WorldWideScience

Sample records for seibersdorf iaea laboratory

  1. The IAEA Laboratories at Seibersdorf

    International Nuclear Information System (INIS)

    1987-01-01

    The film shows the history, development and activities at the IAEA's Laboratory in Seibersdorf. Recent developments in plant breeding and insect pest control (sterile insect technique) and training facilities for fellows from member states are presented

  2. FAO/IAEA research and training in soil fertility at the IAEA's Seibersdorf Laboratories

    International Nuclear Information System (INIS)

    Zapata, F.; Hardarson, G.

    1989-01-01

    The Soil Science Unit of the Agency's Seibersdorf Laboratories provides invaluable research and development support for the co-ordinated research programmes and field technical co-operation projects co-ordinated by the soil fertility, irrigation, and crop production section of the Joint Division of the IAEA and FAO. This article describes how nuclear technology in soil and plant sciences is being developed and transferred through various mechanisms to help countries establish better conditions for crop and livestock production

  3. Activities of the IAEA Laboratories in Seibersdorf and Vienna. Biennial Report 1983-1984

    International Nuclear Information System (INIS)

    1985-06-01

    The report presents the activities of the IAEA Laboratories in Seibersdorf and Vienna during the period 1983-1984, with emphasis on the research and development of mass rearing systems for insect control programmes applying the sterile insect technique and the tissue culture techniques for plant breeding. In chemistry and hydrology a new line was started together with the World Meteorological Organization in servicing the latter's network of stations for monitoring of background levels of air pollution all around the world. In radiation dosimetry a new automated thermoluminescent dosemeter reader was installed. The Electronics and Measurement Section has installed a new training laboratory. Six training courses and one seminar were held. An increased number of samples were analysed by the Safeguards Analytical Laboratory

  4. IAEA laboratory activities. The IAEA laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. 3rd report

    International Nuclear Information System (INIS)

    1966-01-01

    This third 'IAEA Laboratory Activities' report describes development and work during the year 1965. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo

  5. IAEA Laboratory activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Sixth report

    International Nuclear Information System (INIS)

    1969-01-01

    This sixth 'IAEA Laboratory Activities' report describes development and work during the year 1968. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. (author)

  6. IAEA Laboratory activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Fourth report

    International Nuclear Information System (INIS)

    1967-01-01

    This fourth 'IAEA Laboratory Activities' report describes development and work during the year 1966. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. (author)

  7. IAEA laboratory activities. The IAEA laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries. 2nd report

    International Nuclear Information System (INIS)

    1965-01-01

    This Second Report 'IAEA Laboratory Activities' describes developments and scientific work during the year 1964. It reports on the activities of the Agency's Laboratory Vienna - Seibersdorf, the Marine Biological Project at Monaco, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries. In addition, it contains a first, short review on the International Centre for Theoretical Physics at Trieste. This Centre was established in October 1963 and started its operations in 1964. The Report is similar to the first one published at the beginning of 1964, and is intended as a source of current information

  8. IAEA Laboratory Activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics, Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Fifth Report

    International Nuclear Information System (INIS)

    1968-01-01

    This fifth report describes development and work during the year 1967. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. Contents: The IAEA Laboratories at Vienna and Seibersdorf: Introduction; Standardization of measurement and of analytical methods related to peaceful applications of nuclear energy; Services to Member States and International Organizations; Chemical and physico-chemical investigations relevant to the Agency's programme; Nuclear techniques in hydrology; Nuclear techniques in medicine; Nuclear techniques in agriculture; Nuclear electronics service and development; Administrative matters. — The International Laboratory of Marine Radioactivity at Monaco: Introduction; Research; Administrative matters. — The International Centre for Theoretical Physics, Trieste: Assistance to developing countries; Research activities; Administrative matters; Annexes. — The Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo: Introduction; The scientific programme of the Centre; Publications on work done at the Centre; Finance; Annex. Entirely in English. (author)

  9. The International Atomic Energy Agency's Laboratories at Seibersdorf and in Vienna

    International Nuclear Information System (INIS)

    1988-12-01

    The report briefly describes the main research activities performed during 1988 at the IAEA Laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory as well as the training activities

  10. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  11. The IAEA laboratories

    International Nuclear Information System (INIS)

    1973-01-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  12. The IAEA laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  13. IAEA laboratory activities. The IAEA laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. 1st report

    International Nuclear Information System (INIS)

    1964-01-01

    Since 1958 the General Conferences of the International Atomic Energy Agency have discussed the establishment of scientific centres which would help the Agency to carry out its statutory functions. Subsequently, decisions were taken which have led to the foundation of two laboratories and the establishment under the Agency's auspices of an isotope centre. The plans for the setting up of the Agency's Laboratory Vienna - Seibersdorf were approved by the Board of Governors of the International Atomic Energy Agency in April 1 959, and the agreement on the Marine Biological Project at Monaco came into force in March 1961. In March 1963 the Middle Eastern Regional Radioisotope Centre for the Arab countries was opened. The first comprehensive report on the activities of the laboratories and the isotope centre is now published; it contains information on the development of the centres and their activities carried out in 1963. The Agency expresses its gratitude to the Governments of Austria, Monaco and the United Arab Republic for the generous assistance offered in connection with the establishment of the laboratories and the isotope centre

  14. Update: Tests confirm no radioactivity release to environment from IAEA Seibersdorf Lab after 3 August incident

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: Independent analysis has confirmed that there was no release of radioactive material to the environment following an incident at the IAEA's Seibersdorf Laboratory on 3 August. The test results were provided by the Austrian Research Centers (ARC), from analysis of soil, plant and water samples collected from outside the IAEA's Laboratories in Seibersdorf, where the incident occurred. The radiation protection experts of the ARC confirmed the initial findings from the laboratory's automatic monitoring system which indicated that there had been no release of radioactivity to the environment. Since the incident, constant air monitoring near the laboratory, undertaken by the IAEA, has also provided no evidence of any radioactive contamination. A tiny amount of plutonium contained in an acid solution spilled from five small glass vials when one of them burst after a build up of pressure in it. The vials were stored in a secure steel safe. In total there was less than one gram of plutonium in the five vials. The material was in the laboratory for scientific reference purposes and virtually all of the contamination was confined within the steel walled safe. As previously reported, the automatic alarm was triggered when highly sensitive detectors of the continuous air monitoring system identified minor amounts of radioactive aerosols in the storage room containing the safe. The air contamination was trapped entirely in the filters of the ventilation system. No one was working in the laboratory at the time of the accident, which occurred at 02:31. The IAEA emergency response team promptly secured and sealed off the windowless storage room. An investigation into the circumstances and causes of the incident is still underway. In the meantime the first stage of the clean-up of the storage room was successfully completed on Friday, 22 August. According to the IAEA's nuclear regulator's assessment of the incident, the lab's safety systems worked properly and

  15. Update: Tests confirm no radioactivity release to environment from IAEA Seibersdorf Lab after 3 August incident

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: Independent analysis has confirmed that there was no release of radioactive material to the environment following an incident at the IAEA's Seibersdorf Laboratory on 3 August. The test results were provided by the Austrian Research Centers (ARC), from analysis of soil, plant and water samples collected from outside the IAEA's Laboratories in Seibersdorf, where the incident occurred. The radiation protection experts of the ARC confirmed the initial findings from the laboratory's automatic monitoring system which indicated that there had been no release of radioactivity to the environment. Since the incident, constant air monitoring near the laboratory, undertaken by the IAEA, has also provided no evidence of any radioactive contamination. A tiny amount of plutonium contained in an acid solution spilled from five small glass vials when one of them burst after a build up of pressure in it. The vials were stored in a secure steel safe. In total there was less than one gram of plutonium in the five vials. The material was in the laboratory for scientific reference purposes and virtually all of the contamination was confined within the steel walled safe. As previously reported, the automatic alarm was triggered when highly sensitive detectors of the continuous air monitoring system identified minor amounts of radioactive aerosols in the storage room containing the safe. The air contamination was trapped entirely in the filters of the ventilation system. No one was working in the laboratory at the time of the accident, which occurred at 02:31. The IAEA emergency response team promptly secured and sealed off the windowless storage room. An investigation into the circumstances and causes of the incident is still underway. In the meantime the first stage of the clean-up of the storage room was successfully completed on Friday, 22 August. According to the IAEA's nuclear regulator's assessment of the incident, the lab's safety systems worked properly and

  16. Seibersdorf

    International Nuclear Information System (INIS)

    Mueller, P.

    1986-01-01

    The Austrian Research Centre Seibersdorf is the largest non-university research institution in Austria. The shareholders are the Federal Republic of Austria, nationalized industries and utilities, private companies and assoziations. Since its foundation in 1956, the Research Centre Seibersdorf has been engaged in applied and project oriented research and development. Its prominent part in the intercommunication of goverment, economy and science makes it an important instrument for promoting innovation and achieving short term economical solutions to problems encountered by manufacturing trades and industries. The book gives an overview about the scientific and technical work done in the research center, highlighting in 74 chapters selected projects of the scientific departments Agriculture, ASTRA-Reactor, Biology, Chemistry, Electronics, Isotope Applications, Materials Technology, Physics, Radiation Protection and Reactor Safety. (A.N.)

  17. RIAL: Agency's laboratories at Seibersdorf and VIC. 1989 annual report

    International Nuclear Information System (INIS)

    1990-11-01

    This Annual Report of the Agency's Laboratories (RIAL) is an internal, unedited document which describes in a more extensive form then the official Annual Report of the Agency-GC(XXXIV)/915 the activities which were performed at the IAEA's Laboratories at Seibersdorf and VIC in 1989. The Agency's Laboratories were involved in 1989 in 24 individual projects related to 14 subprogrammes i.e., in Soil Fertility; in Plant Breeding and Genetics; in Animal Health and Production; in Insect and Pest Control; in Agrochemical and Residues; in Nuclear Measurements and Instrumentation; in Nuclear Medicine; in Emergency Planning and Preparedness; in Chemistry; in Human Health; in Environmental Assessment and Protection; in Dosimetry; in Development of Water and Mineral Resources; in Safeguards Support. The Laboratories continued their efforts in integrating training activities with R and D carried out within the frame of co-ordinated research programmes or technical co-operation projects. The work has predominantly been of applied nature, although exceptions existed in some fields (e.g. plant breeding). Scientific services were also provided to many programmes, the most noteworthy one being the analytical work of the Safeguards Analytical Laboratories entirely performed for the benefit of the Agency's safeguards programme. The training activities continued to increase and in 1989 RIAL received a total of 102 fellows from developing countries, corresponding to the record figure of 382 man-months of training. In 1989 the Laboratories hosted two training courses in agricultural disciplines. They were the ''FAO/IAEA Interregional Training Course on the Induction and Use of Mutations in Plant Breeding'' and the ''FAO/IAEA Interregional Training Course on the Use of Isotope and Radiation Techniques in Studies on Soil-Plant Relationships with Emphasis on Biological Nitrogen Fixation''. Refs, figs and tabs

  18. Statement at 50th Anniversary of NA Laboratories at Seibersdorf, 20 November 2012, Vienna, Austria

    International Nuclear Information System (INIS)

    Amano, Y.

    2012-01-01

    I am pleased to welcome you all to this celebration marking 50 years of the IAEA nuclear applications laboratories. The IAEA is unique in the UN family in having dedicated specialist laboratories that support our activities, developing innovative technologies and providing training. The laboratories are central to our efforts to fulfil one of our core responsibilities, which is to help Member States gain access to nuclear technologies for peaceful purposes. They help us to make an important contribution to tackling fundamental global problems such as food security, water and energy shortages, human and animal health and climate change. This side of the Agency's work does not get the same public attention as our activities in nuclear safeguards, nuclear safety and nuclear security. But it is just as important. As you may know, there are a total of eight nuclear applications laboratories in Seibersdorf. Five are agriculture and biotechnology labs, which we operate jointly with our partners at the UN Food and Agriculture Organization. They specialise in insect pest control, soil and water management, animal health, plant breeding and genetics, and food and environmental protection. In addition, the Dosimetry Laboratory works on quality assurance aspects of the use of radiation in medicine. The Nuclear Spectrometry and Applications Laboratory helps Member States to use nuclear techniques in environmental pollution monitoring and other areas. Finally, the Terrestrial Environment Laboratory helps countries to understand and protect the land. Nearly two thousand IAEA technical cooperation fellows and scientific visitors have passed through Seibersdorf over the past 50 years. They benefited from top-class training and expertise. They took away with them not only new knowledge and capacity, but also enduring positive memories of working in some of the most international laboratories in the world. In Seibersdorf, professional contacts and friendships are established that

  19. The activities of the IAEA Laboratories, Vienna. Annual report 1982

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1983-10-01

    A brief account is given on the main activities of the IAEA Laboratory in Seibersdorf during 1982. The following areas are specified: Plant breeding; Soil science; Entomology; Agrochemicals; Human nutrition; Radiation dosimetry; Electronics; Chemistry; Isotope hydrology; Safeguards Analytical Laboratory (SAL); Health physics

  20. Work of the IAEA laboratory

    International Nuclear Information System (INIS)

    1962-01-01

    Most of the IAEA laboratory facilities a r e now in full operation, and work has begun on a number of problems that can best be dealt with by an international centre. The laboratory at Seibersdorf, about 30 km from the Agency's headquarters in Vienna, started functioning in October last year, and a certain amount of work is also being done with a few facilities installed in the headquarters building. During the past year laboratory work has steadily increased and several programmes are now fully established. The Agency's laboratory is not intended to be a centre of independent research; in the main, its scope is governed by the scientific requirements of the Agency's programmes of assistance to its Member States and its role in connection with safety and security in atomic energy work. The functions of the laboratory are thus limited to (a) measurement of radionuclides and preparation of radioactive standards, (b) calibration and adaptation of measuring equipment, (c) quality control of special materials for nuclear technology, (d) measurement and analyses in connection with the Agency's safeguards and health and safety programme, and (e) services to Member States that can be provided with the facilities established for these tasks

  1. The laboratory activities of the IAEA Laboratories, Vienna. Annual report 1979

    International Nuclear Information System (INIS)

    Cook, G.B.

    1981-03-01

    The report gives a fairly comprehensive view of the activities and results of the IAEA Laboratories in Seibersdorf, during the year 1979. These activities are presented under the following main categories: Metrology of the radiations; Dosimetry; Chemistry; Safeguards analytical laboratory; Isotope hydrology; Medical applications; Agriculture: soils; Entomology; Plant breeding; Electronics

  2. The radioactive waste management at IAEA laboratories

    International Nuclear Information System (INIS)

    Deron, S.; Ouvrard, R.; Hartmann, R.; Klose, H.

    1992-10-01

    The report gives a brief description of the nature of the radioactive wastes generated at the IAEA Laboratories in Seibersdorf, their origin and composition, their management and monitoring. The management of the radioactive waste produced at IAEA Laboratories in Seibersdorf is governed by the Technical Agreements of 1985 between the IAEA and the Austrian Health Ministry. In the period of 1982 to 1991 waste containers of low activity and radiotoxicity generated at laboratories other than the Safeguards Analytical Laboratory (SAL) were transferred to the FZS waste treatment and storage plant: The total activity contained in these drums amounted to < 65 MBq alpha activity; < 1030 MBq beta activity; < 2900 MBq gamma activity. The radioactive waste generated at SAL and transferred to the FZs during the same period included. Uranium contaminated solid burnable waste in 200 1 drums, uranium contaminated solid unburnable waste in 200 1 drums, uranium contaminated liquid unburnable waste in 30 1 bottles, plutonium contaminated solid unburnable waste in 200 1 drums. In the same period SAL received a total of 146 Kg uranium and 812 g plutonium and exported out of Austria, unused residues of samples. The balance, i.e.: uranium 39 kg, plutonium 133 g constitutes the increase of the inventory of reference materials, and unused residues awaiting export, accumulated at SAL and SIL fissile store as a result of SAL operation during this 10 year period. The IAEA reexports all unused residues of samples of radioactive and fissile materials analyzed at his laboratories, so that the amount of radioactive materials ending in the wastes treated and stored at FZS is kept to a minimum. 5 refs, 7 figs, 3 tabs

  3. The International Atomic Energy Agency's Laboratories Seibersdorf and Vienna. Meeting the challenges of research and international co-operation in the application of nuclear techniques

    International Nuclear Information System (INIS)

    Krippl, E.

    1999-08-01

    The International Atomic Energy Agency therefore maintains a unique, multidisciplinary, analytical, research and training centre: the IAEA Laboratories, located at Seibersdorf near Vienna and at the Agency's Headquarters in the Vienna International Centre. They are organized in three branches: (i) the FAO/IAEA Agriculture and Biotechnology Laboratory: Soil Science, Plant Breeding, Animal Production and Health, Entomology, Agrochemicals; (ii) the Physics, Chemistry and Instrumentation Laboratory: Chemistry, Instrumentation, Dosimetry, Isotope Hydrology; (iii) the Safeguards Analytical Laboratory: Isotopic Analysis, Chemical Analysis, Clean Laboratory. 'The Mission of the IAEA Laboratories is to contribute to the implementation of the Agency's programmes in food and agriculture, human health, physical and chemical sciences, water resources, industry, environment, radiation protection and safeguards verification'. Together with a General Services and Safety Section, which provides logistics, information, industrial safety and maintenance services and runs a mechanical workshop, the three groups form the 'Seibersdorf Laboratories' and are part of the IAEA Department of Nuclear Sciences and Applications. The Laboratories contribute an important share to projects fostering peaceful applications of radiation and isotopes and radiation protection, and play a significant part in the nuclear verification mechanism. All activities are therefore planned and implemented in close co-operation with relevant divisions and departments of the IAEA. In specific sectors, the Laboratories also operate in conjunction with other organizations in the UN system, such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO) and the World Meteorological Organization (WMO), and with networks of national laboratories in Member States

  4. Incident involving radioactive material at IAEA Safeguards Laboratory - No radioactivity released to environment

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: Pressure build-up in a small sealed sample bottle in a storage safe resulted in plutonium contamination of a storage room at about 02:30 today at the IAEA's Safeguards Analytical Laboratory in Seibersdorf. All indications are that there was no release of radioactivity to the environment. Further monitoring around the laboratory will be undertaken. No one was working in the laboratory at the time. The Laboratory's safety system detected plutonium contamination in the storage room where the safe was located and in two other rooms - subsequently confirmed by a team of IAEA radiation protection experts. The Laboratory is equipped with multiple safety systems, including an air-filtering system to prevent the release of radioactivity to the environment. There will be restricted access to the affected rooms until they are decontaminated. A full investigation of the incident will be conducted. The IAEA has informed the Austrian regulatory authority. The IAEA's Laboratory in Seibersdorf is located within the complex of the Austrian Research Centers Seibersdorf (ARC), about 35 km southeast of Vienna. The laboratory routinely analyses small samples of nuclear material (uranium or plutonium) as part of the IAEA's safeguards verification work. (IAEA)

  5. The activities of the IAEA Laboratories, Vienna. Annual report 1981

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1983-06-01

    The report presents the activities of the IAEA Laboratories at Seibersdorf during the year 1981, with emphasis on the twofold purpose of the Laboratories: to support the Technical Cooperation activities of the Agency, and to operate the Safeguards Analytical Laboratory (SAL). The section dealing with the IAEA Technical Cooperation reports the programs of research where methods developed in Vienna are used throughout the world. Another section deals with the advanced techniques for chemical analysis and the interlaboratory comparisons programme. The training of specialists from member states is also described. The SAL, which became a separate part of the Laboratory, and its role in the Agency's Safeguards programme is also described. Reports and publications of Laboratory members are also listed

  6. Group fellowship training in nuclear spectroscopy instrumentation maintenance at the Seibersdorf Laboratories

    International Nuclear Information System (INIS)

    Xie, Y.; Abdel-Rassoul, A.A.

    1989-01-01

    Nuclear spectroscopy instruments are important tools for nuclear research and applications. Several types of nuclear spectrometers are being sent to numerous laboratories in developing countries through technical co-operation projects. These are mostly sophisticated systems based on different radiation detectors, analogue and digital circuitry. In most cases, they use microprocessor or computer techniques involving software and hardware. Maintenance service and repair of these systems is a major problem in many developing countries because suppliers do not set up service stations. The Agency's Laboratories at Seibersdorf started conducting group fellowship training on nuclear spectroscopy instrumentation maintenance in 1987. This article describes the training programme

  7. The activities of the IAEA laboratories Vienna. Annual report - 1980

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1982-03-01

    The report outlines the activities of the laboratory of the International Atomic Energy Agency at Seibersdorf in the province of Lower Austria. The report covers the following sections of the laboratory: chemistry, medical applications, dosimetry, soil science, entomology, plant breeding, electronics and measurement laboratory, isotope hydrology and the safeguards analytical laboratory. The extension to the main laboratory buildings - a new wing for medical applications and dosimetry - was fitted out and fully integrated into the laboratory by the end of the year. In July 1980 the high-level cobalt-60 dosimetry equipment (a teletherapy unit) was transferred from the old IAEA headquarters building in the centre of Vienna and installed in a specially designed annex to the new wing. A successful 8 week training course was given in the agriculture laboratory and arrangements were made for several of the course members to stay on as research fellows for several months after the course had ended

  8. What the IAEA Laboratories Bring to the World

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2014-01-01

    The safeguards laboratories are critical to the IAEA’s work to help prevent the spread of nuclear weapons. The nuclear applications laboratories, located in Vienna, Seibersdorf, near Vienna, and Monaco, help Member States tackle fundamental development issues such as food security, water resource management, human health, and the monitoring and management of environmental radioactivity and pollution

  9. Two low-level gamma spectrometry systems of the IAEA Safeguards Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parus, J L [IAEA, SAL, Vienna (Austria); Raab, W [IAEA, SAL, Vienna (Austria); Donohue, D [IAEA, SAL, Vienna (Austria); Jansta, V [IAEA, SAL, Vienna (Austria); Kierzek, J [IAEA, SAL, Vienna (Austria)

    1997-03-01

    A gamma spectrometry system designed for the measurement of samples with low and medium radioactivity (activity from a few to about 10{sup 4} Bq in the energy range from 25 to 2700 keV) has been installed at the IAEA Safeguards Analytical Laboratory in Seibersdorf. The system consists of 3 low level detectors: (1) n-type coaxial Ge with 42.4% relative efficiency, 1.85 keV FWHM at 1.33 MeV (2) planar Ge with 2000 mm{sup 2} area and 20 mm thickness, 562 eV FWHM at 122 keV (3) NaI(Tl) annulus of 25.4 cm diameter and 25.4 cm height, hole diameter 90 mm. (orig./DG)

  10. The laboratory activities of the IAEA laboratories, Vienna. Annual report - 1978

    International Nuclear Information System (INIS)

    1980-02-01

    The report presents in ten sections the work done during 1978 by the laboratory of the International Atomic Energy Agency located in Seibersdorf in the province of Lower Austria. The ten sections are: 1) metrology, 2) dosimetry, 3) chemistry, 4) safeguards analytical laboratory, 5) isotope hydrology, 6) medical applications, 7) agriculture - soils, 8) entomology, 9) plant breeding, 10) electronics and workshop. Lists of publications of the staff of the laboratory are appended

  11. Nuclear waste in Seibersdorf

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Forschungszentrum Seibersdorf (short: Seibersdorf) is the company operating the research reactor ASTRA. A controversy arose, initied by the Greens and some newspapers on the fact that the waste conditioning plant in Seibersdorf treated not only Austrian waste (from hospitals etc.) but also a large quantity of ion exchange resins from the Caorso nuclear power station, against payment. The author argues that it is untenable that an Austrian institution (peaceful use of nuclear energy in Austria being abandoned by a referendum) should support nuclear power abroad. There is also a short survey on nuclear waste conditioning and an account of an exchange of letters, between the Seibersdorf and the Ecology Institute on the claim of being an 'independent measuring institution' of food, soil, etc. samples. The author argues that the Ecology Institute is the sole independent institution in Austria because it is part of the ecology- and antinuclear movement, whereas Seibersdorf is dependent on the state. (qui)

  12. The IAEA isotope and radiation programme

    International Nuclear Information System (INIS)

    1987-11-01

    The main activities of the IAEA program in Isotope and Radiation are grouped into three fields: Food and Agriculture, Human Health and Life Sciences, Industry and Physical Sciences. In addition to a brief description of the main features of each program some of the activities performed at the Agency's Laboratories at Seibersdorf, Vienna and Monaco are presented

  13. Standards in radiation protection at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Czap, L.; Pernicka, F.; Matscheko, G.; Andreo, P.

    1999-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the Agency is making every necessary effort to insure that SSDLs measurements in radiation protection are traceable to Primary Standards. The IAEA provides traceable calibrations of ionization chambers in terms of air kerma at radiation protection levels and ambient dose equivalent calibrations. SSDLs are encouraged to use the calibrations available from the Agency to provide traceability for their radiation protection measurements. Measurements on diagnostic X ray generators have become increasingly important in radiation protection and some SSDLs are involved in such measurements. The IAEA has proper radiation sources available to provide traceable calibrations to the SSDLs in this field, including an X ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory will be described. (author)

  14. IAEA Newsbriefs. V. 11, no. 1(70). Jan-Feb 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This issue gives brief information on the following topics: Board Examining Second Part of Safeguards proposals, International Conference on Chernobyl, New Laboratory in Seibersdorf, Global Network of Isotopes in Precipitation, Radiation Safety, Seminars on Nuclear Information, Food Irradiation Workshop in France, IAEA Meetings, and other short information

  15. IAEA Marine Environment Laboratory - Monaco: Biennial report 1989-1990

    International Nuclear Information System (INIS)

    1991-01-01

    The report contains the results of the scientific tasks carried out in 1989-90 by the IAEA Marine Environment Laboratory in Monaco. The methods development and analytical quality assurance for radionuclide measurements, studies for evaluating environmental impacts of radionuclide releases into the sea, contribution to international marine pollution monitoring and research including special missions are presented. In addition, lists of the visiting consultants/experts, trainees/fellows, publications/meetings, committee/expert group membership, courses and research/technical contracts are given. Figs and tabs

  16. IAEA Newsbriefs. V. 13, no. 1(78). Jan-Feb 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA Board Meets in March, Director General ElBaradei Initiates Reviews, Nuclear Energy and Climate Change, States Honour Dr. Hans Blix, Radiological Conditions on Bikini Atoll Reassessed, Radiological Study of Mururoa and Fangataufa Atolls Nears Completion, Nuclear Inspections in Iraq, New Laboratory Set for Seibersdorf, Vienna Library Receives IAEA Collection, Developing Africa's Agricultural Economies, Marine Scientific Expedition to Northwest Pacific, Experts Target Radioactive Waste Management Needs in Russia, States Move to Accept Safeguards Protocol, In Memoriam, More States Sign Safety Convention, 1998 IAEA Scientific Meetings, New IAEA books, and other short information

  17. Remarks at Groundbreaking Ceremony for Renovation of NA Laboratories and 50th Anniversary of Joint FAO/IAEA Division, 29 September 2014, Vienna, Austria

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2014-01-01

    The IAEA is unique within the UN family in having no fewer than eight Nuclear Applications laboratories here in Seibersdorf. Since they opened in 1962, the laboratories have been offering training to scientists in Member States; supporting research in human health, food and other areas; and providing analytical services to national laboratories. Demand for their services has grown dramatically. Back in 1962, the Agency had 79 Member States. Today, we have 162 - and our General Conference approved the admission of four more countries last week. In the last ten years alone, both the number of Technical Cooperation projects supported by the Insect Pest Control Laboratory, and the number of radiation therapy beams checked by the Dosimetry Laboratory, have nearly doubled. The other laboratories report a similar pattern of increasing demand. This is very welcome. However, the laboratories are showing their age. The buildings are now too small. And both they, and the equipment they contain, are in urgent need of modernisation. We are unable to keep up with demand from Member States for placements for scientific fellows and have to turn many excellent candidates away. We have therefore developed a project, known as ReNuAL, to thoroughly modernise the laboratories over the next three years

  18. FAO/IAEA Agriculture and Biotechnology Laboratories. Activities Report 2010

    International Nuclear Information System (INIS)

    2012-02-01

    Almost two thirds of the world's farm population is raised in developing countries where livestock production constitutes an important resource for the subsistence of more than 70% of the impoverished people living there. Animals represent an essential source of protein and contribute to the economic development of these countries and to overall food security. However, production losses caused by animal diseases, estimated to be around 20% worldwide, have huge negative impact on livestock productivity. The Animal Production and Health Laboratory (APHL), within the Animal Production and Health Section, conducts applied research activities to develop diagnostic tools and assists in the transfer of these tools to FAO and IAEA Member States in their efforts to improve livestock productivity, ensure food security and fight against hunger. The aims of the Food and Environmental Protection Laboratory (FEPL), as a component of the Food and Environmental Protection (FEP) Section, are to provide assistance and support to developing countries in their efforts to ensure the safety and quality of food and agricultural commodities, thereby safeguarding the health of consumers and facilitating international trade. The focus of the FEPL's work is on improving Member States' laboratory and regulatory practices and methodologies, The main areas of activity in pursuit of the FEPL objectives are applied R and D, technology transfer and support of the development of international standards and guidelines. The Insect Pest Control Laboratory (IPCL) is an integral part of the Insect Pest Control Section and contributes to its global objectives of increasing food security, reducing food losses and insecticide use, overcoming constraints to sustainable rural development, and facilitating international trade in agriculture commodities. The IPCL achieves these goals through the development and transfer of the sterile insect technique (SIT) package for key insect pests of crops, livestock and

  19. Annual report 1992 - Austrian Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    Hillebrand, G.

    1994-01-01

    This is a non-technical progress report (in English) of the activities of the Research Centre Seibersdorf in the fields of energy and safety, materials research, isotope and radiation techniques, environment protection, health and food and industrial consulting. Within other non nuclear related highlights the newly built radio-pharmaceutical laboratory is described, which will guarantee the reliable supply of products and develop new diagnostic and therapeutic preparations. A newly developed whole-body counter for measuring internal radiation is in use in the Vienna General Hospital to obtain better information of the patient's metabolism and can thus assess the efficiency of pharmaceuticals. The research in the field of toxicology and carcinogenicity was intensified. Geological dating was performed for the 'Continental Deep-Drilling Programme' on behalf of the Max Planck Institute. Environmental data acquisition was mainly conducted in the field of ozone, water quality, air pollution and electro-smog (quittner, rieger)

  20. Annual report 1992 - Austrian Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    Hillebrand, G.

    1994-01-01

    This is a non-technical progress report (in German) of the activities of the Research Centre Seibersdorf in the fields of energy and safety, materials research, isotope and radiation techniques, environment protection, health and food and industrial consulting. Within other non nuclear related highlights the newly built radio-pharmaceutical laboratory is described, which will guarantee the reliable supply of products and develop new diagnostic and therapeutic preparations. A newly developed whole-body counter for measuring internal radiation is in use in the Vienna General Hospital to obtain better information of the patient's metabolism and can thus assess the efficiency of pharmaceuticals. The research in the field of toxicology and carcinogenicity was intensified. Geological dating was performed for the 'Continental Deep-Drilling Programme' on behalf of the Max Planck Institute. Environmental data acquisition was mainly conducted in the field of ozone, water quality, air pollution and electro-smog (quittner, rieger)

  1. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd

    2014-01-01

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling

  2. FAO/IAEA Training Course on Integrated Nutrient-Water Management at Field and Area-wide Scale, 19 May–27 June 2014, Seibersdorf, Austria [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Wahbi, Ammar; Weltin, Georg; Dercon, Gerd [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); others, and

    2014-07-15

    The main focus of the training course was on: (i) improving nutrient management in rainfed and irrigated agriculture, (ii) monitoring nutrient balances and water use efficiency at the field scale, (iii) increasing the efficiency of water management in rainfed and irrigated agriculture at field and area-wide scales, (iv) monitoring soil moisture at both field and area-wide scales, (v) assessing soil water balance and crop water relations, and (vi) training on the use of FAAO’s AquaCrop model to improve soil water management and irrigation scheduling.

  3. Quality management at the Safeguards Analytical Laboratory of IAEA

    International Nuclear Information System (INIS)

    Aigner, H.; Doherty, P.; Donohue, D.; Kuno, Y.

    2001-01-01

    Full text: In the year 2000, SAL'S quality management system was certified for conforming with the requirements of the international standard ISO-9002: 1994. The certification incurred considerable efforts, both in manpower and capital investments. The expected benefits of a formal quality management system do not directly target the correctness and reliability of analytical results. SAL believes that it was already performing well in this respect, even before re-shaping its quality system according to the reference model. Systematic QA and QC procedures have been applied since the begin of SAL'S operations in the mid-70's. The management framework specified in ISO-9002: 1994 complements these technical measures. Besides its value of being internationally recognised and thus enhancing perhaps the credibility in the quality of SAL'S services, the quality management system in this form provides additional advantages for the customer of the services of SAL, i.e. the Department of Safeguards of the IAEA, but also for the control and management of SAL'S internal 'business' processes. The paper discusses if these expected additional benefits are indeed obtained and whether or not their value is in balance with operational and initial investment costs. (author)

  4. The Seibersdorf Labs Through the Eyes of Visiting Scientists

    International Nuclear Information System (INIS)

    Ralambomanana, Norbertin M.; Ntho, Motlatsi James; Abd Elkareim, Tahani Bashir; Ndiaye, Fatimata

    2014-01-01

    Lesotho: In Lesotho, we are being affected by climate change, meaning we have more and longer droughts, and the rains farmers need for their crops to grow and flourish are often late. We are also seeing more agricultural crops blighted by disease. Therefore I am working to improve sweet potatoes and wheat because of wheat’s importance in the daily diet, and because sweet potatoes could become an equally important staple in the next 10 years if we make a greater effort to promote its consumption. In Lesotho’s Department of Agriculture Research, we are focusing on these two staple foods initially because we want to improve the country’s food security — growing more and better crops to adequately feed the population. Once I return home at the end of my two month fellowship at Seibersdorf, I will be using nuclear and other techniques to improve the drought tolerance, yield, nutritional value and disease resistance of both sweet potato and wheat. Madagascar: “The island of Madagascar has a population of more than 23 million. Over half of its rural dwellers are agricultural workers, particularly in cattle farming. But the country still has to import milk as it is depleting its stock of indigenous Malagasy Zebu cattle in order to keep up with beef exports to neighbouring islands. Therefore, the Madagascar Government is partnering with the IAEA to improve milk and beef production from the indigenous Zebu, Renitelo and Manjani Boina cattle breeds, through selective breeding based on the intimate knowledge of their DNA. Fellowships like the one from which I am benefitting are very important for developing Member States because by training our scientists, the IAEA is giving us the tools we need to meet our own needs now and in the future. Senegal: “In Senegal, we are struggling to adequately feed our population as persistent drought and poor soil quality combine to cause crop failure year after year. My area of focus is the improvement of soil fertility and

  5. The Medical Activation Analysis Research Programme of the IAEA Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parr, R. M. [Medical Applications Section, International Atomic Energy Agency, Vienna (Austria)

    1970-07-01

    Analyses carried out under the Agency's laboratory programme in medical activation analysis commended in 1967. This paper describes the laboratory facilities and experimental methods now in use, and reports briefly on results obtained to date. The analytical scheme places greatest emphasis on non-destructive methods (i.e. without radiochemistry), and by the use of a Ge(Li) detector and a 2-parameter Nal(Tl) gamma-ray spectrometer, presently allows the determination of up to 12 elements in unprocessed tissue samples. Projects completed or underway include (i) an investigation into the uniformity of distribution of mineral elements in human liver, (ii) studies of tissue concentrations of trace elements in relation to malnutrition and cardiovascular diseases, and (iii) the determination of iodine in food, natural waters and other biological materials in relation to the epidemiology of endemic goitre. (author)

  6. Radioactivity in the sea. Scientific publications of the IAEA Marine Environment Laboratory (1991-1996)

    International Nuclear Information System (INIS)

    1998-01-01

    This document provides list of scientific publications of the IAEA Marine Environmental Laboratory (IAEA-MEL). The studies cover a broad spectrum of environmental issues of behaviour of radioactive substances as well as fate of non-nuclear pollutants in the marine environment. Studies of the Gulf war aftermath, the carbon cycle and the Greenhouse Effect, Chernobyl radioactivity in the oceans, the consequences of nuclear testing on the South Pacific and of nuclear dumping in the Arctic Seas and in the East Sea (Sea of Japan) and of pesticide tun-off and toxicity to coastal fisheries are just a few areas in which the IAEA-MEL has recently been active. Increasingly, the emphasis is placed on the use of nuclear and isotopic techniques to improve understanding of the marine environment and of pollutant behaviour

  7. Standardization of the calibration of brachytherapy sources at the IAEA dosimetry laboratory

    International Nuclear Information System (INIS)

    Shanta, A.; Andreo, P.

    1996-01-01

    A new service to SSDLs has been initiated at the IAEA Dosimetry Laboratory for providing calibrations of well-type ionisation chambers, used in brachytherapy applications, which are traceable to the International Measurement System. Considering that the most common radionuclide used in the developing countries is 137 Cs, two such sources of the type used for gynaecological intracavitary applications have been purchased by the Agency and calibrated at the National Institute of Standards and Technology (NIST), USA. These 137 Cs reference sources together with a well-type ionization chamber constitute the IAEA brachytherapy dosimetry standard. Based on the recommendations by a group of experts, a method has been developed for transferring calibrations to SSDLs which is described in this paper. The method is based on the acquisition by the SSDLs of sources and equipment similar to those at the IAEA. The well-type chamber is to be calibrated at the IAEA Dosimetry Laboratory, and this will be used at the SSDL to calibrate its own reference sources. These sources can in turn by used to calibrate well-type chambers from hospital users and to calibrate other type of sources by performing measurements in air. In order to standardize the procedures for the two methods and to provide guidance to the SSDLs, measurements have been carried out at the IAEA Dosimetry Laboratory. The reproducibility of the two type of measurements has been found to be better than 0.5%, and the uncertainty of calibrations estimated to be less than 1.5% (one standard deviation). (author). 8 refs, 8 figs, 2 tabs

  8. Design of simulated nuclear electronics laboratory experiments based on IAEA-TECDOC-530 on pcs

    International Nuclear Information System (INIS)

    Ghousia, S.F.; Nadeem, M.; Khaleeq, M.T.

    2002-05-01

    In this IAEA project, PK-11089 (Design of Simulated Nuclear Electronics Laboratory Experiments based on IAEA-TECDOC-530 on PCs), a software package consisting of Computer-Simulated Laboratory Experiments on Nuclear Electronics compatible with the IAEA-TECDOC-530 (Nuclear Electronics Laboratory Manual) has been developed in OrCAD 9.0 (an electronic circuit simulation software environment) as a self-training aid. The software process model employed in this project is the Feedback Waterfall model with some Rapid Application Model. The project work is completed in the five phases of the SDLC, (all of them have been fully completed) which includes the Requirement Definition, Phase, System and Software Design, Implementation and Unit testing, Integration and System-testing phase and the Operation and Maintenance phase. A total of 125 circuits are designed in 39 experiments from Power Supplies, Analog circuits, Digital circuits and Multi-channel analyzer sections. There is another set of schematic designs present in the package, which contains faulty circuits. This set is designed for the learners to exercise the troubleshooting. The integration and system-testing phase was carried out simultaneously. The Operation and Maintenance phase has been implemented by accomplishing it through some trainees and some undergraduate engineering students by allowing them to play with the software independently. (author)

  9. Worldwide Laboratory Comparison on the Determination of Radionuclides in IAEA-446 Baltic Sea Seaweed (Fucus vesiculosus)

    International Nuclear Information System (INIS)

    2013-01-01

    The Radiometrics Laboratory of the IAEA Environment Laboratories in Monaco has been providing quality products and services for the past forty years, including the organization of interlaboratory comparisons, the production of reference and certified reference materials and the provision of training. More than 45 reference materials have been produced, including a wide range of marine sample matrices and radionuclide concentrations. As part of these activities, a new interlaboratory comparison was organized to provide participating laboratories with the opportunity to test the performance of their analytical methods on a seaweed sample with elevated radionuclide levels due to the effects of the Chernobyl accident on the Baltic Sea region. The material used in the analysis of anthropogenic and natural radionuclides in seaweed was the bladder wrack (Fucus vesiculosus). It is expected that the sample, after successful certification, will be issued as a certified reference material for analysing radionuclides in seaweed. The participating laboratories were informed that the IAEA publication would contain a list of the laboratories and the results and descriptions of the interlaboratory comparisons, but that the results would not be attributed to individual laboratories

  10. Worldwide Laboratory Comparison on the Determination of Radionuclides in IAEA-446 Baltic Sea Seaweed (Fucus vesiculosus)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The Radiometrics Laboratory of the IAEA Environment Laboratories in Monaco has been providing quality products and services for the past forty years, including the organization of interlaboratory comparisons, the production of reference and certified reference materials and the provision of training. More than 45 reference materials have been produced, including a wide range of marine sample matrices and radionuclide concentrations. As part of these activities, a new interlaboratory comparison was organized to provide participating laboratories with the opportunity to test the performance of their analytical methods on a seaweed sample with elevated radionuclide levels due to the effects of the Chernobyl accident on the Baltic Sea region. The material used in the analysis of anthropogenic and natural radionuclides in seaweed was the bladder wrack (Fucus vesiculosus). It is expected that the sample, after successful certification, will be issued as a certified reference material for analysing radionuclides in seaweed. The participating laboratories were informed that the IAEA publication would contain a list of the laboratories and the results and descriptions of the interlaboratory comparisons, but that the results would not be attributed to individual laboratories.

  11. The role of the IAEA Dosimetry Laboratory in the dissemination of standards for radiation protection

    International Nuclear Information System (INIS)

    Czap, L.; Andreo, P.; Matscheko, G.

    1998-01-01

    Approximately 90% of the Secondary Standard Dosimetry Laboratories (SSDLs) provide users with calibrations of radiation protection instruments, and the IAEA is taking every necessary effort to insure that SSDLs measurements are traceable to Primary Standards. The Agency has proper radiation sources available to provide traceable calibrations to the SSDLs involved in measurements on diagnostic x-ray generators, including an x-ray unit specifically for mammography dedicated to standardization procedures. The different photon beam qualities and calibration procedures available in the Agency's Dosimetry Laboratory are described

  12. The REAL-80 project related preliminary results. Argonne-Seibersdorf intercomparison

    International Nuclear Information System (INIS)

    Ertek, C.

    1981-01-01

    In order to check the quality of the SAND-II cross section library (which is close to ENDF/B IV library with some minor differences) the L. Greenwood's input data with his measured 22 reaction rates as given in the REAL-80 were used and the SAND II code was run which is implemented in Seibersdorf Laboratory

  13. Standards for radiation protection and diagnostic radiology at the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Pernicka, F.; Andreo, P.; Meghzifene, A.; Czap, L.; Girzikowsky, R.

    1999-01-01

    International standardization in dosimetry is essential for the successful exploitation of radiation technology. The IAEA dosimetry programme is focused into services provided to Member States through the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories (SSDLs), to radiotherapy centres and radiation processing facilities. Radiation protection quantities defined by ICRU and ICRP are used to relate the risk due to exposure to ionizing radiation to a single quantity, irrespective of the type of radiation, which takes into account the human body as a receptor. Two types of quantities, limiting and operational, can be related to basic physical quantities which are defined without need for considering specific aspects of radiation protection, e.g. air kerma for photons and fluence for neutrons. The use of a dosimeter for measurements in radiation protection requires a calibration in terms of a physical quantity together with a conversion from physical into protection quantities by means of a factor or a coefficient

  14. The IAEA/WHO network of Secondary Standard Dosimetry Laboratories. SSDL network charter

    International Nuclear Information System (INIS)

    1999-04-01

    In 1976, the International Atomic Energy Agency (IAEA) together with the World Health Organization (WHO) established a Network of Secondary Standard Dosimetry Laboratories (SSDLs), known as the IAEA/WHO SSDL Network. This Network, through SSDLs designated by Member States, provides a direct linkage of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM), and the dissemination of S.I. quantities and units through the proper calibration of field instruments by the SSDLs. The Network has proved to be of value in improving national capabilities for instrument calibration and the awareness of better accuracy and traceability. Fifty-eight countries have nominated SSDLs for membership in the Network. Unfortunately, some of these SSDLs do not yet function as full members, perhaps because of some uncertainty as to their obligations concerning the Network. Consequently, the Scientific Committee which advises the Network Secretariat has recommended that a Charter be drawn up explaining the privileges, rights and duties of members in the Network which would strengthen their links to the international measurement system. In addition to the duties of members in the Network and the benefits that full members can receive, the Charter also describes how the Network functions and the scope of the work of the SSDLs. In producing this Charter, the advisory group has drawn heavily on the IAEA publication 'Secondary Standard Dosimetry Laboratories: Development and Trends' (1985) which summarizes the origin, development, status and prospects of the IAEA/WHO SSDL Network. The various appendices are effectively up-dates of different parts of this earlier publication, and the original drafting and reviewing bodies are given due recognition. The revisions take into account the experience the Agency has gained in coordinating the activities of the Network for more than 20 years

  15. The IAEA/WHO network of Secondary Standard Dosimetry Laboratories. SSDL network charter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    In 1976, the International Atomic Energy Agency (IAEA) together with the World Health Organization (WHO) established a Network of Secondary Standard Dosimetry Laboratories (SSDLs), known as the IAEA/WHO SSDL Network. This Network, through SSDLs designated by Member States, provides a direct linkage of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM), and the dissemination of S.I. quantities and units through the proper calibration of field instruments by the SSDLs. The Network has proved to be of value in improving national capabilities for instrument calibration and the awareness of better accuracy and traceability. Fifty-eight countries have nominated SSDLs for membership in the Network. Unfortunately, some of these SSDLs do not yet function as full members, perhaps because of some uncertainty as to their obligations concerning the Network. Consequently, the Scientific Committee which advises the Network Secretariat has recommended that a Charter be drawn up explaining the privileges, rights and duties of members in the Network which would strengthen their links to the international measurement system. In addition to the duties of members in the Network and the benefits that full members can receive, the Charter also describes how the Network functions and the scope of the work of the SSDLs. In producing this Charter, the advisory group has drawn heavily on the IAEA publication 'Secondary Standard Dosimetry Laboratories: Development and Trends' (1985) which summarizes the origin, development, status and prospects of the IAEA/WHO SSDL Network. The various appendices are effectively up-dates of different parts of this earlier publication, and the original drafting and reviewing bodies are given due recognition. The revisions take into account the experience the Agency has gained in coordinating the activities of the Network for more than 20 years.

  16. Banana research in the FAO/IAEA agriculture and biotechnology laboratory

    International Nuclear Information System (INIS)

    Morpurgo, R.; Afza, R.; Brunner, H.; Roux, N.; Grasso, G.; Lee, K.S.; Duren, M. Van; Zapata-Arias, F.J.

    1997-01-01

    The primary activity of the Agriculture and Biotechnology Laboratory on banana has been to develop and transfer mutation techniques using nuclear and related biotechnology, provide training and mutagen treatment services and technical advice to the Member States. The complex genetic nature and lack of seed formation do not allow conventional breeding of Musa varieties. The FAO/IAEA laboratory has developed in vitro techniques to induce mutations, minimize chimerisms, and rapid propagation of banana. The most commonly used method of propagation is rapid proliferation of axillary and adventitious buds from meristem tip culture. Somatic embryogenesis has been induced in clones with different genomic constitution; however, the low germination rate of somatic embryos is still a major constraint. Investigations have been carried out on enzymes associated with resistance to Fusarium oxisporum f. sp. cubense. Molecular methods based on DNA oligonucleotide and DNA amplification fingerprinting are being developed for genomic characterization of species, cultivars and mutant clones. (author)

  17. Banana research in the FAO/IAEA agriculture and biotechnology laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Morpurgo, R; Afza, R; Brunner, H; Roux, N; Grasso, G; Lee, K S; Duren, M Van; Zapata-Arias, F J [Agriculture and Biotechnology Laboratory, International Atomic Energy Agency, Seibersdorf (Austria)

    1997-07-01

    The primary activity of the Agriculture and Biotechnology Laboratory on banana has been to develop and transfer mutation techniques using nuclear and related biotechnology, provide training and mutagen treatment services and technical advice to the Member States. The complex genetic nature and lack of seed formation do not allow conventional breeding of Musa varieties. The FAO/IAEA laboratory has developed in vitro techniques to induce mutations, minimize chimerisms, and rapid propagation of banana. The most commonly used method of propagation is rapid proliferation of axillary and adventitious buds from meristem tip culture. Somatic embryogenesis has been induced in clones with different genomic constitution; however, the low germination rate of somatic embryos is still a major constraint. Investigations have been carried out on enzymes associated with resistance to Fusarium oxisporum f. sp. cubense. Molecular methods based on DNA oligonucleotide and DNA amplification fingerprinting are being developed for genomic characterization of species, cultivars and mutant clones. (author).

  18. IAEA intercomparison exercises of thyroid measurement: performance of Latin American and Caribbean laboratories

    International Nuclear Information System (INIS)

    Dantas, B.M.; Dantas, A.L.A.; Cruz-Suarez, R.

    2016-01-01

    131 I is widely used in Latin America and Caribbean Region in the field of nuclear medicine and has been recognised as one of the main sources of potential intake of radionuclides by the staff. The In Vivo Monitoring laboratory of the Institute for Radiation Protection and Dosimetry (IRD-CNEN-Brazil) organised three intercomparison exercises (2005, 2009 and 2013) in the scope of IAEA technical cooperation projects RLA9049 and RLA9066 aimed to disseminate and harmonise the technique for measuring 131 I in the human thyroid. The number of participants in Latin America increased from 9 to 20 institutions from 7 and 13 countries, respectively, over the last 10 y. The participants have improved significantly their ability on the in vivo measurement technique. In the 2013 round all laboratories which reported results presented performances in an acceptable range according to the ISO criteria indicating the benefit of such exercises in the region. (authors)

  19. IAEA Technical Co-operation activities: Asia and the Pacific. Workshop on training nuclear laboratory technicians

    International Nuclear Information System (INIS)

    Roeed, S.S.

    1976-01-01

    The workshop was held to exchange information on existing facilities and programmes in Asia and the Pacific for training nuclear laboratory technicians, to identify future training needs and to assess the need for IAEA's involvement in this field. As the participants outlined the requirements for nuclear laboratory technician training and the facilities available in their respective countries, it became evident that, in addition to the training of radioisotope laboratory technicians, they also wished to review the need for technician training for the operation of nuclear power plants and industrial application of atomic energy. The terms of reference of the workshop were extended accordingly. The opening address by Chang Suk Lee, the Korean Vice Minister of Science and Technology, noted the valuable contribution to quality control and other industrial uses that nuclear techniques have made in his country. He also reviewed the application of nuclear techniques in Korean agriculture and medicine. The participants explored various forms of co-operation that could be established between countries of the region. Exchange programmes, not only for students but also for expert teachers, and the exchange or loan of equipment were suggested. It was felt that some generalized training courses could be organized on a regional basis, and two countries advocated the setting up of a regional training centre. One suggestion was to arrange regional training courses in special fields that would move from one country to another. The need was felt for periodic regional meetings on training methods, course content and other questions relating to training of laboratory technicians. The IAEA was requested to act as a clearinghouse for information on available training facilities in the region and to advise on the curricula for technician training courses. The Agency was also asked to organize short courses for the training of instructors of technicians in the various fields of atomic

  20. The FAO/IAEA External Quality Assurance Programme (EQAP) and movement towards a generic veterinary diagnostic testing laboratory accreditation scheme. Report of an FAO/IAEA consultants meeting

    International Nuclear Information System (INIS)

    2002-01-01

    FAO/IAEA support in the area of animal health is focused on enhancing the ability of regional reference laboratories and national veterinary authorities in developing countries to diagnose livestock diseases of major importance using nuclear and related technologies, and to help monitor the effectiveness of national and regional intervention strategies. This is done through provision of advice to the veterinary authorities concerning the development of appropriate sampling or research strategies coupled with FAO/IAEA-led collaborative development, adaptation, standardization, evaluation, and provision of quality-controlled enzyme-linked immunosorbent assay (ELISA) kits and the components necessary for diagnostic application of the polymerase chain reaction (PCR) techniques. Additional features of FAO/IAEA animal health support include provision of relevant laboratory equipment, training of counterpart scientists and technicians in the use of the equipment and standardized assays, and coordination of quality assurance (QA) programmes to monitor the proficiency of the assayists and help evaluate the impact of improved diagnostic capabilities. The current FAO/IAEA External Quality Assurance Programme (EQAP) for Animal Disease Diagnosis began as an effort to monitor the efficacy of mass vaccination programmes as part of the Pan African Rinderpest Campaign (PARC). Proficiency test panels, composed of 40 'unknown' serum samples, were sent to participating laboratories yearly to measure their abilities with ELISA in distinguishing between samples that were positive or negative for rinderpest antibodies. From this beginning, the EQAP has grown into an effort to measure general and specific components of FAO/IAEA counterparts' QA systems and provide assurance to outside observers that the use of FAO/IAEA diagnostic ELISA's are within established control limits and the test results and diagnostic interpretations are reliable. A major objective of the current EQAP is to

  1. The Seibersdorf TL Personnel Dosimetry Service

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-11-01

    Since 1976 the Department for Radiation Protection of the Austrian Research Centre Seibersdorf has been operating a TLD Personnel Monitoring Service, which presently covers about 18,000 radiation workers in Austria, with monthly monitoring periods. We have been the first accredited monitoring service in Europe, which fully converted from film dosimetry to TLD. From the beginning up to 1991 the service was based on three automated TLD systems Model 2271 from HARSHAW, USA. After extensive testing and comparisons, since almost four years now, the monitoring service has been operating on two HARSHAW 8800 systems, which are described in more detail below. (author)

  2. The Seibersdorf TL Personnel Dosimetry Service

    Energy Technology Data Exchange (ETDEWEB)

    Duftschmid, K E [Oesterreichisches Forschungszentrum Seibersdorf GmbH (Austria)

    1994-11-01

    Since 1976 the Department for Radiation Protection of the Austrian Research Centre Seibersdorf has been operating a TLD Personnel Monitoring Service, which presently covers about 18,000 radiation workers in Austria, with monthly monitoring periods. We have been the first accredited monitoring service in Europe, which fully converted from film dosimetry to TLD. From the beginning up to 1991 the service was based on three automated TLD systems Model 2271 from HARSHAW, USA. After extensive testing and comparisons, since almost four years now, the monitoring service has been operating on two HARSHAW 8800 systems, which are described in more detail below. (author).

  3. Procedure and technique critique for tritium enrichment by electrolysis at the IAEA Laboratory (effective November 1976)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-11-05

    This publication gives a detailed description of the experimental and calculation procedures for tritium enrichment. Most descriptive sections are divided into 2 parts: Section A describes the procedure in the IAEA laboratory; section B discusses the reasons behind the various procedures, and may indicate alternative acceptable, or in some cases even better, procedures. The description of the equipment focuses on electrolysis cells, cooling system and power supply. Routine procedures are discussed including handling and checking of samples after receipt, 'spike' and blank water, initial sample distillation, preparation of cells and samples for electrolysis, electrolysis and completion of electrolysis (weighing of cells, neutralisation and distillation) and precautions against contaminations (prevention, detection and cure). A list of equipment required for electrolytic enrichment of tritium is provided.

  4. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA

    International Nuclear Information System (INIS)

    Alfaro L, M.M.

    2002-07-01

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  5. Procedure and technique critique for tritium enrichment by electrolysis at the IAEA Laboratory (effective November 1976)

    International Nuclear Information System (INIS)

    1976-01-01

    This publication gives a detailed description of the experimental and calculation procedures for tritium enrichment. Most descriptive sections are divided into 2 parts: Section A describes the procedure in the IAEA laboratory; section B discusses the reasons behind the various procedures, and may indicate alternative acceptable, or in some cases even better, procedures. The description of the equipment focuses on electrolysis cells, cooling system and power supply. Routine procedures are discussed including handling and checking of samples after receipt, 'spike' and blank water, initial sample distillation, preparation of cells and samples for electrolysis, electrolysis and completion of electrolysis (weighing of cells, neutralisation and distillation) and precautions against contaminations (prevention, detection and cure). A list of equipment required for electrolytic enrichment of tritium is provided

  6. The IAEA/WHO Network of SSDLs. Short history, activity and future trends[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Hans; Zsdanszky, Kalman [International Atomic Energy Agency, Dosimtery Section, Vienna (Austria)

    1990-04-01

    In 1968 at an IAEA meeting in Caracas, Venezuela, the dosimetric requirements of radiotherapy centres were discussed. At that time many radiotherapy departments in developing countries did not have a dosimeter. Even those that had a dosimeter were seldom able to send it to a Primary Standard Dosimetry Laboratory (PSDL) for proper calibration. The establishment of regional dosimeter calibration laboratories was recommended by the participating experts including representatives of WHO. There was general consent that it was not necessary to establish in every country a PSDL, which would need a very qualified staff and sophisticated equipment. Instead, the establishment of Secondary Standard Dosimetry Laboratories (SSDLs) was found to be an adequate solution to the problem. The new idea of SSDLs and their role within the international metrology system was thoroughly discussed at a joint IAEA/WHO meeting in Rio de Janeiro (scientific secretaries: H.H. Eisenlohr, IAEA and W. Seelentag, WHO) in December 1974. Considering the fact that an SSDL cannot work in isolation the experts recommended the setting up of an international Network of SSDLs under the auspices of the IAEA and WHO. The statutes of the IAEA/WHO Network of SSDLs were laid down in a Working Arrangement between the IAEA and WHO in April 1976. Later in 1976 the two Directors General of the IAEA and WHO formally announced by circular letters to their respective member states the establishment of the IAEA/WHO Network of SSDL. The Criteria for the Establishment of a Secondary Standard Dosimetry Laboratory were formulated by an Advisory Group and were attached to these letters. At that time there existed already 8 laboratories, which had been designated by WHO during the period 1968-1976 as regional reference centres for dosimetry. Another SSDL had been set up in Rio de Janeiro in collaboration between the Brazilian Government, the Government of the Federal Republic of Germany, and the IAEA. As a consequence of the

  7. Status report of the ESR/alanine project of the IAEA Dosimetry Laboratory

    International Nuclear Information System (INIS)

    Girzikowsky, R.

    1990-01-01

    The main tasks of the Dosimetry Laboratory of the IAEA are in the field of therapy-level dosimetry. Other dose ranges, i.e. protection-level standardization and calibration, are partly covered, too. On high-dose level the laboratory has been offering a Fricke-dosimetry service to Member States on request since 1965. In 1985 the Dosimetry Section has initiated an International Dose Assurance Service (IDAS). This service is an important part of the Agency's high-dose standardization programme and is based on Electron-Spin-Resonance (ESR) analysis of radiation-induced free radicals in alanine. This ESR/alanine dosimetry system was initially developed for high-dose application by GSF/Munich as the Agency's outside contractor. Although efforts were undertaken to equip the Agency Laboratory with an ESR analyzer since 1984, the purchase of an adequate unit was postponed until the end of 1988. From the date of establishment of the IDAS programme until today, the handling of all technical aspects, i.e. dosimeter production and evaluation was and is carried out by GSP/Munich under IAEA contract. As mentioned above, the IAEA Dosimetry Laboratory is in possession of its own ESR analyzer since December 1988. It was then installed in May 1989. Only one staff member of the laboratory was assigned to this project. He made himself acquainted with the analyzer, the measuring technique, and the application of alanine as dosimeter material. The ESR spectrometric analyzer is a CW ESR type ESP 300 manufactured by Bruker GmbH/FRG. It consists of a 9''/2,7 kW magnet, an X-band microwave bridge, a field regulator unit, a signal channel unit and a data system ESP 1620 based on the 68020 CPU. The probe material selected for measurement of concentration of radiation-induced free radicals is L-Alanine. This amino acid is a suitable material for transfer dosimeters due to its properties, i.e. wide sensitivity range (10 Gy to 100 kGy), energy independence for high-energy photons and electron

  8. The influence of the number of activation detectors on the Seibersdorf - Milano intercomparison of neutron flux density spectra by WINDOWS code

    International Nuclear Information System (INIS)

    Ertek, C.

    1981-02-01

    This work is a continuation of the work performed within the IAEA programme on standardization of reactor radiation measurements, one of the important objectives of which is the assistance to laboratories in Member States to implement or intercompare the multiple foil activation techniques for different neutron field measurements. The importance of these techniques is well recognized. In CESNEF-FERMI Politecnico di Milano, Italy, they have installed near the core of a water boiler of 50kW, a neutron filter made of B 4 C in order to obtain a neutron flux density spectrum that could be of utility in intercalibration problems connected with irradiation in fast assemblies. Dr. V. Sangiust from CESNEF kindly sent the input guess neutron flux density spectrum and a series of measured reaction rates to be treated by the IAEA Seibersdorf laboratory using the SAND-II and the WINDOWS unfolding codes. The meaningful comparison using partly the same ENDF/B IV cross section data is performed. In the present work we extended the investiga tion using WINDOWS unfolding code for different numbers of activation fo ils or reaction rates

  9. Worldwide Laboratory Comparison on the Determination of Trace Elements in IAEA-452 Biota Sample

    International Nuclear Information System (INIS)

    2012-01-01

    The Marine Environmental Studies Laboratory (MESL) of the International Atomic Energy Agency's Environment Laboratories (IAEA-NAEL) has the programmatic responsibility to provide assistance to Member States' laboratories in maintaining and improving the reliability of analytical measurement results, both in trace elements and organic pollutants. This is accomplished through the provision of reference materials of marine origin, validated analytical procedures, training in the implementation of internal quality control, and through the evaluation of measurement performance by the organization of worldwide and regional interlaboratory comparison exercises. For nearly thirty years, the MESL has conducted worldwide laboratory performance studies, also known as interlaboratory comparison. The results have been used to evaluate laboratory performance with respect to a wide range of organic and inorganic pollutants, including methyl mercury. This work has been conducted in collaboration with the UNEP Regional Seas Programme. The goal of interlaboratory comparison is to demonstrate the measurement capabilities of laboratories participating in interlaboratory comparisons (ILCs) and proficiency tests (PTs). The results from ILCs or PTs are of crucial interest for laboratories as these provide clear information of its measurement capabilities. It should be pointed out that the participation is either voluntary or forced by external requirements (e.g. legal, accreditation, control bodies). NAEL's interlaboratory comparison (ILC) and proficiency test (PT) schemes involve comparison of participant's results with an assigned value, which usually is delivered as a consensus value from the overall population of test results. Those exercises are designed to monitor and demonstrate the performance and analytical capabilities of the participating laboratories, and to identify gaps and problem areas where further development is needed. Continued membership has benefits in training and

  10. IAEA advisory group meeting on atomic and molecular data for fusion, Culham Laboratory, UK, 1 - 5 November 1976

    International Nuclear Information System (INIS)

    Lorenz, A.

    1977-02-01

    The IAEA Nuclear Data Section convened an Advisory Group Meeting on Atomic and Molecular Data for Fusion at the UKAEA Laboratory at Culham, from 1-5 November 1976. Three detailed working group reports identifying requirements and availability of atomic collision data, atomic structure data, and surface interaction data in fusion research are presented. The meeting recommended the formation of an international network of data centres for the compilation and dissemination of atomic and molecular data required for fusion, and recommended that the IAEA Nuclear Data Section be given the responsibility to establish and coordinate this network

  11. Achievements and experience in Laboratory for Low Level Measurements, Rudjer Boskovic Institute, Croatia, during the IAEA QA/QC program

    International Nuclear Information System (INIS)

    Obelic, B.; Horvatincic, N.; Krajcar Bronic, I.

    2002-01-01

    In this summary we explain our motivation for joining the IAEA Program on Quality Assurance and Quality Control in Nuclear Analytical Techniques, the situation in the Laboratory before joining the program, and achievements during this 2-year program. We also describe our experience and difficulties with implementation of the quality system in the Laboratory, as well as with the quality system at the Rudjer Boskovic Institute. Finally, we present our plans for the future

  12. The IAEA isotope and radiation programme

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1988-01-01

    The IAEA isotope and radiation programme is characterized by the very large number of topics dealt with and the broad range of activities where nuclear methods and techniques are utilized. The main activities of the programme can be grouped into: food and agriculture, human health and life science, industry and physical science, and laboratory services. Radioisotope and radiation based techniques are applied to such areas as plant breeding, insect and pest control, soil fertility studies, animal health and production, studies on the fate of pesticide residues and radionuclides in the food chain, and food preservation. General objectives of the second group of activities are to assist hospitals and research institutes in developing member states in the introduction and development of radionuclide tracers in medical diagnosis and research, to promote use of radiation therapy for cancer treatment, etc. The major objective of the third group is to foster research and application of nuclear methodologies for industrial applications in developing countries. The Agency's Laboratories at Seibersdorf and in Vienna and the Monaco Laboratory play a relevant role in providing laboratory services as a back-up for various programmes, and in the training of scientists from developing countries. (Nogami, K.)

  13. Publications of the Austrian Research Centre Seibersdorf 1976-1985

    International Nuclear Information System (INIS)

    Ranz, F.; Nevyjel, A.

    1989-02-01

    About 3000 publications, written by staff members of the Austrian Research Centre Seibersdorf (OEFZS) within the period 1976-1985 are cited. The bibliography includes citations of journal articles, proceedings, books, technical reports as well as dissertations and diploma works, carried out in Seibersdorf by students of Austrian universities. It covers the subject areas of chemistry, physics, biology, radiation protection, reactor safety, isotope applications, materials technology, environmental research, mathematics and information, electronics and agriculture. 10 refs. (Author)

  14. Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia. Report of a FAO/IAEA consultants' meeting

    International Nuclear Information System (INIS)

    2000-01-01

    A Consultants' Meeting on 'Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia' was held at FAO, Rome, August 22-25, 2000. Five consultants, together with one staff from IAEA headquarters, one staff from IAEA Laboratories, Seibersdorf, five staff from FAO headquarters, two staff from FAO regional offices, one observer from ACIAR, one observer from Cornell University with expertise in crop, nutrient, soil and water management, attended the meeting. The consultants presented reviews of the situation regarding studies of water and nutrient dynamics in rice-wheat systems in South Asia. These were complemented by a paper on the development of 15 N techniques to study the contribution of N from legumes. The consultants also provided recommendations on the formulation and implementation of an FAO/IAEA Co-ordinated Research Project (CRP). Refs, figs, tabs

  15. ReNuAL: Renovation of the Nuclear Applications Laboratories

    International Nuclear Information System (INIS)

    Harman, Ruzanna

    2014-01-01

    The IAEA Department of Nuclear Sciences and Applications (NA) operates eight laboratories in Seibersdorf, near Vienna. Each of these laboratories performs unique functions that include supporting research and training for improving animal production and health, ensuring the effective and safe use of radiotherapy equipment, reinforcing food safety and developing hardier and higher-yielding food crops. They also contribute to protecting the global environment, enhancing countries’ capabilities in using nuclear instrumentation and analytical techniques, eliminating insect pests and managing soil and water sustainably. These are essential contributions to the IAEA’s mission of supporting the peaceful use of nuclear technologies to help meet global development challenges

  16. ALMERA proficiency test on the determination of radionuclides in spinach, soil and water. IAEA-CU-2007-04

    International Nuclear Information System (INIS)

    2009-01-01

    The Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network established by the IAEA in 1995 makes available to Member States a world-wide network of analytical laboratories capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. The network is a technical collaboration of existing institutions. It provides an operational framework to link expertise and resources, in particular when a boundary-transgressing contamination is expected or when an event is of international significance. A primary requirement of the ALMERA members is participation in the IAEA interlaboratory comparisons which are specifically organized for ALMERA on a regular basis. These exercises are designed to monitor and demonstrate the performance and analytical capabilities of the network members, and to identify gaps and problem areas where further development is needed. Continued membership has benefits in training and educational opportunities, enhanced mutual trust in results and methodology and objective evidence for accreditation purposes. The performance evaluation results of the proficiency tests performed in the frame of the ALMERA network are not anonymous for those laboratories nominating to participate as ALMERA members. The Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory in the IAEA Laboratory, Seibersdorf in Austria, has the programmatic responsibility to support activities in Member States laboratories, including coordination of ALMERA network. This report describes the methodology employed and the results obtained in the IAEA-CU- 2009-04 proficiency test on determination of radionuclides in spinach, soil and water

  17. The analytical quality control programme of the IAEA: Areas of common interest with the ICRM

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-09-01

    The IAEA has been distributing calibrated radioisotope solutions, standard reference materials and intercomparison materials since the early 1960's. The purpose of this activity has been to help laboratories in its member states to assess and, if necessary, to improve the reliability of their analytical work in the field of nuclear technology and of isotope utilisation. The scope and the size of this programme which is co-ordinated by the chemistry section of the Agency's laboratory at Seibersdorf but receives input also from other sections of the Agency, including the International Laboratory of Marine Radioactivity at Monaco, has been delineated by several panels of experts and consultant's meetings which have made detailed recommendations in their areas of expertise. It is on the basis of these recommendations that the programme has developed, changed its emphasis, and grown over the years since its inception.

  18. Report on the IAEA-CU-2006-08 proficiency test on the determination of gamma emitting radionuclides in sea water

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Sansone, U.; Martin, P.; Makarewicz, M.; Mohagheghi, A.

    2007-03-01

    The Cooperative Monitoring Centre of Sandia National Laboratories of the United States (SNL) has initiated the Radiation Measurements Cross Calibration (RMCC) project. The RMCC aims to promote regional cooperation in the Middle East for preparedness for radiological emergencies. The International Atomic Energy Agency (IAEA) is cooperating with Sandia National Laboratories in this project. On a practical level, the initial aim of the RMCC is to establish a network of experts to cooperatively standardize nuclear monitoring and measurement capabilities in the Middle East by applying internationally recognized standards for laboratory radiation measurements. One of the project activities is to assist selected radiation measurement laboratories to participate in a quality assurance program and proficiency tests. During the second Workshop of the RMCC Project, organised by Sandia National Laboratories in Doha, Qatar, 12-17 November 2005, it was agreed to request the Chemistry Unit at the Agency's Seibersdorf laboratories to organise a special Proficiency Test (PT) for participants, for gamma-emitters in sea water. It is well known that proficiency testing is a method for regularly assessing the accuracy of the analytical data produced by the laboratories of particular measurements. According to the requirements of the RMCC project the IAEA-CU-2006-08 proficiency test (PT) on the determination of gamma emitting radionuclides in sea water was conducted by the Chemistry Unit of the IAEA's Laboratories located in Seibersdorf (Austria). The Chemistry Unit is actively involved in the production and characterization of matrix reference materials of terrestrial origin, widely used for method validation and organization of proficiency tests and intercomparison studies. The Chemistry Unit is a part of the Physics, Chemistry and Instrumentation Laboratory. This report describes the sample preparation methodology, data evaluation approach, summary evaluation of each nuclide and

  19. Improving of Quality Control and Quality Assurance in 14C and 3H Laboratory; Participation in the IAEA Model Project

    International Nuclear Information System (INIS)

    Obelic, B.

    2001-01-01

    Full text: Users of laboratory's analytical results are increasingly requiring demonstrable proofs of the reliability and credibility of the results using internationally accepted standards, because the economic, ecological, medical and legal decisions based on laboratory results need to be accepted nationally and internationally. Credibility, respect and opportunities of the laboratories are improved when objective evidence on the reliability and quality of the results can be given. This is achieved through inculcation of a quality culture through definition of well-defined procedures and controls and operational checks characteristic of quality assurance and quality control (Q A/QC). IAEA launched in 1999 a two-and-a-half year model project entitled Quality Control and Quality Assurance of Nuclear Analytical Techniques with participation of laboratories using alpha, beta and/or gamma spectrometry from CEE and NIS countries. The project started to introduce and implement QA principles in accordance with the ISO-17025 guide, leading eventually to a level at which the QA system is self-sustainable and might be appropriate for formal accreditation or certification by respective national authorities. Activities within the project consist of semi-annual reports, two training workshops, two inspection visits of the laboratories by IAEA experts and proficiency tests. The following topics were considered: organisation requirements, acceptance criteria and non-conformance management of QC, internal and external method validation, statistical analyses and uncertainty evaluation, standard operation procedures and quality manual documentation. 14 C and 3 H Laboratory of the Rudjer Boskovic Institute has been one of ten laboratories participating in the Project. In the Laboratory all the procedures required in the quality control were included implicitly, while during the Model Project much effort has been devoted to elaboration of explicit documentation. Since the beginning

  20. External Quality Assurance: Annual Proficiency Test on {sup 15}N and {sup 13}C isotopic abundance in plant materials [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Aigner, Martina [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria)

    2014-07-15

    Eight out of twelve laboratories (67%) participating in the nitrogen analysis reported {sup 15}N-data within the control limits for the enriched plant sample and eight out of nine (89%) participating laboratories for carbon analysis reported {sup 13}C isotopic abundance results within the control limits for this test sample. The reported analytical data and WEPAL evaluation of the {sup 15}N enriched plant material produced by SWMCNL is shown. All participants received a certificate of participation. Worldwide comparison of stable {sup 15}N and {sup 13}C isotope measurements will provide confidence in the laboratory's analytical performance and is hence an invaluable tool for external quality control. It is hoped that in the future more stable isotope laboratories will make use of this unique opportunity to assess their analytical performance and provide evidence of the high quality of their analytical data.

  1. External Quality Assurance: Annual Proficiency Test on 15N and 13C isotopic abundance in plant materials [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Aigner, Martina

    2014-01-01

    Eight out of twelve laboratories (67%) participating in the nitrogen analysis reported 15 N-data within the control limits for the enriched plant sample and eight out of nine (89%) participating laboratories for carbon analysis reported 13 C isotopic abundance results within the control limits for this test sample. The reported analytical data and WEPAL evaluation of the 15 N enriched plant material produced by SWMCNL is shown. All participants received a certificate of participation. Worldwide comparison of stable 15 N and 13 C isotope measurements will provide confidence in the laboratory's analytical performance and is hence an invaluable tool for external quality control. It is hoped that in the future more stable isotope laboratories will make use of this unique opportunity to assess their analytical performance and provide evidence of the high quality of their analytical data

  2. Strengthening the infrastructure for RI applications in cooperation with the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Hong, Young Don; Kim, Seung Yun; Kim, Kyoung Pyo; Lee, Jeong Kong

    2000-12-01

    The future direction for nuclear cooperation should be implemented with the aim of enhancing the status of Korea within the international society as well as carrying out the established national nuclear policy goal. Strategies for implementing cooperation with the IAEA were described into four separate parts; 'strategies for strengthening cooperation in general areas', 'strategies for implementing IAEA technical cooperation programs', 'strategies for implementing IAEA CRP programs' and 'Strategies for effective participation in the area of radiation and RI application'. As for strategies for implementing IAEA technical cooperation programs, i) expanding domestic personnel's entering into the IAEA ii) establishment of a liaison office for support of IAEA technical cooperation iii) expanding domestic experts entering into member of consultation group for a director-general of the IAEA and more participation in the international meetings iv) cooperation with IAEA's Seibersdorf Laboratories. For the strengthening of IAEA technical cooperation, strategies for effective implementation of technical cooperation programs such as i) strengthening role of national TC liaison officer ii) strengthening application of Model Project concept iii) Implementing End-user oriented programs iv) Establishment of measure to increase the TC implementation rate v) hosting of fellowship, scientific visitors, support for expert mission, were presented. Strategies for expanding domestic participation in the IAEA technical cooperation programs were also described for producing the benefits from implementing the IAEA technical cooperation programs. As for strategies for implementing the IAEA CRP programs, i) measures for active participation in the IAEA CRP programs and ii) measures for gradual participation in the IAEA CRP programs were separately described. To maximize the utilization of HANARO, a multi-purpose research reactor, the on

  3. Strengthening the infrastructure for RI applications in cooperation with the IAEA

    International Nuclear Information System (INIS)

    Park, Kyung Bae; Hong, Young Don; Kim, Seung Yun; Kim, Kyoung Pyo; Lee, Jeong Kong

    2000-12-01

    The future direction for nuclear cooperation should be implemented with the aim of enhancing the status of Korea within the international society as well as carrying out the established national nuclear policy goal. Strategies for implementing cooperation with the IAEA were described into four separate parts; 'strategies for strengthening cooperation in general areas', 'strategies for implementing IAEA technical cooperation programs', 'strategies for implementing IAEA CRP programs' and 'Strategies for effective participation in the area of radiation and RI application'. As for strategies for implementing IAEA technical cooperation programs, i) expanding domestic personnel's entering into the IAEA ii) establishment of a liaison office for support of IAEA technical cooperation iii) expanding domestic experts entering into member of consultation group for a director-general of the IAEA and more participation in the international meetings iv) cooperation with IAEA's Seibersdorf Laboratories. For the strengthening of IAEA technical cooperation, strategies for effective implementation of technical cooperation programs such as i) strengthening role of national TC liaison officer ii) strengthening application of Model Project concept iii) Implementing End-user oriented programs iv) Establishment of measure to increase the TC implementation rate v) hosting of fellowship, scientific visitors, support for expert mission, were presented. Strategies for expanding domestic participation in the IAEA technical cooperation programs were also described for producing the benefits from implementing the IAEA technical cooperation programs. As for strategies for implementing the IAEA CRP programs, i) measures for active participation in the IAEA CRP programs and ii) measures for gradual participation in the IAEA CRP programs were separately described. To maximize the utilization of HANARO, a multi-purpose research reactor, the on-going development and development project are actively

  4. Five Decades of Achievement, Future Challenges in Focus at Ceremony Marking IAEA Labs Anniversary

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: In the 50 years since they opened, the IAEA's laboratories in Seibersdorf have improved the lives of millions of people through work using sophisticated scientific techniques, IAEA Director General Yukiya Amano said today at a ceremony to mark the anniversary. Work at the labs has made a difference in controlling animal diseases in more than 30 countries in Africa and Asia, and contributed to the development of hardier and more nutritious crops such as barley that can grow in the High Andes of Peru. Scientists at the labs have helped communities identify the best sources of underground water and ensure that this scarce resource is used effectively. They have worked on safe ways to preserve food, and provided vital technical support for cancer treatment and other medical uses of nuclear technology. New challenges abound in the present and the future, Director General Amano said. ''Member States want us to do more in almost all areas of nuclear applications. This includes climate-smart agriculture, with priority on helping countries to adapt to climate change while improving food security. It includes improving preparedness for responding to nuclear emergencies and especially for dealing with radiological contamination in food and agriculture.'' The Director General also said the IAEA would contribute more to controlling mosquitoes that transmit malaria by using techniques that, together with pest control programmes, have helped control other insects. IAEA scientists at the eight nuclear applications laboratories and the safeguards laboratories carry out research and development and provide technical services to the IAEA's 158 Member States. The labs also regularly host fellows and scientific visitors, with more than 2 000 benefiting from this opportunity to learn in the past 50 years. (IAEA)

  5. Update on 13C-labelling of plant materials through the use of walk-in growth chambers [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Mayr, Leo; Resch, Christian; Weltin, Georg; Dercon, Gerd

    2014-01-01

    In 2013, the Soil and Water Management & Crop Nutrition Laboratory installed a pair of walk-in growth chambers with an effective volume of about 12 m 3 each. These growth chambers with temperature, relative humidity and carbon dioxide (CO 2 ) control, are being used within the framework of research activities for improving climate-smart agriculture in Member States

  6. Update on {sup 13}C-labelling of plant materials through the use of walk-in growth chambers [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Mayr, Leo; Resch, Christian; Weltin, Georg; Dercon, Gerd [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria)

    2014-07-15

    In 2013, the Soil and Water Management & Crop Nutrition Laboratory installed a pair of walk-in growth chambers with an effective volume of about 12 m{sup 3} each. These growth chambers with temperature, relative humidity and carbon dioxide (CO{sub 2}) control, are being used within the framework of research activities for improving climate-smart agriculture in Member States.

  7. Report 1985 of the Austrian Research Centre Seibersdorf. Abridged version

    International Nuclear Information System (INIS)

    Schwach, G.W.

    1987-01-01

    The report gives a short survey of the work carried out by the Austrian Research Centre Seibersdorf in 1985. The working programme comprises five main areas: Energy and safety; Materials research, isotope and radiation techniques; Measuring techniques and information processing; Environmental protection, health and food; Industrial consulting. (Author)

  8. Food and Environmental Protection Laboratory, Seibersdorf: Discrimination of honey of different floral origins by a combination of various chemical parameters; Stable Isotopes Applied to Authenticating Honey; The use of analyte protectants in pesticide residue analytical work

    International Nuclear Information System (INIS)

    Zora Jandrić, Zora; Frew, Russell; Abrahim, Aiman; Maestroni, Britt; Ochoa, Victoria

    2014-01-01

    honey valued for its non-peroxide antimicrobial activity (NPA).The NPA is thought to be due to high levels of methyl glyoxal (MGO) and it is the manuka honey with high levels of MGO that fail the C4 sugar adulteration test. Work by FEPL indicates that this is partly due to the beekeeping practice of feeding sugar to bees during the winter. However, that does not explain the late season failures, or that the extent of failure increases as manuka honey ages. The MGO levels in manuka increase with age and it has been shown that high MGO is correlated with high apparent C4 sugar content. Current research in this field in FEPL is focused on modifying the AOAC method to overcome these false positives in the C4 sugar adulteration. A method has been developed for the removal of MGO prior to the purification of the protein that is measured as internal standard. It is hoped that the removal of the MGO will eliminate the interference in the isotope test. Tests are now underway to establish the optimum conditions for the removal of MGO and to show that the additional procedure does not affect the isotopic composition of the purified protein. Once those tasks are completed the work will move to the validation stage and involve other laboratories to test the procedure. The FEPL is currently carrying out a study on method validation for the detection of several pesticides in potato samples. The extraction and clean-up method used is known as the Quick, Easy, Cheap, Effective Rugged and Safe (QuEchERS) for pesticide residue determination, and uses a gas chromatograph coupled to a mass selective detector (GC-MSD) for analyte separation and detection. According to the SANCO document (SANCO/12571/2013), matrix effects should be assessed at the initial method validation stage. Therefore as part of the calibration strategies for our method both matrix-matched and solvent calibrators were prepared

  9. ALMERA Proficiency Test: Determination of Natural and Artificial Radionuclides in Soil and Water. IAEA-TEL-2011-04

    International Nuclear Information System (INIS)

    2013-01-01

    The Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network is a cooperative effort of analytical laboratories worldwide. Members of the network are nominated by their respective Member States on the expectation of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. The ALMERA network consists of 131 laboratories representing 81 Member States at December 2012. The IAEA's Environment Laboratories in Seibersdorf and Monaco are the central coordinators of the ALMERA network activities. The IAEA helps the ALMERA network to maintain their readiness by coordinating activities, including the organization of meetings, development of standardized methods of sample collection and analysis, and organization of interlaboratory comparison exercises and proficiency tests as tools for external quality control. IAEA proficiency tests and interlaboratory comparison exercises are organized on a regular basis specifically for the members of the ALMERA network. At least one exercise is organized per year by the IAEA for the ALMERA network. These exercises are designed to monitor and to demonstrate the performance and analytical capabilities of the network members, and to identify gaps and problem areas where further development is needed. The ALMERA proficiency tests enable ALMERA members to report their results on gamma emitting radionuclides in a very short time frame, i.e. three days, which is what would be required for emergency response. This publication presents the results of the ALMERA proficiency test IAEA-TEL-2011-04 on the determination of natural and artificial radionuclides in water and soil. The methodologies, data evaluation approach, summary evaluation of each radionuclide and individual evaluation reports for each laboratory are also described

  10. IAEA sends out samples of uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Governments and organizations interested in developing uranium resources will be assisted by a new service, now being inaugurated by the Agency's laboratories, for the distribution of reference samples of uranium ores. This is an addition to the service which began at Seibersdorf in January 1962 for the distribution of calibrated radionuclides, and which has met with a steadily increasing demand. * Uranium deposits consisting of ores with a uranium content in the range 0.5 - 0.05 per cent occur in a number of countries, including developing countries and can present considerable analytical difficulties. In 1962 the Agency asked Member States whether they would be interested in receiving reference samples of uranium ores to assist them in checking their methods of chemical analysis. The response encouraged the Agency to proceed. There is a multiplicity of types of uranium ores and, initially, three of the most commonly occurring have been selected - torbernite, uraninite and carnotite. Member States have provided the laboratory with supplies of these three types of ore. In order to determine the uranium content, samples are sent to leading laboratories throughout the world, so as to arrive at the most accurate values possible. This work has proved to be useful to the laboratories themselves ; in searching for reasons for discrepancies between the different collaborating laboratories, they enlarge their own knowledge and improve their methods. The reference samples are sent out in the form of fine powder, and are available to atomic energy commissions, research laboratories or mining companies. The requesting laboratory, having worked out the analytical process best suited to its needs, is then able to check its results by analysing an IAEA reference sample of known uranium content. By the end of 1966, reference samples will be available of the three ores mentioned, and later also of pure uranium oxide and of uranium oxide containing trace impurities, the

  11. Report from the FAO/IAEA Plant Breeding and Genetics Section

    International Nuclear Information System (INIS)

    1989-01-01

    Technology development is a pre-requisite for further success in practical applications of nuclear techniques in plant genetics and crop improvement. The Research Contract Programme of the IAEA is a good means to stimulate the needed technology development. Present FAO/IAEA Co-ordinated Research Programmes concentrate upon the incorporation of in-vitro culture techniques into mutation breeding projects: In cereals by doubled-haploids for accelerating mutation selection, in root and tuber crops by eliminating chimerism through somatic embryogenesis, in mutation breeding for disease resistance by attempting in-vitro selection using pathotoxins where applicable. The Plant Breeding Unit of the Agency's Seibersdorf Laboratory contributes particularly to the methodology of mutation induction by irradiation of plant material before or during in-vitro culture. Whether the FAO/IAEA Plant Breeding and Genetics Section should include already molecular genetics in its research and training programmes was the main question addressed to a Consultants' Meeting in November. The answer was definitely positive regarding the use of Restriction Fragment Length Polymorphism, but deferred other more sophisticated work recognizing the limited resources. Another new subject matter seriously considered now is the development of tracer techniques for the diagnosis of viruses, viroids and similar causal agents of plant diseases, which eventually could lead to better ways of distinguishing between resistance and susceptibility, particularly in vegetatively propagated and perennial crops. The resources for such work still have to be found. If resources become available, we would also like to start a co-ordinated research programme on domestication of plants for industrial purposes. Project proposals are welcome. As far as assistance to Member States is concerned, in 1988 we began to pay more attention to plant breeding problems in Africa. There was interaction with oil seed breeders during an

  12. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Report of the third research co-ordination meeting of FAO/IAEA/ITALY co-ordinated research programme. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    A Co-ordinated Research Programme, on ``Improvement of basic food corps in Africa through plant breeding including the use of induced mutations``, funded by the Italian Governmnet, was initiated in the Joint Division of the Food and Agriculture Organization and International Atomic Energy Agency, Vienna. The primary objective of this CRP was to breed improved varieties of staple food crops of Africa with main emphasis on the indigenous species and local cultivars. The Third Research Co-ordination Meeting (RCM) under the FAO/IAEA/ITALY Co-ordinated Research Programme was held in Nairobi, Kenya, 20-24 September 1993 in which 24 persons participated and 18 scientific reports were presented. These included reports from 10 Research Contract holders from Africa, 3 Technical Contract holders from Italy and the update on the backstopping of research carried out at the IAEA Laboratories, Seibersdorf. The reports, and conclusions and recommendations made by the participants are presented in this publication. Refs, figs, tabs.

  13. Improvement of basic food crops in Africa through plant breeding, including the use of induced mutations. Report of the third research co-ordination meeting of FAO/IAEA/ITALY co-ordinated research programme. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    A Co-ordinated Research Programme, on ''Improvement of basic food corps in Africa through plant breeding including the use of induced mutations'', funded by the Italian Governmnet, was initiated in the Joint Division of the Food and Agriculture Organization and International Atomic Energy Agency, Vienna. The primary objective of this CRP was to breed improved varieties of staple food crops of Africa with main emphasis on the indigenous species and local cultivars. The Third Research Co-ordination Meeting (RCM) under the FAO/IAEA/ITALY Co-ordinated Research Programme was held in Nairobi, Kenya, 20-24 September 1993 in which 24 persons participated and 18 scientific reports were presented. These included reports from 10 Research Contract holders from Africa, 3 Technical Contract holders from Italy and the update on the backstopping of research carried out at the IAEA Laboratories, Seibersdorf. The reports, and conclusions and recommendations made by the participants are presented in this publication. Refs, figs, tabs

  14. European Commission and IAEA Celebrate 30 Years Co-operation on Nuclear Safeguards

    International Nuclear Information System (INIS)

    2011-01-01

    increasingly focused at national level. This also involves the support of the European Commission in establishing the new IAEA Safeguards Laboratory in Seibersdorf Austria. Background: Examples of joint JRC-IAEA Projects: - Training Next Generation of IAEA Inspectors: The JRC has a proven track record in providing the IAEA with high-quality training programmes. Ensuring that a State abides by its non-proliferation commitments is becoming increasingly dependent on an Inspector's knowledge of novel detection techniques and equipment, more accurate analyses and the ability to handle more complex information and data. The JRC has been requested by the IAEA to continue its training programmes to help ensure that its inspectors are well-equipped to accomplish their on-site tasks and to draw appropriate safeguards conclusions. The training programme covers well-established safeguards instruments and methods as well as new generation of methodologies aimed at the detection of undeclared activities. - Special Tools to Improve Environmental Particle Analysis: To improve its ability to detect undeclared nuclear activities the IAEA recently installed a new Large Geometry Secondary Ion Mass Spectrometer (LG-SIMS) in the Environmental Sample Laboratory located in Seibersdorf. In parallel, a new dedicated LG-SIMS laboratory is being installed at the JRC in Karlsruhe, Germany, and will be inaugurated at the beginning of 2012. JRC and IAEA will enhance their cooperation to reach high level detection of undeclared activities through the use of these laboratories. - Spot Changes: 3D Laser-based Verification System: One of the tasks of nuclear inspectors is to check that nuclear facilities are built exactly as they were officially declared and that no undeclared design changes have taken place. In support of IAEA, JRC scientists have developed a laser-based system that is able to detect very small deviations. The 3D Laser-based Verification System has been extensively used in the Rokkasho

  15. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  16. Environment Laboratories Newsletter. Vol. 1, No. 01, Jan.-Jun. 2014

    International Nuclear Information System (INIS)

    2014-01-01

    This is the first edition of the newsletter of the IAEA Environment Laboratories. This replaces the former Marine Environment Laboratories newsletter, reflecting a restructure that has seen the marine and terrestrial environment laboratories of the IAEA integrated into a single division. The IAEA’s Environment Laboratories in Monaco and Seibersdorf, Austria, in partnership with several collaborating centres around the globe, are unique in the UN system. Through the use and promotion of nuclear and isotopic techniques, the Environment Laboratories play a major role in the journey towards sustainable development, both on land and at sea. Responding to requests for technical assistance from Member States and other UN agencies, the Environment Laboratories provide applied collaborative research, training courses, technical cooperation projects and analytical quality support services for radioactive and non-radioactive contaminants in the environment. Through its environmental programme the IAEA promotes an integrated approach to the study, monitoring and protection of marine, coastal and terrestrial pollution, climate change and the loss of habitat. In this first edition we focus on the challenge of ocean acidification. Governments across the globe are calling for immediate action to minimize and address the impacts of ocean acidification which will require enhanced scientific cooperation at all levels. The IAEA Environment Laboratories will play a key role in this area and are proud to host the Ocean Acidification International Coordination Centre. We are also happy to include in this edition the winners of the 2014 World Oceans Day (WOD) photo competition

  17. Worldwide Open Proficiency Test: Determination of Natural and Artificial Radionuclides in Moss-Soil and Water IAEA-CU-2009-03

    International Nuclear Information System (INIS)

    2012-01-01

    Reliable determination of natural and artificial radionuclides in environmental samples is necessary to comply with radiation protection and environmental regulations. The IAEA assists Member State laboratories in maintaining and improving their readiness by producing reference materials, by developing standardized analytical methods, and by conducting interlaboratory comparisons and proficiency tests as tools for quality control. To fulfil this obligation and ensure a reliable, worldwide, rapid and consistent response, the IAEA Terrestrial Environment Laboratory in Seibersdorf, Austria, organizes interlaboratory comparisons and proficiency tests. This summary report presents the results of the worldwide proficiency test IAEA-CU-2009- 03 on the determination of natural and artificial radionuclides in moss-soil and spiked water. The methodologies, data evaluation approach, summary evaluation of each nuclide and individual evaluation reports for each laboratory are also described. This proficiency test was designed to identify analytical problems, to support Member State laboratories to improve the quality of their analytical results and maintain their accreditation, and to provide a regular forum for discussion and technology transfer in this area. The number of samples, their matrix interferences and the concentration levels of the analytes were designed in a way that enables identification of potential analytical problems.

  18. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  19. Report on the IAEA-CU-2006-11 proficiency test on the determination of gamma emitting radionuclides in air filters

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Kim, C.-K.; Sansone, U.; Ferrari, M.; Sill, D.

    2006-10-01

    This report summarises the results of the IAEA-CU-2006-11 proficiency test on the determination of gamma emitting radionuclides in air filters, organised within the frame of the IAEA Technical Cooperation project RER/8/009 ''Air Pollution Monitoring in the Mediterranean Region''. The proficiency test was conducted by the Reference Materials Group of the Chemistry Unit (Physics, Chemistry and Instrumentation Laboratory) of the IAEA's analytical laboratories located in Seibersdorf (Austria) in cooperation with the Radiological and Environmental Sciences Laboratory, Department of Energy in the United States of America. The objective of TC project RER/8/009 is to contribute to air quality improvement through the establishment of a network for air monitoring and the design of a remedial strategy where the monitoring shows poor air quality. A spiked air filter with known activities of gamma emitting radionuclides prepared by the Department of Energy of the United States of America was used in this proficiency test. 14 spiked filters were distributed to the participating laboratories in April 2006. The deadline for receiving the results from the participants was set at 31 July 2006. The participating laboratories were requested to analyse the samples employing the methods used in their routine work, so that their performance on the test samples could be directly related to the real performance of the laboratory. Each laboratory was given a confidential code to assure the anonymity of the evaluation results. From the 14 initially registered, 11 laboratories reported their results back to the IAEA. The analytical results of the participating laboratories were evaluated against the reference values assigned to the reference air filter, and a rating system was applied

  20. Post-irradiation examination of HTR-fuel at the Austrian Research Centre Seibersdorf Ltd

    International Nuclear Information System (INIS)

    Reitsamer, G.; Proksch, E.; Stolba, G.; Strigl, A.; Falta, G.; Zeger, J.

    1985-01-01

    Austrian R and D activities in the HTR-field reach back almost to the beginning of this advanced reactor line. For more than 20 years post-irradiation examination (PIE) of HTR-fuel has been performed at the laboratories of the Austrian Research Centre Seibersdorf Ltd. (OEFZS) (formerly OESGAE) and a high degree of qualification has been achieved in the course of that time. Most of the PIE-work has been carried out by international cooperation on contract basis with the OECD-DRAGON-project and with KFA-Juelich (FRG). There has also been some collaboration with GA (USA), Belgonucleaire and others in the past. HTR-fuel elements contain the fissile and fertile materials in form of coated particles (CPs) which are embedded in a graphite matrix. Because of this special design it has been necessary from the very beginning of the PIE work up to now to develop new methods (i.e. fuel element disintegration methods, chlorine gas leach, single particle examination techniques...) as well as to adapt and improve already existing methods (i.e. gamma spectrometry, mass-spectrometry, optical methods...). The main interests on PIE-work at Seibersdorf are concentrated on particle performance, fission product distribution and the 'free' Uranium content (contamination and broken particles) of the fuel elements (fuel spheres or cylindrical compacts). A short compilation of the applied methods and of available instrumental facilities is given as follows: deconsolidation of fuel elements; equipment for electrochemical deconsolidation; examinations and measurements of graphite and electrolyte samples; examination of coated particles; single particle examinations

  1. Post-irradiation examination of HTR-fuel at the Austrian Research Centre Seibersdorf Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Reitsamer, G; Proksch, E; Stolba, G; Strigl, A; Falta, G; Zeger, J [Department of Chemistry, Austrian Research Centre Seibersdorf Ltd., Seibersdorf (Austria)

    1985-07-01

    Austrian R and D activities in the HTR-field reach back almost to the beginning of this advanced reactor line. For more than 20 years post-irradiation examination (PIE) of HTR-fuel has been performed at the laboratories of the Austrian Research Centre Seibersdorf Ltd. (OEFZS) (formerly OESGAE) and a high degree of qualification has been achieved in the course of that time. Most of the PIE-work has been carried out by international cooperation on contract basis with the OECD-DRAGON-project and with KFA-Juelich (FRG). There has also been some collaboration with GA (USA), Belgonucleaire and others in the past. HTR-fuel elements contain the fissile and fertile materials in form of coated particles (CPs) which are embedded in a graphite matrix. Because of this special design it has been necessary from the very beginning of the PIE work up to now to develop new methods (i.e., fuel element disintegration methods, chlorine gas leach, single particle examination techniques...) as well as to adapt and improve already existing methods (i.e. gamma spectrometry, mass-spectrometry, optical methods...). The main interests on PIE-work at Seibersdorf are concentrated on particle performance, fission product distribution and the 'free' Uranium content (contamination and broken particles) of the fuel elements (fuel spheres or cylindrical compacts). A short compilation of the applied methods and of available instrumental facilities is given as follows: deconsolidation of fuel elements; equipment for electrochemical deconsolidation; examinations and measurements of graphite and electrolyte samples; examination of coated particles; single particle examinations.

  2. Soil sampling intercomparison exercise by selected laboratories of the ALMERA Network

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA's Seibersdorf Laboratories in Austria have the programmatic responsibility to provide assistance to Member State laboratories in maintaining and improving the reliability of analytical measurement results, both in radionuclide and trace element determinations. This is accomplished through the provision of reference materials of terrestrial origin, validated analytical procedures, training in the implementation of internal quality control, and through the evaluation of measurement performance by the organization of worldwide and regional interlaboratory comparison exercises. The IAEA is mandated to support global radionuclide measurement systems related to accidental or intentional releases of radioactivity in the environment. To fulfil this obligation and ensure a reliable, worldwide, rapid and consistent response, the IAEA coordinates an international network of analytical laboratories for the measurement of environmental radioactivity (ALMERA). The network was established by the IAEA in 1995 and makes available to Member States a world-wide network of analytical laboratories capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. A primary requirement for the ALMERA members is participation in the IAEA interlaboratory comparison exercises, which are specifically organized for ALMERA on a regular basis. These exercises are designed to monitor and demonstrate the performance and analytical capabilities of the network members, and to identify gaps and problem areas where further development is needed. In this framework, the IAEA organized a soil sampling intercomparison exercise (IAEA/SIE/01) for selected laboratories of the ALMERA network. The main objective of this exercise was to compare soil sampling procedures used by different participating laboratories. The performance evaluation results of the interlaboratory comparison exercises performed in the framework of

  3. Worldwide Open Proficiency Test for X Ray Fluorescence Laboratories PTXRFIAEA/06: Determination of Minor and Trace Elements in Grass Mixture

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA assists its Member States laboratories to maintain their readiness by producing reference materials, by developing standardized analytical methods, and by conducting interlaboratory comparisons and proficiency tests as tools for quality control. To ensure a reliable worldwide, rapid and consistent response, the IAEA Nuclear Spectrometry and Applications Laboratory in Seibersdorf, Austria organises tests. This summary report presents the results of the worldwide proficiency test IAEA-PTXRF-06 on the determination of minor and trace elements in a grass mixture. Methodologies, data evaluation approach, summary evaluation of each element and individual evaluation reports for each laboratory are also described. The test was carried out under IAEA Project 1.4.3.4 (D.3.03), Nuclear Spectrometry for Analytical Applications, under the Nuclear Science Programme. The main objective of this project is to enhance the capability of interested Member States in effective utilization of nuclear spectrometries and analytical services in industry, human health, agriculture, and in monitoring and evaluation of environmental pollution. This proficiency test was designed to identify analytical problems, to support IAEA Member States laboratories to improve the quality of their analytical results, to maintain their accreditation and to provide a regular forum for discussion and technology transfer in this area. The type of sample and the concentration levels of the analytes were designed in a way to enable identification of potential analytical problems. The next proficiency test exercise is expected to be organized in 2010

  4. Worldwide and Regional Laboratory Comparison on the Determination of Organochlorine Compounds, Polybrominated Diphenyl Ethers and Petroleum Hydrocarbons in IAEA-457 Clam (Gafrarium tumidum) Sample

    International Nuclear Information System (INIS)

    2013-01-01

    For nearly thirty years, the Marine Environmental Studies Laboratory (MESL) of the IAEA Environment Laboratories has conducted worldwide laboratory performance studies, also known as interlaboratory comparisons (ILCs). The results have been used to evaluate the participating laboratories' performance with respect to a wide range of organic and inorganic pollutants. This work has been conducted in collaboration with the Regional Seas Programme of the United Nations Environment Programme. The goal of the performance studies is to demonstrate the measurement capabilities of laboratories participating in ILCs and proficiency tests (PTs). The results of ILCs or PTs are of crucial interest to laboratories, as they provide clear information about the laboratories' measurement capabilities. Participation is voluntary or is undertaken to fulfil external requirements (e.g. legal, accreditation, control bodies). The ILC and PT schemes involve the comparison of participant results with an assigned value, usually delivered as a consensus value from the overall population of test results. These exercises are designed to monitor and demonstrate the performance and analytical capabilities of the participating laboratories, and to identify gaps and problem areas where further development is needed. Regular participation has benefits with regard to training and educational opportunities, enhanced mutual trust in results and methodology, and objective evidence for accreditation purposes. The present interlaboratory study was designed to evaluate the measurement performance of the participating laboratories on the analysis of organic contaminants in biota samples. The data reported by the laboratories, together with the technical and statistical evaluations of the results for each element, are included in this report

  5. ALMERA proficiency test on the determination of Po-210 in water. IAEA-CU-2007-09

    International Nuclear Information System (INIS)

    2009-01-01

    The Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network established by the IAEA in 1995 makes available to Member States a worldwide network of analytical laboratories capable of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. The network is a technical collaboration of existing institutions. It provides an operational framework to link expertise and resources, in particular when a boundary-transgressing contamination is expected or when an event is of international significance. A primary requirement of the ALMERA members is participation in the IAEA interlaboratory comparisons which are specifically organized for ALMERA on a regular basis. These exercises are designed to monitor and demonstrate the performance and analytical capabilities of the network members, and to identify gaps and problem areas where further development is needed. Continued membership has benefits in training and educational opportunities, Enhanced mutual trust in results and methodology and objective evidence for accreditation purposes. The performance evaluation results of the interlaboratory comparisons performed in the frame of the ALMERA network are not anonymous for those laboratories nominated to participate as ALMERA members. The Po-210 poisoning event which occurred in November 2006 brought into focus a number of issues, including the capacity of laboratories to rapidly and accurately determine this radionuclide in environmental samples. A number of requests were received from ALMERA members to address this issue. Responding to these requests, the Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory in the IAEA's Seibersdorf Laboratory in Austria, conducted a proficiency test in the frame of the ALMERA network on the determination of Po-210 in water. The aim was to gather information on the current state of practice for Po-210 measurements

  6. Report on the IAEA-CU-2006-03 world-wide open proficiency test on the determination of gamma emitting radionuclides

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Sansone, U.; Trinkl, A.; Makarewicz, M.; Yonezawa, C.; Kim, C.K.; Kis-Benedek, G.; Benesch, T.; Schorn, R.

    2007-05-01

    The results of analytical measurements play a vital role in our daily lives. Analytical data may be the basis upon which economic, legal or environmental management decisions are made, and they are essential in international trade, environmental protection, safe transportation, law enforcement, consumer safety and the preservation of human health. As an incorrect decision can be extremely costly and detrimental, it is essential that such measurements are accurate, reliable, cost effective and defensible. In addition, measurements performed by laboratories located worldwide should yield traceable and comparable results. Proficiency testing is a method for regularly assessing the accuracy of the analytical data produced by the laboratories of particular measurements. The IAEA-CU-2006-03 world-wide proficiency test (PT) on the determination of gamma emitting radionuclides in water grass and soil is conducted by the Chemistry Unit of the IAEA's Laboratories located in Seibersdorf (Austria), which is actively involved in the production and characterization of matrix reference materials of terrestrial origin, widely used for method validation and organization of proficiency tests and intercomparison studies. The Chemistry Unit is a part of the Physics, Chemistry and Instrumentation Laboratory. This report describes the sample preparation methodology, data evaluation approach, summary evaluation of each nuclide and individual evaluation report for each laboratory

  7. Report on the participation of US laboratories in the work of the IAEA coordinated research program on the measurement and evaluation of transactinium isotope nuclear decay data

    International Nuclear Information System (INIS)

    Reich, C.W.

    1984-01-01

    In this report, we summarize the current status of the work being carried out in various US laboratories that is specifically oriented toward the objectives of this IAEA CRP. Reported below are the gamma-ray emission probability measurements, and related work, at INEL and α-particle related work being conducted by I. Ahmad at ANL. The results of the work of the US Half-Life Evaluation Committee on the half-lives of 234 240 241 Pu have now all been published; and no additional information regarding this activity is included in this report

  8. Report from the FAO/IAEA Plant Breeding and Genetics Section

    International Nuclear Information System (INIS)

    1988-01-01

    reflected in spectacular results. Much research for technology development has been done under co-ordinated research programmes from 1972 onwards and technology transfer is now undertaken through a number of technical assistance projects in countries such as Ghana, Panama, Zambia, Uganda, Thailand. During 1988 we may strengthen co-operative research on the use of in-vitro techniques in this field. While most emphasis in the Section's research programmes is technology advancement, more work is actually concerned with assisting plant breeders in developing countries through training, advice and other support. The Section services 40 country projects and 3 regional projects under the IAEA Programme of Technical Assistance and Co-operation. During 1987, 33 fellowship holders completed their training abroad and two training courses were held, one at the IAEA Laboratory Seibersdorf, the other one at the National Agricultural University La Molina in Peru. The success of mutation breeding all over the world can best be judged by the fact that the two issues of our Mutation Breeding Newsletter printed in 1987 listed 106 additional cultivars derived from mutation induction or the use of induced mutants in cross breeding. The Plant Breeding Unit of the IAEA Laboratory at Seibersdorf (Austria) continued to place much emphasis on technology development for mutation breeding (including in-vitro culture techniques) of banana, plantain and other vegetatively propagated crops. As a service for breeders of seed propagated crops, numerous seed samples have been given mutagenic treatments with gamma rays or fast neutrons and the laboratory will now also start to work on mutation breeding using haploids. Bob Conger from the University of Tennessee (Oak Ridge, USA), during a one year sabbatical, helped us to make advances in somatic embryogenesis from single cells, which is so important for improving the efficiency of mutation breeding using in-vitro cultures

  9. Worldwide open proficiency test IAEA-CU-2007-09/A: Determination of Po-210 in water

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA helps the Member States' laboratories to maintain their readiness by coordination activities, by development of standardized methods for sample collection and analysis, and by conducting interlaboratory comparisons and proficiency tests as a tool for external quality control. The Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory in the International Atomic Energy Agency's Seibersdorf Laboratories in Austria, has the programmatic responsibility to support global radionuclide measurement systems. To fulfil this obligation and ensure a reliable worldwide, rapid and consistent response, the Chemistry Unit organises interlaboratory studies and proficiency tests. The Po-210 poisoning event which occurred in November 2006 brought into focus a number of issues, including the capacity of laboratories to rapidly and accurately determine this radionuclide in environmental samples. A number of requests were received from Member States to address this issue. Responding to these requests, the Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory in the Agency's Laboratories, conducted a world wide proficiency test on the determination of Po-210 in water. The aim was to gather information on the current state of practice for Po-210 measurements at various levels in aqueous samples. This report describes the methodology employed and the results obtained in this proficiency test

  10. Emergency Response Proficiency Test for Japanese Laboratories: Determination of Selected Radionuclides in Water, Soil, Vegetation and Aerosol Filters

    International Nuclear Information System (INIS)

    2013-01-01

    Reliable determination of natural and artificial radionuclides in environmental samples is necessary for compliance with radiation protection and environmental regulations. The IAEA assists Member State laboratories in maintaining and improving their readiness in this regard by producing reference materials, by developing standardized analytical methods, and by conducting interlaboratory comparisons and proficiency tests as tools for quality control. To fulfil this obligation and ensure a reliable, rapid and consistent worldwide response, the IAEA Terrestrial Environment Laboratory in Seibersdorf, Austria, organizes interlaboratory comparisons and proficiency tests. In addition, the IAEA coordinates the worldwide network of Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA). After the accident at the Fukushima Daiichi nuclear power plant in March 2011, Japan requested the IAEA to organize an emergency response proficiency test for Japanese laboratories with the aim of assessing their capacity to rapidly and accurately measure radionuclides in environmental samples. The IAEA responded to the request by assembling a special sample set covering the main environmental samples and radionuclides of interest in the case of a nuclear emergency situation. Water, soil, vegetation and aerosol filter samples were made available to Japanese laboratories for analysis by gamma ray spectrometry. This report presents the results of the IAEA-TEL-2011-08 emergency response proficiency test for Japanese laboratories on the determination of selected radionuclides in water, soil, vegetation and aerosol filters. The report includes descriptions of the methodologies and data evaluation approach used, as well as summary evaluations of each radionuclide and individual evaluation reports of each laboratory. This proficiency test was designed to identify analytical problems and to support Member State laboratories in their efforts to improve the quality of

  11. k0-INAA application at IPEN Neutron Activation Laboratory by using the k0-IAEA program: biological sample analysis

    International Nuclear Information System (INIS)

    Puerta, Daniel Correa

    2013-01-01

    The results obtained in the application of the k 0 -standardization method at LAN-IPEN for biological matrices analysis, by using the k 0 -IAEA software, provided by the International Atomic Energy Agency (IAEA), are presented. The flux parameters f and a of the IEA-R1 reactor were determined for the pneumatic irradiation facility and for one selected irradiation position, 24B/shelf2, for short and long irradiations, respectively. In order to obtain these parameters, the bare triple-monitor method with 197 Au- 96 Zr- 94 Zr was used. In order to evaluate the accuracy and precision of the methodology, the biological reference materials Peach Leaves (NIST SRM 1547), Mixed Polish Herbs (INCT-MPH-2) e Tomato Leaves (NIST SRM 1573a) were analyzed. The statistical criteria Relative Errors (bias, %), Coefficient of Variation (CV) and U-score were applied to the obtained results (mean of six replicates). The relative errors (bias, %) in relation to certified values, were, for most elements, in the range of 0 e 30. The Coefficients of Variation were below 20%, showing a good reproducibility of the results. The U-score test showed that all results, except Na in Peach Leaves and in Tomato Leaves, were within 95% confidence interval. These results point out to a promising use of the k 0 -INAA method at LAN-IPEN for biological sample analysis. (author)

  12. Preliminary results for the k0-INAA methodology implementation at the Neutron Activation Analysis Laboratory, LAN-IPEN, using k0-IAEA software

    International Nuclear Information System (INIS)

    Mariano, Davi B.; Figueiredo, Ana Maria G.; Semmler, Renato

    2009-01-01

    The present paper presents the preliminary results obtained in the implementation of the k 0 standardization method at the Neutron Activation Laboratory (LAN) at IPEN, Sao Paulo, Brazil, using the program k 0 -IAEA, provided by The International Atomic Energy Agency (IAEA). This method is an important alternative for the comparative neutron activation analysis, which has been used for several years at LAN-IPEN. This quasiabsolute standardization method presents a great advantage with relation to the comparative method, since it does not require the preparation of accurate individual standards for each analysed element, which is very laborious and time-consuming. The k 0 method allows the determination of almost all elements whose gammaray peaks are present in the gamma spectrum. The analysis of gamma-ray spectra and the calculation of concentration are performed by the k 0 software, thus the analysis time is shortened: the time spent to calculate, for instance, the concentration of 25 elements in 10 samples takes about 5 minutes.The efficiency curve of one of the gamma-ray spectrometers used at LAN was determined by measuring calibrated radioactive sources at the usually utilised counting geometries. The parameters α and f were determined by irradiating a Certified Nuclear Reference Material IRMM-530R Al-0,1% Au alloys and high purity zirconium comparators at the IEA-R1 nuclear reactor of IPEN. In order to evaluate the efficiency of the methodology, the geological reference material basalt JB-1 (GSJ) was analysed. The preliminary results obtained showed promising results in spite of some discrepancies of the data in comparison to certified values. These preliminary results indicate that some improvements in the parameters required for the use of the k 0 -IAEA software should be made so that the k 0 - NAA software can be completely successful. (author)

  13. k0-NAA implementation and application at IPEN neutron activation laboratory by using the k0-IAEA software: application to geological sample analysis

    International Nuclear Information System (INIS)

    Mariano, Davi Brigatto

    2011-01-01

    The Neutron Activation Analysis Laboratory (LAN-IPEN) has been analysing geological samples such as rocks, soils and sediments, for many years with the INAA comparative method, for geochemical and environmental research. This study presents the results obtained in the implementation of the k 0 -standardization method at LAN - IPEN, for geological sample analysis, by using the program k 0 - IAEA, provided by the International Atomic Energy Agency (IAEA). The thermal to epithermal flux ratio f and the shape factor α of the epithermal flux distribution of the IPEN IEA-R1 nuclear reactor were determined for the pneumatic irradiation facility and one selected irradiation position, for short and long irradiations, respectively. To obtain these factors, the 'are triple-monitor' method with 197 Au- 96 Zr- 94 Zr was used. In order to validate the methodology, the geological reference materials basalts JB-1 (GSJ) and BE-N (IWG-GIT), andesite AGV-1 (USGS), granite GS-N (ANRT), SOIL-7 (IAEA) and sediment Buffalo River Sediment (NIST - BRS-8704), which represent different geological matrices, were analysed. The concentration results obtained agreed with assigned values, with bias less than 10% except for Zn in AGV-1 (11.4%) and Mg in GS-N (13.4%). Three different scores were used to evaluate the results: z-score, zeta-score and Uscore. The z-score showed that the results can be considered satisfactory (z 3) for Mn in BE-N, Mg, Ce and La in GS-N, Mg in JB-1, and Th and Eu in Buffalo River Sediment. The U-score test showed that all results, except Mg in JB-1, were within 95% confidence interval. These results indicate excellent possibilities of using this parametric method at the LAN-IPEN for geological samples analysis in geochemical and environmental studies. (author)

  14. Mediterranean Region proficiency test on the determination of radionuclides in air filters. IAEA-CU--2008-02

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA helps the Member States laboratories to maintain their readiness and improving the quality of the analytical results by producing reference materials, by development of standardized methods for sample collection and analysis, and by conducting interlaboratory comparisons and proficiency tests as a tool for external quality control of analytical results. The Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory in the International Atomic Energy Agency's Seibersdorf Laboratories in Austria, has the programmatic responsibility to support global radionuclide measurement systems. To fulfil this obligation and ensure a reliable worldwide, rapid and consistent response, the Chemistry Unit organises interlaboratory studies and proficiency tests. The activity concentration of radionuclides in the air is a critical factor in assessing the air quality and the potential impact of possible pollutants. Air is in fact one of the main pathways for human exposure to pollutants. Radioactivity may be present in the atmosphere due to natural processes; intentional (low level) anthropogenic release; or as a consequence of nuclear or radiological incident. Within the frame of the IAEA Technical Cooperation project RER/8/009 'Air Pollution Monitoring in the Mediterranean Region', several Member States expressed their interest in establishing close cooperation among Mediterranean countries in the field of harmonization of air pollution monitoring systems and creation of a common database, since they share geographical position and mutual interest in the environmental conditions of the Mediterranean region. Such cooperation will also promote and enhance the exchange of experience/information. This report summarizes the results of the IAEA-CU-2008-02 Mediterranean Region proficiency test on the determination of radionuclides in air filters

  15. Characteristics and parameters of family poultry production in Africa. Results of a FAO/IAEA co-ordinated research programme

    International Nuclear Information System (INIS)

    2002-01-01

    One of the tasks of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture is to promote the use of nuclear techniques for improving disease diagnosis and monitoring disease control programmes in order to optimise animal production in developing countries. An applied research programme was initiated in 1998 with funding from the Regular Budget to promote farmyard poultry production in Africa by developing practical vaccination strategies against Newcastle disease and Gumboro disease in various countries in Africa and monitoring immunity using an ELISA technique. Following initial discussions with experts from various universities and FAO it became clear that in order to improve farmyard poultry production effectively it was essential to initiate a holistic approach. Consequently, it was decided to first collect production data of the existing situation in a standardised fashion, subsequently analyse the production constraints and finally initiate interventions not only by vaccinating poultry but also by introducing improvements in housing, feeding and commercialisation. At the same time a practical and robust ELISA test for detecting antibodies against Newcastle disease was developed at the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf, Austria. The results of the standardised survey to collect production data of the current situation are reported in the present publication together with an analysis of production constraints, a number of review articles on family poultry production in Africa and a comparative analysis of the results from the various countries

  16. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum)

    International Nuclear Information System (INIS)

    Romero, M. L.; Barrera, M.; Valino, F.

    2010-01-01

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  17. Principles and results of environmental surveillance of the Austrian Research Center at Seibersdorf within the last twenty years

    International Nuclear Information System (INIS)

    Steger, F.; Etzersdorfer, E.; Sorantin, H.

    1980-01-01

    The Research Center at Seibersdorf uses its 12 MW- reactor for isotope production, fuel testing and activation analyses and also operates a waste management department, including an incineration plant. Since the center is situated near Vienna and is surrounded by an agricultural area, a strict monitoring program has been maintained. Details about number and places of water-, air-, aerosol- and biological sampling stations are given and the surveillance of uranium and plutonium handling laboratories is described. Also, TL-dosimeters in special casings and calibrated GM counters are installed at various locations in and around the center to measure the immersion doses. Evaluation of the obtained results shows rather small fluctuations and allows an immediate recognition of values over the routine levels. By measurement of the emissions it could also be proved that the measured values were far below the limits set by the authorities. (author)

  18. Scientific committee of the IAEA/WHO Network of Secondary Standard Dosimetry Laboratories. Report of the ninth meeting of the SSDL scientific committee, IAEA, Vienna, 13-17 November 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The report of the eighth meeting (held in Oct. 1998) of the Scientific Committee (SSC) of the IAEA/WHO network of Secondary Standard Dosimetry Laboratories (SSDL) was published in the SSDL Newsletter No. 40, January 1999. The ninth meeting was held in Vienna at Agency Headquarters from 13 to 17 November 2000. Opening remarks were made by Mr. S. Groth, Director, Division of Human Health (NAHU), Mr. H. Oestensen (WHO), Co-Secretary of the IAEA/WHO SSDL Network, and Mr. Ahmed Meghzifene, acting Section Head, Dosimetry and Medical Radiation Physics (DMRP). The Agency's DMRP sub-programme provides traceable radiation standards to the majority of developing countries over a wide range of energies and dose levels. External-beam radiation therapy and radiation processing (high dose) have a long history and robust links to international standards. Recently the DMRP has developed projects providing robust links for calibration of mammography X-ray beams, brachytherapy sources, and personnel monitoring programmes at the participating SSDLs. Efforts by the Agency and the WHO over the past 5 years have made significant improvements in the return rate and turn-around time in the postal TLD programme, effectively increasing the availability of Agency standards. Two other high-priority items promulgated by the DMRP are: (i) follow-up of quality audit measurements which fall outside the established action levels, and (ii) transfer of postal TLD programmes to national programmes and establishing and maintaining links between these programmes and the DMRP. The SSC still considers both of these as high priority items, commends the DMRP on their efforts, and encourages them to continue to develop activities in these areas. The SSC wishes to emphasize that radiation dosimetry is a necessary adjunct to many programmes that utilize ionizing radiation at various dose levels. The SSC commends the Agency for their continued support for the programmes sponsored through the Dosimetry and

  19. Clean laboratories and clean rooms for analysis of radionuclides and trace elements

    International Nuclear Information System (INIS)

    2003-01-01

    requirements are summarized of clean laboratory environments, for construction materials as well as for materials used during routine analysis, maintenance, and pitfalls in the analysis of radionuclides and elements at trace- and ultra trace levels. Current methodologies and practices are described for planning the installation of a clean environment as well as protocols for maximizing the benefit-to-cost ratio and for achieving QA/QC. Special emphasis is given to the analysis of radionuclides, and measurement of trace, minor and major elements using nuclear and related analytical techniques such as NAA and XRF. Also included are papers contributed by experts from India, the Netherlands, the United States of America and the IAEA Laboratories, Seibersdorf

  20. Radiation protection control report for the research centre Seibersdorf for the year 2001

    International Nuclear Information System (INIS)

    Mueck, K.; Urbanich, E.; Abzieher, F.; Hefner, A.; Lechner, C.; Lovranich, E.; Steger, F.; Tuechler, W.; Wihlidal, H.

    2002-05-01

    In order to prove that workers and the environment of the Research Centre Seibersdorf are not exposed to undue radiation exposures, an extensive program of evidence monitoring is carried out in and around the Research Centre Seibersdorf. The program ranges from workers' surveillance on external and internal radiation exposure via the monitoring of working places and laboratories with regard to external dose rate, surface contamination and activity concentration in air, the surveillance of releases to immersion monitoring with regard to external dose rate and activity concentrations in the vicinity of the Research Center. The present report comprises a summary of the results of this radiation exposure surveillance of workers and the vicinity of the Research Center in the year 2001. The average radiation exposure of all surveyed persons in the year 2001 was 1.41 mSv including background radiation (1.09 mSv). Subtracting this natural background level, the net annual dose amounts to 0.32 mSv corresponding to 1.6 % of the limit for occupationally exposed persons. In the past year no surpassing of dose limits was observed. The maximum dose of a single worker was 5.46 mSv/a (27 % of the legal limit of 20 mSv/a). Workers which were occupied with open radioactive substances, were surveyed for incorporation. They showed no incorporations above limits, in most surveyed cases no incorporation at all was detected. Releases to the environment were, as in the past years, below limits set by the authorities, generally by orders of magnitude. For the shut-down research reactor for which the release monitoring was continued, the releases in the year 2001 amounted to 0.13 %, for the incineration plant to 0.11 % (alpha-emitters) and 0.0038 % (beta-emitters), for the Safeguard Analytical Laboratory to 3.2 % (alpha-emitters) and 0.67 % (beta-emitters), for the Hot Cell Laboratory to 3.0 % (alpha-emitters) and 0.4 (beta-emitters), and the radiopharmaceutical facility 0.02 % for 131 I and

  1. Uncertainty and minimum detectable concentrations using relative, absolute and K*0-IAEA standardization for the INAA laboratory of the ETRR-2

    International Nuclear Information System (INIS)

    Khalil, M. Y.

    2006-01-01

    Full text: The Instrumental Neutron Activation Analysis (INAA) Laboratory of Egypt Second Training and Research Reactor (ETRR-2) is increasingly requested to perform multi-element analysis to large number of samples from different origins. The INAA laboratory has to demonstrate competence by conforming to appropriate internationally and nationally accepted standards. The objective of this work is to determine the uncertainty budget and sensitivity of the INAA laboratory measurements. Concentrations of 9 elements; Mn, Na, K, Ca, Co, Cr, Fe, Rb, and Cs, were measured against a certified test sample. Relative, absolute, and Ko-IAEA standardization methods were employed and results compared. The flux was monitored using cadmium covered gold method, and multifoil (gold, nickel and zirconium) method. The combined and expanded uncertainties were estimated. Uncertainty of concentrations ranged between 2-21% depending on the standardization method used. The relative method, giving the lowest uncertainty, produced uncertainty budget between 2 and 11%. The minimum detectable concentration was the lowest for Cs ranging between 0.36 and 0.59 ppb and the highest being for K in the range of 0.32 to 8.64 ppm

  2. Post-irradiation examination of HTR-fuel at the Austrian Research Centre Seibersdorf Ltd

    International Nuclear Information System (INIS)

    Reitsamer, G.; Proksch, E.; Stolba, G.; Strigl, A.; Falta, G.; Zeger, J.

    1984-02-01

    This paper describes methods and measurements developed at the Austrian Research Centre Seibersdorf for the evaluation of the irradiation performance of HTR fuel. Main interest is concentrated on particle failure rates, fission product release, burn-up and inventory measurements (solid and gaseous fission products, uranium inventory). (Author) [de

  3. Progress Report 1985 of the Austrian Research Centre Seibersdorf. Abridged version

    International Nuclear Information System (INIS)

    Schwach, G.W.

    1986-06-01

    The report gives a short survey of the work carried out by the Austrian Research Centre Seibersdorf in 1985. The working programme comprises five main areas: Energy and safety; Materials research, isotope and radiation techniques; Measuring techniques and information processing; Environmental protection, health and food; Industrial consulting. (Author)

  4. Methods of measurement on a PCPV with hot liner at Seibersdorf Research Centre

    International Nuclear Information System (INIS)

    Zemann, H.

    1975-08-01

    The distribution of stress, strain, temperature and humidity within the structural concrete of the PCPV with hot liner at Seibersdorf Research Centre is measured for safety surveillance and in order to prove the suitability as a reactor pressure vessel. The paper gives a survey of the methods of measurement at elevated temperatures. (author)

  5. Progress Report 1984 of the Austrian Research Centre Seibersdorf. Abridged version

    International Nuclear Information System (INIS)

    Schwach, G.W.

    1986-06-01

    The report gives a short survey of the work carried out by the Austrian Research Centre Seibersdorf in 1984. The working programme comprises five main areas: Energy and safety; Materials research, isotope and radiation techniques; Measuring techniques and information processing; Environmental protection, health and food; Industrial consulting. (Author)

  6. Conditioning of low level radioactive waste at the Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    Chalupa, G.; Petschnik, G.

    1986-09-01

    The conditioning (solidification) of LLW at the Austrian Research Centre Seibersdorf are explained. In first part of this paper the comentation of ashes are described and criterias for the application of recipes for conditioning, quality inspection, determination of leaching rates are given. Enclosed to that some figures show you the installed equipment and the handling for conditioning of LLW at the Research Centre. (Author)

  7. IAEA introduction

    International Nuclear Information System (INIS)

    Zeman, A.

    2009-01-01

    The Physics Section supports the IAEA Member States regarding utilization of: Accelerators; Research reactors; Cross-cutting material research; Controlled fusion. The activities in the field of material science include studies of present NPP structural materials; investigation of degradation mechanisms and contribution to research programs of new materials, as well as education and training activities. The Section is participating in the coordinated research projects 'Accelerator Simulation and Theoretical Modeling of Radiation Effects' (Jointly NA-NE) and 'Benchmarking of advanced materials pre-selected for innovative nuclear reactors' (Jointly NA and NE)

  8. Securing a better future for all: Nuclear techniques for global development and environmental protection. NA factsheet on nuclear sciences and applications laboratories. Supporting development: R and D, capacity building and technical services

    International Nuclear Information System (INIS)

    2012-01-01

    The system of twelve dedicated IAEA laboratory facilities is a unique feature in the United Nations. The laboratories support and implement programmatic activities that respond to the developmental needs of Member States in food and agriculture, human health, environmental monitoring and assessment, as well as the use of nuclear analytical instruments. The laboratories carry out three essential types of activity, which are simultaneously supported worldwide in Member State laboratories: (i) applied research and development; (ii) training and capacity building and (iii) technical and analytical services. Their primary aim is to assist in increasing the impact of related IAEA programmes. While the laboratories share certain types of activity, their fields of expertise range from food and agriculture, medical dosimetry to the environment and water resources. Most of the laboratories are based in Seibersdorf, a town about 35 km southeast of Vienna. There are five FAO-IAEA agriculture and biotechnology laboratories assisting Member States to develop and adapt new and existing agricultural technologies involving isotopes and radiation to suit local requirements and environmental conditions, and to provide the necessary training and analytical services pertaining to the efficient use of these technologies.

  9. Progress in inertial fusion research at the Los Alamos Scientific Laboratory. Paper No. IAEA-CN-38/B-2

    International Nuclear Information System (INIS)

    Perkins, R.B.

    1980-01-01

    The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO 2 laser system delivering up to 6 kJ on target are described. Because breakeven energy estimates for laser drivers of 1 μm and above have risen and there is a need for CO 2 experiments in the tens-of-kilojoule regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40 kJ of CO 2 laser light on target

  10. Directory of IAEA databases

    International Nuclear Information System (INIS)

    1991-11-01

    The first edition of the Directory of IAEA Databases is intended to describe the computerized information sources available to IAEA staff members. It contains a listing of all databases produced at the IAEA, together with information on their availability

  11. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  12. Statement to Fifty-Sixth Regular Session of IAEA General Conference 2012, 17 September 2012, Vienna, Austria

    International Nuclear Information System (INIS)

    Amano, Y.

    2012-01-01

    impact our work can have on individual lives. When I see the distinctive blue IAEA logo at the project sites, I feel as if I am among family. To take just one example: when I visited a laboratory in Peru, I was offered a cup of purple-coloured juice. I thought it was grape juice, but in fact it was made from a new type of corn, which was developed using radiation-induced mutation techniques supported by the Agency. In case you are wondering, the juice was actually delicious. This is just one of several hundred IAEA projects which have helped to increase food production in dozens of countries. Cancer in developing countries is high on the Agency's agenda. It is also my passion. I plan to strengthen our Programme of Action for Cancer Therapy (PACT). I wish to establish a Cancer Training Centre at our lab. complex in Seibersdorf, near Vienna, within the next few years. This will provide specialist training for health professionals from Member States, using advanced teaching technologies to complement the existing training offered by the IAEA Dosimetry Laboratory. Alongside our safeguards laboratories, we have no fewer than eight nuclear applications laboratories in Seibersdorf. They are doing pioneering work related to human and animal health, food security and safety, agriculture, and environmental monitoring. But the laboratories have become obsolete and outdated. Space is severely limited and the equipment is not well adapted to our present needs. Following the modernization of the safeguards laboratories, which is well underway, it is time to bring the nuclear applications laboratories up to the latest international standards. My goal is to carry out a complete modernization within a few years so these laboratories can offer even better services to our Member States. At the Rio+20 Conference in June, the Agency announced the establishment of an Ocean Acidification International Coordination Centre at the IAEA Environment Laboratories in Monaco. This responds to concern

  13. Structure and organization of the cost accounting system at the Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    Nevyjel, A.; Firmkranz, W.

    1979-01-01

    The Oesterreichische Studiengesellschaft fuer Atomenergy introduced a cost accounting system for internal project accounting at the Research Centre Seibersdorf as per 1st January 1976. This paper gives a survey of the different types of data collection, data flow and function of the programme system and the possibilities of data evaluation and interpretation and it describes the experiences made with the operation of the system so far. (auth.)

  14. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum); Evaluacion de la Intercomparacion CSN/CIEMAT-2008 entre Laboratorios Nacionales de Radiactividad Ambiental (Fosfoyeso)

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M L; Barrera, M; Valino, F

    2010-05-27

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  15. Laser-Assisted Sampling Techniques in Combination with ICP-MS: A Novel Approach for Particle Analysis at the IAEA Environmental Samples Laboratory

    International Nuclear Information System (INIS)

    Dzigal, N.; Chinea-Cano, E.

    2015-01-01

    Researchers have found many applications for lasers. About two decades ago, scientists started using lasers as sample introduction instruments for mass spectrometry measurements. Similarly, lasers as micro-dissection tools have also been increasingly on demand in the fields of life sciences, materials science, forensics, etc. This presentation deals with the interception of these aforementioned laser-assisted techniques to the field of particle analysis. Historically, the use of a nanosecond laser to ablate material has been used in materials science. Recently, it has been proven that in the analysis of particulate materials the disadvantages associated with the utilization of nanosecond lasers such as overheating and melting of the sample are suppressed when using femtosecond lasers. Further, due to the length of a single laser shot, fs-LA allows a more controlled ablation to occur and therefore the sample plasma is more homogeneous and less mass-fractionation events are detected. The use of laser micro-dissection devices enables the physical segmentation of microsized artefacts previously performed by a laborious manual procedure. By combining the precision of the laser cutting inherent to the LMD technique together with a particle identification methodology, one can increase the efficiency of single particle isolation. Further, besides the increase in throughput of analyses, this combination enhances the signal-to-noise ratio by removing matrix particles effectively. Specifically, this contribution describes the use of an Olympus+MMI laser microdissection device in improving the sample preparation of environmental swipe samples and the installation of an Applied Spectra J200 fs-LA/LIBS (laser ablation/laser inducedbreakdown spectroscopy) system as a sample introduction device to a quadrupole mass spectrometer, the iCap Q from Thermofisher Scientific at the IAEA Environmental Samples Laboratory are explored. Preliminary results of the ongoing efforts for the

  16. Regional technical cooperation model project, IAEA - RER/2/2004 ''quality control and quality assurance for nuclear analytical techniques'

    International Nuclear Information System (INIS)

    Arikan, P.

    2002-01-01

    An analytical laboratory should produce high quality analytical data through the use of analytical measurements that is accurate, reliable and adequate for the intended purpose. This objective can be accomplished in a cost-effective manner under a planned and documented quality system of activities. It is well-known that serious deficiencies can occur in laboratory operations when insufficient attention is given to the quality of the work. It requires not only a thorough knowledge of the laboratory's purpose and operation, but also the dedication of the management and operating staff to standards of excellence. Laboratories employing nuclear and nuclear-related analytical techniques are sometimes confronted with performance problems which prevent them from becoming accepted and respected by clients, such as industry, government and regulatory bodies, and from being eligible for contracts. The International Standard ISO 17025 has been produced as the result of extensive experience in the implementation of ISO/IEC Guide 25:1990 and EN 45001:1989, which replaces both of them now. It contains all of the requirements that testing and calibration laboratories must meet if they wish to demonstrate that they operate a quality system that is technically competent, and are able to generate technically valid results. The use of ISO 17025 should facilitate cooperation between laboratories and other bodies to assist in the exchange of information and experience, and in the harmonization of standards and procedures. IAEA model project RER/2/004 entitled 'Quality Assurance/Quality Control in Nuclear Analytical Techniques' was initiated in 1999 as a Regional TC project in East European countries to assist Member State laboratories in the region to install a complete quality system according to the ISO/IEC 17025 standard. 12 laboratories from 11 countries plus the Agency's Laboratories in Seibersdorf have been selected as participants to undergo exercises and training with the

  17. Worldwide proficiency test for X ray fluorescence laboratories PTXRFIAEA/05 determination of minor and trace elements in marine sediment

    International Nuclear Information System (INIS)

    2009-01-01

    The proficiency test (code PTXRFIAEA05) was the fifth worldwide exercise organized by the IAEA Seibersdorf Laboratories in order to assist X ray fluorescence laboratories in assessment and improvement of their analytical performance. The test was carried out within the IAEA Project 1.4.3.4 (D.3.03) on Nuclear Spectrometry for Analytical Applications, under the Nuclear Science Programme. The main objective of the project was to enhance capability of interested Member States in effective utilization of nuclear spectrometries and analytical services in industry, human health, agriculture, and in monitoring and evaluation of environmental pollution. Marine sediment test samples with established homogeneity and well characterized known target values of the mass fractions of analytes were distributed to participating laboratories. The laboratories were requested to analyze the sample using established techniques following their analytical procedures. Based on the results of the proficiency test presented in the report each participating laboratory should assess its analytical performance results by using the specified criteria and, if appropriate, to identify discrepancies, and to correct relevant analytical procedures. The next proficiency test exercise will be executed in 2009

  18. The nuclear techniques and IAEA

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The International atomic energy agency (IAEA) and its member states help hundred of development projects using nuclear science and technology. Specialists are sent in centers and research laboratories as counselors or speaker, activities of collective and personal training are organised with national institutes, material is supplied for research works or technical projects executed locally. (N.C.)

  19. The dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    1987-01-01

    Describes the activities of the IAEA's Dosimetry Laboratory which provides calibration and comparison services for secondary standard dosimetry laboratories (SSDLs) of Member States. In addition, a joint IAEA/WHO postal dosimetry service has been established for radiotherapy centers. The International Measurement System and the calibration ''chain'' from measurement standard instruments of the International Bureau of Weights and Measurements (BIPM) through the primary and secondary standards to the dosimeters of the users are presented as well

  20. IAEA yearbook 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The IAEA Yearbook 1991 contains the following 6 chapters: Transfer of Nuclear Technology; Applications of Nuclear Techniques and Research (Also published separately as Part B of the IAEA Yearbook 1991); Nuclear Power, Nuclear Fuel Cycle and Waste Management (Also published separately as Part C of the IAEA Yearbook 1991); Nuclear Safety Review (Also published separately as Part D of the IAEA Yearbook 1991); IAEA Safeguards; The IAEA (operating framework and functions). A separate abstract and indexing was provided for each chapter. Refs, figs and tabs

  1. Estimation of risk due to accidents for the transport of radioactive wastes to the conditioning and storage facilities in the Research Center of Seibersdorf

    International Nuclear Information System (INIS)

    Krejsa, P.

    1977-02-01

    By the use of an American statistic of accidents on roads the risk of body burden is estimated resulting from the transport of radioactive wastes to the central collection, conditioning and storage facilities in Seibersdorf. It is shown that the risk of the transport from power stations up to 1990 is below that of other producers of radioactive wastes (hospitals, industry and research laboratories). The risk of the individual body burden is estimated to be in 1976: 1,1 . 10 -10 mrem/a; 1978: 2,8 . 10 -10 mrem/a; 1985: 3,0 . 10 -10 mrem/a; 1995: 3,3 . 10 -10 mrem/a. These results are so much below the natural radiation in the environment, that they cannot be seen as an increase in the given potential hazard. (author)

  2. The instrumentation of the prestressed concrete vessel with hot liner at Seibersdorf Research Centre

    International Nuclear Information System (INIS)

    Zemann, H.

    1975-11-01

    The joint project ''Prestressed Concrete Pressure Vessel with Hot Liner'' at Seibersdorf Research Centre now is in the process of testing the PCPV both in construction and operation from the safety point of view. The physical state of the PCPV (modulus of elasticity, humidity of concrete, creeping, etc.) is brought to stable conditions by ''pre-aging''. In order to control this process of stabilisation, an extensive knowledge of the concrete and an elaborated instrumentation is a necessity. This paper presents a survey about the philosophy and the realisation of the instrumentation of the PCPV and the investigations we performed to interpret the measurements. (author)

  3. IAEA TECDOC 055 Outline

    Energy Technology Data Exchange (ETDEWEB)

    Shull, Doug [Gregg Protection Services, Palm Beach Gardens, FL (United States)

    2015-07-13

    An outline of suggestions for updating a version of IAEA-TECDOC-1276 is provided. This update will become IAEA-TECDOC-055, titled ''IAEA handbook for designing and implementing physical protection systems for nuclear material and nuclear facilities.''

  4. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  5. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  6. National intercomparison on in vivo measurement of Iodine-131 in the thyroid within a Brazilian Internal Dosimetry Laboratory Network - IAEA PROJECT BRA9055; Intercomparacao nacional de medicao in vivo de Iodo-131 na tireoide - Projeto TC IAEA BRA 9055

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, B.M.; Dantas, A.L.A.; Lucena, E.A., E-mail: bmdantas@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro (Brazil); Cardoso, J.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ramos, M.A.P.; Sa, M.S. [Eletrobras Eletronuclear, Angra dos Reis, RJ (Brazil); Alonso, T.C.; Silva, T.V.; Oliveira, C.M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Lima, F.F.; Oliveira, M.L.; Lacerda, I.V.B. [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Fajgelj, A. [International Atomic Energy Agency (IAEA), Vienna (Austria)

    2013-08-15

    In 2011, in Brazil, a National Intercalibration and Intercomparison exercise on in vivo measurement of iodine-131 in the thyroid was carried out in the scope of the Project IAEABRA9055 'Establishing a National Laboratory Network for Internal Individual Monitoring'. The exercise was conducted by the Institute for Radiation Protection and Dosimetry (IRD) and the Institute for Nuclear and Energetic Research (IPEN), from National Nuclear Energy Commission (CNEN). The objectives of the exercise were to (i) update information on current instrumentation resources available in the in vivo monitoring laboratories in operation in Brazil and to (ii) verify the reliability of the results of measurements of iodine-131 in thyroid provided by those laboratories. The procedure consisted on the measurement of a neck-thyroid anthropomorphic phantom provided by the In Vivo Monitoring Laboratory of IRD, containing two barium-133 standard sources certified by the National Laboratory for Metrology of Ionizing Radiation. Each participant should measure the phantom in a period of five days. The five laboratories are located in the States of Rio de Janeiro, Sao Paulo, Minas Gerais and Pernambuco, in the following Institutions: Institute for Radiation Protection and Dosimetry, Nuclear Power Station Almirante Alvaro Alberto, Center for the Development of Nuclear Technology, Institute for Nuclear and Energetic Research, and Regional Center for Nuclear Sciences. The results reported included: activity measured, minimum detectable activity, accuracy and precision. The performance of the laboratories was evaluated according to the criteria suggested by ANSI 13.30 indicating their capacity to provide reliable results of iodine-131 content in the thyroid. (author)

  7. How the Nuclear Applications Laboratories Help in Strengthening Emergency Response

    International Nuclear Information System (INIS)

    2014-01-01

    Safety is one of the most important considerations when engaging in highly advanced scientific and technological activities. In this respect, utilizing the potential of nuclear technology for peaceful purposes also involves risks, and nuclear techniques themselves can be useful in strengthening emergency response measures related to the use of nuclear technology. In the case of a nuclear incident, the rapid measurement and subsequent monitoring of radiation levels are top priorities as they help to determine the degree of risk faced by emergency responders and the general public. Instruments for the remote measurement of radioactivity are particularly important when there are potential health risks associated with entering areas with elevated radiation levels. The Nuclear Science and Instrumentation Laboratory (NSIL) — one of the eight laboratories of the Department of Nuclear Sciences and Applications (NA) in Seibersdorf, Austria — focuses on developing a variety of specialized analytical and diagnostic instruments and methods, and transferring knowledge to IAEA Member States. These include instruments capable of carrying out remote measurements. This emergency response work carried out by the NA laboratories supports health and safety in Member States and supports the IAEA’s mandate to promote the safe and peaceful use of nuclear energy

  8. New Seeds are Resistant to Wheat Stem Rust (Ug99) Multinational Programme Supported by FAO and IAEA

    International Nuclear Information System (INIS)

    2013-01-01

    working together we can overcome the challenges we face', said FAO Director-General Jose Graziano da Silva. The rust-resistant wheat varieties were developed with the support of an IAEA Technical Cooperation project, Responding to the Transboundary Threat of Wheat Black Stem Rust (Ug99), which involved more than 20 nations and international organizations. The varieties were developed using a nuclear technique for crop improvement known as mutation breeding. By exposing seeds, or plant tissue, to radiation, scientists accelerate the natural process of mutation, and then breeders are able to select and develop new varieties. In 2009, Miriam Kinyua, a Kenyan plant breeder, sent 10 kilograms of five varieties of wheat seed to the FAO/IAEA laboratories in Seibersdorf, south of Vienna, where they were irradiated for mutation breeding. These seeds were returned to Kenya where they were planted in a hot spot for the disease for screening and selection. Kinyua and her colleagues at the University of Eldoret's Biotechnology Department identified eight lines resistant to Ug99. Four of these lines were submitted to Kenyan national performance trials, and two were officially approved as varieties by the national committee of the Ministry of Agriculture. About six tonnes of seeds of the new varieties will be made available this month for the next planting season in Kenya. (IAEA)

  9. The IAEA '97 Pacific Ocean expedition

    International Nuclear Information System (INIS)

    Povinec, P.P.; Huynh-Ngoc, L.; Liong Wee Kwong, L.

    1999-01-01

    The International Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL) started in 1995 a five-year project 'Research on World-wide Marine Radioactivity', generously supported by the Government of Japan. In the framework of the project, IAEA-MEL conducted the 'IAEA '97 Pacific Ocean Expedition' to the NW Pacific Ocean from 21 October to 20 November, 1997. The objectives of the expedition were to provide new data on the current marine radioactivity in order to compare them with data sets obtained during national and international surveys at sites used for radioactive waste dumping or nuclear bomb testing in the NW Pacific Ocean and its marginal seas

  10. IAEA Clarification on Syria

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Director General Amano has been quoted in a news story as saying today that a site in Syria allegedly destroyed by Israel was a nuclear reactor under construction. The Director General did not say that the IAEA has reached the conclusion that the site was definitely a nuclear reactor. The IAEA continues to seek further information on the nature of the Dair Alzour site. (IAEA)

  11. Tracking Nutritional Progress: IAEA Capacity Building Programmes

    International Nuclear Information System (INIS)

    Slater, Christine

    2014-01-01

    Kuwait: The IAEA has helped to establish a body composition assessment suite at the Kuwait Institute for Scientific Research. Facilities include an isotope ratio mass spectrometer for analysis of deuterium and oxygen-18 enrichment, and dual energy X ray absorptiometry for assessment of bone mineral content. Botswana: The IAEA has helped to establish facilities for analysis of deuterium enrichment by Fourier transform infrared (FTIR) spectrometry at the National Food Technology Research Centre (NFTRC). Ecuador: Through national and regional technical cooperation projects, the IAEA has helped to establish facilities for analysis of deuterium enrichment by FTIR spectrometry in 17 Latin American countries, including Ecuador. Costa Rica: With the help of the IAEA, the University of Costa Rica has established a laboratory for the assessment of body composition using deuterium dilution techniques

  12. IAEA Orientation for Diplomats 2013. The IAEA in Overview

    International Nuclear Information System (INIS)

    2013-02-01

    The IAEA's mission is to prevent the spread of nuclear weapons and to help all countries - especially in the developing world - benefit from the peaceful, safe and secure use of nuclear science and technology. Since the Agency was founded in 1957, our work has constantly evolved to meet the changing needs of our member states. We work to improve human and animal health. We help farmers to grow more abundant and robust crops. We help to make clean water more available and to combat environmental pollution. We help countries which wish to use nuclear power to do so safely and securely. Through all of these activities, the IAEA helps member states to use nuclear technology to meet the basic needs of their people. Nuclear power is the best-known peaceful application of nuclear energy. The fukushima Daiichi accident in Japan in 2011 caused considerable public anxiety throughout the world and damaged confidence in nuclear power. Nevertheless, use of nuclear power looks set to grow steadily in the next 20 years, although at a slower rate than was expected before the accident. The fukushima Daiichi accident led to a renewed focus on safety. In 2011, IAEA member states agreed an Action Plan on nuclear safety which they, and the Agency, are now implementing. The Agency also serves as the global platform for strengthening nuclear security. Our work focuses on helping to minimize the risk of nuclear and other radioactive material falling into the hands of terrorists, or of nuclear facilities being subjected to malicious acts. The IAEA is the only organization within the UN system with expertise in nuclear technologies. Our unique specialist laboratories help transfer knowledge and expertise to our member states in areas such as human health, food, water and the environment. cancer control in developing countries is a major priority for the Agency and for me personally. Hundreds of thousands of patients in developing countries do not have access to treatment that could save

  13. IAEA Orientation for Diplomats 2013. The IAEA in Overview

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    The IAEA's mission is to prevent the spread of nuclear weapons and to help all countries - especially in the developing world - benefit from the peaceful, safe and secure use of nuclear science and technology. Since the Agency was founded in 1957, our work has constantly evolved to meet the changing needs of our member states. We work to improve human and animal health. We help farmers to grow more abundant and robust crops. We help to make clean water more available and to combat environmental pollution. We help countries which wish to use nuclear power to do so safely and securely. Through all of these activities, the IAEA helps member states to use nuclear technology to meet the basic needs of their people. Nuclear power is the best-known peaceful application of nuclear energy. The fukushima Daiichi accident in Japan in 2011 caused considerable public anxiety throughout the world and damaged confidence in nuclear power. Nevertheless, use of nuclear power looks set to grow steadily in the next 20 years, although at a slower rate than was expected before the accident. The fukushima Daiichi accident led to a renewed focus on safety. In 2011, IAEA member states agreed an Action Plan on nuclear safety which they, and the Agency, are now implementing. The Agency also serves as the global platform for strengthening nuclear security. Our work focuses on helping to minimize the risk of nuclear and other radioactive material falling into the hands of terrorists, or of nuclear facilities being subjected to malicious acts. The IAEA is the only organization within the UN system with expertise in nuclear technologies. Our unique specialist laboratories help transfer knowledge and expertise to our member states in areas such as human health, food, water and the environment. cancer control in developing countries is a major priority for the Agency and for me personally. Hundreds of thousands of patients in developing countries do not have access to treatment that could save

  14. IAEA coordinated research project on improvement of technical measures to detect and respond to illicit trafficking of nuclear and other radioactive materials

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Abou-Zahra, A.; Weiss, B.

    2002-01-01

    Full text: Monitoring to detect the illicit trafficking of nuclear and other radioactive materials includes screening vehicles, cargo and individuals at borders to 1) detect smuggling of these materials; 2) locate, measure and characterize the source of radiation; and 3) fully characterize any confiscated material. Currently available instruments used for the field measurements are not optimized for this purpose and may not detect shielded plutonium and highly enriched uranium. Confiscated radioactive materials need to be characterized with macro- and microanalysis techniques to fully understand the significance of the material and to provide credible evidence in the event of prosecution of the traffickers. Although most States have national laboratories capable to determine the basic characteristics of such material, only a few member States have the sophisticated analytical capability necessary to perform proper forensics analysis. The coordinated research project on 'Improvement of Technical Measures to Detect and Respond to Illicit Trafficking of Nuclear and other Radioactive Materials' has been established to: Improve the detection capability and performance of hand-held and portable isotope measurement devices, including the technical and functional specifications for such devices; standardize procedures to examine suspicious packages and to assess the hazard of confiscated material; and develop recommendations and guidelines for establishing a system to provide nuclear forensics support to member States for the characterization of seized nuclear material. Related to the nuclear forensics support, it should be noted that with the inception of the Agency's nuclear security programme in 1995, the IAEA has offered the services of its laboratories in Seibersdorf and associated laboratories to assist States in analysing confiscated nuclear materials. Since 1993 the IAEA has received reports of over 300 cases of smuggling of nuclear and other radioactive materials

  15. Intercalibration of radiological measurements for surveillance purposes of the internal dosimetry laboratory coordinated by the IAEA; Intercalibracion de mediciones radiologicas para fines de vigilancia del laboratorio de dosimetria interna coordinada por el OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro L, M.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2002-07-15

    The ININ of Mexico participated in this intercomparison organized by the IAEA in 2000. The objective of this activity is that the dosimetry laboratories that participate can validate the programs of internal dosimetry, with the purpose of improving its capacity in the evaluation of the internal dose and have access to a mechanism to evaluate its dosimetry system under real conditions. The specific objectives of this intercomparison were: 1. To evaluate the participant's capacity to manage the measurements of individual monitoring in terms of the activity in the phantom. 2. To provide the access to the unique calibration resources that otherwise would not be available. 3. To compare the operation of several detection systems, the geometry, phantoms, calibration methods and methods for the evaluation of activity of the radionuclide used by each institution. 4. To provide the independent verification of the direct measurement methods of the dosimetry service. (Author)

  16. Guidelines for establishing quality systems in veterinary diagnostic testing laboratories. Report of a Joint FAO/IAEA consultants meeting/workshop. Draft

    International Nuclear Information System (INIS)

    2002-01-01

    The purpose of this report is to assist veterinary testing laboratories to develop and implement a quality system based on the OIE Standard 'Management and Technical Requirements for Laboratories Conducting Tests for Infectious Animal Diseases'. The introduction to the OIE Standard states: This document describes the OIE Standard for management and technical competence that serves as the basis for accreditation of laboratories that conduct tests for infectious animal diseases, especially those laboratories involved in testing for international trade. It contains the specific requirements unique to laboratories conducting tests for infectious animal diseases. These specific requirements represent an interpretation of the generally stated requirements of ISO/IEC 17025:1999, General requirements for the competence of testing and calibration laboratories (as outlined in Annex B of ISO/IEC 17025). Accreditation bodies that recognize the competence of such testing laboratories may use this Standard as the basis for their accreditation. This report gives an example-oriented overview of the structure and contents of critical documents and procedures such as Quality Manual (QM), Standard Operating Procedures (SOPs), etc. inherent to a quality system and describes the different stages in the implementation of the OIE Standard. For that reason it can be used as a practical guide for the production of necessary documents but also as a help to determine the status of a laboratory during its journey towards establishing a QS

  17. Report on the intercomparison runs for the determination of trace and minor elements in cabbage material. IAEA-359

    International Nuclear Information System (INIS)

    Campbell, M.J.; Radecki, Z.; Trinkl, A.; Burns, K.I.

    2000-04-01

    In 1989, the IAEA decided to produce a cabbage plant reference material that could be characterised for certain agrochemical residues. The cabbage plants (Brassica oleracea var. Sabauda) were grown from seed in Seibersdorf, Austria. The plants were treated with ten different agrochemical products during their growing period. Subsequently, it was decided that the material would also be valuable as a reference material for trace element analysis and quality control purposes. The property values for the trace metal content of the cabbage material, designated IAEA 359, were to be ascribed on the basis of information received from international intercomparison exercises. In parallel, it was decided to despatch the material as part of a joint IAEA-NIST (National Institute of Standards and Technology, USA) project to certify the trace and minor element contents of a spinach reference material (NIST 1570a), in which it was to serve as a quality control material. A similar rationale was used to justify inclusion of IAEA 359 in a small scale exercise for a preliminary characterisation of another IAEA reference material, IAEA 336 Lichen. Between 1992 and 1993, the material was used in 4 projects (2 large scale and 2 smaller scale) where its trace element contents were determined. This report deals with the statistical evaluation of the pooled analytical data from these exercises

  18. Training the IAEA Inspectors

    International Nuclear Information System (INIS)

    Potterton, L.

    2010-01-01

    Newly recruited safeguards inspectors take to the field. There are currently 250 inspectors and every year the IAEA runs an introductory course on the safeguards systems for the organisation's newly appointed inspectors.

  19. IAEA Monitors Marine Radioactivity

    International Nuclear Information System (INIS)

    Dixit, Aabha; Kaiser, Peter

    2013-01-01

    The IAEA assists Member States in using scientific tools to precisely identify and track nuclear and nonnuclear contaminants, as well as to investigate their biological effects on the marine ecosystem

  20. IAEA supports regional seas conventions and action plans

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs about the 3rd Global Meeting of Regional Seas Conventions and Action Plans held in Monaco in November 2000 at the IAEA's Marine Environmental Laboratory (IAEA-MEL). The meeting assembled a number of marine environmental experts from several UN bodies to reinforce activities to protect the marine environment

  1. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  2. IAEA inspection activities in the model country

    International Nuclear Information System (INIS)

    Madueme, G.

    1989-01-01

    An overview of the activities undertaken by IAEA inspectors at the model research reactor and research laboratories is given. The basic philosophy behind nuclear material stratification and the concepts of Material Balance Areas and Key Measurement Points are explained. Diversion routes and plausible diversion scenarios are analysed. 8 refs., 6 figs., 3 tabs., poster presentations included

  3. IAEA yearbook 1996

    International Nuclear Information System (INIS)

    1996-09-01

    Part A of the Yearbook describes the role played by the IAEA in helping to advance sustainable development by the transfer of nuclear and radiation technology. The introduction to this section this year discusses the application of quality assurance practices to this important work. The main article describes new planning procedures that are being adopted to ensure that these technical co-operation activities are of significant and practical benefit to the States concerned. The work routinely carried out by the IAEA on the development and dissemination of nuclear and radiation techniques covers a wide range of subjects - the practical aspects of physics and chemistry, hydrology, industrial applications, human health, and food and agriculture. Part B of the Yearbook concentrates on food irradiation and the use of nuclear monitoring techniques in programmes for improving human nutrition. Part C of the Yearbook deals with nuclear power and its fuel cycle and waste management technology. The section on nuclear power describes developments during 1995 in a wide range of countries. It also details the IAEA's work on the comparative health and environmental impacts of different types of energy systems. Of particular interest this year in the fuel cycle area is the report of the downturn in world uranium activities that has lasted for more than 15 years may be coming to an end. In the waste management section, emphasis is given to the technology of environmental restoration of sites after contamination resulting from past nuclear activities. A discussion of different aspects of the safety of nuclear power and of the uses of radiation is to be found in Part D, The Nuclear Safety Review. As in previous years, Part E of the IAEA Yearbook 1996 deals with the IAEA's major contribution to the non-proliferation regime - international safeguards. Part E also contains a description of IAEA activities designed to assist Member States in preventing trafficking in nuclear materials

  4. Laboratory facilities increased by gifts

    International Nuclear Information System (INIS)

    1968-01-01

    As a result of gifts from two Member States facilities at the Agency's research centre at Seibersdorf, Austria, have been increased. New equipment has been provided by France and Romania. The French equipment is a coincidence counter to be operated in conjunction with a computer and is valued at $35 000. It can give automatically an exact measurement of radioactivity in a chemical solution containing radioisotopes. This means that a sample of the solution can be sent to another laboratory to be used for calibrating instruments and checking results of research work. Since 1963 nearly 8 000 radioactive solutions to be used as standards have been sent from Seibersdorf to research laboratories and hospitals in 56 countries. The demand continues to grow, and in order to meet it the equipment was developed by the Saclay Research Centre of the Commissariat a l'Energie Atomique in collaboration with Seibersdorf. From Romania have come six electronic measuring instruments worth $6 000 to assist nuclear research, surveying and prospecting. Three are electronic scalers for experimental work involving the counting of radioactive emissions, and three are survey meters for detecting the presence of radioactivity in geological samples. (author)

  5. IAEA Post Irradiation Examination Facilities Database

    International Nuclear Information System (INIS)

    Jenssen, Haakon; Blanc, J.Y.; Dobuisson, P.; Manzel, R.; Egorov, A.A.; Golovanov, V.; Souslov, D.

    2005-01-01

    The number of hot cells in the world in which post irradiation examination (PIE) can be performed has diminished during the last few decades. This creates problems for countries that have nuclear power plants and require PIE for surveillance, safety and fuel development. With this in mind, the IAEA initiated the issue of a catalogue within the framework of a coordinated research program (CRP), started in 1992 and completed in 1995, under the title of ''Examination and Documentation Methodology for Water Reactor Fuel (ED-WARF-II)''. Within this program, a group of technical consultants prepared a questionnaire to be completed by relevant laboratories. From these questionnaires a catalogue was assembled. The catalogue lists the laboratories and PIE possibilities worldwide in order to make it more convenient to arrange and perform contractual PIE within hot cells on water reactor fuels and core components, e.g. structural and absorber materials. This catalogue was published as working material in the Agency in 1996. During 2002 and 2003, the catalogue was converted to a database and updated through questionnaires to the laboratories in the Member States of the Agency. This activity was recommended by the IAEA Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT) at its plenary meeting in April 2001. The database consists of five main areas about PIE facilities: acceptance criteria for irradiated components; cell characteristics; PIE techniques; refabrication/instrumentation capabilities; and storage and conditioning capabilities. The content of the database represents the status of the listed laboratories as of 2003. With the database utilizing a uniform format for all laboratories and details of technique, it is hoped that the IAEA Member States will be able to use this catalogue to select laboratories most relevant to their particular needs. The database can also be used to compare the PIE capabilities worldwide with current and future

  6. IAEA coaches new entrants

    International Nuclear Information System (INIS)

    Jouette, I.

    2016-01-01

    IAEA provides new entrants in nuclear electricity production with a broad and integrated range of services. The aim is to make the new entrant full aware of the commitments and obligations linked to the development of a civil nuclear program. IAEA offers a 3-step approach. The first step assesses the elements the new entrants has to take into account to launch a nuclear program. The second step deals with the preliminary works before the construction starts but after the political decision to launch a nuclear program has been taken. At the end of the second step the national authorities are able to launch tenders and negotiate contracts for the construction of a nuclear power plant. The third step is dedicated to the necessary activities to implement the first nuclear power plant. The end of the third step means that national authorities are able to issue exploitation licenses for operating nuclear power stations. All along the IAEA accompaniment numerous meetings are scheduled in which IAEA experts meet the 3 organisations that represent the new entrant: the government, the plant operator and the national safety authority. An important element of the first step is to help the country to assess the necessary human resource in terms of qualified staff. (A.C.)

  7. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  8. IAEA Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives for this presentation are to describe the method that the IAEA uses to determine a sampling plan for nuclear material measurements; describe the terms detection probability and significant quantity; list the three nuclear materials measurement types; describe the sampling method applied to an item facility; and describe multiple method sampling.

  9. Introductory statement to the [IAEA] Board of Governors, 7 September 2009, Vienna, Austria

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2009-01-01

    Budget the Director General said the lower than proposed budgetary allocation for 2010 will have consequences for the 'scope and quality of services which we will be able to offer to Member States.' He also highlighted the lack of sufficient funds to adequately upgrade the IAEA's analytical laboratories at Seibersdorf. 'Despite extrabudgetary contributions being made available, we still remain considerably short of the funding target, particularly in relation to addressing safety and security issues associated with the nuclear material laboratory'

  10. The IAEA at work

    International Nuclear Information System (INIS)

    2004-03-01

    Fifty years ago, Dwight Eisenhower stood before the United Nations to offer both a warning and a vision. The knowledge to build an atomic bomb was in the hands of rival powers and would soon be shared by many countries, the President said. It was time to create a U.N. body that could ensure that the new technology served no military purpose. It was time, moreover, to 'devise methods whereby this fissionable material would be allocated to serve the peaceful pursuits of mankind' in agriculture, medicine and other peaceful activities. Eisenhower foresaw a world safe from the destructive power of atomic fission but gaining from its technological advances. Half a century later, the world continues to witness his foresight through the work of the International Atomic Energy Agency (IAEA). The IAEA aims at four formidable goals: safeguarding nuclear nonproliferation; enhancing the security of nuclear facilities and radioactive materials; ensuring the safety of nuclear technologies; and promoting nuclear science to meet human needs. As the world's 'nuclear watchdog,' the IAEA's impartial inspectorate verifies the peaceful uses of nuclear energy in scores of countries. By joining the Agency's strengthened safeguards system and concluding an Additional Protocol, countries can assure the world-and the IAEA can verify-that their nuclear activities are not used for weapons purposes. True to Eisenhower's vision, the power of the atom is being tapped for many human benefits, especially in the world's less developed nations. Extreme poverty remains a profound problem today: some 1.2 billion people in the developing world survive marginally on less that US$1 per day. Another 2.8 billion struggle on less than US$2 per day. The IAEA is mobilizing nuclear science to help address these pressing needs. From managing water better, to controlling pests and diseases, to protecting the environment, the IAEA is helping poor countries make sizeable advances. At the same time, the IAEA works

  11. Artificial radioactivity in the environmental samples as IAEA reference materials

    International Nuclear Information System (INIS)

    Salagean, M.; Pantelica, A.

    1998-01-01

    . Uncontaminated by nuclear activities: IAEA-327, Podsolic soil collected in 1990 from the Moscow region and considered uncontaminated by radionuclides of the Chernobyl accident or by other nuclear activities. The results obtained by our laboratory are in good agreement with the certified IAEA data. Generally, the concentration of the artificial radionuclides in the investigated samples is higher than that expected from the influence of global fallout in the intercomparison materials distributed before Chernobyl accident. Concerning the nature of these investigated IAEA reference materials, very high values for the concentration levels of cesium radionuclides especially in IAEA-373 (grass) and IAEA-375 (soil) samples collected in the vicinity of Chernobyl Power Station after the nuclear accident in 1986 were found. High levels of radioactivities for the artificial radionuclides were also determined in the samples collected in the neighbourhood of the nuclear installations, especially in marine sediment (IAEA-135). It is of interest to point out the high concentration of cesium radionuclides in IAEA-300 sediment collected in 1992 in the Baltic Sea in comparison with the IAEA-306 sediment collected also in the Baltic Sea in 1986. It seems to be an increase of the Baltic Sea artificial radioactivity by accumulation in time. Marine sediment constitutes an important component of marine ecosystem since it represents the final sink for any releases of wastes into the sea. These certified radioactive materials are very useful to all laboratories engaged in the radioactive pollution investigations on environmental samples. (authors)

  12. IAEA film library

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  13. IAEA film library

    International Nuclear Information System (INIS)

    1959-01-01

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  14. Report on the IAEA-CU-2006-06 proficiency test on the determination of major, minor and trace elements in ancient Chinese ceramic

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Trinkl, A.; Toervenyi, A.; Zeiller, E.; Benesch, T.; Sansone, U.

    2006-10-01

    The report summarises the results of a proficiency test conducted under the IAEA co-ordinated research project (CRP) F.2.30.23, ''Applications of nuclear analytical techniques to investigate the authenticity of art objects''. The proficiency test was organized and conducted by the Reference Materials Group of the Chemistry Unit (Physics, Chemistry and Instrumentation Laboratory) of the IAEA's analytical laboratories located in Seibersdorf (Austria). The objective of the CRP is to explore new fields of application for nuclear analytical techniques in art and archaeology. It will help to foster collaboration between museum conservators and analytical researchers. The dissemination of information on applications of advanced analytical techniques to art objects will stimulate the use of these techniques in developing Member States and help in conservation and recovery of national heritage. Historical artefacts and art objects are traded world wide and represent a potential source for forgery and false labelling. The market is huge and a large part of the trade is going from developing countries to the developed world where strict regulations can only be applied if convenient methods for checking the authenticity were available. Portable XRF (X-ray fluorescence) instruments for rapid screening analysis and PGNAA (Prompt Gamma Neutron Activation Analysis) portable systems based on neutron sources for field work, as well as laboratory based techniques such as PIXE (Proton Induced X-ray Emission) and INAA (Instrumental Neutron Activation Analysis) have been applied non-destructively to investigate the provenience of archaeological objects and to determine different layers of precious paintings. The results of the CRP will be provided to member states for preservation of national heritage and secure legal enforcement. In the frame of the co-ordinated research project it was foreseen to conduct a proficiency test on the determination of major, minor and trace elements in an

  15. A strategy study on the effective participation in the IAEA technical cooperation programmes

    International Nuclear Information System (INIS)

    Chung, Joon Keuk; Choi, P. H.; Kim, K. P.; Hong, Y. D.; Lee, J. K.; Kim, Y. M.; Chung, H. S.; Han, B. O.; Seo, M. W.; Chung, J. M.

    1997-12-01

    The objectives of this research are to seek the most effective means of participation in implementing IAEA technical cooperation programs, to seek and establish a desirable role for Korea in these program, to predict future opportunities among IAEA programs, to enhance the status of Korea within the international society and to keep up with rapidly changing international nuclear developments in effective and positive ways. Participation in IAEA programs are to coincide with our efforts to upgrade and achieve self-reliance in nuclear technology. Seven activities should be considered in Korea's future directions regarding the IAEA. These include strengthening our diplomatic activities, expanding coordinated research programs (CRP's), domestic personnel becoming IAEA staff members, encouraging domestic experts to participate as members of IAEA advisory groups, increasing participation in international meetings, implementing footnote a/ projects, strengthening cooperation with the IAEA-operational research laboratories and actively implementing technology transfer to developing countries and encouraging IAEA fellowships. (author). 57 refs., 74 tabs., 17 figs

  16. IAEA biological reference materials

    International Nuclear Information System (INIS)

    Parr, R.M.; Schelenz, R.; Ballestra, S.

    1988-01-01

    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  17. IAEA at a glance

    International Nuclear Information System (INIS)

    Kinley, D. III

    1997-12-01

    The publication briefly describes the 'peaceful universe' and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  18. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  19. IAEA at a glance

    Energy Technology Data Exchange (ETDEWEB)

    Kinley, D III

    1997-12-01

    The publication briefly describes the `peaceful universe` and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  20. Directory of IAEA databases

    International Nuclear Information System (INIS)

    1992-12-01

    This second edition of the Directory of IAEA Databases has been prepared within the Division of Scientific and Technical Information (NESI). Its main objective is to describe the computerized information sources available to staff members. This directory contains all databases produced at the IAEA, including databases stored on the mainframe, LAN's and PC's. All IAEA Division Directors have been requested to register the existence of their databases with NESI. For the second edition database owners were requested to review the existing entries for their databases and answer four additional questions. The four additional questions concerned the type of database (e.g. Bibliographic, Text, Statistical etc.), the category of database (e.g. Administrative, Nuclear Data etc.), the available documentation and the type of media used for distribution. In the individual entries on the following pages the answers to the first two questions (type and category) is always listed, but the answers to the second two questions (documentation and media) is only listed when information has been made available

  1. IAEA Newsbriefs. V. 10, no. 2(68). Jun-Jul 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This issue gives brief information on the following topics: IAEA General Conference opens in September in Vienna, IAEA Board of Governors' June meetings (Safeguards proposals, Technical cooperation, Radiation safety, Radioactive waste management, Liability for nuclear damage, IAEA regular budget for 1996), NPT Conference reaffirms support for IAEA roles, Director General addresses NPT Conference, Seminar on nuclear waste management in Russian Federation, Safety Reviews of Medzamor in Armenia, Update on Nuclear Safety Convention, Cuba and Brazil: Public information seminars, India: Donation to the IAEA Laboratories, Simulated emergency tests global procedures, INIS: Happy Anniversary, China hosts international isotope conference, Nuclear power: Status and outlook, and other short information

  2. IAEA nuclear security program

    Energy Technology Data Exchange (ETDEWEB)

    Ek, D. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  3. IAEA nuclear security program

    International Nuclear Information System (INIS)

    Ek, D.

    2006-01-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  4. IAEA interlaboratory exercise for water chemistry

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Jeon, Young Shin; Choi, Ke Chun; Kim, Yong Bok; Kim, Jong Gu; Kim, Won Ho

    2003-09-01

    KAERI Analytical laboratory participated in the IAEA Interlaboratory exercise for water chemistry of groundwater(RAS/8/084). 13 items such as pH, electroconductivity, HCO 3 , Cl, SO 4 , SiO 2 , B, Li, Na, K, Ca, Mg and NH 3 were analyzed. The result of this exercise showed that KAERI laboratory was ranked on the top level of the participants. Major analytical methods applied for this activity were ICP-AES, AAS, IC, pH meter, conductometer and acid titration

  5. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  6. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  7. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  8. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  9. IAEA and food irradiation

    International Nuclear Information System (INIS)

    Machi, Sueo

    1995-01-01

    IAEA was founded in 1957. 122 countries take part in it. It is operated with the yearly ordinary budget of about 20 billion yen and the technical cooperation budget of about 6 billion yen and by 2200 personnel. Its two important roles are the promotion of the peaceful utilization of atomic energy and the prevention of nuclear proliferation. The activities of IAEA are shown. The cooperation with developing countries and the international research cooperation program are the important activities. The securing of foods is an urgent subject, and the utilization of radiation and isotopes has been promoted, aiming at sustaining agriculture. The necessity of food irradiation is explained, and at present, commercial food irradiation is carried out in 28 countries including Japan. The irradiation less than 10 kGy does not cause poisonous effect in any food, according to JECFI. The new international agreement is expected to be useful for promoting the international trade of irradiated foods. The international cooperation for the spread of food irradiation and the public acceptance of food irradiation are reported. (K.I.)

  10. News from IAEA Headquarters

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  11. News from IAEA Headquarters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  12. Principles and results of environmental surveillance of the Austrian Research Centre at Seibersdorf within the last twenty years

    International Nuclear Information System (INIS)

    Steger, F.; Etzersdorfer, E.; Sorantin, H.

    1980-01-01

    The monitoring system of the Seibersdorf Research Centre is described in outline. Aspects mentioned include 1) permanent monitoring of the air within the centre (the ASTRA reactor is the main emitter of short-lived radionuclides such as 41 Ar, 3 H, fission gas, aerosols 88 Rb, 138 Cs, 131 I), 2) monitoring and disposal of rainwater, domestic waste such as sewerage etc., 3) radioactive, and potentially radioactive water such as drinking water, wells etc., 4) soil sampling, 5) measurements in the agricultural area immediately surrounding the centre, including the river Leitha. The overall system has proved adequate up until now. A filter pump unit to collect 5000 m 3 /h on a charcoal filter is under construction. (U.K.)

  13. Improvements to the IAEA`s electric generation expansion model

    Energy Technology Data Exchange (ETDEWEB)

    Stoytchev, D; Georgiev, S [Committee of Energy, Sofia (Bulgaria)

    1997-09-01

    This paper deals with the implementation of the IAEA`s planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author).

  14. Determinations of tritium levels in urine and blood samples, medical checkups of persons employed at RC Seibersdorf

    International Nuclear Information System (INIS)

    Irlweck, K.; Teherani, D.K.

    1975-07-01

    Tritium determinations in urine and blood samples were performed with a liquid scintillation counter (Tri Carb No. 3375, PACKARD). In urine samples tritiated water (HTO) was measured after separation of organic substances by adsorption with activated charcoal and following distillation to dryness. In some urine and blood samples total Tritium content was determinated by conbustion in a sample Oxidizer (Mod. 306, PACKARD). Detection limits for HTO and total Tritium measurements were 2,5 pCi/ml and 7 or 15 pCi/ml respectively, taking 2 sigma of statistical error of background values. Tritiumconcentrations in daily urine of occupational exposed persons, employed in RC Seibersdorf occurred up to 8 pCi HTO/ml. An arithmetic mean was 3,85+-2,11 pCi/ml from investigations on 16 persons. Tritiumcontent in urine samples of occupational non exposed persons were about the same level up to 10 pCi HTO/ml. An arithmetic mean was 3,70+-2,65 pCi/ml from measurements on 20 persons. Statistical error of single values was sigma=+-1,85 pCi/ml. There was found no significantly higher concentration in urine of occupational exposed persons compared with a group of non exposed ones. Total Tritium content in urine samples seemed to be somewhat higher than HTO concentrations, also for occupational non exposed persons. Tritium levels in blood were notably higher than have to be expected assuming homogeneous distribution of HTO in body fluids. For occupational exposed persons in RC Seibersdorf Tritium concentrations between 26-58 pCi/ml were found. An estimation about Tritium intake based on such results showed no more than 0,5% of maximum permissible intake for occupational exposed persons in the most unfavorable case. For occupational non exposed persons total Tritium levels in blood were only about 10,7+-5,8 pCi/ml (arithmetic mean of measurements on 15 persons). (author)

  15. From the 'Austrian Foundation for Atomic Energy Research' to the 'Seibersdorf Laboratories'

    International Nuclear Information System (INIS)

    Rößner, M.

    2013-01-01

    The aim of this thesis is the description of the process of institutionalization of nuclear research in Austria in the context of the „Atoms for Peace“ program in the 1950s. This aspect of the history of Austrian nuclear research has been relatively unexplored. The focus of this work is the presentation of measures that have been put in Austria to participate in the 'Atoms for Peace' program. Moreover, the expectations and goals of the Austrian nuclear program are analyzed. For this purpose, foundation, structure and research activities of the “Austrian Atomic Energy Commission”, the “Austrian Society for the Study of Atomic Energy” and the “Nuclear Reactor Centre Seibersdorf“ in the period from 1954 until about 1970 are examined. To establish a relationship with the international historical research of the history of nuclear research, the Austrian situation is compared to the Swiss and the German. It turns out that the Austrian expectations and objectives in nuclear research at the beginning of the period of observation roughly corresponded with the international trends. It also follows that by the establishment of the SGAE and the “Nuclear Reactor Centre Seibersdorf“ the development course of Austrian nuclear research occupied a special position compared to foreign institutions.(author) [de

  16. IAEA team to visit North Korean nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    A technical team from the IAEA will visit nuclear facilities in the Nyongbyon area of the Democratic People's Republic of Korea (DPRK) from 15-19 January. The visit will include the Isotope Production Laboratory, an installation that the DPRK has stated was involved in the early stages of development of their nuclear programme. Since 1993, the IAEA has been unable to fully implement its comprehensive safeguards agreement with the DPRK, and has been therefore unable to verify the completeness and correctness of the DPRK's initial 1992 declaration of its nuclear inventory. In May 2001, the IAEA proposed to the DPRK concrete steps that need to be carried out in that verification process, and indicated its readiness to start implementing these measures immediately. At a technical meeting between the DPRK and the IAEA in November 2001, the DPRK did not agree to promptly start to implement those proposals, citing the delay in implementation of the USA/DPRK Agreed Framework as the principal reason for declining. However, the DPRK did agree to a visit, not an inspection, by IAEA inspectors to the Isotope Production Laboratory. The DPRK withdrew its membership from the Agency in June 1994. The Director General encourages the DPRK to normalize its relations with the IAEA including resumption of full safeguards inspections

  17. IAEA technical co-operation activities in the 1990s

    International Nuclear Information System (INIS)

    1995-01-01

    The desire to extend the many benefits of the peaceful uses of nuclear technology to all countries led as long ago as 1957 to the establishment of the IAEA and to immediate introduction of a technical co-operation programme. In the more than thirty years that have passed since that time, the potential applications of nuclear techniques have greatly expanded. Over the period, many of the applications have moved from research laboratories into hospitals, farms and industrial enterprises. The direct resources made available to the IAEA by its Member States to support technology transfer processes have grown rapidly since the late 1950s. The current trends in the technical co-operation activities of the IAEA and some examples of projects supported by the IAEA are briefly presented in this document

  18. The IAEA moves forward

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-15

    At the opening of the Ninth Regular Session of the Agency's General Conference in Tokyo on 21 September, the Director General, Dr. Sigvard Eklund, made a brief survey of some of the current developments in the Agency's activities. The implementation of the Special Fund project for the eradication in Central America of the Mediterranean Fruit Fly by using the sterile male technique has commenced. This project is technically directed by the Joint IAEA/FAO Division of Atomic Energy in Agriculture. This division will also implement the latest project entrusted to the Agency by the Special Fund concerning the establishment in Turkey of a pilot plant for grain disinfestation by radiation. It is anticipated that this pilot plant will demonstrate successfully the feasibility and economic practicability of using radiation on a commercial scale to eliminate considerable losses of stored grain by damage inflicted by insect pests

  19. IAEA fellows report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-04-15

    More than 500 scientists and technicians had completed their studies abroad under IAEA's fellowship programme at the end of 1961. At the same time, some 300 fellows were studying at universities, research institutions and atomic energy establishments in Member States. It is the policy of the Agency to keep in touch with fellows also after their training has been completed and they have returned home to put into practice what they have learnt during their time of study. The short reports which most of the former fellowship holders send to the Agency's secretariat give a good indication of the usefulness of the training and the extent to which the newly acquired knowledge is being constructively absorbed in the fellow's native country

  20. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  1. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  2. Certified Reference Materials for Radioactivity Measurements in Environmental Samples of Soil and Water: IAEA-444 and IAEA-445

    International Nuclear Information System (INIS)

    2011-01-01

    Reference Materials are an important requirement for any sort of quantitative chemical and radiochemical analysis. Laboratories need them for calibration and quality control throughout their analytical work. The IAEA started to produce reference materials in the early 1960's to meet the needs of the analytical laboratories in its Member States that required reference materials for quality control of their measurements. The initial efforts were focused on the preparation of environmental reference materials containing anthropogenic radionuclides for use by those laboratories employing nuclear analytical techniques. These reference materials were characterized for their radionuclide content through interlaboratory comparison involving a core group of some 10 to 20 specialist laboratories. The success of these early exercises led the IAEA to extend its activities to encompass both terrestrial and marine reference materials containing primordial radionuclides and trace elements. Within the frame of IAEA activities in production and certification of reference materials, this report describes the certification of the IAEA-444 and IAEA-445: soil and water spiked with gamma emitting radionuclides respectively. Details are given on methodologies and data evaluation

  3. IAEA monitoring field trials workshop

    International Nuclear Information System (INIS)

    Ross, H.H.; Cooley, J.N.; Belew, W.L.

    1995-01-01

    Recent safeguards inspections in Iraq and elsewhere by the International Atomic Energy Agency (IAEA) have led to the supposition that environmental monitoring can aid in verifying declared and in detecting undeclared nuclear activities or operations. This assumption was most recently examined by the IAEA's Standing Advisory Group on Safeguards Implementation (SAGSI), in their reports to the IAEA Board of Governors. In their reports, SAGSI suggested that further assessment and development of environmental monitoring would be needed to fully evaluate its potential application to enhanced IAEA safeguards. Such an inquiry became part of the IAEA ''Programme 93+2'' assessment of measures to enhance IAEA safeguards. In March, 1994, the International Safeguards Group at Oak Ridge hosted an environmental monitoring field trial workshop for IAEA inspectors to train them in the techniques needed for effective environmental sampling. The workshop included both classroom lectures and actual field sampling exercises. The workshop was designed to emphasize the analytical infrastructure needed for an environmental program, practical sampling methods, and suggested procedures for properly planning a sampling campaign. Detailed techniques for swipe, vegetation, soil, biota, and water associated sampling were covered. The overall approach to the workshop, and observed results, are described

  4. IAEA activities related to ITER

    International Nuclear Information System (INIS)

    Dolan, T.J.; Schneider, U.

    2001-01-01

    As agreed between the IAEA and the ITER Parties, special sessions are dedicated to ITER at the IAEA Fusion Energy Conferences. At the 18th IAEA Fusion Energy Conference, held on 4-10 October 2000 in Sorrento, Italy, in the Artsimovich-Kadomtsev Memorial opening session there were special lectures by Carlo Rubbia (President, ENEA, Italy), A. Arima (Japan), and E.P. Velikhov (Russia); an overview talk on ITER by R. Aymar (ITER Director); and a talk on the FTU experiment by F. Romanelli. In total, 573 participants from 34 countries presented 389 papers (including 11 post-deadline papers and the 4 summaries)

  5. The IAEA intercomparison for individual monitoring

    International Nuclear Information System (INIS)

    Griffith, R.V.; Boehm, J.; Herrman, D.; Strachotinsky, C.; Thompson, I.M.G.

    1990-01-01

    In 1985 the International Commission on Radiation Units and Measurements introduced a new set of operational quantities for radiation protection purposes through Report 39. The International Atomic Energy Agency has been concerned with the impact of possible adoption of these quantities by its 113 Member States. Thus the Agency implemented a Coordinated Research Programme on Intercomparison for Individual Monitoring in 1987. The first phase completed with a Research Coordination meeting of the participants in April, 1989. Photon exposures were provided at 11 energies over a range from 18 keV to 1.25 MeV at three standards laboratories in Austria, the GDR and the UK. Technical coordination was provided by the PTB, Braunschweig. Twenty one laboratories from 19 countries participated with film, TLD of various types, and combination dosemeters. Irradiations were performed on the IAEA 30 cm cubic, water-filled phantom that is in use throughout its network of 61 Secondary Standard Dosimetry Laboratories. Conversion coefficients for the IAEA phantom were calculated by the PTB and confirmed through measurements at ASMW in the GDR. Preliminary results indicated that the type of dosemeter (film or TLD) had little effect on the quality of results. The most important factor appears to be the specific techniques used for data interpretation. (author)

  6. Reference dosimeter system of the IAEA

    International Nuclear Information System (INIS)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-01-01

    Quality assurance programmes must be in operation at radiation facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit. (Author)

  7. Reference dosimeter system of the iaea

    Science.gov (United States)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-09-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.

  8. Reference dosimeter system of the IAEA

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1995-01-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit. (author)

  9. Summary of the contributions to reactor safety research commissioned by the Republic of Austria and done by the Forschungszentrum Seibersdorf from 1987 to 1990

    International Nuclear Information System (INIS)

    Sonneck, G.; Sdouz, G.

    1991-09-01

    In 1987 the Forschungszentrum Seibersdorf was commissioned by the Republic of Austria with the collaboration in the Nuclear Safety Research Index, the OECD-LOFT-Programme and the International Coordinated Assessment and Application Programme (ICAAP). This report summarises the work done from 1987 to 1990, mainly in the field of thermal hydraulics, fuel rod behaviour and source term. Besides some analyses for experiments done in loops based on BWRs and PWRs of western design the work concentrated on safety researchs for WWERS. (Authors)

  10. IAEA inspection team conducting investigation in South Korea

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: On 23 August 2004, during discussions about the initial declarations of the Republic of Korea (ROK) under the Additional Protocol to its Safeguards Agreement, the ROK informed the IAEA that it had enriched nuclear material in the course of atomic vapour laser isotope separation (AVLIS) experiments that had not been declared to the IAEA. The ROK informed the IAEA that these experiments had been on a laboratory scale and involved the production of only milligram quantities of enriched uranium. According to the ROK, these activities were carried out without the Government's knowledge at a nuclear site in Korea in 2000, and that the activities had been terminated. Following receipt of this information, the IAEA dispatched a team of inspectors, headed by the Director of the Safeguards Operations Division responsible for the ROK, to investigate further all relevant aspects of this matter. The inspectors will report to the Director General upon their return to Vienna early next week. The Director General will be informing the Board of Governors of the IAEA's initial findings at the next meeting of the Board of Governors beginning on 13 September 2004. (IAEA)

  11. New appointment at the IAEA

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives short information on the biography of Professor Dr. Werner Burkart from Germany who was appointed (as of July 2000) as Deputy Director General, Head of the Department of Nuclear Sciences and Applications, IAEA

  12. Report on the intercomparison run IAEA-373: Determination of radionuclides in grass sample IAEA-373

    Energy Technology Data Exchange (ETDEWEB)

    Strachnov, V; Larosa, J; Dekner, R; Fajgelj, A; Zeisler, R

    1996-02-01

    Activities in environmental monitoring of radioactive substances require natural matrix reference materials for laboratory quality assessment and support of international compatibility. A grass sample collected in the Ukraine by the International Atomic Energy Agency's (IAEA's) programme on Analytical Quality Assurance Services (AQCS) has been prepared and distributed for a world-wide intercomparison on the determination of natural and man-made radionuclides and selected trace elements. The data from 110 laboratories representing 42 countries have been evaluated and allowed the establishment of recommended activity values for K-40, Sr-90, Cs-134 and Cs-137. Information values are given for the concentrations of Mn, Rb, Th and Zn. (author)

  13. k{sub 0}-INAA application at IPEN Neutron Activation Laboratory by using the k{sub 0}-IAEA program: biological sample analysis; Aplicacao do metodo k{sub 0}-INAA no Laboratorio de Analise por Ativacao com Neutrons do IPEN utilizando o programa k{sub 0}-IAEA: analise de amostras biologicas

    Energy Technology Data Exchange (ETDEWEB)

    Puerta, Daniel Correa

    2013-07-01

    The results obtained in the application of the k{sub 0}-standardization method at LAN-IPEN for biological matrices analysis, by using the k{sub 0}-IAEA software, provided by the International Atomic Energy Agency (IAEA), are presented. The flux parameters f and a of the IEA-R1 reactor were determined for the pneumatic irradiation facility and for one selected irradiation position, 24B/shelf2, for short and long irradiations, respectively. In order to obtain these parameters, the bare triple-monitor method with {sup 197}Au-{sup 96}Zr-{sup 94}Zr was used. In order to evaluate the accuracy and precision of the methodology, the biological reference materials Peach Leaves (NIST SRM 1547), Mixed Polish Herbs (INCT-MPH-2) e Tomato Leaves (NIST SRM 1573a) were analyzed. The statistical criteria Relative Errors (bias, %), Coefficient of Variation (CV) and U-score were applied to the obtained results (mean of six replicates). The relative errors (bias, %) in relation to certified values, were, for most elements, in the range of 0 e 30. The Coefficients of Variation were below 20%, showing a good reproducibility of the results. The U-score test showed that all results, except Na in Peach Leaves and in Tomato Leaves, were within 95% confidence interval. These results point out to a promising use of the k{sub 0}-INAA method at LAN-IPEN for biological sample analysis. (author)

  14. Participation in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Park, Kyung Kyun; Choi, Ke Chun; Kim, Won Ho

    2000-08-01

    KAERI analytical laboratory participated in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater organized by IAEA Hydrology Laboratory(RAS/8/084). 13 items such as pH, electroconductivity, HCO{sub 3}, Cl, SO{sub 4}, NO{sub 3}, SiO{sub 2}, B, Li, Na, K, Ca, Mg were analyzed. The result of this program showed that KAERI laboratory was ranked within 10% range from top level. An analytical expert in KAERI attended the 'Consultants' Meeting' at IAEA headquater and prepared the guideline for chemical analysis of groundwater.

  15. Participation in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Park, Kyung Kyun; Choi, Ke Chun; Kim, Won Ho

    2000-08-01

    KAERI analytical laboratory participated in the 1999 IAEA interlaboratory comparison on chemical analysis of groundwater organized by IAEA Hydrology Laboratory(RAS/8/084). 13 items such as pH, electroconductivity, HCO 3 , Cl, SO 4 , NO 3 , SiO 2 , B, Li, Na, K, Ca, Mg were analyzed. The result of this program showed that KAERI laboratory was ranked within 10% range from top level. An analytical expert in KAERI attended the 'Consultants' Meeting' at IAEA headquater and prepared the guideline for chemical analysis of groundwater

  16. Determination of total and methylmercury compounds in the IAEA human hair intercomparison samples - Experience of the IAEA-MEL

    International Nuclear Information System (INIS)

    Horvat, M.; Liang, L.; Mandic, V.

    1995-01-01

    The programme of this CRP is focused on the analyses of human hair samples. There are only two human hair samples certified for total mercury, and no RMs for methylmercury compounds is available. One of the main objectives of this CRP is to produce, through the IAEA AQCS Programme, a human hair intercomparison material for quality assurance requirements in population monitoring programmes for total and methylmercury exposure. Through the reporting period, MESL has introduced a new method for simultaneous determination of total and methylmercury in biological samples. As the laboratory has close collaboration with the CRP's Reference Laboratory in Ljubljana, Slovenia, it has also been actively involved in the quality assurance component of this CRP. This report represents a summary on the results for total and methylmercury in two intercomparison samples, IAEA-085 and IAEA-086 using newly developed method

  17. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  18. Mass media and nuclear energy - IAEA's role

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-11-01

    The presentation covers the following areas: the wide spectrum of media outlets that the IAEA seeks to serve and their differing needs; the resources available to the IAEA for that purpose; the way in which IAEA endeavours to disseminate authoritative, reliable nuclear-related information to media; the exceptional role the IAEA may be called on to play in emergency situations

  19. International Scavenging for First Responder Guidance and Tools: IAEA Products

    Energy Technology Data Exchange (ETDEWEB)

    Stern, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berthelot, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-05

    In fiscal years (FY) 2016 and 2017, with support from the U.S. Department of Homeland Security (DHS), Brookhaven National Laboratory (BNL) examined the International Atomic Energy Agency (IAEA) radiological emergency response and preparedness products (guidance and tools) to determine which of these products could be useful to U.S. first responders. The IAEA Incident and Emergency Centre (IEC), which is responsible for emergency preparedness and response, offers a range of tools and guidance documents for responders in recognizing, responding to, and recovering from radiation emergencies and incidents. In order to implement this project, BNL obtained all potentially relevant tools and products produced by the IAEA IEC and analyzed these materials to determine their relevance to first responders in the U.S. Subsequently, BNL organized and hosted a workshop at DHS National Urban Security Technology Laboratory (NUSTL) for U.S. first responders to examine and evaluate IAEA products to consider their applicability to the United States. This report documents and describes the First Responder Product Evaluation Workshop, and provides recommendations on potential steps the U.S. federal government could take to make IAEA guidance and tools useful to U.S. responders.

  20. Radioecological investigations in the environment of the Research Centre Seibersdorf and of a comparable control biotop in Klosterneuburg

    International Nuclear Information System (INIS)

    Tatzber, F.; Irlweck, K.; Sorantin, H.; Schaller, F.

    1981-09-01

    Investigations concerning the distribution of radionuclides were carried out on the area and the closer surroundings of the Seibersdorf Research Center and a comparable control biotop in Klosterneuburg. No environmental encroachment on the biosphere could be shown even after 20 years of operation of the research plant (10MW). Gammaspectrometric measurements and radiochemical analysis of various animal samples proved that contaminations found were in most cases due to fallout from atmospheric nuclear weapon testing in the early sixties. Only single surveys give hints of small quantities of 60-Co being spread. Maximum concentrations of 60-Co 0.5 pCi/g dry weight were found in those samples, which is about the value of fallout concentration of radiocaesium and may be neglected from the point of view of health physics. Additionally soil radioactivity investigations were done to estimate the part of total radioactivity which is spread by animals. Results showed that only 10sup-4 of the total quantity of fallout deposited radionuclides present in a soil layer of some square meters and a depth of 10 cm are spread by the investigated animals. (author) [de

  1. IAEA-MEL's AQCS programme for marine radioactivity measurements

    International Nuclear Information System (INIS)

    Povinec, P.P.; Gastaud, J.; Pham, M.K.

    1999-01-01

    The main objectives of the IAEA-MEL's Analytical Quality Control Services (AQCS) for marine radioactivity measurements are discussed and future plans for the organization of intercomparison exercises and the production of certified reference materials are presented. The new developments should also include implementation of quality assurance programmes in Member States' laboratories, training in quality management and accreditation programmes. (author)

  2. Progress report of Sandia National Laboratories (SNL) contribu- tion to IAEA CRP F11016 on ?Utilization of ion accelerators for studying and modeling of radiation induced defects in semicon- ductors and insulators? 3rd RCM.

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, Gyorgy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    This report presents the results of Sandia National Laboratories’ (SNL) contribution to IAEA CRP F11016 as mostly raw data. The goal of this CRP is to study the effects of radiation on semiconductors and insulators with the emphasis on the effect of displacement damage due to MeV energy ions on the performance of semiconductor detectors and microelectronic devices. SNL is tasked with performing electrical characterization, irradiation, and IBIC, DLTS, C-­V measurements on devices used in the CRP, as well as calculating damage and ionization profiles for modeling.

  3. IAEA nuclear databases for applications

    International Nuclear Information System (INIS)

    Schwerer, Otto

    2003-01-01

    The Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) provides nuclear data services to scientists on a worldwide scale with particular emphasis on developing countries. More than 100 data libraries are made available cost-free by Internet, CD-ROM and other media. These databases are used for practically all areas of nuclear applications as well as basic research. An overview is given of the most important nuclear reaction and nuclear structure databases, such as EXFOR, CINDA, ENDF, NSR, ENSDF, NUDAT, and of selected special purpose libraries such as FENDL, RIPL, RNAL, the IAEA Photonuclear Data Library, and the IAEA charged-particle cross section database for medical radioisotope production. The NDS also coordinates two international nuclear data centre networks and is involved in data development activities (to create new or improve existing data libraries when the available data are inadequate) and in technology transfer to developing countries, e.g. through the installation and support of the mirror web site of the IAEA Nuclear Data Services at IPEN (operational since March 2000) and by organizing nuclear-data related workshops. By encouraging their participation in IAEA Co-ordinated Research Projects and also by compiling their experimental results in databases such as EXFOR, the NDS helps to make developing countries' contributions to nuclear science visible and conveniently available. The web address of the IAEA Nuclear Data Services is http://www.nds.iaea.org and the NDS mirror service at IPEN (Brasil) can be accessed at http://www.nds.ipen.br/ (author)

  4. Worldwide Interlaboratory Comparison on the Determination of Trace Elements in the IAEA-457 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of primary concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. Through the IAEA Environment Laboratories, the IAEA has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance and quality control are two fundamental requirements to ensure the reliability of analytical results. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. In this regard, the IAEA has a long history of organizing interlaboratory studies, which have evolved to include an increasing array of potential contaminants in the marine environment. Relevant activities comprise global interlaboratory comparison, regional proficiency tests, the production of marine reference materials and the development of reference methods for trace elements and organic pollutants analysis in marine samples. This publication summarizes the results of the IAEA-457 interlaboratory comparison on the determination of trace elements in a marine sediment sample

  5. Activities of the IAEA on the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Shalnov, A V [International Atomic Energy Agency, Vienna (Austria). Div. of Research and Lab.

    1976-06-01

    The program of the IAEA related to the use of radioisotopes and radiation is concentrated in the Department of Research and Isotopes, which includes the Joint FAO/IAEA of Atomic Energy in Food and Agriculture, the Life Sciences Division, and the Division of Research and Laboratories. The following matters are described: hydrology of water systems using stable isotopes, research on CPXE (charged-particle X-ray emission), Regional Cooperative Agreements, Nuclear Methods in Environmental Research, and guidance to developing countries in the medical applications of radioisotopes.

  6. Alanine-ESR dosimetry for radiotherapy IAEA experience

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.; )

    1997-01-01

    At present, the most commonly used transfer dosimeters for radiotherapy applications are TL dosemeters. They are being used for intercomparison between SSDLs (about 70) and the IAEA dosimetry laboratory. However, there are some undesirable characteristics of this dosimetry system. We have a study in progress at the IAEA to evaluate the alanine-ESR systems as an alternative to TLDs. There are several desirable qualities which make alanine an attractive dosemeter. Preliminary data suggest that the alanine-ESR dosimetry system has the potential to replace TLDs for intercomparison amongst SSDLs in the therapy-level dose regions. (Author)

  7. Neutron activation analysis of trace elements in IAEA reference materials

    International Nuclear Information System (INIS)

    Cheema, M.N.; Hasany, S.M.; Hanif, I.; Chaudhry, M.S.; Qureshi, I.H.

    1978-09-01

    Analytical Chemistry Group of Nuclear Chemistry Division at PINSTECH has been participating in IAEA Intercomparison programme of analytical quality control since 1972. So far fifteen samples of a variety of materials received from the Agency have been analyzed for different minor and trace elements. Mostly destructive and non-destructive neutron activation analysis techniques have been used for elemental analysis. In this report the description of the samples and the experimental procedures employed have been mentioned. The results of elemental analysis have been reported and compared with IAEA values which are based on the average computed from the results of different participating laboratories. (authors)

  8. IAEA's role in nuclear desalination

    International Nuclear Information System (INIS)

    Khamis, I.; )

    2010-01-01

    Currently, several Member States have shown interest in the utilization of the nuclear energy for seawater desalination not only because recent studies have demonstrated that nuclear desalination is feasible, but also economical and has been already demonstrated in several countries. Therefore, the article will provide a highlight on sea water desalination using nuclear energy as a potential for a sustainable development around the world and the IAEA role in this regards. Special emphasis is placed on past, present, and future nuclear desalination experience in various IAEA Member States. The International Atomic Energy Agency (IAEA) role could be summarized in facilitating cutting-edge developments in the area of seawater desalination using nuclear energy, and establishing a framework for facilitating activities in Member States through information exchange and provision of technical assistance. (author)

  9. Certification of Trace Elements and Methylmercury Mass Fractions in Tuna Fish Flesh Homogenate IAEA-436A

    International Nuclear Information System (INIS)

    2017-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioactive isotope analytical techniques to understand, monitor and protect the marine environment. The major impact of large coastal cities on marine ecosystems is a primary concern for the IAEA. The Marine Environment Studies Laboratory, as a part of IAEA Environment Laboratories in Monaco, acts as the analytical support centre for Member State laboratories and is the pillar of the quality assurance programme for the determination of non-nuclear pollutants, trace elements and organic contaminants in the marine environment. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. Good laboratory practice and quality assurance and control are essential components of the analytical process for the production of data. Quality control procedures are commonly based on analyses of certified reference materials to assess reproducibility and measurement biases and uncertainties. Certified reference materials are key tools for quality assurance. They are used to validate analytical methods and to establish traceability to internationally agreed references. They are cornerstones for laboratory accreditation and the correct implementation of national and international regulations. In the development and validation of new methods, certified reference materials play a vital role in state of the art technologies where measurements are critical. The IAEA supports the development and production of environmental certified reference materials for monitoring laboratories in Member States. The reference material IAEA-436, characterized for trace elements and methylmercury mass fractions in tuna fish flesh homogenate, was produced by the IAEA in Monaco in 2006. This publication describes the production of certified reference material IAEA-436A, which is based on the

  10. RCA/IAEA third external dosimetry intercomparison in East Asia

    International Nuclear Information System (INIS)

    Momose, T.; Yamamoto, H.; Cruz Suarez, R.

    2005-01-01

    Full text: Several intercomparison exercises were organized by the International Atomic Energy Agency (IAEA) on the determination of operational quantities at the regional or interregional basis. These exercises revealed significant differences in the approach, methods and assumptions, and consequently in the measurement results obtained by participating laboratories. In the East Asia region, the third phase of the Hp(10) intercomparison, organized within the frame of the Regional Cooperation Agreement (RCA) as a follow-up to previous exercises during 1990-92 and 1995-96, was completed mid-2004. The first phase grouped 25 laboratories from 16 member states, and 4 Secondary Standards Dosimetry Laboratories irradiated dosimeters in 6 different qualities for photon and beta radiations. In the second phase, 23 laboratories from 16 member states participated, and 3 Secondary Standards Dosimetry Laboratories provided irradiation in 5 different radiation qualities simulating workplace fields. The results of the second phase for the determination of operational quantities Hp(d) were satisfactory for all participating Member States, with marked improvement from the first phase; the laboratories demonstrated good performance in both quantities tested. These results underline the importance of such an intercomparison programme as a key element towards the harmonization of quantities and units on an international level. This paper presents the results of this RCA/IAEA intercomparison, and also the forthcoming RCA activities supporting intercomparison runs for the assessment of occupational exposure. Member states strongly recommend that the IAEA continue acting as a focal point for, inter alia, training in all forms, particularly in measurements and dosimetry techniques. This exercise also stressed the importance for the IAEA to take an active role in establishing a network of monitoring laboratories for radiation protection purposes, as it would provide for better information

  11. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  12. IAEA To Launch Centre On Ocean Acidification

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The International Atomic Energy Agency (IAEA) is to launch a new centre this summer to address the growing problem of ocean acidification. Operated by the Agency's Monaco Environmental Laboratories, the Ocean Acidification International Coordination Centre will serve the scientific community - as well as policymakers, universities, media and the general public - by facilitating, promoting and communicating global actions on ocean acidification. Growing amounts of carbon dioxide in the Earth's atmosphere are being absorbed in the planet's oceans which increases their acidity. According to the experts, ocean acidification may render most regions of the ocean inhospitable to coral reefs by 2050 if atmospheric carbon dioxide levels continue to increase. This could lead to substantial changes in commercial fish stocks, threatening food security for millions of people as well as the multi-billion dollar fishing industry. International scientists have been studying the effect and possible responses, and the new centre will help coordinate their efforts. ''During the past five years, numerous multinational and national research projects on ocean acidification have emerged and significant research advances have been made,'' said Daud bin Mohamad, IAEA Deputy Director General for Nuclear Sciences and Applications. ''The time is now ripe to provide international coordination to gain the greatest value from national efforts and research investments.'' The centre will be supported by several IAEA Member States and through the Peaceful Uses Initiative, and it will be overseen by an Advisory Board consisting of leading institutions, including the U.N. Intergovernmental Oceanographic Commission, the U.S. National Oceanic and Atmospheric Administration, the U.N. Food and Agriculture Organization, the Fondation Prince Albert II de Monaco, the OA-Reference User Group, as well as leading scientists and economists in the field. The new centre will focus on international

  13. IAEA paper on institutional arrangements

    International Nuclear Information System (INIS)

    1979-01-01

    At its fifth series of meetings, Working Group 3 received a background paper prepared by the IAEA which had a threefold purpose: firstly, to provide an overview on institutional arrangements under consideration by the INFCE Working Groups; secondly, to explore potential relationships between the various institutional arrangements under consideration; and thirdly, to identify areas where further analysis might be desirable

  14. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  15. Training of an IAEA fellow

    International Nuclear Information System (INIS)

    Mackerle, V.

    1960-01-01

    A scientific worker at the Czechoslovak Academy of Sciences, was awarded an IAEA fellowship for training at the Saclay Centre for Nuclear Studies, France. At the end of his training he wrote this article describing some aspects of his experience that are likely to be of wider interest

  16. Training of an IAEA fellow

    Energy Technology Data Exchange (ETDEWEB)

    Mackerle, V [Saclay Centre for Nuclear Studies (France)

    1960-07-15

    A scientific worker at the Czechoslovak Academy of Sciences, was awarded an IAEA fellowship for training at the Saclay Centre for Nuclear Studies, France. At the end of his training he wrote this article describing some aspects of his experience that are likely to be of wider interest

  17. IAEA safeguards: some pros and cons

    International Nuclear Information System (INIS)

    Kelly, P.

    1986-01-01

    The author gives a personal view of the International Atomic Energy Agency's (IAEA) safeguards. The IAEA safeguards system is described (including containment, surveillance and inspection), and the limitations and strengths of the system are examined. (U.K.)

  18. Role of the IAEA in the radiological protection of patients

    International Nuclear Information System (INIS)

    Ortiz Lopez, P.; Wrixon, A.D.; Meghzifene, A.; Izewska, J.

    2001-01-01

    The paper discusses the role of the IAEA in relation to the radiological protection of patients. Within the IAEA there are two major programmes which have an impact on the protection of the patient. Firstly, patient protection is part of the programme on radiation safety; secondly, the human health programme contains a number of activities related to quality assurance (QA), and these also contribute to the protection of patients. A function of the IAEA, as stipulated in its Statute, is 'to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property' and to provide for the application of these standards...'. There are three different levels of the IAEA Safety Standards: Safety Fundamentals, Safety Requirements and Safety Guides. The Standards are supported by other documents such as Safety Reports. There are five means used by the IAEA in providing for the application of the Standards: co-ordinating research, promoting education and training, providing assistance, fostering information exchange and rendering services to its Member States. All these means are used in the programme on radiological protection of patients as described in the paper. The IAEA is assisting its Member Sates in the development and implementation of QA programmes. These activities help disseminate not only the technical knowledge but also the basic ingredients of the QA culture. The IAEA assistance is directed at: (1) national regulatory bodies for the establishment of a regulatory framework which complies with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; (2) standards laboratories for metrological traceability; and (3) end users at medical institutions for the development and implementation of QA programmes

  19. IAEA safeguards technical manual

    International Nuclear Information System (INIS)

    1982-03-01

    Part F of the Safeguards Technical Manual is being issued in three volumes. Volume 1 was published in 1977 and revised slightly in 1979. Volume 1 discusses basic probability concepts, statistical inference, models and measurement errors, estimation of measurement variances, and calibration. These topics of general interest in a number of application areas, are presented with examples drawn from nuclear materials safeguards. The final two chapters in Volume 1 deal with problem areas unique to safeguards: calculating the variance of MUF and of D respectively. Volume 2 continues where Volume 1 left off with a presentation of topics of specific interest to Agency safeguards. These topics include inspection planning from a design and effectiveness evaluation viewpoint, on-facility site inspection activities, variables data analysis as applied to inspection data, preparation of inspection reports with respect to statistical aspects of the inspection, and the distribution of inspection samples to more than one analytical laboratory. Volume 3 covers generally the same material as Volumes 1 and 2 but with much greater unity and cohesiveness. Further, the cook-book style of the previous two volumes has been replaced by one that makes use of equations and formulas as opposed to computational steps, and that also provides the bases for the statistical procedures discussed. Hopefully, this will help minimize the frequency of misapplications of the techniques

  20. Analytical quality control [An IAEA service

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    In analytical chemistry the determination of small or trace amounts of elements or compounds in different types of materials is increasingly important. The results of these findings have a great influence on different fields of science, and on human life. Their reliability, precision and accuracy must, therefore, be checked by analytical quality control measures. The International Atomic Energy Agency (IAEA) set up an Analytical Quality Control Service (AQCS) in 1962 to assist laboratories in Member States in the assessment of their reliability in radionuclide analysis, and in other branches of applied analysis in which radionuclides may be used as analytical implements. For practical reasons, most analytical laboratories are not in a position to check accuracy internally, as frequently resources are available for only one method; standardized sample material, particularly in the case of trace analysis, is not available and can be prepared by the institutes themselves only in exceptional cases; intercomparisons are organized rather seldom and many important types of analysis are so far not covered. AQCS assistance is provided by the shipment to laboratories of standard reference materials containing known quantities of different trace elements or radionuclides, as well as by the organization of analytical intercomparisons in which the participating laboratories are provided with aliquots of homogenized material of unknown composition for analysis. In the latter case the laboratories report their data to the Agency's laboratory, which calculates averages and distributions of results and advises each laboratory of its performance relative to all the others. Throughout the years several dozens of intercomparisons have been organized and many thousands of samples provided. The service offered, as a consequence, has grown enormously. The programme for 1973 and 1974, which is currently being distributed to Member States, will contain 31 different types of materials.

  1. Certified Reference Material IAEA-448: Soil from Oil Field Contaminated with Technically Enhanced Radium-226

    International Nuclear Information System (INIS)

    2013-01-01

    To ensure reliable evaluation of potential radiological hazards and proper decision making related to radiation protection measures, the IAEA, through the IAEA Environment Laboratories, supports Member State laboratories in their efforts to maintain readiness and to improve the quality of analytical results. It does so by producing reference materials, by developing standardized methods for sample collection and analysis, and by conducting interlaboratory comparisons and proficiency tests as tools for external quality control of analytical results. The problem of naturally occurring radioactive material (NORM) contamination is known to be widespread, occurring in oil and gas production facilities throughout the world. It has become a subject of attention in many IAEA Member States. In response to this radiological concern, facilities in many Member States have been characterizing the nature and extent of NORM in oil and gas installations and in the surrounding environment, evaluating the potential for exposure to workers and the public, and developing methods for properly managing these relatively high massic activity residues. Within this context, the IAEA Environment Laboratories, in cooperation with the Atomic Energy Commission of Syria, an IAEA Collaborating Centre, have prepared a new certified reference material of soil contaminated with NORM, identified as IAEA-448, certified for the massic activity of 226Ra. This report presents the methodologies used for the production and certification of IAEA-448

  2. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: IAEA Director General Yukiya Amano will travel to Tehran on 10 November 2013 to meet senior Iranian leaders on Monday, 11 November 2013, with the aim of strengthening dialogue and cooperation. Separately, as previously announced, IAEA and Iranian experts will meet in Tehran on Monday to discuss technical issues. IAEA)

  3. Improving technical support to IAEA safeguards

    International Nuclear Information System (INIS)

    Rundquist, D.

    1986-01-01

    Changes present new safeguards challenges and require that the entire safeguards process become more efficient. A development process has evolved at the Agency that aids in matching appropriate technology to the needs, primarily through the mechanism of voluntary Member States Support Programme, which gives IAEA access to many of the worlds finest nuclear laboratories. The function of these programs is discussed in this article with particular emphasis on the Agency's co-ordination role. Besides a description of the Member States Support Programme the problems involved (coordination and communication aspects) as well as the results achieved are indicated. The support is categorized under the following headlines: 1) Information and expertise; 2) Instrumentation, methods and techniques; 3) Training; 4) Test and calibration facilities. As mentioned in the article Member States also benefit from the Support Programme. Other means of technical support such as multi-national co-operation programmes and bilateral research agreements are mentioned

  4. Instrumental neutron activation analysis of proposed marine sediment reference material (IAEA-158)

    International Nuclear Information System (INIS)

    Siddique, N.; Waheed, S.

    2009-01-01

    IAEA-158, sediment prepared by the International Atomic Energy Agency -Marine Environmental Laboratory (IAEA-MEL), Monaco was received under the IAEA Analytical Quality Control Services (AQCS) Intercomparison Programme. Instrumental Neutron Activation Analysis (INAA) was used to determine AI, As, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, V, Vb and Zn in this proposed reference material (RM). Four different irradiation protocols were adopted using a miniature neutron source reactor (MNSR) by varying the irradiation, cooling and counting times. IAEA-405 (Estuarine Sediment) and IAEA-SLI (Lake Sediment) were used as compatible matrix reference materials for quality assurance (QA) purposes. Good agreement between our data and lAEA certified values was obtained providing confidence in the reported data. (author)

  5. Quality assurance and quality control at the joint IAEA NMCC On-Site Laboratory at RRP as a contribution to the inspectorate's review of near real time accountancy of nuclear material

    International Nuclear Information System (INIS)

    Ludwig, R.; Duhamel, G.; Raptis, K.; Mayorov, V.; Sato, Y.; Hara, S.; Itoh, Y.; Hayakawa, T.

    2011-01-01

    This paper provides updates on the elements of the quality management system (QMS) of the On-Site Laboratory for nuclear safeguards at the Rokkasho Reprocessing Plant. Representative examples of the OSL's quality control levels are discussed, such as analytical method performance review, method inter-comparison and participation in Laboratory inter-comparison exercises. It also highlights quality assurance measures to continuously improve the data quality within the boundary conditions of a high throughput industrial laboratory operating according to the guidelines of ISO 17025 and to meet the requirements of the ITV's on method uncertainties. (author)

  6. Nuclear information: An overview of IAEA's activities

    International Nuclear Information System (INIS)

    Marchesi, I.H.; Konstantinov, L.V.

    1986-01-01

    As stated in this overview of IAEA nuclear information activities the Agency's role in information services is rapidly evolving and multifaceted. The Agency maintains more than 200 computerized files of information. Some 60 of these are part of systems directly related to nuclear activities. Some of these are briefly profiled in this overview such as INIS, the IAEA Nuclear Data Programme, the IAEA Incident Reporting System, the IAEA Energy and Economic Databank, the IAEA Power Reactor Information System, the Nuclear Fuel Cycle Information System, and the International Uranium Geology Information System. Future directions are pointed out. Different ways to upgrade information systems are listed

  7. Now and future of IAEA

    International Nuclear Information System (INIS)

    Taniguchi, Tomihiro; Omoto, Akira; Ichimura, Tomoya

    2005-01-01

    IAEA was established in 1957. Main activities consist of safeguards, cooperation of technologies and safety security. It has six sections such as the cooperation of technologies, nuclear energy, safety standards and security, nuclear science and its application, selfguards and management. Eleven Japanese are working in it and they .reported the present activities, problems and the future. Their subjects contain the problems of IAEA and expectation to Japanese, the utilization of nuclear energy, increasing nuclear safety and security in the world, application of radiation and isotope technologies, change and prospect of cooperation of technologies, and non-proliferation and safeguards. It was concluded as a first country holding many nuclear facilities that Japan had not nuclear materials and development activity in hiding and did not transform nuclear fuels reported to weapons. Accordingly, Japan is expected to make effort leading nuclear use for peace and non-proliferation in the world. (S.Y.)

  8. IAEA Statement After Iran Meeting

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: Senior International Atomic Energy Agency officials met an Iranian delegation in Vienna today to seek agreement on a structured approach document to resolve outstanding issues relating to Iran's nuclear programme. The following is a statement by IAEA Deputy Director General Herman Nackaerts after the meeting: ''As announced by the Director General earlier this week, we met today to discuss the structured approach paper. The Agency team came to the meeting in a constructive spirit with the desire and intention of finalising the paper. We presented a revised draft which addressed Iran's earlier stated concerns. However, there has been no progress and, indeed, Iran raised issues that we have already discussed and added new ones. This is disappointing. A date for a follow-on meeting has yet to be fixed.'' (IAEA)

  9. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  10. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  11. Nuclear data: IAEA activity overview

    International Nuclear Information System (INIS)

    Marchezi, A.Kh.; Konstantinov, L.V.

    1986-01-01

    The IAEA data banks, aimed at expanding information exchange and maintaining science and technology development in the whole world are briefly described. The following items are are considered: INIS; power reactor information system (PRIS); NPP incident information system (IRS); research reactor data base (RRDB); nuclear fuel cycle information system (NFCIS); nuclear data system (NDS); International uranium geology information system (INTURGEO); power engineering and economy data bank (PEEDB); radioactive material shipment data base; isotopic hydrology data base

  12. TECHNOLOGY ROADMAPPING FOR IAEA SEALS.

    Energy Technology Data Exchange (ETDEWEB)

    HOFFHEINS,B.; ANNESE,C.; GOODMAN,M.; OCONNOR,W.; GUSHUE,S.; PEPPER,S.

    2003-07-13

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The

  13. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  14. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  15. IAEA safeguards - a 1988 perspective

    International Nuclear Information System (INIS)

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  16. A strategy study on the effective participation in the IAEA technical cooperation programmes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Joon Keuk; Choi, P. H.; Kim, K. P.; Hong, Y. D.; Lee, J. K.; Kim, Y. M.; Chung, H. S.; Han, B. O.; Seo, M. W.; Chung, J. M

    1997-12-01

    The objectives of this research are to seek the most effective means of participation in implementing IAEA technical cooperation programs, to seek and establish a desirable role for Korea in these program, to predict future opportunities among IAEA programs, to enhance the status of Korea within the international society and to keep up with rapidly changing international nuclear developments in effective and positive ways. Participation in IAEA programs are to coincide with our efforts to upgrade and achieve self-reliance in nuclear technology. Seven activities should be considered in Korea`s future directions regarding the IAEA. These include strengthening our diplomatic activities, expanding coordinated research programs (CRP`s), domestic personnel becoming IAEA staff members, encouraging domestic experts to participate as members of IAEA advisory groups, increasing participation in international meetings, implementing footnote a/ projects, strengthening cooperation with the IAEA-operational research laboratories and actively implementing technology transfer to developing countries and encouraging IAEA fellowships. (author). 57 refs., 74 tabs., 17 figs

  17. IAEA Supports World Cancer Day

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2008-01-01

    Full text: Cancer can strike anyone at anytime, young or old, rich or poor. It knows no borders. World Cancer Day, on 4 February, was initiated to raise global awareness of cancer issues and stimulate new strategies and thinking to combat the killer disease. Nowhere is the need greater than in the developing world, where millions of people are suffering and dying due to lack of cancer prevention and treatment. According to the World Health Organisation (WHO), 84 million people will die of cancer in the next 10 years, more than 70% of them in low-income countries, unless action is taken now. The IAEA's Programme of Action for Cancer Therapy (PACT) was created to help poorer countries confront the growing cancer crisis by integrating radiotherapy into comprehensive cancer control programmes. As it celebrates its third birthday on World Cancer Day, PACT can claim significant progress in building effective relationships with a broad array of stakeholders, initiating six pilot projects and gaining increasing support from Member States. The IAEA commends all organizations, agencies and individuals engaged in the battle to defeat this dreadful disease. We look forward to continued collaboration with international partners to help bring hope to cancer patients, to relieve their suffering and to save lives. (IAEA)

  18. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  19. Non-proliferation and international safeguards. [Booklet by IAEA

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This booklet consists of 13 separate, brief analyses related to the subject title, namely: The International Scope of IAEA Safeguards; Application of Safeguards Procedures; Computer-Based Safeguards Information and Accounting System; IAEA Training Activities Related to State Systems of Nuclear Materials Accountancy and Control; Surveillance and Containment Measures to Support IAEA Safeguards; International Plutonium Management; Safeguards for Reprocessing and Enrichment Plants; Non-Destructive Assay: Instruments and Techniques for Agency Safeguards; The Safeguards Analytical Laboratory: Its Functions and Analytical Facilities; Resolution of the UN General Assembly on the Treaty on the Non-Proliferation of Nuclear Weapons of 12 June 1968; The Treaty on the Non-Proliferation of Nuclear Weapons; Final Declaration of the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons, May 1975; Resolutions on the IAEA's Work in the Field of the Peaceful Uses of Atomic Energy, adopted by the UN General Assembly on 8 and 12 December, 1977; and a Map on the NPT situation in the world (with explanations).

  20. IAEA reference dosimeter: Alanine-ESR

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1999-01-01

    Since 1985, the IAEA has been using alanine-ESR as a transfer dosimeter for its dose quality audit service, namely the International Dose Assurance Service. The alanine dosimeters are rod-type containing 70 wt% DL--α-alanine and 30 wt% polystyrene. We have two self-shielded gamma facilities for the calibration of the dosimetry system, where the temperature within the irradiation chamber can be controlled by a specially designed unit. A 4th order polynomial is fitted to the 16 data points in the dose range of 100 Gy to 50 kGy. The measured value of the irradiation temperature coefficient at two dose values (15 and 45 kGy) is 0.23 %/deg. C. Also, the ESR-response was followed for several dosimeters for about 8 months to study the post-irradiation effect. A value of 0.008 %/day was observed for the fading of the response for two dose values (15 and 45 kGy) and three irradiation temperatures (15, 27 and 40 deg. C). The effect of the analysis temperature on the ESR response was also studied. The combined relative uncertainty for the IAEA alanine-ESR dosimetry system is 1.5% (k=1). This includes that transferred from the primary laboratory for the dose rate measurements of the gamma facilities, dosimetry system calibration uncertainties, batch variability and uncertainty in the curve fitting procedure. This value however does not include the contribution due to the irradiation temperature correction which is applied when it differs from that during calibration; this component being specific for each dose measurement. (author)

  1. Report on the intercomparison run IAEA-384. Radionuclides in Fangataufa lagoon sediment

    International Nuclear Information System (INIS)

    Povinec, P.P.; Pham, M.K.

    2000-01-01

    The accurate and precise determinations of radionuclide concentrations in marine samples are important aspects of marine radioactivity assessments and the use of radionuclides in studies of oceanographic processes. To address the problem of data quality, and to assist Member States in verifying the performance of their laboratories, the IAEA Marine Environment Laboratory (MEL) in Monaco has conducted intercomparison exercises on radionuclides in marine samples for many years as part of its contribution to the IAEA's programme of Analytical Quality Control Services (AQCS). For this intercomparison exercise, in 1996 IAEA-MEL collected sediment in Fangataufa lagoon, French Polynesia. The sample aliquots were distributed during 1997-1998 for intercomparison of anthropogenic and natural radionuclides. 110 laboratories worldwide agreed to participate. Of these, only 94 sent results which could be used in the evaluation of this intercomparison exercise. This report describes the results obtained from 94 laboratories on anthropogenic and natural radionuclide determinations in Fangataufa lagoon sediment

  2. Report on the intercomparison run IAEA-384. Radionuclides in Fangataufa lagoon sediment

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, P P; Pham, M K

    2000-07-01

    The accurate and precise determinations of radionuclide concentrations in marine samples are important aspects of marine radioactivity assessments and the use of radionuclides in studies of oceanographic processes. To address the problem of data quality, and to assist Member States in verifying the performance of their laboratories, the IAEA Marine Environment Laboratory (MEL) in Monaco has conducted intercomparison exercises on radionuclides in marine samples for many years as part of its contribution to the IAEA's programme of Analytical Quality Control Services (AQCS). For this intercomparison exercise, in 1996 IAEA-MEL collected sediment in Fangataufa lagoon, French Polynesia. The sample aliquots were distributed during 1997-1998 for intercomparison of anthropogenic and natural radionuclides. 110 laboratories worldwide agreed to participate. Of these, only 94 sent results which could be used in the evaluation of this intercomparison exercise. This report describes the results obtained from 94 laboratories on anthropogenic and natural radionuclide determinations in Fangataufa lagoon sediment.

  3. The IAEA inspectorate, including new requirements

    International Nuclear Information System (INIS)

    Alston, W.

    1998-01-01

    The basic purpose of the IAEA safeguards system is 'timely detection of diversion of significant quantities of nuclear material'. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  4. The IAEA inspectorate, including new requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alston, W [International Atomic Energy Agency, Department of Safeguards, Division of Operations A, Vienna (Austria)

    1999-12-31

    The basic purpose of the IAEA safeguards system is `timely detection of diversion of significant quantities of nuclear material`. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  5. IAEA Radiation Events Database (RADEV)

    International Nuclear Information System (INIS)

    Wheatley, J.; Ortiz-Lopez, P.

    2001-01-01

    Whilst the use of ionizing radiation continues to bring benefits to many people throughout the world there is increasing concern at the number of reported accidents involving radiation. Such accidents have had an impact on the lives of patients, workers and members of the public, the consequences of which have ranged from trivial health effects to fatalities. In order to reduce the number of accidents and to mitigate their consequences it is, therefore, necessary to raise awareness of the causes of accidents and to note the lessons that can be learned. The IAEA's database on unusual radiation events (RADEV) is intended to provide a world-wide focal point for such information. (author)

  6. IAEA safeguards: Challenges and opportunities

    International Nuclear Information System (INIS)

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  7. A brief history of NDA at the IAEA

    International Nuclear Information System (INIS)

    Sprinkle, J.K.; Sinkule, B.J.; Hsue, S.-T.; Abhold, M.E.

    2001-01-01

    Nearly 30 years ago, the first portable nondestructive assay instrument, a SAM-II, was brought to Vienna for IAEA consideration. This initial foray into the usage of nondestructive assay (NDA) as an independent assessment tool has materialized into one of the important tools for IAEA inspections. NDA instruments have several inherent advantages for inspectors; their measurements generate no radioactive waste, provide immediate answers, do not require specialized operators, and can be either taken to the items to be measured (portable instruments), or the items for measurement can be brought to the instruments, such as can be applied in on-site IAEA laboratories or off-site IAEA lab at Siebersdorf. The SAM-II was a small, lightweight, battery-powered, gamma-ray instrument used for uranium enrichment measurements. It was also found to be usehl for locating nuclear material, distinguishing between uranium and plutonium, and determining the active length of items like fuel pins. However it was not well suited for determining the amount of bulk material present, except for small containers of low-density materials. A 6-sided neutron coincidence counter, easily disassembled so it could be shipped and carried by airplane, was developed for bulk measurements of plutonium. The HLNCC (High Level Neutron Coincidence Counter) was immediately useful for quantitative measurements of pure plutonium oxide. However, the IAEA had to make a trade-off between the ease of use of NDA instruments on-site, and the problems of obtaining small samples for shipment to an independent lab for more accurate analysis. NDA does not create radioactive waste, so as waste handling has become more cautious and more regulated, NDA looks better and better. After acceptance of NDA by the IAEA for routine use, the follow-up question was naturally, 'How much better can this measurement be made?' The Program for Technical Assistance to IAEA Safeguards (POTAS) supported multiple and varied efforts in this

  8. Nuclear data services provided by the IAEA

    International Nuclear Information System (INIS)

    Schwerer, O.; Oblozinsky, P.

    2001-01-01

    This paper summarizes the various nuclear data types, libraries and services available free of charge from the IAEA Nuclear Data Section. The databases are collected, maintained and made available within the framework of an international nuclear data center's network. Particular emphasis is given to online services via the Internet. The URL address of the IAEA Nuclear Services is http://www-nds.iaea.or.at. (author)

  9. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  10. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  11. The IAEA Accident Management Programme

    International Nuclear Information System (INIS)

    Kabanov, L.; Jankowski, M.; Mauersberger, H.

    1993-01-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.)

  12. The IAEA Accident Management Programme

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, L.; Jankowski, M.; Mauersberger, H. (International Atomic Energy Agency, Vienna (Austria))

    1993-02-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.).

  13. Calibration of clinical dosemeters in the IAEA water phantom

    International Nuclear Information System (INIS)

    Caldas, L.V.E.; Albuquerque, M.P.P.

    1994-01-01

    The procedures recommended by the IAEA Code of Practice were applied at the Calibration Laboratory of Sao Paulo in order to provide in the future the clinical dosemeters users with absorbed dose to water calibration factors for Cobalt 60 radiation beams. In this work the clinical dosemeters were calibrated free in air and in water, and the results were compared, using conversion factors. The several tested clinical dosemeters of different manufacturers and models belong to the laboratory and to hospitals. For the measurements in water the IAEA cubic water phantom was used. The dosemeters were all calibrated free in air in terms of air kerma, and the calibration factors in terms of absorbed dose to water were obtained through conversion factors. the same dosemeters were also calibrated into the water phantom. Good agreement was found between the two methods, the differences were always less than 0.5%. The data obtained during this work show that when the dosemeters are used only in Cobalt 60 radiation and the users apply in the hospital routine work the IAEA Code of Practice, the calibration can be performed directly in the water phantom. This procedure provides the useful calibration factors in terms of absorbed dose to water

  14. Agrochemicals and Residues Newsletter. No. 6

    International Nuclear Information System (INIS)

    1991-09-01

    This newsletter provides very brief summaries of the current coordinated research programs and of the completed coordinated research program on the study of the biological activity and bioavailability of bound pesticide residues using nuclear techniques (a more complete report will be published in the IAEA Panel Proceedings series). Research in progress at the Agrochemicals Unit of the IAEA Laboratory in Seibersdorf is also described

  15. Animal production and health newsletter. No. 29

    International Nuclear Information System (INIS)

    1998-12-01

    This issue of the newsletter outlines activities and coordinated research programmes in the areas of animal production and animal health for the year 1999 by the Joint FAO/IAEA Division of Nuclear Techniques in food and agriculture and FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf

  16. CNEN, IAEA and ISO normative requirements for measurement management

    International Nuclear Information System (INIS)

    Kibrit, Eduardo

    2009-01-01

    International standard ISO 10012:2003 establishes requirements for measurement management systems, including requirements for measurement processes and measuring equipment. ISO 9001:2008 presents requirements for quality management systems, including requirements for the control of monitoring and measuring equipment. ISO 17025:2005 presents general requirements for the competence of testing and calibration laboratories. In the nuclear field the requirements for measurement management are established by standards published by the International Atomic Energy Agency (IAEA), and in Brazil, by the National Nuclear Energy Commission (CNEN). The present paper presents and discusses the normative requirements for measurement management, considering requirements established by National Nuclear Energy Commission (CNEN), International Atomic Energy Agency (IAEA), and International Organisation for Standardisation (ISO). (author)

  17. Establishment of external quality assurance procedures with FAO/IAEA ELISA kits. Report of an FAO/IAEA consultants meeting

    International Nuclear Information System (INIS)

    1994-01-01

    As part of the programme of support to scientists in developing countries, the Joint FAO/IAEA Division has developed and distributed ELISA kits for detecting both the causative agent and the immune response of animals to a number of the major diseases affecting livestock. In many cases these kits are now being used as part of national and international control and/or eradication programmes (e.g. for rinderpest, trypanosomosis, foot and mouth disease, brucellosis) and are likely to form the basis for establishing a country's freedom from particular diseases (e.g. rinderpest) at the national and international level. To further encourage international trade in livestock and livestock products, and to assist in the regional or global control and eradication of a number of the major diseases affecting livestock, there has been a strong move towards international standardization for animal disease diagnosis. Central to this is the need for internal and external quality assurance procedures to ensure that a standardized approach is being adhered to and that the results can be relied upon. In 1992, an FAO/IAEA consultants meeting was convened to define and establish for the ELISA, standards for internal quality control of reagents and procedures and for the expression of results. The recommendations of that meeting have now been incorporated in all FAO/IAEA ELISA kits and have been adopted by the OIE (Office International des Epizooties). The primary function of the internal quality controls is to ensure that the assay is performing within defined limits. Equally important, is an assurance to all outside interested bodies (national veterinary authorities, international organizations, donor organizations, trading partners) that the results being provided by a laboratory are valid. The procedures for ascertaining this assurance would form the basis of an external quality assurance programme (EQAP). Between 1990 and 1993, as part of establishing an EQAP, laboratories using

  18. FORATOM - IAEA Workshop, Mamaia 2006

    International Nuclear Information System (INIS)

    Florescu, Nicolai

    2006-01-01

    The FORATOM Workshop was organized on May 16-19, 2006 by IAEA and FORATOM in the frame of common actions of experience exchange planned to take place every 18 months. At the same time at Mamaia, Romania, a meeting of the Business Excellence FORATOM group took place in which the Romanian organization ROMATOM is represented by the author of the paper from behalf of the Quality Management Group. Romanian Atomic Forum, ROMATOM as a member of European Atomic Forum, FORATOM, plays an active role in nuclear field in Romania. The Business Excellence Working Group, as the most active group in FORATOM, has the following objectives: - to promote and support the safe and effective performance of nuclear facilities to encourage the common of high level business standards; - to support FORATOM to enable decision makers and the public at large to get informed; - to facilities the exchange of best practices for management systems in order to raise the level of awareness and understanding so that members can better support the improvement within the member organizations, the other nuclear facilities in the BEx -WG member countries, the regular organization in the member countries, and international organizations active in the same fields of interest; - to provide a focus for influencing the development and harmonization of nuclear industry standards and practices to achieve improved business effectiveness and quality and safety management of nuclear facilities; - to advise FORATOM on management system issues. The FORATOM Workshop organized at Mamaia was held under the topics 'Successful Management of Organizational Change'. Three key issues for debate were established as follows: - key issue 1, effective handling of organizational change: drivers for change; managing change: the IAEA perspective; managing change within a utility; managing outsourcing; - key issue 2, organizational culture and safety culture: management systems and safety culture; proactive management; developing

  19. Reference material IAEA 413: Major, minor and trace elements in algae

    International Nuclear Information System (INIS)

    2010-01-01

    Reference materials are a basic requirement for any sort of quantitative chemical and radiochemical analysis. Laboratories need them for calibration and quality control throughout their analytical work. The IAEA started to produce reference materials in the early 1960s to meet the needs of the analytical laboratories in its Member States that required reference materials for quality control of their measurements. The initial efforts were focused on the preparation of environmental reference materials containing anthropogenic radionuclides for use by those laboratories employing nuclear analytical techniques. These reference materials were characterized for their radionuclide content through interlaboratory comparison involving a core group of some 10 to 20 specialist laboratories. The success of these early exercises led the IAEA to extend its activities to encompass both terrestrial and marine reference materials containing primordial radionuclides and trace elements. Today, the IAEA has more than 90 reference materials and maintains a customer base of about 5000 members from more than 85 Member States. Within the frame of IAEA activities in production and certification of RM, this report describes the certification of the IAEA 413: Major, minor and trace elements in algae. Details are given on methodologies and data evaluation

  20. IAEA Reference Materials for Quality Assurance: A Study in the Quality Control of Marine Radioactivity

    International Nuclear Information System (INIS)

    Pham Mai Khanh; Bartocci, J.; Gastaud, J.; Nies, H.; Vasileva, E.; Betti, M.; Chamizo, E.; Gomez-Guzman, J.-M.

    2013-01-01

    The IAEA's Marine Environment Laboratories has assisted laboratories in Analytical Quality Control Services (AQCS) for the analysis of radionuclides in the marine environment since the early seventies. The AQCS programme, now named Reference Products for Environment and Trade, is recognized as an essential component of quality assurance and control and for the development and validation of analytical methods, through its worldwide and regional interlaboratory comparisons and the provision of reference methods and Reference Materials/Certified Reference Materials (RMs/CRMs). A total of 49 interlaboratory exercises were organized and 42 RMs/CRMs were produced for marine radioactivity studies. Different techniques such as radiometric methods with X ray, gamma spectrometry, alpha spectrometry, beta counter, liquid scintillation counter as well as mass spectrometry (ICP-MS, AMS, TIMS) are applied for the characterization during certification process. An overview of prepared Certified Reference Materials (CRMs) for radionuclides in marine matrices will be presented as well as lessons learned from interlaboratory comparisons (ICs) and Proficiency Tests (PTs). A characterization of a new CRM for radionuclides in IAEA-446, Baltic Sea seaweed (Fucus vesiculosus), as well as a specific case of using Accelerator Mass Spectrometry (AMS) technique to characterize I-129 in sea water (IAEA-418) and seaweed sample (IAEA-446), will be discussed. Available RMs/CRMs are listed and can be ordered and purchased through the IAEA website http://nucleus.iaea.org/rpst/. (author)

  1. IAEA Reference Materials for Quality Assurance: A Study in the Quality Control of Marine Radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Khanh, Pham Mai; Bartocci, J.; Gastaud, J.; Nies, H.; Vasileva, E.; Betti, M. [International Atomic Energy Agency, Environment Laboratory (Monaco); Chamizo, E.; Gomez-Guzman, J. -M. [Centro Nacional de Aceleradores, Seville (Spain)

    2013-07-15

    The IAEA's Marine Environment Laboratories has assisted laboratories in Analytical Quality Control Services (AQCS) for the analysis of radionuclides in the marine environment since the early seventies. The AQCS programme, now named Reference Products for Environment and Trade, is recognized as an essential component of quality assurance and control and for the development and validation of analytical methods, through its worldwide and regional interlaboratory comparisons and the provision of reference methods and Reference Materials/Certified Reference Materials (RMs/CRMs). A total of 49 interlaboratory exercises were organized and 42 RMs/CRMs were produced for marine radioactivity studies. Different techniques such as radiometric methods with X ray, gamma spectrometry, alpha spectrometry, beta counter, liquid scintillation counter as well as mass spectrometry (ICP-MS, AMS, TIMS) are applied for the characterization during certification process. An overview of prepared Certified Reference Materials (CRMs) for radionuclides in marine matrices will be presented as well as lessons learned from interlaboratory comparisons (ICs) and Proficiency Tests (PTs). A characterization of a new CRM for radionuclides in IAEA-446, Baltic Sea seaweed (Fucus vesiculosus), as well as a specific case of using Accelerator Mass Spectrometry (AMS) technique to characterize I-129 in sea water (IAEA-418) and seaweed sample (IAEA-446), will be discussed. Available RMs/CRMs are listed and can be ordered and purchased through the IAEA website http://nucleus.iaea.org/rpst/. (author)

  2. Present and future activities of the IAEA on internal dosimetry: Lessons learned from international intercomparisons

    International Nuclear Information System (INIS)

    Cruz Suarez, R.; Gustafsson, M.; Mrabit, K.

    2003-01-01

    The International Atomic Energy Agency (IAEA) conducts safety activities to support the assessment of occupational exposure due to intakes of radionuclides; a comprehensive set of safety documents will soon be completed. In recent years, extensive improvements in measurement techniques, phantoms and computational tools have been made. Thus, it is important for laboratories involved in internal dosimetry to undergo performance testing procedures to demonstrate the correctness of the methods applied and also to determine the consistency of their results with those obtained by other laboratories. Several intercomparisons were organised, and they revealed significant differences among laboratories in their approaches, methods and assumptions, and consequently in their results. This paper presents the current and future IAEA activities in support of assessment of occupational exposure due to intakes of radionuclides in the IAEA Member States, as well as the lessons learned from several intercomparison exercises in the last 5 years. (author)

  3. IAEA looks ahead. Highlights of 1960 programme

    International Nuclear Information System (INIS)

    1959-01-01

    The Agency performed an initial assessment of most countries' requirements so that assistance could be given where it was most needed and where it could be best utilized. For many of these countries the stage has now arrived for the actual provision of assistance to specific projects which, in many cases, have emerged out of the preliminary surveys and consultations. The training and fellowship programme of the Agency will gather further momentum in 1960. The Agency thins that its importance as a supplier of nuclear materials and equipment will increase during the next year and that several agreements involving the supply of fissionable and source materials will be concluded and implemented. The Agency also will provide expert advice in regard to prospecting, mining and ore processing. Work is also expected to arise in 1960 in connexion with the verification and analysis of materials to be delivered to or by the Agency. As regards equipment, work on the cataloguing and classification of nuclear instruments will increase in 1960. A handbook explaining the advantages of different types of instrumentation for various nuclear applications will be prepared during the year. The Agency will continue its technical and economic studies on the utilization of atomic power in the less developed countries. With regard to research the Agency's functional laboratory at Seibersdorf is expected to be in operation in the last quarter of 1960, where the Agency will undertake scientific analyses, testing and measurements needed in connexion with its other substantive activities. Much of this work will be concerned with the establishment of international standards for radioactive substances and radiation measurements, special materials for nuclear technology and in connexion with the Agency's safeguards and health and safety programme. Agency's scientific staff will be enable to carry out special analyses and measurements on behalf of Member States. Research concerning the disposal and

  4. IAEA looks ahead. Highlights of 1960 programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    The Agency performed an initial assessment of most countries' requirements so that assistance could be given where it was most needed and where it could be best utilized. For many of these countries the stage has now arrived for the actual provision of assistance to specific projects which, in many cases, have emerged out of the preliminary surveys and consultations. The training and fellowship programme of the Agency will gather further momentum in 1960. The Agency thins that its importance as a supplier of nuclear materials and equipment will increase during the next year and that several agreements involving the supply of fissionable and source materials will be concluded and implemented. The Agency also will provide expert advice in regard to prospecting, mining and ore processing. Work is also expected to arise in 1960 in connexion with the verification and analysis of materials to be delivered to or by the Agency. As regards equipment, work on the cataloguing and classification of nuclear instruments will increase in 1960. A handbook explaining the advantages of different types of instrumentation for various nuclear applications will be prepared during the year. The Agency will continue its technical and economic studies on the utilization of atomic power in the less developed countries. With regard to research the Agency's functional laboratory at Seibersdorf is expected to be in operation in the last quarter of 1960, where the Agency will undertake scientific analyses, testing and measurements needed in connexion with its other substantive activities. Much of this work will be concerned with the establishment of international standards for radioactive substances and radiation measurements, special materials for nuclear technology and in connexion with the Agency's safeguards and health and safety programme. Agency's scientific staff will be enable to carry out special analyses and measurements on behalf of Member States. Research concerning the disposal and

  5. IAEA General Conference begins annual session

    International Nuclear Information System (INIS)

    2001-01-01

    The document gives general information about the opening and the programme of the 45th regular session of the IAEA General Conference (17-21 September 2001, Austria Center Vienna). The conference is attended by ministers and high-level governmental representatives from 132 Member States of the IAEA

  6. IAEA General Conference begins annual session

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives general information about the opening and the programme of the 44th regular session of the IAEA General Conference (18 -22 September 2000, Austria Center Vienna). The conference is attended by ministers and high-level governmental representatives from 130 Member States of the IAEA

  7. IAEA inspections and Iraq's nuclear capabilities

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1992-04-01

    It is reported that IAEA teams have been investigating Iraq's nuclear capabilities since May 1991 and following the Gulf War under terms of United Nations Security Council Resolution 687 directed at eliminating Iraq's weapons of mass destruction and means to produce and use them. A chronology of the events as well as the IAEA plan of further actions are described

  8. 10 CFR 75.8 - IAEA inspections.

    Science.gov (United States)

    2010-01-01

    ... NRC Operations Center (commercial telephone number 301-816-5100). (d) Each applicant, licensee, or... surveillance; and (6) Perform other measures requested by the IAEA and approved by the NRC. (f) Each applicant... measurement and surveillance; (ii) Enabling the IAEA to apply its seals and other identifying and tamper...

  9. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  10. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  11. Guidelines for preparing IAEA design information questionnaires

    International Nuclear Information System (INIS)

    Swartz, J.M.; Bieber, A.M.

    1980-01-01

    The format of the IAEA Design Information Questionnaires and the SAI prepared guidelines for completing them, is described. The guidelines should assist facility operators in meeting the time constraints set forth in the Subsidiary Arrangements by effectively supplying the information needed by the IAEA and in minimizing resource allocations to the preparation effort. 8 refs

  12. Development of an IAEA Training Course for Future U.S. Inspectors

    International Nuclear Information System (INIS)

    Avgerinos Fitzwater, Savannah; Rynes, Amanda R.; Bracken, David S.; Metcalf, Richard R.M.; West, James D.

    2011-01-01

    U.S. citizens currently make up only 12% of the positions held in the IAEA's Department of Safeguards. While the United States has maintained a high level of support for the Agency over the duration of its history, the number of American inspectors currently in the field does not reflect this level of involvement. As a result, the National Nuclear Security Administration's Office of International Relations, as part of the Next Generation Safeguards Initiative (NGSI) mission, has tasked Idaho National Laboratory (INL) to develop a rigorous two week hands-on training program to encourage and operationally acclimatize U.S. Citizens who are interested in applying for IAEA inspector positions using IAEA authorized equipment at INL. Idaho National Laboratory is one-of-a-kind in its ability to train IAEA inspectors by including training at nuclear facilities on site and includes, for example, direct measurement of an active spent fuel storage cooling pond. This accredited course will introduce and train attendees on the major IAEA systems used in collecting nuclear safeguards data and performing safeguards inspections. Unique in the United States, these classes will give attendees direct hands-on training and will address equipment purpose, function, operating principles, application, and troubleshooting, based upon what would be expected of an IAEA Safeguards Inspector in the field and in the office. Upon completion, U.S. applicants will be better qualified to pursue a position in the IAEA Department of Safeguards Operational Divisions. In support, INL has recently established a new laboratory space to house state of the art nuclear safeguards instrumentation. Currently, equipment installed in the laboratory space includes attended systems: 3DLR (3-D Imaging Laser) for design information verification, a Digital Cerenkov Viewing Device for measurement of spent fuel, HM-5 handheld radiation detectors, quantitative neutron and gamma systems; unattended monitoring systems

  13. IAEA/SSDL intercomparison of calibration factors for therapy level ionization chambers

    International Nuclear Information System (INIS)

    Lu Jilong; Cheng Jinsheng; Guo Zhaohui; Li Kaibao

    2005-01-01

    Objective: By participating in IAEA-SSDL intercomparison, a dose to water calibration factor was introduced in order to check the measuring accuracy of 60 Co radiotherapy dose level standard and ensure the reliability and consistency of our calibration. Methods: The authors carried out both air kerma and absorbed dose to water calibrations against 60 Co γ-rays for one of our field class ionization chambers, and sent the results together with the chamber to IAEA dosimetry laboratory for calibration, then IAEA calibrated it and gave the deviation of the intercomparison. Results: The deviation of our air kerma calibration factors is -0.5%, and the deviation of our absorbed dose to water calibration factors is 0.4%. Conclusion: The deviation of calibration factors between IAEA and SSDL should be no more than ±1.5%. Therefore, the result of this intercomparison is considered satisfactory. (authors)

  14. IAEA Illicit Trafficking Database (ITDB)

    International Nuclear Information System (INIS)

    2010-01-01

    The IAEA Illicit Trafficking Database (ITDB) was established in 1995 as a unique network of points of contact connecting 100 states and several international organizations. Information collected from official sources supplemented by open-source reports. The 1994 - GC 38, resolution intensifies the activities through which the Agency is currently supporting Member States in this field. Member states were notified of completed database in 1995 and invited to participate. The purpose of the I TDB is to facilitate exchange of authoritative information among States on incidents of illicit trafficking and other related unauthorized activities involving nuclear and other radioactive materials; to collect, maintain and analyse information on such incidents with a view to identifying common threats, trends, and patterns; use this information for internal planning and prioritisation and provide this information to member states and to provide a reliable source of basic information on such incidents to the media, when appropriate

  15. The k0-IAEA program

    International Nuclear Information System (INIS)

    Rossbach, M.; Blaauw, M.; Bacchi, M.A.; Xilei Lin

    2007-01-01

    New software was developed to assist users of the k 0 -approach in NAA to harmonize their results. The k 0 -IAEA software uses the holistic approach developed at the Delft Interfaculty Reactor Institute and incorporates the latest k 0 data catalogue together with additional information on coincidence and sum peaks, which together are used in the joint evaluation of samples. Multiple irradiations as well as multiple measurements of samples are treated simultaneously. Flux parameter determination as well as efficiency calibrations of detectors are accommodated using a singlemeasurement approach as developed at the Interfaculty Reactor Institute, Delft. The standard Windows software will stimulate the application of the k 0 approach through the free distribution and updates of the program. (author)

  16. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1985-01-01

    In this session, physical protection, nuclear material accounting and control, and containment and surveillance have been discussed, with emphasis on the interactions of these measures within the context of IAEA safeguards. In addition, the current physical protection equipment and techniques have been reviewed. The interactions can be summarized as follows. Although physical protection is a fundamental element of IAEA safeguards, it is solely a state/facility operator responsibility. While the IAEA has an interest in promoting the implementation of effective physical protection systems, it serves only in an advisory capacity. Nuclear material accounting directly involves the state, facility operator, and the IAEA. Facility records and reports provided by the state are independently verified by the IAEA. The SSAC is of fundamental importance in this process. Containment and surveillance measures are used by the UAEA. Installation and routine use of C/S equipment must be approved by the state and facility operator, and must not affect facility operations or safety

  17. Directory of IAEA databases. 4. ed.

    International Nuclear Information System (INIS)

    1997-06-01

    This fourth edition of the Directory of IAEA Databases has been prepared within the Division of NESI. ITs main objective is to describe the computerized information sources available to the public. This directory contains all publicly available databases which are produced at the IAEA. This includes databases stored on the mainframe, LAN servers and user PCs. All IAEA Division Directors have been requested to register the existence of their databases with NESI. At the data of printing, some of the information in the directory will be already obsolete. For the most up-to-date information please see the IAEA's World Wide Web site at URL: http:/www.iaea.or.at/databases/dbdir/. Refs, figs, tabs

  18. The IAEA as a publisher

    International Nuclear Information System (INIS)

    1965-01-01

    One of the largest publishing enterprises in Vienna has developed in then Agency, incidental to its function of disseminating scientific information. The Agency recently completed its sixth year of scientific publication of literature dealing with the peaceful uses of atomic energy. Quite early in the history of IAEA, this work grew to considerable dimensions. In 1959 the programme consisted of two volumes in the Proceedings series, one in the Safety series, and four Technical Directories, making a total in that year of 18 000 books, in addition to those prepared for free distribution. In the following year, as Agency meetings and other activities developed, the list was much longer consisting of six volumes in the Proceedings series, two in the Safety series, two in the Technical Directory series, eight in the Review series, two in the Bibliographical series, three panel reports, one volume in the legal series and the first issue of 'Nuclear Fusion'. The total number of volumes sold was 24 000, in addition to the large number for free distribution. Thereafter, there was some difficulty in keeping up with the expanding demands, and some arrears of contract printing began to accumulate. It was therefore decided to introduce internal printing of Agency publications. The adoption of the 'cold type' method in 1962 led to considerable savings and faster production. During 1963, printing and binding equipment was installed which rendered the Agency independent of contractual services. Current policy is to print and bind internally all IAEA publications except the journal, 'Nuclear Fusion', Average annual production now consists of about twenty volumes of the proceedings of scientific meetings, six technical directories (the Directory of Nuclear Reactors has been published in its fifth edition), several bibliographies and numerous technical reports

  19. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  20. IAEA's Implementation of the State-Level Concept

    International Nuclear Information System (INIS)

    Trimble, D.; Ballenger, J.; Levis, G.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has taken several steps over the years to strengthen its safeguards program, including successfully encouraging more countries to bring an Additional Protocol into force, increasing the number of countries that are subject to a broader range of safeguards measures, and upgrading its safeguards analytical laboratories. IAEA's latest strategy to further improve the effectiveness and efficiency of the safeguards programme is to expand implementation of the 'state-level concept' to all countries with safeguards agreements. The state-level concept is an approach in which IAEA considers a broad range of information about a country's nuclear capabilities and tailors its safeguards activities in each country accordingly. IAEA officials have stated that broader implementation of this approach will allow the agency to better allocate resources by reducing safeguards activities where there is no indication of undeclared nuclear activities and to focus its efforts on any issues of safeguards concern. Several member countries, including the United States, support IAEA's plans to broaden implementation of the state- level concept, but other member countries - including some countries with significant nuclear activities - have raised concerns that the agency has not clearly defined and communicated how the state-level concept will be implemented or how it will stay within bounds of the agency's existing legal authorities. In September 2012, the General Conference passed a resolution that included a request for IAEA's Secretariat to report to the Board of Governors on the conceptualization and development of the state-level concept. In August 2013, IAEA released that report to the Board of Governors and started briefing member states on its content. Our paper will discuss (1) IAEA's efforts to clearly define and communicate how IAEA will implement the state-level concept and (2) the status of its

  1. Clarifying the role of the IAEA

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    The IAEA has many roles in promoting the role of nuclear energy for peaceful purposes. The most significant role that the IAEA undertakes is the development and application of safeguards to nuclear material, other material, equipment and facilities; this work consumes about 35% of the IAEA budget. The authority, procedures and limitations for the application of safeguards were described together with the relationship between the IAEA and the States where safeguards are in effect. Claims that the IAEA is not adequately fulfilling its safeguard role are usually based on misunderstandings of its role and authority. The IAEA's relationship to inspected States is not adversarial, regulatory, or guarding. It provides assurance to all States that peaceful nuclear activities are not diverted to a military program and in so doing enhances the reputation of States to whom safeguards are applied. Safeguards would be only one of many factors that would be involved in a States embarking on a military nuclear program. If proliferation of nuclear weapons occurs, this may be due in entirety or in part to these other factors. Many States could now undertake a military program but do not do so, because of their enlightened viewpoint that such activities are not in their own, or the world's best interests. However, any trend to further proliferation of nuclear weapons could be diminished by: -a lessening of political and economic tension between States, -restrictions on the supply of required technology, equipment, and material, and -an effective IAEA safeguard regime. There has been a regrettable trend to politicization in the direction and operation of the IAEA. It is hoped that this trend will be reversed and that IAEA will return to its earlier more technical role. There is a pressing need for the general public and governments to more fully understand the IAEA's role and its limitations

  2. XRF Newsletter, No. 25, September 2013 [X Ray Fluorescence in the IAEA and its Member States

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-02-15

    One of the main missions of any analytical laboratory is the provision of reliable results. Many X-ray fluorescence laboratories in the International Atomic Energy Agency (IAEA) Member States (MSs) carry out research aimed at improving the performance and extending the applicability of various X-ray based techniques. The IAEA assists its MSs Laboratories to maintain their readiness by producing reference materials, by developing standardized analytical methods and by conducting interlaboratory comparisons and proficiency tests as tools for quality control. To achieve this aim and ensure a reliable worldwide, rapid and consistent response, the IAEA Nuclear Science and Instrumentation Laboratory (NSIL) organizes proficiency tests annually for X-ray spectrometry laboratories. The main objective of these tests is to enhance the capability of interested MSs in effective utilization of nuclear spectrometry and analytical services in industry, human health, agriculture, and in monitoring and evaluation of environmental pollution. Indeed, proficiency tests are designed to identify analytical problems, to support IAEA MSs laboratories to improve the quality of their analytical results, to maintain their accreditation and to provide a regular forum for discussion and technology transfer in this area. The type of samples and the concentration levels of the analytes are designed and chosen in a way to better enable identification of potential analytical problems. Since 2001, the NSIL has organized nine proficiency test exercises (PTXRFIAEA)

  3. IAEA Completes Nuclear Security Review Mission in Republic of Korea

    International Nuclear Information System (INIS)

    2014-01-01

    Full text: A team of International Atomic Energy Agency (IAEA) experts today completed a mission to review national nuclear security practices in the Republic of Korea. At the request of the Government of the ROK, the IAEA conducted a two-week International Physical Protection Advisory Service (IPPAS) mission that reviewed the nation's nuclear security-related legislative and regulatory framework for nuclear and other radioactive material and associated facilities, as well as security arrangements applied to the transport of nuclear material and radioactive sources, and to computer systems. In addition, the team reviewed physical protection systems at the Hanbit Nuclear Power Plant (NPP), operated by Korea Hydro and Nuclear Power Company (KHNP), and at the High-Flux Advanced Neutron Application Reactor (HANARO), operated by the Korea Atomic Energy Research Institute (KAERI). The IPPAS team concluded that Korea is working well to conduct strong and sustainable nuclear security activities. Moreover, the team identified a number of good practices in the national nuclear security regime, and at the visited facilities. The team also made recommendations and suggestions for continuous improvement in nuclear security. The IAEA team was led by Joseph Sandoval, a staff member at the Sandia National Laboratories in the United States, and it included eight experts from six nations and the IAEA. The team met in Daejeon with officials from the Nuclear Safety and Security Commission (NSSC), representatives of the Korea Institute of Nuclear Non-Proliferation and Control (KINAC), the Korea Institute of Nuclear Safety (KINS), KAERI, and the Korea Electric Power Corporation Nuclear Fuel (KEPCO NF). They conducted site visits to the Hanbit NPP, the HANARO research reactor, the irradiation facility at KAERI's Advanced Radiation Technology Institute (ARTI), and the KHNP Cyber Security Center. ''Successful development of a nuclear power programme necessitates a strong commitment to

  4. Report on the intercomparison run IAEA-155 trace elements in whey powder

    International Nuclear Information System (INIS)

    Zeiller, E.; Strachnov, V.; Dekner, R.

    1990-11-01

    Analytical results need to be reliable, and analysts are well serviced to test their complete analytical systems, methods, instruments, personnel, data reduction, etc., on a frequent basis. Besides the use of standard reference materials, the intercomparison runs provide an excellent opportunity for the determination of accuracy. By comparing their results with results obtained by different methods of preparation and measurement, the participating laboratories have the opportunity to check their analytical performances. At the same time the IAEA's AQCS can establish the concentration of some elements for certification purposes. The participants were requested to determine as many elements as possible with emphasis on ''essential'' and ''toxic'' elements related to human health and environmental pollution in the intercomparison whey powder sample (IAEA-155) as well as in the control sample IAEA. It was expected that the results for IAEA would improve the evaluation of the intercomparison results of IAEA-155 as the concentrations of some inorganic constituents were well established in the IAEA sample. In total 69 laboratories from 24 different countries participated in this exercise. As a basis for the evaluation, 580 laboratory means were reported comprising 2699 individual results for 45 elements. For 3 additional elements information was supplied that the value was below the detection limits of the methods. Even though information and data on 48 elements were reported for IAEA-155 only 4 elements are assigned Class A and 13 elements Class B recommended values. The elements Mg, Mn, Na and P were assigned ''Class A''. But contrary to some former intercomparison exercises, this time sufficient results could be obtained to set ''Class B'' recommended values for some ''difficult to determine'' elements like Cd, Co, Cr, Hg, Ni, Pb, Se. Figs, 45 tabs

  5. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-456 Marine Sediment Samples

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of prime concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess t h e reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. A marine sediment sample with certified mass amount contents for aluminium, arsenic, cadmium chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, vanadium and zinc was recently produced by the IAEA Environment Laboratories. This publication presents the sample preparation methodology, including material homogeneity and the stability study, the selection of laboratories, the evaluation of results from the certification campaign, and the assignment of property values and their associated uncertainty. As a result, certified values for mass fractions and associated expanded uncertainty were

  6. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  7. The IAEA/WHO Network of SSDLs. Short history, activity and future trends

    International Nuclear Information System (INIS)

    Svensson, Hans; Zsdanszky, Kalman

    1990-01-01

    In 1968 at an IAEA meeting in Caracas, Venezuela, the dosimetric requirements of radiotherapy centres were discussed. At that time many radiotherapy departments in developing countries did not have a dosimeter. Even those that had a dosimeter were seldom able to send it to a Primary Standard Dosimetry Laboratory (PSDL) for proper calibration. The establishment of regional dosimeter calibration laboratories was recommended by the participating experts including representatives of WHO. There was general consent that it was not necessary to establish in every country a PSDL, which would need a very qualified staff and sophisticated equipment. Instead, the establishment of Secondary Standard Dosimetry Laboratories (SSDLs) was found to be an adequate solution to the problem. The new idea of SSDLs and their role within the international metrology system was thoroughly discussed at a joint IAEA/WHO meeting in Rio de Janeiro (scientific secretaries: H.H. Eisenlohr, IAEA and W. Seelentag, WHO) in December 1974. Considering the fact that an SSDL cannot work in isolation the experts recommended the setting up of an international Network of SSDLs under the auspices of the IAEA and WHO. The statutes of the IAEA/WHO Network of SSDLs were laid down in a Working Arrangement between the IAEA and WHO in April 1976. Later in 1976 the two Directors General of the IAEA and WHO formally announced by circular letters to their respective member states the establishment of the IAEA/WHO Network of SSDL. The Criteria for the Establishment of a Secondary Standard Dosimetry Laboratory were formulated by an Advisory Group and were attached to these letters. At that time there existed already 8 laboratories, which had been designated by WHO during the period 1968-1976 as regional reference centres for dosimetry. Another SSDL had been set up in Rio de Janeiro in collaboration between the Brazilian Government, the Government of the Federal Republic of Germany, and the IAEA. As a consequence of the

  8. Public information activities of the IAEA

    International Nuclear Information System (INIS)

    Meyer, Hand-Friedrich

    1998-01-01

    Since the accident at Three Mile Island in 1979 and increasingly since the Chernobyl accident 1986, the Division of Public Information (DPI) of the IAEA has become a contact point for journalists on all questions related to the nuclear energy and nuclear applications. The IAEA receives a continuously growing number of hits on its Internet Homepage. This is followed by an increasing number of E-mail letters from all over the world. The three main fields of general information activities of the IAEA's DPI are: 1 - the verification system of IAEA in the framework of international treaties concerning non-proliferation of nuclear weapons; 2 - the IAEA's work for safe operation of nuclear installations and its many services to improve the safe application of radiation and isotopes as well as safe operation of nuclear power plants. Questions on illicit trafficking and dangers of wrongly applied radiation sources play an important factor in our public information work in the field of nuclear safety; 3 - the IAEA's activities in the transfer of technology and the application of radiation and isotopes in agriculture, health, industry, hydrology and research. In addition to the new ways of providing information on the IAEA there is still the long established means of contact through periodicals like 'IAEA Bulletin' and 'IAEA Newsbriefs' or general information films like, for instance, 'The International Atom', 'The Nuclear Age', 'How a nuclear power plant works', 'Nuclear Energy and the Environment', 'The Safe Transport of Radioactive Material', 'The International Chernobyl Project', 'Mission Iraq' and others. Besides, there are aspects on longer lasting perspectives which should be considered: - physics teaching at schools; - information on nuclear fission, nuclear power, radiation and isotopes in a science museum in the capital; an information center at nuclear research facilities in the country. Nuclear has many advantages but it is difficult these days to convince normal

  9. IAEA Perspectives on Radiological Characterisation

    International Nuclear Information System (INIS)

    O'Sullivan, Patrick; Ljubenov, Vladan

    2012-01-01

    Requirements for characterization of radiological and other hazards in nuclear facilities are reflected in the IAEA Safety Standards. WS-R-5, Safety Requirements for Decommissioning of Facilities using Radioactive Material, includes a requirement that 'During the preparation of the final decommissioning plan, the extent and type of radioactive material (irradiated and contaminated structures and components) at the facility shall be determined by means of a detailed characterization survey and on the basis of records collected during the operational period'. The subsidiary Safety Guide WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, further elaborates that 'A survey of radiological and non-radiological hazards provides an important input for the safety assessment and for implementing a safe approach during the work'. Although the characterisation requirements addressed in the Safety Standards relate primarily to the detailed survey activities undertaken following the shutdown of the facility, it is evident that radiological characterization is of relevance to all major phases of the lifetime of a nuclear facility, including: - the siting phase - baseline surveys are undertaken to determine background radiation levels; - the construction phase - construction materials are retained to support future calculations of radioactivity distributions; - the operational phase - surveys are done regularly, with additional surveys being required following incidents involving plant contamination; - the transition phase - detailed radiological surveys are required to support the development of the final decommissioning plan; and - the closure phase - a final survey of the site and any remaining structures will be needed to support an application for release of the site from regulatory control. In the case of facilities that are already shut down, the main purpose of radiological characterisation is to provide a reliable database of information on the

  10. IAEA '77: between politics and factual constraints

    International Nuclear Information System (INIS)

    Freytag, A.

    1976-01-01

    The IAEA's organization of its 20th General Conference at Rio de Janeiro clearly underlined the importance of a comprehensive international transfer of nuclear technology. Despite all efforts to keep the Agency out of general political confrontations, the Conference was tinged politically by the PLO and South Africa problems. Besides the next five year program, which was agreed upon in the light of existing factual constraints, the support and control functions of the IAEA and next year's Salzburg Fuel Cycle Conference were other main topics of discussion. The 1977 IAEA budget was approved at a level of 43.5 million, the General Fund at 6.5 million. (orig.) [de

  11. Lessons learned from IAEA fire safety missions

    International Nuclear Information System (INIS)

    Lee, S.P.

    1998-01-01

    The IAEA has conducted expert missions to evaluate fire safety at the following nuclear power plants: the Zaporozhe plant in the Ukraine, the Borselle plant in the Netherlands, the Medzamor plant in Armenia, the Karachi plant in Pakistan, the Temelin plant in the Czech Republic, and the Laguna Verde plant in Mexico. The scope of these missions varied in subject and depth. The teams sent from the IAEA consisted of external fire experts and IAEA staff. All the missions were of great use to the host countries. The participating experts also benefited significantly. A summary of the missions and their findings is given. (author)

  12. IAEA/ WHO TLD postal dose intercomparison results in Bangladesh

    International Nuclear Information System (INIS)

    Mollah, A.S.; Bhuiyan, N.U.; Rahman, S.

    2001-01-01

    Full text: For the accurate delivery of prescribed dose to the patients, high precision and accuracy in radiation dosimetry is required. The hospital/medical physicist is responsible for the accurate delivery of whole planned radiation doses to the patients prescribed by the radio therapist. The proper delivery of radiation doses depends upon the accurate output measurements of doses from the therapy machines. In Bangladesh, only six 60 Co units and five deep therapy machines are in use. Some more are expected to be installed soon. Still in 2001, none of the Government radiotherapy centers in Bangladesh was properly equipped with medical physicists as well as radiotherapy dosimetry equipment. Bangladesh Atomic Energy Commission (BAEC) is responsible for radiation safety in Bangladesh and BAEC has assigned Secondary Standard Dosimetry Laboratory (SSDL) of Bangladesh for providing dosimetry calibration to all radiotherapy centers in Bangladesh. The output measurements of therapy machines are performed once in a year by SSDL and the results are compared by participating in the annual TLD postal dose intercomparison program organized by IAEA/WHO SSDL Network. The absorbed dose to water is determined using IAEA dosimetry protocol (TRS 277 and 381) and water phantom of size 30 x 30 x 30 cm 3 , The measurements of SSDL are traceable to NPL of UK. The accuracy achieved in SSDL, Bangladesh has been found better than ± 3.5%, which is within the prescribed limit of dosimetry standard of IAEA. The methodology of output dose measurements in different radiotherapy centers in Bangladesh is described along with the IAEA/WHO intercomparison results

  13. Improved IAEA safeguards for closed nuclear fuel cycles

    International Nuclear Information System (INIS)

    1978-12-01

    The paper recognises the limitations of nuclear material accountancy in applying safeguards to future large scale processing plants. For those plants the following will be necessary: (i) The inclusion of safeguards requirements in design criteria. (ii) Extensive application of containment and surveillance with monitors on personnel and goods exits, pipework, tanks, etc. (iii) Continuous inspectorate measurement of input and output flows. Local IAEA laboratories to ensure timeliness. (iv) Upgrading of process control information to enable the inspectorate to monitor the in-process inventory. The inspectorates knowledge of the in-process inventory will be valuable in their assessment of any alarms given by the containment-surveillance system

  14. Results of the IAEA/RCA personal dosemeter intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Norio; Momose, Takumaro; Hayashi, Naomi [Environment and Safety Division, Tokai Works, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2000-06-01

    The intercomparison of personal dosemeters for photon was carried out between 1990 and 1996 as part of the IAEA/RCA 'strengthening of radiation protection infrastructure' project. Japan Nuclear Cycle Development Institute participated in the intercomparison as one of the in-house personal dosimetry service organizations in Japan and also served the host irradiating laboratory. This report summarizes the dose evaluation results obtained from the JNC-TLD badges in the past four intercomparison programs. In the latest intercomparison the evaluated doses agreed to the reference doses with an accuracy of 10%. (author)

  15. Intercomparison of radionuclide measurements in marine sediment sample IAEA-368

    International Nuclear Information System (INIS)

    Ballestra, S.; Lopez, J.J.; Gastaud, J.; Parsi, P.; Vas, D.; Noshkin, V.

    1991-08-01

    The results of an intercomparison exercise on a Pacific Ocean sediment sample, IAEA-368, designed for the determination of artificial and natural radionuclides levels, are reported. The data from 89 laboratories representing 37 countries have been evaluated. The following are the recommended values, with confidence intervals, for 60 Co, 155 Eu, 210 7Pb, 226 Ra, 238 U, 238 Pu and 239+240 Pu (Reference date: 1 January 1990). Information values for 40 K, 90 Sr, 137 Cs, 228 Th, 230 Th, 232 Th, 234 U, 235 U and 241 Am are also reported. (author)

  16. Intercomparison of radionuclide measurements in marine sediment sample IAEA-367

    International Nuclear Information System (INIS)

    Ballestra, S.; Lopez, J.J.; Gastaud, J.; Vas, D.; Noshkin, V.

    1991-08-01

    The results of an intercomparison exercise on a Pacific Ocean sediment sample, IAEA-367, designed for the determination of artificial and natural radionuclides levels, are reported. The data from 81 laboratories representing 37 countries have been evaluated. The following are the recommended values, with confidence intervals, for 60 Co, 90 Sr, 137 Cs, 239+240 Pu (Reference date: 1 January 1990). Information values for 155 Eu, 238 Pu, 241 Am, and 241 Pu are reported. Information values for the following natural radionuclides 40 K, 226 Ra, 228 Th, 230 Th, 234 U, 235 U and 238 U are also reported. (author)

  17. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  18. Round robin 'Impurities in uranium matrix': a success for CETAMA and IAEA

    International Nuclear Information System (INIS)

    Granier, Guy; Roudil, Daniele; Balsley, Steven Devry; Bulyha, Siarhei; Aregbe, Yetunde

    2012-01-01

    The safeguard of nuclear material is of paramount importance to the IAEA which increasingly uses this information for characterization purposes in order to strengthen the verification of declared nuclear material and to identify the origin of samples from mines. IAEA tasked CETAMA to conduct a round robin with objective to evaluate the capability of laboratories to measure impurities in uranium with concentration levels between 1 and 500 ppm relative to uranium. This round robin was attended by 17 international laboratories from the nuclear industry and safeguards community. The results are mainly obtained by ICP-MS and ICP-AES. The synthesis of this round robin were helpful in identifying anomalies and will allow the IAEA to better set realistic measurement performance targets for ICP-MS and ICP-AES. (authors)

  19. IAEA-MEL's contribution to the investigation of the Kara Sea dumping sites

    International Nuclear Information System (INIS)

    Osvath, I.; Ballestra, S.; Baxter, M.S.; Gastaud, J.; Hamilton, T.; Harms, I.; Liong Wee Kwong, L.; Parsi, P.; Povinec, P.P.

    1995-01-01

    Since 1992 the International Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL) has participated in the international programmes devoted to assessment of the environmental and radiological consequences of actual and potential releases of radionuclides to the Arctic Seas. Upon invitation from the Russian and Norwegian authorities IAEA-MEL has collaborated in the Scientific work of the international expert groups on board five investigatory cruises to the Kara and Barents Seas and to the site of the sunken Komsomolets submarine. In-situ underwater γ-spectrometric measurements and laboratory-based analytical work on samples collected during these expeditions have been carried out. IAEA-MEL activities also include organisation of intercomparison exercises for radionuclides in sediment, seawater and biota from the Barents and Kara Seas, provision of a global marine radioactivity database facility including a comprehensive Arctic section, radiometric methodological developments, modelling of radionuclide dispersal on local, regional and global scales and dose assessment. 8 refs., 3 figs

  20. Ultra-sensitive detection of nuclear signatures in support of IAEA safeguards

    International Nuclear Information System (INIS)

    Hotchkis, M.; Child, D.; Tuniz, C.; Williams, M.

    2003-01-01

    The International Atomic Energy Agency (IAEA) applies a range of ultra-sensitive detection techniques to provide assurance that Member States are in compliance with their safeguards agreements. Environmental samples are collected which can contain minute traces of nuclear material or other evidence. Careful analysis of these samples reveals the nature of the activities undertaken in the vicinity of the sampling point. This paper reviews the analytical techniques that are being applied. To ensure that the IAEA has access to the best available methods, samples are distributed to a group of qualified laboratories around the world for analysis. The Accelerator Mass Spectrometry facility at the Australian Nuclear Science and Technology Organisation (ANSTO) is part of this select group of laboratories, and is the only AMS facility currently accredited with the IAEA. AMS provides the highest sensitivity available for detection of particularly useful signature radioisotopes, including 129 I, 236 U and plutonium isotopes

  1. IAEA statement on Iranian enrichment announcement

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: The following is a statement attributable to IAEA Spokesperson Gill Tudor: 'The IAEA can confirm that it has received a letter from the Atomic Energy Organization of Iran (AEOI) on 8 February 2010, in which the AEOI informed the Agency that production of less than 20% enriched uranium is being foreseen at the Pilot Fuel Enrichment Plant at Natanz for fuel for the Tehran Research Reactor'. 'IAEA Director General Yukiya Amano noted with concern this decision, as it may affect, in particular, ongoing international efforts to ensure the availability of nuclear fuel for the Tehran Research Reactor.' 'The Director General reiterated the Agency's readiness to play an intermediary role on the issue of the Tehran Research Reactor.' (IAEA)

  2. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  3. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  4. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  5. Stability of reference class ionization chambers used for radiotherapy dosimetry: IAEA experience

    International Nuclear Information System (INIS)

    Czap, L.; Meghzifene, A.; Shortt, K.R.; Andreo, P.

    2002-01-01

    The IAEA calibrates ionization chambers, used in radiotherapy, for its Member States. The calibrations are either for Secondary Standards Dosimetry Laboratories (SSDLs) or hospitals from countries without a SSDL. For that purpose, the IAEA calibrates mainly reference class instruments that are in turn used to cross-calibrate field class instruments at the hospital. Typically, the IAEA calibrates about 30-40 ionization chambers per year, of which about half are new chambers purchased by the IAEA for its Member States using Technical Cooperation funds. The IAEA database includes the calibration coefficients of 189 reference class ionization chambers of the following types: NE-2561/2611, NE-2571, W-30001/W-30010. The results of the calibrations and recalibrations of the ionization chambers in terms of air kerma and absorbed dose to water are presented and discussed. The ratio of 60 Co calibration coefficients N D,w /N K , labelled C K , was determined for all chambers. The use of C K as a chamber dependent parameter and quality control indicator to check the results of the routine IAEA calibrations is discussed. In the process of its routine calibrations, the IAEA identified a specific problem related to the W- 30001 ionization chambers. The stability of these chambers was found to exceed the 0.5% tolerance limit set by the International IEC standard. Other SSDLs reported similar findings. The manufacturer stopped the production of these W-30001 chambers to investigate the reasons for this anomalous behaviour. After identifying and correcting the problem, the manufacturer produced a new type of ionization chamber. Five of these chambers were tested at the IAEA and found to be within the tolerance limit

  6. IAEA Director General welcomes NPT consensus

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs that the Director General of the IAEA welcomed the adoption with consensus by the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons of the final document on the review and operation of the Treaty, and that he was pleased by the vote of confidence shown in the IAEA and its role in the implementation of the Treaty

  7. The public information programme of the IAEA

    International Nuclear Information System (INIS)

    Meyer, Hans-Friedrich

    1989-01-01

    The public information programme of the IAEA is deter-mined by two basic criteria: First by the Statute of the IAEA which defines its objectives as 'to seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world' as well as 'to ensure as far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose'; second by the fact that the IAEA is an intergovernmental organization, which means that it has to fulfill request of independent, sovereign governments. In a discussion of the public infomation program of the IAEA, three main fields of activities always have to be kept in mind: Nuclear applications in agriculture, medicine, industry, hydrology, research, etc.; The use of nuclear energy for electricity generation, here mainly the aspects of safety and economics; and safeguards. From this it can be understood that the public information activities of the IAEA must have different perspectives: There are non-controversial fields for public information work, such as ost all aspects of nuclear application employing radiation and Isotopes. -- There are activities of the IAEA where the work in general is not questioned but considered absolutely necessary. -- There are finally controversial fields, where the IAEA is blamed for being too promotional. Examples are the IAEA's activities in nuclear power program planning as well as in food irradiation. In these controversial fields, it is very important to look for long-term, issue-oriented strategies to communicate good factual information in perspective

  8. Typical IAEA inspection procedures for model plant

    International Nuclear Information System (INIS)

    Theis, W.

    1984-01-01

    This session briefly refers to the legal basis for IAEA inspections and to their objectives. It describes in detail the planning and performance of IAEA inspections, including the examination of records, the comparison of facility records with State reports, flow and inventory verifications, the design of statistical sampling plans, and Agency's independent verification measurements. In addition, the session addresses the principles of Material Balance and MUF evaluation, as well as the content and format of summary statements and related problems

  9. Newly elected IAEA Board of Governors

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives information about the election of 11 Member States to the IAEA Board of Governors, the 35-member policy-making body, during the 44th regular session of the IAEA's General Conference (18 - 22 September 2000, Austria Center, Vienna). The newly elected Member States are: Argentina, Egypt, Ghana, Ireland, Libyan Arab Jamahiriya, Mexico, Pakistan, Peru, Switzerland, Thailand, Ukraine. The other 24 Member States of the Board are also given

  10. Newsbriefs www.iaea.org. January 2002

    International Nuclear Information System (INIS)

    2002-01-01

    In this newsbrief the topics covered include: categories of risk, nuclear materials, nuclear facilities, and radioactive sources; a special session of IAEA experts meeting on the subject; financing the prevention of terrorism; nuclear security discussed by the IAEA Board of Governors; technical cooperation for security; use of electron beam scanning for mail safety; sustainable development; radioactive waste management; health programs in Latin America; landmine cleanup; clean water programmes

  11. The Y2K in the IAEA

    International Nuclear Information System (INIS)

    Winkels, J.

    1999-01-01

    Presentation includes description of the IAEA information Technology environment, its organisation, Year 2000 task force and its infrastructure status in the IAEA. The following challenges are cited: to solve the Year 2000 problem; to keep track on what is going on while introducing new technology; to realize that technology has an extreme influence on everyday life; to remove all technology that that is not really needed

  12. IAEA, Fukushima Prefecture Sign Cooperation Memorandum

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: IAEA Director General Yukiya Amano and the Governor of Fukushima Prefecture, Yuhei Sato, today signed a Memorandum of Cooperation confirming their willingness to implement concrete projects to help alleviate the consequences of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. The Memorandum, signed on the sidelines of the three-day Fukushima Ministerial Conference on Nuclear Safety, includes arrangements to promote cooperation in two key areas: one on radiation monitoring and remediation between the IAEA and Fukushima Prefecture, and the other on human health between the IAEA and Fukushima Medical University. The Memorandum also highlights plans for a training centre in Fukushima Prefecture to help reinforce emergency preparedness and response activities, supported by the Government of Japan and Fukushima Prefecture. An IAEA Response and Assistance Network (RANET) Capacity Building Centre will be designated, with IAEA radiation monitoring equipment to be deployed in case of need, and to provide training in emergency preparedness and response in Japan and the Asia Pacific region. 'With this framework, the wisdom of the international community as well as the IAEA will be utilised in the process of reconstruction in Fukushima', said Japan's Minister of Foreign Affairs, Koichiro Gemba, who attended the signing ceremony. 'I'm very much encouraged by the conclusion of this Memorandum and I believe this will serve to promote reconstruction in Fukushima', said Governor Sato. 'We will also be able to disseminate to the rest of the world the knowledge and experience to be gained from the activities that we are conducting, and we hope this will be a symbol of Fukushima'. 'The IAEA has expertise in the areas of remediation and decontamination, as well as environmental monitoring and human health'. said Director General Amano. 'It is our hope that we will support Fukushima and at the same time serve as a bridge connecting the Prefecture and the world

  13. Newly elected IAEA Board of Governors

    International Nuclear Information System (INIS)

    2001-01-01

    The document gives information about the election of 11 Member States to the IAEA Board of Governors, the 35-member policy-making body, during the 45th regular session of the IAEA's General Conference (17-21 September 2001, Austria Center, Vienna). The newly elected Member States are: Bulgaria, Burkina Faso, Chile, Colombia, Islamic Republic of Iran, Kuwait, Morocco, Philippines, Romania, Spain, and Turkey. The other 24 Member States of the Board are also given

  14. INAA of RM IAEA-155 whey powder

    International Nuclear Information System (INIS)

    Peng Lixin; Tian Weizhi

    1993-01-01

    An IAEA biological RM IAEA-155 whey powder was analysed for phosphorus, as well as other 24 elements by INAA. The Bremsstrahlung photons produced by 32 P is measured by a HpGe spectrometer. The interferences involved in P determination were comprehensively studied and this method was also applied to the determinations of P in several established biological NBS SRMs and proved to be reliable for a wide range of P contents in biological samples

  15. The International Atomic Energy Agency - IAEA

    International Nuclear Information System (INIS)

    Pezzutti, A.A.C.

    1980-01-01

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation [pt

  16. The public information programme of the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Hans-Friedrich [Division of Public Information, International Atomic Energy Agency, Vienna (Austria)

    1989-07-01

    The public information programme of the IAEA is deter-mined by two basic criteria: First by the Statute of the IAEA which defines its objectives as 'to seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world' as well as 'to ensure as far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose'; second by the fact that the IAEA is an intergovernmental organization, which means that it has to fulfill request of independent, sovereign governments. In a discussion of the public infomation program of the IAEA, three main fields of activities always have to be kept in mind: Nuclear applications in agriculture, medicine, industry, hydrology, research, etc.; The use of nuclear energy for electricity generation, here mainly the aspects of safety and economics; and safeguards. From this it can be understood that the public information activities of the IAEA must have different perspectives: There are non-controversial fields for public information work, such as ost all aspects of nuclear application employing radiation and Isotopes. -- There are activities of the IAEA where the work in general is not questioned but considered absolutely necessary. -- There are finally controversial fields, where the IAEA is blamed for being too promotional. Examples are the IAEA's activities in nuclear power program planning as well as in food irradiation. In these controversial fields, it is very important to look for long-term, issue-oriented strategies to communicate good factual information in perspective.

  17. Improving the Transparency of IAEA Safeguards Reporting

    International Nuclear Information System (INIS)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  18. The IAEA's safeguards systems. Ready for the 21st century

    International Nuclear Information System (INIS)

    1998-01-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  19. The IAEA's safeguards system. Ready for the 21st century

    International Nuclear Information System (INIS)

    1997-09-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? What assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification?

  20. IAEA reference materials for quality assurance of marine radioactivity measurements

    International Nuclear Information System (INIS)

    Povinec, P.P.; Pham, M.K.

    2001-01-01

    The IAEA's Marine Environment Laboratory has been assisting laboratories in Analytical Quality Control Services (AQCS) for the analysis of radionuclides in the marine environment since the early seventies. AQCS through world-wide and regional intercomparison exercises and the provision of reference methods and reference materials (RM) have been recognized as an important component of quality assurance/quality control. A total of 43 intercomparison exercises were organized and 37 RM were produced for marine radioactivity studies. All important marine matrices were covered, e.g., seawater, marine sediments of different chemical compositions, fish, shellfish and seaplants. RM were prepared from samples collected at contaminated sites (e.g., the Irish Sea, the Baltic Sea, the Arabian Sea, Mururoa and Bikini Atolls, etc.) as well as from sites affected only by global fallout (e.g., the Pacific Ocean). Available RM are listed in the IAEA biennial catalogue and can be purchased at a minimal price. An overview of prepared RM for radionuclides in marine matrices is presented and discussed in more detail. (author)

  1. Role of the IAEA's ALMERA network in harmonization of analytical procedures applicable worldwide for radiological emergencies

    International Nuclear Information System (INIS)

    Pitois, A.; Osvath, I.; Tarjan, S.; Groening, M.; Osborn, D.; )

    2016-01-01

    The International Atomic Energy Agency (IAEA) coordinates and provides analytical support to the worldwide network of Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA), consisting at the end of 2015 of 154 laboratories in 85 countries. This network, established by the IAEA in 1995, has for aim to provide timely and reliable measurement results of environmental radioactivity in routine monitoring and emergency situations. The IAEA supports the ALMERA laboratories in their routine and emergency response environmental monitoring activities by organizing proficiency tests and inter-laboratory comparison exercises, developing validated analytical procedures for environmental radioactivity measurement, and organizing training courses and workshops. The network also acts as a forum for sharing knowledge and expertise. The aim of this paper is to describe the current status of ALMERA analytical method development activities for radiological emergencies and the plans for further development in the field

  2. Environmental isotope hydrology laboratories in developing countries

    International Nuclear Information System (INIS)

    Gonfiantini, R.; Stichler, W.

    1991-01-01

    This article reports on the role, experience, and problems of environmental isotope hydrology laboratories in developing countries, based upon the IAEA's experience. It specifically offers guidance on important aspects of organization, staffing, and operation

  3. IAEA establishes International Seismic Safety Centre

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA today officially inaugurated an international centre to coordinate efforts for protecting nuclear installations against the effects of earthquakes. The International Seismic Safety Centre (ISSC), which has been established within the IAEA's Department of Nuclear Safety and Security, will serve as a focal point on seismic safety for nuclear installations worldwide. ISSC will assist countries on the assessment of seismic hazards of nuclear facilities to mitigate the consequences of strong earthquakes. 'With safety as our first priority, it is vital that we pool all expert knowledge available worldwide to assist nuclear operators and regulators to be well prepared for coping with major seismic events,' said Antonio Godoy, Acting Head of the IAEA's Engineering Safety Section and leader of the ISSC. 'The creation of the ISSC represents the culmination of three decades of the IAEA's active and recognized involvement in this matter through the development of an updated set of safety standards and the assistance to Member States for their application.' To further seismic safety at nuclear installations worldwide, the ISSC will: - Promote knowledge sharing among the international community in order to avoid or mitigate the consequences of extreme seismic events on nuclear installations; - Support countries through advisory services and training courses; and - Enhance seismic safety by utilizing experience gained from previous seismic events in member states. The centre is supported by a scientific committee of high-level experts from academic, industrial and nuclear safety authorities that will advise the ISSC on implementation of its programme. Experts have been nominated from seven specialized areas, including geology and tectonics, seismology, seismic hazard, geotechnical engineering, structural engineering, equipment, and seismic risk. Japan and the United States have both contributed initial funds for creation of the centre, which will be based at

  4. Nuclear accident dosimetry, Report on the Third IAEA intercomparison experiment at Vinca, Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-15

    The objective of this report is to present the results of the third IAEA intercomparison experiment held at the Boris Kidric Institute, Vinca, in May 1973. These experiments were a part of multi laboratory intercomparison programme sponsored by the IAEA for evaluation of nuclear accident dosimetry systems that ought to provide adequate information in the event of criticality accidents. This report deals with the data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation.

  5. The Cobalt-60 Research Facility at Seibersdorf; L'Installation de Recherche sur l'Iradiation au {sup 60}Co de Seibersdorf; Obluchayushchaya ustanovka s istochnikom Kobal'ta-60 reaktornogo tsentra v Zajbersdorfe; La Instalacion Experimental de {sup 60}Co de Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Weidinger, N.; Kaindl, K. [Institute Of Biology And Agriculture, Reactor Centre, Seibersdorf (Austria)

    1966-11-15

    The irradiation facility which is now under construction at Seibersdorf was designed especially for research on the International Fruit Juice Programme. The plant consists of two irradiation chambers, with a capacity of 30 kCi and 10 kCi, respectively. The first is proposed to irradiate quantities of fruit juice for feeding tests and for investigations in source technology. The other was especially designed for research purposes in microbiology and chemistry and has an optimal versatility in source configuration and position according to the experiment conditions. The biological shield, ordinary concrete with a density of about 2.4 ton/m{sup 3}, gives an outside dose- rate of 0.2 mR/h maximum; The rest position of both sources is a lead cylinder let.into the shielding concrete. Twelve stainless-steel tubes (six tubes for the small chamber), in which the cobalt rods are fitted, pass in a spheric gangway into the irradiation chamber. The {sup 60}Co rods of the 30 kCi facility, each with an outside length of 300 mm, consist of two linked parts. They may be arranged individually or in any combination within five seconds by an air pressure system. Different tubes with the respective curvature allow practically every arrangement of source geometry. The chamber, measuring 3 x 3 X 3 m inside, may be closed by a concrete door; a binocular periscope enables the scientist to observe the experiment during irradiation. The other facility, measuring 3.5 x 3 x 3 m inside, can be entered through a labyrinth and has a source activity of 10 kCi. Six rods,- with an outside length of 250 mm, may be moved individually by Teleflex cable. They can be stopped in any position desired, measured from the entrance into the chamber. For observing experiments, a monocular periscope system is installed. The room is controlled at a temperature of between -18 Degree-Sign C and +35 Degree-Sign C, with an accuracy of {+-}1 Degree-Sign C. Several tubes, up to a diameter of 300 mm, pass the concrete

  6. Certification of Trace Elements and Methyl Mercury Mass Fractions in IAEA-461 Clam (Gafrarium tumidum) Sample

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact exerted by large coastal cities on marine ecosystems is an issue of primary concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. The IAEA Environment Laboratories has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance, quality control and associated good laboratory practice are essential components of all marine environmental monitoring studies. Quality control procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess the reliability and comparability of measurement data. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. This publication describes the production of the IAEA-461 certified reference material, which was produced following ISO Guide 34:2009, General Requirements for the Competence of Reference Material Producers. A sample of approximately 60 kg of clams (Gafrarium tumidum) was collected in Noumea, New Caledonia, and processed at the IAEA Environment Laboratories to produce a certified reference material of marine biota. The sample contained certified mass fractions for arsenic, cadmium, calcium, chromium, cobalt, copper, iron, lead, mercury, methyl mercury, manganese, nickel, selenium, vanadium and zinc. The produced vials

  7. Statement on Iran by the IAEA Spokesperson

    International Nuclear Information System (INIS)

    2018-01-01

    Full text: In December 2015, IAEA Director General Yukiya Amano presented the Final Assessment on past and present outstanding issues regarding Iran’s nuclear programme to the IAEA Board of Governors. In the report, the Agency assessed that, before the end of 2003, an organizational structure was in place in Iran suitable for the coordination of a range of activities relevant to the development of a nuclear explosive device. Although some activities took place after 2003, they were not part of a coordinated effort. The Agency’s overall assessment was that a range of activities relevant to the development of a nuclear explosive device were conducted in Iran prior to the end of 2003 as a coordinated effort, and some activities took place after 2003. The Agency also assessed that these activities did not advance beyond feasibility and scientific studies, and the acquisition of certain relevant technical competences and capabilities. The same report stated that the Agency had no credible indications of activities in Iran relevant to the development of a nuclear explosive device after 2009. Based on the Director General’s report, the Board of Governors declared that its consideration of this issue was closed. In line with standard IAEA practice, the IAEA evaluates all safeguards-relevant information available to it. However, it is not the practice of the IAEA to publicly discuss issues related to any such information. (author)

  8. IAEA Nuclear Security Human Resource Development Program

    International Nuclear Information System (INIS)

    Braunegger-Guelich, A.

    2009-01-01

    The IAEA is at the forefront of international efforts to strengthen the world's nuclear security framework. The current Nuclear Security Plan for 2006-2009 was approved by the IAEA Board of Governors in September 2005. This Plan has three main points of focus: needs assessment, prevention, detection and response. Its overall objective is to achieve improved worldwide security of nuclear and other radioactive material in use, storage and transport, and of their associated facilities. This will be achieved, in particular, through the provision of guidelines and recommendations, human resource development, nuclear security advisory services and assistance for the implementation of the framework in States, upon request. The presentation provides an overview of the IAEA nuclear security human resource development program that is divided into two parts: training and education. Whereas the training program focuses on filling gaps between the actual performance of personnel working in the area of nuclear security and the required competencies and skills needed to meet the international requirements and recommendations described in UN and IAEA documents relating to nuclear security, the Educational Program in Nuclear Security aims at developing nuclear security experts and specialists, at fostering a nuclear security culture and at establishing in this way sustainable knowledge in this field within a State. The presentation also elaborates on the nuclear security computer based learning component and provides insights into the use of human resource development as a tool in achieving the IAEA's long term goal of improving sustainable nuclear security in States. (author)

  9. Plant breeding and genetics newsletter. No. 2

    International Nuclear Information System (INIS)

    1998-12-01

    This is the second issue of the Plant Breeding and Genetics Newsletter. The Newsletter will inform you about current activities of the FAO/IAEA sub-programme on plant breeding and genetics which is implemented by the Plant Breeding and Genetics Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (Vienna) in close collaboration with the Plant Breeding Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory (Seibersdorf)

  10. Plant breeding and genetics newsletter. No. 1

    International Nuclear Information System (INIS)

    1998-05-01

    This is the first issue of the Plant Breeding and Genetics Newsletter. The Newsletter will inform you about current activities of the FAO/IAEA sub-programme on plant breeding and genetics which is implemented by the Plant Breeding and Genetics Section of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture (Vienna) in close collaboration with the Plant Breeding Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory (Seibersdorf)

  11. XRF newsletter. No. 3, January 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This periodical XRF Newsletter is to inform the XRF laboratories in IAEA Member States on recent developments in the field of XRF spectrometry and to exchange views on fundamental and applied aspects of sampling, sample preparation, instrumentation, quality control, etc. A few selected examples of the recent activities in the IAEA XRF Laboratory and its results in the field of XRF are presented: the assessment of a new detectors for XRF analysis, the IAEA mailing list for XRF laboratories, the training opportunities at the IAEA Laboratories at Seibersdorf and the implementation of a quality assurance system in XRF laboratory

  12. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste between 2002 and 2007 which was followed in the years 2005-2010 by a more specific CRP on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. In parallel the status of the ADS technology for high level waste transmutation has been the focus of a study carried out by all the national and international organizations with an active programme on ADS, under the guidance of the IAEA Technical Working Group on Fast Reactors and ADS (TWG-FR). Finally, the benchmark analysis of two BN-600 reactor cores loaded with MOX fuel containing weapons-grade Pu and MOX fuel containing Pu and minor actinides from spent LWR fuel have been recently published. This paper will present the main results of these P and T activities as well as some new initiatives which have been discussed in recent meetings of the Technical Working Group on Nuclear Fuel Cycle Options (TWGNFCO) and TWG-FR. (authors)

  13. IAEA fundamental standards for protection against radiation

    International Nuclear Information System (INIS)

    1981-01-01

    The Governor's Counsel of the IAEA has just approved the revision of existing norms, previously prepared in cooperation with the ILO, WHO and OECD. The revised norms represent a great advance in the efforts to reduce risks for which there is no threshold value. A further initiative of the IAEA is the program of radiation protection standards for nuclear power stations. They form the first international instructions for a normalised basis of safety in nuclear power stations. The need for exchange of information was emphasised at the International Conference in Stockholm in 1980. The existing safety norms were considered adequate at the time. The IAEA activities in the field of standards, advice and technical help, exchange of information and training and emergency planning are also mentioned. (Auth.)

  14. IAEA Expert Team Returns from Iran

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A senior IAEA expert team is returning from Iran after two days of discussions with Iranian officials held on 20 and 21 February 2012. The meeting followed previous discussions held on 29 to 31 January 2012. During both the first and second round of discussions, the Agency team requested access to the military site at Parchin. Iran did not grant permission for this visit to take place. Intensive efforts were made to reach agreement on a document facilitating the clarification of unresolved issues in connection with Iran's nuclear programme, particularly those relating to possible military dimensions. Unfortunately, agreement was not reached on this document. 'It is disappointing that Iran did not accept our request to visit Parchin during the first or second meetings', IAEA Director General Yukiya Amano said. 'We engaged in a constructive spirit, but no agreement was reached'. (IAEA)

  15. Safety standards of IAEA for management systems

    International Nuclear Information System (INIS)

    Vincze, P.

    2005-01-01

    IAEA has developed a new series of safety standards which are assigned for constitution of the conditions and which give the instruction for setting up the management systems that integrate the aims of safety, health, life environment and quality. The new standard shall replace IAEA 50-C-Q - Requirements for security of the quality for safety in nuclear power plants and other nuclear facilities as well as 14 related safety instructions mentioned in the Safety series No. 50-C/SG-Q (1996). When developing of this complex, integrated set of requirements for management systems, the IAEA requirements 50-C-Q (1996) were taken into consideration as well as the publications developed within the International organisation for standardization (ISO) ISO 9001:2000 and ISO14001: 1996. The experience of European Union member states during the development, implementation and improvement of the management systems were also taken into consideration

  16. The IAEA Focuses on Global Nutritional Needs

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2014-01-01

    For over fifty years, the IAEA has been helping its Member States to harness peaceful nuclear science and technology to bring demonstrable benefits to their people. Nutrition is one area in which the IAEA’s partnership with Member States has steadily deepened. This issue of the IAEA Bulletin focuses on the IAEA’s work in nutrition. Topics include our initiatives to measure human milk intake in breastfed infants, lean body mass (muscle mass) in lactating mothers, and the bioavailability of iron in infants and young children. We also look at the paradox of the simultaneous occurrence of both undernutrition and overnutrition that is often found within communities, and even households, across the globe. The IAEA is committed to doing everything it can to make peaceful nuclear technology available to help give all the children of the world a brighter future

  17. The IAEA Focuses On Global Nutritional Needs

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2014-01-01

    For over fifty years, the IAEA has been helping its Member States to harness peaceful nuclear science and technology to bring demonstrable benefits to their people. Nutrition is one area in which the IAEA’s partnership with Member States has steadily deepened. This issue of the IAEA Bulletin focuses on the IAEA’s work in nutrition. Topics include our initiatives to measure human milk intake in breastfed infants, lean body mass (muscle mass) in lactating mothers, and the bioavailability of iron in infants and young children. We also look at the paradox of the simultaneous occurrence of both undernutrition and overnutrition that is often found within communities, and even households, across the globe. The IAEA is committed to doing everything it can to make peaceful nuclear technology available to help give all the children of the world a brighter future

  18. IAEA workshop and field trial at the Oak Ridge K-25 Site

    International Nuclear Information System (INIS)

    Hembree, D.M. Jr.; Ross, H.H.; Carter, J.A.

    1995-03-01

    In March 1994, members of the International Safeguards Department in the National Security Program Office (NSPO) hosted an environmental monitoring field trial workshop for International Atomic Energy Agency (IAEA) inspectors. The workshop was held at the Oak Ridge K-25 Site and its primary purpose was to train the inspectors in the techniques needed for effective environmental sample collection and handling. The workshop emphasized both sampling theory and practice. First, detailed techniques for swipe, vegetation, soil, biota, and water-associated sampling were covered in the classroom. Subsequently, the inspectors were divided into three groups for actual sample collection in and around the K-25 locale. The collected samples were processed by the Department of Energy (DOE) Network of Analytical Laboratories using established analytical techniques. This activity is part of the IAEA ''Programme 93+2 in. assessment of measures to enhance IAEA safeguards

  19. IAEA AQCS catalogue for reference materials and intercomparison exercises 1998/1999

    International Nuclear Information System (INIS)

    1999-01-01

    Fore more than thirty years the International Atomic Energy Agency (IAEA), through its Analytical Quality Control Services (AQCS) programme, has been assisting Member States' laboratories to maintain and improve the reliability of their analyses by organizing intercomparison exercises and by preparing and distributing biological, environmental and marine reference materials. The catalogue consists principally of two parts: The list of all available IAEA reference materials grouped into five categories: reference materials for radionuclides; reference materials for trace, minor and major elements, including oxides; reference materials for stable isotopes; reference materials for organic contaminants and methyl mercury containing materials. Lists of all available IAEA reference materials sorted by analytes. In addition information on recommended half-life data and suppliers of radioactive sources is provided. Planned intercomparisons are advertised and request forms for participation in intercomparisons are included. Forms for ordering reference materials, quality control spectra for gamma-spectrometry on diskettes and AQCS related publications are also provided

  20. IAEA receives Iraq's nuclear-related declaration

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The Director General of the International Atomic Energy Agency, Mohamed ElBaradei, announced that the IAEA received this evening, Sunday, 8 December 2002, at its Headquarters in Vienna, an approximately 2400 page declaration on Iraq's nuclear programme. The declaration consists of about 2100 pages in English and 300 pages in Arabic. The declaration was submitted by the Government of Iraq in response to paragraph 3 of Security Council resolution 1441 (8 November 2002), which requires Iraq to provide to UNMOVIC, the IAEA and to the Security Council, not later than 30 days of the date of that resolution, with 'currently accurate, full, and complete declaration of all aspects of its programmes to develop chemical, biological, and nuclear weapons, ballistic missiles, and other delivery systems... as well as all other chemical, biological, and nuclear programmes, including any which it claims are for purposes not related to weapon production or material'. 'The IAEA will immediately begin to assess this important new document,' said Mr. ElBaradei, 'including the painstaking and systematic cross-checking of the information provided by Iraq against information which the IAEA already has, information that it expects to receive from other Member States, as contemplated in resolution 1441, and results of past and present Agency verification activities.' Complete assessment of the declaration will be time consuming, particularly in light of the need to translate the 300 pages of Arabic text into English. However, the IAEA expects to be able to provide a preliminary analysis of the document to the Security Council within the next ten days, with a fuller assessment to be provided when it reports to the Council at the end of January. (IAEA)

  1. Relations between SSAC and the IAEA

    International Nuclear Information System (INIS)

    Buechler, C.

    1985-01-01

    Nuclear and non nuclear material, services, facilities, equipment and information which are to be used for legally defined purposes may be deliberately diverted from these purposes. Actions aimed at the detection and deterrence of this diversion are known as safeguards. The development of safeguard regulations within the IAEA is described from a historical perspective in part 1 of this report. In part 2 potential divertors and diversion methods are described. Part 3 contains a description of current IAEA safeguards implementation, including discussions of accountancy, surveillance, containment and verification

  2. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The Director General of the IAEA, Yukiya Amano, will travel to Tehran this Sunday, 20 May 2012, to discuss issues of mutual interest with high Iranian officials. In the course of his one-day working visit, on Monday 21 May 2012 the Director General will meet the Secretary of Iran's Supreme National Security Council, His Excellency Saeed Jalili, and other senior representatives of the Iranian government. Herman Nackaerts, Deputy Director General for Safeguards, and Rafael Mariano Grossi, Assistant Director General for Policy, will accompany the Director General. (IAEA)

  3. IAEA support for operating nuclear reactors

    International Nuclear Information System (INIS)

    Akira, O.

    2010-01-01

    The IAEA programme, under the pillar of science and technology, provides support to the existing fleet of nuclear power plants (NPPs) for excellence in operation, support to new countries for infrastructure development, stimulating technology innovation for sustainable development and building national capability. Practical activities include methodology development, information sharing and providing guidance documents and state-of-the-art reports, networking of research activities, and review services using guidance documents as a basis of evaluation. This paper elaborates more on the IAEA's activities in support of the existing fleet of nuclear power plants

  4. Have IAEA safety precautions failed in Iraq

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    Israel's air raid on the Tamuz-1 research reactor (Osirak) in Iraq has given new impetus to the discussion of the potential and limits of international control as carried out by the IAEA in the framework of the non-proliferation treaty. A lack of faith in the effectiveness of IAEA control must be assuemd to be one of the main reasons for this attack. Prof. Grimm, vice chairman of the nuclear safeguards department of the International Atomic Energy Agency, comments on the possibility of producing nuclear weapons with the aid of this reactor and on the efficiency of present and projected nuclear safeguards measures. (orig.) [de

  5. IAEA Remediation Mission Issues Final Report

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed their assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). Their Final Report, delivered to the Japanese authorities, is available here. ''A lot of good work, done at all levels, is on-going in Japan in the area of environmental remediation,'' said Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. In the report, Japan is encouraged to continue its remediation efforts, taking into account the advice provided by the Mission. ''In the early phases of the Fukushima Daiichi accident, a very cautious approach was adopted by the Japanese authorities in terms of dealing with the handling of residue materials. It is considered right to do so,'' Lentijo said. ''However, at this point in time, we see that there is room to take a more balanced approach, focussing on the real priority areas, classifying residue materials and adopting appropriate remediation measures on the basis of the results of safety assessments for each specific situation.'' The IAEA stands ready to support Japan as it continues its efforts to remediate the environment in the area off-site the Fukushima Daiichi NPP. The IAEA sent the mission to Japan from 7 to 15 October 2011 following a request from the country's government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several ministries and institutions. A Preliminary Summary Report was issued on 14 October. Background The accident at the Fukushima Daiichi NPP has led to elevated levels of radiation over large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA

  6. IAEA Safeguards: Present status and experience gained

    International Nuclear Information System (INIS)

    Thorne, L.; Buechler, C.; Haegglund, E.

    1983-01-01

    IAEA safeguards are at the present under critical review with regard to their purpose and effectiveness. This paper describes the development of the IAEA Safeguards System from the early days, when procedures were developed on an ad hoc basis, to the present day. The development of State Systems of Accounting for and Control of Nuclear Material (SSAC), and of sophisticated instrumentation, has been necessary to deal with the rapid growth in the quantities of nuclear material and in the number of facilities under safeguards. The paper also discusses some of the managerial and organizational issues that are inherent in such a large international inspectorate. (author)

  7. Status of the IAEA safety standards programme

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation describes the status of the IAEA safety standards program to May 2002. The safety standards program overcome whole main nuclear implementations as General safety, Nuclear safety, Radiation safety, Radioactive waste safety, and Transport safety. Throughout this report the first column provides the list of published IAEA Safety Standards. The second gives the working identification number (DS) of standards being developed or revised. The bold type indicates standard issued under the authority the Board of Governors, others are issued under authority of the Director General. The last column provides the list of Committees, the first Committee listed has the lead in the preparation and review of the particular standard

  8. IAEA Safeguards: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A. [Los Alamos National Laboratory; Hypes, Philip A. [Los Alamos National Laboratory

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  9. Participation in the 2001 IAEA interlaboratory comparison on geothermal water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Jeon, Young Shin; Choi, Ke Chun; Pyo, Hyung Yul; Kim, Yong Bok; Kim, Jong Gu; Kim, Won Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Korea Atomic Energy Research Institute Analytical laboratory participated in the 2001 IAEA Interlaboratory Comparison on chemical analysis of Geothermal Water containing high salinity organized by IAEA Hydrology Laboratory(INT/0/060). 14 items such as pH, electroconductivity, HCO{sub 3}, Cl, F, SO{sub 4}, SiO{sub 2}, B, Li, Na, K, Ca, Mg were analyzed. The result of this program showed that Korea Atomic Energy Research Institute laboratory was ranked within 15% range from top level. Major analytical methods were applied for this activity such as ICP-AES, AAS, IC, pH meter, conductometer and acid titration. 8 refs., 48 figs., 9 tabs. (Author)

  10. Report on intercomparison IAEA/V-10 of the determination of trace elements in hay powder

    International Nuclear Information System (INIS)

    Pszonicki, L.; Hanna, A.N.

    1985-07-01

    Hay plays an important role in the natural production circle of human nutrition. The level of its pollution is an important factor which can effect various branches of the food industry. The aim of the reported exercise organized by the IAEA was to provide the participating laboratories an opportunity to check their analytical performance by comparing their results with the results of other laboratories and to establish the concentration level of trace elements for certification purposes. The hay powder was analyzed by 50 laboratories from 25 countries for 42 elements. Neutron activation, atomic absorption, atomic emission and X-ray spectroscopy were predominantly used as analytical methods. The results provided by the participants of the reported intercomparison exercise have enabled to certify the concentration of eighteen trace and minor elements and to establish non-certified information values for the concentration of an additional twelve elements in Hay Powder IAEA/V-10

  11. Reference Material IAEA 434: Naturally Occurring Radionuclides in Phosphogypsum

    International Nuclear Information System (INIS)

    2010-01-01

    Phosphogypsum is generated as a by-product of the phosphoric acid based fertilizer industry. The discharge of phosphogypsum on earth surface deposits is a potential source of enhanced natural radiation and heavy metals, and the resulting environmental impact should be considered carefully to ensure safety and compliance with environmental regulations. In addition, phosphogypsum can be used to make several building materials and it is used in agriculture as a conditioner to maintain soil productivity in areas where soils are poor and erode easily. A reliable determination of naturally occurring radionuclides in phosphogypsum is necessary to comply with the radiation protection and environmental regulations. The IAEA-434 will assist laboratories in the IAEA Member States in validating their analytical methods for the determination of naturally occurring radionuclides in phosphogypsum and to control the quality of the produced analytical results. Reference values for the massic activities and associated standard uncertainties were established for: Pb-210, Ra-226, Th-230, U-234 and U-238. During sample production and certification, the requirements for reference material production and certification as stated in ISO guides 34 and 35 were taken into account. This report summarizes the preparation and certification process

  12. Gift from Finland

    International Nuclear Information System (INIS)

    1964-01-01

    An instrument worth $19 000 for the analysis of nuclear radiation, donated by Finland to IAEA, was handed over by the Finnish Ambassador, Mr. Otso Wartiovaara, to the Director General of IAEA, Dr. Sigvard Eklund, at the Agency's laboratory at Seibersdorf on 22 January. The instrument, a multi-channel analyzer with 512 channels, was constructed in Finland. It is being used in connection with all the major Agency projects under way at Seibersdorf, such as the standardization of radionuclides, agricultural research, and analytical work carried out at the request of Member States

  13. Participation in IAEA proficiency test exercise on major, minor and trace elements in ancient Chinese ceramic (IAEA-CU-2006-06) using low power research reactor

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Zaidi, J.H.

    2011-01-01

    A proficiency test (PT) exercise was offered by the International Atomic Energy Agency (IAEA) for major, minor and trace elements in Chinese ceramic reference material (IAEA-CU-2006-06). Neutron activation analysis (NAA) laboratory at PINSTECH, Pakistan participated in the exercise and submitted the results for 28 elements. The aim of participation was to develop a suitable methodology for accurate measurement of as many elements as possible in ceramic material using a low power reactor (PARR-2) as this would help future investigation in a project on the authenticity of art objects, for provenance, conservation and management of ancient cultural heritage of the country. After receiving the final report of the PT exercise, a critical review of our data and final scoring of each element is made to check the suitability of our methodology and reliability of the acquired data. Most of the reported results passed different statistical evaluation criterion such as relative bias, z-score and u-scores and ratio of our results and IAEA target values. One element (Yb) falls in the unacceptable range of relative bias and z-scores. Hf and Tb showed slightly high z-scores within the questionable range. Ho, Mo and Sn were determined during this study but their results were not submitted to the IAEA. The confidence of accuracy observed for most of the elements in ceramic material has made it mandatory to report their results as information values. (author)

  14. Return of IAEA assistance team from Thailand

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs about the return from Thailand of the IAEA team sent (upon the request of the Thai Government under the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency) to Bangkok to help Thai counterparts in the wake of an accident involving a discarded radioactive cobalt 60 source used in hospitals

  15. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  16. IAEA Nuclear Security Programme Combating Nuclear Terrorism

    International Nuclear Information System (INIS)

    2010-01-01

    IAEA Plans of activities include, General Conference in September 2001 which reviewed activities relevant to preventing nuclear terrorism and proposed master plan. The Board of Governors approved new Nuclear Security Plan for the next four years. Three activity areas are; - needs assessment, analysis and coordination, prevention and detection and response.

  17. 17. IAEA fusion energy conference. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Book of extended synopses of the papers, accepted by a international programme committee for presentation at the 17th IAEA Fusion Energy Conference in Yokohama, Japan. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory

  18. IAEA INTOR workshop report, group 8

    International Nuclear Information System (INIS)

    Tamura, Sanae; Shimada, Ryuichi; Miya, Naoyuki; Shinya, Kichiro; Kishimoto, Hiroshi

    1979-10-01

    This report provides material for discussion in Group 8, Power Supply and Transfer, of the IAEA Workshop on INTOR. A new system for the poloidal field power supply for INTOR is proposed and its overall system design is described. The results of simulation calculation of the system are also given. (author)

  19. New IAEA guidance on safety culture

    International Nuclear Information System (INIS)

    Haage, Monica; )

    2012-01-01

    Monica Haage described a project for Kozloduy Nuclear Power Plant in Bulgaria which was also funded by the Norwegian government. This project included the development of guidance documents and training on self-assessment and continuous improvement of safety culture. A draft IAEA safety culture survey was also developed as part of this project in collaboration with St Mary's University, Canada. This project was conducted in parallel with an IAEA project to develop new safety reports on safety culture self-assessment and continuous improvement. A safety report on safety culture during the pre-operational phases of NPPs has also been drafted. The IAEA approach to safety culture assessment was outlined and core principles of the approach were discussed. These include the use of several assessment methods (survey, interview, observation, focus groups, document review), and two distinct levels of analysis. The first is a descriptive analysis of the observed cultural characteristics from each assessment method and overarching themes. This is followed by a 'normative' analysis comparing what has been observed with the desirable characteristics of a strong, positive, safety culture, as defined by the IAEA safety culture framework. The application of this approach during recent Operational Safety Assessment Review Team (OSART) missions was described along with key learning points

  20. Inspections talks with IAEA again broken off

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    North Korea again appears likely to resist more detailed safeguards inspections of its disputed nuclear facilities by the International Atomic Energy Agency. The country's loner status was reinforced during the IAEA General Conference in September, when no other nation joined North Korea in voting against the placement of the inspection issue on the conference's agenda

  1. Concepts of IAEA nuclear materials accounting

    International Nuclear Information System (INIS)

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  2. 17. IAEA fusion energy conference. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Book of extended synopses of the papers, accepted by a international programme committee for presentation at the 17th IAEA Fusion Energy Conference in Yokohama, Japan. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory Refs, figs, tabs

  3. Holy See participation in the IAEA

    International Nuclear Information System (INIS)

    1969-01-01

    The Holy See has participated in every General Conference of the IAEA and has made a special contribution in Vienna to international co-operation and the development of the peaceful atom. On August 20, 1957 the Holy See became a full member of the Agency. (author)

  4. IAEA Director General to visit Libya

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: Dr. Mohamed ElBaradei announced today that he will visit the Libyan Arab Jamahiriya (Libya) in the immediate future with a team of senior IAEA technical experts. 'The purpose of my visit will be to initiate an in-depth process of verification of all of Libya's past and present nuclear activities', Dr. ElBaradei said in a news conference. 'We shall define the corrective actions that need to be taken and consult on the necessary steps to eliminate any weapons related activities.' The announcement follows a meeting held in Vienna on 20 December 2003 between Dr. ElBaradei and H.E. Engineer Matooq Mohamed Matooq, Assistant Secretary for Services Affairs of the General People's Committee of Libya. In that meeting, Mr. Matooq informed Dr. ElBaradei of Libya's decision to eliminate 'materials, equipments and programmes which lead to the production of internationally proscribed weapons'. The Agency was also informed that Libya had been engaged for more than a decade in the development of a uranium enrichment capability. This included importing natural uranium and centrifuge and conversion equipment and the construction of now dismantled pilot scale centrifuge facilities. Some of these activities should have been, but were not, reported to the IAEA under Libya's Safeguards Agreement with the IAEA. Mr. Matooq stated, however, that Libya's nuclear enrichment programme was at an early stage of development and that no industrial scale facility had been built, nor any enriched uranium produced. Libya has asked the IAEA to ensure through verification that all of Libya's nuclear activities will henceforth be under safeguards and exclusively for peaceful purposes. In that regard, Libya has agreed to take the necessary steps to conclude an Additional Protocol to its NPT Safeguards Agreement, which will provide the IAEA with broader inspection rights, and to pursue with the IAEA a policy of full transparency and active co-operation. Dr. ElBaradei said, 'Libya's decision to

  5. Proposed letter to Hans Blix, Director General of the IAEA

    International Nuclear Information System (INIS)

    1994-01-01

    A draft report prepared by the IAEA Secretariat outlining a possible model for sharing responsibilities between various parties on behalf of a postulated advanced reactor project -- that would include an opportunity for IAEA participation is discussed

  6. The IAEA and Control of Radioactive Sources

    International Nuclear Information System (INIS)

    Dodd, B.

    2004-01-01

    The presentation discusses the authoritative functions and the departments of the IAEA, especially the Department of Nuclear Safety and Security and its Safety and Security of Radiation Sources Unit. IAEA safety series and IAEA safety standards series inform about international standards, provide underlying principles, specify obligations and responsibilities and give recommendations to support requirements. Other IAEA relevant publications comprise safety reports, technical documents (TECDOCs), conferences and symposium papers series and accident reports. Impacts of loss of source control is discussed, definitions of orphan sources and vulnerable sources is given. Accidents with orphan sources, radiological accidents statistic (1944-2000) and its consequences are discussed. These incidents lead to development of the IAEA guidance. The IAEA's action plan for the safety of radiation sources and the security of radioactive material was approved by the IAEA Board of Governors and the General Conference in September 1999. This led to the 'Categorization of Radiation Sources' and the 'Code of Conduct on the Safety and Security of Radioactive Sources'. After 0911 the IAEA developed a nuclear security plan of activities including physical protection of nuclear material and nuclear facilities, detection of malicious activities involving nuclear and other radioactive materials, state systems for nuclear material accountancy and control, security of radioactive material other than nuclear material, assessment of safety and security related vulnerability of nuclear facilities, response to malicious acts, or threats thereof, adherence to and implementation of international agreements, guidelines and recommendations and nuclear security co-ordination and information management. The remediation of past problems comprised collection and disposal of known disused sources, securing vulnerable sources and especially high-risk sources (Tripartite initiative), searching for

  7. IAEA safeguards and non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  8. IAEA safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  9. Nuclear power information at the IAEA

    International Nuclear Information System (INIS)

    Spiegelberg-Planer, R.

    1999-01-01

    The reliable and adequate supply of energy, and especially electricity, is necessary not only for economic development but, for economic and political stability. Since its establishment in the second half of the 20th century, nuclear power has evolved from the research and development stage to a mature industry that supplies more than 17% of the world's total electricity. Well designed, constructed and operated nuclear power plants have proved to be reliable, safe and economic. Although many countries are heavily reliant on nuclear power, in the last decade, expansion of nuclear power has been almost stagnating in the Western industrialized world, experiencing a low growth in Eastern Europe and expanding only in East Asia. On one side, one of the most important aims of the IAEA is to support the national effort to improve the nuclear power generation and to assist in promoting improvements in their safe, reliable and economic performance. On the other side, the IAEA also provides the only truly international forum for exchange, collection and dissemination of information in many areas related to nuclear energy. The Power Reactor Information System, PRIS, is one fundamental tool for these activities. The PRIS database is managed by the staff of the Nuclear Power Division in the IAEA. In the scope of PRIS various publications and reports have been published, as well as the IAEA has been satisfying request from Member States ranging from simple query to complex analysis. This paper presents an overview of the status of nuclear power world-wide and the related IAEA activities on collecting and disseminating nuclear power information. (author)

  10. Nuclear power information at the IAEA

    International Nuclear Information System (INIS)

    Spiegelberg-Planer, R.

    2001-01-01

    The reliable and adequate supply of energy, and especially electricity, is necessary not only for economic development but, for economic and political stability. Since its establishment in the in the second half of the 20th century, nuclear power has evolved from the research and development stage to a mature industry that supplies more than 17% of the world's total electricity. Well designed, constructed and operated nuclear power plants have proved to be reliable, safe and economic. Although many countries are heavily reliant on nuclear power, in the last decade, expansion of nuclear power has been almost stagnating in the Western industrialized world, experiencing a low growth in Eastern Europe and expanding only in East Asia. On one side, one of the most important aims of the IAEA is to support the national effort to improve the nuclear power generation and to assist in promoting improvements in their safe, reliable and economic performance. On the other side, the IAEA also provides the only truly international forum for exchange, collection and dissemination of information in many areas related to nuclear energy. The Power Reactor Information System, PRIS, is one fundamental tool for these activities. The PRIS database is managed by the staff of the Nuclear Power Division in the IAEA. In the scope of PRIS various publications and reports have been published, as well as the IAEA has been satisfying request from Member States ranging from simple query to complex analysis. This paper presents an overview of the status of nuclear power world-wide and the related IAEA activities on collecting and disseminating nuclear power information. (author)

  11. Overview of IAEA Action Plan on Nuclear Safety

    International Nuclear Information System (INIS)

    Monti, Stefano

    2012-01-01

    The IAEA Action Plan represents a work programme to strengthen and improve nuclear safety world wide. The plan identifies actions for Member States and the IAEA. Success depends upon: • Cooperation between IAEA, Member States, and other stakeholders; • Availability of appropriate financial resources (MS voluntary contributions)

  12. Making a real difference: Working for the IAEA

    International Nuclear Information System (INIS)

    2009-01-01

    The International Atomic Energy Agency (IAEA) offers challenging assignments and provides a stimulating multicultural environment for people who are interested in international work experience in a specific area of expertise. This brochure provides general information on the possibilities for employment as a Professional staff member of the IAEA and other information which may be useful to persons interested in joining the IAEA's Professional staff.

  13. Intercomparison of radionuclide measurements in marine sediment sample IAEA-135

    International Nuclear Information System (INIS)

    Ballestra, S.; Gastaud, J.; Lopez, J.J.; Parsi, P.; Vas, D.

    1993-08-01

    The results of an intercomparison exercise on a marine sediment from Irish Sea, IAEA-135, designed for the determination of artificial and natural radionuclides levels, are reported. The data from 151 laboratories representing 51 countries have been evaluated. The following are the recommended values, with confidence intervals, for 40 K, 60 Co, 134 Cs, 137 Cs, 154 Eu, 155 Eu, 226 Ra, 228 Ra, 232 Th, 238 Pu, 239+240 Pu (Reference date: 1 January 1992). Information values for 57 Co, 90 Sr, 106 Ru, 125 Sb, 210 Pb, 210 Po, 228 Th, 230 Th, 234 U, 235 U, 238 U and 241 Am are also reported. All values are expressed in Bq kg -1 dry weight. (author)

  14. Intercomparison of radionuclide measurements in marine sediment sample IAEA-367

    Energy Technology Data Exchange (ETDEWEB)

    Ballestra, S; Lopez, J J; Gastaud, J; Vas, D; Noshkin, V

    1991-08-01

    The results of an intercomparison exercise on a Pacific Ocean sediment sample, IAEA-367, designed for the determination of artificial and natural radionuclides levels, are reported. The data from 81 laboratories representing 37 countries have been evaluated. The following are the recommended values, with confidence intervals, for {sup 60}Co, {sup 90}Sr, {sup 137}Cs, {sup 239+240}Pu (Reference date: 1 January 1990). Information values for {sup 155}Eu, {sup 238}Pu, {sup 241}Am, and {sup 241}Pu are reported. Information values for the following natural radionuclides {sup 40}K, {sup 226}Ra, {sup 228}Th, {sup 230}Th, {sup 234}U, {sup 235}U and {sup 238}U are also reported. (author)

  15. Intercomparison of radionuclide measurements in marine sediment sample IAEA-135

    Energy Technology Data Exchange (ETDEWEB)

    Ballestra, S; Gastaud, J; Lopez, J J; Parsi, P; Vas, D

    1993-08-01

    The results of an intercomparison exercise on a marine sediment from Irish Sea, IAEA-135, designed for the determination of artificial and natural radionuclides levels, are reported. The data from 151 laboratories representing 51 countries have been evaluated. The following are the recommended values, with confidence intervals, for {sup 40}K, {sup 60}Co, {sup 134}Cs, {sup 137}Cs, {sup 154}Eu, {sup 155}Eu, {sup 226}Ra, {sup 228}Ra, {sup 232}Th,{sup 238}Pu, {sup 239+240}Pu (Reference date: 1 January 1992). Information values for {sup 57}Co, {sup 90}Sr, {sup 106}Ru, {sup 125}Sb, {sup 210}Pb, {sup 210}Po, {sup 228}Th, {sup 230}Th, {sup 234}U, {sup 235}U, {sup 238}U and {sup 241}Am are also reported. All values are expressed in Bq kg{sup -1} dry weight. (author)

  16. Intercomparison of radionuclide measurements in marine sediment sample IAEA-368

    Energy Technology Data Exchange (ETDEWEB)

    Ballestra, S; Lopez, J J; Gastaud, J; Parsi, P; Vas, D; Noshkin, V

    1991-08-01

    The results of an intercomparison exercise on a Pacific Ocean sediment sample, IAEA-368, designed for the determination of artificial and natural radionuclides levels, are reported. The data from 89 laboratories representing 37 countries have been evaluated. The following are the recommended values, with confidence intervals, for {sup 60}Co, {sup 155}Eu, {sup 210}7Pb, {sup 226}Ra, {sup 238}U, {sup 238}Pu and{sup 239+240}Pu (Reference date: 1 January 1990). Information values for {sup 40}K, {sup 90}Sr, {sup 137}Cs, {sup 228}Th, {sup 230}Th, {sup 232}Th, {sup 234}U, {sup 235}U and {sup 241}Am are also reported. (author)

  17. Intercomparison of radionuclide measurements on marine sediment sample IAEA-300

    International Nuclear Information System (INIS)

    Ballestra, S.; Gastaud, J.; Lopez, J.J.; Parsi, P.; Vas, D.

    1994-09-01

    The results of an intercomparison exercise on a sediment from Baltic Sea, IAEA-300, designed for the determination of artificial and natural radionuclides' levels, are reported. The data from 159 laboratories representing 51 countries have been evaluated. The following are the recommended values, with confidence intervals, 40 K, 60 Co, 125 Sb, 134 Cs, 137 Cs, 155 Eu, 210 Pb, 210 Po, 228 Ra, 234 U, 238 U, 239+240 Pu and 241 Am. Information values for 54 Mn, 90 Sr, 226 Ra, 228 Th, 230 Th, 232 Th, 235 U and 238 Pu are also reported. All values are given on the reference date of 1 January 1993 and expressed in Bq kg -1 dry weight. (author)

  18. Report on the intercomparison run IAEA-156 radionuclides in clover

    International Nuclear Information System (INIS)

    Strachnov, V.; Valkovic, V.; Dekner, R.

    1991-01-01

    This report contains the results of the intercomparison IAEA-156 on the determination of radionuclides in clover. Initially participants were requested to determine the levels of 134 Cs, 137 Cs, 40 K, 90 Sr and invited to provide data for other radionuclides. The participants included 46 laboratories located in 25 countries, and statistical evaluation of their data yield recommended values for these four radionuclides. Additional radionuclides reported were 210 Pb, 239 Pu and 125 Sb; however, insufficient data exists to statistically determine recommended values for these radionuclides. The following are the recommended values, with confidence intervals, for the most frequently measured radionuclides (reference date: 1 August 1986): 134 Cs 132.1 Bq/kg (126.4-137.7); 137 Cs 264 Bq/kg (254-274); 40 K 657 Bq/kg (637-676); 90 Sr 14.8 Bq/kg (13.4-16.3). Figs and tabs

  19. Intercomparison of radionuclide measurements on marine sediment sample IAEA-300

    Energy Technology Data Exchange (ETDEWEB)

    Ballestra, S; Gastaud, J; Lopez, J J; Parsi, P; Vas, D

    1994-09-01

    The results of an intercomparison exercise on a sediment from Baltic Sea, IAEA-300, designed for the determination of artificial and natural radionuclides' levels, are reported. The data from 159 laboratories representing 51 countries have been evaluated. The following are the recommended values, with confidence intervals, {sup 40}K, {sup 60}Co, {sup 125}Sb, {sup 134}Cs, {sup 137}Cs, {sup 155}Eu, {sup 210}Pb, {sup 210}Po, {sup 228}Ra, {sup 234}U, {sup 238}U, {sup 239+240}Pu and {sup 241}Am. Information values for {sup 54}Mn, {sup 90}Sr, {sup 226}Ra, {sup 228}Th, {sup 230}Th, {sup 232}Th, {sup 235}U and {sup 238}Pu are also reported. All values are given on the reference date of 1 January 1993 and expressed in Bq kg{sup -1} dry weight. (author)

  20. Quality audit service of the IAEA for radiation processing dosimetry

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1996-01-01

    The mandate of the International Atomic Energy Agency includes assistance to Member States to establish nuclear technologies safely and effectively. In pursuit of this, a quality audit service for dosimetry relevant to radiation processing was initiated as a key element of the High-Dose Standardization Programme of the IAEA. The standardization of dosimetry for radiation processing provides a justification for the regulatory approval of irradiated products and their unrestricted international trade. In recent times, the Agency's Dosimetry Laboratory has placed concentrated effort towards establishing a quality assurance programme based on the ISO 9000 series documents. The need for reliable and accurate dosimetry for radiation processing is increasing in Member States and we can envisage a definite role for the SSDLs in such a programme. (author). 10 refs, 3 figs

  1. Comparison of NDA and DA measurement techniques for excess Pu powders at the Hanford Site: Operator and IAEA experience

    International Nuclear Information System (INIS)

    Welsh, T.L.; McRae, L.P.; Delegard, C.H.

    1995-06-01

    Quantitative physical measurements are necessary components of the International Atomic Energy Agency (IAEA) nuclear material safeguards verification regime. In December 1994, IAEA safeguards were initiated on an inventory of plutonium-bearing oxide and scrap items in Vault 3 of the 2736-Z Building of the Plutonium Finishing Plant on the United States Department of Energy's (USDOE) Hanford Site. The material originated in the United States nuclear weapons complex. The diversity of the chemical form and the heterogenous physical form of the plutonium in this inventory were expected to challenge the target precision and accuracy of methods employed by IAEA: quantitative destructive analytical techniques (which are susceptible to sampling error) and quantitative coincident neutron measurements (which rely on knowledge of the material's chemical form and purity). Because of the diverse and heterogenous nature of plutonium-bearing scrap, plant operations increasingly have adopted calorimetric techniques both for item inventory measurements and for verification purposes. During the recent advent of IAEA safeguards at Vault 3, a set of destructive and nondestructive methods were applied to a number of inventory items (cans of plutonium-bearing powders) with widely ranging chemical purities. Results of these measurements, gathered by the operator's and IAEA's laboratories and instruments as well as by instruments from Pacific Northwest Laboratory and USDOE's Los Alamos National Laboratory (LANL), are presented and statistically compared

  2. Global nuclear developments and the IAEA Director General Mohamed ElBaradei reviews achievements, challenges at IAEA General Conference

    International Nuclear Information System (INIS)

    2000-01-01

    In a statement to the 44th regular session of the Agency's General Conference (18 - 22 September 2000, Austria Center Vienna), the IAEA Director General reviewed nuclear developments from the IAEA perspectives. In this connection, the Director General signalled the IAEA's achievements and its readiness to provide its services as may be requested in response to global developments. He also underlined present and future challenges shaping the IAEA agenda, including financial challenges

  3. Report on the intercomparison run and certified reference material IAEA-381. Radionuclides in Irish sea water

    International Nuclear Information System (INIS)

    Povinec, P.P.; Pham, M.K.; Ballestra, S.

    1999-01-01

    The accurate and precise determinations of radionuclide concentrations in marine samples are important aspects of marine radioactivity assessments and the use of radionuclides in studies of oceanographic processes. To address the problem of data quality, the IAEA Marine Environment Laboratory (MEL) in Monaco has conducted intercomparison exercises on radionuclides in marine samples for many years as part of its contribution to the IAEA's programme of Analytical Quality Control Services (AQCS). For this intercomparison exercise, the Federal Maritime and Hydrographic Agency, Hamburg, Germany (BSH) collected sea water from the Irish Sea in 1993. IAEA-MEL distributed sample aliquots during 1995-1996 for intercomparison of anthropogenic and natural radionuclides. About 80 laboratories world-wide were approached with a questionnaire for participation. Of these, only 43 accepted the invitation because of financial constraints (the participating laboratories were asked to pay transportation expenses). As the sample was collected in the Irish Sea, elevated levels of anthropogenic radionuclides were expected due to discharges from the Sellafield reprocessing plant. Participants were informed that the expected activities for anthropogenic radionuclides would be in the ranges: 90 Sr: 50-500 Bq/kg, 137 Cs: 100-1000 Bq/kg, 239+240 Pu: 1-50Bq/kg, 241 Am: 1-50Bq/kg. This report describes the results obtained from 28 laboratories on anthropogenic and natural radionuclide determinations in sea water

  4. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  5. Sustaining IAEA Neutron Coincidence Counting: Past, Present and Future

    International Nuclear Information System (INIS)

    Longo, J.; Schaffer, K.M.; Nordquist, H.

    2015-01-01

    Los Alamos National Laboratory's IAEA Neutron Coincidence Counting (INCC) code is the standard tool for neutron coincidence counting measurements. INCC software and its' predecessors were originally implemented in the 1970s. The measurement and analysis techniques perfected in the code arise from many years of laboratory and field experience by nuclear engineers and physicists. Covering the full arc of INCC's lifecycle, we discuss the engineering approaches used for conception, original development, worldwide deployment of the stand-alone Windows application, more than a decade of sustained maintenance support, and our recent work to carry INCC successfully into future applications. We delve into the recent re-architecture of the INCC code base, an effort to create a maintainable and extensible architecture designed to preserve the existing INCC code base while adding support for new analyzes and instruments (e.g., List Mode PTR-32 and the List Mode Multiplicity Module). INCC now consists of separate modules implementing attended instrumentation control, data file processing, statistical and Pu mass calculation and analyzes, list mode counting and analyzes, reporting functions, and a database support library. Separating functional capabilities in this architecture enables better testing, isolates development risk and enables the use of INCC features in other software systems. We discuss our approach to handling divergent data and protocol support as a result of this re-architecture. INCC has complex testing requirements; we show how the testing effort was reduced by breaking the software into separate modules. This new architecture enables integration of INCC analysis into the IAEA's new Integrated Review and Analysis Programme (iRAP) data review system. iRAP is based on the respected Euratom Comprehensive Review Inspector Software Package (CRISP) software framework, and is expected to be the future data review system for IAEA and Euratom

  6. IAEA-RML-2015-01 Proficiency Test for Determination of Radionuclides in Sea Water

    International Nuclear Information System (INIS)

    2017-01-01

    The Radiometrics Laboratory of the IAEA Environment Laboratories has provided quality support services and products to laboratories in Member States for over 50 years. They include the organization of proficiency test exercises and laboratory intercomparisons, and the production of certified reference materials with a wide range of marine sample matrices and radionuclide levels. As part of these activities, a follow-up proficiency test exercise was organized in 2015 at the request of the Nuclear Regulation Authority of Japan to continue testing the performance of participating laboratories in an analysis of radionuclides in a seawater sample. The exercise was designed to support laboratories in seawater analyses of 3H, 134Cs, 137Cs and 90Sr relating to the accident at the Fukushima Daiichi nuclear power plant, in March 2011, and the subsequent contamination of the marine environment. The results of the exercise, which are described in this publication, allow the participating laboratories to evaluate and compare their performance in the analysis of these radionuclides for this sample type. A total of 43 laboratories from 29 Member States participated from August to October 2015. Earlier exercises are described in IAEA Analytical Quality in Nuclear Applications Series Nos 40–43.

  7. IAEA and International Science and Technology Center sign cooperative agreement

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  8. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  9. The trends of NDT technologies - IAEA experience

    International Nuclear Information System (INIS)

    Khan, A. A.; Einav, I.

    2003-01-01

    Non destructive testing (NDT) is an essential technology for quality control leading to more reliable and safer industrial as well as nuclear plants. This was the main reason for the IAEA to undertake the promotion of this technology in the world. Through its regional and technical assistance programmes the NDT technology programmes encompass approximately more than 80 developing countries. The main focus of the NDT programme has been the creation of core groups of personnel able to undertake education, training and certification of NDT personnel and provision of NDT services to industries, creation of national certifying bodies, issuance of national standards compatible with ISO 9712 and the establishment of Professional NDT Societies. The programme has met a great success in most of the Member States. The paper will review the programmes of the IAEA in the field of NDT and provide an assessment of the present status of NDT technology development both in the developing as well as developed countries. (Author)

  10. IAEA Status Report, 2011-2012

    Energy Technology Data Exchange (ETDEWEB)

    Abriola, D. [IAEA Nuclear Data Section, Vienna (Austria)

    2013-08-15

    Three staff members are engaged in activities related to NSDD. The software tool LiveChart parses and transforms the ENSDF adopted levels and gamma datasets into a relational database. During the 2011-2012 period the decay datasets were also included. Plotting capabilities were expanded. For the next period the XUNDL files will be processed as well. ENSDF mass chain evaluations: update of most neutron deficient nuclides of A=148. Mass chain A=211 as an exercise of the IAEA-ICTP ENSDF workshop. Mass chain A=215 as an exercise of the VECC (Kolkata) ENSDD-2012 workshop. Mass chain A=144 to be submitted for review. Training: Joint IAEA-ICTP Workshop 'Nuclear Structure and Decay Data: Theory and Evaluation', ICTP, Trieste, 6-17 August 2012; ENSDD-2012 Workshop, VECC, Kolkata, 26-29 November 2012.

  11. The IAEA radioactive waste safety standards programme

    International Nuclear Information System (INIS)

    Tourtellotte, James R.

    1995-01-01

    The IAEA is currently reviewing more than thirty publications in its Safety Series with a view toward consolidating and organizing information pertaining to radioactive waste. the effort is entitled Radioactive Waste Safety Standards programme (RADWASS). RADWASS is a significant undertaking and may have far reaching effects on radioactive waste management both in the international nuclear community and in individual nuclear States. This is because IAEA envisions the development of a consensus on the final document. In this circumstance, the product of RADWASS may ultimately be regarded as an international norm against which future actions of Member States may be measured. This program is organized in five subjects: planning, pre-disposal, disposal, uranium and thorium waste management and decommissioning, which has four levels: safety fundamentals, safety standards, safety guides and safety practices. (author)

  12. The standards of Radiation Protection of IAEA

    International Nuclear Information System (INIS)

    Butragueno, J. L.

    2000-01-01

    Nuclear Safety and Radiation Protection are technological disciplines whose international character have been recognised since the very beginning. Safety culture and the defense in depth criterium address in the same way this international collaboration. The International Atomic Energy Agency, with headquater in Vienna, is specially sensitive to this aspect and a significant amount of resources has been dedicated to the promotion of a closer international collaboration through the promotion of two complementary programs: the Convention on Nuclear Safety and the Convention on Rad waste Management, and the reconstruction of a great piramide of standards, that staring with Fundamental Principles, is followed with a set of Basic Safety Standards and completed with Safety Requirements and additional technical information, that provide practical ways to implement the Fundamental Principles. This article describe briefly the RASS Program of the IAEA (Radiation Safety Standards) and the work of the Technical Committees established to assess the Director General of the IAEA in this task. (Author)

  13. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  14. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  15. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  16. Status and trends in IAEA safety standards

    International Nuclear Information System (INIS)

    Lipar, M.

    2004-01-01

    While safety is a national responsibility, international standards and approaches to safety promote consistency and facilitate international technical co-operation and trade, and help to provide assurance that nuclear and radiation related technologies are used safely. The standards also provide support for States in meeting their international obligations. One general international obligation is that a State must not pursue activities that cause damage in another State. More specific obligations on Contracting States are set out in international safety related conventions. The internationally agreed IAEA safety standards provide the basis for States to demonstrate that they are meeting these obligations. These standards are founded in the IAEA's Statute, which authorizes the Agency to establish standards of safety for nuclear and radiation related facilities and activities and to provide for their application. The safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment. (orig.) [de

  17. Certification of Trace Element Mass Fractions in IAEA-457 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2013-01-01

    The primary goal of the IAEA Environment Laboratories in Monaco (NAEL) is to help Member States understand, monitor and protect the marine environment. The major impact exerted by large coastal cities on marine ecosystems is therefore of great concern to the IAEA and its Environment Laboratories. Given that marine pollution assessments of such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments, the NAEL has assisted national laboratories and regional laboratory networks through its Reference Products for Environment and Trade programme since the early 1970s. Quality assurance (QA), quality control (QC) and associated good laboratory practice are essential components of all marine environmental monitoring studies. QC procedures are commonly based on the analysis of certified reference materials and reference samples in order to validate analytical methods used in monitoring studies and to assess reliability and comparability of measurement data. QA can be realized by participation in externally organized laboratory performance studies, also known as interlaboratory comparisons, which compare and evaluate analytical performance and measurement capabilities of participating laboratories. Data that are not based on adequate QA/QC can be erroneous and their misuse can lead to incorrect environmental management decisions. A marine sediment sample with certified mass fractions for Ag, Al, As, Cd, Cr, Co, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sn, Sr, V and Zn was recently produced by the NAEL in the frame of a project between the IAEA and the Korea Institute of Ocean Science and Technology. This report describes the sample preparation methodology, the material homogeneity and stability study, the selection of laboratories, the evaluation of results from the certification campaign and the assignment of property values and their associated uncertainty. As a result, reference values for mass fractions and associated expanded

  18. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa's participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  19. International cooperative analysis of standard substance, IAEA-0390

    International Nuclear Information System (INIS)

    Kawamoto, Keizo; Takada, Jitsuya; Moriyama, Hirotake; Akaboshi, Mitsuhiko

    1999-01-01

    Three kinds of algae (IAEA-0391, IAEA-0392 and IAEA-0393) were defined as the biological standard substance to monitor environmental pollution by Analytical Quality Control Service of IAEA (IAEA-AQCS). In this study, analysis of these standard substances were made using ICP-MS to compare with the results of simultaneously conducted radioactivation analysis (INAA). The respective cultures of the three algae were cooperatively prepared by IAEA-AQCS and microbial Institute of Czechoslovakia. After drying and sterilizing by Co-60 exposure, these samples were sent to KURRI. When the results from the experiment in KURRI were compared with the values recommended through statistical treatment of the data obtained by IAEA, these values of 5 elements, Fe, Cr, Mg, Mn and Na were well coincident for either of IAEA-0391, IAEA-0392 and IAEA-0393 and the values of As, Ca, Cd, Co, Cu, K and Zn were nearly coincident between them. Regarding Hg and La, the data from INAA and ICP-MS were very different from the recommended values of IAEA for either of samples. (M.N.)

  20. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa`s participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  1. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  2. The IAEA energy and economic data bank

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Russell, J.E.

    1978-01-01

    In 1976, the IAEA established a computerized energy and economic data bank not only on nuclear energy but on other forms of energy as well. The purpose of the data bank is to provide in a unified and systematic way energy and related economic data needed for long-term energy planning. A computer program permits the production of a variety of up-to-date tables and graphs

  3. IAEA Nuclear Security - Achievements 2002-2011

    International Nuclear Information System (INIS)

    2012-03-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes is real. This calls for a collective commitment to the control of, and accountancy for, material, as well as to adequate levels of protection in order to prevent criminal or unauthorized access to the material or associated facilities. Sharing of knowledge and experience, coordination among States and collaboration with other international organizations, initiatives and industries supports an effective international nuclear security framework. In 2001, the Board of Governors tasked the IAEA with improving nuclear security worldwide. The report that follows provides an overview of accomplishments over the last decade and reflects the importance that States assign to keeping material in the right hands. The IAEA has established a comprehensive nuclear security programme, described first in the Nuclear Security Plan of 2002-2005 and subsequently in the second plan of 2006- 2009. Activities included developing internationally accepted nuclear security guidance, supporting international legal instruments, protecting material and facilities, securing transport and borders, detecting and interdicting illicit nuclear trafficking, strengthening human resource capacity and preparing response plans should a nuclear security event occur. The IAEA has begun the implementation of its third Nuclear Security Plan, to be completed at the end of 2013. This approach to nuclear security recognizes that an effective national nuclear security regime builds on a number of factors: the implementation of relevant international legal instruments; IAEA guidance and standards; information protection; physical protection; material accounting and control; detection of, and response to, trafficking in such material; national response plans and contingency measures. Implemented in a systematic manner, these building blocks make up a sustainable national nuclear security regime and contribute to global

  4. IAEA INTOR Workshop report, group 12

    International Nuclear Information System (INIS)

    1980-01-01

    This report gives the material for the IAEA INTOR Workshop for data base discussion in Group 12, Start-up, Burn and Shutdown. Number of problem areas from the generation of a plasma to the termination of the discharge are covered, which should be assessed to develop a scenario for sustaining a plasma for the whole duration of a pulse. The reactor relevant burn pulse is also assessed. (author)

  5. IAEA ASSET service - A KANUPP perspective

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Ghafoor, M [Karachi Nuclear Power Plant (Pakistan)

    1997-12-31

    IAEA has been providing ASSET Service since 1986. It is a mechanism for drawing and disseminating specific and generic lesson from a significant event. Like many other operating organizations, KANUPP has also benefited from its in-depth technical exchange experience which has resulted in significant improvement in the level of operation safety. The ASSET mission, which visited KANUPP in connection with fuelling machine locking problem in 1989, triggered many actions which were responsible for improvement of overall safety of the plant.

  6. IAEA ASSET service - A KANUPP perspective

    International Nuclear Information System (INIS)

    Abdul Ghafoor, M.

    1996-01-01

    IAEA has been providing ASSET Service since 1986. It is a mechanism for drawing and disseminating specific and generic lesson from a significant event. Like many other operating organizations, KANUPP has also benefited from its in-depth technical exchange experience which has resulted in significant improvement in the level of operation safety. The ASSET mission, which visited KANUPP in connection with fuelling machine locking problem in 1989, triggered many actions which were responsible for improvement of overall safety of the plant

  7. IAEA and the international nuclear law development

    International Nuclear Information System (INIS)

    Jankowitsh, O.

    1996-01-01

    This paper summarizes the different objectives of the IAEA (International Atomic Energy Agency) as far as nuclear energy use is concerned. It presents the status of the organization, its action int the non-proliferation treaty, and its work on the safeguard regulations. These measures have been taken during the Convention on nuclear safety in 1994. This convention concerns nuclear power plants as well as storage of radioactive wastes. (TEC)

  8. IAEA INTOR workshop report, group 16

    International Nuclear Information System (INIS)

    Hiraoka, Toru; Suzuki, Yasuo; Ogata, Atsushi

    1979-10-01

    This is the contribution of JAERI team to Group 16 of IAEA INTOR Workshop, which discusses diagnostics, data acquisition and control. Data assessment is made to consider diagnostics of INTOR. Also considered is how the diagnostics, data acquisition and control should be for a tokamak of the coming generation. The pending problems set at the Session 2 as hometasks are studied, which are given in Appendix. (author)

  9. Uncertainty evaluation in 2008 IAEA proficiency test using phosphogypsum

    International Nuclear Information System (INIS)

    Dias, Fabiana F.; Taddei, Maria Helena T.; Geraldo, Bianca; Jacomino, Vanusa M.F.; Pontedeiro, Elizabeth M.B.

    2009-01-01

    LAPOC participated in the 2008 IAEA ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) Proficiency Test (PT) for phosphogypsum, which is a NORM (Naturally Occurring Radioactive Material) derived from phosphate industry, an abundant solid waste of low cost. Its reutilization would avoid environmental impact in large areas where the product is stored. Research involving possible uses for phosphogypsum is ever more important, from economic, technological, and environmental points of view. This paper describes results from this Proficiency Test (measured radionuclides: 234 U, 238 U, 226 Ra, 230 Th, and 210 Pb), as well as a short description of the nuclear analytical techniques emphasizing sources of uncertainty, such as Alpha Spectrometry (Alpha Analyst, Canberra, surface barrier detectors) and Gamma Spectrometry (Canberra, Hyper Pure Germanium Detector with 45 % efficiency). Corrections for decay, reference date, and recovery were applied. As an example, results obtained for 210 Pb through the use of a specific uncertainty calculation software are presented below. Each parameter whose uncertainty is quantified was carefully described, with appropriate numerical value and unit, to determine its partial contribution to the combined total uncertainty. Results from PTs provide independent information on performance of a Laboratory and have an important role in method validation; especially because it allows the assessment of the method performance over an entire range of concentrations and matrices. PTs are an important tool to demonstrate equivalence of measurements, if not their metrological comparability, and to promote education and improvement of Laboratory practice. (author)

  10. IAEA Nutrition Programmes Feed Global Development

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    As an organization, the IAEA has a statutory requirement to “accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.” Good nutrition is the cornerstone of good health and the development of nations. That’s why the IAEA is involved in nutrition. The IAEA’s Member States use nuclear methods to move their nutrition programmes forward. These nuclear techniques include the use of stable isotopes (which have no radioactivity) to better understand how nutrients are absorbed, utilized, or stored in the body. These very precise and powerful techniques can be safely and non-invasively used on everyone, from babies to the elderly, in order to determine nutritional status, and measure the effectiveness of nutrition programmes. Nuclear techniques often provide answers that are not available by any other means. By training Member States in the use of nuclear techniques for nutrition, the IAEA complements the work that these countries are doing with other international organizations and not-for-profit groups around the world to combat malnutrition in all its forms and to promote health

  11. Directory of IAEA databases. 3. ed.

    International Nuclear Information System (INIS)

    1993-12-01

    This second edition of the Directory of IAEA Databases has been prepared within the Division of Scientific and Technical Information. Its main objective is to describe the computerized information sources available to staff members. This directory contains all databases produced at the IAEA, including databases stored on the mainframe, LAN's and PC's. All IAEA Division Directors have been requested to register the existence of their databases with NESI. For the second edition database owners were requested to review the existing entries for their databases and answer four additional questions. The four additional questions concerned the type of database (e.g. Bibliographic, Text, Statistical etc.), the category of database (e.g. Administrative, Nuclear Data etc.), the available documentation and the type of media used for distribution. In the individual entries on the following pages the answers to the first two questions (type and category) is always listed, but the answer to the second two questions (documentation and media) is only listed when information has been made available

  12. The joint FAO and IAEA programme

    International Nuclear Information System (INIS)

    Fried, M.; Lamm, C.G.

    1981-01-01

    In 1964 the FAO and IAEA decided to establish a joint programme for the specific purpose of assisting Member States in applying nuclear techniques to develop their food and agriculture. As a result, the Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy and Agriculture Development was established. The objectives of this joint FAO/IAEA programme are to exploit the potential of isotopes and radiation applications in research and development to increase and stabilize agriculture production, to reduce production costs, to improve the quality of food, to protect agricultural products from spoilage and losses, and to minimize pollution of food and agricultural environment. The activities of the joint programme, which are briefly described, can be grouped under three main headings: co-ordination and support of research; technical assistance including training; and dissemination of information. Tables are shown giving a breakdown of 311 research contracts and agreements held with institutes in Member States and 86 technical assistance projects in 46 developing countries, providing training, expertise and specialized equipment

  13. Quality assurance for IAEA inspection planning

    International Nuclear Information System (INIS)

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed

  14. IAEA Technical Meeting on Status of IAEA Fast Reactor Knowledge Preservation Initiative. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In response to needs expressed by Member States and within a broader IAEA-wide effort in nuclear knowledge preservation, the IAEA has been carrying out a dedicated initiative on Fast Reactor Data Knowledge Preservation (FRKP). The main objectives of the FRKP initiative are to: • Halt the on-going loss of information related to Fast Reactors (FR); • Collect, retrieve, preserve and make accessible already existing data and information on FR. These objectives require the implementation of activities supporting digital document archival, exchange, search and retrieval and facilitating, by developing and using suitable standards and IT tools, the knowledge preservation over the next decades. To this purpose the IAEA has developed the Fast Reactor Knowledge Organization System (FRKOS), a web-based application employing IAEA methodology and approach for categorization of FR knowledge domain, which allows creating a comprehensive and well-structured international inventory of fast reactor data and information provided by different Member States. The resulting Web Portal is established and maintained by the IAEA. The IAEA knowledge preservation initiatives and tools in the field of fast neutron systems - which were presented and very well received during the recent IAEA Fast Reactor and Related Fuel Cycles Conference (FR13) - are supposed to be of interest for national nuclear authorities, regulators, scientific and research organizations, commercial companies and all other stakeholders involved in fast reactor activities at national or international level. The objectives of the technical meeting were to: • Exchange information between the member states/international organizations on national and international initiatives addressing knowledge preservation and data retrieval/collection in the field of fast neutron systems; • Present and discuss the member states’/international organizations’ policies and conditions for releasing to the IAEA both publicly

  15. Report on the intercomparison run IAEA-308 radionuclides in seaweed mixture

    International Nuclear Information System (INIS)

    Ballestra, S.; Vas, D.; Lopez, J.J.; Noshkin, V.

    1989-12-01

    The results of an intercomparison exercise on a sample of mixed seaweeds from the Mediterranean Sea, IAEA-308, designed for the determination of artificial and natural radionuclide levels, are reported. The data from 67 laboratories representing 33 countries have been evaluated. The recommended median values, with confidence intervals, for the most frequently measured radionuclides 106 Ru, 110m Ag, 134 Cs, 137 Cs, 238 Pu, 239+240 Pu, 241 Am, 40 K, 210 Pb and 228 Th are given. Refs and tabs

  16. Determination by INAA of trace elements in Fucus sample (IAEA-0140)

    International Nuclear Information System (INIS)

    Salagean, M.; Pantelica, A.; Rusu, C.; Scarlat, A.

    1998-01-01

    The concentration of 25 elements (Al, As, Ba, Br, Ca, Ce, Co, Cr, Cs, Fe, Hf, Hg, K, La, Mg, Mn, Na, Rb, Sb, Sc, Sm, Sr, Th, V, Zn) in the marine algae Fucus sp. was determined by instrumental neutron activation analysis. This paper presents our contribution to an intercomparison exercise organized by IAEA. The results obtained in our laboratory, excepting Hg, are in very good or in good agreement with the intercomparison values

  17. CIEMAT interlaboratories comparison of the results obtained in the proficiency test run by IAEA

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M. P.; Alvarez, A.; Navarro, N.; Meral, J.; Gonzalez, A.; Higueras Lafaja, E.

    2000-01-01

    This report contains the results obtained by two different laboratories from CIEMAT after participating in the Proficiency Test organised by IAEA (International Atomic Energy Agency) in 1999. This test involves the analysis of fly ashes containing natural radionuclides and different amounts of added transuranics. The extraction techniques, counting methods and results obtained are detailed. This type of test are used for the labs to achieve their accreditation and check the reliability of the procedures routinely employed. (Author) 4 refs

  18. Annual report 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This annual report presents an evaluation of activities of the Entomology Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf. The major themes of the report include mass rearing and quality control in Tsetse fly and research on Medfly genetic sexing strains

  19. Annual report 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This annual report presents an evaluation of activities of the Entomology Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf. The major themes of the report include mass rearing and quality control in Tsetse fly and research on Medfly genetic sexing strains

  20. Annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This annual report presents an evaluation of activities of the Entomology Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf. The major themes of the report include mass rearing and quality control in Tsetse fly and research on Medfly genetic sexing strains

  1. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This annual report presents an evaluation of activities of the Entomology Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf. The major themes of the report include mass rearing and quality control in Tsetse fly and research on Medfly genetic sexing strains.

  2. RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS

    International Nuclear Information System (INIS)

    OCCHIOGROSSO, D.; PEPPER, S.

    2006-01-01

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is likewise important to the U.S. government for U.S. citizens to take positions with the IAEA to contribute to its success. It is important for persons within and outside the U.S. nuclear and safeguards industries to become aware of the job opportunities available at the IAEA and to be informed of important vacancies as they arise. The International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) is tasked by the U.S. government with recruiting candidates for positions within the Department of Safeguards at the IAEA and since 1998, has been actively seeking methods for improving outreach. In addition, ISPO has been working more closely with the IAEA Division of Personnel. ISPO staff members attend trade shows to distribute information about IAEA opportunities. The shows target the nuclear industry as well as shows that are unrelated to the nuclear industry. ISPO developed a web site that provides information for prospective candidates. They have worked with the IAEA to understand its recruitment processes, to make suggestions for improvements, and to understand employment benefits so they can be communicated to potential U.S. applicants. ISPO is also collaborating with a State Department working group that is focused on increasing U.S. representation within the United Nations as a whole. Most recently Secretary of State Condoleezza Rice issued a letter to all Federal Agency heads encouraging details and transfers of their employees to international organizations to the maximum extent feasible and with due regard to their manpower requirements. She urged all federal agencies to review their detail and transfer policies and practices to ensure that employment in international organizations is promoted in a positive and active manner. In addition, she wrote that it is

  3. The IAEA Safety Regime for Decommissioning

    International Nuclear Information System (INIS)

    Bell, M.J.

    2002-01-01

    Full text of publication follows: The International Atomic Energy Agency is developing an international framework for decommissioning of nuclear facilities that consists of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, and a hierarchy of Safety Standards applicable to decommissioning. The Joint Convention entered into force on 18 June 2001 and as of December 2001 had been ratified by 27 IAEA Member States. The Joint Convention contains a number of articles dealing with planning for, financing, staffing and record keeping for decommissioning. The Joint Convention requires Contracting Parties to apply the same operational radiation protection criteria, discharge limits and criteria for controlling unplanned releases during decommissioning that are applied during operations. The IAEA has issued Safety Requirements document and three Safety Guides applicable to decommissioning of facilities. The Safety Requirements document, WS-R-2, Pre-disposal Management of Radioactive Waste, including Decommissioning, contains requirements applicable to regulatory control, planning and funding, management of radioactive waste, quality assurance, and environmental and safety assessment of the decommissioning process. The three Safety Guides are WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, WS-G-2.2, Decommissioning of Medical, Industrial and Research Facilities, an WS-G-2.4, Decommissioning of Nuclear Fuel Cycle Facilities. They contain guidance on how to meet the requirements of WS-R-2 applicable to decommissioning of specific types of facilities. These Standards contain only general requirements and guidance relative to safety assessment and do not contain details regarding the content of the safety case. More detailed guidance will be published in future Safety Reports currently in preparation within the Waste Safety Section of the IAEA. Because much material arising during the decommissioning

  4. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  5. IAEA Technical Cooperation and the NPT

    International Nuclear Information System (INIS)

    Barretto, Paulo M.C.; Cetto, Ana Maria

    2005-01-01

    The NPT rests on three interlinked pillars: cooperation in peaceful uses of nuclear energy, verified nuclear non-proliferation, and nuclear disarmament. This article looks specifically at the first pillar and its linkage with the second one. Non-nuclear weapon States are the vast majority of NPT Parties. The right of NPT Parties to have access to information, exchange of equipment and materials is explicitly recognized in Article IV of the Treaty. This Article stipulates that all Parties of the Treaty undertake to facilitate and have the right to participate in the fullest possible exchange of equipment, materials and scientific and technological information for the peaceful uses of nuclear energy. A successful campaign after the 1995 NPT Review Conference increased the NPT membership from 178 to near universality, and today 189 States are Parties to the Treaty. In the same period the IAEA's membership increased from 127 to 138. Today all IAEA Member States are participating in the Agency's Technical Cooperation Programme (TCP) in varying mixed capacities of donors or recipients. The IAEA, although not referred to in Article IV of the NPT, plays a major role in planning and implementing multilateral cooperation stipulated in the Treaty. It encourages and assists research, development and application of atomic energy; it provides technical advice, training, materials, services and equipment; fosters exchange of scientific and technical information; develops standards and guidelines for the appropriate utilization of nuclear technology and materials, and builds strategic partnerships to increase the leverage of the limited resources available. At all times, the Agency seeks to support the use of nuclear technology in a way that is safe for humans and the environment. All these activities are related to key statutory functions of the IAEA. Efforts to assist Member States are impressive. Since its inception in 1957, the Agency has provided direct assistance valued at

  6. Screening of IAEA environmental samples for fissile material content

    International Nuclear Information System (INIS)

    Hembree, Doyle M. Jr.; Carter, Joel A.; Devault, Gerald L.; Whitaker, J. Michael; Glasgow, David

    2001-01-01

    Full text: Analysis of environmental samples for the International Atomic Energy Agency (IAEA) Strengthened Safeguards Systems program requires that stringent measures be taken to control contamination. To facilitate contamination control, it is extremely useful to have some estimate of the fissile content of a given sample prior to beginning sample preparation and analysis. This is particularly true for laboratories that employ clean rooms during sample preparation. A review of the analytical results for samples submitted between January 1, 1999 and September 1, 2000 revealed that the total uranium content values ranged from 0.2 to greater than 500,000 ng/sample. Poor estimates of the uranium or plutonium content in the samples have caused some of the laboratories in the IAEA Network of Analytical Laboratories (NWAL) to experience clean laboratory contamination, sample cross contamination, and non-ideal uranium spike additions. This has led to significant increases in analysis costs (e.g., recertification of clean rooms after removing contamination, and rerunning samples) and degradation in data quality. A number of methods have been proposed for screening environmental samples for fissile material content, including gamma spectrometry, x-ray fluorescence, kinetic phosphorimetry (KPA), and inductively coupled plasma-mass spectrometry (ICP-MS). Gamma spectrometry and x-ray fluorescence are suitable for screening samples with microgram or greater quantities of uranium. ICP-MS and KPA are used successfully in some DOE NWAL laboratories to screen environmental samples. A neutron activation analysis (NAA) method that offers numerous advantages over other screening techniques for environmental samples has recently been proposed. Fissile materials such as 239 Pu and 235 U can be made to undergo fission in the intense neutron field to which they are exposed during neutron activation analysis (NAA). Some of the fission products emit neutrons referred to as 'delayed

  7. Analysis of historical delta values for IAEA/LANL NDA training courses

    International Nuclear Information System (INIS)

    Geist, William; Santi, Peter; Swinhoe, Martyn; Bonner, Elisa

    2009-01-01

    The Los Alamos National Laboratory (LANL) supports the International Atomic Energy Agency (IAEA) by providing training for IAEA inspectors in neutron and gamma-ray Nondestructive Assay (NDA) of nuclear material. Since 1980, all new IAEA inspectors attend this two week course at LANL gaining hands-on experience in the application of NDA techniques, procedures and analysis to measure plutonium and uranium nuclear material standards with well known pedigrees. As part of the course the inspectors conduct an inventory verification exercise. This exercise provides inspectors the opportunity to test their abilities in performing verification measurements using the various NDA techniques. For an inspector, the verification of an item is nominally based on whether the measured assay value agrees with the declared value to within three times the historical delta value. The historical delta value represents the average difference between measured and declared values from previous measurements taken on similar material with the same measurement technology. If the measurement falls outside a limit of three times the historical delta value, the declaration is not verified. This paper uses measurement data from five years of IAEA courses to calculate a historical delta for five non-destructive assay methods: Gamma-ray Enrichment, Gamma-ray Plutonium Isotopics, Passive Neutron Coincidence Counting, Active Neutron Coincidence Counting and the Neutron Coincidence Collar. These historical deltas provide information as to the precision and accuracy of these measurement techniques under realistic conditions.

  8. Analysis on IAEA 2006-2007 Programme and Cooperation Directions between Korea and IAEA

    International Nuclear Information System (INIS)

    Oh, Keun Bae; Lee, H. M.; Yang, M. H.; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Kim, H. J.; Kim, K. P.

    2004-12-01

    In this study, the structure of the IAEA programme and the major changes in 2004/2005 programme cycle are analyzed. Also renewed programming process and major issues in 2006/2007 programme and budget are analyzed. Based on the analyses, the detailed proposal to strengthen cooperation with IAEA is prepared in the fields of nuclear power, nuclear application, nuclear safety and nuclear cooperation. As a result, the following 9 themes are identified to strengthen the relation between Korea and the IAEA. - Nuclear Production of Hydrogen - Sea Water Desalination - Nuclear Knowledge Management - Application of Food Irradiation - Cancer Treatment using Cyclotron - Global Nuclear Safety Network; - Management of Radiation Source by Global Positioning System (GPS) - Global Network for Radiological Emergency Response - Enhanced relationship between Regional Cooperation Frameworks

  9. IAEA Board of Governors approves IAEA action plan to combat nuclear terrorism

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA Board of Governors today approved in principal an action plan designed to upgrade worldwide protection against acts of terrorism involving nuclear and other radioactive materials. In approving the plan, the Board has recognized that the first line of defense against nuclear terrorism is the strong physical protection of nuclear facilities and materials. 'National measures for protecting nuclear material and facilities are uneven in their substance and application,' the IAEA says. 'There is wide recognition that the international physical protection regime needs to be strengthened.'

  10. IAEA Technical Meeting on Status of IAEA Fast Reactor Knowledge Preservation Initiative. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the technical meeting were to: • exchange information between the Member States/International Organizations on national and international initiatives addressing knowledge preservation and data retrieval/collection in the field of fast neutron systems; • present and discuss the Member States’/International Organizations’ policies and conditions for releasing to the IAEA both publicly available and confidential information on fast neutron systems; • collect data on fast neutron systems provided by participating Member States/International Organizations and encourage participants to contribute in data collection; • provide recommendations for further IAEA initiatives in the field of fast reactor knowledge preservation

  11. Technologies for pre-screening IAEA swipe samples

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas A. [Argonne National Lab. (ANL), Argonne, IL (United States); Steeb, Jennifer L. [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Denise L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huckabay, Heath A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ticknor, Brian W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-09

    During the course of International Atomic Energy Agency (IAEA) inspections, many samples are taken for the purpose of verifying the declared facility activities and identifying any possible undeclared activities. One of these sampling techniques is the environmental swipe sample. Due to the large number of samples collected, and the amount of time that is required to analyze them, prioritizing these swipes in the field or upon receipt at the Network of Analytical Laboratories (NWAL) will allow sensitive or mission-critical analyses to be performed sooner. As a result of this study, technologies were placed into one of three categories: recommended, promising, or not recommended. Both neutron activation analysis (NAA) and X-ray fluorescence (XRF) are recommended for further study and possible field deployment. These techniques performed the best in initial trials for pre-screening and prioritizing IAEA swipes. We learned that for NAA more characterization of cold elements (such as calcium and magnesium) would need to be emphasized, and for XRF it may be appropriate to move towards a benchtop XRF versus a handheld XRF due to the increased range of elements available on benchtop equipment. Promising techniques that will require additional research and development include confocal Raman microscopy, fluorescence microscopy, and infrared (IR) microscopy. These techniques showed substantive responses to uranium compounds, but expensive instrumentation upgrades (confocal Raman) or university engagement (fluorescence microscopy) may be necessary to investigate the utility of the techniques completely. Point-and-shoot (handheld) Raman and attenuated total reflectance–infrared (ATR-IR) measurements are not recommended, as they have not shown enough promise to continue investigations.

  12. Technologies for pre-screening IAEA swipe samples

    International Nuclear Information System (INIS)

    Smith, Nicholas A.; Steeb, Jennifer L.; Lee, Denise L.; Huckabay, Heath A.; Ticknor, Brian W.

    2015-01-01

    During the course of International Atomic Energy Agency (IAEA) inspections, many samples are taken for the purpose of verifying the declared facility activities and identifying any possible undeclared activities. One of these sampling techniques is the environmental swipe sample. Due to the large number of samples collected, and the amount of time that is required to analyze them, prioritizing these swipes in the field or upon receipt at the Network of Analytical Laboratories (NWAL) will allow sensitive or mission-critical analyses to be performed sooner. As a result of this study, technologies were placed into one of three categories: recommended, promising, or not recommended. Both neutron activation analysis (NAA) and X-ray fluorescence (XRF) are recommended for further study and possible field deployment. These techniques performed the best in initial trials for pre-screening and prioritizing IAEA swipes. We learned that for NAA more characterization of cold elements (such as calcium and magnesium) would need to be emphasized, and for XRF it may be appropriate to move towards a benchtop XRF versus a handheld XRF due to the increased range of elements available on benchtop equipment. Promising techniques that will require additional research and development include confocal Raman microscopy, fluorescence microscopy, and infrared (IR) microscopy. These techniques showed substantive responses to uranium compounds, but expensive instrumentation upgrades (confocal Raman) or university engagement (fluorescence microscopy) may be necessary to investigate the utility of the techniques completely. Point-and-shoot (handheld) Raman and attenuated total reflectance–infrared (ATR-IR) measurements are not recommended, as they have not shown enough promise to continue investigations.

  13. IAEA Patient Protection Effort Reaches Key Milestone

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An International Atomic Energy Agency (IAEA) effort to help people track their radiation exposure from medical procedures achieved a significant milestone this week. The Agency received the final approval from a group of medical oversight organizations for the 'Joint Position Statement on the IAEA Patient Radiation Exposure Tracking', a set of principles to guide patient protection efforts at the sub-national, national, and international level. The joint statement endorses the IAEA's three-year-old Smart Card/SmartRadTrack project, which aims to help nations develop systems to track medical radiation procedures and radiation doses. The statement has been agreed by the World Health Organization (WHO), the U.S. Food and Drug Administration (FDA), the European Society of Radiology (ESR), the International Organization for Medical Physics (IOMP), the International Society of Radiographers and Radiological Technologists (ISRRT), and the Conference of Radiation Control Program Directors, USA (CRCPD). 'This system is critical if the medical community is going to keep patients safe when they are being referred for more and more diagnostic scans. These scans, over the years, are made using more and more powerful machines', said Madan Rehani, Radiation Safety Specialist in the IAEA's Radiation Protection of Patients Unit. 'The tracking system will draw doctors' attention to previous radiological examinations, both in terms of clinical information and radiation dose and thus help them assess whether the 11th or 20th CT scan is really appropriate, whether it will do more good than harm.' Advances in radiation-based diagnostic technologies, such as the CT scan, have led to patients receiving such procedures more frequently. The convenience of CT with the added advantage of increased information has resulted in increased usage to the point that there are instances of patients getting tens of CT scans in a few years, not all of which may be justified, or getting CT

  14. FAO/IAEA model protocol for the determination of bound residues in soil

    International Nuclear Information System (INIS)

    1986-01-01

    A protocol for determining bound pesticide residue content in soils was developed and collaboratively tested by 11 members of the FAO/IAEA Research Co-ordination Committee. The method assumes prior incubation of soil with a radioactive pesticide or related organic compound. The major process steps of the protocol include: (a) Soxhlet extraction of air-dry soil with methanol for 24 h; (b) determination of radioactivity in unextracted soil, in methanol-extracted soil (yielding bound residue content), and in the methanol extract (yielding extractable residue content); and (c) use of triplicate samples per analysis. The participants received lysimeter soils treated six to seven years earlier with 14 C-allyl alcohol (Soil A) or 14 C-hexachloro-benzene (Soil H). The inter-laboratory results first indicated non-homogeneity of Soil A sub-samples, since the initial and bound radioactivity for four laboratories was about half of that found by the remaining seven laboratories. Intra-laboratory (in one laboratory) analyses of sub-subsamples from six 'high-group' laboratories, two 'low-group' laboratories and two additional laboratories confirmed the homogeneity of Soil A and implicated error in the combustion methods at 'low-group' laboratories. The intra- and inter-laboratory coefficients of variation for initial 14 C-content were 4.7% and 7.0%, respectively. Of the residual 14 C in Soil A, 95% was bound; in contrast, only 15% of 14 C in Soil H was bound. The coefficients of variation among ten laboratories, for Soil H, were 8.4% and 18.1% for percentage extractable residue and percentage bound residue, respectively. Some limited testing of alternative protocols, using other solvents or batch extraction, confirmed that the IAEA protocol was most efficient in the extraction of non-bound radioactivity; pre-wetting Soil A may, however, improve extraction. (author)

  15. Secondary standard dosimetry laboratories: Development and trends

    International Nuclear Information System (INIS)

    1985-08-01

    This publication describes the work of the IAEA and the WHO in the establishment of a network of Secondary Standard Dosimetry Laboratories. Membership in the SSDL network has now risen to about 50 laboratories, of which 36 are in developing countries

  16. Contribution of the Member State Support Programmes to IAEA safeguards

    International Nuclear Information System (INIS)

    Fortakov, V.; Gardiner, D.; Rautjaervi, J.

    1999-01-01

    Over the last twenty years, Member States of the International Atomic Energy Agency (IAEA) have provided invaluable technical support to IAEA Safeguards. This support has covered practically all aspects of traditional safeguards activities and also those activities recently proposed and introduced for strengthening the safeguards system. As of August 1997, there were fourteen Member States, plus EURATOM, with active programmes in support of IAEA safeguards and the activities conducted under these Member State Support Programmes (MSSPs) are currently valued at an annual twenty million dollars of extra-budgetary contribution to the IAEA. The overall administration in the IAEA of the support programmes is the responsibility of Support Programmes Administration (SPA) in the Safeguards Division of Technical Services. This paper describes the roles and the contributions of the MSSPs, the functions of the MSSP administration activities, and the vital importance the IAEA attaches to the MSSPs. (author)

  17. IAEA safeguards for the Fissile Materials Disposition Project

    International Nuclear Information System (INIS)

    Close, D.A.

    1995-06-01

    This document is an overview of International Atomic Energy Agency (IAEA) safeguards and the basic requirements or elements of an IAEA safeguards regime. The primary objective of IAEA safeguards is the timely detection of the diversion of a significant quantity of material and the timely detection of undeclared activities. The two important components of IAEA safeguards to accomplish their primary objective are nuclear material accountancy and containment and surveillance. This overview provides guidance to the Fissile Materials Disposition Project for IAEA inspection requirements. IAEA requirements, DOE Orders, and Nuclear Regulatory Commission regulations will be used as the basis for designing a safeguards and security system for the facilities recommended by the Fissile Materials Disposition Project

  18. Nuclear knowledge management at the IAEA

    International Nuclear Information System (INIS)

    Yanev, Y.

    2004-01-01

    Nuclear Knowledge Management as a part of the IAEA mission and its aim to help organizations to achieve competitive advantage; costs reduction; accelerated time to market in companies and large private sector organisations; innovation, supports error free decision making are discussed. The most important outputs such as nuclear knowledge management methodology; identifying endangered areas of nuclear science and technology; developing knowledge repositories; knowledge preservation technology; dedicated projects with Member States, (Atucha, Angra, KNK2, ) are presented. A brief review of the currently implemented with Agency's assistance project ANENT (Asian Network for Education in Nuclear Technology) is also given

  19. IAEA technical committee meeting on pellet injection

    International Nuclear Information System (INIS)

    1993-01-01

    The IAEA Technical Committee Meeting on Pellet Injection, May 10-12, 1993, at the Japan Atomic Energy Research Institute, Naka, Ibaraki-ken, Japan, was held to review the latest results on pellet injection and its effects on plasma confinement. In particular, topics included in the meeting include (i) pellet ablation and particle fueling results, (ii) pellet injection effects on confinement, including improved confinement modes, edge effects, magnetohydrodynamic activity and impurity transport, and (iii) injector technology and diagnostics using pellets. About 30 experts attended and 23 papers were presented. Refs, figs and tabs

  20. IAEA sodium void reactivity benchmark calculations

    International Nuclear Information System (INIS)

    Hill, R.N.; Finck, P.J.

    1992-01-01

    In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated

  1. Protection against nuclear terrorism: the IAEA response

    International Nuclear Information System (INIS)

    Dodd, B.

    2002-01-01

    Full text: As a result of the events of 11 September 2001, the International Atomic Energy Agency (IAEA) identified possible threats from acts of nuclear terrorism. A report to the Board of Governors in November 2001 summarized the IAEA's ongoing work in areas relevant to the prevention and mitigation of the consequences of such acts and outlined proposals for a number of new and/or enhanced activities. Four main threats were addressed: theft of a nuclear weapon; acquisition of nuclear material; acquisition of other radioactive material; and violent acts against nuclear facilities. These proposals have been further refined and the new plan was approved in principle at the March 2002 board meeting. In the beginning, implementation will be dependent on member state contributions to a voluntary fund. Proposed new or enhanced activities are grouped into eight areas: I. Physical protection of nuclear material and nuclear facilities; II. Detection of malicious activities involving nuclear and other radioactive materials; III. State systems for nuclear material accountancy and control; IV. Security of radioactive material other than nuclear material; V. Assessment of safety/security related vulnerability of nuclear facilities; VI. Response to malicious acts, or threats thereof; VII. Adherence to and implementation of international agreements, guidelines and recommendations; VIII. Nuclear security co-ordination and information management. After an overview, this paper focuses on activity area IV, which deals with the radiological terrorism issues involving radioactive sources. A strategy for evaluation of the IAEA's role is presented, covering an analysis of the likely threats and possible scenarios. This leads to an assessment of the most desirable sources from a terrorist's viewpoint. The strategy then examines how terrorists might acquire such sources and attempts to determine the best ways to prevent their acquisition. Further activities are proposed to prevent the use

  2. IAEA releases nuclear power statistics for 2000

    International Nuclear Information System (INIS)

    2001-01-01

    According to data reported to the IAEA Power Reactor Information System, a total of 438 NPPs were operating around the world at the end of 2000. The total installed power from NPPs was 351 GWe. During 2000, six plants were connected to the grid, construction of three new nuclear reactors started, bringing the total number of reactors under construction to 31. Worldwide in 2000, total nuclear generated electricity increased to 2447.53 terawatt-hours. Cumulative worldwide operating experience from civil nuclear power reactors at the end of 2000 exceeded 9800 reactor years

  3. IAEA work with guides for PSA quality

    International Nuclear Information System (INIS)

    Hellstroem, Per

    2004-09-01

    IAEA has a project on development of a TECDOC 'PSA Quality for Various Applications'. The project develops the guidance document in stages with intermediate meetings with exchange of ideas, thoughts and experience. Draft versions are being produced successively. The objective with the project is to use attributes to describe the quality of different elements of a PSA (Analysis of initiating events, accident progression, system, data, human reliability, etc) making the PSA suitable for application in various risk informed activities. Two of the meetings in this project took place in February 2004 and in July 2004. The February meeting discussed different aspects of PSA quality in relation to applications and a draft of the TECDOC was reviewed. The meeting made recommendations for preparation of a final document and set priorities for further work in the area. The July meeting elaborated the document further in a small working group and a new draft version was prepared. A final version is expected to be published during 2005. The project has come to the conclusion that it is a limited number of PSA element attributes that are specific for a certain application. Most of the attributes concern plant specificity, realism and level of detail in a general manner, how plant specific is the model, how realistic and how detailed? Many attributes have the characteristic that they are good to have, but not necessarily needed to do the job. This last statement is valid both for a baseline PSA and a PSA application. The IAEA project has identified a limited number of attributes that are necessary to describe characteristics needed for specific applications. The PSA scope needed for a specific application is not covered by the project/document, even though it is obvious that different applications will need different scope or approaches to handle scope limitations. The guidance on performing a PSA available today is old. It is a need to review these guides and update with regard

  4. IAEA Remediation Mission to Japan Concludes

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed a preliminary assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site the Fukushima Dai-ichi Nuclear Power Plant reported to have elevated levels of radiation. The IAEA dispatched the mission to Japan on 7 October following a request from the country's Government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several Ministries and institutions. ''The meetings held and visits made by the team over the last eight days gave us a first-hand appreciation of the extraordinary efforts and dedication on the part of Japanese people in their effort to remediate the areas affected by elevated levels of radiation in the Fukushima Prefecture,'' says Mr. Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. ''As Japan continues its current remediation efforts, it is our belief that this work will bring relief to the populations who are affected by the consequences of the nuclear accident at the Fukushima Dai-ichi nuclear power plant.'' In a Preliminary Summary Report delivered to Japanese authorities today, the team prepared a set of conclusions including, though not limited to, the following: - Japan developed an efficient program for remediation - allocating the necessary legal, financial and technological resources to bring relief to the people affected by the accident, with priority being given to children. The Team was impressed with the strong commitment to the remediation effort from all institutions and parties involved, including the public; - Japan has also taken practical measures to inform the public and involve residents and local institutions in the process of defining its remediation strategy; - Japan is advised to avoid

  5. IAEA safeguards: Staying ahead of the game

    International Nuclear Information System (INIS)

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  6. Automated Controlled-Potential Coulometer for the IAEA

    International Nuclear Information System (INIS)

    Cordaro, J.V.; Holland, M.K.; Fields, T.

    1998-01-01

    An automated controlled-potential coulometer has been developed at the Savannah River Site (SRS) for the determination of plutonium for use at the International Atomic Energy Agency's (IAEA) Safeguards Analytical Laboratory in Siebersdorf, Austria. The system is functionally the same as earlier systems built for use at the Savannah River Site's Analytical Laboratory. All electronic circuits and printed circuits boards have been upgraded with state-of-the-art components. A higher amperage potentiostat with improved control stability has been developed. The system achieves electronic calibration accuracy and linearity of better than 0.01 percent, with a precision and accuracy better than 0.1 percent has been demonstrated. This coulometer features electrical calibration of the integration system, electrolysis current background corrections, and control-potential adjustment capabilities. These capabilities allow application of the system to plutonium measurements without chemical standards, achieving traceability to the international measurement system through electrical standards and Faraday's constant. the chemist is provided with the capability to perform measurements without depending upon chemical standards, which is a significant advantage for applications such as characterization of primary and secondary standards. Additional benefits include reducing operating cost to procure, prepare and measure calibration standards and the corresponding decrease in radioactive waste generation. The design and documentation of the automated instrument are provided herein. Each individual module's operation, wiring, layout, and alignment are described. Interconnection of the modules and system calibration are discussed. A complete set of prints and a list of associated parts are included

  7. ITRAP - International laboratory and field test site exercise for radiation detection instruments and monitoring systems at border crossings

    International Nuclear Information System (INIS)

    Beck, P.; Schmitzer, C.; Duftschmid, K.E.; Arlt, R.

    2001-01-01

    Illicit trafficking in nuclear materials has become more and more a problem, due to the circulation of a high number of radioactive sources and the big amount of nuclear material. The IAEA database counts at present more than 300 verified cases. The endangering cased thereby ranges from possible health defect for the publication to terrorists activities and production of nuclear weapons. In addition to the primary criminal reasons the illegal disposal of radioactive sources as salvage, scrap and others show a further problem, which has lead to severe accidents and lethal effects in the past (e.g. Goiana, Mexico). Some countries have already under taken countermeasures (e.g. Monitoring at the Finnish-Russian and German- Polish border, border monitoring in Italy). The International Atomic Energy Agency (IAEA) has reacted on this actual problem by setting up a new program to fight against nuclear criminality and has suggested a pilot study for the practical test of border monitoring systems. Co-ordinated by the Federal Ministry of Economy and Labour the Austrian Government financed the pilot study ITRAP (Illicit Trafficking Radiation Detection Assessment Program) carried out by the Austrian Research Centers Seibersdorf (ARCS). Aim of the study was to work out the technical requirements and the practicability of an useful monitoring system at border crossings. The results of the study will be offered by the IAEA to the member states as international recommendations for border monitoring systems

  8. Statement to the forty-fourth regular session of the IAEA General Conference 2000. IAEA General Conference. Vienna, 18 September 2000

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2000-01-01

    In his Statement on the forty-fourth regular session of the General Conference of the IAEA, the Director General of the Agency highlighted IAEA's achievements in connection with its major functions: as catalyst for the development and transfer of nuclear technology (nuclear power, nuclear fuel cycle and waste management, preservation of nuclear expertise, nuclear science and applications, laboratory and research activities, future challenges in nuclear technology), as a recognized authority on nuclear safety (international conventions, establishment of international standards, safety services, early shutdown of nuclear power plants, decommissioning issues, Kursk submarine accident, future challenges in nuclear safety), and as an instrument for the verification of nuclear non-proliferation (safeguards agreements and additional protocols, implementation of United Nations Security Council Resolutions relating to Iraq, safeguards agreement with the Democratic People's Republic of Korea, application of IAEA Safeguards in the Middle East, other verification activities, security of material, future challenges in verification. He also discussed the Agency's technical co-operation programme and the Agency management for maximum efficiency and effectiveness, and the new outreach policy

  9. IAEA's Safeguards Implementation Practices Guides

    International Nuclear Information System (INIS)

    Mathews, C.; Sahar, S.; Cisar, V.

    2015-01-01

    Implementation of IAEA safeguards benefits greatly from effective cooperation among the IAEA, State or regional authorities (SRAs), and operators of facilities and other locations. To improve such cooperation, the IAEA has produced numerous safeguards guidance documents in its Services Series publications. The IAEA also provides assistance, training and advisory services that are based on the published guidance. The foundation of the IAEA's safeguards guidance is the Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (IAEA Services Series 21) published in March of 2012. The large majority of States have concluded CSAs and therefore will benefit from this guidance. Many States with CSAs also have concluded small quantities protocols (SQPs) to their CSAs. In April of 2013, the IAEA published the Safeguards Implementation Guide for States with SQPs (IAEA Services Series 22). Other guidance focuses on specific topics such as preparing additional protocol declarations and nuclear material accounting. This paper will describe a recent effort to produce a ''Safeguards Implementation Practices'' (SIP) series of guides that will provide additional explanatory information about safeguards implementation, and share the practical experiences and lessons learned of States and the IAEA over the many decades of implementing safeguards. The topics to be addressed in four SIP guides include: 1) Facilitating IAEA Verification Activities; 2) Establishing and Maintaining State Safeguards Infrastructure; 3) Provision of Information to the IAEA; and 4) Collaborative Approaches to Safeguards Implementation. The SIP Guides build upon the content of IAEA Services Series 21. Because the SIP Guides are intended to share implementation practices and lessons learned of States, a number of experienced State experts have participated in the development of the documents, through a joint Member State Support Programme task

  10. Euratom's accounting procedures to comply with IAEA requirements

    International Nuclear Information System (INIS)

    Kschwendt, H.

    1980-01-01

    The accounting concept used by the operators for nuclear materials accountancy is different from the evaluation concept used by IAEA. Euratom integrated these two concepts thus allowing for an automatic transformation from the one to the other concept (establishment of reports to IAEA by computer). Particular procedures have been developed to ensure the corrections of the accountancy in both concepts and to perform the retrospective corrections as required by IAEA. 4 refs

  11. NIRS inaugurated as IAEA Collaborating Centre. Its presence and function

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Watanabe, Naoyuki; Sakai, Kazuo; Kamada, Tadashi; Imai, Reiko; Fujibayashi, Yasuhisa; Nakane, Takeshi; Burkart, W.; Chhem, R.; Matsuura, Shojiro

    2010-01-01

    The feature article is the collection of documents commemorating the 2010 designation of National Institute of Radiological Sciences (NIRS) as one of International Atomic Energy Agency (IAEA) Collaborating Centres (CC) again, involving 4 introductory chapters containing 9 sections in total. The IAEA-CC concept, essentially for the 4-year project, started to globally give shape by designating 3 organizations in some countries in 2004, NIRS as a CC worked from 2006 and the present designation is the renewed one. There are 17 IAEA-CCs at present. The title of Chapter 1 of the article is the same as above title by NIRS President and of Chapter 2, ''IAEA-CC scheme'' by NIRS Senior Specialist/ professor of Gunma Pref. College of Health Sciences/ former IAEA staff. Chapter 3 entitled ''Research Development of Next Four Years in Three Collaboration Areas'', contains 3 topics of the very areas mainly responsible to the project, of biological effect and mechanism of low dose radiation by NIRS Director of Res. Center for Radiation Protection, IAEA-CC plan (radiotherapy) by the Director for Charged Particle Therapy, and IAEA-CC activity and research at Molecular Imaging Center by its Director. Chapter 4 entitled ''Expectation to NIRS'' contains four topics; Expectations for the reinforcement of collaboration with IAEA whose new priority is cancer control by the Japanese Ambassador Extraordinary and Plenipotentiary in Vienna; Welcoming NIRS to join IAEA-CC network (an interview with IAEA Deputy Director General and Head of Nuclear Sciences and Applications); Honoured to invite NIRS to establish a new partnership with IAEA (an interview with IAEA Director of Division of Human Health, Dept. of Nuclear Sciences and Applications); Expectation to NIRS in peaceful use of nuclear and radiation by President of the Nuclear Safety Research Association. (T.T.)

  12. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  13. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  14. IAEA-RML-2014-01 Proficiency Test for Determination of Radionuclides in Sea Water

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiometrics Laboratory of the IAEA Environment Laboratories (NAEL) has been providing quality support products and services for the past 50 years. These include the organization of proficiency tests and laboratory comparisons, and the production of certified reference materials, including a wide range of marine sample matrices and radionuclide levels. As part of these activities, a proficiency test was organized at the request of the Nuclear Regulation Authority (NRA) of Japan to test the performance of participating laboratories in an analysis of radionuclides in a seawater sample. This exercise was initiated to support laboratories in seawater analyses of tritium, strontium-90 and caesium isotopes in relation to the accident at the Fukushima Daiichi nuclear power plant, in March 2011, and subsequent contamination of the marine environment

  15. Proceedings of the IAEA consultants' meeting on the assessment of the results of the REAL-84 exercise

    International Nuclear Information System (INIS)

    Zsolnay, E.M.; Nolthenius, H.J.; Piksaikin, V.

    1987-03-01

    The document contains the proceedings of a consultants' meeting organized by the IAEA to discuss the assessment of the results of the REAL-84 exercise. The aim of the exercise is to improve the assessment of accuracies in radiation damage predictions by various laboratories using good quality input data and proper calculation methods. The emphasis lies on radiation damage to reactor pressure vessels and related nuclear technology. The purpose of the meeting was to consider the progress, the presentation of the results and their interpretation, the discussion of scientific phenomena and to suggest recommendations for future actions by the IAEA and participants

  16. Quantification of tannins in tree foliage. A laboratory manual for the FAO/IAEA co-ordinated research project on 'Use of nuclear and related techniques to develop simple tannin assays for predicting and improving the safety and efficiency of feeding ruminants on tanniniferous tree foliage'

    International Nuclear Information System (INIS)

    2000-01-01

    Tanniniferous trees and shrubs are of importance in animal production because they can provide significant protein supplements, but unfortunately the amounts of tannins that they contain vary widely and largely unpredictably, and their effects on animals range from beneficial to toxicity and death. The toxic or antinutritional effects tend to occur in times of stress when a very large proportion of the diet is tanniniferous. With a better understanding of tannin properties and proper management, they could become an invaluable source of protein for strategic supplementation. As the demand for food rises, tanniniferous plants must play an increasingly important part in the diet of animals, in particular for ruminants in smallholder subsistence farming in developing countries. It is therefore critical that techniques be developed to measure and manage the anti-nutritional components that they contain. Keeping the above in mind, a Joint FAO/IAEA Co-ordinated Research Project (CRP) on 'Use of Nuclear and Related Techniques to Develop Simple Tannin Assays for Predicting and Improving the Safety and Efficiency of Feeding Ruminants on Tanniniferous Tree Foliage' has been initiated. In order to provide sound basis for this CRP, an FAO/IAEA Consultants Meeting was held in August 1997 in Vienna, at which the tanniniferous plants to be studied, the analytical methods, the test animals and the animal response evaluation techniques were defined. This publication contains methodologies for the analysis of tannins using chemical-, protein precipitation/binding- and bio-assays recommended by the consultants

  17. The IAEA programme of action for cancer therapy

    International Nuclear Information System (INIS)

    Oliver, L. D.

    2007-01-01

    Full text: The International Atomic Energy Agency (IAEA) was awarded the Nobel Peace Prize on 10 December 2005. To acknowledge receiving this prestigious award, the IAEA arranged three special workshops in the regions of Asia, Africa and South America. These special events brought together high-ranking delegates from IAEA member countries within their regions. The theme of the workshop was on human resources development in radiation oncology in the context mmcer control programs. This paper presents information on the world cancer incidence provided the International Agency for Research on Cancer (IARC). Details of the IAEA Programme of Action for Cancer Therapy (PACT) 2 are also presented.

  18. Japanese authorities inform IAEA about accident at nuclear plant

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: The IAEA today received information from Japanese nuclear regulatory authorities about an accident in the steam generator turbine circuit of the Mihama Nuclear Power Plant (unit 3). According to the Japanese nuclear authorities this is a non-radioactive part of the plant. The regulatory body has reported that four contract employees died and 7 were injured, and stated that there was no release of radioactivity. The IAEA continues to be in contact with Japanese authorities and expects to receive updates on a continuous basis. No request for IAEA assistance has been received at this time. (IAEA)

  19. CINDU: Catalogue of Numerical Neutron Data Available from the IAEA Nuclear Data Unit

    Energy Technology Data Exchange (ETDEWEB)

    Good, W. K.; Attrae, P. M.; Ekberg, K.; Lemmel, H. D.; Lorenz, A.; Otstavnov, P. [IAEA, Nuclear Data Unit, Vienna (Austria)

    1967-08-15

    , suggestions and comments on the system, and in particular corrections to the contents, are welcome. It is hoped that this bibliographical and reference catalog to the neutron data file of the IAEA Nuclear Data Unit will be of value to laboratories and scientists, help promote international data exchange, and stimulate further voluntary contributions in the spirit of Operation Post-Box.

  20. IAEA responds to cancer crisis in Tanzania

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: On the occasion of World Cancer Day (4 February), the IAEA announced that its Programme of Action for Cancer Therapy (PACT) will establish its first Centre of Excellence in Dar Es Salaam, Tanzania. This low-income East African country has one of the continent's highest cancer rates and only one cancer treatment centre. 'Cancer is a growing crisis all across the developing world,' explains IAEA Director General and Nobel Laureate Mohammed ElBaradei. 'We can save thousands of lives if we put together the tools, the knowledge and the political will to fight cancer effectively,' he said. Cancer is the second most common cause of death worldwide after cardiovascular disease. Over 7 million people died of cancer in 2005, and close to 11 million new cancer cases were diagnosed, according to the World Health Organization (WHO). More than 70 percent of cancer deaths now occur in low and middle income countries - the very countries least able to address this growing burden. Cancer-related deaths are projected to increase to more than 9 million people annually by 2015. Already cancer claims twice the number of lives worldwide as AIDS. Low income nations now face a dual burden of communicable and chronic diseases such as cancer. The IAEA spends about 12 million dollars each year for improving cancer treatment in the developing world. Last year, it established the Programme of Action for Cancer Therapy (PACT), to build partnerships with the WHO and other organizations dedicated to controlling cancer. Much of the IAEA's share of the 2005 Nobel Peace Prize Award has been dedicated to helping the developing world deal with the dramatic rise in cancer that is overwhelming limited health resources and equipment. The harsh reality of developing nations is one of overburdened health systems with little cancer screening and unnecessarily late cancer diagnosis and non-curative treatment. The IAEA estimates that approximately 5,000 cancer care centres and systems - plus the

  1. Statement by IAEA Director General Yukiya Amano

    International Nuclear Information System (INIS)

    Amano, Y.

    2011-01-01

    Full text: The IAEA's 151 Member States have today endorsed the Agency's Action Plan on Nuclear Safety. This Action Plan - the product of intensive consultations with Member States - is both a rallying point and a blueprint for strengthening nuclear safety worldwide. It contains concrete and achievable actions to make nuclear safety post-Fukushima more robust and effective than before. At its core is greater transparency. If there is more transparency, there is more incentive to implement all the actions in the Plan, and to be seen to do so. We count on Member States to implement the Action Plan fully and vigorously. It will need their sustained commitment and full involvement. I am confident that the UN High-Level Meeting on Nuclear Safety and Security, which is taking place in New York today, will continue to build on the foundations laid here in Vienna. We must not lose our sense of urgency. Public expectations are very high. This is an Action Plan. It is time for action. (IAEA)

  2. IFSS: The IAEA's inspection field support system

    International Nuclear Information System (INIS)

    Muller, R.; Heinonen, O.J.; Schriefer, D.

    1990-01-01

    Recently, highly automated nuclear facilities with enormous volumes of nuclear material accounting data have come into operation. A few others will become operational shortly. Analysis and verification of the data for safeguards purposes is manageable only with improved computer support in the field. To assist its safeguards inspectors, the IAEA has developed the Inspection Field Support System (IFSS). It allows safeguards inspectors to collect, maintain, analyse, and evaluate inspection data on site at nuclear facilities. Previously, field computer support to safeguards inspectors concentrated on providing measurement instrumentation with data storage, but data analysis capabilities were elementary. Also, generic statistical tools were available to handle data that inspectors could (usually manually) input into a computer. Electronic links between these two directions were rudimentary. IFSS integrates the data required for verification and accounting so that inspectors will be able to devote more time to measurements and to derive conclusions at the site in a more timely manner. The system operates on stationary personal computers as well as on portable ones. Its introduction reflects the IAEA Department of Safeguards determination to further improve operational efficiency. It should be emphasized that IFSS implementation is still under development. Several field installations have been made to obtain practical experience and to determine the system's effectiveness

  3. Review of the IAEA fire symposium

    International Nuclear Information System (INIS)

    Fischer, J.

    1991-01-01

    The IAEA Symposium on Fire Protection and Fire Fighting in Nuclear Installations covered a large scope in the field in order to provide the opportunity for screening all aspects of present technology, research and development, standardization, licensing and fire fighting practices. Although application to any nuclear facility was within its scope, the majority of presentations concerned nuclear power plants. The approach to fire protection is the classical one in all plant designs: reduction of fire loads, appropriate zoning, manual and automatic extinguishment. However, methods of analysis and consequence prediction are changing. Computerized fire modelling is becoming a powerful tool in this area; probabilistic analytical methods are being improved, though they are not yet used widely for fire hazards. Differences in opinion were revealed in the definition of barrier resistance, the prediction of cable insulation behaviour and the optimal design of extinguishing systems. Greater international co-operation, especially in these areas, may be a good way of optimizing results with limited resources. Discussion contributions showed interest in exchange of experience in more specialized topics and encouraged the IAEA to increase its activity in the area of fire protection. (orig.)

  4. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  5. Animal production and health newsletter. No. 22

    International Nuclear Information System (INIS)

    1995-07-01

    This newsletter contains brief reports on 9 workshops, research coordination meetings, consultant meetings and training courses held between January-June 1995, the status of 6 co-ordinated research programmes organized by the Animal Production and Health Section of the Joint FAO/IAEA Division, recent developments at the Animal Production Unit of the IAEA Laboratory Seibersdorf, a presentation of 4 forthcoming events (meetings, workshops, training courses) and 3 software programs in the field

  6. Animal production and health newsletter. No.21

    International Nuclear Information System (INIS)

    1995-01-01

    This newsletter contains brief reports on 7 meetings, workshops and training courses held between september and december 1994, the status of the 6 co-ordinated research programmes organized by the Animal Production and Health Section of the Joint FAO/IAEA Division, recent developments at the Animal Production Unit at the IAEA Laboratory Seibersdorf and a presentation of 5 forthcoming meetings, workshops and training courses

  7. Animal Production and Health Newsletter. No. 15

    International Nuclear Information System (INIS)

    1991-12-01

    This newsletter contains brief reviews of the meetings held between September and November, 1991, and a list of the nine co-ordinated research projects (CRPs) organized by the Animal Production and Health Section of the Joint FAO/IAEA Division is given. A tenth CRP, focussing on the development of supplementation strategies for milk-producing animals in tropical and subtropical environments, is currently being planned. Developments at the Animal Production Unit of the IAEA Laboratory, Seibersdorf are detailed

  8. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    During their December 10-11, 2013, workshop in Grenoble France, which focused on the history and future of safeguarding research reactors, the United States, France and the United Kingdom (UK) agreed to conduct a joint study exploring ways to strengthen the IAEA’s safeguards approach for declared research reactors. This decision was prompted by concerns about: 1) historical cases of non-compliance involving misuse (including the use of non-nuclear materials for production of neutron generators for weapons) and diversion that were discovered, in many cases, long after the violations took place and as part of broader pattern of undeclared activities in half a dozen countries; 2) the fact that, under the Safeguards Criteria, the IAEA inspects some reactors (e.g., those with power levels under 25 MWt) less than once per year; 3) the long-standing precedent of States using heavy water research reactors (HWRR) to produce plutonium for weapons programs; 4) the use of HEU fuel in some research reactors; and 5) various technical characteristics common to some types of research reactors that could provide an opportunity for potential proliferators to misuse the facility or divert material with low probability of detection by the IAEA. In some research reactors it is difficult to detect diversion or undeclared irradiation. In addition, infrastructure associated with research reactors could pose a safeguards challenge. To strengthen the effectiveness of safeguards at the State level, this paper advocates that the IAEA consider ways to focus additional attention and broaden its safeguards toolbox for research reactors. This increase in focus on the research reactors could begin with the recognition that the research reactor (of any size) could be a common path element on a large number of technically plausible pathways that must be considered when performing acquisition pathway analysis (APA) for developing a State Level Approach (SLA) and Annual Implementation Plan (AIP). To

  9. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 9 December 1999

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 9 December 1999. The following aspects from the Agency's activity are briefly presented: IAEA's safeguards, physical protection of nuclear material, the status of Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and Agency's actions in connection with Y2K possible problems

  10. Report on intercomparisons IAEA/S-17, S-18, and S-19 of the determinaton of uranium in uranium phosphate ores

    International Nuclear Information System (INIS)

    Pszonicki, L.; Hanna, A.N.; Suschny, O.

    1984-08-01

    The aim of the reported intercomparisons, organized by the IAEA's Analytical Quality Control Service, was to provide an opportunity to the participating laboratories to check the reliability of their results by comparing them with the results obtained by other laboratories. The participants were requested to determine the concentration of uranium in three samples of Brasilian uranium phosphate ores containing uranium of a low, a medium, and a large concentration. Twenty-four laboratories from 19 countries returned results. The analytical method most frequently used was radiometry of natural isotopes, followed by neutron activation analysis, fluorimetry, X-ray fluorescence and spectrophotometry. In general, the results can be considered as satisfactory. The relative confidence intervals of the medians extend in the range from -3% to +5%. The overall medians of all materials were accepted as reliable for certification

  11. Estimated incremental costs for NRC licensees to implement the US/IAEA safeguards agreement

    International Nuclear Information System (INIS)

    Clark, R.G.; Brouns, R.J.; Chockie, A.D.; Davenport, L.C.; Merrill, J.A.

    1979-01-01

    A study was recently completed for the US Nuclear Regulatory Commision (NRC) by the Pacific Northwest Laboratory (PNL) to identify the incremental cost of implementing the US/IAEA safeguards treaty agreement to eligible NRC licensees. Sources for the study were cost estimates from several licensees who will be affected by the agreement and cost analyses by PNL staff. The initial cost to all eligible licensees to implement the agreement is estimated by PNL to range from $1.9 to $7.2 million. The annual cost to these same licensees for the required accounting and reporting activities is estimated at $0.5 to $1.5 million. Annual inspection costs to the industry for the limited IAEA inspection being assumed is estimated at $80,000 to $160,000

  12. RCA/IAEA third external dosimetry intercomparisons in East Asia region

    International Nuclear Information System (INIS)

    Yamamoto, H.; Yoshizawa, M.; Murakami, H.; Momose, T.; Tsujimura, N.; Kanai, K.; Cruz-Suarez, R.

    2007-01-01

    Several intercomparison exercises were organised by the International Atomic Energy Agency (IAEA) on the determination of operational quantities at the regional or inter-regional basis. In East Asia region, a third phase of the intercomparison finished in mid 2004. It was organised within the frame of the Regional Cooperation Agreement (RCA) as a follow-up to previous exercises carried out during 1990-1992 and 1995-1996. The results of this intercomparison for the determination of operational quantities were satisfactory for all Member States. The laboratories demonstrated a good performance in quantities tested. The purpose of this paper is to present the results of the RCA/IAEA intercomparison and the future of RCA activities in support of assessment of occupational exposure by organising intercomparison runs. (authors)

  13. Some activities of the IAEA on the use of radioisotopes and radiation

    International Nuclear Information System (INIS)

    Shalnov, A.V.

    1976-01-01

    The use of radioisotopes and radiation will continue to expand. There is an immediate and obvious use for radioisotopes in industry, medicine, agriculture and other branches of science. Working with isotopes and radiation is on the other hand an effective way of acquainting a large number of people with radiation and radioactivity, including radiation protection. One of the advantages of radioisotope technology is that it can be used in small laboratories such as those in universities, enhancing nuclear training. Owing to the extreme sensitivity and detectability of isotopes they are also advantageous in studies of the distribution of many materials, e.g. dust, air, water and soil. he programme of the IAEA in respect to the use of radioisotopes and radiation is concentrated mainly in the Department of Research and Isotopes. Some examples of IAEA activities in the application of radioisotopes will be mentioned in more detail, including isotope hydrology, physics, industrial applications, medicine and agriculture. (author)

  14. Future direction for implementing the multilateral cooperation with the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Pyo; Hong, Young Don

    1999-03-01

    Korea has achieved remarkable results in the development of nuclear technology over the past years. Nuclear R and D programs have been actively pursued with the aim of enhancing nuclear technological capability to the level of nuclear advanced countries by early 2000. Worth noting is the fact that the IAEA has played an important role in facilitating Korea's acquisition of advanced nuclear technologies by participating in IAEA technical cooperation programmes, and technical cooperation with the IAEA has laid a firm groundwork for Korea to achieve self-reliance in nuclear technology. Technical cooperation with the IAEA should be steadily pursued so that Korea can play a leading role in the international nuclear arena in the years to come. Up to now, the study of major programmes and of the current status of overall technical cooperation projects, which have been implemented by the IAEA, has been insufficient. It should be noted that analysis of the assistance provided by the IAEA leaves something to be desired. In this regard, analyzing the current status of technical cooperation projects as well as recommending policy direction is required in a bid to implement IAEA technical cooperation projects systematically. Korea's status within the IAEA, including activities in the Advisory Committee and the current status of its participation in Coordinated Research Programmes (CRP) and other major programmes underway, is presented in this report. The policy direction for and implementation status of IAEA technical cooperation programmes are explained at length. The current status of technical cooperation programmes carried out in the 1997-1998 cycle and those to be implemented in the 1992-2000 cycle are also described in this report. Strategies for upgrading Korea's status within the IAEA as well as directions for nuclear cooperation through the IAEA were presented in this study to positively deal with rapid changes in the international nuclear arena and to

  15. Future direction for implementing the multilateral cooperation with the IAEA

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Hong, Young Don

    1999-03-01

    Korea has achieved remarkable results in the development of nuclear technology over the past years. Nuclear R and D programs have been actively pursued with the aim of enhancing nuclear technological capability to the level of nuclear advanced countries by early 2000. Worth noting is the fact that the IAEA has played an important role in facilitating Korea's acquisition of advanced nuclear technologies by participating in IAEA technical cooperation programmes, and technical cooperation with the IAEA has laid a firm groundwork for Korea to achieve self-reliance in nuclear technology. Technical cooperation with the IAEA should be steadily pursued so that Korea can play a leading role in the international nuclear arena in the years to come. Up to now, the study of major programmes and of the current status of overall technical cooperation projects, which have been implemented by the IAEA, has been insufficient. It should be noted that analysis of the assistance provided by the IAEA leaves something to be desired. In this regard, analyzing the current status of technical cooperation projects as well as recommending policy direction is required in a bid to implement IAEA technical cooperation projects systematically. Korea's status within the IAEA, including activities in the Advisory Committee and the current status of its participation in Coordinated Research Programmes (CRP) and other major programmes underway, is presented in this report. The policy direction for and implementation status of IAEA technical cooperation programmes are explained at length. The current status of technical cooperation programmes carried out in the 1997-1998 cycle and those to be implemented in the 1992-2000 cycle are also described in this report. Strategies for upgrading Korea's status within the IAEA as well as directions for nuclear cooperation through the IAEA were presented in this study to positively deal with rapid changes in the international nuclear arena and to efficiently

  16. IAEA activities on steam generator life management

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Lyssakov, V.; Trampus, P.

    2002-01-01

    The International Atomic Energy Agency (IAEA) carries out a set of activities in the field of Nuclear Power Plant (NPP) life management. Main activities within this area are implemented through the Technical Working Group on Life Management of NPPs, and mostly concentrated on studies of understanding mechanisms of degradation and their monitoring, optimisation of maintenance management, economic aspects, proven practices of and approaches to plant life management including decommissioning. The paper covers two ongoing activities related to steam generator life management: the International Database on NPP Steam Generators and the Co-ordinated Research Project on Verification of WWER Steam Generator Tube Integrity (WWER is the Russian designed PWR). The lifetime assessment of main components relies on an ability to assess their condition and predict future degradation trends, which to a large extent is dependent on the availability of relevant data. Effective management of ageing and degradation processes requires a large amount of data. Several years ago the IAEA started to work on the International Database on NPP Life Management. This is a multi-module database consisting of modules such as reactor pressure vessels materials, piping, steam generators, and concrete structures. At present the work on pressure vessel materials, on piping as well as on steam generator is completed. The paper will present the concept and structure of the steam generator module of the database. In countries operating WWER NPPs, there are big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment. Responding to the need for a co-ordinated research to compare eddy current testing results with destructive testing using pulled out tubes from WWER steam generators, the IAEA launched this project. The main objectives of the project are to summarise the operating experiences of WWER

  17. 10 CFR 75.12 - Communication of information to IAEA.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Communication of information to IAEA. 75.12 Section 75.12... AGREEMENT Facility and Location Information § 75.12 Communication of information to IAEA. (a) Except as... request that information of particular sensitivity, that it customarily holds in confidence, not be...

  18. Finnish support programme to IAEA safeguards. Annual report 1994

    International Nuclear Information System (INIS)

    Tarvainen, M.

    1995-05-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out trough separate tasks concentrating on verification of nuclear material, training and expert services to the IAEA. In addition to the Finnish summary, the report includes detailed description of each task in English

  19. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  20. IAEA-RML-2012-01 Proficiency Test for Determination of Radionuclides in Sea Water

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiometrics Laboratory of the IAEA Environment Laboratories (NAEL) has been providing quality support products and services for the past 50 years. These include the organization of proficiency tests and laboratory comparisons, and the production of certified reference materials, including a wide range of marine sample matrices and radionuclide levels. As part of these activities, a new proficiency test was organized in the framework of the technical cooperation project entitled Marine Benchmark Study on the Possible Impact of the Fukushima Radioactive Releases in the Asia-Pacific Region, to test the performance of participating laboratories in the analysis of radionuclides in a seawater sample. This exercise was initiated to support Member States in seawater analyses of caesium isotopes in relation to the accident at the Fukushima Daiichi nuclear power plant, in March 2011, and subsequent contamination of the marine environment