations for other tank design projects that might employ the TSEP guidelines

  16. Review on the Evaluation System of Public Safety Carrying Capacity about Small Town Community

    Ming; SUN; Tianyu; ZHU

    2014-01-01

    Recently,small town community public safety problem has been increasingly highlighted,but its research is short on public safety carrying capacity. Through the investigation and study of community public safety carrying capacity,this paper analyzes the problem of community public safety in our country,to construct index evaluation system of public safety carrying capacity in small town community. DEA method is used to evaluate public safety carrying capacity in small town community,to provide scientific basis for the design of support and standardization theory about small town community in public safety planning.

  17. Current status of ground motions evaluation in seismic design guide for nuclear power facilities. Investigation on IAEA and US.NRC

    Nakajima, Masato; Ito, Hiroshi; Hirata, Kazuta

    2009-01-01

    Recently, IAEA (International Atomic Energy Agency) and US.NRC (US. Nuclear Regulatory Commission) published several standards and technical reports on seismic design and safety evaluation for nuclear power facilities. This report summarizes the current status of the international guidelines on seismic design and safety evaluation for nuclear power facilities in order to explore the future research topics. The main results obtained are as follows: 1 IAEA: (1) In the safety standard series, two levels are defined as seismic design levels, and design earthquake ground motion is determined corresponding to each seismic design level. (2) A new framework on seismic design which consists of conventional deterministic method and risk-based method is discussed in the technical report although the framework is not adopted in the safety guidelines. 2 USA: (1) US.NRC discusses a performance-based seismic design framework which has been originally developed by the private organization (American Society of Civil Engineers). (2) Design earthquakes and earthquake ground motion are mainly evaluated and determined based on probabilistic seismic hazard evaluations. 3 Future works: It should be emphasized that IAEA and US.NRC have investigated the implementation of risk-based concept into seismic design. The implementation of risk-based concept into regulation and seismic design makes it possible to consider various uncertainties and to improve accountability. Therefore, we need to develop the methods for evaluating seismic risk of structures, and to correlate seismic margin and seismic risk quantitatively. Moreover, the probabilistic method of earthquake ground motions, that is required in the risk-based design, should be applied to sites in Japan. (author)

  18. Evaluating seismic reliability of Reinforced Concrete Bridge in view of their rehabilitation

    Boubel Hasnae

    2018-01-01

    Full Text Available Considering in this work, a simplified methodology was proposed in order to evaluate seismic vulnerability of Reinforced Concrete Bridge. Reliability assessment of stress limits state and the applied loading which are assumed to be random variables. It is assumed that only their means and standard deviations are known while no information is available about their densities of probabilities. First Order Reliability Method is applied to a response surface representation of the stress limit state obtained through quadratic polynomial regression of finite element results. Then a parametric study is performed regarding the influence of the distributions of probabilities chosen to model the problem uncertainties for Reinforced Concrete Bridge. It is shown that the probability of failure depends largely on the chosen densities of probabilities, mainly in the useful domain of small failure probabilities.

  19. Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis

    Huber, K.A.; Hugins, M.S.

    1983-01-01

    Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity

  20. Seismic testing

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  1. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected.

  2. Preliminary Seismic Response and Fragility Analysis for DACS Cabinet

    Oh, Jinho; Kwag, Shinyoung; Lee, Jongmin; Kim, Youngki

    2013-01-01

    A DACS cabinet is installed in the main control room. The objective of this paper is to perform seismic analyses and evaluate the preliminary structural integrity and seismic capacity of the DACS cabinet. For this purpose, a 3-D finite element model of the DACS cabinet was developed and its modal analyses are carried out to analyze the dynamic characteristics. The response spectrum analyses and the related safety evaluation are then performed for the DACS cabinet subject to seismic loads. Finally, the seismic margin and seismic fragility of the DACS cabinet are investigated. A seismic analysis and preliminary structural integrity of the DACS cabinet under self weight and SSE load have been evaluated. For this purpose, 3-D finite element models of the DACS cabinet were developed. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. A modal analysis, response spectrum analysis, and seismic fragility analysis were then performed. From the structural analysis results, the DACS cabinet is below the structural design limit of under SSE 0.3g, and can structurally withstand until less than SSE 3g based on an evaluation of the maximum effective stresses. The HCLPF capacity for the DGRS of the SSE 0.3g is 0.55g. Therefore, it is concluded that the DACS cabinet was safely designed in that no damage to the preliminary structural integrity and sufficient seismic margin is expected

  3. Paying the Piper: Foundation Evaluation Capacity Calls the Tune

    Behrens, Teresa R.; Kelly, Thomas

    2008-01-01

    An overview is presented of forces that have shaped how public and private funders approach evaluation, including the challenges that funders, and particularly foundations, face in effectively using evaluation within an organizational learning framework. Even with internal organizational challenges to learning, foundations are increasingly…

  4. User's manual of a computer code for seismic hazard evaluation for assessing the threat to a facility by fault model. SHEAT-FM

    Sugino, Hideharu; Onizawa, Kunio; Suzuki, Masahide

    2005-09-01

    To establish the reliability evaluation method for aged structural component, we developed a probabilistic seismic hazard evaluation code SHEAT-FM (Seismic Hazard Evaluation for Assessing the Threat to a facility site - Fault Model) using a seismic motion prediction method based on fault model. In order to improve the seismic hazard evaluation, this code takes the latest knowledge in the field of earthquake engineering into account. For example, the code involves a group delay time of observed records and an update process model of active fault. This report describes the user's guide of SHEAT-FM, including the outline of the seismic hazard evaluation, specification of input data, sample problem for a model site, system information and execution method. (author)

  5. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    2014-12-01

    Precast Concrete Beam - Column Connection ...ERDC TR-14-12 December 2014 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam - Column Connection ...systems in order to develop a methodology and obtain basic insight for predicting the brittle failure of precast beam - column connections under

  6. Evaluation of near-surface attenuation of S-waves based on PS logging and vertical array seismic observation

    Kobayashi, Genyu

    2014-01-01

    As a result of the lessons learned from the experience of Kashiwazaki-Kariwa NPP due to the 2007 Niigata Chuetsu Oki Earthquake, it has become clear that a rational method of near-surface attenuation characteristics covering a depth range from engineering bedrock to seismic bedrock urgently needs to be established. JNES performed PS logging and vertical array seismic ground motion observation at a soil ground site (SODB 1. site), sedimentary rock site, and an igneous rock site (SODB 2. site), and proposed an evaluation method of attenuation characteristics (site characteristics) for the deep underground. (author)

  7. Seismic evaluation and upgrading design of overhead roads between reactor buildings of WWER-1000 MW type NPP

    Jordanov, M.J.; Stoyanov, G.S.; Geshanov, I.H.; Kirilov, K.P.; Schuetz, W.

    2003-01-01

    This paper presents results obtained during the study of overhead roads between Reactor Building (RB) of WWER-1000 MW NPP and possible measures for their seismic upgrade. The main objective of this project is to evaluate the behavior of overhead roads under site-specific seismic loading and to determine whether this structure satisfies current international safety regulations, followed by development of upgrading concepts. Overhead roads are pre-cast RC structure, which can be divided to separate substructures. They comprise of pedestrian gallery and pipeline box, connecting reactor buildings with auxiliary building. They are mounted at approximately 10 m above ground level. The overhead roads are evaluated for Review Level Earthquake (RLE) as seismic category II structures. As seismic input motion is RLE, free field response spectra anchored to 0.2 g PGA are used with 0.5 scaling factor. Soil-Structure Interaction effects are taken into account through equivalent soil springs with frequency adjusted stiffness. In order to meet the objective of the project a technical design specification is developed for conformance with International, US and Bulgarian standards and codes, taking into account site specific conditions. The general approach is consistent with up-to-date practice for evaluation and upgrade of nuclear power plant facilities. The separate steps comprising the overall fulfillment of project's major objectives may be summarized as follows: study of all available data for initial design and as built conditions, creation of 3-D detailed finite element models for as-built structure, determination of dynamic characteristics, evaluation of adequacy of initial design under new seismic loading (calculation of D/C ratios for structural members and connections, evaluation of embedment lengths for embedded parts and rebars, deformation evaluation, stability checks), development of upgrading concepts for enhancement, verification of capability of upgraded structure

  8. Seismic margins review of nuclear power plants: Fragility aspects

    Ravindra, M.K.; Hardy, G.S.; Hashimoto, P.S.

    1987-01-01

    The fragility analysis is utilised in the seismic margin review in initial screening of certain components in the plant based on their generically high seismic capacities. A detailed walkdown of the plant is conducted to confirm that the initial screening is valid i.e., the generically high seismic capacity components do not possess any potential weaknesses (e.g., inadequate bracing, inadequate anchorage and potential systems interaction). For the components that are screened in, their seismic capacities are evaluated using either a probabilistic analysis of a deterministic evaluation. Based on a system analysis, the Boolean expressions for critical accident sequences are derived. These Boolean expressions are quantified using the component fragilities and nonseismic unavailabilities of components. The final product is the High Confidence Low Probability of Failure (HCLPF) capacity of the plant and the identification of potential seismic vulnerabilities in the plant. The objective of the paper is to describe the application of fragility analysis procedures in the seismic margin review of Maine Yankee and to document the insights obtained in this trial plant review. (orig./HP)

  9. Evaluation of seismic resistance of low voltage switchgear, NPP V1 Jaslovske Bohunice, Slovakia

    Zeman, P.

    1999-01-01

    During this year, company Stevenson and Associates took part in the project of evaluation of seismic resistance of NPP V-1 Jaslovske Bohunice in Slovakia. It was responsible for a part of electrical equipment, mainly for the evaluation of low voltage switchgears. There were four steps of the evaluation: Detailed Walkdown; Application of GIP-WWER Methodology; Developing, of In Cabinet Response Spectra; and Evaluation of Acceptance of Formerly Performed Relay Tests According to the Russian Standard OEG l-330.00-3). Tests performed according to the Russian Standard OAG are acceptable only if the tested subject shows just one dominant natural frequency in the significant energy frequency range. If there is no knowledge of modal properties of the tested subject (that is a frequent situation because test reports usually contain only generalized Fourier loading spectrum) the enveloping of In Cabinet Response Spectra (ICRS) in all significant energy frequency ranges by Response Spectra (RS) of harmonic signal on one arbitrary frequency. This criteria is usually not satisfied because the shake tables used for the tests are not able to produce the sufficient level of excitation in the low frequency range. It may lead to the demand for test repeating

  10. The evaluation of a small capacity shell and tube ammonia evaporator

    Garcia-Valladares, O.; Hernandez, J.I.; Best y Brown, R. [Centro de Investigacion en Energia de la UNAM, Morelos (Mexico); Gonzalez, J.C. [Universidad Autonoma de Campeche (Mexico). Programa CADETRAA

    2003-12-01

    The use of ammonia as refrigerant is widespread in vapour compression and ammonia/water absorption systems. Ammonia is not actually used in low capacity applications mainly because of the lack of economical available equipment. For this reason, the objective of this study is the numerical and experimental evaluation of a small capacity ammonia shell and tube evaporator with enhanced heat transfer surfaces. An experimental system to evaluate small capacity heat exchangers was developed. A shell and tube evaporator with external low fin tubes was successfully tested. The experimental uncertainty for the evaporator capacity has been estimated within {+-}5.5%. The experimental results were used to validate a heat exchanger numerical tool that predicts reasonably well the cooling capacity and load outlet temperatures. The methodology presented in this work can be applied to evaluate other refrigerants in similar shell and tube evaporators and to optimize the design of an evaporator for a specific application. (author)

  11. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].

    Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L

    2014-01-01

    To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.

  12. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    Joe, Yang Hee; Cho, Sung Gook

    2003-01-01

    This paper briefly introduces an improved method for evaluating seismic fragilities of components of nuclear power plants in Korea. Engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are also discussed in this paper. For the purpose of evaluating the effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures, several cases of comparative studies have been performed. The study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities. (author)

  13. Seismic response analysis and upgrading design of pump houses of Kozloduy NPP units 5 and 6

    Jordanov, M.; Marinov, M.; Krutzik, N.

    2001-01-01

    The main objective of the presented project was to perform a feasibility study for seismic/structural evaluation of the safety related structures at Kozloduy NPP Units 5 and 6 for the new site seismicity and determine if they satisfy current international safety standards. The evaluation of the Pump House 3 (PH3) building is addressed in this paper, which was carried out by applying appropriate modeling techniques combined with failure mode and seismic margin analyses. The scope of the work defined was to present the required enhancement of the seismic capacity of the Pump House structures.(author)

  14. Evaluation of axial pile bearing capacity based on pile driving analyzer (PDA) test using Neural Network

    Maizir, H.; Suryanita, R.

    2018-01-01

    A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.

  15. Evaluation of sorption capacity of adjusted woody biomass for pentavalent arsenic

    Littera, P.

    2009-01-01

    Aim of the present experiment was to evaluate the sorption capacity of wood biomass modified by iron oxyhydroxide. Capacity was assessed in tank experiments. Model solutions of pentavalent arsenic in concentration range of 20 mg L -1 -500 mg L -1 were used. Binder dosing 10 g L -1 was selected, contact time of the binder with solution was 2 hours. (author)

  16. Pain response of healthy workers following a functional capacity evaluation and implications for clinical interpretation

    Soer, Remko; Groothoff, Johan W; Geertzen, Jan H B; van der Schans, Cees; Reesink, David D; Reneman, Michiel F

    BACKGROUND AND AIM: Functional Capacity Evaluations (FCEs) are used to quantify physical aspects of work capacity. Safety is a critical issue for clinical use of an FCE. Patients with Chronic Low Back Pain (CLBP) are known to report a temporary increase in pain following an FCE, but it is not known

  17. Lacking Capacity? How to Work Smart in Teacher Evaluation. Ask the Team

    Cushing, Ellen

    2013-01-01

    Capacity is a real and pressing challenge for educators tasked with implementing robust evaluation systems that include multiple measures of performance. In response to questions from the field, the Center on Great Teachers and Leaders has gathered emerging strategies from policymakers and practitioners who are grappling with capacity challenges…

  18. Evaluation of granular soil properties in seismic analysis of nuclear structures

    Bica, A.; Riera, J.D.; Nanni, L.F.

    1983-01-01

    The seismic analysis of nuclear power plant structures founded on soils, as well as related soil-structure interaction studies, are often made by means of 'equivalent' linear models of soil behavior, represented by effective values of damping and of Young's modulus. Such approach requires resorting to iteration on the material properties, thus leading to a 'multilinear' analysis which can be justified in practice on account of the scarce knowledge of constitutive equations applicable to soils under a general three-dimensional stress state. It is therefore important to establish bounds on the applicability of the multilinear solutions, and to develop reliable procedures for the evaluation of the soil properties to be used in seismic analyses. The paper focuses attention on the dynamic properties of sandy soils. To that effect, an extensive program was conducted using a triaxial dynamic testing apparatus developed at the UFRGS, and the results compared with existing experimental evidence, including data from resonant-column testing. Linear and nonlinear regression techniques applied to the experimental data led to new equations relating damping and soil stiffness to the dependent variables, and permitted as well the determination of the expected error of the estimated parameters. It was found that an increasing frequency, slightly increases both Young's modulus and the effective damping ratio. In addition, the influence of the content of fines was found to be significant. This variable does not appear in several available empirical equations, which only consider the confining pressure, the void ratio and the amplitude of the cyclic shear deformations as relevant variables. (orig.)

  19. Historical seismicity in Morocco: methodological aspects and cases of multidisciplinary evaluation

    Elmrabet, T.; Ramdani, M.; Tadili, B.

    1989-05-01

    Within the framework of a cooperative agreement between Sofratome and the Office National d'Electricite of Morocco, the Centre National de la Recherche of Rabat, with the collaboration of the French Institut de Protection et de Surete Nucleaire, was put in charge of compiling a revised catalogue of the historical seismicity of Morocco. The method adopted calls for the participation of several different disciplines in view of situating each earthquake in its own geographical and historical context. The approach entails, during the first stage involving primarily the historian, gathering together the original sources of data and subjecting them to a critical analysis in order to assess their reliability. The second stage consists in interpreting the information so as to define those earthquake characteristics that are requisite to seismic hazard studies. This latter evaluation must be the fruit of a multidisciplinary effort. This is particularly true for earthquakes of past centuries, the observations of which are frequently incompatible or biased and accordingly need to be substantiated by referring to information of a varying nature and, wherever possible, calibrated using accurate data from recent events. In a number of instances, duplications are encountered, or lumped effects for distinct events due to calendar misreckonings, erroneous copying, or misconceptions relative to the geological or historical context. A particularly significant example of the interference of these diverse aspects is afforded by the assessment of the destructive effects in Morocco of the 1755 'Lisbon' earthquake: a method is proposed for calibrating its intensities by comparing them with those of the recent 1969 event of similar origin

  20. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  1. High throughput assay for evaluation of reactive carbonyl scavenging capacity

    N. Vidal

    2014-01-01

    Full Text Available Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  2. Delineation of seismic source zones based on seismicity parameters ...

    these source zones were evaluated and were used in the hazard evaluation. ... seismic sources, linear and areal, were considered in the present study to model the seismic sources in the ..... taken as an authentic reference manual for iden-.

  3. The evaluation of the tourist capacity in the Roztoczański National Park

    Janeczko Emilia

    2015-06-01

    Full Text Available The article presents the methodological assumptions and the results of the assessment of the capacities of Roztoczański Park Narodowy (RPN. Evaluation was a result of the capacity of hiking trails and educational paths and capacity of the surface of recreational facilities located in the RPN. Measure of capacity assessment of recreational trails was their length, average speed of movement the user, the nature of tourism (individual tourists and groups and living life paths. Results of the research can serve as a basis for identifying principles of tourism and recreational use of RPN.

  4. Preliminary seismic evaluation and ranking of bridges on and over the parkways in Western Kentucky.

    2008-06-01

    Five parkways in Western Kentucky are located in the region that is greatly influenced by the New Madrid and Wabash Valley Seismic Zones. This report executes a preliminary screening process, known also as the Seismic Rating System, for bridges on an...

  5. France's seismic zoning

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  6. Towards consensus in operational definitions in functional capacity evaluation: A Delphi survey

    Soer, R.; Van Der Schans, C.; Groothoff, J.; Geertzen, J.; Reneman, M.

    2009-01-01

    Background: The problem of inconsistent terminology in Functional Capacity Evaluation (FCE) has been widely addressed in the international literature. Many different terms seem to be used interchangeably while other terms appear to be interpreted differently. Objective: To gain consensus in

  7. A Unified Simulation Approach for the Fast Outage Capacity Evaluation over Generalized Fading Channels

    Rached, Nadhir B.; Kammoun, Abla; Alouini, Mohamed-Slim; Tempone, Raul

    2016-01-01

    The outage capacity (OC) is among the most important performance metrics of communication systems over fading channels. The evaluation of the OC, when equal gain combining (EGC) or maximum ratio combining (MRC) diversity techniques are employed

  8. Evaluation of seismic hazard of the Gökova bay in terms of seismotectonics

    Erkoç, Ebru Aktepe, E-mail: ebru.aktepe@deu.edu.tr [The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir-Turkey (Turkey); Uluğ, Atilla, E-mail: atilla.ulug@deu.edu.tr [Institute of Marine Science and Technology, Dokuz Eylül University, İzmir-Turkey (Turkey)

    2016-04-18

    While discovering the seismicity of our country, knowing the array of earthquake occurrence which reflects the characteristic tectonic features of each region makes vital contributions to the earthquakes that have occurred and to the pursuit of the processes which might occur in the future. When considering the region’s seismic activity, the presence of active faults that create earthquake within the bay is obvious. Many active fault parts in the Gulf of Gökova region continues their seismic activity with the opening effect that is generally prevailing in Western Anatolia. The region has generally been continuing its seismic activity under the control of normal faults. Considering the marine studies that are made and marine continuity of the faults which are on land in addition to the seismological and tectonic studies, the determination of seismic hazard in the Gulf of Gökova and its surroundings is also important in terms of introducing the earthquake scenarios with minimized errors.

  9. Evaluation of seismic hazard of the Gökova bay in terms of seismotectonics

    Erkoç, Ebru Aktepe; Uluğ, Atilla

    2016-01-01

    While discovering the seismicity of our country, knowing the array of earthquake occurrence which reflects the characteristic tectonic features of each region makes vital contributions to the earthquakes that have occurred and to the pursuit of the processes which might occur in the future. When considering the region’s seismic activity, the presence of active faults that create earthquake within the bay is obvious. Many active fault parts in the Gulf of Gökova region continues their seismic activity with the opening effect that is generally prevailing in Western Anatolia. The region has generally been continuing its seismic activity under the control of normal faults. Considering the marine studies that are made and marine continuity of the faults which are on land in addition to the seismological and tectonic studies, the determination of seismic hazard in the Gulf of Gökova and its surroundings is also important in terms of introducing the earthquake scenarios with minimized errors.

  10. Evaluation of in situ sulfate reduction as redox buffer capacity in groundwater flow path

    Ioka, Seiichiro; Iwatsuki, Teruki; Amano, Yuki; Furue, Ryoji

    2007-01-01

    For safety assessment of geological isolation, it is important to evaluate in situ redox buffer capacity in high-permeability zone as groundwater flow path. The study evaluated in situ sulfate reduction as redox buffer capacity in the conglomerate bedding in Toki Lignite-bearing Formation, which occurs at the lowest part of sedimentary rocks overlying basement granite. The bedding plays an important role as the main groundwater flow path. The result showed that in situ redox buffer capacity in the conglomerate bedding has been identified on first nine months, whereas in the following period the redox buffer capacity has not been identified for about fifteen months. This will be caused by the bedding became inappropriate for microbial survival as the organic matter which is needfuel for microbial activity was consumed. Thus, there will be limited redox buffer capacity in groundwater flow path even in formation including organic matter-bearing layer. (author)

  11. Dynamic evaluation of seismic hazard and risks based on the Unified Scaling Law for Earthquakes

    Kossobokov, V. G.; Nekrasova, A.

    2016-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing seismic hazard maps based on the Unified Scaling Law for Earthquakes (USLE), i.e. log N(M,L) = A + B•(6 - M) + C•log L, where N(M,L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L, A characterizes the average annual rate of strong (M = 6) earthquakes, B determines the balance between magnitude ranges, and C estimates the fractal dimension of seismic locus in projection to the Earth surface. The parameters A, B, and C of USLE are used to assess, first, the expected maximum magnitude in a time interval at a seismically prone cell of a uniform grid that cover the region of interest, and then the corresponding expected ground shaking parameters. After a rigorous testing against the available seismic evidences in the past (e.g., the historically reported macro-seismic intensity or paleo data), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures. The hazard maps for a given territory change dramatically, when the methodology is applied to a certain size moving time window, e.g. about a decade long for an intermediate-term regional assessment or exponentially increasing intervals for a daily local strong aftershock forecasting. The of dynamical seismic hazard and risks assessment is illustrated by applications to the territory of Greater Caucasus and Crimea and the two-year series of aftershocks of the 11 October 2008 Kurchaloy, Chechnya earthquake which case-history appears to be encouraging for further systematic testing as potential short-term forecasting tool.

  12. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1

    Vilsbøll, Tina; Nielsen, Mette Toft; Krarup, T

    2000-01-01

    Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients.......Beta-cell secretory capacity is often evaluated with a glucagon test or a meal test. However, glucagon-like peptide 1 (GLP-1) is the most insulinotropic hormone known, and the effect is preserved in type 2 diabetic patients....

  13. Evaluation of Photosynthesis Capacity of Some Winter Wheat Genotypes in Transylvanian Plain Conditions

    Ionuț RACZ

    2018-05-01

    Full Text Available Leaf photosynthetic capacity is a key parameter determining crop yield; it is enhanced by moderate soil moisture and reduced in both severe water deficit and excessive water conditions. The aim of this work was to evaluate the wheat variety photosynthetic capacity in two main phenological stages. The evaluation of photosynthesis capacity of studied winter wheat varieties in Transylvanian Plain conditions offer relevant information on Romanian genetic material type and paving the way of new research directed to a new wheat breeding program criteria and for improvement of those.

  14. Delineation of seismic source zones based on seismicity parameters ...

    In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of ...

  15. A plastic collapse method for evaluating rotation capacity of full-restrained steel moment connections

    Lee Kyungkoo

    2008-01-01

    Full Text Available An analytical method to model failure of steel beam plastic hinges due to local buckling and low-cycle fatigue is proposed herein. This method is based on the plastic collapse mechanism approach and a yield-line plastic hinge (YLPH model whose geometry is based on buckled shapes of beam plastic hinges observed in experiments. Two limit states, strength degradation failure induced by local buckling and low-cycle fatigue fracture, are considered. The proposed YLPH model was developed for FEMA-350 WUF-W, RBS and Free Flange connections and validated in comparisons to experimental data. This model can be used to estimate the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions.

  16. Evaluation on Impact Interaction between Abutment and Steel Girder Subjected to Nonuniform Seismic Excitation

    Yue Zheng

    2015-01-01

    Full Text Available This paper aims to evaluate the impact interaction between the abutment and the girder subjected to nonuniform seismic excitation. An impact model based on tests is presented by taking material properties of the backfill of the abutment into consideration. The conditional simulation is performed to investigate the spatial variation of earthquake ground motions. A two-span continuous steel box girder bridge is taken as the example to analyze and assess the pounding interaction between the abutment and the girder. The detailed nonlinear finite element (FE model is established and the steel girder and the reinforced concrete piers are modeled by nonlinear fiber elements. The pounding element of the abutment is simulated by using a trilinear compression gap element. The elastic-perfectly plastic element is used to model the nonlinear rubber bearings. The comparisons of the pounding forces, the shear forces of the nonlinear bearings, the moments of reinforced concrete piers, and the axial pounding stresses of the steel girder are studied. The made observations indicate that the nonuniform excitation for multisupport bridge is imperative in the analysis and evaluation of the pounding effects of the bridges.

  17. An evaluation of applicability of seismic refraction method in identifying shallow archaeological features A case study at archaeological site

    Jahangardi, Morteza; Hafezi Moghaddas, Naser; Keivan Hosseini, Sayyed; Garazhian, Omran

    2015-04-01

    We applied the seismic refraction method at archaeological site, Tepe Damghani located in Sabzevar, NE of Iran, in order to determine the structures of archaeological interests. This pre-historical site has special conditions with respect to geographical location and geomorphological setting, so it is an urban archaeological site, and in recent years it has been used as an agricultural field. In spring and summer of 2012, the third season of archaeological excavation was carried out. Test trenches of excavations in this site revealed that cultural layers were often disturbed adversely due to human activities such as farming and road construction in recent years. Conditions of archaeological cultural layers in southern and eastern parts of Tepe are slightly better, for instance, in test trench 3×3 m²1S03, third test trench excavated in the southern part of Tepe, an adobe in situ architectural structure was discovered that likely belongs to cultural features of a complex with 5 graves. After conclusion of the third season of archaeological excavation, all of the test trenches were filled with the same soil of excavated test trenches. Seismic refraction method was applied with12 channels of P geophones in three lines with a geophone interval of 0.5 meter and a 1.5 meter distance between profiles on test trench 1S03. The goal of this operation was evaluation of applicability of seismic method in identification of archaeological features, especially adobe wall structures. Processing of seismic data was done with the seismic software, SiesImager. Results were presented in the form of seismic section for every profile, so that identification of adobe wall structures was achieved hardly. This could be due to that adobe wall had been built with the same materials of the natural surrounding earth. Thus, there is a low contrast and it has an inappropriate effect on seismic processing and identifying of archaeological features. Hence the result could be that application of

  18. Test on large-scale seismic isolation elements

    Mazda, T.; Shiojiri, H.; Oka, Y.; Fujita, T.; Seki, M.

    1989-01-01

    Demonstration test of seismic isolation elements is considered as one of the most important items in the application of seismic isolation system to fast breeder reactor (FBR) plant. Facilities for testing seismic isolation elements have been built. This paper reports on tests for fullscale laminated rubber bearing and reduced scale models are conducted. From the result of the tests, the laminated rubber bearings turn out to satisfy the specification. Their basic characteristics are confirmed from the tests with fullscale and reduced scale models. The ultimate capacity of the bearings under the condition of ordinary temperature are evaluated

  19. Summary report of seismic PSA of BWR model plant

    1999-05-01

    This report presents a seismic PSA (Probabilistic Safety Assessment) methodology developed at the Japan Atomic Energy Research Institute (JAERI) for evaluating risks of nuclear power plants (NPPs) and the results from an application of the methodology to a BWR plant in Japan, which is termed Model Plant'. The seismic PSA procedures developed at JAERI are to evaluate core damage frequency (CDF) and have the following four steps: (1) evaluation of seismic hazard, (2) evaluation of realistic response, (3) evaluation of component capacities and failure probabilities, and (4) evaluation of conditional probability of system failure and CDF. Although these procedures are based on the methodologies established and used in the United States, they include several unique features: (1) seismic hazard analysis is performed with use of available knowledge and database on seismological conditions in Japan; (2) response evaluation is performed with a response factor method which is cost effective and associated uncertainties can be reduced with use of modern methods of design calculations; (3) capacity evaluation is performed with use of test results available in Japan in combination with design information and generic capacity data in the U.S.A.; (4) systems reliability analysis, performed with use of the computer code SECOM-2 developed at JAERI, includes identification of dominant accident sequences, importance analysis of components and systems as well as the CDF evaluation with consideration of the effect of correlation of failures by a newly developed method based on the Monte Carlo method. The effect of correlation has been recognized as an important issue in seismic PSAs. The procedures was used to perform a seismic PSA of a 1100 MWe BWR plant. Results are shown as well as the insights derived and future research needs identified in this seismic PSA. (J.P.N.)

  20. Characterization and performance evaluation of a vertical seismic isolator using link and crank mechanism

    Tsujiuchi, N; Ito, A; Sekiya, Y; Nan, C; Yasuda, M

    2016-01-01

    In recent years, various seismic isolators have been developed to prevent earthquake damage to valuable art and other rare objects. Many seismic isolators only defend against horizontal motions, which are the usual cause of falling objects. However, the development of a seismic isolator designed for vertical vibration is necessary since such great vertical vibration earthquakes as the 2004 Niigata Prefecture Chuetsu Earthquake have occurred, and their increased height characteristics are undesirable. In this study, we developed a vertical seismic isolator that can be installed at a lower height and can support loads using a horizontal spring without requiring a vertical spring. It has a mechanism that combines links and cranks. The dynamic model was proposed and the frequency characteristics were simulated when the sine waves were the input. Shaking tests were also performed. The experimental value of the natural frequency was 0.57 Hz, and the theoretical values of the frequency characteristics were close to the experimental values. In addition, we verified this vertical seismic isolator's performance through shaking tests and simulation for typical seismic waves in Japan. We verified the seismic isolation's performance from the experimental result because the average reduction rate of the acceleration was 0.21. (paper)

  1. Evaluation of the seismic integrity of a plutonium-handling facility

    Coats, D.W.

    1981-01-01

    Many studies have been made by and for the Lawrence Livermore National Laboratory (LLNL) to ensure the seismic safety of its Plutonium Facility (Building 332). These studies have included seismological and geologic field investigations to define the actual seismic hazard existing at the Laboratory site as well as structural studies of the Facility itself. Because the basic seismic design criteria has undergone changes over the years, numerous structural studies and upgrades have been completed. The seismic criteria in use at the LLNL site is reviewed on a continuing basis as new information on the seismicity and geology of the Livermore Valley is obtained. At present, the Laboratory's Earth Sciences Division is conducting a multi-million dollar program to identify and characterize the geologic hazards at the Livermore site, with the primary emphasis on earthquake hazards in the Livermore Valley. This effort is undergoing an independent review by Woodward-Clyde Associates. Additionally, because of increased concerns over the seismic safety of Building 332, the Laboratory has initiated an independent structural review. This review effort will be monitored by the California Seismic Safety Commission to ensure its independence. Both of these studiies are in their early stages and results are not yet available

  2. Evaluation of Fourier and Response Spectra at Ichihasama and Koromogawa Seismic Intensity Observation Sites During the Iwate-Miyagi Nairiku Earthquake in 2008

    Nishikawa, Hayato; Miyajima, Masakatsu

    In this study, we evaluate an acceleration Fourier and response spectra at Ichihasama and Koromogawa seismic intensity observation sites which observed JMA seismic intensity of 6 upper but seismic waveform records don't exist during the Iwate-Miyagi Nairiku earthquake in 2008. Firstly, formula to evaluate acceleration Fourier and response spectra are developed using peak ground acceleration, JMA seismic intensity and predominant period of earthquake spectra based on records obtained from crustal earthquakes with Magnitude of 6 to 7. Acceleration Fourier and response spectra are evaluated for another local government site which are not chosen for development of the formula. The evaluated values mostly agree with the observed ones. Finally, acceleration Fourier and response spectra are evaluated for Ichihasama and Koromogawa observation sites. It is clarified that short period below 1 second was predominated in the evaluated spectra.

  3. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  4. Financial and testamentary capacity evaluations: procedures and assessment instruments underneath a functional approach.

    Sousa, Liliana B; Simões, Mário R; Firmino, Horácio; Peisah, Carmelle

    2014-02-01

    Mental health professionals are frequently involved in mental capacity determinations. However, there is a lack of specific measures and well-defined procedures for these evaluations. The main purpose of this paper is to provide a review of financial and testamentary capacity evaluation procedures, including not only the traditional neuropsychological and functional assessment but also the more recently developed forensic assessment instruments (FAIs), which have been developed to provide a specialized answer to legal systems regarding civil competencies. Here the main guidelines, papers, and other references are reviewed in order to achieve a complete and comprehensive selection of instruments used in the assessment of financial and testamentary capacity. Although some specific measures for financial abilities have been developed recently, the same is not true for testamentary capacity. Here are presented several instruments or methodologies for assessing financial and testamentary capacity, including neuropsychological assessment, functional assessment scales, performance based functional assessment instruments, and specific FAIs. FAIs are the only specific instruments intended to provide a specific and direct answer to the assessment of financial capacity based on legal systems. Considering the need to move from a diagnostic to a functional approach in financial and testamentary capacity evaluations, it is essential to consider both general functional examination as well as cognitive functioning.

  5. Vulnerabilidad sísmica y capacidad de carga de un puente en acero basado en confiabilidad estructural Seismic vulnerability and load carrying capacity studies of a steel bridge based on structural relia

    Edgar Muñoz

    2008-01-01

    Full Text Available Por medio de la confiabilidad estructural, para un Puente en Colombia después de su monitoreo. Los resultados de este trabajo son parte de una nueva metodología para evaluar puentes existentes mediante una colaboración entre Universidad-Empresas-Gobierno Nacional. Este estudio ayuda en la toma de decisiones y en la priorización de tareas de rehabilitación. Este estudio incluyó: caracterización dinámica de las vibraciones naturales del puente; adquisición de datos de fuerzas internas debidas al tráfico por medio de tecnología de LVDT's y Strain Gages; evaluación de las fuerzas actuales comparadas contra los esfuerzos máximos permitidos; modelación estática, dinámica y estructural. Adicionalmente se hizo un estudio de amenaza sísmica y respuesta dinámica del área del puente y nueve (9 diferentes espectros de respuesta fueron obtenidos, cada uno con un periodo de retorno diferente. Se encontró que las torres del puente tienen una probabilidad de falla mayor que la permitida por los códigos. Lo anterior condujo a un reforzamiento inmediato del puente.In this document, seismic vulnerability and load carrying capacity analyses are presented for a bridge in Colombia after monitoring by means of reliability of structures. Results of this work are part of a new methodology to evaluate existing bridges carried out though a partnership among University - Private Companies - and Goverment. This study helps in decision making on the priority of rehabilitation tasks. This study included: dynamic characterization of natural vibrations of the bridge; data logging of inner forces due to traffic by using LVDT's and strain gages technology; evaluation of actual forces to be compared to allowed stresses, dynamic and static structural modelling. Also, a seismic hazard and dynamic response of the local area of the bridge was developed and nine (9 different response spectra were obtained, each one varying its return period. It was found that the

  6. Communicating and Evaluating the Causes of Seismicity in Oklahoma Using ArcGIS Online Story Map Web Applications

    Justman, D.; Rose, K.; Bauer, J. R.; Miller, R., III; Vasylkivska, V.; Romeo, L.

    2016-12-01

    ArcGIS Online story maps allows users to communicate complex topics with geospatially enabled stories. This story map web application entitled "Evaluating the Mysteries of Seismicity in Oklahoma" has been employed as part of a broader research effort investigating the relationships between spatiotemporal systems and seismicity to understand the recent increase in seismicity by reviewing literature, exploring, and performing analyses on key datasets. It offers information about the unprecedented increase in seismic events since 2008, earthquake history, the risk to the population, physical mechanisms behind earthquakes, natural and anthropogenic earthquake factors, and individual & cumulative spatial extents of these factors. The cumulative spatial extents for natural, anthropogenic, and all combined earthquake factors were determined using the Cumulative Spatial Impact Layers (CSILs) tool developed at the National Energy Technology Laboratory (NETL). Results show positive correlations between the average number of influences (datasets related to individual factors) and the number of earthquakes for every 100 square mile grid cell in Oklahoma, along with interesting spatial correlations for the individual & cumulative spatial extents of these factors when overlaid with earthquake density and a hotspot analysis for earthquake magnitude from 2010 to 2015.

  7. Vulnerabilidad sísmica y capacidad de carga de un puente atirantado basados en confiabilidad estructural Seismic vulnerability and loading capacity of a wire strained bridge based on structural reliability

    Edgar Muñoz

    2010-08-01

    tests, trials tests on material mechanical properties, environmental vibrations, measurements on the effects of traffic load, wireless instrumentation, loading tests, wire strainers tensile strength, etc. Additionally, the study explains structural models on finite elements, which were developed for the bridge, as well as its calibration process based on the loading test, and dynamical properties determined on experimental basis. Furthermore, the study indicates the way stress records collection of all structural elements was conducted, during the construction process, in accordance with the job site log-book. As for reliability, a seismic threat analysis was made as well as dynamic responses on the bridge site, where nine spectrums were obtained at different return periods. By studying strength probability curves and seismic loads of pylons, it was found they have reliability indexes in accordance with recommendations by the international regulations. However, one of the superstructure's elements, which were introduced to evaluate its capacity on traffic effects, has a reliability index far higher than the ranges recommended by international regulations. Finally, some wire strainers have higher level tensions than specifications admitted during its design and international recommendations for these kinds of bridges.

  8. The influence of backfill on seismicity

    Hemp, DA

    1990-09-01

    Full Text Available , that the seismicity has been reduced in areas where backfill had been placed. A factor complicating the evaluation of backfill on seismicity is the effect of geological structures on seismicity....

  9. Seismic (SSE) evaluation for the 291Z stack at the Hanford Site -- Addition of environmental monitoring penetrations

    Baxter, J.T.

    1994-01-01

    The purpose of this 291Z stack analysis is to determine the structural effects of chipping additional holes into the stacks concrete walls. The proposed holes are for new environmental monitoring sample probes to be installed at three different elevations. The approximate elevations proposed at this time are 50 ft, 135 ft and 175 ft. There will be four holes required at each of the elevations to support two sample probes extending across the diameter of the stack. A structural sensitivity study has been completed to assess the effect of the proposed holes on the baseline seismic qualification of the stack completed by URS/John A. Blume ampersand Associates, Engineers, San Francisco, California (URS/Blume) in August, 1988. Results of the sensitivity study indicate that the stack would still have adequate structural moment capacity if the new holes were drilled cutting the vertical strength reinforcing steel, or if existing penetrations added since original construction have inadvertently cut vertical rebars. For current and future modifications, no vertical rebar should be cut. A limited number of horizontal rebar, no more than 2, may be cut at the new hole locations without significantly influencing the stack structural shear capacity. New penetrations in the 291Z stack should not be located below elevation 47 ft., 4 in. due to rebar layout and the fact that maximum seismic structural loads occur below this elevation. No vertical rebar should be cut when chipping the new penetrations in the stack concrete wall for the environmental monitoring equipment. Wind load qualification was reviewed. Seismic loads govern over wind loads for all structural load cases; therefore no additional wind analyses are required

  10. Seismic margin analysis technique for nuclear power plant structures

    Seo, Jeong Moon; Choi, In Kil

    2001-04-01

    In general, the Seismic Probabilistic Risk Assessment (SPRA) and the Seismic Margin Assessment(SAM) are used for the evaluation of realistic seismic capacity of nuclear power plant structures. Seismic PRA is a systematic process to evaluate the seismic safety of nuclear power plant. In our country, SPRA has been used to perform the probabilistic safety assessment for the earthquake event. SMA is a simple and cost effective manner to quantify the seismic margin of individual structural elements. This study was performed to improve the reliability of SMA results and to confirm the assessment procedure. To achieve this goal, review for the current status of the techniques and procedures was performed. Two methodologies, CDFM (Conservative Deterministic Failure Margin) sponsored by NRC and FA (Fragility Analysis) sponsored by EPRI, were developed for the seismic margin review of NPP structures. FA method was originally developed for Seismic PRA. CDFM approach is more amenable to use by experienced design engineers including utility staff design engineers. In this study, detailed review on the procedures of CDFM and FA methodology was performed

  11. Seismic load resistance of reinforcing steels in the as delivered condition and after corrosion - relevant material characteristics for performance evaluation

    Moersch, Ing. Joerg [Max Aicher Engineering GmbH, Freilassing (Germany)

    2016-10-15

    This type of accelerated corrosion test was used to study the high number of test samples in due time. The corrosion phenomena obtained in salt spray testing deviate significantly from corrosion phenomena (pitting factor) obtained in practical conditions. Salt spray testing represents practical conditions for the more uniform corrosion as a result of a severe carbonation of the concrete and/or for higher chloride contents at the surface of the rebar. At low corrosion current densities the effect of pit depth on residual mechanical performance might be underestimated. Reinforced concrete (r.c.) buildings in seismic areas shall be designed to guarantee enough ductile resources as for example a sufficient rotational capacity to allow for load re-distribution. The rotational capacity is directly dependent on the ductility of the reinforcing steel which is generally expressed as elongation at maximum load (A+g{sub t}) and the hardening ratio (R{sub m}/R{sub e}). A direct testing of the seismic load resistance of reinforcing steels is not part of the construction product standards. Therefore it was decided by European Commission to introduce this performance requirement in the mandate for the revision of EN 10080:2005. In parallel to the standardization process a research project was carried out to deliver the scientific background.

  12. Evaluation of antioxidant capacity of Aidia borneensis leaf infusion, an endemic plant in Brunei Darussalam

    Metussin, N.,

    2017-08-01

    Full Text Available We investigated the total antioxidant capacity of Aidia borneensis leaf infusion, a Bornean endemic plant, which is traditionally consumed as a home-remedy beverage in Brunei Darussalam. The antioxidant capacity of the infusion of A. borneensis leaves was evaluated by 2,2-diphenyl-1-picryhydrazyl (DPPH radical-scavenging ability. We found that the infusion shows a relatively high antioxidant capacity, and it was attributed to its high phenolic, flavonoid, and flavanol contents which were evaluated by Folin–Ciocalteu reagent, colorimetric assay, and aluminum chloride colorimetric method, respectively. By comparing its total antioxidant capacity, we estimated that the infusion of A. borneensis leaves is in the middle rank among twelve different commercially available Camellia sinensis teas. Our findings would have significant implications on A. borneensis products from Brunei Darussalam and on the feasibility of establishing this new beverage among the commercially available conventional C. sinensis and herbal teas.

  13. Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

    Przeliorz R.

    2014-08-01

    Full Text Available Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1 hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance. Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation processes (γ′, γ″ are probably occurring, resulting in a sudden increase in the observed heat capacity.

  14. Capacity Evaluation for IEEE 802.16e Mobile WiMAX

    Chakchai So-In

    2010-01-01

    Full Text Available We present a simple analytical method for capacity evaluation of IEEE 802.16e Mobile WiMAX networks. Various overheads that impact the capacity are explained and methods to reduce these overheads are also presented. The advantage of a simple model is that the effect of each decision and sensitivity to various parameters can be seen easily. We illustrate the model by estimating the capacity for three sample applications—Mobile TV, VoIP, and data. The analysis process helps explain various features of IEEE 802.16e Mobile WiMAX. It is shown that proper use of overhead reducing mechanisms and proper scheduling can make an order of magnitude difference in performance. This capacity evaluation method can also be used for validation of simulation models.

  15. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included the tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector

  16. Evaluation of sorption capacity of modified wood biomass for arsenic five-valent oxyanions

    Littera, P.; Antoska, R.; Cernansky, S.; Sevc, J.; Kolencik, M.; Budzakova, M.

    2009-01-01

    In the present work is assessed bio-sorption of arsenic oxyanions, which represent one of two most common special arsenic occurring in contaminated waters. A wood biomass was used as sorbent, which was modified by amorphous oxohydroxides of iron to increase sorption capacity, to whom arsenic has high affinity. The work estimated sorption capacity of wood biomass adjusted by oxohydroxides of iron. The Langmuir model as well as the Freundlich model were suitable for evaluation of experimental results. Maximal sorption capacity of investigated sorbent was 9.259 mg/g, what is comparable with values published by other authors.

  17. Comparative evaluation of the polyphenol composition and antioxidant capacity of propolis and Echinacea purpurea

    Silviya S. Georgieva; Valentina L. Christova-Bagdassarian; Maria S. Atanassova

    2014-01-01

    Objective: This study was undertaken to evaluate and compare total phenolics and total flavonoides, and antioxidant capacity of propolis and Echinacea purpurea ethanol extracts. Methods: Propolis and dried Echinacea purpurea extracts were obtained by extraction methods. The extracts were tested for total phenol and total flavonoid contents and antioxidant capacity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Results: The content of total phenolics and total flavon...

  18. A Proposal to Build Evaluation Capacity at the Bunche-Da Vinci Learning Partnership Academy

    King, Jean A.

    2005-01-01

    The author describes potential evaluation capacity-building activities in contrast to the specifics of an evaluation design. Her response to the case of the Bunche-Da Vinci Learning Partnership Academy is developed in three parts: (1) an initial framing of the Bunche-Da Vinci situation; (2) what should be done before signing a contract; and (3)…

  19. FHWA Research and Technology Evaluation: Public-Private Partnership Capacity Building Program

    2018-02-01

    This report details the evaluation of the Federal Highway Administrations Office of Innovative Program Delivery Public-Private Partnership (P3) Capacity Building Program (P3 Program). The evaluators focused on the P3 Programs P3 Toolkit as an e...

  20. Evaluation and optimization of seismic networks and algorithms for earthquake early warning – the case of Istanbul (Turkey)

    Oth, Adrien; Böse, Maren; Wenzel, Friedemann; Köhler, Nina; Erdik, Mustafa

    2010-01-01

    Earthquake early warning (EEW) systems should provide reliable warnings as quickly as possible with a minimum number of false and missed alarms. Using the example of the megacity Istanbul and based on a set of simulated scenario earthquakes, we present a novel approach for evaluating and optimizing seismic networks for EEW, in particular in regions with a scarce number of instrumentally recorded earthquakes. We show that, while the current station locations of the existing Istanbul EEW system...

  1. Parametric Study on Ultimate Failure Criteria of Elbow Piping Components in Seismically Isolated NPP

    Hahm, Dae Gi; Ki, Min Kyu [KAERI, Daejeon (Korea, Republic of); Jeon, Bub Gyu; Kim, Nam Sik [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    It is well known that the interface pipes between isolated and non-isolated structures will become the most critical in the seismically isolated NPPs. Therefore, seismic performance of such interface pipes should be evaluated comprehensively especially in terms of the seismic fragility capacity. To evaluate the seismic capacity of interface pipes in the isolated NPP, firstly, we should define the failure mode and failure criteria of critical pipe components. Hence, in this study, we performed the dynamic tests of elbow components which were installed in a seismically isolated NPP, and evaluated the ultimate failure mode and failure criteria by using the test results. To do this, we manufactured 25 critical elbow component specimens and performed cyclic loading tests under the internal pressure condition. The failure mode and failure criteria of a pipe component will be varied by the design parameters such as the internal pressure, pipe diameter, loading type, and loading amplitude. From the tests, we assessed the effects of the variation parameters onto the failure criteria. For the tests, we generated the seismic input protocol of relative displacement between the ends of elbow component. In this paper, elbow in piping system was defined as a fragile element and numerical model was updated by component test. Failure mode of piping component under seismic load was defined by the dynamic tests of ultimate pipe capacity. For the interface piping system, the seismic capacity should be carefully estimated since that the required displacement absorption capacity will be increased significantly by the adoption of the seismic isolation system. In this study, the dynamic tests were performed for the elbow components which were installed in an actual NPPs, and the ultimate failure mode and failure criteria were also evaluated by using the test results.

  2. On-line Data Transmission, as Part of the Seismic Evaluation Process in the Buildings Field

    Sorin Dragomir, Claudiu; Dobre, Daniela; Craifaleanu, Iolanda; Georgescu, Emil-Sever

    2017-12-01

    The thorough analytical modelling of seismic actions, of the structural system and of the foundation soil is essential for a proper dynamic analysis of a building. However, the validation of the used models should be made, whenever possible, with reference to results obtained from experimental investigations, building instrumentation and monitoring of vibrations generated by various seismic or non-seismic sources. In Romania, the permanent seismic instrumentation/monitoring of buildings is part of a special follow-up activity, performed in accordance with the P130/1999 code for the time monitoring of building behaviour and with the seismic design code, P100-2013. By using the state-of-the-art modern equipment (GeoSIG and Kinemetrics digital accelerographs) in the seismic network of the National Institute for Research and Development URBAN-INCERC, the instrumented buildings can be monitored remotely, with recorded data being sent to authorities or to research institutes in the field by a real-time data transmission system. The obtained records are processed, computing the Fourier amplitude spectra and the response spectra, and the modal parameters of buildings are determined. The paper presents some of the most important results of the institute in the field of building monitoring, focusing on the situation of some significant instrumented buildings located in different parts of the country. In addition, maps with data received from seismic stations after the occurrence of two recent Vrancea (Romania) earthquakes, showing the spatial distribution of ground accelerations, are presented, together with a comparative analysis, performed with reference to previous studies in the literature.

  3. Evaluation of Seismic Hazards at California Department of Transportation (CALTRANS)Structures

    Merriam, M. K.

    2005-12-01

    The California Department of Transportation (CALTRANS) has responsibility for design, construction, and maintenance of approximately 12,000 state bridges. CALTRANS also provides oversight for similar activities for 12,200 bridges owned by local agencies throughout the state. California is subjected to a M6 or greater seismic event every few years. Recent earthquakes include the 1971 Mw6.6 San Fernando earthquake which struck north of Los Angeles and prompted engineers to begin retrofitting existing bridges and re-examine the way bridges are detailed to improve their response to earthquakes, the 1989 Mw6.9 Loma Prieta earthquake which destroyed the Cypress Freeway and damaged the San Francisco-Oakland Bay Bridge, and the 1994 Mw6.7 Northridge earthquake in the Los Angeles area which heavily damaged four major freeways. Since CALTRANS' seismic performance goal is to ensure life-safety needs are met for the traveling public during an earthquake, estimating earthquake magnitude, peak bedrock acceleration, and determining if special seismic considerationsare needed at specific bridge sites are critical. CALTRANS is currently developing a fourth generation seismic hazard map to be used for estimating these parameters. A deterministic approach has been used to develop this map. Late-Quaternary-age faults are defined as the expected seismic sources. Caltrans requires site-specific studies to determine potential for liquefaction, seismically induced landslides, and surface fault rupture. If potential for one of these seismic hazards exists, the hazard is mitigated by avoidance, removal, or accommodated through design. The action taken, while complying with the Department's "no collapse" requirement, depends upon many factors, including cost.

  4. Functional capacity evaluation of work performance among individuals with pelvic injuries following motor vehicle accidents.

    Ratzon, Navah Z; Ari Shevil, Eynat Ben; Froom, Paul; Friedman, Sharon; Amit, Yehuda

    2013-01-01

    Pelvic injuries following motor vehicle accidents (MVA) cause disability and affect work capabilities. This study evaluated functional, self-report, and medical-based factors that could predict work capacity as was reflected in a functional capacity evaluation (FCE) among persons who sustained a pelvic injury. It was hypothesized that self-reported functional status and bio-demographic variables would predict work capacity. Sixty-one community-dwelling adults previously hospitalized following a MVA induced pelvic injury. FCE for work performance was conducted using the Physical Work Performance Evaluation (PWPE). Additional data was collected through a demographics questionnaire and the Functional Status Questionnaire. All participants underwent an orthopedic medical examination of the hip and lower extremities. Most participants self-reported that their work capacity post-injury were lower than their job required. PWPE scores indicated below-range functional performance. Regression models predicted 23% to 51% of PWPE subtests. Participants' self-report of functioning (instrumental activities of daily living and work) and bio-demographic variables (gender and age) were better predictors of PWPE scores than factors originating from the medical examination. Results support the inclusion of FCE, in addition to self-report of functioning and medical examination, to evaluate work capacity among individuals' post-pelvic injury and interventions and discharge planning.

  5. Evaluating core technology capacity based on an improved catastrophe progression method: the case of automotive industry

    Zhao, Shijia; Liu, Zongwei; Wang, Yue; Zhao, Fuquan

    2017-01-01

    Subjectivity usually causes large fluctuations in evaluation results. Many scholars attempt to establish new mathematical methods to make evaluation results consistent with actual objective situations. An improved catastrophe progression method (ICPM) is constructed to overcome the defects of the original method. The improved method combines the merits of the principal component analysis' information coherence and the catastrophe progression method's none index weight and has the advantage of highly objective comprehensive evaluation. Through the systematic analysis of the influencing factors of the automotive industry's core technology capacity, the comprehensive evaluation model is established according to the different roles that different indices play in evaluating the overall goal with a hierarchical structure. Moreover, ICPM is developed for evaluating the automotive industry's core technology capacity for the typical seven countries in the world, which demonstrates the effectiveness of the method.

  6. Commercial spices and industrial ingredients: evaluation of antioxidant capacity and flavonoids content for functional foods development

    Marcela Roquim Alezandro

    2011-06-01

    Full Text Available The aim of this work was to evaluate spices and industrial ingredients for the development of functional foods with high phenolic contents and antioxidant capacity. Basil, bay, chives, onion, oregano, parsley, rosemary, turmeric and powdered industrial ingredients (β-carotene, green tea extract, lutein, lycopene and olive extract had their in vitro antioxidant capacity evaluated by means of the Folin-Ciocalteu reducing capacity and DPPH scavenging ability. Flavonoids identification and quantification were performed by High Performance Liquid Chromatography (HPLC. The results showed that spices presented a large variation in flavonoids content and in vitro antioxidant capacity, according to kind, brand and batches. Oregano had the highest antioxidant capacity and parsley had the highest flavonoid content. The industrial ingredient with the highest antioxidant capacity was green tea extract, which presented a high content of epigalocatechin gallate. Olive extract also showed a high antioxidant activity and it was a good source of chlorogenic acid. This study suggests that oregano, parsley, olive and green tea extract have an excellent potential for the development of functional foods rich in flavonoids as antioxidant, as long as the variability between batches/brands is controlled.

  7. Evaluation of Bearing Capacity of Strip Footing Using Random Layers Concept

    Kawa Marek

    2015-09-01

    Full Text Available The paper deals with evaluation of bearing capacity of strip foundation on random purely cohesive soil. The approach proposed combines random field theory in the form of random layers with classical limit analysis and Monte Carlo simulation. For given realization of random the bearing capacity of strip footing is evaluated by employing the kinematic approach of yield design theory. The results in the form of histograms for both bearing capacity of footing as well as optimal depth of failure mechanism are obtained for different thickness of random layers. For zero and infinite thickness of random layer the values of depth of failure mechanism as well as bearing capacity assessment are derived in a closed form. Finally based on a sequence of Monte Carlo simulations the bearing capacity of strip footing corresponding to a certain probability of failure is estimated. While the mean value of the foundation bearing capacity increases with the thickness of the random layers, the ultimate load corresponding to a certain probability of failure appears to be a decreasing function of random layers thickness.

  8. Construction method and application of 3D velocity model for evaluation of strong seismic motion and its cost performance

    Matsuyama, Hisanori; Fujiwara, Hiroyuki

    2014-01-01

    Based on experiences of making subsurface structure models for seismic strong motion evaluation, the advantages and disadvantages in terms of convenience and cost for several methods used to make such models were reported. As for the details, gravity and micro-tremor surveys were considered to be highly valid in terms of convenience and cost. However, stratigraphy and seismic velocity structure are required to make accurate 3-D subsurface structures. To realize these, methods for directly examining subsurface ground or using controlled tremor sources (at high cost) are needed. As a result, it was summarized that in modeling subsurface structures, some sort of plan including both types of methods is desirable and that several methods must be combined to match one's intended purposes and budget. (authors)

  9. [Evaluation of the capacity of elderly patients to make decisions about their health].

    Atienza-Martín, F J; Garrido-Lozano, M; Losada-Ruiz, C; Rodríguez-Fernández, L M; Revuelta-Pérez, F; Marín-Andrés, G

    2013-09-01

    To assess the decision-making capacity and variables related to this, in elderly patients in a home care program. A cross-sectional study was conducted on 130 patients assigned to home care program or in social welfare residences of an urban health centre. Demographic variables, as well as comorbidities, social support, institutionalisation, number of drugs used, degree of dependence (Barthel Index), cognitive function (Pfeiffer) were collected. The primary endpoint was the capacity for decision-making about their health assessed using the Aid to Capacity Evaluation (ACE) tool. There was a prevalence of 58.5% capacity. There was an association between ability and independence for activities of daily living (odds ratio (OR): 12.214; Confidence interval 95% (95% CI): 3.90 to 32.29, P de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  10. Evaluation of Seismic Rupture Models for the 2011 Tohoku-Oki Earthquake Using Tsunami Simulation

    Ming-Da Chiou

    2013-01-01

    Full Text Available Developing a realistic, three-dimensional rupture model of the large offshore earthquake is difficult to accomplish directly through band-limited ground-motion observations. A potential indirect method is using a tsunami simulation to verify the rupture model in reverse because the initial conditions of the associated tsunamis are caused by a coseismic seafloor displacement correlating to the rupture pattern along the main faulting. In this study, five well-developed rupture models for the 2011 Tohoku-Oki earthquake were adopted to evaluate differences in simulated tsunamis and various rupture asperities. The leading wave of the simulated tsunamis triggered by the seafloor displacement in Yamazaki et al. (2011 model resulted in the smallest root-mean-squared difference (~0.082 m on average from the records of the eight DART (Deep-ocean Assessment and Reporting of Tsunamis stations. This indicates that the main seismic rupture during the 2011 Tohoku earthquake should occur in a large shallow slip in a narrow range adjacent to the Japan trench. This study also quantified the influences of ocean stratification and tides which are normally overlooked in tsunami simulations. The discrepancy between the simulations with and without stratification was less than 5% of the first peak wave height at the eight DART stations. The simulations, run with and without the presence of tides, resulted in a ~1% discrepancy in the height of the leading wave. Because simulations accounting for tides and stratification are time-consuming and their influences are negligible, particularly in the first tsunami wave, the two factors can be ignored in a tsunami prediction for practical purposes.

  11. Seismic hazard in Romania associated to Vrancea subcrustal source Deterministic evaluation

    Radulian, M; Moldoveanu, C L; Panza, G F; Vaccari, F

    2002-01-01

    Our study presents an application of the deterministic approach to the particular case of Vrancea intermediate-depth earthquakes to show how efficient the numerical synthesis is in predicting realistic ground motion, and how some striking peculiarities of the observed intensity maps are properly reproduced. The deterministic approach proposed by Costa et al. (1993) is particularly useful to compute seismic hazard in Romania, where the most destructive effects are caused by the intermediate-depth earthquakes generated in the Vrancea region. Vrancea is unique among the seismic sources of the World because of its striking peculiarities: the extreme concentration of seismicity with a remarkable invariance of the foci distribution, the unusually high rate of strong shocks (an average frequency of 3 events with magnitude greater than 7 per century) inside an exceptionally narrow focal volume, the predominance of a reverse faulting mechanism with the T-axis almost vertical and the P-axis almost horizontal and the mo...

  12. Evaluation of seismic induced CDF and ΔCDF with considering the uncertainty reduction research results

    Hahm, Daegi; Choi, In Kil

    2012-01-01

    In the seismic probabilistic safety assessment (SPSA) of nuclear power plants (NPPs), the efficient and rational methodology to dealing the uncertainty factors are required to increase the reliability of the SPSA results. To reduce the uncertainties in the SPSA approach, many research activities were performed by Korea Atomic Energy Research Institute (KAERI) during the last 5 years mid and long term nuclear research and development program of the ministry of education, science and technology. These outcomes can be implemented to the update or reevaluation of previous NPP's SPSA results. In this study, we applied these uncertainty reduction research results to the update of the SPSA procedure of the target reference plant, i.e., Ulchin unit 5/6 NPP. The refined topics from the SPSA procedure are the seismic fragility, the seismic hazard, and the risk quantification. The detailed process and results are described in the next sections

  13. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    Choun, Young Sun; Hahm, Dae Gi

    2012-01-01

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests

  14. Hysteretic evaluation of seismic performance of normal and fiber reinforced concrete shear walls

    Choun, Young Sun; Hahm, Dae Gi [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the seismic resistance of concrete structures. The application of fibers to earthquake-resistant concrete structures has a major research topic. A recent study shows that an excellent seismic performance can be obtained in shear critical members constructed with high performance fiber reinforced cement composites. To increase the seismic performance of safety related concrete structures in nuclear power plants, fibers can be used. This study investigated the effect of fibers on the hysteretic behavior of a reinforced concrete (RC) shear wall by cyclic tests.

  15. Seismic response of base isolated auxiliary building with age related degradation

    Park, Jun Hee; Choun, Young Sun; Choi, In Kil

    2012-01-01

    The aging of an isolator affects not only the mechanical properties of the isolator but also the dynamic properties of the upper structure, such as the change in stiffness, deformation capacity, load bearing capacity, creep, and damping. Therefore, the seismic response of base isolated structures will change with time. The floor response in the base isolated nuclear power plants (NPPs) can be particularly changed because of the change in stiffness and damping for the isolator. The increased seismic response due to the aging of isolator can cause mechanical problems for many equipment located in the NPPs. Therefore, it is necessary to evaluate the seismic response of base isolated NPPs with age related degradation. In this study, the seismic responses for a base isolated auxiliary building of SHIN KORI 3 and 4 with age related degradation were investigated using a nonlinear time history analysis. Floor response spectrums (FRS) were presented with time for identifying the change in seismic demand under the aging of isolator

  16. Evaluating the engagement of universities in capacity building for sustainable development in local communities.

    Shiel, Chris; Leal Filho, Walter; do Paço, Arminda; Brandli, Luciana

    2016-02-01

    Universities have the potential to play a leading role in enabling communities to develop more sustainable ways of living and working however, sustainable communities may only emerge with facilitation, community learning and continual efforts to build their capacities. Elements of programme planning and evaluation on the one hand, and capacity building on the other, are needed. The latter entails approaches and processes that may contribute to community empowerment; universities may either lead such approaches, or be key partners in an endeavour to empower communities to address the challenges posed by the need for sustainable development. Although capacity building and the promotion of sustainable development locally, are on the agenda for universities who take seriously regional engagement, very little is published that illustrates or describes the various forms of activities that take place. Further, there is a paucity of studies that have evaluated the work performed by universities in building capacity for sustainable development at the local level. This paper is an attempt to address this need, and entails an empirical study based on a sample of universities in the United Kingdom, Germany, Portugal and Brazil. The paper examines the extent to which capacity building for sustainable development is being undertaken, suggests the forms that this might take and evaluates some of the benefits for local communities. The paper concludes by reinforcing that universities have a critical role to play in community development; that role has to prioritise the sustainability agenda. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reverse Link CDMA System Capacity Evaluation for Stratospheric Platform Mobile Communications

    Iskandar Iskandar

    2010-10-01

    Full Text Available We propose an analysis of reverse link CDMA multispot beam stratospheric platforms (SPF in this paper. The SPF is currently proposed as a novel wireless technology for the development of the next generation fixed and mobile communications. The geometry of this technology is different from that of the terrestrial but rather similar to the satellite based cellular system. However, evaluation on the CDMA system capacity of this technology has not been much reported. This paper addresses all possible multiple access interference analyses including the effects of channel fading and shadowing in order to evaluate the system capacity. Single SPF and multiple SPF model are evaluated under perfect power control and imperfect power control. The results indicate that in SPF systems the reverse link CDMA capacity is significantly reduced because of the power control imperfections. Moreover, in multiple SPF model the interference caused by the users in overlapped region is not trivial. We found that because of this problem the capacity is reduced for both speech and real-time data applications compared with the single SPF model even though the assumption of perfect power control can be made. In order to improve the system capacity we proposed two methods, first is to increase the minimum elevation angle definition for each platform and the second is to employ an adaptive antenna.

  18. Fragility analysis of a seismically-isolated emergency diesel generator

    Choun, Young Sun; Choi, In Kil; Ohtori, Yasuki

    2005-01-01

    The seismic capacity of an Emergency Diesel Generator (EDG) in nuclear power plants influences the seismic safety of the plants significantly. A recent study showed that the increase of the seismic capacity of the EDG could reduce the core damage frequency (CDF) remarkably. It is known that the major failure mode of the EDG is a concrete coning failure due to the pulling out of the anchor bolts. The use of base isolators instead of anchor bolts can increase the seismic capacity of the EDG without any major problems. The fragility curves for a base-isolated EDG should be different from those for a conventional type because the major failure mode of the base-isolated EDG will not be a concrete coning one any more. The governing failure mode of the base-isolated EDG must be the damage of the isolators. This study introduces a fragility evaluation method for an isolated EDG, and evaluates the fragilities for the isolated EDG and compares them with those for the conventional one. Evaluation of the ground motion index is also carried out to determine the governing parameter suitable for representing the seismic responses of the base isolator

  19. [Evaluation of comprehensive capacity of resources and environments in Poyang Lake Eco-economic Zone].

    Song, Yan-Chun; Yu, Dan

    2014-10-01

    With the development of the society and economy, the contradictions among population, resources and environment are increasingly worse. As a result, the capacity of resources and environment becomes one of the focal issues for many countries and regions. Through investigating and analyzing the present situation and the existing problems of resources and environment in Poyang Lake Eco-economic Zone, seven factors were chosen as the evaluation criterion layer, namely, land resources, water resources, biological resources, mineral resources, ecological-geological environment, water environment and atmospheric environment. Based on the single factor evaluation results and with the county as the evaluation unit, the comprehensive capacity of resources and environment was evaluated by using the state space method in Poyang Lake Eco-economic Zone. The results showed that it boasted abundant biological resources, quality atmosphere and water environment, and relatively stable geological environment, while restricted by land resource, water resource and mineral resource. Currently, although the comprehensive capacity of the resources and environments in Poyang Lake Eco-economic Zone was not overloaded as a whole, it has been the case in some counties/districts. State space model, with clear indication and high accuracy, could serve as another approach to evaluating comprehensive capacity of regional resources and environment.

  20. Building evaluation capacity in Ontario's public health units: promising practices and strategies.

    Bourgeois, I; Simmons, L; Buetti, D

    2018-03-26

    This article presents the findings of a project focusing on building evaluation capacity in 10 Ontario public health units. The study sought to identify effective strategies that lead to increased evaluation capacity in the participating organizations. This study used a qualitative, multiple case research design. An action research methodology was used to design customized evaluation capacity building (ECB) strategies for each participating organization, based on its specific context and needs. This methodological approach also enabled monitoring and assessment of each strategy, based on a common set of reporting templates. A multiple case study was used to analyze the findings from the 10 participating organizations and derive higher level findings. The main findings of the study show that most of the strategies used to increase evaluation capacity in public health units are promising, especially those focusing on developing the knowledge, skills, and attitudes of health unit staff and managers. Facilitators to ECB strategies were the engagement of all staff members, the support of leadership, and the existence of organizational tools and infrastructure to support evaluation. It is also essential to recognize that ECB takes time and resources to be successful. The design and implementation of ECB strategies should be based on organizational needs. These can be assessed using a standardized instrument, as well as interviews and staff surveys. The implementation of a multicomponent approach (i.e. several strategies implemented simultaneously) is also linked to better ECB outcomes in organizations. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  1. Evaluation of seismic behavior of a braced tubular steel structure by pseudodynamic testing

    Shiny, P.B.; Javadian-Gilani, A.S.; Mahin, S.A.

    1984-01-01

    The inelastic seismic behavior of an X-braced, tubular steel frame is studied experimentally by means of pseudodynamic testing. The pseudodynamic method, which utilizes a numerical algorithm in the on-line computer control of a test specimen, can realistically simulate the seismic response of a structural model. This paper presents a brief outline of the experimental procedure and the results of the tubular frame tests, including the global responses, the inelastic energy-dissipation capabilities, and the failure mechanism of the frame at various excitation levels. Correlation of these results with previous experimental studies illustrates the feasibility and accuracy of the new test method

  2. Contribution to the damage measurement of reinforced concrete buildings under seismic solicitations: proposal of an improvement for the evaluation of the damaging potential of a signal and of the damage for the girders structures: introduction to the reliability analysis of the damage in terms of the damaging potential of a seismic signal

    Naze, P.A.

    2004-12-01

    Building damage measurement during and after an earthquake remains an economical as well as technical stake as difficult to cope with as the problem it raises all the more because its importance depends on the field or the building function: civil, medical, military, nuclear... Even building ruin remains one of the most critical diagnosis to establish. Then since prediction of earthquake still remains impossible, foreseeing structural damages due to seismic motion has become a key point in earthquake engineering. This work aims at evaluating the relevance of classical seismic signal damaging potential indices and at proposing improvement of these indices in order to provide better prediction of structural damage due to earthquake. The first part supplies a non exhaustive state of the art of main Damaging Potential Indices IP and Damage Indices ID used in earthquake engineering. In the second part, IP/ID correlations results are analysed in order to evaluate IP relevance, to justify displacement based approach use (capacity spectrum method) for damage prediction and to make good the proposal for improvement of Damaging Potential Index. But studding seismic signal damaging potential is usually not enough to foresee damage firstly because scalar representation of damaging potential is not easy to link to physics reality and secondly because of damage scattering often observed for a single value of seismic signal damaging potential. In the same way, a single damage index value may correspond to very different structural damage states. Hence, this work carries on with a contribution to damage index reliability improvement, able to detect real structural damage appearance as well as to quantify this damage by associating the distance between one structural sate and the structural collapse, defined as an instability. (author)

  3. Methodological approach for the seismic backfitting of nuclear power plants in Eastern Europe

    Galli, P.; Muzzi, F.; Ruggieri, G.; Zola, M.

    1993-01-01

    In the frame of the assessment of the seismic adequacy of the operating Nuclear Power Plants in East Europe, the main problem to match with is the difficulty to work about already existing plants. Moreover consolidated standards and procedures for seismic design, verification and qualification exist for new structures and equipment, then the extension to operating plants requires a lot of engineering judgement. The paper highlights the importance of: identification of seismic safety related systems and components; site specific seismic input definition in agreement with international standards; computation of seismic loads accounting for soil-structure interaction and appropriate structural modelling; overall stability verification of the plant (soil bearing capacity, soil liquefaction, sliding, overturning); ductility effects in evaluation of seismic protection; engineering process for the qualification of components and systems and walkdown procedures and identification of remedial measures (easy fixes and complex fixes). Some examples are reported referred to the more recent ISMES activities in the field

  4. Demonstration of NonLinear Seismic Soil Structure Interaction and Applicability to New System Fragility Seismic Curves

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States). Nuclear Science and Technology

    2014-09-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRAs are performed by convolving the seismic hazard (the frequency of certain magnitude events) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, fragility or capacity of structures, systems and components (SSC), and systems analysis. Figure 1 provides a high level overview of the risk quantification process. The focus of this research is on understanding and removing conservatism (when possible) in the quantification of seismic risk at NPPs.

  5. Dynamic behavior structural response and capacity evaluation of the standardized WWER-1000 nuclear power plants subjected to severe loading conditions

    Ambriashvili, Y.K.; Krutzik, N.J.

    1993-01-01

    In order to verify the structural capacity of standardized WWER-1000 MW nuclear power plants, comprehensive static and dynamic analyses were performed in cooperation between Siemens and Atomenergoprojekt. The main goal of these investigations was to perform of a number of seismic analyses of standardized WWER-1000 reactor buildings on the basis of 13 given seismological inputs, taking into account the local soil conditions at 17 different sites defined by in-situ investigations. The analyses were based on appropriate mathematical models (equivalent beam models as well as detailed spatial surface element models) of the coupled vibrating structures (base structure, outer structure, containment, inner structure) and of the layered soil. The analyses were mainly performed using the indirect method (substructure method). Based on the results of the seismic analysis as well as the results of static analysis (pressure and temperature due to LOCA, dead weight, prestressing) an assessment was made of the seismic safety of the containment and the reactor building. Using a complex 3-dimensional model of the structure and the soil, the influence of the flexibility of the basement structure on the structural response was also studied. The structural analyses of the WWER-1000 reactor building led to the conclusion that its design accounts well for the main factors governing the dynamic behavior of the building. The assessment of the forces acting in the structures shows that the bearing capacity of the analyzed building structure corresponds to an earthquake intensity of about 0.2 g to 0.25 g

  6. Functional Capacity Evaluation in Upper Limb Reduction Deficiency and Amputation : Development and Pilot Testing

    Postema, S G; Bongers, R M; Reneman, M F; van der Sluis, C K

    Purpose To develop and pilot test a functional capacity evaluation (FCE) for individuals with upper limb absence (ULA) due to reduction deficiency or amputation, and to examine the relationship between FCE results and presence of musculoskeletal complaints (MSC). Method Five tests (overhead lifting,

  7. Towards Consensus in Operational Definitions in Functional Capacity Evaluation : a Delphi Survey

    Soer, Remko; van der Schans, Cees P.; Groothoff, Johan W.; Geertzen, Jan H. B.; Reneman, Michiel F.

    2008-01-01

    Introduction The problem of inconsistent terminology in functional capacity evaluation (FCE) has been widely addressed in the international literature. Many different terms seem to be used interchangeably while other terms appear to be interpreted differently. This may seriously hinder FCE research

  8. Internal Whole-School Evaluation in South Africa: The Influence of Holistic Staff Capacity

    Govender, Neelan; Grobler, Bennie; Mestry, Raj

    2016-01-01

    The Holistic Equilibrium Theory of Organizational Development was used to gain an in-depth understanding of the influence of holistic staff capacity on conducting effective internal whole-school evaluation (IWSE) within the Gauteng Department of Education's public secondary schools. In the context of South African education, the staff of each…

  9. Test-retest reliability of the isernhagen work systems functional capacity evaluation in healthy adults

    Reneman, MF; Brouwer, S; Meinema, A; Dijkstra, PU; Geertzen, JHB; Groothoff, JW

    2004-01-01

    Aim of this study was to investigate test-retest reliability of the Isernhagen Work System Functional Capacity Evaluation (IWS FCE) in healthy subjects. The IWS FCE consists of 28 tests that reflect work-related activities such as lifting, carrying, bending, etc. A convenience sample of 26 healthy

  10. An evaluation of criteria for defining tectonic, seismic, or seismotectonic provinces

    1980-05-01

    A compilation and generic critique of the diagnostic siting criteria now in use throughout the world to delineate or approximate bounded tectonic, seismic, or seismotectonic provinces or zones, are presented. The criteria are referenced and tabulated to facilitate determination of their regulatory, scientific and practical application to siting of important engineered structures in Canada

  11. Evaluation of the Seismic Characterision of Select Engineered Nanoparticles in Saturated Glass Beads

    A laboratory testing apparatus was developed for the study of seismic body wave propagation through nanoparticles dispersed in pore fluid that is essentially saturating glass beads. First, the responses of water-saturated glass bead specimens were studied to establish baseline si...

  12. Evaluation capacity assessment of the transport sector in South Africa: An innovative approach

    Basia D. Bless

    2017-05-01

    Conclusion: In this regard, the framework is recommended as an innovative tool to assist evaluation practitioners and scholars to better understand evaluation capacity constraints within a broader context that involves logistical, technical, contextual, social and political dimensions. It also offers an important insight on how these components interfaced to shape the organisational value system that impacts the use of evidence in the transport sector in South Africa.

  13. Seismic microzonation of Bangalore, India

    Evaluation of seismic hazards and microzonation of cities enable us to characterize the potential seismic areas which have similar exposures to haz- ards of earthquakes, and these results can be used for designing new structures or retrofitting the existing ones. Study of seismic hazard and preparation of microzonation ...

  14. [The development of evaluation capacity in primary healthcare management: a case study in Santa Catarina State, Brazil, 2008-2011].

    Nickel, Daniela Alba; Calvo, Maria Cristina Marino; Natal, Sonia; Freitas, Sérgio Fernando Torres de; Hartz, Zulmira Maria de Araújo

    2014-04-01

    This article analyzes evaluation capacity-building based on the case study of a State Health Secretariat participating in the Project to Strengthen the Technical Capacity of State Health Secretariats in Monitoring and Evaluating Primary Healthcare. The case study adopted a mixed design with information from documents, semi-structured interviews, and evaluation of primary care by the State Health Secretariat in 2008-2011. Process analysis was used to identify the logical events that contributed to evaluation capacity-building, with two categories: evaluation capacity-building events and events for building organizational structure. The logical chain of events was formed by negotiation and agreement on the decision-making levels for the continuity of evaluation, data collection and analysis by the State Health Secretariat, a change in key indicators, restructuring of the evaluation matrix, and communication of the results to the municipalities. The three-way analysis showed that the aim of developing evaluation capacity was achieved.

  15. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B

  16. Seismic structural fragility investigation for the Zion Nuclear Power Plant. Seismic safety margins research program (phase 1)

    Wesley, D.A.; Hashimoto, P.S.

    1981-10-01

    An evaluation of the seismic capacity of the essential structures for the Zion Nuclear Power Plant in Zion, Illinois, was conducted as part of the Seismic Safety Margins Research Program (SSMRP). The structures included the reactor containment building, the turbine/auxiliary building, and the crib house (intake structure). The evaluation was devoted to seismically induced failures rather than those resulting from combined Loss of Coolant Accident (LOCA) or other extreme load combinations. The seismic loads used in the investigation were based on elastic analyses. The loads for the reactor containment and turbine/auxiliary buildings were developed by Lawrence Livermore Laboratory using time history analyses. The loads used for the crib house were the original seismic design loads developed by Sargent and Lundy. No non-linear seismic analyses were conducted. The seismic capacity of the structures accounted for the actual concrete and steel material properties including the aging of the concrete. Median centered properties were used throughout the evaluation including levels of damping considered appropriate for structures close to collapse as compared to the more conservative values used for design. The inelastic effects were accounted for using ductility modified response spectrum techniques based on system ductility ratios expected for structures near collapse. Sources of both inherent randomness and uncertainties resulting from lack of knowledge or approximations in analytical modelling were considered in developing the dispersion of the structural dynamic characteristics. Coefficients of variation were developed assuming lognormal distributions for all variables. The earthquake levels for many of the seismically induced failure modes are so high as to be considered physically incredible. (author)

  17. Optimum design for pipe-support allocation against seismic loading

    Hara, Fumio; Iwasaki, Akira

    1996-01-01

    This paper deals with the optimum design methodology of a piping system subjected to a seismic design loading to reduce its dynamic response by selecting the location of pipe supports and whereby reducing the number of pipe supports to be used. The author employs the Genetic Algorithm for obtaining a reasonably optimum solution of the pipe support location, support capacity and number of supports. The design condition specified by the support location, support capacity and the number of supports to be used is encored by an integer number string for each of the support allocation candidates and they prepare many strings for expressing various kinds of pipe-support allocation state. Corresponding to each string, the authors evaluate the seismic response of the piping system to the design seismic excitation and apply the Genetic Algorithm to select the next generation candidates of support allocation to improve the seismic design performance specified by a weighted linear combination of seismic response magnitude, support capacity and the number of supports needed. Continuing this selection process, they find a reasonably optimum solution to the seismic design problem. They examine the feasibility of this optimum design method by investigating the optimum solution for 5, 7 and 10 degree-of-freedom models of piping system, and find that this method can offer one a theoretically feasible solution to the problem. They will be, thus, liberated from the severe uncertainty of damping value when the pipe support guaranties the design capacity of damping. Finally, they discuss the usefulness of the Genetic Algorithm for the seismic design problem of piping systems and some sensitive points when it will be applied to actual design problems

  18. Geotechnical Seismic Hazard Evaluation At Sellano (Umbria, Italy) Using The GIS Technique

    Capilleri, P.; Maugeri, M.

    2008-01-01

    A tool that has been widely-used in civil engineering in recent years is the geographic information system (GIS). Geographic Information systems (GIS) are powerful tools for organizing, analyzing, and presenting spatial data. The GIS can be used by geotechnical engineers to aid preliminary assessment through to the final geotechnical design. The aim of this work is to provide some indications for the use of the GIS technique in the field of seismic geotechnical engineering, particularly as regards the problems of seismic hazard zonation maps. The study area is the village of Sellano located in the Umbrian Apennines in central Italy, about 45 km east of Perugia and 120 km north-east of Rome The increasing importance attributed to microzonation derives from the spatial variability of ground motion due to particular local conditions. The use of GIS tools can lead to an early identification of potential barriers to project completion during the design process that may help avoid later costly redesign

  19. Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures

    Liberatore, Laura; Tocci, Cesare; Masiani, Renato

    2008-01-01

    In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building in which the r.c. internal frames are replaced with masonry walls

  20. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant

  1. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant.

  2. Building research and evaluation capacity in population health: the NSW Health approach.

    Edwards, Barry; Stickney, Beth; Milat, Andrew; Campbell, Danielle; Thackway, Sarah

    2016-02-01

    Issue addressed An organisational culture that values and uses research and evaluation (R&E) evidence to inform policy and practice is fundamental to improving health outcomes. The 2016 NSW Government Program Evaluation Guidelines recommend investment in training and development to improve evaluation capacity. The purpose of this paper is to outline the approaches taken by the NSW Ministry of Health to develop R&E capacity and assess these against existing models of practice. Method The Ministry of Health's Centre for Epidemiology and Evidence (CEE) takes an evidence-based approach to building R&E capacity in population health. Strategies are informed by: the NSW Population Health Research Strategy, R&E communities of practice across the Ministry and health Pillar agencies and a review of the published evidence on evaluation capacity building (ECB). An internal survey is conducted biennially to monitor research activity within the Ministry's Population and Public Health Division. One representative from each of the six centres that make up the Division coordinates completion of the survey by relevant staff members for their centre. Results The review identified several ECB success factors including: implementing a tailored multifaceted approach; an organisational commitment to R&E; and offering experiential training and ongoing technical support to the workforce. The survey of research activity found that the Division funded a mix of research assets, research funding schemes, research centres and commissioned R&E projects. CEE provides technical advice and support services for staff involved in R&E and in 2015, 22 program evaluations were supported. R&E capacity building also includes a series of guides to assist policy makers, practitioners and researchers to commission, undertake and use policy-relevant R&E. Staff training includes workshops on critical appraisal, program logic and evaluation methods. From January 2013 to June 2014 divisional staff published 84

  3. Seismic Performance Evaluation of Concrete Gravity Dams with Penetrated Cracks Considering Fluid–Structure Interaction

    A. Behshad

    2018-02-01

    Full Text Available In this paper, a comprehensive study on the seismic behavior of fractured concrete gravity dams during ground shakings is carried out considering dam–reservoir interaction effects. To gain the seismic behavior of the whole system, finite and boundary elements are employed to model the liquid region and the cracked structure, respectively. Formulation and different computational aspects of the suggested staggered hybrid approach are thoroughly argued. A computer code was developed in order to discuss the presented hybrid BE–DE technique and comparisons are made between the obtained results and those reported in the literature. To gain this goal, several problems of seismic excitations in frequency- and time-domains are presented employing the proposed approach, showing that the present results agree well with the results from other numerical procedures. The cracked Koyna Dam is scrutinized, considering the dynamic interaction between dam and reservoir with focus on the nonlinear behavior due to its top profile crack. The developed numerical model is rigorously validated by extensive comparisons with available results in the literature in which the dam–reservoir interaction were simplified by added masses. It can be concluded that there is significant disparity between the overturning and sliding response schemes of the nonlinear analysis and those of added mass technique.

  4. Evaluation of the Migration Capacity of Zn in the Soil–Plant System

    Anisimov, V. S.; Anisimova, L. N.; Frigidova, L. M.; Dikarev, D. V.; Frigidov, R. A.; Korneev, Yu. N.; Sanzharov, A. I.; Arysheva, S. P.

    2018-04-01

    The mobility and migration capacity of Zn in the soil-plant system were studied in a series of pot experiments with barley as a test plant. The parameters of Zn accumulation depending on the metal concentrations in soils and soil solutions were estimated by soil and water culture methods. Experiments with barley in water culture were performed on a nutrient (soil) solution extracted from soddy-podzolic soil (Albic Retisol (Loamic, Ochric)) to which Zn2+ was added to reach working concentrations increasing from 0.07 to 430 μM. Different responses of barley plants to changes in the concentration of Zn in the studied soil were identified. Ranges of the corresponding concentrations in the soil and aboveground barley biomass were determined. Parameters of Zn accumulation by test plants were determined depending on the metal content in soddypodzolic soil and the soil solution. A new method was proposed for evaluating the buffer capacity of soils with respect to a heavy metal (Zn) using test plants (BCS(P)Zn). The method was used to evaluate the buffering capacity of loamy sandy soddy-podzolic soil. The considered methodological approach offers opportunities for using data obtained during the agroecological monitoring of agricultural lands with heavy metals (HMs), including the contents of exchangeable HMs and macroelements (C and Mg) in soils and concentrations of HMs and (Ca + Mg) in plants, in the calculation of the buffering capacity of the surveyed soils for HMs.

  5. Phytochemical evaluation and in vitro antioxidant and photo-protective capacity of Calendula officinalis L. leaves

    V.C.K.N. DEUSCHLE

    2015-01-01

    Full Text Available ABSTRACT The plant Calendula officinalis L. is widely applied due to its medicinal properties, which are mainly dermatological and ornamental. The goal of this study is to assess the phytochemical components in a hydroethanolic extract (HECO from the leaves of Calendula officinalis L. using UV-VIS spectrophotometry and thin layer chromatography (TLC, as well as to identify and quantify the components related to its antioxidant capacity employing high performance liquid chromatographic (HPLC. The antioxidant capacity evaluation was performed using the DPPH method for superoxide and hydroxyl radicals. The photo-protective capacity was evaluated by UVspectrophotometry in order to determine the in vitro Sun Protection Factor(SPF. The results show the plant’s strong antioxidant activity (DPPH and hydroxyl methods, which we believe to be related to the presence of flavonoids (24.67 mg/g, polyphenols (33.90 mg/g, condensed tannins (27.30 mg/g, and the amount of rutin (37.25 mg/g, and quercetin (6.09 mg/g found during the study. The HECO presented a good antioxidant capacity, most likely due to the polyphenols, flavonoids, and tannins in its contents. However, the obtained SPF of 1.89 ± 0.05 does not allow the plant to be classified as a stand-alone sunscreen, and more studies are needed in order to test its ability to enhance sunscreens in existing cosmetic formulations.

  6. An Integrated Approach to Evaluate Urban Adaptive Capacity to Climate Change

    Qiangsheng Hu

    2018-04-01

    Full Text Available Climate change and accelerated urbanization have posed severe challenges to urban development, resulting in a growing series of climate and environmental problems that have a significant impact on industrial production and urban life. In a developing country such as China, more than 57% of the population lives in urban areas. It is vital for these cities to adapt to climate-induced risks. A better understanding of how to improve adaptive capacity could enhance the ability to achieve a desirable state when the city experiences stress. This paper used an integrated approach for evaluating the urban adaptive capacity to climate change. It developed the evaluation index system of urban adaptive capacity (UAC based on the driver–pressure–state–impact–response model (DPSIR, and adopted grey relational analysis (GRA and the entropy method to analyze the level of UAC in Changsha, the capital city of Hunan Province, from 2006 to 2015. The results revealed that the UAC of Changsha showed a significant increase from 2006 to 2015. Among the five first-grade indicators, the response dimension had the greatest influence on the improvement of UAC. The study may provide suggestions for adaptive capacity building and sustainable development in other urban areas.

  7. Reliability of lifeline networks under seismic hazard

    Selcuk, A. Sevtap; Yuecemen, M. Semih

    1999-01-01

    Lifelines, such as pipelines, transportation, communication and power transmission systems, are networks which extend spatially over large geographical regions. The quantification of the reliability (survival probability) of a lifeline under seismic threat requires attention, as the proper functioning of these systems during or after a destructive earthquake is vital. In this study, a lifeline is idealized as an equivalent network with the capacity of its elements being random and spatially correlated and a comprehensive probabilistic model for the assessment of the reliability of lifelines under earthquake loads is developed. The seismic hazard that the network is exposed to is described by a probability distribution derived by using the past earthquake occurrence data. The seismic hazard analysis is based on the 'classical' seismic hazard analysis model with some modifications. An efficient algorithm developed by Yoo and Deo (Yoo YB, Deo N. A comparison of algorithms for terminal pair reliability. IEEE Transactions on Reliability 1988; 37: 210-215) is utilized for the evaluation of the network reliability. This algorithm eliminates the CPU time and memory capacity problems for large networks. A comprehensive computer program, called LIFEPACK is coded in Fortran language in order to carry out the numerical computations. Two detailed case studies are presented to show the implementation of the proposed model

  8. Seismic analysis of a PWR 900 reactor: study of reactor building with soil-structure interaction and evaluation of floor spectra

    Gantenbein, F.; Aguilar, J.

    1983-08-01

    The purpose of this paper is the evaluation of seismic response and floor spectra for a typical PWR 900 reactor building with respect to soil-structure interaction for soil stiffness). The typical PWR 900 reactor building consists of a concrete cylindrical external building and roof dome, a concrete internal structure (internals) on a common foundation mat as illustrated. The seismic response is obtained by SRSS method and floor spectra directly from ground spectrum and modal properties of the structure. Seismic responses and floor spectra computation is performed in the case of two different ground spectra: EDF spectrum (mean of oscillator spectra obtained from 8 californian records) normalized to 0.2 g, and DSN spectrum (typical of shallow seism) normalized to 0.3 g. The first section is devoted to internals' modelisation, the second one to the axisymmetric model of the reactor, the third one to the seismic response, the fourth one to floor spectra

  9. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation

    Eem, S H; Jung, H J; Koo, J H

    2013-01-01

    Recently, magneto-rheological (MR) elastomer-based base isolation systems have been actively studied as alternative smart base isolation systems because MR elastomers are capable of adjusting their modulus or stiffness depending on the magnitude of the applied magnetic field. By taking advantage of the MR elastomers’ stiffness-tuning ability, MR elastomer-based smart base isolation systems strive to alleviate limitations of existing smart base isolation systems as well as passive-type base isolators. Until now, research on MR elastomer-based base isolation systems primarily focused on characterization, design, and numerical evaluations of MR elastomer-based isolators, as well as experimental tests with simple structure models. However, their applicability to large civil structures has not been properly studied yet because it is quite challenging to numerically emulate the complex behavior of MR elastomer-based isolators and to conduct experiments with large-size structures. To address these difficulties, this study employs the real-time hybrid simulation technique, which combines physical testing and computational modeling. The primary goal of the current hybrid simulation study is to evaluate seismic performances of an MR elastomer-based smart base isolation system, particularly its adaptability to distinctly different seismic excitations. In the hybrid simulation, a single-story building structure (non-physical, computational model) is coupled with a physical testing setup for a smart base isolation system with associated components (such as laminated MR elastomers and electromagnets) installed on a shaking table. A series of hybrid simulations is carried out under two seismic excitations having different dominant frequencies. The results show that the proposed smart base isolation system outperforms the passive base isolation system in reducing the responses of the structure for the excitations considered in this study. (paper)

  10. Evaluating institutional capacity for research ethics in Africa: a case study from Botswana.

    Hyder, Adnan A; Zafar, Waleed; Ali, Joseph; Ssekubugu, Robert; Ndebele, Paul; Kass, Nancy

    2013-07-30

    The increase in the volume of research conducted in Low and Middle Income Countries (LMIC), has brought a renewed international focus on processes for ethical conduct of research. Several programs have been initiated to strengthen the capacity for research ethics in LMIC. However, most such programs focus on individual training or development of ethics review committees. The objective of this paper is to present an approach to institutional capacity assessment in research ethics and application of this approach in the form of a case study from an institution in Africa. We adapted the Octagon model originally used by the Swedish International Development Cooperation Agency to assess an organization along eight domains in research ethics: basic values and identity; structure and organization; ability to carry out activities; relevance of activities to stated goals; capacity of staff and management; administrative, financing and accounting systems; its relations with target groups; and the national context. We used a mixed methods approach to collect empirical data at the University of Botswana from March to December 2010. The overall shape of the external evaluation Octagon suggests that strengths of the University of Botswana are in the areas of structure, relevance, production and identity; while the university still needs more work in the areas of systems of finance, target groups, and environment. The Octagons also show the similarities and discrepancies between the 'external' and 'internal' evaluations and provide an opportunity for exploration of these different assessments. For example, the discrepant score for 'identity' between internal and external evaluations allows for an exploration of what constitutes a strong identity for research ethics at the University of Botswana and how it can be strengthened. There is a general lack of frameworks for evaluating research ethics capacity in LMICs. We presented an approach that stresses evaluation from both internal

  11. Evaluating institutional capacity for research ethics in Africa: a case study from Botswana

    2013-01-01

    Background The increase in the volume of research conducted in Low and Middle Income Countries (LMIC), has brought a renewed international focus on processes for ethical conduct of research. Several programs have been initiated to strengthen the capacity for research ethics in LMIC. However, most such programs focus on individual training or development of ethics review committees. The objective of this paper is to present an approach to institutional capacity assessment in research ethics and application of this approach in the form of a case study from an institution in Africa. Methods We adapted the Octagon model originally used by the Swedish International Development Cooperation Agency to assess an organization along eight domains in research ethics: basic values and identity; structure and organization; ability to carry out activities; relevance of activities to stated goals; capacity of staff and management; administrative, financing and accounting systems; its relations with target groups; and the national context. We used a mixed methods approach to collect empirical data at the University of Botswana from March to December 2010. Results The overall shape of the external evaluation Octagon suggests that strengths of the University of Botswana are in the areas of structure, relevance, production and identity; while the university still needs more work in the areas of systems of finance, target groups, and environment. The Octagons also show the similarities and discrepancies between the 'external' and 'internal' evaluations and provide an opportunity for exploration of these different assessments. For example, the discrepant score for 'identity' between internal and external evaluations allows for an exploration of what constitutes a strong identity for research ethics at the University of Botswana and how it can be strengthened. Conclusions There is a general lack of frameworks for evaluating research ethics capacity in LMICs. We presented an approach that

  12. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    Cho, Sung Gook; Joe, Yang Hee

    2005-01-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities

  13. Seismic fragility analyses of nuclear power plant structures based on the recorded earthquake data in Korea

    Cho, Sung Gook [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)]. E-mail: sgcho@incheon.ac.kr; Joe, Yang Hee [Department of Civil and Environmental System Engineering, University of Incheon, 177 Dohwa-dong, Nam-gu, Incheon 402-749 (Korea, Republic of)

    2005-08-01

    By nature, the seismic fragility analysis results will be considerably affected by the statistical data of design information and site-dependent ground motions. The engineering characteristics of small magnitude earthquake spectra recorded in the Korean peninsula during the last several years are analyzed in this paper. An improved method of seismic fragility analysis is evaluated by comparative analyses to verify its efficiency for practical application to nuclear power plant structures. The effects of the recorded earthquake on the seismic fragilities of Korean nuclear power plant structures are also evaluated from the comparative studies. Observing the obtained results, the proposed method is more efficient for the multi-modes structures. The case study results show that seismic fragility analysis based on the Newmark's spectra in Korea might over-estimate the seismic capacities of Korean facilities.

  14. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures

    Berg, R. van den; Haenen, G.R.M.M.; Berg, H. van den; Bast, A.

    1999-01-01

    The TEAC (Trolox equivalent antioxidant capacity) assay is based on scavenging of 2,2'-azinobis-(3- ethylbenzothiazoline-6-sulfonate) radical anions (ABTS(.-)). In this report we describe a modification based on pre-generation of the ABTS radical anions with a thermolabile azo compound, 2,2'-azobis-

  15. Response and capacity evaluation of unit 1-2, Kozloduy NPP

    Kostov, M.; Stefanov, D.; Boncheva, H.

    1993-01-01

    Investigation described in this presentation was performed within the WANO Program for seismic safety assessment of Kozloduy NPP. The investigation is imposed by the necessity of seismic upgrading of the structures and equipment of the plant for the new design basic earthquake. Term of reference for this study was elaborated by experts of IAEA

  16. Evaluation of oxidative stress status and antioxidant capacity in patients with renal cell carcinoma

    Aldemir, Mustafa; Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan

    2015-01-01

    Introduction We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. Material and methods The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (M...

  17. Evaluation of the Military Entrance Physical Strength Capacity Test (E- MEPSCAT)

    1985-10-01

    in the weightlifting capacity distributions by gender. 2-6 VC-. .- CAA-SR-85-23 Since most females lift less than 80 pounds, females will be treated...materiel handling and injury prevention areas and research by military organizations such as ARI and the Aerospace Medical Research Laboratory show that...Evaluation of Two Methods for the Injury Risk Assessment of Lifting Jobs, Proceedings of Human Factors Society 27th AnnualMeeting, 1983 McNeese, Donald C

  18. Analytical study of performance evaluation for seismic retrofitting of reinforced concrete building using 3D dynamic nonlinear finite element analysis

    Sato, Yuichi; Kajihara, Shinichi; Kaneko, Yoshio

    2011-06-01

    This paper presents three-dimensional finite element (FE) analyses of an all-frame model of a three-story reinforced concrete (RC) building damaged in the 1999 Taiwan Chi-Chi Earthquake. Non-structural brick walls of the building acted as a seismic resistant element although their contributions were neglected in the design. Hence, the entire structure of a typical frame was modeled and static and dynamic nonlinear analyses were conducted to evaluate the contributions of the brick walls. However, the results of the analyses were considerably overestimated due to coarse mesh discretizations, which were unavoidable due to limited computer resources. This study corrects the overestimations by modifying (1) the tensile strengths and (2) shear stiffness reduction factors of concrete and brick. The results indicate that brick walls improve frame strength although shear failures are caused in columns shortened by spandrel walls. Then, the effectiveness of three types of seismic retrofits is evaluated. The maximum drift of the first floor is reduced by 89.3%, 94.8%, and 27.5% by Steel-confined, Full-RC, and Full-brick models, respectively. Finally, feasibility analyses of models with soils were conducted. The analyses indicated that the soils elongate the natural period of building models although no significant differences were observed.

  19. Reliability and Validity of a Physical Capacity Evaluation Used to Assess Individuals with Intellectual Disabilities and Mental Illness

    Jang, Yuh; Chang, Tzyh-Chyang; Lin, Keh-Chung

    2009-01-01

    Physical capacity evaluations (PCEs) are important and frequently offered services in work practice. This study investigates the reliability and validity of the National Taiwan University Hospital Physical Capacity Evaluation (NTUH PCE) on a sample of 149 participants consisted of three groups: 45 intellectual disability (ID), 56 mental illness…

  20. An evaluation of governance capacity of the specialized component of pharmaceutical services in Brazil.

    Rover, Marina Raijche Mattozo; Peláez, Claudia Marcela Vargas; Faraco, Emília Baierle; Farias, Mareni Rocha; Leite, Silvana Nair

    2017-08-01

    This paper presents application of an indicator protocol to assessment of current levels of governance capacity of the Specialized Component of Pharmaceutical Services (CEAF) in a state of the South of Brazil. We chose the theoretical referential of 'governance capacity' proposed by Carlos Matus, which reflects in the concepts of management capacity and pharmaceutical service management, due to the perception of a need to overcome the fragmentation and technicist reductionism that we believe has been imposed on the area of pharmaceutical services. Data was collected using the protocol in 74 municipal or state units. The results of the analysis indicate that the currently existing governance capacity needs improvement in all three dimensions that were evaluated, principally in relation to the aspects that seek sustainability of the governance. The model and the protocol used indicate a way forward for governance of pharmaceutical service by proposing a change from the technicist-logistical focus to an emphasis on strategic and political actions, or ones which foster greater participation and autonomy. With these results in hand, it will be possible to develop strategies for improvement of access to medicines in the SUS, in the sense that the CEAF becomes able to guarantee integrality of medicines treatments.

  1. Bridge pier foundation evaluation using cross-hole seismic tomographic imaging

    Butchibabu, B.; Sandeep, N.; Sivaram, Y. V.; Jha, P. C.; Khan, P. K.

    2017-09-01

    An ambitious project connecting Jammu and Srinagar through a railway link in tectonically active and geologically complex Himalayan Mountain terrain is under progress. Under this project, the world's highest (359 m) railway arch-bridge is under construction across the River Chenab in the northern territory of India. This mega engineering structure has a two-fold ribbed arch design, comprising of steel girders. During the excavation for one of the concrete pillars on the right abutment, wide open joints and weak/shear zones were noticed. The width of these joints varies from 30 to 50 cm, trending along N170° with a dip of 65°. The foundation area of this pillar is 13 m × 24 m and on the cut slopes of the right bank of Chenab River. These exposed joints and weak zones were treated with consolidation grouting to strengthen the foundation area. To delineate the extent of these joints and weak zones below the foundation level, seismic tomography was carried out in five boreholes drilled for this purpose to cover the 300 sq-m area. The results of cross-hole seismic tomography reveals the presence of three low velocity (≤ 2600 m/s) anomalous zones below the foundation area. This also ascertained the efficacy of grouting in consolidating the joints and weak zones. Later, rock-mass quality (Q) was determined based on the relationship between the P-wave velocity and the Q-value (Barton, 2002) to infer the support system for the slope stabilization below the foundation. 3-D visualization of the seismic velocity demarcates the extent of weak or untreated zones. This methodology facilitates to update the design parameters according to Q-values during the construction stage and estimate the required level of reinforcement and support system. Similar methodology can be applicable in other areas under same site conditions.

  2. Evaluation of seismic design by students made after Fukushima Dai-ichi accident

    Sugiyama, Ken-ichiro

    2012-01-01

    The sense of anxiety for safety of nuclear power plants among people in Japan has not disappeared after Fukushima Dai-ichi accident because of a typical country with frequent earthquakes. The provision of information for seismic design in nuclear power plants prepared for easier comprehension is always required in any kind of study meetings for the social acceptance of nuclear power plants. In the present paper, the effect of the provision of information made an attempt for students in Hokkaido University is reported. (author)

  3. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation study -.

    Shimamura, Tomoko; Sumikura, Yoshihiro; Yamazaki, Takeshi; Tada, Atsuko; Kashiwagi, Takehiro; Ishikawa, Hiroya; Matsui, Toshiro; Sugimoto, Naoki; Akiyama, Hiroshi; Ukeda, Hiroyuki

    2014-01-01

    An inter-laboratory evaluation study was conducted in order to evaluate the antioxidant capacity of food additives by using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Four antioxidants used as existing food additives (i.e., tea extract, grape seed extract, enju extract, and d-α-tocopherol) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) were used as analytical samples, and 14 laboratories participated in this study. The repeatability relative standard deviation (RSD(r)) of the IC50 of Trolox, four antioxidants, and the Trolox equivalent antioxidant capacity (TEAC) were 1.8-2.2%, 2.2-2.9%, and 2.1-2.5%, respectively. Thus, the proposed DPPH assay showed good performance within the same laboratory. The reproducibility relative standard deviation (RSD(R)) of IC50 of Trolox, four antioxidants, and TEAC were 4.0-7.9%, 6.0-11%, and 3.7-9.3%, respectively. The RSD(R)/RSD(r) values of TEAC were lower than, or nearly equal to, those of IC50 of the four antioxidants, suggesting that the use of TEAC was effective for reducing the variance among the laboratories. These results showed that the proposed DPPH assay could be used as a standard method to evaluate the antioxidant capacity of food additives.

  4. METRIC CHARACTERISTICS OF SOME TESTS FOR EVALUATION OF AEROBIC AND ANAEROBIC CAPACITIES

    Slobodan Stojiljković

    2006-06-01

    Full Text Available This research was aimed at cheking the metric characteristics of some specific functional tests often used in practice for the evaluation of aerobic and anaerobic capacities and muscular capabilities. Keeping track of the changes and behavior of the functional abilities was performed on the basis of several repeated measurements of the same test on a sample consisting of 110 examinees, Students of the nursing school “Dr Milenko Hadzic” iz Nis, 17 years of age (± 6 months, regularly attending the classes of physical education.Two measuring instruments were tested: MARGARIA TEST and HARVARD STEP TEST.The reliability of said tests was evaluated on the basis of five successive measurements using Spearman-Brown method, based on determining of the value of the coefficients of determination of all measurements and of the main component h1.The outcome revealed high reliability of the results of most of the measurements and of the first main component H1, so that the acquired results were 91.2% for the MARGARIA TEST (anaerobic capacity and 93.4% for5 the HARVARD STEP TEST (aerobic capacity.

  5. A development of an evaluation flow chart for seismic stability of rock slopes based on relations between safety factor and sliding failure

    Kawai, Tadashi; Ishimaru, Makoto

    2010-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake- induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is needed to evaluate the seismic stability of surrounding slopes against extremely strong ground motions. In order to evaluate the seismic stability of surrounding slopes, the most conventional method is to compare safety factors on an expected sliding surface, which is calculated from the stability analysis based on the limit equilibrium concept, to a critical value which judges stability or instability. The method is very effective to examine whether or not the sliding surface is safe. However, it does not mean that the sliding surface falls whenever the safety factor becomes smaller than the critical value during an earthquake. Therefore the authors develop a new evaluation flow chart for the seismic stability of rock slopes based on relations between safety factor and sliding failure. Furthermore, the developed flow chart was validated by comparing two kinds of safety factors calculated from a centrifuge test result concerned with a rock slope. (author)

  6. Participatory Training Evaluation Method (PATEM) as a Collaborative Evaluation Capacity Building Strategy

    Kuzmin, Alexey

    2012-01-01

    This article describes Participatory Training Evaluation Method (PATEM) of measuring participants' reaction to the training. PATEM provides rich information; allows to document evaluation findings; becomes organic part of the training that helps participants process their experience individually and as a group; makes sense to participants; is an…

  7. EVALUATION OF SEISMIC PERFORMANCE OF RAMP TUNNEL STRUCTURE DURING LEVEL-2 EARTHQUAKE BY MASSIVE 3D NUMERICAL COMPUTATION

    Yamada, Takemine; Ichimura, Tsuyoshi; Hori, Muneo; Dobashi, Hiroshi; Ohbo, Naoto

    Quasi non-linear 3D FEM earthquake response analysises with level-2 earthquake are conducted for a ramp tunnel structure of Tokyo metropolitan express way central circular line the Yamate tunnel. Large-scale numerical computation with solid elements is highly required for examination of seismic response of large tunnel in case of level-2 earthquake. The results are obtained as follows: i) In level-2 earthquake, stress concentration in ramp tunnel becomes great near geological interface between two layers of high impedance contrast. ii) The response is not obtained as a superposition of two-dimensional responses which is an assumption in conventional design methods because the distribution of displacements in the direction of tunnel axis at cross-section of ramp tunnel structure near geological interface does not linearly distribute. iii) Evaluation of stress in addition to section force is desirable for the correct evaluation of the three-dimensional response of tunnel structure.

  8. Evaluation of the Reduction of Seismic Response of Adjacent Structures Using Viscous Damper Joint

    Hamed Karbalay Malek

    2017-09-01

    Full Text Available This study examines the effect of common viscose damper on the behavior of adjacent reinforced concrete structures. For this purpose, three reinforced concrete 3, 5 and 7 floors buildings with a regular plan were selected and were compared in two cases without and with viscous dampers at the seams. They are designed based on discussions of Buildings Regulations 2800 and the 6 and 9 issues of Iranian National Building Regulations. Those buildings face under accelerograms of Bam, Mangil and El Centro, and then they are analyzed with nonlinear modal time history. This Accelerograms before applying to the structures, they are scaled based on the 2800 Regulations. Those buildings were modeled by SAP2000 finite element modeling software. Linear behavior of structural components of the structure and the non-linear behavior viscous damper were modeled. Finally, the seismic response of buildings includes the base shear force, up to a maximum lateral acceleration of seismic classes and classes for both with and without the viscous damper have been extracted and compared. The results showed the reduction in relative lateral displacement, maximum acceleration and base cut applied to structure in the presence of viscous dampers between two structures. This decline is not even in the direction that the viscous damper is viewed as significant.

  9. Base Isolation for Seismic Retrofitting of a Multiple Building Structure: Evaluation of Equivalent Linearization Method

    Massimiliano Ferraioli

    2016-01-01

    Full Text Available Although the most commonly used isolation systems exhibit nonlinear inelastic behaviour, the equivalent linear elastic analysis is commonly used in the design and assessment of seismic-isolated structures. The paper investigates if the linear elastic model is suitable for the analysis of a seismically isolated multiple building structure. To this aim, its computed responses were compared with those calculated by nonlinear dynamic analysis. A common base isolation plane connects the isolation bearings supporting the adjacent structures. In this situation, the conventional equivalent linear elastic analysis may have some problems of accuracy because this method is calibrated on single base-isolated structures. Moreover, the torsional characteristics of the combined system are significantly different from those of separate isolated buildings. A number of numerical simulations and parametric studies under earthquake excitations were performed. The accuracy of the dynamic response obtained by the equivalent linear elastic model was calculated by the magnitude of the error with respect to the corresponding response considering the nonlinear behaviour of the isolation system. The maximum displacements at the isolation level, the maximum interstorey drifts, and the peak absolute acceleration were selected as the most important response measures. The influence of mass eccentricity, torsion, and high-modes effects was finally investigated.

  10. Geological and seismic evaluation of a Lower Mannville valley system; Alderson Prospect, Rolling Hills, southeastern Alberta

    Hopkins, J.C.; Lawton, D.C.; Gunn, J.D.

    1987-09-01

    A Lower Mannville valley complex cutting into Jurassic and Mississippian strata in southeastern Alberta was identified on a conventional seismic section. The valley was drilled and a twenty metre core of muddy sandstone was recovered from the target interval. Oil staining was visible within the core but tests showed only muddy water. In contrast, thin sands adjacent to the channel tested up to 300 m/sup 3//day gas and 800 m oil. Sediments adjacent to the valley are interpreted as contemporaneous levee splay deposits of a channel that occupied the valley, whereas the muddy sandstones within the channel represent either a fine grained point bar, or an abandoned channel-fill deposit. In the latter case, coarse grained, sandy, point bar deposits can be expected to occur elsewhere in the channel system. Oil is trapped in crevasse splay deposits draped over a local Mississippian high, but not in the valley because of poor reservoir quality of the channel sandstone. The internal geometry of the valley fill cannot be resolved directly from the seismic data because of the small size of the channel. However, the geometry of reflections from sediments directly above the valley shows variation in the fill and implies that, at the test location, the valley fill is an abandoned channel deposit. It is proposed here that reflection geometry above Lower Mannville valleys can provide a means of determining the type of valley fill. 11 figs., 1 tab., 29 illus.

  11. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  12. Evaluation of capacity-building program of district health managers in India: a contextualized theoretical framework.

    Prashanth, N S; Marchal, Bruno; Kegels, Guy; Criel, Bart

    2014-01-01

    Performance of local health services managers at district level is crucial to ensure that health services are of good quality and cater to the health needs of the population in the area. In many low- and middle-income countries, health services managers are poorly equipped with public health management capacities needed for planning and managing their local health system. In the south Indian Tumkur district, a consortium of five non-governmental organizations partnered with the state government to organize a capacity-building program for health managers. The program consisted of a mix of periodic contact classes, mentoring and assignments and was spread over 30 months. In this paper, we develop a theoretical framework in the form of a refined program theory to understand how such a capacity-building program could bring about organizational change. A well-formulated program theory enables an understanding of how interventions could bring about improvements and an evaluation of the intervention. In the refined program theory of the intervention, we identified various factors at individual, institutional, and environmental levels that could interact with the hypothesized mechanisms of organizational change, such as staff's perceived self-efficacy and commitment to their organizations. Based on this program theory, we formulated context-mechanism-outcome configurations that can be used to evaluate the intervention and, more specifically, to understand what worked, for whom and under what conditions. We discuss the application of program theory development in conducting a realist evaluation. Realist evaluation embraces principles of systems thinking by providing a method for understanding how elements of the system interact with one another in producing a given outcome.

  13. Post-Earthquake Traffic Capacity of Modern Bridges in California

    2010-03-01

    Evaluation of the capacity of a bridge to carry self-weight and traffic loads after an earthquake is essential for a : safe and timely re-opening of the bridge. In California, modern highway bridges designed using the Caltrans : Seismic Design Criter...

  14. Comparison of seismic isolation concepts for FBR

    Shiojiri, H.; Mazda, T.; Kasai, H.; Kanda, J.N.; Kubo, T.; Madokoro, M.; Shimomura, T.; Nojima, O.

    1989-01-01

    This paper seeks to verify the reliability and effectiveness of seismic isolation for FBR. Some results of the preliminary study of the program are described. Seismic isolation concepts and corresponding seismic isolation devices were selected. Three kinds of seismically-isolated FBR plant concepts were developed by applying promising seismic isolation concepts to the non-isolated FBR plant, and by developing plant component layout plans and building structural designs. Each plant was subjected to seismic response analysis and reduction in the amount of material of components and buildings were estimated for each seismic isolation concepts. Research and development items were evaluated

  15. The Chinese version of monitoring and evaluation system strengthening tool for human immunodeficiency virus (HIV) capacity building: Development and evaluation.

    Zhao, Ran; Chen, Ren; Zhang, Bing; Ma, Ying; Qin, Xia; Hu, Zhi

    2015-08-01

    Monitoring and evaluation (M&E) for human immunodeficiency virus (HIV) capacity building has become a significant step for HIV prevention and control. The M&E system strengthening tool published by the United Nations Joint Programme on HIV/AIDS (UNAIDS) was intended to be the most authoritative assessment tool internationally. Facing the fact that the M&E system in China did not function at an optimum level, we considered taking the international standards for reference. By linguistic validating and different stages' discussions and revisions, we came up with the Chinese version of the capacity diagnosis tool with at least 12 components and tested its validity and reliability. The tool turned out to have a sufficiently linguistic validation and proved to be a scientific and feasible instrument which was suitable for China's national conditions.

  16. Pattern recognition methodologies and deterministic evaluation of seismic hazard: A strategy to increase earthquake preparedness

    Peresan, Antonella; Panza, Giuliano F.; Gorshkov, Alexander I.; Aoudia, Abdelkrim

    2001-05-01

    Several algorithms, structured according to a general pattern-recognition scheme, have been developed for the space-time identification of strong events. Currently, two of such algorithms are applied to the Italian territory, one for the recognition of earthquake-prone areas and the other, namely CN algorithm, for earthquake prediction purposes. These procedures can be viewed as independent experts, hence they can be combined to better constrain the alerted seismogenic area. We examine here the possibility to integrate CN intermediate-term medium-range earthquake predictions, pattern recognition of earthquake-prone areas and deterministic hazard maps, in order to associate CN Times of Increased Probability (TIPs) to a set of appropriate scenarios of ground motion. The advantage of this procedure mainly consists in the time information provided by predictions, useful to increase preparedness of safety measures and to indicate a priority for detailed seismic risk studies to be performed at a local scale. (author)

  17. Evaluation of seismic source, ground motion, tsunami based on the Tohoku earthquake

    NONE

    2012-08-15

    Our source models for the Mw9.0 Tohoku earthquake either inferred using tsunami data or from seismic data are featured with large slip along the Japan Trench. Our results indicated that the tsunami water levels at the Fukushima Daiichi and Daini NPPs were dominated by the large slip along the Japan Trench. Our analysis suggested that the difference in water levels at these two sites were caused by the waveform overlap effects due to delays of rupture starting times and wave propagation time. It also follows that the short period ground motions recorded during such an Mw9.0 mega thrust earthquake were comparable with those of an Mw8.0 earthquake. (author)

  18. Seismic evaluation of existing liquid low level waste system at the Oak Ridge National Laboratory

    Hammond, C.R.; Holmes, R.M.; Kincaid, J.H.; Singhal, M.K.; Stockdale, B.I.; Walls, J.C.; Webb, D.S.

    1993-01-01

    The existing liquid low level waste (LLLW) system at the Oak Ridge National Laboratory is used to collect, neutralize, concentrate, and store the radioactive and toxic waste from various sources at the Laboratory. The waste solutions are discharged from source facilities to individual collection tanks, transferred by underground piping to an evaporator facility for concentration, and pumped through the underground piping to storage in underground tanks. The existing LLLW system was installed in the 1950s with several system additions up to the present. The worst-case accident postulated is an earthquake of sufficient magnitude to rupture the tanks and/or piping so as to damage the containment integrity to the surrounding soil and environment. The objective of an analysis of the system is to provide a level of confidence in the seismic resistance of the LLLW system to withstand the postulated earthquake

  19. Evaluation of seismic stability of nuclear power plants on weathered soft rocks

    Ogata, Nobuhide; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    Soft rocks such as weathered rocks or low cemented sedimentary rocks spread all over the country. If it is possible to construct nuclear power plants on such soft rocks, there will be more available sites for nuclear power plants. The investigation on the following research items was carried out. (1) Geological survey and the application of test methods on soft rocks. (2) Methods and application of laboratory and in-situ tests on soft rocks. (3) Response analysis of a reactor building and foundation ground during earthquake. (4) Stability analysis of soft rock ground as the foundation of a nuclear power plant regarding both earthquake and long-term settlement. From the results of the investigation, it became evident that the seismic stability of a nuclear power plant on weathered soft rocks can be assured enough. (author)

  20. An evaluation of the seismicity of the Nevada Test Site and vicinity

    Vortman, L.J.

    1991-12-01

    Two USGS catalogs of earthquakes in the Southern Great Basin were edited to remove man-made seisms. Editing reduced 11,988 entries to 8,161. Known location of underground nuclear explosions provided an opportunity to assess location accuracy showing that accuracy differed according to the source of earthquake data. No evidence was found of explosions triggering earthquakes distant from the working points. Relationships are developed between earthquake magnitude and explosion yield for explosions at Pahute Mesa and Yucca Flat. Comparison of the number of underground nuclear explosions with the number of earthquakes of comparable magnitude shows the former exceeds the latter when magnitude is greater than four. Edited catalogs are recommended for hazard analysis relative to repository siting because unedited catalogs tend to greatly exaggerate seismicity of the region

  1. Simplified method to evaluate seismic nozzle loads on mechanical equipment connected to unbraced piping

    Detroux, P.; Lafaille, J.P.

    1991-01-01

    After ten years of operation, the Belgian Nuclear Power Plants had to be seismically reassessed; especially, new requirements were imposed to the oldest units. The method, presented in this paper, is based on the principle that all the piping connected to the equipment is replaced by a clamped-hinged beam with or without concentrated mass and of a characteristic length depending on the diameter, schedule, mass per length of the connected piping and on the floor response spectra applicable at the location of the equipment. A theoretical justification of the method is presented for the simplest cases. The case of added concentrated mass is investigated. Finally, several comparisons with a full modal spectral analysis are presented

  2. Seismic structural fragility investigation for the San Onofre Nuclear Generating Station, Unit 1 (Project I); SONGS-1 AFWS Project

    Wesley, D.A.; Hashimoto, P.S.

    1982-04-01

    An evaluation of the seismic capacities of several of the San Onofre Nuclear Generating Station, Unit 1 (SONGS-1) structures was conducted to determine input to the overall probabilistic methodology developed by Lawrence Livermore National Laboratory. Seismic structural fragilities to be used as input consist of median seismic capacities and their variabilities due to randomness and uncertainty. Potential failure modes were identified for each of the SONGS-1 structures included in this study by establishing the seismic load-paths and comparing expected load distributions to available capacities for the elements of each load-path. Particular attention was given to possible weak links and details. The more likely failure modes were screened for more detailed investigation

  3. Validity of contend and the validy apparently and insurance to evaluate the capacity of agency of selfcare

    Achury Saldaña, Diana Marcela; Pontificia Universidad Javeriana; Sepúlveda, Gloria Judith; Pontificia Universidad Javeriana; Rodríguez Colmenares, Sandra Mónica; Pontificia Universidad Javeriana

    2011-01-01

    The purpose of this study was to design and identify the indicators of validity of content and the validity apparent of an instrument to evaluate the capacity of agency of self care, that consist of 41 items brought together in three categories (basic capacities, components of power and capacity of fulfilling the self care). The validity of the content was established since the analysis of the persistency, relevance and redaction of the items with the established categories. After the experts...

  4. Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp.

    Jagtap, Umesh B; Panaskar, Shrimant N; Bapat, V A

    2010-06-01

    The antioxidant capacity of jackfruit (Artocarpus heterophyllus Lam. Fam. Moracae) fruit pulp (JFP) obtained from Western Ghats India was determined by evaluating the scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing power assays and N, N-dimethyl-p-phenylendiamine (DMPD) radical cation decolorization assay. JFP was analyzed for total phenolic content (TPC) and total flavonoids content (TFC). The ethanol and water are the best solvents for the extracting phenols and flavonoids from the JFP. The antioxidant activities of JFP extracts were correlated with the total phenolic and flavonoids content. The results indicated that the jackfruit pulp is one natural source of antioxidant compounds.

  5. Evaluation of tritiated water retention capacity of fusion reactor concrete building

    Numata, S.; Fujii, Y.; Okamoto, M.

    1992-01-01

    In this paper the diffusion of tritiated water vapor into concrete walls is studied to evaluate tritiated water retention capacity of a fusion reactor concrete building. Using a model of the tritiated water diffusion determined form experimental results, depth profiles of tritiated water in concrete are calculated in the case of being exposed to air containing tritiated water vapor during the normal operational condition of a fusion reactor. A 0.5-m-thick concrete is sufficient for reactor hall walls from a viewpoint of the tritium containment

  6. Probabilistic evaluation of concrete containment capacity for beyond design basis internal pressures

    Tang, H.T.; Dameron, R.A.; Rashid, Y.R.

    1995-01-01

    For beyond design basis internal pressure loading, experimental studies have demonstrated that the most probable failure mode governing the ultimate functional capacity of concrete containments is leak rather than break. Based on leak rates measured in experiments, a prediction formula for leak rate as functions of containment liner size and internal pressure has been postulated. The determination of liner tear is cast in a probabilistic framework. In calculating leakage, particular attention is paid to the evaluation of leakage versus rupture and the loading rates that may be required to leapfrog over a leakage mode. (orig.)

  7. Evaluation of work capacity of laboratory animals under the conditions of toxicologic experiment

    Fedotov, V.P.; Moskalev, O.S.; Il'in, B.N.

    1989-01-01

    Experimental data on the effect of different doses of X-radiation on the behaviour of mongrel male rats in an alternative labyrinth and on the heart rythnic activity are presented. It is ascertained that X-irradiation of rates leads to a change of rat behaviour stereotype, accompanies by increased values of cardiovascular activity which conditions thereduction of the number of paces per a unit of time. It is possible to perform comparative analysis of available data on the level of integral work capacity of man and animals, using unified criteria for evaluating the organism functional state

  8. Review of evaluation on ecological carrying capacity: The progress and trend of methodology

    Wang, S. F.; Xu, Y.; Liu, T. J.; Ye, J. M.; Pan, B. L.; Chu, C.; Peng, Z. L.

    2018-02-01

    The ecological carrying capacity (ECC) has been regarded as an important reference to indicate the level of regional sustainable development since the very beginning of twenty-first century. By a brief review of the main progress in ECC evaluation methodologies in recent five years, this paper systematically discusses the features and differences of these methods and expounds the current states and future development trend of ECC methodology. The result shows that further exploration in terms of the dynamic, comprehensive and intelligent assessment technologies needs to be provided in order to form a unified and scientific ECC methodology system and to produce a reliable basis for environmental-economic decision-makings.

  9. Seismic Response and Evaluation of SDOF Self-Centering Friction Damping Braces Subjected to Several Earthquake Ground Motions

    Jong Wan Hu

    2015-01-01

    Full Text Available This paper mainly deals with seismic response and performance for self-centering friction damping braces (SFDBs subjected to several maximum- or design-leveled earthquake ground motions. The self-centering friction damping brace members consist of core recentering components fabricated with superelastic shape memory alloy wires and energy dissipation devices achieved through shear friction mechanism. As compared to the conventional brace members for use in the steel concentrically braced frame structure, these self-centering friction damping brace members make the best use of their representative characteristics to minimize residual deformations and to withstand earthquake loads without member replacement. The configuration and response mechanism of self-centering friction damping brace systems are firstly described in this study, and then parametric investigations are conducted through nonlinear time-history analyses performed on numerical single degree-of-freedom spring models. After observing analysis results, adequate design methodologies that optimally account for recentering capability and energy dissipation according to their comparative parameters are intended to be suggested in order to take advantage of energy capacity and to minimize residual deformation simultaneously.

  10. Performance Based Plastic Design of Concentrically Braced Frame attuned with Indian Standard code and its Seismic Performance Evaluation

    Sejal Purvang Dalal

    2015-12-01

    Full Text Available In the Performance Based Plastic design method, the failure is predetermined; making it famous throughout the world. But due to lack of proper guidelines and simple stepwise methodology, it is not quite popular in India. In this paper, stepwise design procedure of Performance Based Plastic Design of Concentrically Braced frame attuned with the Indian Standard code has been presented. The comparative seismic performance evaluation of a six storey concentrically braced frame designed using the displacement based Performance Based Plastic Design (PBPD method and currently used force based Limit State Design (LSD method has also been carried out by nonlinear static pushover analysis and time history analysis under three different ground motions. Results show that Performance Based Plastic Design method is superior to the current design in terms of displacement and acceleration response. Also total collapse of the frame is prevented in the PBPD frame.

  11. Seismic design and evaluation guidelines for the Department of Energy high-level waste storage tanks and appurtenances

    Bandyopadhyay, K.; Cornell, A.; Costantino, C.; Kennedy, R.; Miller, C.; Veletsos, A.

    1993-01-01

    This document provides guidelines for the design and evaluation of underground high-level waste storage tanks due to seismic loads. Attempts were made to reflect the knowledge acquired in the last two decades in the areas of defining the ground motion and calculating hydrodynamic loads and dynamic soil pressures for underground tank structures. The application of the analysis approach is illustrated with an example. The guidelines are developed for specific design of underground storage tanks, namely double-shell structures. However, the methodology discussed is applicable for other types of tank structures as well. The application of these and of suitably adjusted versions of these concepts to other structural types will be addressed in a future version of this document

  12. Seismic Ecology

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  13. A Disability and Health Institutional Research Capacity Building and Infrastructure Model Evaluation: A Tribal College-Based Case Study

    Moore, Corey L.; Manyibe, Edward O.; Sanders, Perry; Aref, Fariborz; Washington, Andre L.; Robertson, Cherjuan Y.

    2017-01-01

    Purpose: The purpose of this multimethod study was to evaluate the institutional research capacity building and infrastructure model (IRCBIM), an emerging innovative and integrated approach designed to build, strengthen, and sustain adequate disability and health research capacity (i.e., research infrastructure and investigators' research skills)…

  14. Capacity development for knowledge translation: evaluation of an experiential approach through secondment opportunities.

    Gerrish, Kate; Piercy, Hilary

    2014-06-01

    Experiential approaches to skills development using secondment models are shown to benefit healthcare organizations more generally, but little is known about the potential of this approach to develop capacity for knowledge translation (KT). To evaluate the success of KT capacity development secondments from the perspective of multiple stakeholders. A pluralistic evaluation design was used. Data were collected during 2011-2012 using focus group and individual interviews with 14 clinical and academic secondees, and five managers from host and seconding organizations to gain insight into participants' perceptions of the success of secondments and the criteria by which they judged success. Six After Action Reviews were undertaken with KT project teams to explore participants' perceptions of the contribution secondees made to KT projects. Semistructured interviews were undertaken with three healthcare managers on completion of projects to explore the impact of secondments on the organization, staff, and patients. Qualitative content analysis was used to identify criteria for success. The criteria provided a framework through which the overall success of secondments could be judged. Six criteria for judging the success of the secondments at individual, team, and organization level were identified: KT skills development, effective workload management, team working, achieving KT objectives, enhanced care delivery, and enhanced education delivery. Benefits to the individual, KT team, seconding, and host organizations were identified. Hosting teams should provide mentorship support to secondees, and be flexible to accommodate secondees' needs as team members. Ongoing support of managers from seconding organizations is needed to maximize the benefits to individual secondees and the organization. Experiential approaches to KT capacity development using secondments can benefit individual secondees, project teams, seconding, and host organizations. © 2014 Sigma Theta Tau

  15. Evaluation of oxidative stress status and antioxidant capacity in patients with renal cell carcinoma.

    Aldemir, Mustafa; Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan

    2015-01-01

    We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (MPO) and ceruloplasmin. Patients' mean age was 58.5 ±12.3 and 56.9 ±15.8 years, respectively, in Group 1 and 2. No statistically significant differences were detected between the groups in terms of oxidative stress parameters and antioxidant capacity measured in the serum of patients including, TOS, TAC, PON1, arylesterase, total thiol, CAT, MPO, and ceruloplasmin levels (p >0.05 for all parameters). The PON-1 value was significantly higher in patients with pT1 stage than pT3 stage (p = 0.007). The arylesterase value was significantly higher in patients with Fuhrman's nuclear grade 3 than grade 2 (p = 0.035). There was no correlation between these parameters level and Fuhrman's nuclear grade, stage, or histopathological tumor type. Our results demonstrated that evaluation of these parameters in the serum of patients with localized RCC may not be used as a marker to discriminate between patients with RCC and healthy people.

  16. Building leadership capacity to drive sustainable water management: the evaluation of a customised program.

    Taylor, A C

    2010-01-01

    This paper describes a customised, six-month, leadership development program (LDP) that was designed for emerging leaders in the Australian water industry who were promoting sustainable urban water management (SUWM). It also presents results from an evaluation of the program's benefits, costs and overall 'return on investment' (ROI). The program was designed to help build emergent leadership capacity in the water industry, given strong evidence that this form of leadership plays an important role in advancing SUWM. It involved '360-degree feedback' processes, training, individual leadership development plans, and coaching sessions. Its design was informed by a review of the literature, and its content was informed by local empirical research involving effective SUWM leaders. The evaluation used a seven-tier assessment framework that examined different dimensions of the program's performance using source and methodological triangulation. The results indicate that such LDPs can produce a range of positive outcomes, such as promoting desired leadership behaviours and generating a positive ROI estimate. Specifically, the program's estimated ROI was approximately 190% after only one year. The primary conclusion is that evidence-based LDPs which are highly customised for specific types of leaders in the water industry represent a promising type of intervention to build forms of leadership capacity which are needed to successfully promote SUWM.

  17. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  18. Channel Models for Capacity Evaluation of MIMO Handsets in Data Mode

    Nielsen, Jesper Ødum; Yanakiev, Boyan; Barrio, Samantha Caporal Del

    2017-01-01

    This work investigates different correlation based models useful for evaluation of outage capacity (OC) of mobile multiple-input multiple-output (MIMO) handsets. The work is based on a large measurement campaign in a micro-cellular setup involving two dual-band base stations, 10 different handsets...... in an indoor environment for different use cases and test users. Several models are evaluated statistically, comparing the OC values estimated from the model and measurement data, respectively, for about 2,700 measurement routes. The models are based on either estimates of the full correlation matrices...... or simplifications. Among other results, it is shown that the OC can be predicted accurately (median error typically within 2.6%) with a model assuming knowledge only of the Tx-correlation coefficient and the mean power gain....

  19. Study of the spectral ratios derived from seismic refraction data for evaluation of the local seismic effects in six sites between south of Mizil and west of Giurgiu

    Raileanu, Victor

    2002-01-01

    An analysis of spectral ratios derived from seismic records along the seismic refraction line Vrancea 99 is performed for six sites located south of Mizil. Records generated by four big shots (300 - 900 Kg charge) are analyzed in each size and 24 curves of spectral ratios are obtained. A first sight shows that the spectral ratios depend not only on the local geological and physical conditions but also on epicentral distance from source to the site as well as the magnitude of the released energy by the seismic source. Nevertheless it is noticed that the frequency windows with the high spectral ratios are about the same regardless of the position and magnitude of the source which suggests the influence of the local conditions. Generally, the sites from the north of Bucharest city, namely Parepa Rusani, Gradistea and Pantelimon show low spectral ratios while the southern sites, Singureni, Stanesti and Gaujani present higher spectral ratios in the frequency window from 0.1 - 10 Hz. The northern group of sites presents a diminution of the spectral ratios from about 2 Hz (0.5 s) to 7 - 8 Hz ( 0.14 - 0.12 s). The southern group has the peaks of spectral ratios within a better individualized frequency window, 3-6 Hz (0.33 - 0.16 s). A secondary peak is around 12 - 13 Hz (∼ 0.08 s). Such quite high resonance frequencies are generated by the shallow layers with thicknesses from a few tens meters (0.08 s corresponds to 32 m thickness) to one - two hundred meters (0.16/0.33/0.5 s → 60, 120, 190 m thickness). (author)

  20. Re-evaluation Of The Shallow Seismicity On Mt Etna Applying Probabilistic Earthquake Location Algorithms.

    Tuve, T.; Mostaccio, A.; Langer, H. K.; di Grazia, G.

    2005-12-01

    A recent research project carried out together with the Italian Civil Protection concerns the study of amplitude decay laws in various areas on the Italian territory, including Mt Etna. A particular feature of seismic activity is the presence of moderate magnitude earthquakes causing frequently considerable damage in the epicentre areas. These earthquakes are supposed to occur at rather shallow depth, no more than 5 km. Given the geological context, however, these shallow earthquakes would origin in rather weak sedimentary material. In this study we check the reliability of standard earthquake location, in particular with respect to the calculated focal depth, using standard location methods as well as more advanced approaches such as the NONLINLOC software proposed by Lomax et al. (2000) using it with its various options (i.e., Grid Search, Metropolis-Gibbs and Oct-Tree) and 3D velocity model (Cocina et al., 2005). All three options of NONLINLOC gave comparable results with respect to hypocenter locations and quality. Compared to standard locations we note a significant improve of location quality and, in particular a considerable difference of focal depths (in the order of 1.5 - 2 km). However, we cannot find a clear bias towards greater or lower depth. Further analyses concern the assessment of the stability of locations. For this purpose we carry out various Monte Carlo experiments perturbing travel time reading randomly. Further investigations are devoted to possible biases which may arise from the use of an unsuitable velocity model.

  1. Ground motion input in seismic evaluation studies: impacts on risk assessment of uniform hazard spectra

    Wu, S.C.; Sewell, R.T.

    1996-07-01

    Conservatism and variability in seismic risk estimates are studied: effects of uniform hazard spectrum (UHS) are examined for deriving probabilistic estimates of risk and in-structure demand levels, as compared to the more-exact use of realistic time history inputs (of given probability) that depend explicitly on magnitude and distance. This approach differs from the conventional in its exhaustive treatment of the ground-motion threat and in its more detailed assessment of component responses to that threat. The approximate UH-ISS (in-structure spectrum) obtained based on UHS appear to be very close to the more-exact results directed computed from scenario earthquakes. This conclusion does not depend on site configurations and structural characteristics. Also, UH-ISS has composite shapes and may not correspond to the characteristics possessed a single earthquake. The shape is largely affected by the structural property in most cases and can be derived approximately from the corresponding UHS. Motions with smooth spectra, however, will not have the same damage potential as those of more realistic motions with jagged spectral shapes. As a result, UHS-based analysis may underestimate the real demands in nonlinear structural analyses

  2. Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network.

    de Groot-Hedlin, Catherine D; Hedlin, Michael A H; Walker, Kristoffer T; Drob, Douglas P; Zumberge, Mark A

    2008-09-01

    Inclement weather in Florida forced the space shuttle "Atlantis" to land at Edwards Air Force Base in southern California on June 22, 2007, passing near three infrasound stations and several hundred seismic stations in northern Mexico, southern California, and Nevada. The high signal-to-noise ratio, broad receiver coverage, and Atlantis' positional information allow for the testing of infrasound propagation modeling capabilities through the atmosphere to regional distances. Shadow zones and arrival times are predicted by tracing rays that are launched at right angles to the conical shock front surrounding the shuttle through a standard climatological model as well as a global ground to space model. The predictions and observations compare favorably over much of the study area for both atmospheric specifications. To the east of the shuttle trajectory, there were no detections beyond the primary acoustic carpet. Infrasound energy was detected hundreds of kilometers to the west and northwest (NW) of the shuttle trajectory, consistent with the predictions of ducting due to the westward summer-time stratospheric jet. Both atmospheric models predict alternating regions of high and low ensonifications to the NW. However, infrasound energy was detected tens of kilometers beyond the predicted zones of ensonification, possibly due to uncertainties in stratospheric wind speeds.

  3. Enhancing research capacity across healthcare and higher education sectors: development and evaluation of an integrated model

    Whitworth Anne

    2012-08-01

    Full Text Available Abstract Background With current policy in healthcare research, in the United Kingdom and internationally, focused on development of research excellence in individuals and teams, building capacity for implementation and translation of research is paramount among the professionals who use that research in daily practice. The judicious use of research outcomes and evaluation of best evidence and practice in healthcare is integrally linked to the research capacity and capabilities of the workforce. In addition to promoting high quality research, mechanisms for actively enhancing research capacity more generally must be in place to address the complexities that both undermine and facilitate this activity. Methods A comprehensive collaborative model for building research capacity in one health professional group, speech and language therapy, was developed in a region within the UK and is presented here. The North East of England and the strong research ethos of this profession in addressing complex interventions offered a fertile context for developing and implementing a model which integrated the healthcare and university sectors. Two key frameworks underpin this model. The first addresses the individual participants’ potential trajectory from research consciousness to research participative to research active. The second embeds a model developed for general practitioners into a broader framework of practice-academic partnership and knowledge and skills exchange, and considers external drivers and impacts on practice and patient outcomes as key elements. Results and discussion The integration of practice and academia has been successful in building a culture of research activity within one healthcare profession in a region in the UK and has resulted, to date, in a series of research related outcomes. Understanding the key components of this partnership and the explicit strategies used has driven the implementation of the model and are discussed

  4. Resource Planning in Glaucoma: A Tool to Evaluate Glaucoma Service Capacity.

    Batra, Ruchika; Sharma, Hannah E; Elaraoud, Ibrahim; Mohamed, Shabbir

    2017-12-28

    The National Patient Safety Agency (2009) publication advising timely follow-up of patients with established glaucoma followed several reported instances of visual loss due to postponed appointments and patients lost to follow-up. The Royal College of Ophthalmologists Quality Standards Development Group stated that all hospital appointments should occur within 15% of the intended follow-up period. To determine whether: 1. Glaucoma follow-up appointments at a teaching hospital occur within the requested time 2. Appointments are requested at appropriate intervals based on the NICE Guidelines 3. The capacity of the glaucoma service is adequate Methods: A two-part audit was undertaken of 98 and 99 consecutive patients respectively attending specialist glaucoma clinics. In the first part, the reasons for delayed appointments were recorded. In the second part the requested follow-up was compared with NICE guidelines where applicable. Based on the findings, changes were implemented and a re-audit of 100 patients was carried out. The initial audit found that although clinical decisions regarding follow-up intervals were 100% compliant with NICE guidelines where applicable, 24% of appointments were delayed beyond 15% of the requested period, due to administrative errors and inadequate capacity, leading to significant clinical deterioration in two patients. Following the introduction of an electronic appointment tracker and increased clinical capacity created by extra clinics and clinicians, the re-audit found a marked decrease in the percentage of appointments being delayed (9%). This audit is a useful tool to evaluate glaucoma service provision, assist in resource planning for the service and bring about change in a non-confrontational way. It can be widely applied and adapted for use in other medical specialities.

  5. Seismic design margin evaluation of systems and equipment required for safe shutdown of North Anna, Units 1 and 2, following an SSE (safe-shutdown earthquake) event. Technical report

    Desai, K.D.

    1981-06-01

    The Advisory Committee on Reactor Safeguards recommended that the NRC staff review in detail the capability and available seismic design margin of fluid systems and equipment used in North Anna, Units 1 and 2 to achieve safe shutdown following a site-design safe-shutdown earthquake (SSE). The staff conducted a series of plant visits and meetings with the licensee to view and discuss the seismic design methodology used for systems, equipment and their supports. The report is a description and evaluation of the seismic design criteria, design conservatisms and seismic design margin for North Anna, Units 1 and 2

  6. Seismic Applications of Energy Dampers

    Shambhu Sinha

    2004-01-01

    Damping devices based on the operating principle of high velocity fluid flow through orifices have found numerous applications in the shock and vibration isolation of aerospace and defence systems. The study aims to investigate the feasibility of using energy dissipating fluid viscous dampers in structures to protect against seismic loads and to prove analytically and  experimentally that fluid viscous dampers can improve the seismic capacity of a structure by reducing damage and displacement...

  7. Evaluation of empowerment program to increase production capacity of fishery processing business in Semarang City, Indonesia

    Swastawati, F.; Roessali, W.; Wijayanti, I.; Anggo, A. D.

    2018-01-01

    This study aims to evaluate the empowerment program to increase the production capacity of fishery product processing. Empowerment program was the implementation and utilization of science and technology in the area (IPTEKDA) LIPI Indonesia for Higher Education. Activity carried out in 2016 on fish processing industry “Lumintu Group”. Implementation of activities includes the transfer of technology to increase production capacity, business capital assistance in the form of production equipment, production assistance, and business management. This study uses qualitative, descriptive analysis, data collection with observation, interviews, and questionnaires. The results showed that the total number of active members was 24 people, 50% of the members specially cultivated the smoked fish that is the type of Catfish (Arius thalassinus) and Stingray (Dasyatis sp), while 45.83% of members processed boneless milkfish, and 4,17% produce salted fish. Increased average production scale of 31.82% in smoked fish business, 12.4% in boneless milkfish and 38.89% in salted fish business. Willingness to return capital in the good category, meaning that all members were able to carry out the schedule of relative payback on time. Approximately 83.3% of the group members felt that the program that followed had greatly assisted in increasing the scale of business but hoped to improve skills in terms of processing and marketing.

  8. User's manual of SECOM2: a computer code for seismic system reliability analysis

    Uchiyama, Tomoaki; Oikawa, Tetsukuni; Kondo, Masaaki; Tamura, Kazuo

    2002-03-01

    This report is the user's manual of seismic system reliability analysis code SECOM2 (Seismic Core Melt Frequency Evaluation Code Ver.2) developed at the Japan Atomic Energy Research Institute for systems reliability analysis, which is one of the tasks of seismic probabilistic safety assessment (PSA) of nuclear power plants (NPPs). The SECOM2 code has many functions such as: Calculation of component failure probabilities based on the response factor method, Extraction of minimal cut sets (MCSs), Calculation of conditional system failure probabilities for given seismic motion levels at the site of an NPP, Calculation of accident sequence frequencies and the core damage frequency (CDF) with use of the seismic hazard curve, Importance analysis using various indicators, Uncertainty analysis, Calculation of the CDF taking into account the effect of the correlations of responses and capacities of components, and Efficient sensitivity analysis by changing parameters on responses and capacities of components. These analyses require the fault tree (FT) representing the occurrence condition of the system failures and core damage, information about response and capacity of components and seismic hazard curve for the NPP site as inputs. This report presents the models and methods applied in the SECOM2 code and how to use those functions. (author)

  9. Evaluation of total polyphenol content and antioxidant capacity of different verity lupin seeds

    Ismael Sulaiman Dalaram

    2017-01-01

    . The main objective of the present work was to evaluated the content of total polyphenols and an antioxidant capacity of four Lupine species.

  10. A Unified Simulation Approach for the Fast Outage Capacity Evaluation over Generalized Fading Channels

    Rached, Nadhir B.

    2016-01-06

    The outage capacity (OC) is among the most important performance metrics of communication systems over fading channels. The evaluation of the OC, when equal gain combining (EGC) or maximum ratio combining (MRC) diversity techniques are employed, boils down to computing the cumulative distribution function (CDF) of the sum of channel envelopes (equivalently amplitudes) for EGC or channel gains (equivalently squared enveloped/ amplitudes) for MRC. Closed-form expressions of the CDF of the sum of many generalized fading variates are generally unknown and constitute open problems. We develop a unified hazard rate twisting Importance Sampling (IS) based approach to efficiently estimate the CDF of the sum of independent arbitrary variates. The proposed IS estimator is shown to achieve an asymptotic optimality criterion, which clearly guarantees its efficiency. Some selected simulation results are also shown to illustrate the substantial computational gain achieved by the proposed IS scheme over crude Monte Carlo simulations.

  11. A unified simulation approach for the fast outage capacity evaluation over generalized fading channels

    Rached, Nadhir B.

    2015-06-14

    The outage capacity (OC) is among the most important performance metrics of communication systems over fading channels. The evaluation of the OC, when Equal Gain Combining (EGC) or Maximum Ratio Combining (MRC) diversity techniques are employed, boils down to computing the Cumulative Distribution Function (CDF) of the sum of channel envelopes (equivalently amplitudes) for EGC or channel gain (equivalently squared enveloped/amplitudes) for MRC. Closed-form expressions of the CDF of the sum of many generalized fading variates are generally unknown and constitute open problems. In this paper, we develop a unified hazard rate twisting Importance Sampling (IS) based approach to efficiently estimate the CDF of the sum of independent arbitrary variates. The proposed IS estimator is shown to achieve an asymptotic optimality criterion, which clearly guarantees its efficiency. Some selected simulation results are also shown to illustrate the substantial computational gain achieved by the proposed IS scheme over crude Monte-Carlo simulations.

  12. Evaluation of the capacity of heavy metal adsorption in exfoliated vermiculite

    Lima, J.F.; Silva, P.S.; Hanken, R.B.L.; Raposo, C.M.O.

    2009-01-01

    Many groups from modern society have seen with attention the issues of pollutants, generally present in nature, those same that have caused irreversible damages to the environment. The Vermiculite, a phyllosilicate, with t-o-t structure, have high interlamelar charge, has been studied as cationic exchanger, whose application when exfoliated, are increased. This work has the objective of evaluate the absorption capacity of chromium (III), in different concentrations, in high, slim and medium concentrations of exfoliated vermiculites. The results obtained from the characterization by spectroscopy in infrared and by diffraction of x-ray from prepared solids showed important variations in the quantity of adsorbed metal in order the size of the concentrated particles. (author)

  13. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk; Jeong, Woochang

    2013-01-01

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter

  14. Evaluation of physical properties and adsorption capacity of regenerated granular activated carbons (GACs)

    Chae, Seon-Ha; Kim, Seong-Su; Park, No-Suk [Korea Water Resources Corporation, Daejeon (Korea, Republic of); Jeong, Woochang [Kyungnam University, Changwon (Korea, Republic of)

    2013-04-15

    The objectives of this study were to evaluate the variation in physical properties and investigate the adsorption capacity after regeneration of granular activated carbon (GAC). A correlation analysis was conducted to examine the relationship between the iodide number and loss rate. The experimental results showed that the loss rate of regenerated carbon should be related to the usage time of GAC. Physical properties including the effective size and uniformity coefficient were similar to those of virgin GAC. This result indicates that the function of GAC as an adsorption medium may be recovered completely. Although the iodine number and specific surface area of the regenerated GAC were smaller than those of virgin GAC, the cumulative pore volume of the former was larger. The removal efficiency of organic matter from the regenerated GAC column was equal to or slightly higher than that from the virgin GAC column. Consequently, regeneration may increase the number of mesopores which are responsible for the removal of organic matter.

  15. Evaluation of the Township Proper Carrying Capacity over Qinghai-Tibet plateau by CASA model

    Wu, Chengyong; Cao, Guangchao; Xue, Huaju; Jiang, Gang; Wang, Qi; Yuan, Jie; Chen, Kelong

    2018-01-01

    The existing study of proper carrying capacity (PCC) has mostly focused on province or county administrative units, which can only macroscopically master the quantitative characteristics of PCC, but could not effectively take some animal husbandry management measures that are pertinent and operational. At town-scale, this paper used CASA model to estimate the PCC in Mongolian Autonomous County of Henan, Qinghai province, China,with serious grassland degeneration that mainly caused by overgrazing. The results showed that the PCC throughout the County was 950,417 sheep unit. For the township, the PCC of Saierlong and Duosong were the largest (247,100 sheep unit) and the smallest (82,016 sheep unit) respectively. This study will provide reference data for developing sustainable development of town-scale pasture policies and also will help to evaluate the health status of the alpine grassland ecosystem on Qinghai-Tibet plateau.

  16. Neuroscience-related research in Ghana: a systematic evaluation of direction and capacity.

    Quansah, Emmanuel; Karikari, Thomas K

    2016-02-01

    Neurological and neuropsychiatric diseases account for considerable healthcare, economic and social burdens in Ghana. In order to effectively address these burdens, appropriately-trained scientists who conduct high-impact neuroscience research will be needed. Additionally, research directions should be aligned with national research priorities. However, to provide information about current neuroscience research productivity and direction, the existing capacity and focus need to be identified. This would allow opportunities for collaborative research and training to be properly explored and developmental interventions to be better targeted. In this study, we sought to evaluate the existing capacity and direction of neuroscience-related research in Ghana. To do this, we examined publications reporting research investigations authored by scientists affiliated with Ghanaian institutions in specific areas of neuroscience over the last two decades (1995-2015). 127 articles that met our inclusion criteria were systematically evaluated in terms of research foci, annual publication trends and author affiliations. The most actively-researched areas identified include neurocognitive impairments in non-nervous system disorders, depression and suicide, epilepsy and seizures, neurological impact of substance misuse, and neurological disorders. These studies were mostly hospital and community-based surveys. About 60% of these articles were published in the last seven years, suggesting a recent increase in research productivity. However, data on experimental and clinical research outcomes were particularly lacking. We suggest that future investigations should focus on the following specific areas where information was lacking: large-scale disease epidemiology, effectiveness of diagnostic platforms and therapeutic treatments, and the genetic, genomic and molecular bases of diseases.

  17. Effectiveness and competing capacity of native Rhizobium strains evaluated in IX Region soils

    Barrientos D, Leticia; Mendez A, Edith; Pino N, Ines

    1995-01-01

    Symbiotic nitrogen fixation in legumes reaches its optimum when the host plants are nodulated by highly competitive and effective Rhizobium strains. With the purpose of assessing competition and nitrogen fixing capacity of native Rhizobium leguminosarum bio-var trifolii strains, a greenhouse test was carried out using white clover (Trifolium re-pens) and four kinds of soils, which represent the main agroecological areas of the IX Region. Eleven strains were evaluated, they were both native and collected and were streptomycin sulphate antibiotic resistant. A nitrogen and a nitrogen-less without inoculation testers were used as controls. All pots received a solution of ammonium sulphate marked with 10% 15 N a.e, equivalent to 10 kg ha -1 of N. Rye-grass was used as reference crop, cv. Nu-i. In general, the evaluated strains were very efficient. After three or four cuts they became the only source of nitrogen for the plants. They were also very competitive, getting to over 70% of root infection with regard to those present in soils. In Curacautin and Tolten soils, biological nitrogen fixation begins later than other soils evaluated, which is coincident with soils having a higher nitrogen content. Symbiosis occurs when the soil nitrogen content exhausts or diminishes. (author)

  18. Evaluation of burnup credit for accommodating PWR spent nuclear fuel in high-capacity cask designs

    Wagner, John C.

    2003-01-01

    This paper presents an evaluation of the amount of burnup credit needed for high-density casks to transport the current U.S. inventory of commercial spent nuclear fuel (SNF) assemblies. A prototypic 32-assembly cask and the current regulatory guidance were used as bases for this evaluation. By comparing actual pressurized-water-reactor (PWR) discharge data (i.e., fuel burnup and initial enrichment specifications for fuel assemblies discharged from U.S. PWRs) with actinide-only-based loading curves, this evaluation finds that additional negative reactivity (through either increased credit for fuel burnup or cask design/utilization modifications) is necessary to accommodate the majority of SNF assemblies in high-capacity storage and transportation casks. The impact of varying selected calculational assumptions is also investigated, and considerable improvement in effectiveness is shown with the inclusion of the principal fission products (FPs) and minor actinides and the use of a bounding best-estimate approach for isotopic validation. Given sufficient data for validation, the most significant component that would improve accuracy, and subsequently enhance the utilization of burnup credit, is the inclusion of FPs. (author)

  19. Development of an evaluation method for seismic isolation systems of nuclear power facilities. Development of crossover piping design method for seismic isolation systems

    Otoyo, Teruyoshi; Otani, Akihito; Otani, Akihito; Fukushima, Shunsuke; Jimbo, Masakazu; Yamamoto, Tomofumi; Sakakida, Takaaki; Onishi, Shigenobu

    2014-01-01

    In the conceptual design of seismic isolation systems of nuclear power facilities, there exist two types of installation. The first type is to isolate both the reactor and the turbine buildings, the other is to isolate only the reactor building. In the latter type, the crossover piping, which installed between the isolated and the non-isolated buildings, is excited and deformed by the different motions of those buildings. In this study, shaking tests of 1/10 scaled model of the main steam piping and FEM analyses under multiple support excitation conditions have been performed to investigate the vibration behavior of the crossover piping. It was confirmed that modal time-history analyses could be in good agreement with the shaking test results. Also, Numerous combination methods were investigated by comparing response spectrum analyses and modal time-history analyses. In conclusion, response spectrum analyses using SRSS combinations could correspond to time-history analyses. (author)

  20. Multicomponent seismic applications in coalbed methane development

    Lawton, D.; Trend, S. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    Seismic applications for coalbed methane (CBM) development are used to address the following challenges: lateral continuity of coal zones; vertical continuity of coal seams; permeability of cleats and fractures; coal quality and gas content; wet versus dry coal zones; and, monitoring storage of greenhouse gases. This paper presented a brief description of existing seismic programs, including 2-D and 3-D surface seismic surveys; multicomponent seismic surveys; vertical seismic profiles; cross-well seismic surveys; and, time-lapse seismic surveys. A comparative evaluation of their use in the Horseshoe Canyon Formation and the Ardley Formation was presented. The study showed that variations in reservoir properties resulting from gas production and dewatering can be effectively imaged using seismic surveys. Seismic surveys are useful in reservoir management, monitoring sweep efficiency during enhanced natural gas from coal (NGC) production, monitoring disposal of produced water and verifying storage of carbon dioxide for carbon credits. tabs., figs.

  1. Seismic hazard assessment of Iran

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  2. Probabilistic evaluation of main coolant pipe break indirectly induced by earthquakes Savannah River Project L and P Reactors

    Short, S.A.; Wesley, D.A.; Awadalla, N.G.; Kennedy, R.P.

    1989-01-01

    A probabilistic evaluation of seismically-induced indirect pipe break for the Savannah River Project (SRP) L- and P-Reactor main coolant (process water) piping has been conducted. Seismically-induced indirect pipe break can result primarily from: (1) failure of the anchorage of one or more of the components to which the pipe is anchored; or (2) failure of the pipe due to collapse of the structure. the potential for both types of seismically-induced indirect failures was identified during a seismic walkdown of the main coolant piping. This work involved: (1) identifying components or structures whose failure could result in pipe failure; (2) developing seismic capacities or fragilities of these components; (3) combining component fragilities to develop plant damage state fragilities; and (4) convolving the plant seismic fragilities with a probabilistic seismic hazard estimate for the site in order to obtain estimates of seismic risk in terms of annual probability of seismic-induced indirect pipe break

  3. Seismic fragility analyses

    Kostov, Marin

    2000-01-01

    In the last two decades there is increasing number of probabilistic seismic risk assessments performed. The basic ideas of the procedure for performing a Probabilistic Safety Analysis (PSA) of critical structures (NUREG/CR-2300, 1983) could be used also for normal industrial and residential buildings, dams or other structures. The general formulation of the risk assessment procedure applied in this investigation is presented in Franzini, et al., 1984. The probability of failure of a structure for an expected lifetime (for example 50 years) can be obtained from the annual frequency of failure, β E determined by the relation: β E ∫[d[β(x)]/dx]P(flx)dx. β(x) is the annual frequency of exceedance of load level x (for example, the variable x may be peak ground acceleration), P(fI x) is the conditional probability of structure failure at a given seismic load level x. The problem leads to the assessment of the seismic hazard β(x) and the fragility P(fl x). The seismic hazard curves are obtained by the probabilistic seismic hazard analysis. The fragility curves are obtained after the response of the structure is defined as probabilistic and its capacity and the associated uncertainties are assessed. Finally the fragility curves are combined with the seismic loading to estimate the frequency of failure for each critical scenario. The frequency of failure due to seismic event is presented by the scenario with the highest frequency. The tools usually applied for probabilistic safety analyses of critical structures could relatively easily be adopted to ordinary structures. The key problems are the seismic hazard definitions and the fragility analyses. The fragility could be derived either based on scaling procedures or on the base of generation. Both approaches have been presented in the paper. After the seismic risk (in terms of failure probability) is assessed there are several approaches for risk reduction. Generally the methods could be classified in two groups. The

  4. Construction of an evaluation index system of water resources bearing capacity: An empirical study in Xi’an, China

    Qu, X. E.; Zhang, L. L.

    2017-08-01

    In this paper, a comprehensive evaluation of the water resources bearing capacity of Xi’an is performed. By constructing a comprehensive evaluation index system of the water resources bearing capacity that included water resources, economy, society, and ecological environment, we empirically studied the dynamic change and regional differences of the water resources bearing capacities of Xi’an districts through the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution). Results show that the water resources bearing capacity of Xi’an significantly increased over time, and the contributions of the subsystems from high to low are as follows: water resources subsystem, social subsystem, ecological subsystem, and economic subsystem. Furthermore, there are large differences between the water resources bearing capacities of the different districts in Xi’an. The water resources bearing capacities from high to low are urban areas, Huxian, Zhouzhi, Gaoling, and Lantian. Overall, the water resources bearing capacity of Xi’an is still at a the lower level, which is highly related to the scarcity of water resources, population pressure, insufficient water saving consciousness, irrational industrial structure, low water-use efficiency, and so on.

  5. Reliability of Clinician Rated Physical Effort Determination During Functional Capacity Evaluation in Patients with Chronic Musculoskeletal Pain

    Trippolini, M. A.; Dijkstra, P. U.; Jansen, B.; Oesch, P.; Geertzen, J. H. B.; Reneman, M. F.

    Introduction Functional capacity evaluation (FCE) can be used to make clinical decisions regarding fitness-for-work. During FCE the evaluator attempts to assess the amount of physical effort of the patient. The aim of this study is to analyze the reliability of physical effort determination using

  6. Short-term storage evaluation of quality and antioxidant capacity in chestnut-wheat bread.

    Rinaldi, Massimiliano; Paciulli, Maria; Dall'Asta, Chiara; Cirlini, Martina; Chiavaro, Emma

    2015-01-01

    Bread traditionally made from wheat is now often supplemented with alternative functional ingredients as chestnut flours; no data have been previously published about the staling of chestnut-containing bread. Thus short-term storage (3 days) for chestnut flour-supplemented soft wheat bread is evaluated by means of selected physicochemical properties (i.e. water dynamics, texture, colour, crumb grain characteristic, total antioxidant capacity). Bread prepared with a 20:80 ratio of chestnut:soft wheat flours maintained its moisture content in both crust and crumb. Crumb hardness, after baking, was found to be significantly higher than that of the soft wheat bread; it did not change during storage, whereas it significantly increased in the control bread until the end of the shelf life. The supplemented bread presented a heterogeneous crumb structure, with a significant decrease in the largest pores during shelf life, relative to the shrinkage of crumb grain. The control exhibited a significant redistribution of crumb holes, with a decrease in the smallest grain classes and an increase in the intermediate ones, most likely caused by cell wall thickening. The colour of the crumb remained unaltered in both breads. The crust of the control presented a significant decrease of a* (redness) and that of the supplemented bread exhibited a decrease of b* (yellowness). The antioxidant capacity was detected after day 1 of storage in the chestnut flour bread only. Chestnut flour supplementation could represent a feasible way of producing bread with improved characteristics, not only just after baking but also during shelf life. © 2014 Society of Chemical Industry.

  7. Evaluation of the Healthy Lifestyles Initiative for Improving Community Capacity for Childhood Obesity Prevention.

    Berman, Marcie; Bozsik, Frances; Shook, Robin P; Meissen-Sebelius, Emily; Markenson, Deborah; Summar, Shelly; DeWit, Emily; Carlson, Jordan A

    2018-02-22

    Policy, systems, and environmental approaches are recommended for preventing childhood obesity. The objective of our study was to evaluate the Healthy Lifestyles Initiative, which aimed to strengthen community capacity for policy, systems, and environmental approaches to healthy eating and active living among children and families. The Healthy Lifestyles Initiative was developed through a collaborative process and facilitated by community organizers at a local children's hospital. The initiative supported 218 partners from 170 community organizations through training, action planning, coalition support, one-on-one support, and the dissemination of materials and sharing of resources. Eighty initiative partners completed a brief online survey on implementation strategies engaged in, materials used, and policy, systems, and environmental activities implemented. In accordance with frameworks for implementation science, we assessed associations among the constructs by using linear regression to identify whether and which of the implementation strategies were associated with materials used and implementation of policy, systems, and environmental activities targeted by the initiative. Each implementation strategy was engaged in by 30% to 35% of the 80 survey respondents. The most frequently used materials were educational handouts (76.3%) and posters (66.3%). The most frequently implemented activities were developing or continuing partnerships (57.5%) and reviewing organizational wellness policies (46.3%). Completing an action plan and the number of implementation strategies engaged in were positively associated with implementation of targeted activities (action plan, effect size = 0.82; number of strategies, effect size = 0.51) and materials use (action plan, effect size = 0.59; number of strategies, effect size = 0.52). Materials use was positively associated with implementation of targeted activities (effect size = 0.35). Community-capacity-building efforts can be

  8. Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients

    P.A. Nascimento

    2001-02-01

    Full Text Available Genetic damage caused by ionizing radiation and repair capacity of blood lymphocytes from 3 breast cancer patients and 3 healthy donors were investigated using the comet assay. The comets were analyzed by two parameters: comet tail length and visual classification. Blood samples from the donors were irradiated in vitro with a 60Co source at a dose rate of 0.722 Gy/min, with a dose range of 0.2 to 4.0 Gy and analyzed immediately after the procedure and 3 and 24 h later. The basal level of damage and the radioinduced damage were higher in lymphocytes from breast cancer patients than in lymphocytes from healthy donors. The radioinduced damage showed that the two groups had a similar response when analyzed immediately after the irradiations. Therefore, while the healthy donors presented a considerable reduction of damage after 3 h, the patients had a higher residual damage even 24 h after exposure. The repair capacity of blood lymphocytes from the patients was slower than that of lymphocytes from healthy donors. The possible influence of age, disease stage and mutations in the BRCA1 and BRCA2 genes are discussed. Both parameters adopted proved to be sensitive and reproducible: the dose-response curves for DNA migration can be used not only for the analysis of cellular response but also for monitoring therapeutic interventions. Lymphocytes from the breast cancer patients presented an initial radiosensitivity similar to that of healthy subjects but a deficient repair mechanism made them more vulnerable to the genotoxic action of ionizing radiation. However, since lymphocytes from only 3 patients and 3 normal subjects were analyzed in the present paper, additional donors will be necessary for a more accurate evaluation.

  9. Evaluation of geological conditions for coalbed methane occurrence based on 3D seismic information: a case study in Fowa region, Xinjing coal mine, China

    Li, Juanjuan; Li, Fanjia; Hu, Mingshun; Zhang, Wei; Pan, Dongming

    2017-04-01

    The research on geological conditions of coalbed methane (CBM) occurrence is of great significance for predicting the high abundance CBM rich region and gas outburst risk area pre-warning. The No. 3 coal seam, in Yangquan coalfield of Qinshui basin, is the research target studied by 3D seismic exploration technique. The geological factors which affect CBM occurrence are interpreted based on the 3D seismic information. First, the geological structure (faults, folds, and collapse columns) is found out by the 3D seismic structural interpretation and the information of buried depth and thickness of the coal seam is calculated by the seismic horizons. Second, 3D elastic impedance (EI) and natural gamma attribute volumes are generated by prestack EI inversion and multi-attribute probabilistic neural network (PNN) inversion techniques which reflect the information of coal structure types and lithology of the roof and floor. Then, the information of metamorphic degree of seam and hydrogeology conditions can be obtained by the geological data. Consequently, geological conditions of CBM occurrence in No. 3 coal seam are evaluated which will provide scientific reference for high abundance CBM rich region prediction and gas outburst risk area pre-warning.

  10. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.

    2010-06-01

    A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM) intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  11. Microzonation of seismic risk in a low-rise Latin American city based on the macroseismic evaluation of the vulnerability of residential buildings: Colima city, México

    V. M. Zobin

    2010-06-01

    Full Text Available A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.

  12. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings

    Sagasta, Francisco; Zitto, Miguel E.; Piotrkowski, Rosa; Benavent-Climent, Amadeo; Suarez, Elisabet; Gallego, Antolino

    2018-03-01

    A modification of the original b-value (Gutenberg-Richter parameter) is proposed to evaluate local damage of reinforced concrete structures subjected to dynamical loads via the acoustic emission (AE) method. The modification, shortly called energy b-value, is based on the use of the true energy of the AE signals instead of its peak amplitude, traditionally used for the calculation of b-value. The proposal is physically supported by the strong correlation between the plastic strain energy dissipated by the specimen and the true energy of the AE signals released during its deformation and cracking process, previously demonstrated by the authors in several publications. AE data analysis consisted in the use of guard sensors and the Continuous Wavelet Transform in order to separate primary and secondary emissions as much as possible according to particular frequency bands. The approach has been experimentally applied to the AE signals coming from a scaled reinforced concrete frame structure, which was subjected to sequential seismic loads of incremental acceleration peak by means of a 3 × 3 m2 shaking table. For this specimen two beam-column connections-one exterior and one interior-were instrumented with wide band low frequency sensors properly attached on the structure. Evolution of the energy b-value along the loading process accompanies the evolution of the severe damage at the critical regions of the structure (beam-column connections), thus making promising its use for structural health monitoring purposes.

  13. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new.

  14. Evaluation of seismic acceleration responses of base-isolated and nonisolated structures varying with mechanical characteristics of foundations

    You, Bong; Lee, Jae Han; Ku, Kyung Hoi

    1996-05-01

    The evaluation of acceleration responses of isolated and nonisolated structures according to mechanical features of soils is important. The kinds of soils taken in analyses are soft, medium and hard rocks, and a fixed base condition is also taken for the comparison. The horizontal isolation frequency used is 0.5 Hz. The time history analyses of reference power plant using 1940 El Centro horizontal (NS) and vertical earthquakes are performed to investigate the seismic responses varying with soil characteristics for isolated and nonisolated structures. The horizontal acceleration responses of the horizontal isolated-structures show almost similar values irrespective of the various kinds of soils and are largely decreased in the frequency ranges above 2 hz. The vertical natural frequency, 21Hz of high damping rubber bearing does not affect the vertical acceleration responses in case of soft rock, but largely affects in hard rock condition. For nonisolated structures, the acceleration responses are decreased in both horizontal and vertical directions by taking into account the soils in the analysis model. The extent of reduction of acceleration responses is larger in vertical direction than in horizontal one, as the stiffness of rock becomes softer. 8 tabs., 21 figs., 8 refs. (Author) .new

  15. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  16. The Older Adult Positivity Effect in Evaluations of Trustworthiness: Emotion Regulation or Cognitive Capacity?

    Zebrowitz, Leslie A; Boshyan, Jasmine; Ward, Noreen; Gutchess, Angela; Hadjikhani, Nouchine

    2017-01-01

    An older adult positivity effect, i.e., the tendency for older adults to favor positive over negative stimulus information more than do younger adults, has been previously shown in attention, memory, and evaluations. This effect has been attributed to greater emotion regulation in older adults. In the case of attention and memory, this explanation has been supported by some evidence that the older adult positivity effect is most pronounced for negative stimuli, which would motivate emotion regulation, and that it is reduced by cognitive load, which would impede emotion regulation. We investigated whether greater older adult positivity in the case of evaluative responses to faces is also enhanced for negative stimuli and attenuated by cognitive load, as an emotion regulation explanation would predict. In two studies, younger and older adults rated trustworthiness of faces that varied in valence both under low and high cognitive load, with the latter manipulated by a distracting backwards counting task. In Study 1, face valence was manipulated by attractiveness (low /disfigured faces, medium, high/fashion models' faces). In Study 2, face valence was manipulated by trustworthiness (low, medium, high). Both studies revealed a significant older adult positivity effect. However, contrary to an emotion regulation account, this effect was not stronger for more negative faces, and cognitive load increased rather than decreased the rated trustworthiness of negatively valenced faces. Although inconsistent with emotion regulation, the latter effect is consistent with theory and research arguing that more cognitive resources are required to process negative stimuli, because they are more cognitively elaborated than positive ones. The finding that increased age and increased cognitive load both enhanced the positivity of trustworthy ratings suggests that the older adult positivity effect in evaluative ratings of faces may reflect age-related declines in cognitive capacity rather

  17. 2D and 3D seismic measurements to evaluate the collapse risk of an important prehistoric cave in soft carbonate rock

    Leucci, Giovanni; De Giorgi, Lara

    2015-02-01

    The southern part of the Apulia region (the Salento peninsula) has been the site of at least fifteen collapse events due to sinkholes in the last twenty years. The majority of these occurred in "soft" carbonate rocks (calcarenites). Man-made and/or natural cavities are sometimes assets of historical and archaeological significance. This paper provides a methodology for the evaluation of sinkhole hazard in "soft" carbonate rocks, combining seismic and mine engineering methods.Acase study of a natural cavity which is called Grotta delle Veneri is illustrated. For this example the approach was: i) 2D and 3D seismic methods to study the physical-mechanical characteristics of the rock mass that constitutes the roof of the cave; and ii) scaled span empirical analysis in order to evaluate the instability of the crown pillar's caves.

  18. An analysis of seismic background noise variation and evaluation of detection capability of Keskin Array (BRTR PS-43) in Turkey

    Bakir, M. E.; Ozel, N. M.; Semin, K. U.

    2011-12-01

    Bogazici University, Kandilli Observatory and Earthquake Research Institute (KOERI) is currently operating the Keskin seismic array (BRTR-PS 43) located in town Keskin, providing real-time data to IDC. The instrumentaion of seismic array includes six short period borehole seismometers and one broadband borehole seismometer. The seismic background noise variation of Keskin array are studied in order to estimate the local and regional event detection capability in the frequency range from 1 Hz to 10 Hz. The Power density spectrum and also probability density function of Keskin array data were computed for seasonal and diurnal noise variations between 2008 and 2010. The computation will be extended to cover the period between 2005 and 2008. We attempt to determine the precise frequency characteristics of the background noise, which will help us to assess the station sensitivity. Minimum detectable magnitude versus distance for Keskin seismic array will be analyzed based on the seismic noise analysis. Detailed analysis results of seismic background noise and detection capability will be presented by this research.

  19. Overview of seismic margin insights gained from seismic PRA results

    Kennedy, R.P.; Sues, R.H.; Campbell, R.D.

    1986-01-01

    This paper presents the findings of a study conducted under NRC and EPRI sponsorship in which published seismic PRAs were reviewed in order to gain insight to the seismic margins inherent in existing nuclear plants. The approach taken was to examine the fragilities of those components which have been found to be dominant contributors to seismic risk at plants in low-to-moderate seismic regions (SSE levels between 0.12g and 0.25g). It is concluded that there is significant margin inherent in the capacity of most critical components above the plant design basis. For ground motions less than about 0.3g, the predominant sources of seismic risk are loss of offsite power coupled with random failure of the emergency diesels, non-recoverable circuit breaker trip due to relay chatter, unanchored equipment, unreinforced non-load bearing block walls, vertical water storage tanks, systems interactions and possibly soil liquefaction. Recommendations as to which components should be reviewed in seismic margin studies for margin earthquakes less than 0.3g, between 0.3g and 0.5g, and greater than 0.5g, developed by the NRC expert panel on the quantification of seismic margins (based on the review of past PRA data, earthquake experience data, and their own personal experience) are presented

  20. Wind/seismic comparison for upgrading existing structures

    Giller, R.A.

    1989-01-01

    This paper depicts the analysis procedures and methods used to evaluate three existing building structures for extreme wind loads. The three structures involved in this evaluation are located at the US Department of Energy's Hanford Site near Richland, Washington. This site is characterized by open flat grassland with few surrounding obstructions and has extreme winds in lieu of tornados as a design basis accident condition. This group of buildings represents a variety of construction types, including a concrete stack, a concrete load-bearing wall structure, and a rigid steel-frame building. The three structures included in this group have recently been evaluated for response to the design basis earthquake that included non-linear time history effects. The resulting loads and stresses from the wind analyses were compared to the loads and stresses resulting from seismic analyses. This approach eliminated the need to prepare additional capacity calculations that were already contained in the seismic evaluations