WorldWideScience

Sample records for seepage water chemistry

  1. Long Term Effects of Acid Irrigation at the Hoeglwald on Seepage Water Chemistry and Nutrient Cycling

    International Nuclear Information System (INIS)

    Weis, Wendelin; Baier, Roland; Huber, Christian; Goettlein, Axel

    2007-01-01

    In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Hoeglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a -1 ), and acid irrigation with diluted sulphuric acid (pH of 2.6-2.8). During the seven years of acid irrigation (1984-1990) water containing 0.43 mol c m -2 a -1 of protons and sulphate was added with a mean pH of 3.2 (throughfall + acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca + Mg + K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil

  2. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    Science.gov (United States)

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  3. A seepage meter designed for use in flowing water

    Science.gov (United States)

    Rosenberry, D.O.

    2008-01-01

    Seepage meters provide one of the most direct means to measure exchange of water across the sediment-water interface, but they generally have been unsuitable for use in fluvial settings. Although the seepage bag can be placed inside a rigid container to minimize velocity head concerns, the seepage cylinder installed in the sediment bed projects into and disrupts the flow field, altering both the local-scale fluid exchange as well as measurement of that exchange. A low-profile seepage meter designed for use in moving water was tested in a seepage meter flux tank where both current velocity and seepage velocity could be controlled. The conical seepage cylinder protrudes only slightly above the sediment bed and is connected via tubing to a seepage bag or flowmeter positioned inside a rigid shelter that is located nearby where current velocity is much slower. Laboratory and field tests indicate that the net effect of the small protrusion of the seepage cylinder into the surface water flow field is inconsequentially small for surface water currents up to 65 cm s-1. Current velocity affects the variability of seepage measurements; seepage standard deviation increased from ???2 to ???6 cm d-1 as current velocity increased from 9 to 65 cm s-1. Substantial bias can result if the shelter is not placed to minimize hydraulic gradient between the bag and the seepage cylinder.

  4. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    Science.gov (United States)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  5. F- and H-Area Seepage Basins Water Treatment System Process Optimization and Alternative Chemistry Ion Exchange/Sorbent Material Screening Clearwell Overflow Study

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    2000-08-30

    This study investigated alternative ion exchange/sorbent materials and polishing chemistries designed to remove specific radionuclides not removed during the neutralization/precipitation/clarification process.

  6. Water chemistry

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Baston, V.F.

    1986-01-01

    Prior to the accident, the coolants in the primary and secondary systems were within normal chemistry specifications for an operating pressurized water reactor with once-through steam generators. During and immediately after the accident, additional boric acid and sodium hydroxide were added to the primary coolant for control of criticality and radioiodine solubility. A primary to secondary leak developed contaminating the water in one steam generator. For about 5 years after the accident, the primary coolant was maintained at 3800 +. 100 ppm boron and 1000 +. 100 ppm sodium concentrations. Dissolved oxygen was maintained 7.5, corrosion caused by increased dissolved oxygen levels (up to 8 ppm) and higher chloride ion content (up to 5 ppm) is minimized. Chemical control of dissolved oxygen was discontinued and the coolant was processed. Prior to removal of the reactor vessel head, the boron concentration in the coolant was increased to ≅ 5000 ppm to support future defueling operations. Decontamination of the accident generated water is described in terms of contaminated water management. In addition, the decontamination and chemical lay-up conditions for the secondary system are presented along with an overview of chemical management at TMI-2

  7. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  8. Using self-potential housing technique to model water seepage at the UNHAS housing Antang area

    Science.gov (United States)

    Syahruddin, Muhammad Hamzah

    2017-01-01

    The earth's surface has an electric potential that is known as self-potentiall (SP). One of the causes of the electrical potential at the earth's surface is water seepage into the ground. Electrical potential caused by water velocity seepage into the ground known as streaming potential. How to model water seepage into the ground at the housing Unhas Antang? This study was conducted to answer these questions. The self-potential measurements performed using a simple digital voltmeter Sanwa brand PC500 with a precision of 0.01 mV. While the coordinates of measurements points are self-potential using Global Positioning System. Mmeasurements results thus obtained are plotted using surfer image distribution self-potential housing Unhas Antang. The self-potential data housing Unhas Antang processed by Forward Modeling methods to get a model of water infiltration into the soil. Housing Unhas Antang self-potential has a value of 5 to 23 mV. Self-potential measurements carried out in the rainy season so it can be assumed that the measurement results caused by the velocity water seepage into the ground. The results of modeling the velocity water seepage from the surface to a depth of 3 meters was 2.4 cm/s to 0.2 cm /s. Modeling results showed that the velocity water seepage of the smaller with depth.

  9. Environmental hazards from natural hydrocarbons seepage: Integrated classification of risk from sediment chemistry, bioavailability and biomarkers responses in sentinel species

    International Nuclear Information System (INIS)

    Benedetti, Maura; Gorbi, Stefania; Fattorini, Daniele; D'Errico, Giuseppe; Piva, Francesco; Pacitti, Davide; Regoli, Francesco

    2014-01-01

    Potential effects of natural emissions of hydrocarbons in the marine environment have been poorly investigated. In this study, a multidisciplinary weight of evidence (WOE) study was carried out on a shallow seepage, integrating sediment chemistry with bioavailability and onset of subcellular responses (biomarkers) in caged eels and mussels. Results from different lines of evidence (LOEs) were elaborated within a quantitative WOE model which, based on logical flowcharts, provide synthetic indices of hazard for each LOE, before their integration in a quantitative risk assessment. Evaluations of different LOEs were not always in accordance and their overall elaboration summarized as Moderate the risk in the seepage area. This study provided first evidence of biological effects in organisms exposed to natural hydrocarbon emissions, confirming the limit of chemical characterization as stand-alone criteria for environmental quality assessment and the utility of multidisciplinary investigations to determine the good environmental status as required by Environmental Directives. -- Highlights: • Hazards from natural seepage were evaluated through a multidisciplinary WOE study. • Caged eels and mussels were chosen as bioindicator organisms. • Evaluations obtained from various LOEs were not always in accordance. • Biological effects of natural hydrocarbons release were demonstrated. • WOE approach could discriminate different levels of hazard in low impacted conditions. -- A multidisciplinary WOE study in a shallow coastal seepage summarized a Moderate level of risk based on integration of sediment chemistry with biological effects in caged organisms

  10. Seepage from uranium tailing ponds and its impact on ground water

    International Nuclear Information System (INIS)

    Rahn, P.H.; Mabes, D.L.

    1978-01-01

    A typical uranium mill produces about 1800 metric tons of tailing per day. An assessment of the seepage from an unlined tailing impoundment of a hypothetical mill in northwestern New Mexico indicates that about 2x10 5 m 3 /yr of water will seep over a period of 23 years. The seepage water will move vertically to the water table, and then spread out radially and ultimately downgradient with ground water. The principal dissolved contaminants in the tailing pond liquid are radium, thorium, sulfate, iron, manganese, and selenium; in addition, the liquid is acidic (pH=2). Many contaminants precipitate out as neutralization of seepage water occurs. At the termination of mill operation, radium will have advanced about 0.4 m and thorium no more than 0.1 m below the bottom of the tailing pond

  11. WATER CHEMISTRY ASSESSMENT METHODS

    Science.gov (United States)

    This section summarizes and evaluates the surfce water column chemistry assessment methods for USEPA/EMAP-SW, USGS-NAQA, USEPA-RBP, Oho EPA, and MDNR-MBSS. The basic objective of surface water column chemistry assessment is to characterize surface water quality by measuring a sui...

  12. Characterization of Coal Micro-Pore Structure and Simulation on the Seepage Rules of Low-Pressure Water Based on CT Scanning Data

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-07-01

    Full Text Available This paper used the X-ray three-dimensional (3D microscope and acquired, through CT scanning, the 3D data of the long-frame coal sample from the Daliuta Coal Mine. Then, the 3D datacube reconstructed from the coal’s CT scanning data was visualized with the use of Avizo, an advanced visualization software (FEI, Hillsboro, OR, USA. By means of a gray-scale segmentation technique, the model of the coal’s micro-pore structure was extracted from the object region, and the precise characterization was then conducted. Finally, the numerical simulation on the water seepage characteristics in the coal micro-pores model under the pressure of 3 MPa was performed on the CFX platform. Results show that the seepage of low-pressure water exhibited preference to the channels with large pore radii, short paths, and short distance from the outlet. The seepage pressure of low-pressure water decreased gradually along the seepage direction, while the seepage velocity of low-pressure water decreased gradually along the direction from the pore center to the wall. Regarding the single-channel seepage behaviors, the seepage velocity and mass flow rate of water seepage in the X direction were the largest, followed by the values of the seepage in the Y direction, and the seepage velocity and mass flow rate of water seepage in the Z direction were the smallest. Compared with the results in single-channel seepage, the dual-channel seepage in the direction of (X + Y and the multi-channel seepage in the direction of (X + Y + Z exhibited significant increases in the overall seepage velocity. The present study extends the application of 3D CT scanning data and provides a new idea and approach for exploring the seepage rules in coal micro-pore structures.

  13. Evaluating origins and water seepage rates at the subdam A of the Dong Mo reservoir using environmental isotope technique

    International Nuclear Information System (INIS)

    Bui Dac Dung; Trinh Van Giap; Dang Anh Minh; Nguyen Van Hoan

    2008-01-01

    Environmental isotope techniques have been world-widely used for investigating origins and the rates of the seepage - leakage water at reservoir dams. We have conducted a research on the use of environmental isotope techniques for evaluating the origin of the seepage water and the seepage rate at the sub dam A of the Dong Mo reservoir. The main works were collecting water samples, analyzing for 18 O/ 16 O, 2 H(D)/ 1 H ratios, analyzing for 3 H(T) and chemical contents. Findings of the project showed that: a) Waters at the piezometers on the top and the 1st roof are not originated from lake water; b) Waters at the piezometers on 1st and 2nd levels, as well as seepage waters at the dam toe are mixed of lake and ground waters, and the old river bed could be the channel for ground water upcoming from beneath the dam body; c) The transit times of water from the lake to the observation points are from 3 to 4 months, and the seepage velocity is of about 1.1x10 -3 cm/s; d) The findings from tritium analyses show that all waters around the Dong Mo area are recent waters recharged regularly by meteoric water. (author)

  14. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  15. Colour chemistry in water

    OpenAIRE

    Cardona, Maria

    2015-01-01

    Atmospheric carbon dioxide (CO2) levels have increased dramatically in the last few decades. Famous for causing global warming, CO2 is also resulting in the acidification of seas and oceans. http://www.um.edu.mt/think/colour-chemistry-in-water/

  16. SEEPAGE/BACKFILL INTERACTIONS

    International Nuclear Information System (INIS)

    Mariner, P.

    2000-01-01

    As directed by written development plan (CRWMS M andO 1999a), a sub-model of seepage/backfill interactions is developed and presented in this document to support the Engineered Barrier System (EBS) Physical and Chemical Environment Model. The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift. In this analysis, a conceptual model is developed to provide PAO a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The development plan calls for a sub-model that evaluates the effect on water chemistry of chemical reactions between water that enters the drift and backfill materials in the drift. The development plan specifically requests an evaluation of the following important chemical reaction processes: dissolution-precipitation, aqueous complexation, and oxidation-reduction. The development plan also requests the evaluation of the effects of varying seepage and drainage fluxes, varying temperature, and varying evaporation and condensation fluxes. Many of these effects are evaluated in a separate Analysis/Model Report (AMR), ''Precipitates Salts Analysis AMR'' (CRWMS M andO 2000), so the results of that AMR are referenced throughout this AMR

  17. SEEPAGE/BACKFILL INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    P. Mariner

    2000-04-14

    As directed by written development plan (CRWMS M&O 1999a), a sub-model of seepage/backfill interactions is developed and presented in this document to support the Engineered Barrier System (EBS) Physical and Chemical Environment Model. The purpose of this analysis is to assist Performance Assessment Operations (PAO) and the Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift. In this analysis, a conceptual model is developed to provide PAO a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). The development plan calls for a sub-model that evaluates the effect on water chemistry of chemical reactions between water that enters the drift and backfill materials in the drift. The development plan specifically requests an evaluation of the following important chemical reaction processes: dissolution-precipitation, aqueous complexation, and oxidation-reduction. The development plan also requests the evaluation of the effects of varying seepage and drainage fluxes, varying temperature, and varying evaporation and condensation fluxes. Many of these effects are evaluated in a separate Analysis/Model Report (AMR), ''Precipitates Salts Analysis AMR'' (CRWMS M&O 2000), so the results of that AMR are referenced throughout this AMR.

  18. Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface

    Science.gov (United States)

    Rosenberry, Donald O.; Sheibley, Rich W.; Cox, Stephen E.; Simonds, Frederic W.; Naftz, David L.

    2013-01-01

    Seepage at the sediment-water interface in several lakes, a large river, and an estuary exhibits substantial temporal variability when measured with temporal resolution of 1 min or less. Already substantial seepage rates changed by 7% and 16% in response to relatively small rain events at two lakes in the northeastern USA, but did not change in response to two larger rain events at a lake in Minnesota. However, seepage at that same Minnesota lake changed by 10% each day in response to withdrawals from evapotranspiration. Seepage increased by more than an order of magnitude when a seiche occurred in the Great Salt Lake, Utah. Near the head of a fjord in Puget Sound, Washington, seepage in the intertidal zone varied greatly from −115 to +217 cm d−1 in response to advancing and retreating tides when the time-averaged seepage was upward at +43 cm d−1. At all locations, seepage variability increased by one to several orders of magnitude in response to wind and associated waves. Net seepage remained unchanged by wind unless wind also induced a lake seiche. These examples from sites distributed across a broad geographic region indicate that temporal variability in seepage in response to common hydrological events is much larger than previously realized. At most locations, seepage responded within minutes to changes in surface-water stage and within minutes to hours to groundwater recharge associated with rainfall. Likely implications of this dynamism include effects on water residence time, geochemical transformations, and ecological conditions at and near the sediment-water interface.

  19. Abating coal tar seepage into surface water bodies using sheet piles with sealed interlocks

    International Nuclear Information System (INIS)

    Collingwood, B.I.; Boscardin, M.D.; Murdock, R.F.

    1995-01-01

    A former coal tar processing facility processed crude coal tar supplied from manufactured gas plants in the area. Coal-tar-contaminated ground water from the site was observed seeping through an existing timber bulkhead along a tidal river and producing a multicolored sheen on the surface of the river. As part of a short-term measure to abate the seepage into the river, 64-m long anchored sheet pile wall with sheet pile wing walls at each end was constructed inland of the of the timber bulkhead. The sheet piles extended to low-permeability soils at depth and the interlocks of the sheet piles were provided with polyurethane rubber seals. Based on postconstruction observations for leakage and sheens related to leakage, the steel sheet piles with polyurethane rubber interlock seals appeared to provide a successful seal and abate coal-tar-contaminated ground water seepage into the river. The tie rod penetration sealing proved to be a more problematic detail, but through several postconstruction grouting episodes, an effective seal was produced

  20. Survey of PWR water chemistry

    International Nuclear Information System (INIS)

    Gorman, J.

    1989-02-01

    This report surveys available information regarding primary and secondary water chemistries of pressurized water reactors (PWRs) and the impact of these water chemistries on reactor operation. The emphasis of the document is on aspects of water chemistry that affect the integrity of the primary pressure boundary and the radiation dose associated with maintenance and operation. The report provides an historical overview of the development of primary and secondary water chemistries, and describes practices currently being followed. Current problems and areas of research associated with water chemistry are described. Recommendations for further research are included. 183 refs., 9 figs., 19 tabs

  1. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    International Nuclear Information System (INIS)

    Sharma, Shikha; Baggett, Joshua K.

    2011-01-01

    Highlights: → Coalbed natural gas extraction results in large amount of produced water. → Risk of deterioration of ambient water quality. → Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ 13 C DIC ) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ 13 C DIC . The CBNG produced waters from outfalls and impoundments have positive δ 13 C DIC values that fall within the range of +12 per mille to +22 per mille, distinct from the ambient regional surface and

  2. Toxicity of Water Samples Collected in the Vicinity of F and H Seepage Basin 1990-1995

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bowers, B.

    1996-09-01

    Water and contaminants from the F- and H-Area Seepage Basins outcrop as shallow groundwater seeps down gradient from the basins. In 1990, 1991, 1993, 1994, and 1995, toxicity tests were performed on water collected from a number of these seeps, as well as from several locations in Fourmile Branch and several uncontaminated reference locations.

  3. Abstraction of Drift Seepage

    International Nuclear Information System (INIS)

    J.T. Birkholzer

    2004-01-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport

  4. Tracing the source of emerging seepage water at failure slope downstream, Kampung Bharu Bukit Tinggi, Bentong, Pahang

    International Nuclear Information System (INIS)

    Lakam Mejus; Wan Zakaria Wan Mohd Tahir; Md Shahid Ayub; Jeremy Andy; Johari Latif

    2006-01-01

    This paper discusses method and monitoring result of the source of seepage water emerging (mud flow) at downstream toe of the failure slope at Kampung Bharu Bukit Tinggi, Bentong Pahang. In this investigation, a saline-tracer experiment was conducted by injecting its solution into a drain at an upstream section (old road to Janda Baik town) where a pipeline was found leaking in the vicinity of the roadside and flowing towards hill slopes. Some parts of flowing water was left undetected and seeped through the soil on its way to downstream area. Seepage water downstream was monitored by using a conductivity sensor hooked up to a CR10X data logger and optical back scattering conductivity probes. From the result, it is believed that the source of seepage water is related to the water from the leaking pipeline upstream. The travelling time for the leaking water to reach downstream slope failure was within 16-17 hours. Based on this preliminary investigation, one can conclude that seepage water is one of the main contributing factors that cause slope failure in the vicinity of the investigated hill slopes. Further investigation to understand the failure mechanism at this place by conducting multi-experimental approaches in different seasons, particularly during continuous rain storms. (Author)

  5. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  6. Surface Water Transport for the F/H Area Seepage Basins Groundwater Program

    International Nuclear Information System (INIS)

    Chen, Kuo-Fu.

    1995-01-01

    The contribution of the F- and H-Area Seepage Basins (FHSBs) tritium releases to the tritium concentration in the Savannah River are presented in this report. WASP5 was used to simulate surface water transport for tritium releases from the FHSBs. The WASP5 model was qualified with the 1993 tritium measurements at US Highway 301. The tritium concentrations in Fourmile Branch and the Savannah River were calculated for tritium releases from FHSBs. The calculated tritium concentrations above normal environmental background in the Savannah River, resulting from FHSBs releases, drop from 1.25 pCi/ml (<10% of EPA Drinking Water Guide) in 1995 to 0.0056 pCi/ml in 2045

  7. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  8. POST-PROCESSING ANALYSIS FOR THC SEEPAGE

    International Nuclear Information System (INIS)

    SUN, Y.

    2004-01-01

    This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and management of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The THC-PPA provides a data selection concept and direct input to the physical and chemical environment (P and CE) report that supports the TSPA model. The purpose of the THC-PPA is further discussed in Section 1.2. The data selection methodology of the post-processing analysis (Section 6.2.1) was initially applied to results of the THC seepage model as presented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). Other outputs from the THC seepage model (DTN: LB0302DSCPTHCS.002 [DIRS 161976]) used in the P and CE (BSC 2004 [DIRS 169860

  9. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  10. Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments

    Institute of Scientific and Technical Information of China (English)

    Yihui Pang; Guofa Wang; Ziwei Ding

    2014-01-01

    In order to study the mechanism of confined water inrush from coal seam floor, the main influences on permeability in the process of triaxial seepage experiments were analyzed with methods such as laboratory experiments, theoretical analysis and mechanical model calculation. The crack extension rule and the ultimate destruction form of the rock specimens were obtained. The mechanism of water inrush was explained reasonably from mechanical point of view. The practical criterion of water inrush was put forward. The results show that the rock permeability ‘‘mutation’’ phe-nomenon reflects the differences of stress state and cracks extension rate when the rock internal crack begins to extend in large-scale. The rock ultimate destruction form is related to the rock lithology and the angle between crack and principal stress. The necessary condition of floor water inrush is that the mining pressure leads to the extension and transfixion of the crack. The sufficient condition of floor water inrush is that the confined water’s expansionary stress in normal direction and shear stress in tangential direction must be larger than the internal stress in the crack. With the two conditions satisfied at the same time, the floor water inrush accident will occur.

  11. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  12. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    Science.gov (United States)

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  13. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  14. Seepage into PEP tunnel

    International Nuclear Information System (INIS)

    Weidner, H.

    1990-01-01

    The current rate of seepage into the PEP tunnel in the vicinity of IR-10 is very low compared to previous years. Adequate means of handling this low flow are in place. It is not clear whether the reduction in the flow is temporary, perhaps due to three consecutive dry years, or permanent due to drainage of a perched water table. During PEP construction a large amount of effort was expended in attempts to seal the tunnel, with no immediate effect. The efforts to ''manage'' the water flow are deemed to be successful. By covering equipment to protect it from dripping water and channeling seepage into the drainage gutters, the seepage has been reduced to a tolerable nuisance. There is no sure, safe procedure for sealing a leaky shotcreted tunnel

  15. Water chemistry guidelines for BWRs

    International Nuclear Information System (INIS)

    Bilanin, W.J.; Jones, R.L.; Welty, C.S.

    1984-01-01

    Guidelines for BWR water chemistry control have been prepared by a committee of experienced utility industry personnel sponsored by the BWR Owners Group on IGSCC Research and coordinated by the Electric Power Research Institute. The guidelines are based on extensive plant operational experience and laboratory research data. The purpose of the guidelines is to provide guidance to the electric utility industry on water chemistry control to help reduce corrosion, especially stress corrosion cracking, in boiling water reactors

  16. Activation analysis in water chemistry

    International Nuclear Information System (INIS)

    Szabo, A.; Toth, A.

    1978-01-01

    The potential applications of activation analysis in water chemistry are discussed. The principle, unit operations, the radiation sources and measuring instruments of activation analysis are described. The sensitivity of activation analysis is given in tabulated form for some elements of major importance in water chemistry and the elements readily accessible to determination by measurement of the spontaneous gamma radiation are listed. A few papers selected from the recent international professional literature are finally reviewed, in which the authors report on the results obtained by activation analysis applied to water chemistry. (author)

  17. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  18. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  19. Study on of Seepage Flow Velocity in Sand Layer Profile as Affected by Water Depth and Slope Gradience

    Science.gov (United States)

    Han, Z.; Chen, X.

    2017-12-01

    BACKGROUND: The subsurface water flow velocity is of great significance in understanding the hydrodynamic characteristics of soil seepage and the influence of interaction between seepage flow and surface runoff on the soil erosion and sediment transport process. OBJECTIVE: To propose a visualized method and equipment for determining the seepage flow velocity and measuring the actual flow velocity and Darcy velocity as well as the relationship between them.METHOD: A transparent organic glass tank is used as the test soil tank, the white river sand is used as the seepage test material and the fluorescent dye is used as the indicator for tracing water flow, so as to determine the thickness and velocity of water flow in a visualized way. Water is supplied at the same flow rate (0.84 L h-1) to the three parts with an interval of 1m at the bottom of the soil tank and the pore water velocity and the thickness of each water layer are determined under four gradient conditions. The Darcy velocity of each layer is calculated according to the water supply flow and the discharge section area. The effective discharge flow pore is estimated according to the moisture content and porosity and then the relationship between Darcy velocity and the measured velocity is calculated based on the water supply flow and the water layer thickness, and finally the correctness of the calculation results is verified. RESULTS: According to the velocity calculation results, Darcy velocity increases significantly with the increase of gradient; in the sand layer profile, the flow velocity of pore water at different depths increases with the increase of gradient; under the condition of the same gradient, the lower sand layer has the maximum flow velocity of pore water. The air-filled porosity of sand layer determines the proportional relationship between Darcy velocity and pore flow velocity. CONCLUSIONS: The actual flow velocity and Darcy velocity can be measured by a visualized method and the

  20. Drift-Scale THC Seepage Model

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Bryan

    2005-02-17

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral

  1. Drift-Scale THC Seepage Model

    International Nuclear Information System (INIS)

    C.R. Bryan

    2005-01-01

    The purpose of this report (REV04) is to document the thermal-hydrologic-chemical (THC) seepage model, which simulates the composition of waters that could potentially seep into emplacement drifts, and the composition of the gas phase. The THC seepage model is processed and abstracted for use in the total system performance assessment (TSPA) for the license application (LA). This report has been developed in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2005 [DIRS 172761]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this report. The plan for validation of the models documented in this report is given in Section 2.2.2, ''Model Validation for the DS THC Seepage Model,'' of the TWP. The TWP (Section 3.2.2) identifies Acceptance Criteria 1 to 4 for ''Quantity and Chemistry of Water Contacting Engineered Barriers and Waste Forms'' (NRC 2003 [DIRS 163274]) as being applicable to this report; however, in variance to the TWP, Acceptance Criterion 5 has also been determined to be applicable, and is addressed, along with the other Acceptance Criteria, in Section 4.2 of this report. Also, three FEPS not listed in the TWP (2.2.10.01.0A, 2.2.10.06.0A, and 2.2.11.02.0A) are partially addressed in this report, and have been added to the list of excluded FEPS in Table 6.1-2. This report has been developed in accordance with LP-SIII.10Q-BSC, ''Models''. This report documents the THC seepage model and a derivative used for validation, the Drift Scale Test (DST) THC submodel. The THC seepage model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC submodel uses a drift

  2. Pond-aquifer flow and water availability in the vicinity of two coastal area seepage ponds, Glynn and Bulloch Counties, Georgia

    Science.gov (United States)

    Clarke, John S.; Rumman, Malek Abu

    2005-01-01

    Pond-aquifer flow and water availability at excavated seepage pond sites in Glynn County and in southern Bulloch County, Georgia, were evaluated to determine their potential as sources of water supply for irrigation. Excavated seepage ponds derive water primarily from ground water seeping into the pond, in a manner similar to a dug well completed in a surficial aquifer. The availability of water from seepage ponds is controlled by the permeability of surficial deposits, the amount of precipitation recharging the ground-water system, and the volume of water stored in the pond. The viability of seepage ponds as supplies for irrigation is limited by low seepage rates and high dependence on climatic conditions. Ponds will not refill unless there is adequate precipitation to recharge the surficial aquifer, which subsequently drains (seeps) into the pond. Ground-water seepage was estimated using a water-budget approach that utilized on-site climatic and hydrologic measurements, computing pond-volume changes during pond pumping tests, and by digital simulation using steady-state and transient ground-water flow models. From August 1999 to May 2000, the Glynn County pond was mostly losing water (as indicated by negative net seepage); whereas from October 2000 to June 2001, the Bulloch County pond was mostly gaining water. At both sites, most ground-water seepage entered the pond following major rainfall events that provided recharge to the surficial aquifer. Net ground-water seepage, estimated using water-budget analysis and simulation, ranged from -11.5 to 15 gallons per minute (gal/min) at the Glynn County pond site and from -55 to 31 gal/min at the Bulloch County pond site. Simulated values during pumping tests indicate that groundwater seepage to both ponds increases with decreased pond stage. At the Glynn County pond, simulated net ground-water seepage varied between 7.8 gal/min at the beginning of the test (high pond stage and low hydraulic gradient) and 103 gal

  3. Evaluation of the conditions imposed by the fracture surface geometry on water seepage through fractured porous media

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.; Faybishenko, B.

    2003-01-01

    In order to determine the geometric patterns of the fracture surfaces that imposes conditions on the fluid flow through fractured porous media, a series a fracture models have been analyzed using the RIMAPS technique and the variogram method. Results confirm that the main paths followed by the fluid channels are determined by the surface topography and remain constant during water seepage evolution. Characteristics scale lengths of both situations: fracture surface and the flow of water, are also found. There exists a relationship between the scale lengths corresponding to each situation. (author)

  4. Determining seepage water velocity by means of lysimeters; Bestimmung der Sickerwassergeschwindigkeit in Lysimetern

    Energy Technology Data Exchange (ETDEWEB)

    Klotz, D.; Seiler, K.P.

    1999-02-01

    The processes in the water-unsaturated zone have in the past received too little attention from hydrogeologists and their study by pedologists has been patchy. It is only recently that studies have been published, with for some part very diverse scientific approaches, which consider the water-unsaturated zone and the soil as a whole. There are small-scale and large-scale hydraulic approaches, hydraulic and first tracer-hydrological approaches. This poses the problem of how to transfer results obtained locally to larger spaces. Moreover, the homogeneity of substrates has been found to be such that hydraulic and tracer-hydrological approaches are unproblematic at the large scale, while at the small scale their results can only be interpreted with certain reservations. For example, this has led to findings of steady groundwater recharge at a large scale which contrast with findings at a smaller scale of a separation into highly variable matrix and bypass flows or into groundwater recharge and intermediate outflows. Studies at different levels of scale consequently bear different implications for material transport within and material export from specific landscape sections to underground or aboveground neighbouring compartments. The purpose of the present workshop on seepage water movement is to contribute to the establishment of facts on this issue, identify deficits, and stimulate future cooperation. [Deutsch] Die Prozesse in der wasserungesaettigten Zone wurden in der Vergangenheit zu wenig durch die Hydrogeologie und nur ausschnittsweise von der Pedologie betrachtet. Erst in neuerer Zeit mehren sich Arbeit, die die wasserungesaettigte Zone einschliesslich des Bodens integral betrachten, wobei die wissenschaftlichen Ansaetze z.T. sehr verschieden sind. Es gibt - klein- und grossskalige hydraulische Ansaetze, - hydraulische und erste tracerhydrologische Ansaetze und daraus erwaechst das Problem der Ueberleitung lokaler Ergebnisse auf groessere Raeume. Darueber

  5. Advances in BWR water chemistry

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Mary L.

    2012-09-01

    This paper reviews recent advances in Boiling Water Reactor (BWR) water chemistry control with examples of plant experiences at U.S. designed BWRs. Water chemistry advances provide some of the most effective methods for mitigating materials degradation, reducing fuel performance concerns and lowering radiation fields. Mitigation of stress corrosion cracking (SCC) of materials remains a high priority and improved techniques that have been demonstrated in BWRs will be reviewed, specifically hydrogen injection combined with noble metal chemical addition (NMCA) and the newer on-line noble metal application process (OLNC). Hydrogen injection performance, an important part of SCC mitigation, will also be reviewed for the BWR fleet, highlighting system improvements that have enabled earlier injection of hydrogen including the potential for hydrogen injection during plant startup. Water chemistry has been significantly improved by the application of pre-filtration and optimized use of ion exchange resins in the CP (condensate polishing) and reactor water cleanup (RWCU) systems. EPRI has monitored and supported water treatment improvements to meet water chemistry goals as outlined in the EPRI BWR Water Chemistry Guidelines, particularly those for SCC mitigation of reactor internals and piping, minimization of fuel risk due to corrosion and crud deposits and chemistry control for radiation field reduction. In recent years, a significant reduction has occurred in feedwater corrosion product input, particularly iron. A large percentage of plants are now reporting <0.1 ppb feedwater iron. The impacts to plant operation and chemistry of lower feedwater iron will be explored. Depleted zinc addition is widely practiced across the fleet and the enhanced focus on radiation reduction continues to emphasize the importance of controlling radiation source term. In addition, shutdown chemistry control is necessary to avoid excessive release of activated corrosion products from fuel

  6. Application of environmental isotopes and hydrochemistry in the identification of source of seepage and likely connection with lake water in Lesser Himalaya, Uttarakhand, India

    Science.gov (United States)

    Rai, Shive Prakash; Singh, Dharmaveer; Rai, Ashwani Kumar; Kumar, Bhishm

    2017-12-01

    Oxygen (δ^{18}O) and hydrogen (δ2H and 3H) isotopes of water, along with their hydrochemistry, were used to identify the source of a newly emerged seepage water in the downstream of Lake Nainital, located in the Lesser Himalayan region of Uttarakhand, India. A total of 57 samples of water from 19 different sites, in and around the seepage site, were collected. Samples were analysed for chemical tracers like Ca^{++}, Mg^{++}, Na+, K+, {SO4}^{-} and Cl- using an Ion Chromatograph (Dionex IC-5000). A Dual Inlet Isotope Ratio Mass Spectrometer (DIIRMS) and an Ultra-Low Level Liquid Scintillation Counter (ULLSC), were used in measurements of stable isotopes (δ2H and δ^{18}O) and a radioisotope (3H), respectively. Results obtained in this study repudiate the possibility of any likely connection between seepage water and the lake water, and indicate that the source of seepage water is mainly due to locally recharged groundwater. The study suggests that environmental isotopes (δ2H, δ^{18}O and 3H) can effectively be used as `tracers' in the detection of the source of seepage water in conjunction with other hydrochemical tracers, and can help in water resource management and planning.

  7. Water chemistry control at FBTR

    International Nuclear Information System (INIS)

    Panigrahi, B.S.; Jambunathan, D.; Suresh Kumar, K.V.; Ramanathan, V.; Srinivasan, G.; Ramalingam, P.V.

    2008-01-01

    Condenser cooling and service water systems together serve as the cooling water system of Fast Breeder Test Reactor (FBTR). Palar river water serves as the make-up to the cooling water system. Initially, the service water system alone was commissioned in phases depending upon the arrival of auxiliary equipments at site. During this period, the water was not treated chemically and it also inadvertently remained stagnant for some time in some systems. Thereafter, a threshold chemical treatment was started. However, pin-hole leaks and reduced flow through the heat exchangers were observed and therefore chemical cleaning of headers was done and small diameter pipelines were replaced. Following this a full fledged chemistry control with proprietary formulations was initiated. Later the condenser cooling system was commissioned and the chemical treatment was reviewed. With adoption of improved monitoring methodology and treatment formulation satisfactory corrosion control (< 3 mpy) with minimum deposition problem in this system could be achieved. The primary coolant (primary sodium) of FBTR transfers the nuclear heat to the secondary coolant (secondary sodium) that in turn transfers heat to water in Once Through Steam Generator (OTSG) to generate superheated steam (480 deg C at 125 bar). Efficient water chemistry control plays the vital role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. Therefore, the technical specifications of chemistry parameters of feed/steam water at FBTR are made very stringent to maintain the purity of water at the best attainable level. To meet this stringent feed water and steam quality specifications, online monitoring techniques have been employed in the steam/water circuit to get continuous information about the purity. These monitors have helped significantly in achieving the required feed water quality and running the steam generator for more than 25000 hours without any tube

  8. BWR water chemistry impurity studies

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Korhonen, S.; Renstroem, K.; Hofling, C.G.; Rebensdorff, B.

    1990-03-01

    Laboratory studies were made on the effect of water impurities on environmental cracking in simulated BWR water of stainless steel, low alloy steel and nickel-base alloys. Constant elongation rate tensile (CERT) tests were run in simulated normal water chemistry (NWC), hydrogen water chemistry (HWC), or start-up environment. Sulfate, chloride and copper with chloride added to the water at levels of a fraction of a ppM were found to be extremely deleterious to all kinds of materials except Type 316 NG. Other detrimental impurities were fluoride, silica and some organic acids, although acetic acid was beneficial. Nitrate and carbon dioxide were fairly inoccuous. Corrosion fatigue and constant load tests on compact tension specimens were run in simulated normal BWR water chemistry (NWC) or hydrogen water chemistry (HWC), without impurities or with added sulfate or carbon dioxide. For sensitized Type 304 SS in NWC, 0.1 ppM sulfate increased crack propagation rates in constant load tests by up to a factor of 100, and in fatigue tests up to a factor of 10. Also, cracking in Type 316 nuclear grade SS and Alloy 600 was enhanced, but to a smaller degree. Carbon dioxide was less detrimental than sulfate. 3 figs., 4 tabs

  9. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    Science.gov (United States)

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  10. Water chemistry in PWR

    International Nuclear Information System (INIS)

    Abe, Kenji

    1987-01-01

    This article outlines major features and basic concept of the secondary system of PWR's and water properties control measures adopted in recent PWR plants. The secondary system of a PWR consists of a condenser cooling pipe (aluminum-brass, titanium, or stainless steel), low-pressure make-up water heating pipe (aluminum-brass or stainless steel), high-ressure make-up water heating pipe (cupro-nickel or stainless steel), steam generator heat-transfer pipe (Inconel 600 or 690), and bleed/drain pipe (carbon steel, low alloy steel or stainless steel). Other major pipes and equipment are made of carbon steel or stainless steel. Major troubles likely to be caused by water in the secondary system include reduction in wall thickness of the heat-transfer pipe, stress corrosion cracking in the heat-transfer pipe, and denting. All of these are caused by local corrosion due to concentration of purities contained in water. For controlling the water properties in the secondary system, it is necessary to prevent impurities from entering the system, to remove impurities and corrosion products from the system, and to prevent corrosion of apparatus making up the system. Measures widely adopted for controlling the formation of IGA include the addition of boric acid for decreasing the concentration of free alkali and high hydrazine operation for providing a highly reducing atmospere. (Nogami, K.)

  11. Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Weiping Liu

    2017-10-01

    Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.

  12. ABSTRACTION OF DRIFT SEEPAGE

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    Drift seepage refers to flow of liquid water into repository emplacement drifts, where it can potentially contribute to degradation of the engineered systems and release and transport of radionuclides within the drifts. Because of these important effects, seepage into emplacement drifts is listed as a ''principal factor for the postclosure safety case'' in the screening criteria for grading of data in Attachment 1 of AP-3.15Q, Rev. 2, ''Managing Technical Product Inputs''. Abstraction refers to distillation of the essential components of a process model into a form suitable for use in total-system performance assessment (TSPA). Thus, the purpose of this analysis/model is to put the information generated by the seepage process modeling in a form appropriate for use in the TSPA for the Site Recommendation. This report also supports the Unsaturated-Zone Flow and Transport Process Model Report. The scope of the work is discussed below. This analysis/model is governed by the ''Technical Work Plan for Unsaturated Zone Flow and Transport Process Model Report'' (CRWMS MandO 2000a). Details of this activity are in Addendum A of the technical work plan. The original Work Direction and Planning Document is included as Attachment 7 of Addendum A. Note that the Work Direction and Planning Document contains tasks identified for both Performance Assessment Operations (PAO) and Natural Environment Program Operations (NEPO). Only the PAO tasks are documented here. The planning for the NEPO activities is now in Addendum D of the same technical work plan and the work is documented in a separate report (CRWMS MandO 2000b). The Project has been reorganized since the document was written. The responsible organizations in the new structure are the Performance Assessment Department and the Unsaturated Zone Department, respectively. The work plan for the seepage abstraction calls for determining an appropriate abstraction methodology, determining uncertainties in seepage, and providing

  13. SEEPAGE/INVERT INTERACTIONS

    International Nuclear Information System (INIS)

    P.S. Domski

    2000-01-01

    As directed by a written development plan (CRWMS M andO 1999a), a conceptual model for water entering the drift and reacting with the invert materials is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction, and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE), Revision 2 (NRC 1999). This AMR also seeks to: (1) Develop a logical conceptual model for physical/chemical interactions between seepage and the invert materials; (2) screen potential processes and reactions that may occur between seepage and invert to evaluate the potential consequences of the interactions; and (3) outline how seepage/invert processes may be quantified. This document provides the conceptual framework for screening out insignificant processes and for identifying and evaluating those seepage/invert interactions that have the potential to be important to subsequent PAO analyses including the Engineered Barrier System (EBS) physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. Additionally, the concepts discussed within this report may also apply to certain near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts. The seepage/invert interactions will not directly affect any principal factors

  14. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.

    2003-01-01

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  15. Regeneration of Mature Norway Spruce Stands: Early Effects of Selective Cutting and Clear Cutting on Seepage Water Quality and Soil Fertility

    Directory of Open Access Journals (Sweden)

    Wendelin Weis

    2001-01-01

    Full Text Available The cutting of trees influences element turnover in the forest ecosystem. The reduction of plant uptake, as well as an increased mineralization and nitrification due to higher soil temperature and soil moisture, can lead to considerable losses of nutrients from the main rooting zone. This may result in a reduced soil fertility and a decrease in drinking water quality due to high nitrate concentrations in the seepage water. In Bavaria (Germany selective cutting is preferred to clear cutting when initiating the regeneration of Norway spruce stands with European beech. This paper summarizes the early effects of both forest management practices on soil fertility and seepage water quality for three different sites. Shown are the concentrations of nitrogen and base cations in the seepage water as well as the water and ion fluxes during the first year after tree cut. Nutrient inputs decreased on thinned plots and even more at clear-cuts. Nitrate concentrations in the seepage water are hardly affected by moderate thinning; however, on clear-cuts, the nitrate concentration increases significantly, and base cations are lost from the upper mineral soil. This effect is less obvious at sites where a dense ground vegetation, which is able to take up excess nitrogen, exists.

  16. Variations on seepage water geochemistry induced by natural and anthropogenic microclimatic changes: Implications for the speleothems growth conditions

    Science.gov (United States)

    Fernandez-Cortes, A.; Sanchez-Moral, S.; Canaveras, J. C.; Cuevas, J.; Cuezva, S.; Andreu, J. M.; Abella, R.

    2009-04-01

    During an annual cycle the effect of microclimatic changes (natural and anthropogenic origin) on the geochemical characteristics of seepage water and mineral precipitation rates was analyzed, for two karstic caves under opposing environmental stability and energy exchange with exterior. On the one hand Castañar cave (Caceres, Spain), an extremely controlled show cave with limited visitation showing a minimum exchange rate of energy with the outer atmosphere and, secondly, Canelobre cave (Alicante, Spain), a widely visited cave where the anthropogenic impact generates both high-speed and high-energy environmental changes. Microclimatic variations play a key role in CO2-dessgasing caused by the imbalance of pCO2 between the karstic water and the cave air, favoring the slow processes of mineral precipitation. Thus, a pCO2-range of seepage water have been detected for each cave (from 10-2.30/-2.35 to 10-2.47/-2.52 bar for Castañar cave, and from 10-2.8/-2.85 to 10-2.95/-3.0 bar for Canelobre cave) where the mineral oversaturation prevails, determining the type and rate of mineral precipitation in each cave. Finally, it analyzes how the changes on the oversaturation/ precipitation states are controlled by microclimatic variations, such as: 1) natural underground air renewal through the porous system of upper soil and the network of host-rock fissures (isolating membranes), or else through the cave entrance, 2) cumulative disruptions in the pCO2 levels of cave air due to the presence of visitors, and 3) forced ventilation of the subterranean atmosphere due to the uncontrolled opening of cave entrances. The obtained results reinforce the significance of the microclimatic fluctuations on short time scales in the dynamic and evolution of the subterranean karst system, in terms of rates of mineral precipitation and growth of speleothems. Likewise the interpretations are useful in order to ensure the constant climate required for the conservation of caves.

  17. Analysis of the Harmfulness of Water-Inrush from Coal Seam Floor Based on Seepage Instability Theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group, Xuzhou.Based on the stratum column chart in this coal mine, the distribution of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D).The permeability parameters of the coal seam floor are described given the relationship between permeability parameters.Strain and the water-inrush-indices were calculated.The water-inrush-index was 67.2% when the working face was pushed to 100 m, showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m, showing that water-inrush is quite probable.The results show that as long-wall mining is pushed along, the failure zone is enlarged, the strain increased, and fissures developed correspondingly, resulting in the formation of water-inrush channels.Accompanied by the failure of the strata, the permeability increased exponentially.In contrast, the non-Darcy flow β factor and the acceleration coefficient decreased exponentially, while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.

  18. PWR secondary water chemistry guidelines: Revision 3

    International Nuclear Information System (INIS)

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239)

  19. Non-Darcy Flow Experiments of Water Seepage through Rough-Walled Rock Fractures

    Directory of Open Access Journals (Sweden)

    Xiao-dong Ni

    2018-01-01

    Full Text Available The knowledge of flow phenomena in fractured rocks is very important for groundwater-resources management in hydrogeological engineering. The most commonly used tool to approximate the non-Darcy behavior of the flow velocity is the well-known Forchheimer equation, deploying the “inertial” coefficient β that can be estimated experimentally. Unfortunately, the factor of roughness is imperfectly considered in the literature. In order to do this, we designed and manufactured a seepage apparatus that can provide different roughness and aperture in the test; the rough fracture surface is established combining JRC and 3D printing technology. A series of hydraulic tests covering various flows were performed. Experimental data suggest that Forchheimer coefficients are to some extent affected by roughness and aperture. At last, favorable semiempirical Forchheimer equation which can consider fracture aperture and roughness was firstly derived. It is believed that such studies will be quite useful in identifying the limits of applicability of the well-known “cubic law,” in further improving theoretical/numerical models associated with fluid flow through a rough fracture.

  20. A GIS-based, confined aquifer, hypothetical model of ground-water seepage into a former mining open pit

    International Nuclear Information System (INIS)

    Salama, A; Negeed, E.R.

    2010-01-01

    Groundwater seepage into a former mining site in Egypt is proposed for simulation. This site was used for basalt extraction. After the mining activities had stopped a large open pit was left over and groundwater seeped into the pit forming a lake. The pit has a dimension of approximately 1200 x 600 x 30 m. Because of the lack of field data, several scenarios may be hypothesized to explain the filling of these open pits with water. In this paper, one of these scenarios is studied. It is suggested that this water comes from an underneath confined aquifer. Through fractures in the host rock, water seeped upwards into the open pit. To estimate the rate at which water seeps into the lake, numerical study based on the finite element method is performed. Firstly, geo-referencing of the site was performed using GIS. The boundary of the lake was then digitized and elevation contours was defined. These data was then imported into grid-builder software to generate a two-dimensional triangular mesh which was then used by hydro-geosphere software to build the three-dimensional mesh and solve the problem. It was found that the set of discrete fractures was insufficient to fill the lake in the time span that was actually elapsed to fill up the lake which is on the order of two to three years.

  1. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM is developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA (see upcoming REV 02 of CRWMS M and O 2000 [153314]), which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model (see BSC 2003 [161530]). The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross Drift to obtain the permeability structure for the seepage model; (3) to use inverse modeling to calibrate the SCM and to estimate seepage-relevant, model-related parameters on the drift scale; (4) to estimate the epistemic uncertainty of the derived parameters, based on the goodness-of-fit to the observed data and the sensitivity of calculated seepage with respect to the parameters of interest; (5) to characterize the aleatory uncertainty

  2. Water chemistry in WWER reactors

    International Nuclear Information System (INIS)

    Yurmanov, V.A.; Mamet, V.A.; Shestakov, Yu.M.; Amosov, M.M.

    1997-01-01

    In this paper ''Water Chemistry in WWER Reactors'', are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH T values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ''soft decontamination'' involving changing the KOH concentration and, hence, the pH T before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs

  3. Water chemistry in WWER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yurmanov, V A; Mamet, V A; Shestakov, Yu M; Amosov, M M [All-Russian Scientific Research Inst. for Nuclear Power Plants Operation, Moscow (Russian Federation)

    1997-02-01

    In this paper ``Water Chemistry in WWER Reactors``, are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH{sub T} values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ``soft decontamination`` involving changing the KOH concentration and, hence, the pH{sub T} before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs.

  4. Quantification of Seepage in Groundwater Dependent Wetlands

    DEFF Research Database (Denmark)

    Johansen, Ole; Beven, Keith; Jensen, Jacob Birk

    2018-01-01

    Restoration and management of groundwater dependent wetlands require tools for quantifying the groundwater seepage process. A method for determining point estimates of the groundwater seepage based on water level observations is tested. The study is based on field data from a Danish rich fen...

  5. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.; Copley, S.E.; Siegwarth, D.P.

    1981-01-01

    Secondary water chemistry studies have been performed at ten operating PWRs for the past several years. The program includes seven PWRs with recirculating U-tube steam generators, and three once-through steam generator (OTSG) PWRs. Program results indicate that during periods of minimal condenser inleakage, condensate polishers do not remove significant quantities of sodium, chloride and sulfate. At higher inlet impurity levels, demineralizer removal efficiencies improve markedly. Corrosion product removal efficiencies generally are 60 to 95% depending on system design and operating practices. Significant quantities of sodium and chloride 'hide out' in steam generators with a portion returning during transients, particularly during plant shutdowns. In OTSG PWRs, a significant portion of the total sodium and chloride transported via the steam is removed with the moisture separator drains (MSD) and returned to the OTSG when MSDs are pumped forward. Partial return of MSDs to the condenser would result in reduced feedwater and steam impurity levels. (author)

  6. Water chemistry regimes for VVER-440 units: water chemistry influence on fuel cladding behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.

    1999-01-01

    In this lecture next problems of water chemistry influence on fuel cladding behaviour for VVER-440 units are presented: primary coolant technologies; water chemistry specification and control; fuel integrity considerations; zirconium alloys cladding corrosion (corrosion versus burn-up; water chemistry effect; crud deposition; hydrogen absorption; axial offset anomaly); alternatives for the primary coolant regimes

  7. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  8. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  9. Changes in contaminant composition at landfill sites. (9). ; Application of soil covering to treatment of alkaline seepage water. Umetate ni okeru odaku seibun no doko. (9). ; Alkali sei shinsutsueki no gaido shori

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y; Sugai, T; Masuda, T; Watanabe, Y; Kobayashi, S [Saitama Institute of Environmental Pollution, Saitama (Japan)

    1990-10-29

    Recently, alkaline seepage water has been found in many landfill sites. Strong alkaline seepage water results from the use of alkaline agents, such as quicklime and slaked lime, for water removal from waste. In the present report, the neutralizing ability of different types of soil is studied to provide a method to neutralize seepage water by using soil covering at landfill sites. Results show that clay contained in soil is playing a major role in neutralizing alkaline seepage penetrating the soil. Clay generally has negative electric charges, suggesting that positive ions in alkaline water is neutralized after being replaced by hydrogen ions. Another major factor is the carbonate ion and carbon dioxide existing in soil, which precipitate and solidify calcium hydroxide as calcium carbonate to achieve neutralization. Investigations indicate that top soil comprising volcanic ash is useful as material for soil covering. 2 figs., 5 tabs.

  10. Application of the neutron gamma method to a study of water seepage under a rice plantation

    International Nuclear Information System (INIS)

    Puard, M.; Couchat, P.; Moutonnet, P.

    1980-01-01

    In order to determine the share of percolation in the pollution by pesticides (particularly Lindane) being carried down in the drainage water of rice plantations, an application of the neutron gamma method under rice cultivation in the Camargue is suggested. A preliminary laboratory study enabled a comparison to be made between deuteriated water (DHO) and tritiated water (THO) used as water tracers in the determination of the dispersive phenomena and retention in a column of saturated soil [fr

  11. Geochemical Modeling Of F Area Seepage Basin Composition And Variability

    International Nuclear Information System (INIS)

    Millings, M.; Denham, M.; Looney, B.

    2012-01-01

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin

  12. Investigation of water seepage through porous media using X-ray imaging technique

    Science.gov (United States)

    Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon

    2012-07-01

    SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.

  13. Seepage Calibration Model and Seepage Testing Data

    Energy Technology Data Exchange (ETDEWEB)

    S. Finsterle

    2004-09-02

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross

  14. Seepage Calibration Model and Seepage Testing Data

    International Nuclear Information System (INIS)

    Finsterle, S.

    2004-01-01

    The purpose of this Model Report is to document the Seepage Calibration Model (SCM). The SCM was developed (1) to establish the conceptual basis for the Seepage Model for Performance Assessment (SMPA), and (2) to derive seepage-relevant, model-related parameters and their distributions for use in the SMPA and seepage abstraction in support of the Total System Performance Assessment for License Application (TSPA-LA). This Model Report has been revised in response to a comprehensive, regulatory-focused evaluation performed by the Regulatory Integration Team [''Technical Work Plan for: Regulatory Integration Evaluation of Analysis and Model Reports Supporting the TSPA-LA'' (BSC 2004 [DIRS 169653])]. The SCM is intended to be used only within this Model Report for the estimation of seepage-relevant parameters through calibration of the model against seepage-rate data from liquid-release tests performed in several niches along the Exploratory Studies Facility (ESF) Main Drift and in the Cross-Drift. The SCM does not predict seepage into waste emplacement drifts under thermal or ambient conditions. Seepage predictions for waste emplacement drifts under ambient conditions will be performed with the SMPA [''Seepage Model for PA Including Drift Collapse'' (BSC 2004 [DIRS 167652])], which inherits the conceptual basis and model-related parameters from the SCM. Seepage during the thermal period is examined separately in the Thermal Hydrologic (TH) Seepage Model [see ''Drift-Scale Coupled Processes (DST and TH Seepage) Models'' (BSC 2004 [DIRS 170338])]. The scope of this work is (1) to evaluate seepage rates measured during liquid-release experiments performed in several niches in the Exploratory Studies Facility (ESF) and in the Cross-Drift, which was excavated for enhanced characterization of the repository block (ECRB); (2) to evaluate air-permeability data measured in boreholes above the niches and the Cross-Drift to obtain the permeability structure for the seepage model

  15. Developments in nuclear power plant water chemistry

    International Nuclear Information System (INIS)

    Fruzetti, K.; Wood, C.J.

    2007-01-01

    This paper illustrates the changing role of water chemistry in current operation of nuclear power plants. Water chemistry was sometimes perceived as the cause of materials problems, such as denting in PWR steam generators and intergranular stress corrosion cracking in BWRs. However, starting in the last decade, new chemistry options have been introduced to mitigate stress corrosion cracking and reduce fuel performance concerns. In BWRs and PWRs alike, water chemistry has evolved to successfully mitigate many problems as they have developed. The increasing complexity of the chemistry alternatives, coupled with the pressures to increase output and reduce costs, have demonstrated the need for new approaches to managing plant chemistry, which are addressed in the final part of this paper. (orig.)

  16. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Rout, D.; Upadhyaya, T.C.; Ravindranath; Selvinayagam, P.; Sundar, R.S.

    2015-01-01

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1 st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  17. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry

  18. BWR Water Chemistry Guidelines: 1993 Revision, Normal and hydrogen water chemistry

    International Nuclear Information System (INIS)

    Karlberg, G.; Goddard, C.; Fitzpatrick, S.

    1994-02-01

    The goal of water chemistry control is to extend the operating life of the reactor and rector coolant system, balance-of-plant components, and turbines while simultaneously controlling costs to safeguard the continued economic viability of the nuclear power generation investment. To further this goal an industry committee of chemistry personnel prepared guidelines to identify the benefits, risks, and costs associated with water chemistry in BWRs and to provide a template for an optimized water chemistry program. This document replaces the BWR Normal Water Chemistry Guidelines - 1986 Revision and the BWR Hydrogen Water Chemistry Guidelines -- 1987 Revision. It expands on the previous guidelines documents by covering the economic implications of BWR water chemistry control

  19. Secondary-water chemistry at Millstone 2

    International Nuclear Information System (INIS)

    Putkey, T.A.; Pearl, W.L.; Sawochka, S.G.

    1983-04-01

    Secondary system chemistry and steam generator corrosion observations at the Millstone 2 pressurized water reactor are summarized. Condenser retubing and retrofit of full-flow condensate polishers led to significant improvements in steam generator blowdown chemistry following observations of denting after one year of operation at elevated blowdown chloride levels. Notwithstanding the chemistry improvements, denting has continued but at a much reduced rate. In addition, extensive pitting of the Alloy 600 tubing between the tubesheet and first support plate has been reported recently

  20. BWR normal water chemistry guidelines: 1986 revision

    International Nuclear Information System (INIS)

    1988-09-01

    Boiling water reactors (BWRs) have experienced stress corrosion cracking in the reactor cooling system piping resulting in adverse impacts on plant availability and personnel radiation exposure. The BWR Owners Group and EPRI have sponsored a major research and development program to provide remedies for this stress corrosion cracking problem. This work shows that the likelihood of cracking depends on the plant's water chemistry performance (environment) as well as on material condition and stress level. Plant experience and other research demonstrate that water quality also affects fuel performance and radiation field buildup in BWRs. This report,''BWR Normal Water Chemistry Guidelines: 1986 Revision,'' presents suggested generic water chemistry specifications, justifies the proposed water chemistry limits, suggests responses to out-of-specification water chemistry, discusses available chemical analysis methods as well as data management and surveillance schemes, and details the management philosophy required to successfully implement a water chemistry control program. An appendix contains recommendations for water quality of auxiliary systems. 73 refs., 20 figs., 9 tabs

  1. Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application

    International Nuclear Information System (INIS)

    Woller, N.

    1994-06-01

    This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26 R and LIX84 R to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR 2 , where Me denotes Hg 2+ , Cd 2+ , Zn 2+ , Cu 2+ , and Ni 2+ , and R denotes LIX84 R . This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84 R for the various metal ions is evident in the succession Cu 2+ , Ni 2+ >> Zn 2+ > Hg 2+ > Cd 2+ . These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m 2 ), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m 2 ). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.) [de

  2. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  3. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  4. Seepage/Cement Interactions

    International Nuclear Information System (INIS)

    Carpenter, D.

    2000-01-01

    The Development Plan (CRWMS M andO 1999a) pertaining to this task defines the work scopes and objectives for development of various submodels for the Physical and Chemical Environment Abstraction Model for TSPA-LA. The Development Plan (CRWMS M andO 1999a) for this specific task establishes that an evaluation be performed of the chemical reactions between seepage that has entered the drift and concrete which might be used in the repository emplacement drifts. The Development Plan (CRWMS M andO 1999a) then states that the potential effects of these water/grout reactions on chemical conditions in the drift be assessed factoring in the influence of carbonation and the relatively small amount of grout. This task is also directed at: (1) developing a conceptualization of important cement/seepage interactions and potential impacts on EBS performance, (2) performing a screening analysis to assess the importance of cement/seepage interactions. As the work progresses and evolves on other studies, specifically the Engineered Barrier System: Physical and Chemical Environment (P andCE) Model (in progress), many of the issues associated with items 1 and 2, above, will be assessed. Such issues include: (1) Describing the mineralogy of the specified cementitious grout and its evolution over time. (2) Describing the composition of the water before contacting the grout. (3) Developing reasonable upper-bound estimates for the composition of water contacting grout, emphasizing pH and concentrations for anions such as sulfate. (4) Evaluating the equilibration of cement-influenced water with backfill and gas-phase CO 2 . (5) Developing reasonable-bound estimates for flow rate of affected water into the drift. The concept of estimating an ''upper-bound'' range for reaction between the grout and the seepage, particularly in terms of pH is based on equilibrium being established between the seepage and the grout. For example, this analysis can be based on equilibrium being established as

  5. Overview of VVER water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Sundar, R.S.

    2007-01-01

    Kudankulam Nuclear Power project is having twin units of 1000MWe of VVER type. This paper highlights the different analytical techniques that are followed to maintain the system chemistry within the technical specifications. This paper also briefs the different chemicals that are added to the systems and how they are monitored. Basic differences with respect to chemistry between a PHWR and VVER are also highlighted in this paper. (author)

  6. Carbonate chemistry, water quality, coral measurements

    Data.gov (United States)

    U.S. Environmental Protection Agency — Carbonate chemistry parameters (pH, total alkalinity, and pCO2), water quality parameters (Temperature, salinity, Ca, Mg, PO4, NH3 and NO3) as well as all coral...

  7. EPRI PWR primary water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Fruzzetti, Keith

    2014-01-01

    EPRI periodically updates the PWR Primary Water Chemistry Guidelines as new information becomes available and as required by NEI 97-06 (Steam Generator Program Guidelines) and NEI 03-08 (Guideline for the Management of Materials Issues). The last revision of the PWR water chemistry guidelines identified an optimum primary water chemistry program based on then-current understanding of research and field information. This new revision provides further details with regard to primary water stress corrosion cracking (PWSCC), fuel integrity, and shutdown dose rates. A committee of industry experts, including utility specialists, nuclear steam supply system (NSSS) and fuel vendor representatives, Institute of Nuclear Power Operations (INPO) representatives, consultants, and EPRI staff collaborated in reviewing the available data on primary water chemistry, reactor water coolant system materials issues, fuel integrity and performance issues, and radiation dose rate issues. From the data, the committee updated the water chemistry guidelines that all PWR nuclear plants should adopt. The committee revised guidance with regard to optimization to reflect industry experience gained since the publication of Revision 6. Among the changes, the technical information regarding the impact of zinc injection on PWSCC initiation and dose rate reduction has been updated to reflect the current level of knowledge within the industry. Similarly, industry experience with elevated lithium concentrations with regard to fuel performance and radiation dose rates has been updated to reflect data collected to date. Recognizing that each nuclear plant owner has a unique set of design, operating, and corporate concerns, the guidelines committee has retained a method for plant-specific optimization. Revision 7 of the Pressurized Water Reactor Primary Water Chemistry Guidelines provides guidance for PWR primary systems of all manufacture and design. The guidelines continue to emphasize plant

  8. The water chemistry of CANDU PHW reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-01-01

    This review will discuss the chemistry of the three major water circuits in a CANDU-PHW reactor, viz., the Primary Heat Transport (PHT) water, the moderator and the boiler water. An important consideration for the PHT chemistry is the control of corrosion and of the transport of corrosion products to minimize the growth of radiation fields. In new reactors the PHT will be allowed to boil, requiring reconsideration of the methods used to radiolytic oxygen and elevate the pH. Separation of the moderator from the PHT in the pressure-tubed CANDU design permits better optimization of the chemistry of each system, avoiding the compromises necessary when the same water serves both functions. Major objectives in moderator chemistry are to control (a) the radiolytic decomposition of D 2 0; (b) the concentration of soluble neutron poisons added to adjust reactivity; and (c) the chemistry of shutdown systems. The boiler water and its feed water are treated to avoid boiler tube corrosion, both during normal operation and when perturbations are caused to the feed by, for example, leaks in the condenser tubes which permit ingress of untreated condenser cooling water. Development of a system for automatic analysis and control of feed water to give rapid, reliable response to abnormal conditions is a novel feature which has been developed for incorporation in future CANDU-PHW reactors. (author)

  9. Water chemistry and materials degradation in LWR'S

    International Nuclear Information System (INIS)

    Haenninen, H.; Toerroenen, K.; Aaltonen, P.

    1994-01-01

    Water chemistry plays a major role in corrosion, in erosion corrosion and in activity transport in NPPs; it impacts upon the operational safety of LWRs in two main ways: integrity of pressure boundary materials and activity transport and out-of-core radiation fields. A good control of water chemistry can significantly reduce these problems and improve plant safety, but economic pressures are leading to more rigorous operating conditions: fuel burnups are to be increased, higher efficiencies are to be achieved by running at higher temperatures and plant lifetimes are to be extended. Typical water chemistry specifications used in PWR and BWR plants are presented and the chemistry optimization is discussed. The complex interplay of metallurgical, mechanical and environmental factors in environmental sensitive cracking is shown, with details on studies for carbon steels, stainless steels and nickel base alloys. 20 refs., 8 figs., 4 tabs

  10. Seepage water balance of the mixed tailings site IAA Dresden-Coschuetz/Gittersee by means of the two-dimensional model BOWAHALD

    International Nuclear Information System (INIS)

    Helling, C.; Dunger, V.

    1998-01-01

    Uranium mill tailings were deposited in a section of the Kaitzbach valley which was closed by tow dams. The Kaitzbach creek was cased in the area. After the uranium ore processing was finish the dump was used as a municipal waste deposit. The water balance of the IAA Dresden-Coschuetz/Gittersee was only estimated in former works. In this case a modeling of the water balance is very useful in regard to a process orientated quantification of the contaminant transport within the dump as well as into the underground. Simplified and rough estimating methods such as the runoff coefficient concept or rating curves are less suited because of the complexity of the processes. That's why we tried to get a runoff and seepage water balance by means of a two-dimensional water balance model for waste heaps called BOWAHALD. The tailings site IAA Dresden-Coschuetz/Gittersee was divited into several hydrotopes (areas with similar hydrological characteristics). Different exposition and slopes as well as different soils and vegetation were taken into account. The parameter verification is possible due to comparison with available data such hydrochemical and isotopic analysis of seepage water and groundwater. (orig.)

  11. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  12. The impact of land use and land cover changes on solute dynamics in seepage water of soil from karst hillslopes of Southwest China

    International Nuclear Information System (INIS)

    Ding Hu; Lang Yunchao; Liu Congqiang

    2011-01-01

    Land use and land cover changes can cause variations in terrestrial energy, water balance and availability of nutrients. To understand the role of vegetation in regulating the hydrochemistry of karst hillslopes, overland flow and soil seepage water from two hillslopes covered with and without vegetation were studied in the Huanjiang Observation and Research Station for Karst Ecosystems, Guangxi, SW China. Dissolved major ions, as well as isotopic compositions of dissolved inorganic C (DIC) were examined. Water from the vegetated control slope had higher solute concentrations (except NO 3 - ) and lower δ 13 C values than water from the disturbed slope. The dynamics of K + and NO 3 - in soil water sampled in time-sequence from the control slope was different from the disturbed slope. Specifically, K + and NO 3 - concentrations of the control slope decreased gradually over time, while K + and NO 3 - concentrations of the disturbed slope increased, and other ionic concentrations increased in both of the slopes.

  13. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  14. Water chemistry control in HTTR

    International Nuclear Information System (INIS)

    Sekita, Kenji; Furusawa, Takayuki; Emori, Koichi; Kuroha, Misao; Hayakawa, Masato; Ohuchi, Hiroshi; Ishii, Taro

    2008-08-01

    A carbon steel is used for the main material for the components and pipings of the pressurized water cooling system etc. that are the reactor cooling system of the HTTR. Water quality is managed by using the hydrazine in the coolant of the water cooling system to prevent corrosion of the components and deoxidize the coolant. Also, regular analysis is carried out for the confirmation of the water quality. The following results were obtained through the water quality analysis. (1) In the pressurized water cooling system, the coolant temperature rises higher due to the heat removal of the primary coolant. So, the ammonia was formed in the thermal decomposition of the hydrazine. The electric conductivity increased, while the concentration of the hydrazine decreased, there was no problem as the plan it. (2) Thermal decomposition of the hydrazine was not occurred in the auxiliary water cooling system and vessel cooling system because of the coolant temperature was low. (3) An indistinct procedure is clarified and procedure of water quality analysis was established in the HTTR. (4) It is assumed that the corrosion of the components in these water cooling system hardly occurred from measurement results of dissolved oxide and chloride ion. Thus, the water quality was managed enough. (author)

  15. Multitracer studies for determining seepage water and anion movement in four types of soil using lysimeters with different functions and designs

    International Nuclear Information System (INIS)

    Knappe, S.; Russow, R.

    1999-01-01

    Lysimeter experiments based on the stable isotope tracer technique are a suitable means of examining the complex relationships governing water and material transport processes in the soil. The present paper reports on experiments in which water and nitrate movement was traced directly by means of lysimeters placed at different depths and using deuterium water and [ 15 N]N-nitrate for pulse marking. Extensive investigations carried out during the dissection of soil monoliths that had been used for many years in lysimeters offered an opportunity for stable isotope tracer studies aimed at determining seepage water and anion movement in undisturbed soils and, after dismantling the lysimeters, conducting soil analyses to find out more about the fate of nonpercolated tracers at various soil depths. Following other authors, bromide anions were additionally used as conservative tracers [de

  16. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  17. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  18. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  19. On 2D water chemistry

    International Nuclear Information System (INIS)

    Shimkevich, Alexander; Shimkevich, Inessa

    2012-09-01

    The micro-structural behaviour of density fluctuations in liquid water shows that the hydrogen-bonds lifetime is 1-20 ps whereas the broken-bonds lifetime is about 0.1 ps. Therefore spontaneously broken bonds will probably reform to give the original hydrogen bond configuration, but their coherent breakage in molecular cluster will lead to rotation of water molecules around the remaining hydrogen bonds. Our model for topological structure of dense part of liquid water in its density fluctuations as helical tetrahedral clusters is useful for explanation of liquid-water structural anomalies including the high quantity of hydrogen bonds with tetrahedral orientation in non-ordered liquid matrix. The topology of such the clusters is essentially differed from topology of crystalline ice. From this and only this point of view, water can be considered as a two-structural liquid because the formation and decay of such the clusters has dynamic character and is natural consequence of condensed-matter density fluctuations. At a hydrogen-steam (or oxygen-steam) mixture is injected in aqueous solution, it is possible to obtain the stable gaseous nano-bubbles. Such the nano-fluid can convert the liquid water in the non-stoichiometric state, H 2 O 1 ± z , and (without impurity addition) change its Reduction-Oxidation (Redox) potential. In this connection, we offer to use Fermi level of electron energy in the aqueous solution for correct expressing Redox potential of non-stoichiometric water. If Fermi level will be about in the middle of the band gap, the average number of electrons per quantum state of a reducing agent will be zero and the same factor for the oxidizing one will be unity that is the chemical activity of these agents will be zero. At the same time, the liquid-water non-stoichiometric composition, H 2 O 1 ± z , is varied in the very narrow range of z ≤ 10 -6 . Therefore it is important monitoring the Redox potential (Fermi level) online by precise sensor having

  20. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  1. Geophysical and hydrologic studies of lake seepage variability

    Science.gov (United States)

    Toran, Laura; Nyquist, Jonathan E.; Rosenberry, Donald O.; Gagliano, Michael P.; Mitchell, Natasha; Mikochik, James

    2014-01-01

    Variations in lake seepage were studied along a 130 m shoreline of Mirror Lake NH. Seepage was downward from the lake to groundwater; rates measured from 28 seepage meters varied from 0 to −282 cm/d. Causes of this variation were investigated using electrical resistivity surveys and lakebed sediment characterization. Two-dimensional (2D) resistivity surveys showed a transition in lakebed sediments from outwash to till that correlated with high- and low-seepage zones, respectively. However, the 2D survey was not able to predict smaller scale variations within these facies. In the outwash, fast seepage was associated with permeability variations in a thin (2 cm) layer of sediments at the top of the lakebed. In the till, where seepage was slower than that in the outwash, a three-dimensional resistivity survey mapped a point of high seepage associated with heterogeneity (lower resistivity and likely higher permeability). Points of focused flow across the sediment–water interface are difficult to detect and can transmit a large percentage of total exchange. Using a series of electrical resistivity geophysical methods in combination with hydrologic data to locate heterogeneities that affect seepage rates can help guide seepage meter placement. Improving our understanding of the causes and types of heterogeneity in lake seepage will provide better data for lake budgets and prediction of mass transfer of solutes or contaminants between lakes and groundwater.

  2. Brunswick-2 water chemistry. Interim report

    International Nuclear Information System (INIS)

    Miller, A.D.

    1981-04-01

    This study summarizes and interprets the nearly half million data points obtained through January of 1978 from the continuous monitoring equipment and data acquisition computers at Brunswick-2. Dissolved oxygen, specific conductance, and pH levels of 12 separate sample points were measured and correlated to plant operation, leading to a more complete understanding of the water chemistry of boiling water reactors. The measured parameters were characterized for various reactor power levels, startups, shutdowns, resin intrusions, etc

  3. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  4. Seepage through a hazardous-waste trench cover

    Science.gov (United States)

    Healy, R.W.

    1989-01-01

    Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216 mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest rates occurred along the edge of the cover, where seepage was highly episodic, with 84% of the total there being traced to wetting fronts from 28 individual storms. Limitations of the zero-flux-plane method were severe enough for the method to be judged inappropriate for use in this study.Water movement through a waste-trench cover under natural conditions at a low-level radioactive waste disposal site in northwestern Illinois was studied from July 1982 to June 1984, using tensiometers, a moisture probe, and meteorological instruments. Four methods were used to estimate seepage: the Darcy, zero-flux plane, surface-based water-budget, and groundwater-based water-budget methods. Annual seepage estimates ranged from 48 to 216mm (5-23% of total precipitation), with most seepage occurring in spring. The Darcy method, although limited in accuracy by uncertainty in hydraulic conductivity, was capable of discretizing seepage in space and time and indicated that seepage varied by almost an order of magnitude across the width of the trench. Lowest seepage rates occurred near the center of the cover, where seepage was gradual. Highest

  5. Closed cooling water chemistry guidelines revision

    International Nuclear Information System (INIS)

    McElrath, Joel; Breckenridge, Richard

    2014-01-01

    This second revision of the Closed Cooling Water Chemistry Guideline addresses the use of chemicals and monitoring methods to mitigate corrosion, fouling, and microbiological growth in the closed cooling-water (CCW) systems of nuclear and fossil-fueled power plants. This revision has been endorsed by the utility chemistry community and represents another step in developing a more proactive chemistry program to limit or control closed cooling system degradation with increased consideration of corporate resources and plant-specific design and operating concerns. These guidelines were developed using laboratory data, operating experience, and input from organizations and utilities within and outside of the United States of America. It is the intent of the Revision Committee that these guidelines are applicable to all nuclear and fossil-fueled generating stations around the world. A committee of industry experts—including utility specialists, Institute of Nuclear Power Operations representatives, water-treatment service-company representatives, consultants, a primary contractor, and EPRI staff—collaborated in reviewing available data on closed cooling-water system corrosion and microbiological issues. Recognizing that each plant owner has a unique set of design, operating, and corporate concerns, the Guidelines Committee developed a methodology for plant-specific optimization. The guideline provides the technical basis for a reasonable but conservative set of chemical treatment and monitoring programs. The use of operating ranges for the various treatment chemicals discussed in this guideline will allow a power plant to limit corrosion, fouling, and microbiological growth in CCW systems to acceptable levels. The guideline now includes closed cooling chemistry regimes proven successful in use in the international community. The guideline provides chemistry constraints for the use of phosphates control, as well as pure water with pH control. (author)

  6. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  7. Control of water chemistry in operating reactors

    International Nuclear Information System (INIS)

    Riess, R.

    1997-01-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ''modified'' B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs

  8. Control of water chemistry in operating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-02-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ``modified`` B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs.

  9. Advances in water chemistry control for BWRs and PWRs

    International Nuclear Information System (INIS)

    Wood, C.J.

    1997-01-01

    This paper is an overview of the effects of water chemistry developments on the current operation of nuclear power plants in the United States, and the mitigation of corrosion-related degradation processes and radiation field build-up processes through the use of advanced water chemistry. Recent modifications in water chemistry to control and reduce radiation fields are outlined, including revisions to the EPRI water chemistry guidelines for BWRs and PWR primary and secondary systems. The change from a single water chemistry specification for all plants to a set of options, from which a plant-specific chemistry programme can be defined, is described. (author)

  10. Real time water chemistry monitoring and diagnostics

    International Nuclear Information System (INIS)

    Gaudreau, T.M.; Choi, S.S.

    2002-01-01

    EPRI has produced a real time water chemistry monitoring and diagnostic system. This system is called SMART ChemWorks and is based on the EPRI ChemWorks codes. System models, chemistry parameter relationships and diagnostic approaches from these codes are integrated with real time data collection, an intelligence engine and Internet technologies to allow for automated analysis of system chemistry. Significant data management capabilities are also included which allow the user to evaluate data and create automated reporting. Additional features have been added to the system in recent years including tracking and evaluation of primary chemistry as well as the calculation and tracking of primary to secondary leakage in PWRs. This system performs virtual sensing, identifies normal and upset conditions, and evaluates the consistency of on-line monitor and grab sample readings. The system also makes use of virtual fingerprinting to identify the cause of any chemistry upsets. This technology employs plant-specific data and models to determine the chemical state of the steam cycle. (authors)

  11. Sources, extent and history of methane seepage on the continental shelf off northern Norway

    Science.gov (United States)

    Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen

    2014-05-01

    Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (

  12. Water at surfaces with tunable surface chemistries

    Science.gov (United States)

    Sanders, Stephanie E.; Vanselous, Heather; Petersen, Poul B.

    2018-03-01

    Aqueous interfaces are ubiquitous in natural environments, spanning atmospheric, geological, oceanographic, and biological systems, as well as in technical applications, such as fuel cells and membrane filtration. Where liquid water terminates at a surface, an interfacial region is formed, which exhibits distinct properties from the bulk aqueous phase. The unique properties of water are governed by the hydrogen-bonded network. The chemical and physical properties of the surface dictate the boundary conditions of the bulk hydrogen-bonded network and thus the interfacial properties of the water and any molecules in that region. Understanding the properties of interfacial water requires systematically characterizing the structure and dynamics of interfacial water as a function of the surface chemistry. In this review, we focus on the use of experimental surface-specific spectroscopic methods to understand the properties of interfacial water as a function of surface chemistry. Investigations of the air-water interface, as well as efforts in tuning the properties of the air-water interface by adding solutes or surfactants, are briefly discussed. Buried aqueous interfaces can be accessed with careful selection of spectroscopic technique and sample configuration, further expanding the range of chemical environments that can be probed, including solid inorganic materials, polymers, and water immiscible liquids. Solid substrates can be finely tuned by functionalization with self-assembled monolayers, polymers, or biomolecules. These variables provide a platform for systematically tuning the chemical nature of the interface and examining the resulting water structure. Finally, time-resolved methods to probe the dynamics of interfacial water are briefly summarized before discussing the current status and future directions in studying the structure and dynamics of interfacial water.

  13. Water chemistry guidance in nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Okada, Hidetoshi; Suzuki, Hiroaki; Naitoh, Masanori

    2012-01-01

    Water chemistry plays important roles in safe and reliable plant operation which are very critical for future power rate increases as well as aging plant management. Water chemistry control is required to satisfy the need for improved integrity of target materials, and at the same time it must be optimal for all materials and systems in a plant. Optimal water chemistry can be maintained by expert engineers who are knowledgeable about plant water chemistry, who have sufficient experience with plant operation, and whose knowledge is based on fundamental technologies. One of the latest subjects in the field of water chemistry is achieving suitable technical transfers, in which the achievements and experience with plant water chemistry accumulated by experts are successfully transferred to the next generation of engineers. For this purpose, documents on experience with water chemistry are being compiled as the guidance for water chemistry control and water chemistry standards, e.g., standards for chemical analysis procedures and guidance for water chemistry control procedures. This paper introduces the latest activities in Japan in establishing water chemistry guidance involving water chemistry standards, guidance documents and their supporting documents. (orig.)

  14. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence

  15. Technical specifications for PWR secondary water chemistry

    International Nuclear Information System (INIS)

    Weeks, J.R.; van Rooyen, D.

    1977-08-01

    The bases for establishing Technical Specifications for PWR secondary water chemistry are reviewed. Whereas extremely stringent control of secondary water needs to be maintained to prevent denting in some units, sound bases for establishing limits that will prevent stress corrosion, wastage, and denting do not exist at the present time. This area is being examined very thoroughly by industry-sponsored research programs. Based on the evidence available to date, short term control limits are suggested; establishment of these or other limits as Technical Specifications is not recommended until the results of the research programs have been obtained and evaluated

  16. Design Features of the SMART Water Chemistry

    International Nuclear Information System (INIS)

    Byung Seon Choi; Seong Hoon Kim; Juhyeon Yoon; Doo Jeong Lee; Yoon Yeong Bae; Sung Kyun Zee

    2004-01-01

    The design features for the primary water chemistry for the SMART are introduced from the viewpoint of the system characteristics and the chemical design concept. The most essential differences in water chemistry between the commercially operating PWRs and SMART are characterized by the presence of boron in the water and the operating mode of the purification system. SMART is a soluble boron free reactor, and the ammonia is used as a pH reagent. The material for SMART steam generator is also different from the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. In SMART hydrogen gas which suppresses a generation of oxidizing species by the radiolysis processes in the reactors is not added to the primary coolant, but is normally generated from the radiolysis of the ammonia as the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are in equilibrium, which depend on the decomposition and/or combination rate of the ammonia. The level of permissible oxygen concentration in the primary coolant can be ensured by both suppression of the water radiolysis through maintaining a high enough hydrogen concentration in the primary coolant and by a restriction of the oxygen ingress into the primary coolant with the makeup water. The ammonia chemistry in SMART reactor eliminates the need for hydrogen injection for the control of the dissolved oxygen in the primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of the ammonia decomposition. (authors)

  17. The impact of land use and land cover changes on solute dynamics in seepage water of soil from karst hillslopes of Southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hu; Lang Yunchao [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46th Guanshui Road, Guiyang 550002 (China); Liu Congqiang, E-mail: liucongqiang@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46th Guanshui Road, Guiyang 550002 (China)

    2011-06-15

    Land use and land cover changes can cause variations in terrestrial energy, water balance and availability of nutrients. To understand the role of vegetation in regulating the hydrochemistry of karst hillslopes, overland flow and soil seepage water from two hillslopes covered with and without vegetation were studied in the Huanjiang Observation and Research Station for Karst Ecosystems, Guangxi, SW China. Dissolved major ions, as well as isotopic compositions of dissolved inorganic C (DIC) were examined. Water from the vegetated control slope had higher solute concentrations (except NO{sub 3}{sup -}) and lower {delta}{sup 13}C values than water from the disturbed slope. The dynamics of K{sup +} and NO{sub 3}{sup -} in soil water sampled in time-sequence from the control slope was different from the disturbed slope. Specifically, K{sup +} and NO{sub 3}{sup -} concentrations of the control slope decreased gradually over time, while K{sup +} and NO{sub 3}{sup -} concentrations of the disturbed slope increased, and other ionic concentrations increased in both of the slopes.

  18. Development of water chemistry diagnosis system for BWR primary loop

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu; Uchida, Shunsuke; Ohsumi, Katsumi.

    1988-01-01

    The prototype of a water chemistry diagnosis system for BWR primary loop has been developed. Its purposes are improvement of water chemistry control and reduction of the work burden on plant chemistry personnel. It has three main features as follows. (1) Intensifying the observation of water chemistry conditions by variable sampling intervals based on the on-line measured data. (2) Early detection of water chemistry data trends using a second order regression curve which is calculated from the measured data, and then searching the cause of anomaly if anything (3) Diagnosis of Fe concentration in feedwater using model simulations, in order to lower the radiation level in the primary system. (author)

  19. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Science.gov (United States)

    Ji, Youjun; Zhang, Linzhi; Yue, Jiannan

    2014-01-01

    Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today. PMID:24707199

  20. Solution of AntiSeepage for Mengxi River Based on Numerical Simulation of Unsaturated Seepage

    Directory of Open Access Journals (Sweden)

    Youjun Ji

    2014-01-01

    Full Text Available Lessening the leakage of surface water can reduce the waste of water resources and ground water pollution. To solve the problem that Mengxi River could not store water enduringly, geology investigation, theoretical analysis, experiment research, and numerical simulation analysis were carried out. Firstly, the seepage mathematical model was established based on unsaturated seepage theory; secondly, the experimental equipment for testing hydraulic conductivity of unsaturated soil was developed to obtain the curve of two-phase flow. The numerical simulation of leakage in natural conditions proves the previous inference and leakage mechanism of river. At last, the seepage control capacities of different impervious materials were compared by numerical simulations. According to the engineering actuality, the impervious material was selected. The impervious measure in this paper has been proved to be effectible by hydrogeological research today.

  1. Interaction between hydrocarbon seepage, chemosynthetic communities, and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    Directory of Open Access Journals (Sweden)

    D. Fischer

    2012-06-01

    Full Text Available The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ located at the Makran convergent continental margin. Push cores were obtained from seeps within and below the core-OMZ with a remotely operated vehicle. Extracted sediment pore water was analyzed for sulfide and sulfate concentrations. Depending on oxygen availability in the bottom water, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats, which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was retained within the sediment.

    Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr−1 to <1 cm yr−1 and the sulfate/methane transition (SMT deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMT did not significantly differ (6.6–9.3 mol m−2 yr−1. Depth-integrated rates of bioirrigation increased from 120 cm yr−1 in the central habitat, characterized by microbial mats and sparse macrofauna, to 297 cm yr−1 in the habitat of large and few small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats below the core-OMZ efficiently bioirrigate and thus transport sulfate down into the upper 10 to 15 cm of the sediment. In this way the animals deal with the lower upward flux of methane in outer habitats by stimulating rates of anaerobic oxidation of methane (AOM with sulfate high enough to provide

  2. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, ...

  3. IAEA interlaboratory exercise for water chemistry

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Jeon, Young Shin; Choi, Ke Chun; Kim, Yong Bok; Kim, Jong Gu; Kim, Won Ho

    2003-09-01

    KAERI Analytical laboratory participated in the IAEA Interlaboratory exercise for water chemistry of groundwater(RAS/8/084). 13 items such as pH, electroconductivity, HCO 3 , Cl, SO 4 , SiO 2 , B, Li, Na, K, Ca, Mg and NH 3 were analyzed. The result of this exercise showed that KAERI laboratory was ranked on the top level of the participants. Major analytical methods applied for this activity were ICP-AES, AAS, IC, pH meter, conductometer and acid titration

  4. Acidic deposition: State of science and technology. Report 11. Historical changes in surface-water acid-base chemistry in response to acidic deposition. Final report

    International Nuclear Information System (INIS)

    Sullivan, T.J.; Small, M.J.; Kingston, J.C.; Bernert, J.A.; Thomas, D.R.

    1990-09-01

    The objectives of the analyses reported in the State of Science report are to: identify the lake and stream populations in the United States that have experienced chronic changes in biologically significant constituents of surface water chemistry (e.g. pH, Al) in response to acidic deposition; quantify biologically meaningful historical changes in chronic surface water chemistry associated with acidic deposition, with emphasis on ANC, pH, and Al; estimate the proportion of lakes nor acidic that were not acidic in pre-industrial times; estimate the proportional response of each of the major chemical constituents that have changed in response to acidic deposition using a subset of statistically selected Adirondack lakes for which paleolimnological reconstructions of pre-industrial surface water chemistry have been performed; evaluate and improve, where appropriate and feasible, empirical models of predicting changes in ANC; and evaluate the response of seepage lakes to acidic deposition

  5. Transient Seepage for Levee Engineering Analyses

    Science.gov (United States)

    Tracy, F. T.

    2017-12-01

    Historically, steady-state seepage analyses have been a key tool for designing levees by practicing engineers. However, with the advances in computer modeling, transient seepage analysis has become a potentially viable tool. A complication is that the levees usually have partially saturated flow, and this is significantly more complicated in transient flow. This poster illustrates four elements of our research in partially saturated flow relating to the use of transient seepage for levee design: (1) a comparison of results from SEEP2D, SEEP/W, and SLIDE for a generic levee cross section common to the southeastern United States; (2) the results of a sensitivity study of varying saturated hydraulic conductivity, the volumetric water content function (as represented by van Genuchten), and volumetric compressibility; (3) a comparison of when soils do and do not exhibit hysteresis, and (4) a description of proper and improper use of transient seepage in levee design. The variables considered for the sensitivity and hysteresis studies are pore pressure beneath the confining layer at the toe, the flow rate through the levee system, and a levee saturation coefficient varying between 0 and 1. Getting results for SEEP2D, SEEP/W, and SLIDE to match proved more difficult than expected. After some effort, the results matched reasonably well. Differences in results were caused by various factors, including bugs, different finite element meshes, different numerical formulations of the system of nonlinear equations to be solved, and differences in convergence criteria. Varying volumetric compressibility affected the above test variables the most. The levee saturation coefficient was most affected by the use of hysteresis. The improper use of pore pressures from a transient finite element seepage solution imported into a slope stability computation was found to be the most grievous mistake in using transient seepage in the design of levees.

  6. Cleveland Dam East Abutment : seepage control project

    Energy Technology Data Exchange (ETDEWEB)

    Huber, F.; Siu, D. [Greater Vancouver Regional District, Burnaby, BC (Canada); Ahlfield, S.; Singh, N. [Klohn Crippen Consultants Ltd., Vancouver, BC (Canada)

    2004-09-01

    North Vancouver's 91 meter high Cleveland Dam was built in the 1950s in a deep bedrock canyon to provide a reservoir for potable water to 18 municipalities. Flow in the concrete gravity dam is controlled by a gated spillway, 2 mid-level outlets and intakes and 2 low-level outlets. This paper describes the seepage control measures that were taken at the time of construction as well as the additional measures that were taken post construction to control piezometric levels, seepage and piping and slope instability in the East Abutment. At the time of construction, a till blanket was used to cover the upstream reservoir slope for 200 meters upstream of the dam. A single line grout curtain was used through the overburden from ground surface to bedrock for a distance of 166 meters from the dam to the East Abutment. Since construction, the safety of the dam has been compromised through changes in piezometric pressure, seepage and soil loss. Klohn Crippen Consultants designed a unique seepage control measure to address the instability risk. The project involved excavating 300,000 cubic meters of soil to form a stable slope and construction bench. A vertical wall was constructed to block seepage. The existing seepage control blanket was also extended by 260 meters. The social, environmental and technical issues that were encountered during the rehabilitation project are also discussed. The blanket extension construction has met design requirements and the abutment materials that are most susceptible to internal erosion have been covered by non-erodible blanket materials such as plastic and roller-compacted concrete (RCC). The project was completed on schedule and within budget and has greatly improved the long-term stability of the dam and public safety. 2 refs., 8 figs.

  7. The chemistry of water reactor fuel

    International Nuclear Information System (INIS)

    Potter, P.E.

    1990-01-01

    In this paper, the authors discuss features of the changes in chemical constitution which occur in fuel and fuel rods for water reactors during operation and in fault conditions. The fuel for water reactors consists of pellets of urania (UO 2 ) clad in Zircaloy. An essential step in the prediction of the fate of all the radionuclides in a fault or accident is to possess a detailed knowledge of their chemical behavior at all stages of the development of such incidents. In this paper, the authors consider: the chemical constitution of fuel during operation at temperatures corresponding to rather low ratings, together with a quite detailed discussion of the chemistry within the fuel-clad gap; the behavior of fuel subjected to higher temperatures and ratings than those of contemporary fuel; and the changes in constitution on failure of fuel rods in fault or accident conditions

  8. WATER CHEMISTRY IN DIFFERENTLY FERTILIZED CARP POUNDS

    Directory of Open Access Journals (Sweden)

    Krešimir Fašaić

    1997-07-01

    Full Text Available Water chemistry in carp ponds - fry carp ponds, each of them 2.5 acres big and 1.5 meter deep, as well as in inflow water in the ponds was researched. Fourty days old carp fingerlings were bread in the ponds; stock density of the three day old larvae was 1,000.000 ind˙ha-1. The fingerlings were fed with trouvit and flour. In the ponds and the inflow water the following chemical parameters were examined: : 02, C02, CaC03-, RC03-, outgoing of KMn04, N02-, N03-, NR4+, urea, PO43-, P205 and pH. During the breeding season substantial deviations of all the chemical parameters were stated, but within values that satisfy the needs of the carp ponds. The applied quantity of the mineral fertilizer did not cause a very explicit eutrophication of water in the treated ponds. Certain differences in the quantity of the respective chemical indicators in the fertilized pond variants compared to the nonfertilized variant were insignificant (P**0.05, except the pH value, which increased significantly in the fertilized variants (P<0.05. Compared with the inflow water, in all experimental ponds the quantity of the mineral nitrogen and phosphorus fractions (P<0.05, (P<0.05 has increased. (Tables 5 and 6

  9. Experience of water chemistry and radiation levels in Swedish BWRs

    International Nuclear Information System (INIS)

    Ivars, R.; Elkert, J.

    1981-01-01

    From the BWR operational experience in Sweden it has been found that the occupational radiation exposures have been comparatively low in an international comparison. One main reason for the favourable conditions is the good water chemistry performance. This paper deals at first with the design considerations of water chemistry and materials selection. Next, the experience of water chemistry and radiation levels are provided. Finally, some methods to further reduce the radiation sources are discussed. (author)

  10. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  11. Safety aspects of water chemistry in light water reactors

    International Nuclear Information System (INIS)

    1988-12-01

    The goals of the water chemistry control programmes are to maximize operational safety and the availability and operating life of primary system components, to maximize fuel integrity, and to control radiation buildup. To achieve these goals an effective corporate policy should be developed and implemented. Essential management responsibilities are: Recognizing of the long-term benefits of avoiding or minimizing: a) system corrosion; b) fuel failure; and c) radiation buildup. The following control or diagnostic parameters are suitable performance indicators: for PWR primary coolant circuits: pH of reactor water (by operating temperature); Concentration of chlorides in reactor water; Hydrogen (or oxygen) in reactor water. For PWR secondary coolant circuits: pH in feedwater; Cation productivity in steam generator blowdown; Iron concentration in feedwater; Oxygen concentration in condensate. And BWR coolant circuits: Conductivity of reactor water; Concentration of chlorides in reactor water; Iron concentration in feedwater; Copper concentration in feedwater. The present document represents a review of the developments in some Member States on how to implement a reasonable water chemistry programme and how to assess its effectiveness through numerical indicators. 12 figs, 20 tabs

  12. Survey of Water Chemistry and Corrosion of NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-15

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented.

  13. Survey of Water Chemistry and Corrosion of NPP

    International Nuclear Information System (INIS)

    Jung, Ki Sok; Hong, Bong Geon

    2008-06-01

    Status of water chemistry of nuclear power plant and materials corrosion has been surveyed. For PWR, system chemistry of primary coolant and secondary coolant as well as the related corrosion of materials was surveyed. For BWR, system chemistry as whole has been surveyed with its accompanying corrosion problems. Radiolysis of coolant water and activation of corrosion products also was surveyed. Future NPP such as supercritical water cooled reactor and fusion reactor has also been surveyed for their water chemistry and corrosion problems. As a result, proposal for some research items has been suggested. Some related corrosion research techniques and electrochemical fundamentals are also presented

  14. Water chemistry and behavior of materials in PWRs and BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, P; Hanninen, H [VTT Manufacturing Technology, Espoo (Finland)

    1997-09-01

    Water chemistry plays a major role in corrosion and in activity transport in NPP`s. Although a full understanding of all mechanisms involved in corrosion does not exist, controlling of the water chemistry has achieved good results in recent years. Water chemistry impacts upon the operational safety of LWR`s in two main ways: integrity of pressure boundary materials and, activity transport and out-of-core radiation fields. This paper will describe application of water chemistry control in operating reactors to prevent corrosion. Some problems experienced in LWR`s will be reviewed for the design of the nuclear heating reactors (NHR). (author). 18 refs, 10 figs, 5 tabs.

  15. Water chemistry and behavior of materials in PWRs and BWRs

    International Nuclear Information System (INIS)

    Aaltonen, P.; Hanninen, H.

    1997-01-01

    Water chemistry plays a major role in corrosion and in activity transport in NPP's. Although a full understanding of all mechanisms involved in corrosion does not exist, controlling of the water chemistry has achieved good results in recent years. Water chemistry impacts upon the operational safety of LWR's in two main ways: integrity of pressure boundary materials and, activity transport and out-of-core radiation fields. This paper will describe application of water chemistry control in operating reactors to prevent corrosion. Some problems experienced in LWR's will be reviewed for the design of the nuclear heating reactors (NHR). (author). 18 refs, 10 figs, 5 tabs

  16. Three Dimensional Seepage Analyses in Mollasadra Dam after Its ...

    African Journals Online (AJOL)

    Michael Horsfall

    constructed on Kor River. pore water pressure in the dam was investigated following its construction and first and second ... Some problems like seepage failure and slope stability are ... In addition, the effects of change in certain input ...

  17. Advances in high temperature water chemistry and future issues

    International Nuclear Information System (INIS)

    Millett, P.J.

    2005-01-01

    This paper traces the development of advances in high temperature water chemistry with emphasis in the field of nuclear power. Many of the water chemistry technologies used in plants throughout the world today would not have been possible without the underlying scientific advances made in this field. In recent years, optimization of water chemistry has been accomplished by the availability of high temperature water chemistry codes such as MULTEQ. These tools have made the science of high temperature chemistry readily accessible for engineering purposes. The paper closes with a discussion of what additional scientific data and insights must be pursued in order to support the further development of water chemistry technologies for the nuclear industry. (orig.)

  18. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Sonnenthale, E.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are

  19. Current status of water chemistry in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ishigure, K. [Saitama Inst. of Tech. (Japan)

    2002-07-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8{open_square} of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  20. Current status of water chemistry in Japan

    International Nuclear Information System (INIS)

    Ishigure, K.

    2002-01-01

    At present 28 BWRs including 2 ABWRs and 23 PWRs are in operation in Japan and generated 36.8□ of total electric power in 1998. Totally 4 BWRs, of which two are ABWRs, are now under construction, and one BWR together with one ABWR is in the stage of planning. One gas-cooled reactor (Tokai-1) was shut down permanently in 1998 and last year entered into decommissioning stage. According to the Japanese 2001 plan of electric power supply, 13 nuclear power plants newly constructed are to start operation in the next 10 years. In this paper the recent status of water chemistry technology in Japanese nuclear power plants is briefly summarized together with a touch upon the activities in the fundamental research. (author)

  1. Coupling between water chemistry and thermal output at unsaturated repositories

    International Nuclear Information System (INIS)

    Walton, J.; LeMone, D.; Casey, D.

    1995-01-01

    This paper summarizes issues in predicting thermohydrology in the near field of a deep geological repository and the implications for performance assessment. Predicted thermohydrology depends on waste package design, and particularly on backfill materials. The coupling between solute concentrations and thermal gradients leads to a prediction of highly variable water chemistry in the near field which is radically different than the initial, undisturbed water chemistry; however, most analyses to date assume that waste package chemistry is approximately the same as initial pore water chemistry. Several alternative, simplified approaches for performance assessment are discussed

  2. Optimization of secondary side water chemistry in TQNPC

    International Nuclear Information System (INIS)

    Fang Lan

    2007-01-01

    This article briefly introduces the types of corrosion that may be happened on steam generator heat exchange tubes in Qinshan CANDU6 nuclear power station and chemical effects on corrosion. The water chemistry optimization on minimzing deposition and corrosion of steam generators are introduced. The article summarizes the experiences of plant chemistry control and morpholine operation, providing guidance for optimizing secondary side water chemistry in the future, giving reference on selection of secondary side alkali agent and setting water chemistry specifications for other nuclear power stations. (authors)

  3. Development of Database and Lecture Book for Nuclear Water Chemistry

    International Nuclear Information System (INIS)

    Maeng, Wan Young; Kim, U. C.; Na, J. W.; Choi, B. S.; Lee, E. H.; Kim, K. H.; Kim, K. M.; Kim, S. H.; Im, K. S.

    2010-02-01

    In order to establish a systematic and synthetic knowledge system of nuclear water chemistry, we held nuclear water chemistry experts group meetings. We discussed the way of buildup and propagation of nuclear water chemistry knowledge with domestic experts. We obtained a lot of various opinions that made the good use of this research project. The results will be applied to continuous buildup of domestic nuclear water chemistry knowledge database. Lessons in water chemistry of nuclear power plants (NPPs) have been opened in Nuclear Training and education Center, KAERI to educate the new generation who are working and will be working at the department of water chemistry of NPPs. The lessons were 17 and lesson period was from 12th May through 5th November. In order to progress the programs, many water chemistry experts were invited. They gave lectures to the younger generation once a week for 2 h about their experiences obtained during working on water chemistry of NPPs. The number of attendance was 290. The lessons were very effective and the lesson data will be used to make database for continuous use

  4. The taming of brackish seepage

    NARCIS (Netherlands)

    Smits, F.J.C.; Olsthoorn, T.; Smulders, L.; van Wielink, I.

    2016-01-01

    In the area that is managed by the waterboard Amstel, Gooi and Vecht, some deep polders are located. Most of them attract large amounts of brackish seepage. This seepage not only contains salt, but also nutriënts.
    Without hydrological intervention, the waterquality in the area would suffer

  5. Evolution Procedure of Multiple Rock Cracks under Seepage Pressure

    Directory of Open Access Journals (Sweden)

    Taoying Liu

    2013-01-01

    Full Text Available In practical geotechnical engineering, most of rock masses with multiple cracks exist in water environment. Under such circumstance, these adjacent cracks could interact with each other. Moreover, the seepage pressure, produced by the high water pressure, can change cracks’ status and have an impact on the stress state of fragile rocks. According to the theory of fracture mechanics, this paper discusses the law of crack initiation and the evolution law of stress intensity factor at the tip of a wing crack caused by compression-shear stress and seepage pressure. Subsequently, considering the interaction of the wing cracks and the additional stress caused by rock bridge damage, this paper proposes the intensity factor evolution equation under the combined action of compression-shear stress and seepage pressure. In addition, this paper analyzes the propagation of cracks under different seepage pressure which reveals that the existence of seepage pressure facilitates the wing crack’s growth. The result indicates that the high seepage pressure converts wing crack growth from stable form to unstable form. Meanwhile, based on the criterion and mechanism for crack initiation and propagation, this paper puts forward the mechanical model for different fracture transfixion failure modes of the crag bridge under the combined action of seepage pressure and compression-shear stress. At the last part, this paper, through investigating the flexibility tensor of the rock mass’s initial damage and its damage evolution in terms of jointed rock mass's damage mechanics, deduces the damage evolution equation for the rock mass with multiple cracks under the combined action of compression-shear stress and seepage pressure. The achievement of this investigation provides a reliable theoretical principle for quantitative research of the fractured rock mass failure under seepage pressure.

  6. Silage seepage and water protection. Production and recovery of silage seepage from animal feed and biomass for biogas plants. 7. ed.; Silagesickersaft und Gewaesserschutz. Anfall und Verwertung von Silagesickersaft aus Futtermitteln und Biomasse fuer Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Spiekers, Hubert [Bayerische Landesanstalt fuer Landwirtschaft (LfL), Freising-Weihenstephan (Germany); Attenberger, Erwin [Bayerisches Landesamt fuer Umwelt, Augsburg (Germany)

    2012-11-15

    The production of silage is now standard and an important basis for a successful milk and beef production. Silage is also needed in agricultural biogas plants as a substrate for energy production. This publication is intended to serve agriculture as a source of information and guidance document for the construction and operation of silos and the administration as an orientating work aid. The factors influencing the accumulation of silage seepage and the possibilities of prevention in silage and silage management are presented and evaluated from environmental and legal perspective. [German] Die Produktion von Silage ist heute Standard und eine wichtige Grundlage fuer eine erfolgreiche Milch- und Rindfleischerzeugung. Silage wird auch in landwirtschaftlichen Biogasanlagen als Substrat zur Energieerzeugung benoetigt. Die vorliegende Publikation soll der Landwirtschaft als Informationsquelle und Handlungsanleitung fuer den Bau und Betrieb von Siloanlagen und der Verwaltung als orientierende Arbeitshilfe dienen. Die Einflussgroessen auf den Anfall an Sickersaeften und die Moeglichkeiten der Vermeidung bei der Silierung und dem Silagemanagement werden dargestellt und aus umwelt- und rechtlicher Sicht bewertet.

  7. Calculating earth dam seepage using HYDRUS software applications

    Directory of Open Access Journals (Sweden)

    Jakub Nieć

    2017-06-01

    Full Text Available This paper presents simulations of water seepage within and under the embankment dam of Lake Kowalskie reservoir. The aim of the study was to compare seepage calculation results obtained using analytical and numerical methods. In April 1985, after the first filling of the reservoir to normal storage levels, water leaks was observed at the base of the escarpment, on the air side of the dam. In order to control seepage flow, drainage was performed and additional piezometers installed. To explain the causes of increased pressure in the aquifer under the dam in May 1985 a simplified calculation of filtration was performed. Now, on the basis of archived data from the Department of Hydraulic and Sanitary Engineering using 3D HYDRUS STANDARD software, the conditions of seepage under the dam have been recreated and re-calculated. Piezometric pressure was investigated in three variants of drainage, including drainage before and after modernization.

  8. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    1992-09-01

    During second quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Plant. This report gives the results of the analyses of groundwater from the H-Area Seepage Basin

  9. Ground water chemistry and water-rock interaction at Olkiluoto

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Front, K.

    1992-02-01

    Bedrock investigations for the final repository for low- and intermediate level wastes (VLJ repository) generated at the Olkiluoto (TVO-I and TVO-II) nuclear power plant, stareted in 1980. Since 1988 the area has been investigated for the final disposal of spent nuclear fuel. In the report the geochemistry at the nuclear waste investigation site, Olkiluoto, is evaluated. The hydrogeological data are collected from boreholes drilled down to 1000-m depth into Proterozoic crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data, and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed. The groundwater types are characterized by water-rock interaction but they also show features of other origins. The fresh and brackish waters are contaminated by varying amounts of young meteoric water and brackish seawater. The saline water contains residues of possibly ancient hydrothermal waters, imprints of which are occasionally seen in the rock itself. Different mixing phenomenas are indicated by the isotope contents (O-l8/H-2, H-3) and the Ca/Cl, Na/Cl, HCO 3 /Cl, SO 4 /Cl, Br/Cl, SI(calcite)/SI(dolomite) ratios. The interaction between bedrock and groundwater is reflected by the behaviour of pH, Eh, Ca, Mg, Na, K, Fe, HCO 3 and S0 4 . Dissolution and precipitation of calcite and pyrite, and aluminosilicate hydrolysis play the major role in defining the groundwater composition of the above components

  10. Detection Model for Seepage Behavior of Earth Dams Based on Data Mining

    Directory of Open Access Journals (Sweden)

    Zhenxiang Jiang

    2018-01-01

    Full Text Available Seepage behavior detecting is an important tool for ensuring the safety of earth dams. However, traditional seepage behavior detection methods have used insufficient monitoring data and have mainly focused on single-point measures and local seepage behavior. The seepage behavior of dams is not quantitatively detected based on the monitoring data with multiple measuring points. Therefore, this study uses data mining techniques to analyze the monitoring data and overcome the above-mentioned shortcomings. The massive seepage monitoring data with multiple points are used as the research object. The key information on seepage behavior is extracted using principal component analysis. The correlation between seepage behavior and upstream water level is described as mutual information. A detection model for overall seepage behavior is established. Result shows that the model can completely extract the seepage monitoring data with multiple points and quantitatively detect the overall seepage behavior of earth dams. The proposed method can provide a new and reasonable means of quantitatively detecting the overall seepage behavior of earth dams.

  11. Relation between water chemistry and operational safety

    International Nuclear Information System (INIS)

    Oliveira, M.F. de.

    1991-01-01

    This report describes the relation between chemistry/radiochemistry and operational safety, the technics bases for chemical and radiochemical parameters and an analysis of the Annual Report of Angra I Operation and OSRAT Mission report to 1989 in this area too. Furthermore it contains the transcription of the technical Specifications related to the chemistry and radiochemistry for Angra I. (author)

  12. Environmental and legal aspects of cooling water chemistry

    International Nuclear Information System (INIS)

    Hoffmann, H.J.

    1988-01-01

    The discharge and management of cooling water and waste water are subject to a number of ecological and legal requirements. For example, waste heat and cooling water constituents may affect surface bodies of water, or waste water discharge may have adverse effects on surface water and ground water. Waste water and cooling water discharge are subject to the Water Management Act (WHG) and the Waste Water Act, with about 50 administrative regulations. The requirements on water chemistry and analysis are gone into. (orig./HP) [de

  13. Bottled water, spas, and early years of water chemistry

    Science.gov (United States)

    Back, William; Landa, Edward R.; Meeks, Lisa

    1995-01-01

    Although hot springs have been used and enjoyed for thousands of years, it was not until the late 1700s that they changed the course of world civilization by being the motivation for development of the science of chemistry. The pioneers of chemistry such as Priestley, Cavendish, Lavoisier, and Henry were working to identify and generate gases, in part, to determine their role in carbonated beverages. In the 18th century, spas in America were developed to follow the traditional activities of popular European spas. However, they were to become a dominant political and economic force in American history on three major points: (1) By far the most important was to provide a place for the leaders of individual colonies to meet and discuss the need for separation from England and the necessity for the Revolutionary War; (2) the westward expansion of the United States was facilitated by the presence of hot springs in many locations that provided the economic justification for railroads and settlement; and (3) the desire for the preservation of hot springs led to the establishment of the National Park Service. Although mineral springs have maintained their therapeutic credibility in many parts of the world, they have not done so in the United States. We suggest that the American decline was prompted by: (1) the establishment of The Johns Hopkins School of Medicine in 1893; (2) enactment of the Pure Food and Drug Act of 1907; and (3) the remarkable achievement of providing safe water supplies for American cities by the end of the 1920s. The current expanding market for bottled water is based in part on bottled water being an alternative beverage Ito alcohol and sweetened drinks and the inconsistent palatability and perceived health hazards of some tap waters.

  14. A preliminary analysis of water chemistry of the Mkuze Wetland ...

    African Journals Online (AJOL)

    In order to investigate the water chemistry of this system, water samples were collected throughout the study area from surface water, groundwater, pan and reed swamp sites, as well as a rainwater sample. These were analysed for chloride, sodium, potassium, calcium, magnesium, iron and silicon. Four main water bodies ...

  15. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  16. Coolant circuit water chemistry of the Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tilky, Peter; Doma, Arpad

    1985-01-01

    The numerous advantages of the proper selection of water chemistry parameters including low corrosion rate of the structural materials, hence the low-level activity build-up, depositions, radiation doses were emphasized. Major characteristics of water chemistry applied to the primary coolant of pressurized water reactors including neutral, slightly basic and strong basic ones are discussed. Boric acid is widely used to control reactivity. Primary coolant water chemistry of WWER type reactors which is based on the addition of ammonia and potassium hydroxide to boric acid is compared with that of other reactors. The demineralization of the total condensate of the steam turbines became a general trend in the water chemistry of the secondary coolant circuits. (V.N.)

  17. Infiltration and Seepage Through Fractured Welded Tuff

    International Nuclear Information System (INIS)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-01-01

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit

  18. Infiltration and Seepage Through Fractured Welded Tuff

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  19. Automated Water Chemistry Control at University of Virginia Pools.

    Science.gov (United States)

    Krone, Dan

    1997-01-01

    Describes the technologically advanced aquatic and fitness center at the University of Virginia. Discusses the imprecise water chemistry control at the former facility and its intensive monitoring requirements. Details the new chemistry control standards initiated in the new center, which ensure constant chlorine and pH levels. (RJM)

  20. Organic chemistry - Fast reactions 'on water'

    NARCIS (Netherlands)

    Klijn, JE; Engberts, JBFN

    2005-01-01

    Efficient reactions in aqueous organic chemistry do not require soluble reactants, as had been thought. A newly developed ‘on-water’ protocol is characterized by short reaction times, and the products are easy to isolate.

  1. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    Science.gov (United States)

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride

  2. Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS

    OpenAIRE

    Sumintadireja, Prihadi; Irawan, Dasapta Erwin; Rezky, Yuanno; Gio, Prana Ugiana; Agustin, Anggita

    2016-01-01

    This file is the dataset for the following paper "Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS". Authors: Prihadi Sumintadireja1, Dasapta Erwin Irawan1, Yuano Rezky2, Prana Ugiana Gio3, Anggita Agustin1

  3. Development of a diagnostic expert system for secondary water chemistry

    International Nuclear Information System (INIS)

    Suganuma, S.; Ishikawa, S.; Kato, A.; Yamauchi, S.; Hattori, T.; Yoshikawa, T.; Miyamoto, S.

    1990-01-01

    Water chemistry control for the secondary side of the PWR plants is one of the most important tasks for maintaining the reliability of plant equipment and for extending the operating life of the plant. Water chemistry control should be maintained according to the plant chemist' considered judgement which is based on continual experienced observation. Mitsubishi Heavy Industries (MHI) has been developing a comprehensive data management and diagnosis system, which continuously observes the secondary water chemistry data with on-line monitors, immediately diagnosing causes whenever any symptoms of abnormality are detected and does the necessary data management, in order to support plant staff to controll water chemistry. This system has the following three basic functions: data management, diagnosis and simulation. This paper presents the outline of the total system, and then describes in detail the procedure of diagnosis, the structure of the knowledge and its validation process

  4. Dynamic combinatorial chemistry with diselenides and disulfides in water

    DEFF Research Database (Denmark)

    Rasmussen, Brian; Sørensen, Anne; Gotfredsen, Henrik

    2014-01-01

    Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is......Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is...

  5. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  6. Chemical Properties of Pore Water and Sediment at Three Wetland Sites Near the F- and H-Area Seepage Basins, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.

    2001-05-15

    In 1980, vegetative stress and arboreal mortality in wetland plant communities down-gradient from the F- and H-Area seepage basins were detected using aerial imagery. By 1988, approximately six acres in H-Area and four acres in F-Area had been adversely impacted. Today, wetland plant communities have become well established at the H-Area tree-kill zone.

  7. Water Chemistry Section: progress report (1981-82)

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.; Ramshesh, V.

    1983-01-01

    The activities of the Water Chemistry Section of the Bhabha Atomic Research Centre (BARC), Bombay, during the years 1981 and 1982 are reported in the form of individual summaries. The research activities of the Section cover the following areas: (1) chemistry and thermodynamics of nuclear materials, (2) crystal structure of organo-metallic complexes using X-ray diffraction, (3) thermophysical and phase transition studies, (4) solid state chemistry and thermochemical studies, (5) water and steam chemistry of heavy water plants and phwr type reactors, and (6) uranium isotope exchange studies. A survey is also given of: (i) the Section's participation in advisory and consultancy services in nuclear and thermal power stations, (ii) training activities, and (iii) assistance in chemical analysis by various techniques to other units of BARC and outside agencies. A list of publications and lectures by the staff during the report period is included. (M.G.B.)

  8. Experience of Ko-Ri Unit 1 water chemistry

    International Nuclear Information System (INIS)

    Tae Il Lee

    1983-01-01

    The main focus is placed on operational experience in secondary system water chemistry (especially the steam generator) of the Ko-Ri nuclear power plant Unit 1, Republic of Korea, but primary side chemistry is also discussed. The major concern of secondary water chemistry in a PWR is that the condition of the steam generator be well maintained. Full flow deep bed condensate polishers have recently been installed and operation started in July 1982. Boric acid treatment of the steam generator was stopped and only the all volatile treatment method was used thereafter. A review of steam generator integrity, the chemistry control programme, secondary water quality, etc. is considered to be of great value regarding the operation of Unit 1 and future units now under startup testing or construction in the Republic of Korea. (author)

  9. Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J.F. Whelan; J.B. Paces; L.A. Neymark; A.K. Schmitt; M. Grove

    2006-01-01

    Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ((micro)m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 (micro)m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 (micro)m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years

  10. What are today's choices for PWRs water chemistry?

    International Nuclear Information System (INIS)

    Berge, P.

    1998-01-01

    Water chemistry has always been, from the very beginning of operation of power Pressurized Water Reactors (PWRs), an important factor in determining the integrity of many reactor components. For both the primary and secondary coolant circuits, the parameters to control the quality of the chemistry have been subject to changes in time. These changes were dictated mainly by corrosion problems which required an adjustment of the chemistry, before any modification could be made in the design or the selection of materials for the subsequently built reactors or replacement components. The situation today, despite 40 years of experience, still leaves open different options for the specifications of the chemistry of the circuits. These options are sometimes due to differences in design or materials of the circuits, but more often, to the perception by the plant chemists, of the role of the chemistry on the different phenomena which could affect the operation of their plant. Paul Cohen, who was well known in the nuclear industry for the early development of the chemistry in PWRs in the USA, used to say, 'if the head chemist has changed in a plant, the chemistry will change'. The purpose of this lecture is to discuss some of the options which are offered to the chemist in compliance with the basic principles of the chemistry guidelines. (J.P.N.)

  11. Chemistry of the water in thermal power plants

    International Nuclear Information System (INIS)

    Freier, R.K.

    1984-01-01

    This textbook and practical manual gives a comprehensive review of the scientific knowledge of water as operating substance and of the chemistry of water in thermal power plants. The fundamentals of water chemistry and of the conventional and nuclear water/steam circuit are described. The contents of the chapters are: 1. The atom, 2. The chemical bond, 3. The dissolving capacity of water, 4. Operational parameters and their measurement, 5. Corrosion, 6. The water/steam coolant loop of conventional plants (WSC), 7. The pressurized water reactor (PWR), 8. The boiling water reactor (BWR), 9. The total and partial desalination properties of ion exchangers, 10. The cooling water, 11. The failure of Harrisburg in a simple presentation. (HK) [de

  12. Operational experience in water chemistry of PHWRs

    International Nuclear Information System (INIS)

    Krishna Rao, K.S.

    2000-01-01

    The chemistry related problems encountered in the moderator, primary heat transport systems, chemical control in the steam generators and the experience gained in the decontamination campaigns carried out in the primary heat transport systems of Indian PHWRs are highlighted in this paper. (author)

  13. BWR water chemistry guidelines and PWR primary water chemistry guidelines in Japan – Purpose and technical background

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hirotaka, E-mail: kawamuh@criepi.denken.or.jp [Central Research Institute of Electric Power Industry (Japan); Hirano, Hideo [Central Research Institute of Electric Power Industry (Japan); Katsumura, Yousuke [University of Tokyo (Japan); Uchida, Shunsuke [Tohoku University (Japan); Mizuno, Takayuki [Mie University (Japan); Kitajima, Hideaki; Tsuzuki, Yasuo [Japan Nuclear Safety Institute (Japan); Terachi, Takumi [Institute of Nuclear Safety System, Inc. (Japan); Nagase, Makoto; Usui, Naoshi [Hitachi-GE Nuclear Energy, Ltd. (Japan); Takagi, Junichi; Urata, Hidehiro [Toshiba Corporation (Japan); Shoda, Yasuhiko; Nishimura, Takao [Mitsubishi Heavy Industry, Ltd. (Japan)

    2016-12-01

    Highlights: • Framework of BWR/PWR water chemistry Guidelines in Japan are presented. • Guideline necessity, definitions, philosophy and technical background are mentioned. • Some guideline settings for control parameters and recommendations are explaines. • Chemistry strategy is also mentioned. - Abstract: After 40 years of light water reactor (LWR) operations in Japan, the sustainable development of water chemistry technologies has aimed to ensure the highest coolant system component integrity and fuel reliability performance for maintaining LWRs in the world; additionally, it aimed to achieve an excellent dose rate reduction. Although reasonable control and diagnostic parameters are utilized by each boiling water reactor (BWR) and pressurized water reactor (PWR) owner, it is recognized that specific values are not shared among everyone involved. To ensure the reliability of BWR and PWR operation and maintenance, relevant members of the Atomic Energy Society of Japan (AESJ) decided to establish guidelines for water chemistry. The Japanese BWR and PWR water chemistry guidelines provide strategies to improve material and fuel reliability performance as well as to reduce dosing rates. The guidelines also provide reasonable “control values”, “diagnostic values” and “action levels” for multiple parameters, and they stipulate responses when these levels are exceeded. Specifically, “conditioning parameters” are adopted in the Japanese PWR primary water chemistry guidelines. Good practices for operational conditions are also discussed with reference to long-term experience. This paper presents the purpose, technical background and framework of the preliminary water chemistry guidelines for Japanese BWRs and PWRs. It is expected that the guidelines will be helpful as an introduction to achieve safety and reliability during operations.

  14. Mapping seepage through the River Reservoir Dam near Eagar, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Rollins, P.

    2005-06-30

    This article describes the actions taken to address an unusual amount of water seepage from the left abutment weir-box of the River Reservoir dam built in 1896 near Eagar, Arizona. Upon noting the seepage in March 2004, the operator, Round Valley Water Users Association, contacted the State of Arizona who funded the investigation and subsequent remediation activities through an emergency fund. The dam was originally built with local materials and did not include a clay core. It was modified at least four times. The embankment sits on basalt bedrock and consists of clayey soils within a rock-fill shell. AquaTrack technology developed by Willowstick Technologies was used to assess the deteriorating situation. AquaTrack uses a low voltage, low amperage audio-frequency electrical current to energize the groundwater or seepage. This made it possible to follow the path of groundwater between the electrodes. A magnetic field was created which made it possible to locate and map the field measurements. The measured magnetic field data was processed, contoured and correlated to other hydrogeologic information. This identified the extent and preferential flow paths of the seepage. The survey pinpointed the area with the greatest leakage in both the horizontal and vertical directions. Fluorescent dyes were also used for tracer work to confirm previous findings that showed a serious seepage problem. The water of the reservoir was lowered to perform remedial measures to eliminate the risk of immediate failure. Funding for a more permanent repair is pending. 10 figs.

  15. Water chemistry of the JMTR IASCC irradiation loop system

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Oogiyanagi, Jin; Mori, Yuichiro; Saito, Junichi; Tsukada, Takashi

    2006-01-01

    Irradiation assisted stress corrosion cracking (IASCC) is recognized as an important degradation issue of the core-internal material for aged Boiling Water Reactors (BWRs). Therefore, irradiation loop system has been developed and installed in the Japan Materials Testing Reactor to perform the IASCC irradiation test. In the IASCC irradiation test, water chemistry of irradiation field is one of the most important key parameters because it affects initiation and propagation of cracks. This paper summarizes the measurement and evaluation method of water chemistry of IASCC irradiation loop system. (author)

  16. Experience on KKNPP VVER 1000 MWe water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Pillai, Suresh Kumar

    2015-01-01

    Kudankulam Nuclear Power Project consists of pressurized water reactor (VVER) 2 x 1000 MWe constructed in collaboration with Russian Federation at Kudankulam in Tirunelveli District, Tamilnadu. Unit - 1 attained criticality on July 13 th 2013 and the unit was synchronized to grid on 22 nd October 2013. This paper highlights experience gained on water chemistry regime for primary and secondary circuit. (author)

  17. Water chemistry at RBMK plants: Problems and solutions

    International Nuclear Information System (INIS)

    Mamet, V.; Yurmanov, V.

    2002-01-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH 25 value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH 25 value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH 25 maintenance in a slightly acid area. (authors)

  18. Water chemistry at RBMK plants: Problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mamet, V.; Yurmanov, V. [VNIIAES (Russian Federation)

    2002-07-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH{sub 25} value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH{sub 25} value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH{sub 25} maintenance in a slightly acid area. (authors)

  19. Water chemistry control to meet the advanced design and operation of light water reactors

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Sato, Masatoshi

    2014-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. The road maps on R and D plans for water chemistry of nuclear power systems in Japan have been proposed along with promotion of R and D related water chemistry improvement for the advanced application of light water reactors (LWRs). The technical trends were divided into four categories, dose rate reduction, structural integrity, fuel integrity and radioactive waste reduction, and latest technical break through for each category was shown for the advanced application of LWRs. At the same time, the technical break through and the latest movements for regulation of water chemistry were introduced for each of major organizations related to nuclear engineering in the world. The conclusions were summarized as follows; 1. Water chemistry improvements might contribute to achieve the advanced application of LWRs, while water chemistry should be often changed to achieve the advanced application of LWRs. 2. Only one solution for water chemistry control was not obtained for achieving the advanced application of LWRs, but miscellaneous solutions were possible for achieving one. Optimal water chemistry control was desired for having the good practices for satisfying multi-targets at the same time and it was much affected by the plant unique systems and operational history. 3. That meant it was difficult to determine water chemistry regulation targets for achieving application of LWRs but it was necessary to prepare suitable guideline for good achievement of application of LWRs. That meant the guideline should be recommendation for good practice in the plant. 4. The water chemistry guide line should be modified along with progress of plant operation and water chemistry and related technologies. (author)

  20. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    Energy Technology Data Exchange (ETDEWEB)

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data

  1. Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.

    Science.gov (United States)

    Izzo, C; Doubleday, Z A; Schultz, A G; Woodcock, S H; Gillanders, B M

    2015-06-01

    This study quantified the per cent contribution of water chemistry to otolith chemistry using enriched stable isotopes of strontium ((86) Sr) and barium ((137) Ba). Euryhaline barramundi Lates calcarifer, were reared in marine (salinity 40), estuarine (salinity 20) and freshwater (salinity 0) under different temperature treatments. To calculate the contribution of water to Sr and Ba in otoliths, enriched isotopes in the tank water and otoliths were quantified and fitted to isotope mixing models. Fulton's K and RNA:DNA were also measured to explore the influence of fish condition on sources of element uptake. Water was the predominant source of otolith Sr (between 65 and 99%) and Ba (between 64 and 89%) in all treatments, but contributions varied with temperature (for Ba), or interactively with temperature and salinity (for Sr). Fish condition indices were affected independently by the experimental rearing conditions, as RNA:DNA differed significantly among salinity treatments and Fulton's K was significantly different between temperature treatments. Regression analyses did not detect relations between fish condition and per cent contribution values. General linear models indicated that contributions from water chemistry to otolith chemistry were primarily influenced by temperature and secondly by fish condition, with a relatively minor influence of salinity. These results further the understanding of factors that affect otolith element uptake, highlighting the necessity to consider the influence of environment and fish condition when interpreting otolith element data to reconstruct the environmental histories of fish. © 2015 The Fisheries Society of the British Isles.

  2. Air Compressibility Effect on Bouwer and Rice Seepage Meter.

    Science.gov (United States)

    Peng, Xin; Zhan, Hongbin

    2017-11-01

    Measuring a disconnected streambed seepage flux using a seepage meter can give important streambed information and help understanding groundwater-surface water interaction. In this study, we provide a correction for calculating the seepage flux rate with the consideration of air compressibility inside the manometer of the Bouwer and Rice seepage meter. We notice that the effect of air compressibility in the manometer is considerably larger when more air is included in the manometer. We find that the relative error from neglecting air compressibility can be constrained within 5% if the manometer of the Bouwer and Rice seepage meter is shorter than 0.8 m and the experiment is done in a suction mode in which air is pumped out from the manometer before the start of measurement. For manometers longer than 0.8 m, the relative error will be larger than 5%. It may be over 10% if the manometer height is longer than 1.5 m and the experiment is done in a no-suction mode, in which air is not pumped out from the manometer before the start of measurement. © 2017, National Ground Water Association.

  3. Current status of regulatory aspects relating to water chemistry in Japanese NPPs

    International Nuclear Information System (INIS)

    Sato, Masatoshi

    2014-01-01

    In nuclear power plants, water chemistry of cooling water is carefully monitored and controlled to keep integrity of structures, systems and components, and to reduce occupational radiation exposures. As increasing demand for advanced application of light water cooled reactors, water chemistry control plays more important roles on plant reliability. The road maps on R and D for water chemistry of nuclear power systems have been proposed along with promotion of R and D related water chemistry in Japan. In academic and engineering societies, non-governmental standards for water chemistry are going to be established. In the present paper, recent trends of water chemistry in Japan have been surveyed. The effects of water chemistry on plant safety and radiation exposures have been discussed. In addition, possible contributions of regulation regarding water chemistry control have been confirmed. Major water chemistry regulatory aspects relating to reactor safety and radiation safety are also outlined in this paper. (author)

  4. Structural material anomaly detection system using water chemistry data

    International Nuclear Information System (INIS)

    Asakura, Yamato; Nagase, Makoto; Uchida, Shunsuke; Ohsumi, Katsumi.

    1992-01-01

    The concept of an advanced water chemistry diagnosis system for detection of anomalies and preventive maintenance of system components is proposed and put into a concrete form. Using the analogy to a medical inspection system, analyses of water chemistry change will make it possible to detect symptoms of anomalies in system components. Then, correlations between water chemistry change and anomaly occurrence in the components of the BWR primary cooling system are analyzed theoretically. These fragmentary correlations are organized and reduced to an algorithm for the on-line diagnosis system using on-line monitoring data, pH and conductivity. By using actual plant data, the on-line diagnosis model system is verified to be applicable for early and automatic finding of the anomaly cause and for timely supply of much diagnostic information to plant operators. (author)

  5. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  6. Seepage into an Underground Opening Constructed in Unsaturated Fractured Rock Under Evaporative Conditions, RPR 29013(C)

    International Nuclear Information System (INIS)

    Trautz, R. C.; Wang, Joseph S. Y.

    2001-01-01

    Liquid-release tests, performed in boreholes above an underground opening constructed in unsaturated fractured rock, are used in this study to evaluate seepage into a waste emplacement drift. Evidence for the existence of a capillary barrier at the ceiling of the drift is presented, based on field observations (including spreading of the wetting front across the ceiling and water movement up fractures exposed in the ceiling before seepage begins). The capillary barrier mechanism has the potential to divert water around the opening, resulting in no seepage when the percolation flux is at or below the seepage threshold flux. Liquid-release tests are used to demonstrate that a seepage threshold exists and to measure the magnitude of the seepage threshold flux for three test zones that seeped. The seepage data are interpreted using analytical techniques to estimate the test-specific strength of the rock capillary forces (α -1 ) that prevent water from seeping into the drift. Evaporation increases the seepage threshold flux making it more difficult for water to seep into the drift and producing artificially inflated α -1 values. With adjustments for evaporation, the minimum test-specific threshold is 1,600 mm/yr with a corresponding α -1 of 0.027 m

  7. Par Pond Fish, Water, and Sediment Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond.

  8. Par Pond Fish, Water, and Sediment Chemistry

    International Nuclear Information System (INIS)

    Paller, M.H.; Wike, L.D.

    1996-06-01

    The objectives of this report are to describe the Par Pond fish community and the impact of the drawdown and refill on the community, describe contaminant levels in Par Pond fish, sediments, and water and indicate how contaminant concentrations and distributions were affected by the drawdown and refill, and predict possible effects of future water level fluctuations in Par Pond

  9. Chemistry control challenges in a supercritical water-cooled reactor

    International Nuclear Information System (INIS)

    Guzonas, David; Tremaine, Peter; Jay-Gerin, Jean-Paul

    2009-01-01

    The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers to predict and control water chemistry to minimize corrosion and the transport of corrosion products and radionuclides. Meeting this goal requires an enhanced understanding of water chemistry as the temperature and pressure are raised beyond the critical point. A key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis; preliminary studies suggest markedly different behavior than that predicted from simple extrapolations from conventional water-cooled reactor behavior. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. The behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, anions introduced via make-up water or from ion-exchange resins, and radionuclides (e.g., 60 Co) needs to be understood. The formation of neutral complexes increases with temperature, and can become important under near-critical and supercritical conditions; the most important region is from 300-450 C, where the properties of water change dramatically, and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (active and inactive), leading to (a) increased deposition on fuel cladding surfaces, and (b) increased out-of-core radiation fields and worker dose, must be assessed. There are also significant challenges associated with chemistry sampling and monitoring in an SCWR. The typical methods used in current reactor designs (grab samples, on-line monitors at the end of a cooled, depressurized sample line) will be inadequate, and in-situ measurements of key parameters will be required. This paper describes current Canadian activities in SCWR chemistry and chemistry

  10. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  11. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  12. Water chemistry management during hot functional test

    International Nuclear Information System (INIS)

    Yokoyama, Jiro; Kanda, Tomio; Kagawa, Masaru

    1988-01-01

    To reduce radiation exposure in light water reactor, it is important decrease radioactive corrosion product which is a radiation source. One of the countermeasures is to improve water quality during plant trial operation to form a stable oxide film and to minimize metal release to the coolant at the beginning of commercial operation. This study reviews the optimum water quality conditions to form a chromium rich oxide film during hot functional test (HFT) that is thought to be stable under the PWR condition and reduce the release of Ni that is the source of Co-58, the main radiation source of exposure. (author)

  13. Sodium-water clusters and their role in radiation chemistry

    International Nuclear Information System (INIS)

    Dhar, S.; Kestner, N.R.

    1988-01-01

    Studies of sodium-water clusters are presented which could serve as models for the recently suggested intermediate species in the radiation chemistry of water. The ionization potentials and the lower excited states of sodium with n-water molecules are calculated by ab initio quantum chemistry methods. The ionization potential calculated at the SCF level for the water monomer is 4.10 eV, which becomes 4.34 at the MP2 correlation level. The experimental value is 4.379 ± 0.002 eV. Structural data is presented for the lower members of the sodium with n-water clusters. In addition the Hartree-Fock calculations indicate that there should be some strong charge transfer to solvent transitions at higher energies. (author)

  14. Ground water chemistry and water-rock interaction at Kivetty

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Leino-Forsman, H.

    1992-10-01

    The geochemistry of the groundwater at one of the investigation areas for nuclear waste, Kivetty (Kongingas) in central Finland is evaluated. The hydrogeological data is collected from boreholes drilled down to 1000-m depth into crystalline bedrock. The interpretation is based on groundwater chemistry and isotope data, mineralogical data and the structure and hydrology of the bedrock, using correlation diagrams and thermodynamic calculations (PHREEQE). The hydrogeochemistry and major processes controlling the groundwater chemistry are discussed

  15. Primary water chemistry of VVERs-operating experience

    International Nuclear Information System (INIS)

    Kysela, Jan; Zmitko, Milan; Petrecky, Igor

    1998-01-01

    VVER units are operated in mixed boron-potassium-ammonia water chemistry. Several modifications of the water chemistry, differing in boron-potassium co-ordination and in the way how hydrogen concentration is produced and maintain in the coolant, is used. From the operational experience point of view VVER units do not show any significant problems connected with the primary coolant chemistry. The latest results indicate that dose rate levels are slowly returning to the former ones. An improvement of the radiation situation observed last two years is supported by the surface activity measurements. However, the final conclusion on the radiation situation can be made only after evaluation of the several following cycles. Further investigation is also needed to clarify a possible effect of modified water chemistry and shut-down chemistry on radioactivity build-up and dose rate level at Dukovany units. Structure materials composition has a significant effect on radiation situation in the units. It concerns mainly of cobalt content in SG material. There is no clear evidence of possible effect of the SG shut-down regimes on the radiation situation in the units even if the dose rate and surface activity data show wide spread for the individual reactor loops. (S.Y.)

  16. Clean Air Markets - Monitoring Surface Water Chemistry

    Science.gov (United States)

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  17. Water chemistry - one of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, S.; Otoha, K.; Ishigure, K.

    2006-01-01

    Full text: Full text: Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry, a) better reliability of reactor structures and fuels, b) lower occupational exposure, and c) fewer radwaste sources, should be simultaneously satisfied. The research committee related to water chemistry of the Atomic Energy Society of Japan has played important roles to enhance improvement in water chemistry control, to share knowledge and experience with water chemistry among plant operators and manufacturers, to establish common technological bases for plant water chemistry and then to transfer them to the next generation related to water chemistry. Furthermore, the committee has tried to contribute to arranging R and D proposals for further improvement in water chemistry control through road map planning

  18. Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)

    Science.gov (United States)

    Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.

    2018-04-01

    The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.

  19. Improved water chemistry controls for minimizing degradation of materials

    International Nuclear Information System (INIS)

    Sawochka, S.G.

    1986-01-01

    The Electric Power Research Institute and the Steam Generator Owners Group have sponsored several efforts to develop secondary water chemistry guidelines to minimize pressurized water reactor (PWR) steam generator tubing degradation. To develop these guidelines, chemical species known to accelerate corrosion of Alloy 600 were identified, and values for normal and abnormal chemistry situations were established. For example, sodium hydroxide was known to accelerate Alloy 600 intergranular attack stress corrosion cracking; thus, guidelines were developed for blowdown sodium concentrations in recirculating steam generator systems. Similarly, formation of acidic solutions, particularly as a result of chloride ingress at seawater sites, was known to accelerate denting; thus, chloride guidelines were established. A blowdown cation conductivity limit was established to minimize concentrations of other anionic species. Guidelines also were developed for condensate and feedwater chemistry to minimize general corrosion of system materials, thereby minimizing sludge and deposit buildup in the steam generators

  20. Natural gas seepage from a dug well in Gemerska Panica

    International Nuclear Information System (INIS)

    Milicka, J.; Pereszlenyi, M.; Masaryk, P.

    1997-01-01

    On July 20 1993, a seepage of inflammable natural gas was reported by workers of the Slovak Gas Industry enterprise (SPP) to the Oil and Gas Research and Prospecting (VVNP). Therefore, the locality was visited with the aim to evaluate the current situation, to take rock and water samples for for chemical analysis, to survey the vicinity of Gemerska Panica and to prepare a preliminary oil-geological evaluation of the area, with a suggestion of further prospecting. At the same time, the seepage of inflammable natural gas was reported to the District Mining Office in Spisska Nova Ves. (authors)

  1. Proceedings of the water chemistry and materials performance conference

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D [ed.; Atomic Energy of Canada Ltd., Sheridan Park, ON (Canada). CANDU Operations

    1987-12-31

    The proceedings contain 11 papers dealing with primary and secondary side water chemistry in CANDU reactors, with the associated problems of activity transport and steam generator corrosion, and also with the use of decontaminating solutions. The individual papers have been abstracted separately.

  2. Proceedings of the water chemistry and materials performance conference

    International Nuclear Information System (INIS)

    Barber, D.

    1986-01-01

    The proceedings contain 11 papers dealing with primary and secondary side water chemistry in CANDU reactors, with the associated problems of activity transport and steam generator corrosion, and also with the use of decontaminating solutions. The individual papers have been abstracted separately

  3. The chemistry of salt-affected soils and waters

    Science.gov (United States)

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  4. Variability in chemistry of surface and soil waters of an ...

    African Journals Online (AJOL)

    2017-01-01

    Jan 1, 2017 ... processing in the Okavango Delta, Botswana. Keotshephile ... 4Climate System Analysis Group, University of Cape Town, South Africa ... input and final fate of solutes is of critical ecological importance ... a wetland system therefore requires an in-depth understanding of the water chemistry of that system.

  5. Water chemistry experience of nuclear power plants in Japan

    International Nuclear Information System (INIS)

    Ishigure, Kenkichi; Abe, Kenji; Nakajima, Nobuo; Nagao, Hiroyuki; Uchida, Shunsuke.

    1989-01-01

    Japanese LWRs have experienced several troubles caused by corrosions of structural materials in the past ca. 20 years of their operational history, among which are increase in the occupational radiation exposures, intergranular stress corrosion cracking (IGSCC) of stainless steel piping in BWR, and steam generator corrosion problems in PWR. These problems arised partly from the improper operation of water chemistry control of reactor coolant systems. Consequently, it has been realized that water chemistry control is one of the most important factors to attain high availability and reliability of LWR, and extensive researches and developments have been conducted in Japan to achieve the optimum water chemistry control, which include the basic laboratory experiments, analyses of plant operational data, loop tests in operating plants and computer code developments. As a result of the continuing efforts, the Japanese LWR plants have currently attained a very high performance in their operation with high availability and low occupational radiation exposures. A brief review is given here on the R and D of water chemistry in Japan. (author)

  6. Ammonia role in WWER primary circuit water chemistry optimization

    International Nuclear Information System (INIS)

    Kritskij, V.G.; Stjagkin, P.S.; Chvedova, M.N.; Slobodov, A.A.

    1999-01-01

    Ammonia influence on iron crud's solubility at 300 deg. C and different relations of boric acid and alkaline cation sum are considered. Reduction of dose rate on WWER-440 steam generators at average ammonia concentration increasing is empirically explained. Practical recommendations on optimization of WWER primary circuit water chemistry are given. (author)

  7. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  8. Does stream water chemistry reflect watershed characteristics?

    Czech Academy of Sciences Publication Activity Database

    Chuman, Tomáš; Hruška, Jakub; Oulehle, Filip; Gürtlerová, P.; Majer, V.

    2013-01-01

    Roč. 185, č. 7 (2013), s. 5683-5701 ISSN 0167-6369 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Anions * Cations * Land cover * Water quality * Geochemical reactivity * Czech Republic Subject RIV: EH - Ecology, Behaviour Impact factor: 1.679, year: 2013

  9. An evaluation of seepage gains and losses in Indian Creek Reservoir, Ada County, Idaho, April 2010–November 2011

    Science.gov (United States)

    Williams, Marshall L.; Etheridge, Alexandra B.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, conducted an investigation on Indian Creek Reservoir, a small impoundment in east Ada County, Idaho, to quantify groundwater seepage into and out of the reservoir. Data from the study will assist the Idaho Water Resources Department’s Comprehensive Aquifer Management Planning effort to estimate available water resources in Ada County. Three independent methods were utilized to estimate groundwater seepage: (1) the water-budget method; (2) the seepage-meter method; and (3) the segmented Darcy method. Reservoir seepage was quantified during the periods of April through August 2010 and February through November 2011. With the water-budget method, all measureable sources of inflow to and outflow from the reservoir were quantified, with the exception of groundwater; the water-budget equation was solved for groundwater inflow to or outflow from the reservoir. The seepage-meter method relies on the placement of seepage meters into the bottom sediments of the reservoir for the direct measurement of water flux across the sediment-water interface. The segmented-Darcy method utilizes a combination of water-level measurements in the reservoir and in adjacent near-shore wells to calculate water-table gradients between the wells and the reservoir within defined segments of the reservoir shoreline. The Darcy equation was used to calculate groundwater inflow to and outflow from the reservoir. Water-budget results provided continuous, daily estimates of seepage over the full period of data collection, while the seepage-meter and segmented Darcy methods provided instantaneous estimates of seepage. As a result of these and other difference in methodologies, comparisons of seepage estimates provided by the three methods are considered semi-quantitative. The results of the water-budget derived estimates of seepage indicate seepage to be seasonally variable in terms of the direction and magnitude

  10. Primary water chemistry for NPP with VVER-TOI

    International Nuclear Information System (INIS)

    Susakin, S.N.; Brykov, S.I.; Zadonsky, N.V.; Bystrova, O.S.

    2012-09-01

    Nowadays within the framework of development of the nuclear power industry in Russia the VVER-TOI reactor is under designing (Standard optimized design). The given design provides for improvement of operation safety level, of technical-economic, operational and load-follow characteristics, and for the raise of competitive capacity of reactor plant and NPP as a whole. In VVER-TOI reactor plant design the primary water chemistry has been improved considering operation experience of VVER reactor plants and a possibility of RP operation under load-follow modes from the viewpoint of meeting the following requirements: - suppression of generation of oxidizing radiolytic products under power operation; - assurance of corrosion resistance of structural materials of equipment and pipelines throughout the NPP design service life; - minimization of deposits on surfaces of the reactor core fuel rods and on heat exchange surface of steam generators; - minimization of accumulation of activated corrosion products; - minimization of the amount of radioactive processing waste. In meeting these requirements an important role is devoted to suppression of generation of oxidizing radiolytic products owing to accumulation of hydrogen in the primary coolant. At NPP with VVER-1000 reactor the ammonia-potassium water chemistry is used wherein the hydrogen accumulation is provided at the expense of ammonia proportioning. Usage of ammonia leads to generation of additional amount of radioactive processing waste and to increased irregularity of maintaining the water chemistry under the daily load-follow modes. In VVER TOI design the primary water chemistry is improved by replacing the proportioning of ammonia with the proportioning of gaseous hydrogen. Different process schemes were considered that provide for a possibility of hydrogen accumulation and maintaining owing to direct proportioning of gaseous hydrogen. The obtained results showed that transition to the potassium water chemistry

  11. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  12. Shallow rainwater lenses in deltaic areas with saline seepage

    Directory of Open Access Journals (Sweden)

    P. G. B. de Louw

    2011-12-01

    Full Text Available In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of the Netherlands. By combining the applied techniques we could extrapolate measurements at point scale (groundwater sampling, temperature and electrical soil conductivity (TEC-probe measurements, electrical cone penetration tests (ECPT to field scale (continuous vertical electrical soundings (CVES, electromagnetic survey with EM31, and even to regional scale using helicopter-borne electromagnetic measurements (HEM. The measurements show a gradual mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone Dmix, where the salinity is half that of seepage water, and the bottom of the mixing zone Bmix, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l−1. Dmix is found at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l., while Bmix lies about 2.5 m b.g.l. The model results show that the constantly alternating upward and downward flow at low velocities in the confining layer is the main mechanism of mixing between rainwater and saline seepage and determines the position and extent of the mixing zone (Dmix and Bmix. Recharge, seepage flux, and drainage depth are the controlling factors.

  13. Water chemistry experience with BWRs at Olkiluoto

    International Nuclear Information System (INIS)

    Silvennoinen, S.

    1983-01-01

    TVO 1 and TVO 2 are ASEA-ATOM direct-cycle, light-water cooled BWRs of 660 MW(e) each. Unit 1 is presently on its fourth cycle and Unit 2 is on its second. Deep bed ion exchangers are used in the reactor water cleanup (RWCU) and full-flow pre-coat filters in the condensate treatment (CCU). All pre-heater drains are cascaded backwards. Stainless steel is the main material used in the reactor and connected systems, conventional materials are used in the turbine systems and the condenser tube material is aluminium-brass. In the absence of plant transients during operation the water purity is normally high. Conductivities are less than 0.1 μS/cm for the reactor water (RW) and the feedwater (FW). The sum of corrosion products in the FW is around 1 to 2 ppb and in the RW it is 3 to 5 ppb. Transient conditions can cause occasional high impurity levels. The RWCU performs well. The resin charge is replaced about six times per year. The CCU removes particulate corrosion products effectively. A problem in the CCU is the gradual fouling of filter elements, but recent tests with continuous inert filter aid dosing have yielded promising results. Stress-corrosion cracking has been detected in some reactor internals made of highly alloyed, high strength stainless steel. Cracks in the bypass piping of the reactor circulation system made of low carbon stainless steel have not been found. Erosion/corrosion has been encountered on carbon steel components and pipes in the turbine plant. Cathodic protection, ferrous sulphate injection and sponge ball cleaning are used to protect the turbine condenser from leakages. (author)

  14. Influence of climate on alpine stream chemistry and water sources

    Science.gov (United States)

    Foks, Sydney; Stets, Edward; Singha, Kamini; Clow, David W.

    2018-01-01

    The resilience of alpine/subalpine watersheds may be viewed as the resistance of streamflow or stream chemistry to change under varying climatic conditions, which is governed by the relative size (volume) and transit time of surface and subsurface water sources. Here, we use end‐member mixing analysis in Andrews Creek, an alpine stream in Rocky Mountain National Park, Colorado, from water year 1994 to 2015, to explore how the partitioning of water sources and associated hydrologic resilience change in response to climate. Our results indicate that four water sources are significant contributors to Andrews Creek, including snow, rain, soil water, and talus groundwater. Seasonal patterns in source‐water contributions reflected the seasonal hydrologic cycle, which is driven by the accumulation and melting of seasonal snowpack. Flushing of soil water had a large effect on stream chemistry during spring snowmelt, despite making only a small contribution to streamflow volume. Snow had a large influence on stream chemistry as well, contributing large amounts of water with low concentrations of weathering products. Interannual patterns in end‐member contributions reflected responses to drought and wet periods. Moderate and significant correlations exist between annual end‐member contributions and regional‐scale climate indices (the Palmer Drought Severity Index, the Palmer Hydrologic Drought Index, and the Modified Palmer Drought Severity Index). From water year 1994 to 2015, the percent contribution from the talus‐groundwater end member to Andrews Creek increased an average of 0.5% per year (p < 0.0001), whereas the percent contributions from snow plus rain decreased by a similar amount (p = 0.001). Our results show how water and solute sources in alpine environments shift in response to climate variability and highlight the role of talus groundwater and soil water in providing hydrologic resilience to the system.

  15. Recent experience in water chemistry control at PWR plants

    International Nuclear Information System (INIS)

    Makino, Ichiro

    2000-01-01

    At present, 23 units of PWRs are under operation in all of Japan, among which 11 units are operated by the Kansai Electric Power Co., Inc. (KEP). Plant availability in KEP's PWRs has been improved for the past several years, through their successive stable operation. Recently, a focus is given not only to maintenance of plant integrity, but also to preventive maintenance and water chemistry control. Various measures have been carried out to enhance exposure reduction of the primary water chemistry control in the Japanese PWRs. As a result, environmental dose equivalent rate is decreasing. A secondary system is now under excellent condition because of application of diversified measures for prevention of the SG tube corrosion. At present, the water chemistry control measures which take into account of efficient chemistry control and plant aging deterioration prevention, are being examined to use for both primary and secondary systems in Japanese PWRs, to further enhance their plant integrity and availability. And, some of them are currently being actually applied. (G.K.)

  16. Water chemistry in boiling water reactors - A Leibstadt-specific overview

    International Nuclear Information System (INIS)

    Sarott, F.-A.

    2005-01-01

    The boiling water reactor (BWR) consists of two main water circuits: the water-steam cycle and the main cooling water system. In the introduction, the goals and tasks of the BWR plant chemistry are described. The most important objectives are the prevention of system degradation by corrosion and the minimisation of radiation fields. Then a short description of the BWR operation principle, including the water steam cycle, the transport of various impurities by the steam, removing impurities from the condensate, the reactor water clean-up system, the balance of plant and the main cooling water system, is given. Subsequently, the focus is set on the water-steam cycle chemistry. In order to fulfil the somewhat contradictory requirements, the chemical parameters must be well balanced. This is achieved by the water chemistry control method called 'normal water chemistry'. Other additional methods are used for the solution to different problems. The 'zinc addition method' is applied to reduce high radiation levels around the recirculation loops. The 'hydrogen water chemistry method' and the 'noble metal chemical addition method' are used to protect the reactor core components and piping made of stainless steel against stress corrosion cracking. This phenomenon has been observed for about 40 years and is partly due to the strong oxidising conditions in the BWR water. Both mitigation methods are used by the majority of the BWR plants all over the world (including the two Swiss NPPs Muehleberg and Leibstadt). (author)

  17. Water chemistry of Atucha II PHWVR. Design concepts and evolution

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Rodriguez, Ivanna; Duca, Jorge; Fernandez, Ricardo; Rico, Jorge

    2007-01-01

    Full text: Atucha II is a pressurized heavy water vessel reactor designed by Siemens-KWU, currently part of AREVA NP, of 745 MWe and similar to Atucha I, which has been in operation over 25 years. The primary heat transport system (PHTS) is composed by vertical channels (277-313 C degrees) that allocate the fuel elements while the moderator circuit is composed by a partially separated circuit (142-173 C degrees). The moderation power is transferred to the feedwater through the moderator heat exchangers (HX). These HXs operate as the last, high pressure water-steam cycle heaters as well. Materials (with exception of fuel channels and fuel sheaths which are made of zirconium alloys) are all austenitic steels while cobalt containing alloys have been all replaced at the design stage. Steam generator and moderator HX tubing are Alloy 800 made. The core is operated without boron except with the first fresh nucleus. The secondary circuit or Balance of plant (BOP) is similar in conception to that of a PWR but the moderator HXs. It is entirely built of ferrous alloys, has a feedwater-deaerator tank and moisture separator. The energy sink is the Rio de la Plata River. The Reactors Chemistry Department, Chemistry Division, National Atomic Energy Commission, in its character of R and D institution has been committed by CNA II-N.A.S.A Project to prepare the water chemistry specifications, water chemistry engineering and manuals, considering the type of reactor, design and construction aspects and operation characteristics, taking into account the current state-of-the art and worldwide standards. This includes conceptual aspects and implementation and operative aspects as well. This documentation will be released after a designer's review as it has been stated in the respective agreement. Respecting the confidentiality agreement between CNEA and NASA and the confidentiality regarding handling original documentation provided by the designer, it is considered illustrative to

  18. Research on water chemistry in a nuclear power plant

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Yang, Kyung Rin; Kang, Hi Dong; Koo, Je Hyoo; Hwang, Churl Kew; Lee, Eun Hee; Han, Jung Ho; Kim, Uh Chul; Kim, Joung Soo; Song, Myung Ho; Lee, Deok Hyun; Jeong, Jong Hwan

    1986-12-01

    To prevent the corrosion problems on important components of nuclear power plants, the computerization methods of water chemistry and the analyses of corrosion failures were studied. A preliminary study on the computerization of water chemistry log-sheet data was performed using a personal computer with dBASE-III and LOTUS packages. Recent technical informations on a computerized online chemistry data management system which provides an efficient and thorough method of system-wide monitoring of utility's secondary side chemistry were evaluated for the application to KEPCO's nuclear power plants. According to the evaluation of water chemistry data and eddy current test results, it was likely that S/G tube defect type was pitting. Pitting is believed to result from excess oxygen in make-up and air ingress, sea-water ingress bycondenser leak, and copper in sludge. A design of a corrosion tests apparatus for the tests under simulated operational conditions, such as water chemistry, water flow, high temperature and pressure, etc., of the plant has been completed. The completion of these apparatus will make it possible to do corrosion tests under the conditions mentioned above to find out the cause of corrosion failures, and to device a counter measure to these. The result of corrosion tests with alloy-600 showed that the initiation of pits occurred most severely around 175 deg C which is lower than plant-operation temperature(300 deg C) while their propagation rate had trend to be maximum around 90 deg C. It was conformed that the use of Cu-base alloys in a secondary cooling system accelerates the formation of pits by the leaking of sea-water and expected that the replacement of them can reduce the failures of S/G tubes by pitting. Preliminary works on the examination of pit-formed specimens with bare eyes, a metallurgical microscope and a SEM including EDAX analysis were done for the future use of these techniques to investigate S/G tubes. Most of corrosion products

  19. Areva's water chemistry guidebook with chemistry guidelines for next generation plants (AREVA EPRTM reactors)

    International Nuclear Information System (INIS)

    Ryckelynck, N.; Chahma, F.; Caris, N.; Guillermier, P.; Brun, C.; Caron-Charles, M.; Lamanna, L.; Fandrich, J.; Jaeggy, M.; Stellwag, B.

    2012-09-01

    Over the years, AREVA globally has maintained a strong expertise in LWR water chemistry and has been focused on minimizing short-term and long-term detrimental effects of chemistry for startup, operation and shutdown chemistry for all key plant components (material integrity and reliability, promote optimal thermal performances, etc.) and fuel. Also AREVA is focused on minimizing contamination and equipment/plant dose rates. Current Industry Guidelines (EPRI, VGB, etc.) provide utilities with selected chemistry guidance for the current operating fleet. With the next generation of PWR plants (e.g. AREVA's EPR TM reactor), materials of construction and design have been optimized based on industry lessons learned over the last 50+ years. To support the next generation design, AREVA water chemistry experts, have subsequently developed a Chemistry Guidebook with chemistry guidelines based on an analysis of the current international practices, plant operating experience, R and D data and calculation codes now available and/or developed by AREVA. The AREVA LWR chemistry Guidebook can be used to help resolve utility and safety authority questions and addresses regulation requirement questions/issues for next generation plants. The Chemistry Guidebook provides water chemistry guidelines for primary coolant, secondary side circuit and auxiliary systems during startup, normal operation and shutdown conditions. It also includes conditioning and impurity limits, along with monitoring locations and frequency requirements. The Chemistry Guidebook Guidelines will be used as a design reference for AREVA's next generation plants (e.g. EPR TM reactor). (authors)

  20. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    Directory of Open Access Journals (Sweden)

    Jiin-Shuh Jean

    2008-01-01

    Full Text Available Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks. More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surface erosion. This paper suggests 17 antifreeze compounds potentially present in Martian seepage groundwater. Given their liquid state and physical properties, triethylene glycol, diethylene glycol, ethylene glycol, and 1,3-propylene glycol are advanced as the most likely candidate compounds. This paper also explores how a mixing of glycol or glycerol with salts in the Martian seepage groundwater may have lowered water¡¦s freezing point and raised its boiling point, with consequences that created fluid gully and channel erosion. Ethylene glycol and related hydrocarbon compounds have been identified in Martian and other interstellar meteorites. We suggest that these compounds and their proportions to water be included for detection in future explorations.

  1. Radiation Chemistry in Ammonia-Water Ices

    Science.gov (United States)

    Loeffler, M. J.; Raut, U.; Baragiola, R. A.

    2010-01-01

    We studied the effects of 100 keV proton irradiation on films of ammonia-water mixtures between 20 and 120 K. Irradiation destroys ammonia, leading to the formation and trapping of H2, N2 NO, and N2O, the formation of cavities containing radiolytic gases, and ejection of molecules by sputtering. Using infrared spectroscopy, we show that at all temperatures the destruction of ammonia is substantial, but at higher temperatures (120 K), it is nearly complete (approximately 97% destroyed) after a fluence of 10(exp 16) ions per square centimeter. Using mass spectroscopy and microbalance gravimetry, we measure the sputtering yield of our sample and the main components of the sputtered flux. We find that the sputtering yield depends on fluence. At low temperatures, the yield is very low initially and increases quadratically with fluence, while at 120 K the yield is constant and higher initially. The increase in the sputtering yield with fluence is explained by the formation and trapping of the ammonia decay products, N2 and H2 which are seen to be ejected from the ice at all temperatures.

  2. Apparatus for ground water chemistry investigations in field caissons

    International Nuclear Information System (INIS)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed

  3. Steam Generator Owners Group PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Green, S.J.

    1985-01-01

    In 1981 the Steam Generator Owners Group (SGOG), a group of domestic and foreign pressurized water reactor (PWR) owners, developed and issued the PWR secondary water chemistry guidelines. The guidelines were prepared in response to the growing recognition that a majority of the problems causing reduced steam generator reliability (e.g., denting, wasteage, pitting, etc.) were related to secondary (steam) side water purity. The guidelines were subsequently issued as an Electric Power Research Institute (EPRI) report. In 1984 they were revised to reflect industry experience in adopting the original issuance and to incorporate new information on causes of corrosion damage. The guidelines have been endorsed and their adoption recommended by the SGOG

  4. Investigation of Seepage Meter Measurements in Steady Flow and Wave Conditions.

    Science.gov (United States)

    Russoniello, Christopher J; Michael, Holly A

    2015-01-01

    Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment-water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h-greater than the expected net-zero flux, but significantly less than theoretical wave-driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one-way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments. © 2014, National Ground Water Association.

  5. The Influence of Geology and Other Environmental Factors on Stream Water Chemistry and Benthic Invertebrate Assemblages

    OpenAIRE

    Olson, John R.

    2012-01-01

    Catchment geology is known to influence water chemistry, which can significantly affect both species composition and ecosystem processes in streams. However, current predictions of how stream water chemistry varies with geology are limited in both scope and precision, and we have not adequately tested the specific mechanisms by which water chemistry influences stream biota. My dissertation research goals were to (1) develop empirical models to predict natural base-flow water chemistry from ca...

  6. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  7. Secondary cycle water chemistry for 500 MWe pressurised heavy water reactor (PHWR) plant: a case study

    International Nuclear Information System (INIS)

    Bhandakkar, A.; Subbarao, A.; Agarwal, N.K.

    1995-01-01

    In turbine and secondary cycle system of 500 MWe PHWR, chemistry of steam and water is controlled in secondary cycle for prevention of corrosion in steam generators (SGs), feedwater system and steam system, scale and deposit formation on heat transfer surfaces and carry-over of solids by steam and deposition on steam turbine blades. Water chemistry of secondary side of SGs and turbine cycle is discussed. (author). 8 refs., 2 tabs., 1 fig

  8. Chemistry in production of heavy water and industrial solvents

    International Nuclear Information System (INIS)

    Thomas, P.G.

    2015-01-01

    Industries are the temples of modern science built on the robust foundation of science and technology. The genesis of giant chemical industries is from small laboratories where the scientific thoughts are fused and transformed into innovative technologies Heavy water production is an energy intensive giant chemical industry where various hazardous and flammable chemicals are handled, extreme operating conditions are maintained and various complex chemical reactions are involved. Chemistry is the back bone to all chemical industrial activities and plays a lead role in heavy water production also. Heavy Water Board has now mastered the technology of design, construction, operation and maintenance of Heavy Water plants as well as fine tuning of the process make it more cost effective and environment friendly. Heavy Water Board has ventured into diversified activities intimately connected with our three stages of Nuclear Power Programme. Process development for the production of nuclear grade solvents for the front end and back end of our nuclear fuel cycle is one area where we have made significant contributions. Heavy Water Board has validated, modified and fine-tuned the synthesis routes for TBP, D2EHPA, TOPO, TAPO TIAP, DNPPA, D2EHPA-II, DHOA etc and these solvents were accepted by end users. Exclusive campaigns were carried out in laboratory scale, bench scale and pilot plant scale before scaling up to industrial scale. The process chemistry is understood very well and chemical parameters were monitored in every step of the synthesis. It is a continual improvement cycle where fine tuning is carried out for best quality and yield of product at lowest cost. In this presentation, an attempt is made to highlight the role of chemistry in the production of Heavy Water and industrial solvents

  9. Chemistry of cost effective water treatment programme in HWP (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Laxmana Prasad, K.

    2008-01-01

    In order to develop a water treatment programme following points must be kept in mind: Effectiveness to achieve desired water quality objectives; Compliance with regulatory requirements; Cost minimization; Safety; Easy operation and protection to equipments. Heavy Water Plant (Manuguru) laboratory has developed treatment programs to treat raw water and cooling water which satisfy the above requirements and has been in use for last several years successfully without any problem. These treatment programs have been given to other plants in Heavy Water Board for implementation. This paper describes the chemistry of the treatment program and cost minimization achieved. Further these treatments have helped the plant in achieving ΦZero Discharge and indirectly reduced the production cost. The chemistry parameters are monitored regularly to ascertain the effectiveness of these treatments. The areas where significant benefits derived are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and development of in-house cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments helped the plant in achieving Zero discharge and indirectly reduced production cost of heavy water. The dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15 - 20 Lakhs in a year besides other advantages. The changeover of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs. 1.4 Crore a year along with other advantages. The change over of proprietary formulation to in-house formulation in cooling water treatment has resulted a saving about Rs. 11 Lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored (author)

  10. Primary circuit water chemistry during shutdown period at Kalinin NPP

    International Nuclear Information System (INIS)

    Gorbatenko, S.; Otchenashev, G.; Yurmanov, V.

    2005-01-01

    The primary circuit water chemistry feature at Kalinin NPP is using of special up-dated regime during the period of unit shutdown for refueling. The main objective of up-dated regime is removing from the circuit long time living corrosion products on SVO-2 ion exchange filters with the purpose of dose rates reduction from the equipment and in such a way reduction of maintenance personnel overexposure. (N.T.)

  11. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    Science.gov (United States)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  12. Reactor water chemistry relevant to coolant-cladding interaction

    International Nuclear Information System (INIS)

    1987-09-01

    The report is a summary of the work performed in a frame of a Coordinated Research Program organized by the IAEA and carried out from 1981 till 1986. It consists of a survey on our knowledge on coolant-cladding interaction: the basic phenomena, the relevant parameters, their control and the modelling techniques implemented for their assessment. Based upon the results of this Coordinated Research Program, the following topics are reviewed on the report: role of water chemistry in reliable operation of nuclear power plants; water chemistry specifications and their control; behaviour of fuel cladding materials; corrosion product behaviour and crud build-up in reactor circuits; modelling of corrosion product behaviour. This report should be of interest to water chemistry supervisors at the power plants, to experts in utility engineering departments, to fuel designers, to R and D institutes active in the field and to the consultants of these organizations. A separate abstract was prepared for each of the 3 papers included in the Annex of this document. Refs, figs, tabs

  13. Mutual complementation between water chemistry and isotope techniques

    International Nuclear Information System (INIS)

    Matthess, G.

    1976-01-01

    In the water chemistry and isotope methods which applied together enable more extensive statements to be made than each on its own, the following regions of cooperation are brought out: 1) Isotopes as conservative indicators a) microbial decomposition of organic substances in the anaerobic and aerobic region; b) precipitation and coprecipitation; c) mechanical filtration, adsorption and coprecipitation; d) gas exchange; e) dilution by infiltration; 2) geochemical observations as additional basis for isotope investigations; 3) the investigation of the water content substances as additional help to isotope hydrology. (HK/LH) [de

  14. Uranium geochemistry in soil and groundwater at the F and H seepage basins

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Johnson, W.H.

    1994-09-01

    For 33 years, low activity liquid wastes from the chemical separation areas at the U.S. Department of Energy's Savannah River Site were disposed of in unlined seepage basins. Soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of samples using inductively coupled plasma - mass spectrometry has allowed the investigation of uranium partitioning between the aqueous phase and soil surfaces at this site. The distribution of uranium was examined with respect to the solution and soil chemistry (e.g., pH, redox potential, cation and contaminant concentration) and aqueous-phase chemical speciation modeling. The uranium soil source term at the F- and H-Area Seepage Basins (FHSB) is much smaller than has been used in previous modeling efforts. This should result in a much shorter remediation time and a greater effectiveness of a pump-and-treat design than previously predicted. Distribution coefficients at the (FHSB) were found to vary between 1.2 to 34,000 1 kg -1 for uranium. Differences in sorption of these elements can be explained primarily by changes in aqueous pH and the associated change in soil surface charge. Sorption models were fit directly to sorption isotherms from field samples. All models underestimated the fraction of uranium bound at low aqueous uranium concentrations. Linear models overestimated bound uranium at locations where the aqueous concentration was greater than 500 ppb. Mechanistic models provided a much better estimate of the bound uranium concentrations, especially at high aqueous concentrations. Since a large fraction of the uranium at the site is associated with the low-pH portion of the plume, consideration should be given to pumping water from the lowest pH portions of the plume in the F-Area

  15. Assessment of rain water chemistry in the Lucknow metropolitan city

    Science.gov (United States)

    Sharma, Purnima; Rai, Vibhuti

    2018-05-01

    Lucknow metropolitan city is one of the most populated cities of India, which have been facing many problems such as chaotic urbanization, overpopulation, water scarcity, waterlogging, etc., among these water scarcity is one of the important problem. Rain water harvesting is a futuristic tool for mitigation of water scarcity problem through conservation and storage of rain water. This rain water can be used for all purposes by human beings, thus it is necessary to check the chemistry of rain water. The rain water samples were collected from the five zones of Lucknow city. For the comparative study, water samples have been collected from two different dates first from first rainfall and second after 3 days of interval in the second rainfall. The heavy metal concentrations were found in both first and second rainfall water samples in all zones of Lucknow city. The concentration of chromium, cadmium and lead were found to be sufficiently high in several samples. These heavy metals show the concentration above the permissible limit as set by WHO, which can cause various adverse health impacts.

  16. 基于压水试验的杨村煤矿底板断层带渗流性质研究%Research on Seepage Characteristics of Floor Fault Zone Based on Water Injection Test in Yangcun Coal Mine

    Institute of Scientific and Technical Information of China (English)

    邵明喜; 官云章; 曹思文; 张鑫; 刘近国; 吕先阳; 孙晓倩

    2016-01-01

    In order to study the seepage characteristics of the floor fault zone in Yangcun Mine, water injection test method was used for the measurement of Fault 5 and a number of measured data were obtained. Analysis results showed that the permeability of this fault was bad and its permeation resistance was relatively strong in the original state. Four water injection tests on this fault were carried out, and from the comparison of the permeability changing curves in four water injection tests it was found out that the repeated water injection can lead failure of the fault zone, which in turn improved its permeability. The relation between test pressure and flow rate(p—Q) of F5 fault was a dilation or erosion type, the fissures in this fault zone developed and many filling materials existed in it, so it has stronger resistance to seepage.%为研究杨村煤矿底板断层带的渗流性质,采用现场压水试验方法对底板F5断层进行了测试并获取了大量的实测数据,分析结果表明:该断层在原始状态下渗流能力较差,阻渗性较强。对该断层进行了4次压水试验,对比4次压水试验的渗透系数变化曲线可知,重复压水可导致断层带明显渗透破坏,由此造成其导渗性能的进一步增强;F5断层带两段压渗试验压力和流量关系( p—Q )为扩张或冲蚀型,该断层带裂隙发育,裂隙中间有较多充填物,阻渗能力较好。

  17. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    Science.gov (United States)

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  18. Shallow bedrock limits groundwater seepage-based headwater climate refugia

    Science.gov (United States)

    Briggs, Martin A.; Lane, John W.; Snyder, Craig D.; White, Eric A.; Johnson, Zachary; Nelms, David L.; Hitt, Nathaniel P.

    2018-01-01

    Groundwater/surface-water exchanges in streams are inexorably linked to adjacent aquifer dynamics. As surface-water temperatures continue to increase with climate warming, refugia created by groundwater connectivity is expected to enable cold water fish species to survive. The shallow alluvial aquifers that source groundwater seepage to headwater streams, however, may also be sensitive to seasonal and long-term air temperature dynamics. Depth to bedrock can directly influence shallow aquifer flow and thermal sensitivity, but is typically ill-defined along the stream corridor in steep mountain catchments. We employ rapid, cost-effective passive seismic measurements to evaluate the variable thickness of the shallow colluvial and alluvial aquifer sediments along a headwater stream supporting cold water-dependent brook trout (Salvelinus fontinalis) in Shenandoah National Park, VA, USA. Using a mean depth to bedrock of 2.6 m, numerical models predicted strong sensitivity of shallow aquifer temperature to the downward propagation of surface heat. The annual temperature dynamics (annual signal amplitude attenuation and phase shift) of potential seepage sourced from the shallow modeled aquifer were compared to several years of paired observed stream and air temperature records. Annual stream water temperature patterns were found to lag local air temperature by ∼8–19 d along the stream corridor, indicating that thermal exchange between the stream and shallow groundwater is spatially variable. Locations with greater annual signal phase lag were also associated with locally increased amplitude attenuation, further suggestion of year-round buffering of channel water temperature by groundwater seepage. Numerical models of shallow groundwater temperature that incorporate regional expected climate warming trends indicate that the summer cooling capacity of this groundwater seepage will be reduced over time, and lower-elevation stream sections may no longer serve as larger

  19. Flow Accelerated Corrosion: Effect of Water Chemistry and Database Construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Kim, Kyung Mo; Lee, Gyeong Geun; Kim, Dong Jin [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Flow accelerated corrosion (FAC) of carbon steel piping in pressurized water reactors (PWRs) has been a major issue in nuclear industry. Severe accidents at Surry Unit 2 in 1986 and Mihama Unit 3 in 2004 initiated the world wide interest in this area. FAC is a dissolution process of the protective oxide layer on carbon steel or low-alloy steel when these parts are exposed to flowing water (single-phase) or wet steam (two-phase). In a single-phase flow, a scalloped, wavy, or orange peel and in a two-phase flow, tiger striping is observed, respectively. FAC is affected by many parameters, like material composition, pH, dissolved oxygen (DO), flow velocity, system pressure, and steam quality. This paper describes the water chemistry factors influencing on FAC and the database is then constructed using literature data. In order to minimize FAC in NPPs, the optimal method is to control water chemistry parameters. However, quantitative data about FAC have not been published for proprietary reason even though qualitative behaviors of FAC have been well understood. A database was constructed using experimental data in literature. Accurate statistical analysis will be performed using this database to identify the relationship between the FAC rate and test environment.

  20. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  1. Modelling stream aquifer seepage in an alluvial aquifer: an improved loosing-stream package for MODFLOW

    Science.gov (United States)

    Osman, Yassin Z.; Bruen, Michael P.

    2002-07-01

    Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.

  2. SEEPAGE INTO DRIFTS IN UNSATRUATED FRACTURED ROCK AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    JENS BIRHOLZER; GUOMIN LI; CHIN-FU TSANG; YVONNE TSANG

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%. as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, we have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  3. Cadmium geochemistry in soil and groundwater at the F and H Seepage Basins

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Johnson, W.H.

    1994-10-01

    For 33 years, low activity liquid wastes from the chemical separation areas at the US Department of Energy's Savannah River Site were disposed of in unlined seepage basins. This disposal practice was discontinued in 1988. At that time, the basins were drained and a low permeability cover system was placed over the basins. In the summer of 1993, soil and associated pore water samples of widely varying groundwater chemistries and contaminant concentrations were collected from the region downgradient of these basins using cone penetrometer technology. Analysis of these samples using inductively coupled plasma - mass spectrometry has allowed the investigation of cadmium partitioning between the aqueous phase and soil surfaces at this site. The distribution of cadmium was examined with respect to the solution and soil chemistry and aqueous-phase chemical speciation modeling. Cadmium was detected in 35 of 53 aqueous samples from the F- and H-Area Seepage Basins (FHSB). Porewater concentration were found to vary from 0.48 to 23.5 μg 1 -1 , with a mean concentration of 3.1 ± 4.3 μg 1 -1 . Based on the 43 of 86 soil samples for which cadmium was detected, the concentration in the soil ranged 88.5 to 1090 μg kg -1 . The mean soil concentration was 214 ± 168 μg kg -1 . This concentration is not significantly different from the concentrations observed in two upgradient soil samples collected from the same lithologic unit. The concentrations from these samples were 293 ± 214 and 431 ± 293 μg kg -1

  4. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick F.; Cook, Paul J.; Ghezzehei, Teamrat A.; Rodriguez, J. Alfredo; Villalba, Lourdes; de la Garza, Rodrigo

    2008-10-25

    An integrated field, laboratory, and modeling study of the Pena Blanca (Chihuahua, Mexico) natural analogue site is being conducted to evaluate processes that control the mobilization and transport of radionuclides from a uranium ore deposit. One component of this study is an evaluation of the potential for radionuclide transport through the unsaturated zone (UZ) via a seepage study in an adit at the Nopal I uranium mine, excavated 10 m below a mined level surface. Seasonal rainfall on the exposed level surface infiltrates into the fractured rhyolitic ash-flow tuff and seeps into the adit. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage within the Nopal I +00 adit. Monitoring of seepage within the adit between April 2005 and December 2006 indicates that seepage is highly heterogeneous with respect to time, location, and quantity. Within the back adit area, a few zones where large volumes of water have been collected are linked to fast flow path fractures (0-4 h transit times) presumably associated with focused flow. In most locations, however, there is a 1-6 month time lag between major precipitation events and seepage within the adit, with longer residence times observed for the front adit area. Seepage data obtained from this study will be used to provide input to flow and transport models being developed for the Nopal I hydrogeologic system.

  5. Heterogeneous seepage at the Nopal I natural analogue site, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Dobson, Patrick F.; Cook, Paul J.; Ghezzehei, Teamrat A.; Rodriguez, J. Alfredo; Villalba, Lourdes; de la Garza, Rodrigo

    2008-01-01

    An integrated field, laboratory, and modeling study of the Pena Blanca (Chihuahua, Mexico) natural analogue site is being conducted to evaluate processes that control the mobilization and transport of radionuclides from a uranium ore deposit. One component of this study is an evaluation of the potential for radionuclide transport through the unsaturated zone (UZ) via a seepage study in an adit at the Nopal I uranium mine, excavated 10 m below a mined level surface. Seasonal rainfall on the exposed level surface infiltrates into the fractured rhyolitic ash-flow tuff and seeps into the adit. An instrumented seepage collection system and local automated weather station permit direct correlation between local precipitation events and seepage within the Nopal I +00 adit. Monitoring of seepage within the adit between April 2005 and December 2006 indicates that seepage is highly heterogeneous with respect to time, location, and quantity. Within the back adit area, a few zones where large volumes of water have been collected are linked to fast flow path fractures (0-4 h transit times) presumably associated with focused flow. In most locations, however, there is a 1-6 month time lag between major precipitation events and seepage within the adit, with longer residence times observed for the front adit area. Seepage data obtained from this study will be used to provide input to flow and transport models being developed for the Nopal I hydrogeologic system.

  6. IAEA programme on water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Nechaev, A.F.; Skjoeldebrand, R.

    1988-01-01

    The paper reviews the past future efforts of the IAEA, directed to ensure optimal water chemistry regimes in nuclear power plants. Corrosion of structural materials resulting from the interaction of the coolant with the internal surfaces comprising the primary heat transfer and auxiliary circuits of water reactors, creates two main problems. The first is an operational problem resulting in an increase in the core pressure drop or overheating of the fuel elements induced by crud buildup on the fuel cladding. The second problem is related to occupational radiation exposures arising from contamination of out-of-flux surfaces by corrosion products activated in the reactor core. These are the problems of reliability and safety which together with economics could be considered as the 'three whales' of nuclear power. The main goals of international cooperation in reactor water chemistry are: (1) to create a balanced and well-grounded methodological basis for corresponding regulatory and engineering solutions on a national level and (2) to improve 'the models and predictive capability of specialists for conditions that are different from or perhaps just beyond the realm of experience'. Continuing efforts are required to guarantee the highest reliability and safety standards under favorable economic indices of nuclear power plants, and to obtain understanding of such significant potential for solving the remaining problems. (Nogami, K.)

  7. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  8. Optimum Water Chemistry in radiation field buildup control

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien, C. [Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1995-03-01

    Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of low exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.

  9. Water chemistry control practices and data of the European BWR fleet

    International Nuclear Information System (INIS)

    Stellwag, B.; Laendner, A.; Weiss, S.; Huettner, F.

    2010-01-01

    Nineteen BWR plants are in operation in Europe, nine built by ASEA Atom, six by Siemens KWU and four by General Electric. This paper gives an overview of water chemistry operation practices and parameters of the European BWR plants. General design characteristics of the plants are described. Chemistry control strategies and underlying water chemistry guidelines are summarized. Chemistry data are presented and discussed with regard to plant design characteristics. The paper is based on a contract of the European BWR Forum with AREVA on a chemistry sourcebook for member plants. The survey of chemistry data was conducted for the years 2002 to 2008. (author)

  10. Simulation of Water Chemistry using and Geochemistry Code, PHREEQE

    Energy Technology Data Exchange (ETDEWEB)

    Chi, J.H. [Korea Electric Power Research Institute, Taejeon (Korea)

    2001-07-01

    This report introduces principles and procedures of simulation for water chemistry using a geochemistry code, PHREEQE. As and example of the application of this code, we described the simulation procedure for titration of an aquatic sample with strong acid to investigate the state of Carbonates in aquatic solution. Major contents of this report are as follows; Concepts and principles of PHREEQE, Kinds of chemical reactions which may be properly simulated by PHREEQE, The definition and meaning of each input data, An example of simulation using PHREEQE. (author). 2 figs., 1 tab.

  11. Hydrogen peroxide and radiation water chemistry of boiling water reactors

    International Nuclear Information System (INIS)

    Ibe, E.; Watanabe, A.; Endo, M.; Takahashi, M.; Karasawa, H.

    1991-01-01

    G-values and rate constants at elevated temperature are reviewed and updated for computer simulation of water radiolysis in BWRs. Quantitative relationship between g-values of H 2 and OH was found out to govern numerically the radiolytic environment in the BWR primary system. Thermal decomposition of hydrogen peroxide was measured in stagnant water in a quartz cell and the rate constant was determined at 2.4 x 10 -7 s -1 with the activation energy of 53.3 kJ/mol. Behaviors of hydrogen peroxide under HWC simulated with updated variables were consistent with plant observation at Forsmark 1 and 2. The most likely decomposition scheme of hydrogen peroxide at surface was identified as H 2 O 2 → H + HO 2 . Based on the surface decomposition process, actual level of hydrogen peroxide was estimated at 200-400 ppb under NWC condition from measured at BWR sampling stations. The estimation was consistent with the numerical simulation of BWR water radiolysis with updated variables. (author)

  12. The secondary water chemistry and its quality specification of PWR steam generators

    International Nuclear Information System (INIS)

    Zhang Guiqin.

    1984-01-01

    Reasonably organizing the secondary water chemistry of a steam generator is of great importance for improving thermal-hydraulic characteristics and avoiding or alleviating probability of its internals failures by corrosion. In this paper emphasis is put on importance and task of the secondary water chemistry, the meaning and the control demand for feedwater and boiler water specification. At the same time, the current situation on the secondary water chemistry of PWR steam generators is reviewed generally. (Author)

  13. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ''Corrosion mechanism and Modelling'', ''Corrosion and Hydriding'', ''Plant Experience and Loop Experiments'', Water Chemistry, Current Practice and Emerging Solutions'' and ''On-line Monitoring of Water Chemistry and Corrosion'' were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs

  14. Influence of water chemistry on fuel cladding behaviour. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    For the purpose of the meeting water chemistry included the actual practice, the water chemistry monitoring and the on-going research. Corrosion included also hydriding, recent observations made in reactors, modelling and the recent research carried out. Fifty seven participants representing twenty countries attended the thirty formal presentations and the subsequent discussions. The thirty papers presented were split into five sessions covering, Reactor experience, Mechanism and Modelling, Oxidation and hydriding, On-line monitoring of water chemistry and the review of existing and advanced water chemistries. Four panel discussions including ``Corrosion mechanism and Modelling``, ``Corrosion and Hydriding``, ``Plant Experience and Loop Experiments``, Water Chemistry, Current Practice and Emerging Solutions`` and ``On-line Monitoring of Water Chemistry and Corrosion`` were organized. The main points of discussion focussed on the optimization of water chemistry, the compatibility of potassium water chemistry with the utilization of Zircaloy 4 or the utilization of zirconium niobium cladding with lithium water chemistry. The effect of the fabrication route and of the cladding composition (Sn content) on the corrosion kinetics, the state of the art and the correlative gaps in cladding corrosion modelling and the recent developments of on-line monitoring of water chemistry together with examination of suitable developments, were also discussed. Refs, figs, tabs.

  15. A prototype expert system 'SMART' for water chemistry control in reactor water circuits

    International Nuclear Information System (INIS)

    Rangarajan, S.; Narasimhan, S.V.

    1998-01-01

    The operational safety of a power plant depends mainly on the material compatibility of the system materials with the environment. However, for an operating plant, the material is almost fixed and hence one can improve the safety by controlling the surrounding environment. From the economy point of view, the plant availability factor as well as plant life extension (PLEX) are important considerations and these necessitate a systematic approach for continuous parametric monitoring, rapid data analysis and diagnosis for controlling the water chemistry regime. A prototype expert system 'SMART' was developed in BASIC language. The expert system consists of four modules. The DATA HANDLER module controls all the data handling functions and graphical display of the data parameters. It also generates weekly and monthly reports of the water chemistry data. The DATA INTERPRETER module compares the experimental data with the theoretically calculated values and predicts the presence of impurity ingress in the system. The CHEMISTRY EXPERT contains the knowledge base about the various sub-systems. All the water chemistry specifications are translated in the form of IF... THEN.. rules and are stored in this module. The expert system inferences with the forward chain reasoning mechanism to identify the diagnostic parameters by consulting the knowledge base and applying the appropriate rules. The ACTION EXPERT module collects all the diagnostic parameters and suggests the operator, the remedial actions/counter measures that should be taken immediately. This rule based system can be expanded to accommodate different water chemistry regimes. (author)

  16. Technical basis for hydrogen-water chemistry: Laboratory studies of water chemistry effects on SCC [stress-corrosion-cracking

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Soppet, W.K.

    1986-10-01

    The influence of different impurities, viz., oxyacids and several chloride salts, on the stress-corrosion-cracking (SCC) of sensitized Type 304 stainless steel (SS) was investigated in constant-extension-rate-tensile (CERT) tests in 289 0 C water at a low dissolved-oxygen concentration ( 0 C in low-oxygen environments with and without sulfate at low concentrations. In these experiments, the crack growth behavior of the materials was correlated with the type and concentration of the impurities and the electrochemical potentials of Type 304 SS and platinum electrodes in the simulated hydrogen-water chemistry environments. The information suggests that better characterization of water quality, through measurement of the concentrations of individual species (SO 4 2- , NO 3 - , Cu 2+ , etc.) coupled with measurements of the corrosion and redox potentials at high temperatures will provide a viable means to monitor and ultimately improve the performance of BWR system materials

  17. H-Area Seepage Basins groundwater monitoring report

    International Nuclear Information System (INIS)

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, nitrate, nonvolatile beta, total alpha-emitting radium (radium-224 and radium-226), gross alpha, antimony, mercury, lead, tetrachloroethylene, arsenic, and cadmium exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the H-Area Seepage Basins (HASB) at the Savannah River Site. This report presents and discusses the groundwater monitoring results in the H-Area for first quarter 1992

  18. IN-PACKAGE CHEMISTRY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  19. IN-PACKAGE CHEMISTRY ABSTRACTION

    International Nuclear Information System (INIS)

    E. Thomas

    2005-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H 2 O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package

  20. Evaluation of water chemistry on the pitting susceptibility of aluminum

    International Nuclear Information System (INIS)

    Chandler, G.T.; Sindelar, R.L.; Lam, P.S.

    1997-01-01

    Aluminum-clad spent nuclear fuels are being stored in water in the Receiving Basin for Off-site Fuels (RBOF) and the reactor disassembly (cooling) basins at the Savannah River Site (SRS). Experience shows that fuels stored in water are subject to rapid pitting corrosion if the water quality is poor. Upgrade projects and actions, including those to improve water quality, were recently undertaken to upgrade the disassembly basins for extended storage. A technical strategy was developed for continued basin storage of aluminum-clad fuel assemblies. The strategy includes development and implementation of basin technical standards for water quality to minimize attack due to pitting corrosion over a desired storage period. In the absence of localized corrosion, only slow, general corrosion of the cladding would be expected. A laboratory corrosion program is being performed to provide the bases for technical standards by identifying the region of aggressive water qualities where existing oxide films would tend to break down and pits would initiate and remain active. Initial results from corrosion potential and cyclic polarization testing of aluminum alloys in various water chemistries have shown that low conductivity water (< 50 μS/cm) should not be aggressive to cause self-pitting corrosion. Initial results from tests of 8001 and 5052 aluminum and aluminium-10% uranium alloy indicate that a strong galvanic couple should not exist between the aluminum cladding materials and the aluminum-uranium fuel. Additional laboratory testing will include immersion testing to allow characterization of the growth rate of active pits to benchmark a kinetic model. This model will form the basis for a water quality technical standard and enable prediction of the life of aluminum-clad spent nuclear fuels in basin storage

  1. Seepage into drifts with mechanical degradation

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu

    2002-01-01

    Seepage into drifts in unsaturated tuff is an important issue for the long-term performance of the potential nuclear waste repository at Yucca Mountain, Nevada. Drifts in which waste packages will potentially be emplaced are subject to degradation in the form of rockfall from the drift ceiling induced by stress relief, seismic, or thermal effects. The objective of this study is to calculate seepage rates for various drift-degradation scenarios and for different values of percolation flux for the Topopah Spring middle nonlithophysal (Tptpmn) and the Topopah Spring lower lithophysal (Tptpll) units. Seepage calculations are conducted by (1) defining a heterogeneous permeability model on the drift scale that is consistent with field data, (2) selecting calibrated parameters associated with the Tptpmn and Tptpll units, and (3) simulating seepage on detailed degraded-drift profiles, which were obtained from a separate rock mechanics engineering analysis. The simulation results indicate (1) that the seepage threshold (i.e., the percolation flux at which seepage first occurs) is not significantly changed by drift degradation, and (2) the degradation-induced increase in seepage above the threshold is influenced more by the shape of the cavity created by rockfall than the rockfall volume

  2. Comparison of French and German NPP water chemistry programs

    International Nuclear Information System (INIS)

    Staudt, U.; Odar, S.; Stutzmann, A.

    2002-01-01

    PWRs in the western hemisphere obey basically the same rules concerning design, choice of material and operational mode. In spite of these basic similarities, the manufacturers of PWRs in different countries developed different solutions in respect to single components in the steam/water cycle. Looking specifically at France and Germany, the difference in the tubing material of the steam generators (Inconel 600/690 chosen by Framatome and Incoloy 800 chosen by the former Siemens KWU) led to specific differences in the respective chemistry programs and in some respect to different 'philosophies' in operating the water/steam cycle. Compared to this, basic differences in operating the reactor coolant system cannot be observed. Nevertheless specific solutions as zinc injection and the use of enriched B-10 are applied in German PWRs. The application of such measures arises from a specific dose rate situation in older PWRs (zinc injection) or from economic reasons mainly (B-10). (authors)

  3. Comparison of French and German NPP water chemistry programs

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, U. [VGB Powertech (Germany); Odar, S. [Framatome ANP GmbH (Germany); Stutzmann, A. [EDF/GDL (France)

    2002-07-01

    PWRs in the western hemisphere obey basically the same rules concerning design, choice of material and operational mode. In spite of these basic similarities, the manufacturers of PWRs in different countries developed different solutions in respect to single components in the steam/water cycle. Looking specifically at France and Germany, the difference in the tubing material of the steam generators (Inconel 600/690 chosen by Framatome and Incoloy 800 chosen by the former Siemens KWU) led to specific differences in the respective chemistry programs and in some respect to different 'philosophies' in operating the water/steam cycle. Compared to this, basic differences in operating the reactor coolant system cannot be observed. Nevertheless specific solutions as zinc injection and the use of enriched B-10 are applied in German PWRs. The application of such measures arises from a specific dose rate situation in older PWRs (zinc injection) or from economic reasons mainly (B-10). (authors)

  4. Multitracer studies for determining seepage water and anion movement in four types of soil using lysimeters with different functions and designs; Multitracer-Untersuchungen zur Bestimmung der Sickerwasser- und Anionenbewegung in vier Bodenformen bei Lysimetern unterschiedlicher Nutzung und Bauart

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, S.; Russow, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Bad Lauchstaedt (Germany). Sektion Bodenforschung; Seeger, J. [Lysimeterstation Falkenberg (Germany)

    1999-02-01

    Lysimeter experiments based on the stable isotope tracer technique are a suitable means of examining the complex relationships governing water and material transport processes in the soil. The present paper reports on experiments in which water and nitrate movement was traced directly by means of lysimeters placed at different depths and using deuterium water and [{sup 15}N]N-nitrate for pulse marking. Extensive investigations carried out during the dissection of soil monoliths that had been used for many years in lysimeters offered an opportunity for stable isotope tracer studies aimed at determining seepage water and anion movement in undisturbed soils and, after dismantling the lysimeters, conducting soil analyses to find out more about the fate of nonpercolated tracers at various soil depths. Following other authors, bromide anions were additionally used as conservative tracers. [Deutsch] Zur Untersuchung der komplexen Zusammenhaenge des Wasser- und Stofftransportes im Boden bieten sich Lysimeterversuche unter Nutzung der stabilisotopen Tracertechnik an. In der vorliegenden Arbeit wird zunaechst ueber die direkte Verfolgung der Wasser- und Nitrat-Bewegung in tiefengestaffelten Lysimetern durch Pulsmarkierung mit Deuteriumwasser und [{sup 15}N]Nitrat berichtet. Im Rahmen von umfangreichen Untersuchungen bei der Zerlegung von langjaehrig in Lysimetern genutzten Bodenmonolithen bestand des weiteren die Moeglichkeit, stabilisotope Traceruntersuchungen zur Bestimmung der Sickerwasser- und Anionenbewegung an ungestoerten Boeden durchzufuehren und nach der Zerlegung der Lysimeter ueber entsprechende Analysen des Bodens Aussagen zum Verbleib der nicht perkolierten Tracer in verschiedenen Bodentiefen zu treffen. Zusaetzlich wurde dabei das von anderen Autoren bereits genutzte Bromid-Anion als sogenannter konservativer Tracer eingesetzt. (orig.)

  5. VGB primary and secondary side water chemistry guidelines for PWR plants

    International Nuclear Information System (INIS)

    Neder, H.; Wolter, D.; Staudt, U.

    2007-01-01

    The recent revision of the VGB Water Chemistry Guidelines was issued in 2005 and published in the second half of 2006. These guidelines are based on the primary and secondary side operating chemistry experience with all Siemens designed pressurized water reactors gained since the beginning of the 1980s. These guidelines cover For the primary side chemistry Modified lithium boron chemistry, Zinc chemistry for dose rate reduction, Enriched boric acid (EBA) chemistry for high duty core design For the secondary side chemistry High all-volatile treatment (AVT) chemistry (high pH operation) Oxygen injection in the secondary side Especially for the secondary side chemistry, compared with the water chemistry guidelines of other organizations worldwide, these Guidelines are less stringent, providing more operational flexibility to the plant operation, and can be applied for all new designs of steam generators with egg-crates or broached hole tube supports and with I 690TT or I 800 tubing materials. This paper gives an overview of the 2006 revision of the VGB Water Chemistry Guidelines for PWR plants and describes the fundamental goals of water chemistry operation strategies. In addition, the reasons for the selected control parameters and action levels, to achieve an adequate plant performance, are presented based on the operating experience. (orig.)

  6. Modeling and management of pit lake water chemistry 1: Theory

    International Nuclear Information System (INIS)

    Castendyk, D.N.; Eary, L.E.; Balistrieri, L.S.

    2015-01-01

    Highlights: • Review of pit lake literature in the context of pit lake predictions. • Review of approaches used to predict pit wall-rock runoff and leachate. • Review of approaches used to generate a pit lake water balance. • Review of approaches used to generate a hydrodynamic prediction. • Review of approaches used to generate a geochemical prediction of a future pit lake. - Abstract: Pit lakes are permanent hydrologic/landscape features that can result from open pit mining for metals, coal, uranium, diamonds, oil sands, and aggregates. Risks associated with pit lakes include local and regional impacts to water quality and related impacts to aquatic and terrestrial ecosystems. Stakeholders rely on predictive models of water chemistry to prepare for and manage these risks. This paper is the first of a two part series on the modeling and management of pit lakes. Herein, we review approaches that have been used to quantify wall-rock runoff geochemistry, wall-rock leachate geochemistry, pit lake water balance, pit lake limnology (i.e. extent of vertical mixing), and pit lake water quality, and conclude with guidance on the application of models within the mine life cycle. The purpose of this paper is to better prepare stakeholders, including future modelers, mine managers, consultants, permitting agencies, land management agencies, regulators, research scientists, academics, and other interested parties, for the challenges of predicting and managing future pit lakes in un-mined areas

  7. Seasonal water chemistry variability in the Pangani River basin, Tanzania.

    Science.gov (United States)

    Selemani, Juma R; Zhang, Jing; Muzuka, Alfred N N; Njau, Karoli N; Zhang, Guosen; Maggid, Arafa; Mzuza, Maureen K; Jin, Jie; Pradhan, Sonali

    2017-11-01

    The stable isotopes of δ 18 O, δ 2 H, and 87 Sr/ 86 Sr and dissolved major ions were used to assess spatial and seasonal water chemistry variability, chemical weathering, and hydrological cycle in the Pangani River Basin (PRB), Tanzania. Water in PRB was NaHCO 3 type dominated by carbonate weathering with moderate total dissolved solids. Major ions varied greatly, increasing from upstream to downstream. In some stations, content of fluoride and sodium was higher than the recommended drinking water standards. Natural and anthropogenic factors contributed to the lowering rate of chemical weathering; the rate was lower than most of tropical rivers. The rate of weathering was higher in Precambrian than volcanic rocks. 87 Sr/ 86 Sr was lower than global average whereas concentration of strontium was higher than global average with mean annual flux of 0.13 × 10 6  mol year -1 . Evaporation and altitude effects have caused enrichment of δ 18 O and δ 2 H in dry season and downstream of the river. Higher d-excess value than global average suggests that most of the stations were supplied by recycled moisture. Rainfall and groundwater were the major sources of surface flowing water in PRB; nevertheless, glacier from Mt. Kilimanjaro has insignificant contribution to the surface water. We recommend measures to be taken to reduce the level of fluoride and sodium before domestic use.

  8. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total

  9. U.S. experience with hydrogen water chemistry in boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Head, R.A.; Indig, M.E.; Ruiz, C.P.; Simpson, J.L.

    1988-01-01

    Hydrogen water chemistry in boiling water reactors is currently being adopted by many utilities in the U.S., with eleven units having completed preimplementation test programs, four units operating permanently with hydrogen water chemistry, and six other units in the process of installing permanent equipment. Intergranular stress corrosion cracking protection is required for the recirculation piping system and other regions of the BWR systems. The present paper explores progress in predicting and monitoring hydrogen water chemistry response in these areas. Testing has shown that impurities can play an important role in hydrogen water chemistry. Evaluation of their effects are also performed. Both computer modeling and in plant measurements show that each plant will respond uniquely to feedwater hydrogen addition. Thus, each plant has its own unique hydrogen requirement for recirculation system protecion. Furthermore, the modeling, and plant measurements show that different regions of the BWR respond differently to hydrogen injection. Thus, to insure protection of components other than the recirculation systems may require more (or less) hydrogen demand than indicated by the recirculation system measurements. In addition, impurities such as copper can play a significant role in establishing hydrogen demand. (Nogami, K.)

  10. ANL-W 779 pond seepage test

    International Nuclear Information System (INIS)

    Braun, D.R.

    1992-11-01

    The ANL-W 779 sanitary wastewater treatment ponds are located on the Idaho National Engineering Laboratory (INEL), north of the Argonne National Laboratory -- West (ANL-W) site A seepage test was performed for two Argonne National Laboratory -- West (ANL-W) sanitary wastewater treatment ponds, Facility 779. Seepage rates were measured to determine if the ponds are a wastewater land application facility. The common industry standard for wastewater land application facilities is a field-measured seepage rate of one quarter inch per day or greater

  11. Methane seepage along the Hikurangi Margin of New Zealand : geochemical and physical data from the water column, sea surface and atmosphere

    OpenAIRE

    Faure, Kevin; Greinert, Jens; Schneider, Jens; McGinnis, Daniel; Kipfer, Rolf; Linke, Peter

    2010-01-01

    The concentration and carbon isotope values of dissolved methane were measured in the water column at Rock Garden, Omakere Ridge and Wairarapa areas in the first dedicated cold seep investigation along the Hikurangi Margin of New Zealand. These measurements provide a high resolution impression of the methane distribution in the water column and show that these seep sites are actively venting methane with varying intensity. The highest concentrations (up to 3500 nM) measured in water samples o...

  12. BWR plant-to-fleet water chemistry trends -- Past and present

    International Nuclear Information System (INIS)

    Baston, V.F.; Sundberg, L.L.; Huff, J.M.

    1995-01-01

    Good water chemistry control is important for the integrity and satisfactory performance of BWRs. A historical review of selected chemistry performance indicators (e.g., conductivity) illustrates the improved chemistry control today relative to that in the past as well as the ability to evaluate these operational indicators

  13. Operating experience with steam generator water chemistry in Japanese PWR plants

    International Nuclear Information System (INIS)

    Onimura, K.; Hattori, T.

    1991-01-01

    Since the first PWR plant in Japan started its commercial operation in 1970, seventeen plants are operating as of the end of 1990. First three units initially applied phosphate treatment as secondary water chemistry control and then changed to all volatile treatment (AVT) due to phosphate induced wastage of steam generator tubing. The other fourteen units operate exclusively under AVT. In Japan, several corrosion phenomena of steam generator tubing, resulted from secondary water chemistry, have been experienced, but occurrence of those phenomena has decreased by means of improvement on impurity management, boric acid treatment and high hydrazine operation. Recently secondary water chemistry in Japanese plants are well maintained in every stage of operation. This paper introduces brief summary of the present status of steam generators and secondary water chemistry in Japan and ongoing activities of investigation for future improvement of reliability of steam generator. History and present status of secondary water chemistry in Japanese PWRs were introduced. In order to get improved water chemistry, the integrity of secondary system equipments is essential and the improvement in water chemistry has been achieved with the improvement in equipments and their usage. As a result of those efforts, present status of secondary water is excellent. However, further development for crevice chemistry monitoring technique and an advanced water chemistry data management system is desired for the purpose of future improvement of reliability of steam generator

  14. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  15. Fundamental R and D program on water chemistry of supercritical pressure water under radiation field

    International Nuclear Information System (INIS)

    Katsumura, Yosuke; Kiuchi, Kiyoshi; Wada, Yoichi; Yotsuyanagi, Tadasu

    2003-01-01

    In a supercritical water-cooled reactor, property of water changes significantly around the critical point. It is expected that irradiation and change of water property will affect the chemistry and material corrosion. Deep understanding of interactions between supercritical water and materials under irradiation is important. However, comprehensive data on radiolysis, kinetics, corrosion and thermodynamics have not been obtained due to the severe experimental condition. To get such data by experiments and computer simulations, a national program funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT) has been started since December 2002. (author)

  16. Water chemistry related problems in captive power plant of Heavy Water Plant [Manuguru

    International Nuclear Information System (INIS)

    Prasada Rao, G.; Mohapatra, C.

    2000-01-01

    This study is intended to improve the power generating capacity of Turbo Generator-3 in CPP. It was observed that steam flow through TG-3 was not as per rated; however there were no abnormal vibrations. After stopping and opening the turbine, deposits were found on turbine blade. Turbine blade scales were analysed for all the stages, HP, middle, LP, casings. Boiler drum water, feed water, DM water, filter water chemistry were studied. LP blade scale mainly consists of silica, whereas HP blade scale consists of iron oxide, sodium phosphate, silica etc. It was concluded that less generating capacity of power was because of scaling on turbine blade. (author)

  17. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  18. Acid-base chemistry of frustrated water at protein interfaces.

    Science.gov (United States)

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts. © 2015 Federation of European Biochemical Societies.

  19. Intelligent monitoring of water chemistry - Diagnostic expert system DIWATM

    International Nuclear Information System (INIS)

    Metzner, W.; Streit, K.

    2002-01-01

    For fast and comprehensive evaluation of power plant water chemistry conditions and reliable diagnosis in the event of disturbances considerable advantages are provided by employment of the Diagnostic Expert System DIWA. The interface to the process control system (I and C) and the integration of the DIWA system in the office PC network are the preconditions that DIWA operates as a monitoring system in real time. The performance of diagnosis, which are processed by a fuzzy-logic-supported knowledge base ensures not only the detection of all disturbances but also different analyses of the plant operation mode. By editing the knowledge base the Al of the system can increase without system programming. (authors)

  20. A study on the water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Chae, Sung Ki; Yang, Kyung Rin; Koo Je Hyoo; Lee, Eun Hee; Kim, Joung Soo; Jang, Soon Shik; Park, Su Hoon; Song, Myung Ho; Jeon, Kyung Soo

    1987-12-01

    Significant corrosion-failures occurring in the important components or facilities in the secondary-side system cause various problems in safety due to the leakage of radioactive substances and consequently induce the reduction of the operational efficiency of the plants. In addition, the replacement of the failed components or facilities results in the tremendous expenses and a long term shutdown. The objective of the research was to ensure the safety and integrity of the plants, to improve the efficiency of the plant operation, and to prevent the shortening of plant life by improving the controlling technique of the water chemistry and minimizing the corrosion-failures in the important components and/or facilities of the plants

  1. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  2. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  3. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    E. Thomas

    2004-01-01

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been

  4. Evaluation Of The Physical Stability, Ground Water Seepage Control, And Faunal Changes Associated With An AquaBlok® Sediment Cap

    Science.gov (United States)

    Active sediment caps are being considered for addressing contaminated sediment areas in surface-water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study a...

  5. Seepage Flow Model and Deformation Properties of Coastal Deep Foundation Pit under Tidal Influence

    Directory of Open Access Journals (Sweden)

    Shu-chen Li

    2018-01-01

    Full Text Available As the coastal region is the most developed region in China, an increasing number of engineering projects are under construction in it in recent years. However, the quality of these projects is significantly affected by groundwater, which is influenced by tidal variations. Therefore, the regional groundwater dynamic characteristics under tidal impact and the spatiotemporal evolution of the seepage field must be considered in the construction of the projects. Then, Boussinesq function was introduced into the research to deduce the seepage equation under tidal influence for the coastal area. To determine the spatiotemporal evolution of the deep foundation pit seepage field and the coastal seepage field evolution model, numerical calculations based on changes in the tidal water level and seepage equation were performed using MATLAB. According to the developed model, the influence of the seepage field on the foundation pit supporting structure in the excavation process was analyzed through numerical simulations. The results of this research could be considered in design and engineering practice.

  6. Geophysical investigation of seepage beneath an earthen dam.

    Science.gov (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone. © 2014, National Ground Water Association.

  7. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    P.S. Domski

    2003-07-21

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The

  8. In-Package Chemistry Abstraction

    International Nuclear Information System (INIS)

    P.S. Domski

    2003-01-01

    The work associated with the development of this model report was performed in accordance with the requirements established in ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA'' (BSC 2002a). The in-package chemistry model and in-package chemistry model abstraction are developed to predict the bulk chemistry inside of a failed waste package and to provide simplified expressions of that chemistry. The purpose of this work is to provide the abstraction model to the Performance Assessment Project and the Waste Form Department for development of geochemical models of the waste package interior. The scope of this model report is to describe the development and validation of the in-package chemistry model and in-package chemistry model abstraction. The in-package chemistry model will consider chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) and codisposed high-level waste glass (HLWG) and N Reactor spent fuel (CDNR). The in-package chemistry model includes two sub-models, the first a water vapor condensation (WVC) model, where water enters a waste package as vapor and forms a film on the waste package components with subsequent film reactions with the waste package materials and waste form--this is a no-flow model, the reacted fluids do not exit the waste package via advection. The second sub-model of the in-package chemistry model is the seepage dripping model (SDM), where water, water that may have seeped into the repository from the surrounding rock, enters a failed waste package and reacts with the waste package components and waste form, and then exits the waste package with no accumulation of reacted water in the waste package. Both of the submodels of the in-package chemistry model are film models in contrast to past in-package chemistry models where all of the waste package pore space was filled with water. The current in

  9. History of the water chemistry for the few tube test model

    International Nuclear Information System (INIS)

    Moss, S.A.; Simpson, J.L.

    1979-09-01

    The water chemistry activities carried out in support of the Few Tube Test are described. This test was conducted to provide design confirmation data for the Clinch River Breeder Reactor Project (CRBRP) steam generators. Proposed CRBRP chemistry was followed; all volatile treatment (AVT) of water was carried out with on-line monitoring capability

  10. Pore water chemistry in the beach sands of central Tamil Nadu, India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandrasekar, N.; Gujar, A.R.; Loveson, V.J.; Rajamanickam, G.V.; Moscow, S.; Manickaraj, D.S.; Chandrasekaran, R.; Chaturvedi, S.K.; Mahesh, R.; Sudha, V.; Josephine, P.J.; Deepa, V.

    As the pore water chemistry- has been considered as one of the prominent base parameters to infer the impact of coastal mining in introducing environmental deterioration, a study in pore water chemistry is planned here along the beaches for a length...

  11. Managing the water chemistry of a CANDU reactor with an expert system

    International Nuclear Information System (INIS)

    Lamirande, S.; Roberge, P.R.

    1990-01-01

    The aim of this project was to capture the expertise of Ontario Hydro in the water chemistry of the heat transport system (HTS) of the CANDU nuclear reactor and transform it into an Expert System prototype. The end product is an Expert System which can realistically diagnose situations and recommend proper courses of action based on the user's water chemistry analysis

  12. A Water Chemistry Perspective on Flowback Reuse with Several Case Studies, March 30, 2011

    Science.gov (United States)

    This presentation discusses the reuse of frac flowback from a water chemistry perspective. Two examples of flowback reuse, where a minimal water treatment has been used, describe the rationale for why the practice is considered acceptable.

  13. Variation of the Effectiveness of Hydrogen Water Chemistry in a Boiling Water Reactor during Startup Operations

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya

    2012-09-01

    For mitigating intergranular stress corrosion cracking (IGSCC) in an operating boiling water reactor (BWR), the technology of hydrogen water chemistry (HWC) aiming at coolant chemistry improvement has been adopted worldwide. However, the hydrogen injection system employed in this technology was designed to operate only at power levels greater than 30% of the rated power or at coolant temperatures of greater than 450 deg. F. This system is usually in an idle and standby mode during a startup operation. The coolant in a BWR during a cold shutdown normally contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent startup operation. At some plants, the feasibility of hydrogen water chemistry during startup operations has been studied, and its effectiveness on suppressing SCC initiation was evaluated. It is technically difficult to directly procure water chemistry data at various locations of an operating reactor. Accordingly, the impact of startup operation on water chemistry in the PCC of a BWR operating under normal water chemistry (NWC) or HWC can only be theoretically evaluated through computer modelling. In this study, a well-developed computer code DEMACE was used to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of components in the PCC of a domestic BWR during startup operations in the presence of HWC. Simulations were carried out for [H2] FW s ranging from 0.0 to 2.0 parts per million (ppm) and for power levels ranging from 2.5% to 11.3% during startup operations. Our analyses indicated that for power levels with steam generation in the core, a higher power level would tend to promote a more oxidizing coolant environment for the structural components and therefore lead to less HWC

  14. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  15. Effect of condenser water in-leakage on steam generator water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.

    1978-01-01

    Corrosive environments may be generated within steam genrators from condenser cooling water in-leakage. Theoretical as well as experimental evaluation of the aggressiveness of such environments is being carried out for the condenser-cooling waters used at CANDU-PHW nuclear power stations. Calculations have shown that highly concentrated chloride solutions - acidic in the case of sea-water in-leakage, and alkaline in the rest of the cases considered - would be produced within the steam generator. Experiments in a model boiler showed that sea-water in-leakage caused rapid corrosion of carbon steel components when only AVT (all volatile treatment) was used for water chemistry control. Use of a non-volatile reagent, as in the congruent phosphate treatment, avoided the rapid corrosion of carbon steel. On the basis of our studies, congruent phosphate treatment during sea water in-leakage appears desirable. (author)

  16. R Reactor seepage basins soil moisture and resistivity field investigation using cone penetrometer technology, Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    Harris, M.K.

    2000-01-01

    The focus of this report is the summer 1999 investigation of the shallow groundwater system using cone penetrometer technology characterization methods to determine if the water table is perched beneath the R Reactor Seepage Basins (RRSBs)

  17. Seepage studies through hydraulic structures and their foundations by inactive and radio tracers

    International Nuclear Information System (INIS)

    Ansari, Azher; Mahajan, N.M.; Kamble, M.D.

    1977-01-01

    In the last ten years extensive efforts have been made by the Central Water and Power Research Station, Pune to study seepage by means of inactive and radiotracers. Various inactive tracers like electrolytes and organic dyes and radiotracers like 82 Br and 3 H in the form of tritiated water have been used for location of source of seepage. Different techniques like borehole dilution, in situ detection at various observation points and analysis of water samples in liquid scintillation spectrometer in the laboratory have been employed to suit the field conditions. Some typical studies at river valley projects indicating the techniques are enumerated. (author)

  18. PWR water chemistry controls: a perspective on industry initiatives and trends relative to operating experience and the EPRI PWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Choi, S.; Haas, C.; Pender, M.; Perkins, D.

    2010-01-01

    An effective PWR water chemistry control program must address the following goals: Minimize materials degradation (e.g., PWSCC, corrosion of fuel, corrosion damage of steam generator (SG) tubes); Maintain fuel integrity and good performance; Minimize corrosion product transport (e.g., transport and deposition on the fuel, transport into the SGs where it can foul tube surfaces and create crevice environments for the concentration of corrosive impurities); Minimize dose rates. Water chemistry control must be optimized to provide overall improvement considering the sometimes variant constraints of the goals listed above. New technologies are developed for continued mitigation of materials degradation, continued fuel integrity and good performance, continued reduction of corrosion product transport, and continued minimization of plant dose rates. The EPRI chemistry program, in coordination with other EPRI programs, strives to improve these areas through application of chemistry initiatives, focusing on these goals. This paper highlights the major initiatives and issues with respect to PWR primary and secondary system chemistry and outlines the recent, on-going, and proposed work to effectively address them. These initiatives are presented in light of recent operating experience, as derived from EPRI's PWR chemistry monitoring and assessment program, and EPRI's water chemistry guidelines. (author)

  19. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  20. Effect of fluid–solid coupling on shale mechanics and seepage laws

    Directory of Open Access Journals (Sweden)

    Fuquan Song

    2018-02-01

    Full Text Available In this paper, the cores of outcropped black shale of Lower Silurian Longmaxi Fm in the Yibin area, Sichuan Basin, were taken as samples to investigate the effects of extraneous water on shale mechanics and seepage laws during the production of shale gas reservoirs. Firstly, the development of fractures in water saturated cores was observed by using a VHX-5000 optical superdepth microscope. Secondly, water, formation water and slick water, as well as the damage form and compression strength of water saturated/unsaturated cores were investigated by means of a uniaxial compression testing machine and a strain testing & analysis system. Finally, the effects of fluid–solid coupling on shale gas flowing performance in different water saturations were analyzed by using a DYQ-1 multi-function displacement device. Analysis on core components shows that the Longmaxi shale is a highly crushable reservoir with a high content of fragile minerals, so fracturing stimulation is suitable for it. Shale compression strength test reveals that the effects of deionized water, formation water and slick water on shale are different, so the compression strength of shale before being saturated is quite different from that after being saturated. Due to the existence of water, the compression strength of shale drops, so the shale can be fractured easily, more fractures are generated and thus its seepage capacity is improved. Experiments on shale gas seepage under different water saturations show that under the condition of fluid–solid coupling, the higher the water saturation is, the better the propagation and seepage capacity of micro-fractures in shale under the effect of pressure. To sum up, the existence of water is beneficial to fracturing stimulation of shale gas reservoirs and helps to achieve the goal of production improvement. Keywords: Shale gas, Core, Fluid–solid coupling, Water, Compression strength, Permeability, Seepage characteristic, Sichuan Basin

  1. Results of a seepage investigation at Bear Creek Valley, Oak Ridge, Tennessee, January through September 1994

    International Nuclear Information System (INIS)

    Robinson, J.A.; Johnson, G.C.

    1996-01-01

    A seepage investigation was conducted of 4,600 acres of Bear Creek Valley southwest of the Y-12 Plant, Oak Ridge, Tennessee, for the period of January through September 1994. The data was collected to help the Y-12 Environmental Restoration Program develop a better understanding of ground-water and surface-water interactions, recharge and discharge relations, and ground-water flow patterns. The project was divided into three phases: a reconnaissance and mapping of seeps, springs, and stream-measurement sites; a high base flow seepage investigation; and a low base flow seepage investigation. This report describes the results of the investigation. It includes a map showing measurement site locations and tables that list the coordinates for each site and measurements of discharge, pH, specific conductance, temperature, and dissolved oxygen

  2. BOTTOM DEPOSITS OF STRATIFIED, SEEPAGE, URBAN LAKE (ON EXAMPLE OF TYRSKO LAKE, POLAND AS A FACTOR POTENTIALLY SHAPING LAKE WATER QUALITY

    Directory of Open Access Journals (Sweden)

    Renata Augustyniak

    2017-09-01

    The obtained results revealed, that bottom sediment of Tyrsko Lake can be classified as mixed, silica-organic type, with quite high content of iron (over 4% Fe in d.w.. The total phosphorus content was ca. 3.5 mg P g-1 d.w. on average. Phosphorus in bottom sediment was bound mainly with organic matter (NaOH-nrP fraction, which had over 50% share in TP. Easy mobile fractions (NH4-Cl-P and BD-P together included ca 5% to 7 % TP only. The obtained results show, that bottom sediment of Tyrsko Lake can bind phosphorus quite effectively. Calculated internal mineral phosphorus loading during summer stagnation period was 10.9 kg P and it was lower that the assessed annual external phosphorus load (22.6 kg P y-1. The assessed annual phosphorus loading from both sources still was lower than critical load according to Vollenweider criteria. But due to the fact that internal loading phenomenon is occurring in the lake it should be taken into consideration that the lake water quality can deteriorate gradually during the longer time perspective. These findings should be taken into consideration in the future if the potential protection and restoration procedures will be developed.

  3. Operational experience, evolution and developments in water chemistry in Indian Nuclear Power Plants - an overview

    International Nuclear Information System (INIS)

    Prasad, Y.S.R.

    2000-01-01

    Lessons learnt from the experiences at nuclear power plants have enriched the understanding of corrosion behaviour in water systems. The need for proper water chemistry control not only during operation but also during fabrication and preoperational tests is clearly seen. It should not be construed that maintenance of proper water chemistry is a panacea for all corrosion and other associated problems. Unless adequate care is taken in selection of material and sound design and fabrication practices are followed, no regime of water chemistry can help in eliminating failure due to corrosion

  4. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.

    Science.gov (United States)

    Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-08-01

    The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  5. Water chemistry: protecting the industry's investment. Making or breaking plant operations

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Good water chemistry is a good way to preserve the life of steam generators and other plant components. Pipe cracks in boiling-water reactors, tube pitting, denting and cracking in pressurized-water reactors are all problems that are surfacing due to poor water chemistry, i.e., the lack of water purity. Water is essential to power generation and is corrosive under the best of conditions. But to a metal system filled with water and subject to high pressure, high temperature, and impurities such as chlorides, the potential for rapid and permanent damage rises to serious proportions. In addition, radiation levels increase from corrosive products circulated through the reactor vessel

  6. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  7. Applicability of oxygenated water chemistry for PWR secondary systems

    Energy Technology Data Exchange (ETDEWEB)

    Hermansson, H.P. [Studsvik Nuclear AB, Nykoeping (Sweden); Takiguchi, H.; Otoha, K. [Japan Atomic Power Co., Tokyo (Japan)

    2002-07-01

    Introduction of oxygenated water chemistry (OWC) in PWR secondary side is considered as a means to reduce the transportation of corrosion products into the steam generator and thus also minimizing crevice deposits and subsequent materials problems. One main concern, however, is the risk of inter-granular attack (IGA) in crevices. In order to study effects on crevice tube IGA by OWC, a series of experiments were performed in a steam generator (SG) simulating loop. This comprised a SG tube and a tube support plate (TSP) together forming the crevice. The over-all objective of the work accounted here was to demonstrate that it is possible to operate the steam generator secondary side with OWC without causing intolerable IGA or other types of attack on the tube in the crevice area. Tubes of sensitized Alloy 600 were exposed during a total of nine experiments in an autoclave using a TSP/tube arrangement with an asymmetric crevice design. Experiments were performed at high and low pH and potential under open and packed crevice conditions. The aggressiveness of the crevice environment was also further increased by addition of carbonate and chloride. Furthermore the tube was pressurized. Experimental parameters were monitored on the primary side as well as in the secondary bulk phase and in the crevice. (authors)

  8. Decontamination flange film characterization for a boiling water reactor under hydrogen water chemistry

    International Nuclear Information System (INIS)

    Baston, V.F.; Garbauskas, M.F.; Bozeman, J.

    1996-01-01

    Stainless steel artifacts removed from a boiling water reactor class 4 plant that operated under hydrogen water chemistry and experienced a difficult decontamination were submitted for oxide film characterization. The results reported for the corrosion film composition and structure are consistent with existing theoretical concepts for stainless steel corrosion, spinel structure site preferences (octahedral or tetrahedral) for transition metal ions, and potential-pH diagrams. The observed zinc effects on film stability and lower cobalt incorporation are also consistent with these theoretical concepts

  9. Effect of water chemistry on deposition for PWR plant operation

    International Nuclear Information System (INIS)

    Le Calvar, Marc; Bretelle, J. L.; Cailleaux, J. P.; Lacroix, R.; Guivarch, M.; Gay, N.; Taunier, S.; Gressier, F.; Varry, P.; Corredera, G.; Alos-Ramos, O.; Dijoux, M.

    2012-09-01

    For Pressurized Water Reactor (PWR) operation, water chemistry guidelines, specifications and associated surveillance programs are key to avoid deposition of oxides. Deposition of oxides can be detrimental by disrupting results of flow measurements, decreasing the thermal exchange capacity, or even by impairing safety. This paper describes the most important cases of deposition, their consequences for operation, and the implemented improvements to avoid their reoccurrence. Deposition that led to a Crud Induced Power Shift (CIPS) is also described. In the primary and in the secondary sides, orifice plates are typically used for measuring feedwater flow rate in nuclear power plants. Feedwater flow rates are used for control purposes and are important safety parameters as they are used to determine the plant's operating power level. Fouling of orifice plates in the primary side has been found during surveillance testing. For reactor coolant pumps, the formation of deposits on the seal No.1 can cause abnormally high or low leak rates through the seal. The leak rate through this seal must be carefully maintained within a prescribed range during plant operation. In the secondary side, orifice plate fouling has been the cause of feedwater flow/reference thermal power drift. For the steam generators (SG), magnetite deposition has led to fouling of the tube bundle, clogging of the quadri-foiled support plate holes and hard sludge formation on the base plate. For the generators, copper hollow conductors are widely used. Buildup of copper oxides on the interior walls of copper conductors has caused insufficient heat transfer. All these deposition cases have received adequate attention, understanding and response via improvement of our surveillance programs. (authors)

  10. Alternative water chemistry for the primary loop of PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Henzel, N [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-02-01

    Advanced fuel element concepts (longer cycles, higher burnup, increased rod power) call for more reactivity binding capacity and, moreover, might produce higher void fractions, particularly in the hot channel. Thus, on the one hand, more alcalizing agent is needed to maintain a high coolant pH according to the approved ``modified boron-lithium mode of operation`` in the presence of more boric acid (chemical shim); on the other hand, increasing enrichment of coolant constituents due to local boiling (higher void fraction), which must not result in accelerated corrosion of fuel cladding and structural materials, imposes enhanced requirements on both, materials technology and water chemistry. At present, the use of boric acid enriched in B10 (the isotope effective in terms of reactivity control) appears to advantageously compromise in capturing more neutrons with less total boron while maintaining or even slightly reducing lithium concentrations at the same time. There is no feasible alternative for boric acid used as the chemical shim and for hydrogen gas as the reducing agent used to suppress oxygen formation by water radiolysis. Systematic screening as performed in phase 1 of a recent project proved potassium hydroxide to be the only potential candidate to favourably replace lithium 7 hydroxide as an alcalizing agent. Unfortunately, the results of pertinent comparative corrosion tests are not unambiguous, and available operational experience with potassium hydroxide in WWER plants is not readily applicable to western world-type PWR plants. Therefore, a switch-over from lithium to potassium can be envisaged only subsequent to a comprehensive qualification program which is planned to be the objective of phase 2 of the project. This program should also comprise zinc addition tests in order to confirm the alleged positive impact of this element on corrosion rates and activity buildup. (Abstract Truncated)

  11. A tube seepage meter for in situ measurement of seepage rate and groundwater sampling

    Science.gov (United States)

    Solder, John; Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip

    2016-01-01

    We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy-bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self-purging groundwater-sampling device.

  12. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  13. Dictionary of water chemistry. English/German/French. Woerterbuch der Wasserchemie. Deutsch/Englisch/Franzoesisch

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, F von

    1985-01-01

    This dictionary presents a compilation of the most important terms related to water composition and quality. Technical terms used to describe water purification and other technical processes are also included. In fact, terms come from all areas of water chemistry: they concern water sampling, water analysis and its statistical interpretation, the evalutation of results as indicators for planing and operating water purification and waste-water plants.

  14. The Effect of Water Chemistry on the Removal of Arsenic from Drinking Water During Iron Removal Treatment

    Science.gov (United States)

    This research investigates the effects of water chemistry, oxidant type and concentration on the removal of iron and arsenic from drinking water. The research will be conducted using one of the National Risk Management Research Laboratory’s Water Supply and Water Resources Divisi...

  15. Predicted effect of power uprating on the water chemistry of commercial boiling water reactors

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Chu, Charles F.; Chang Ching

    2009-01-01

    The approach of power uprating has been adopted by operators of light water reactors in the past few decades in order to increase the power generation efficiency of nuclear reactors. The power uprate strategy is apparently applicable to the three nuclear reactors in Taiwan as well. When choosing among the three types of power uprating, measurement uncertainty, stretch power uprating, and extended power uprating, a deliberate and thorough evaluation is required before a final decision and an optimal selection can be made. One practical way of increasing the reactor power is to deliberately adjust the fuel loading pattern and the control rod pattern and thus to avoid replacing the primary coolant pump with a new one of larger capacity. The power density of the reactor will increase with increasing power, but the mass flow rate in the primary coolant circuit (PCC) of a light water reactor will slightly increase (usually by less than 5 %) or even remain unchanged. Accordingly, an uprated power would induce higher neutron and gamma photon dose rates in the reactor coolant but have a minor or no effect on the mass flow rate of the primary coolant. The radiolysis product concentrations and the electrochemical corrosion potential (ECP) values differ largely in the PCC of a boiling water reactor (BWR). It is very difficult to measure the water chemistry data directly at various locations of an actual reactor. Thus the impact of power uprating on the water chemistry of a BWR operating under hydrogen water chemistry (HWC) can only be theoretically evaluated through computer modelling. In this study, the DEMACE computer code was modified to investigate the impact of power uprating on the water chemistry under a fixed mass flow rate in the primary coolant circuit of a BWR/6 type plant. Simulations were carried out for hydrogen concentrations in feedwater ranging from 0.0 to 2.0 mg . kg -1 and for power levels ranging from 100 % to 120 %. The responses of water chemistry and ECP

  16. Numerical Analysis on Seepage in the deep overburden CFRD

    Science.gov (United States)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  17. Seepage into drifts in unsaturated fractured rock at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

    1998-01-01

    An important issue for the long-term performance of underground nuclear waste repository is the rate of seepage into the waste emplacement drifts. A prediction of the future seepage rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, as it is located in thick, partially saturated, fractured tuff formations. The long-term situation in the drifts several thousand years after waste emplacement will be characterized by a relative humidity level close to or equal to 100%, as the drifts will be sealed and unventilated, and the waste packages will have cooled. The underground tunnels will then act as capillary barriers for the unsaturated flow, ideally diverting water around them, if the capillary forces are stronger than gravity and viscous forces. Seepage into the drifts will only be possible if the hydraulic pressure in the rock close to the drift walls increases to positive values; i.e., the flow field becomes locally saturated. In the present work, they have developed and applied a methodology to study the potential rate of seepage into underground cavities embedded in a variably saturated, heterogeneous fractured rock formation. The fractured rock mass is represented as a stochastic continuum where the fracture permeabilities vary by several orders of magnitude. Three different realizations of random fracture permeability fields are generated, with the random permeability structure based on extensive fracture mapping, borehole video analysis, and in-situ air permeability testing. A 3-D numerical model is used to simulate the heterogeneous steady-state flow field around the drift, with the drift geometry explicitly represented within the numerical discretization grid. A variety of flow scenarios are considered assuming present-day and future climate conditions at Yucca Mountain. The numerical study is complemented by theoretical evaluations of the drift seepage problem, using stochastic perturbation theory to develop a better

  18. Standard and hydrazine water chemistry in primary circuit of VVER 440 units

    International Nuclear Information System (INIS)

    Burclova, J.

    1992-01-01

    Standard ammonia-potassium-boron water chemistry of 8 units with VVER 440 in CSFR is discussed as well as the corrosion product activity in the coolant during steady state and shut-down period and surface activity, dose rate build-up and occupational radiation exposure. Available data on hydrazine application (USSR, Hungary) indicate the possibility of the radiation field decreasing. Nevertheless the detailed analysis of 55 cycles of operation under standard water chemistry in Czechoslovakia allows to expect the comparable results for both water chemistries. (author)

  19. Operating experience in correcting severe secondary chemistry upsets by controlling makeup water organics (TOC)

    International Nuclear Information System (INIS)

    Flint, W.G.; Mc Intosh, R.J.

    1986-01-01

    In this paper following observations are presented: conductivity and chloride excursions in steam condensate were directly linked to makeup water quality. Data strongly suggests that the breakdown of makeup water organics was responsible for substandard condensate water quality; although the short-term effects of gross organic contamination have been documented, the longer term consequences of continuous exposure by moderate organic levels needs to be addressed; a greater understanding of the organic removal efficiency of the various water purification technologies is essential to controlling TOC contamination; and a much better understanding of makeup plant chemistry and the interrelationship of makeup water contamination and plant chemistry has proven essential to optimizing plant performance and guaranteeing the best possible steam chemistry. The role of the chemistry group as an active participant in operations has been proven at Kewaunee Nuclear Plant

  20. Present status of water chemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Berge, Ph.; Fiquet, J.M.

    1991-01-01

    As operational experience increases, solutions to mitigate corrosion problems of existing plants are found. They also, hopefully, can solve the corrosion problems for future reactors when materials and design can be modified. Improvement of chemistry solved numerous early problems in PWRs (denting, pitting) and limitated other phenomena such as erosion-corrosion of steels in the secondary circuit. Chemistry has not been successful for other problems such as primary-side cracking of PWRs and has been moderately efficient for stress corrosion cracking or IGA of tubes at the support plate. Based on the experience, several recommendations for an optimum chemistry can be formulated. (author)

  1. Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC)

    International Nuclear Information System (INIS)

    2011-10-01

    This report presents the results of the Coordinated Research Project (CRP) on Optimization of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plants (FUWAC, 2006-2009). It provides an overview of the results of the investigations into the current state of water chemistry practice and concerns in the primary circuit of water cooled power reactors including: corrosion of primary circuit materials; deposit composition and thickness on the fuel; crud induced power shift; fuel oxide growth and thickness; radioactivity buildup in the reactor coolant system (RCS). The FUWAC CRP is a follow-up to the DAWAC CRP (Data Processing Technologies and Diagnostics for Water Chemistry and Corrosion Control in Nuclear Power Plants 2001-2005). The DAWAC project improved the data processing technologies and diagnostics for water chemistry and corrosion control in nuclear power plants (NPPs). With the improved methods for controlling and monitoring water chemistry now available, it was felt that a review of the principles of water chemistry management should be undertaken in the light of new materials, more onerous operating conditions, emergent issues such as CIPS, also known as axial offset anomaly (AOA) and the ageing of operating power plant. In the framework of this CRP, water chemistry specialists from 16 nuclear utilities and research organizations, representing 15 countries, exchanged experimental and operational data, models and insights into water chemistry management. The CD-ROM attached to this IAEA-TECDOC includes the report itself, detailed progress reports of three Research Coordination Meetings (RCMs) (Annexes I-III) and the reports and presentations made during the project by the participants.

  2. Some aspects of primary and secondary water chemistry in CANDU reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-09-01

    A brief review of the water chemistry in various circuits of CANDU reactors is given. Then, five particular aspects of recent work are highlighted: (i) Radiation Field Growth: in-reactor and out-reactor studies have related water chemistry to corrosion product deposition on fuel sheaths and subsequent contamination of out-core surfaces. (ii) Metal Oxide Solubility: novel techniques are being used to measure the solubilities of metal oxides at primary circuit conditions. (iii) Decontamination: the use of heavy water as coolant in CANDU reactors led to the development of a unique decontamination strategy and technique, called CAN-DECON, which has attracted the attention of operators of light-water reactors. (iv) Steam Generator Corrosion: mathematical modelling of the water chemistry in the bulk and crevice regions of nuclear steam generators, supported by chemical experiments, has shown why sea water ingress from leaking condensers can be damaging, and has provided a rapid way to evaluate alternative boiler water chemistries. (v) Automatic Control of Feedwater Chemistry: on-line automatic chemical analysis and computer control of feedwater chemistry provides All Volatile Treatment for normal operation with pure feedwater, and carefully controlled sodium phosphate addition when there is detectable sea-water ingress from leaking condensers. (author)

  3. Present status and recent improvements of water chemistry at Russian VVER plants

    International Nuclear Information System (INIS)

    Mamet, V.; Yurmanov, V.

    2001-01-01

    Water chemistry is an important contributor to reliable plant operation, safety barrier integrity, plant component lifetime, radiation safety, environmental impact. Primary and secondary water chemistry guidelines of Russian VVER plants have been modified to meet the new safety standards. At present 14 VVER units of different generation are in operation at 5 Russian NPPs. There are eight 4-loop pressurised water reactors VVER-1000 (1000 MWe) and six 6-loop pressurised water reactors VVER-440 (440 MWe). Generally, water chemistry at East European VVER plants (about 40 VVER-440 and VVER-1000 units in Ukraine, Bulgaria, Slovakia, Czech Republic, Hungary, Finland and Armenia) is similar to water chemistry at Russian VVER plants. Due to similar design and structural materials some water chemistry improvements were introduced at East European plants after they has been successfully implemented at Russian plants and vice versa. Some water chemistry improvements will be implemented at modern VVER plants under construction in Ukraine, Slovakia, Czech Republic, Iran, China, India. (R.P.)

  4. Water Chemistry and Chemistry Monitoring at Thermal and Nuclear Power Plants: Problems and Tasks (Based on Proceedings of Conferences)

    Science.gov (United States)

    Larin, B. M.

    2018-02-01

    In late May-early June 2017, two international science and technology conferences on problems of water chemistry and chemistry monitoring at thermal and nuclear power plants were held. The participants of both the first conference held at OAO VTI and the second conference that took place at NITI formulated the problems of the development of the regulatory base and implementation of promising water treatment technologies and outlined the ways of improving the water chemistry and chemistry monitoring at TPPs and NPPs for the near future. It was pointed out that the new amine-containing VTIAMIN agent developed by OAO VTI had been successfully tested on the power-generating units equipped with steam-gas plants to establish the minimum excess of the film-forming amine in the power-generating unit circuit that ensures the protection of the metal as 5-10 μg/dm3. A flow-injection technique for the analysis of trace concentrations of chlorides was proposed; the technique applied to the condensate of the 1000-MW steam turbine of the NPP power-generating unit yields the results comparable with the results obtained by the ion chromatography and the potentiometric method using the solver electrode. The participants of the conferences were demonstrated new Russian instruments to analyze the water media at the TPPs and NPPs, including the total organic carbon analyzer and the analyzer of mineral impurities in the condensate and feed water, that won a gold medal at the 45th International Exhibition of Inventions held in Geneva this April.

  5. New TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.W.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.

    1986-12-01

    The New TNX Seepage Basin has been in operation at the Savannah River Plant (SRP) since 1980 and is located in the southeastern section of the TNX facility. The basin receives waste from pilot scale tests conducted at TNX in support of the Defense Waste Processing Facility (DWPF) and the plant Separations area. The basin is scheduled for closure after the TNX Effluent Treatment Plant (ETP) begins operation. The basin will be closed pursuant to all applicable state and federal regulations. A statistical analysis of monitoring data indicates elevated levels of sodium and zinc in the groundwater at this site. Closure options considered for the New TNX Seepage Basin include waste removal and closure, no waste removal and closure, and no action. The two predominant pathways for human exposure to chemical contaminants are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options for the New TNX Seepage Basin. Cost estimates for each closure option at the basin have also been prepared. An evaluation of the environmental impacts from the New TNX Seepage Basin indicate that the relative risks to human health and ecosystems for the postulated closure options are low. The transport of six chemical and one radionuclide constituents through the environmental pathways from the basin were modeled. The maximum chemical carcinogenic risk and the noncarcinogenic risk for the groundwater pathways were from exposure to trichloromethane and nitrate

  6. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    Science.gov (United States)

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and

  7. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  8. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1976-01-01

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF 4 --H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF 2 --ThF 4 for Fe and analysis of LiF--BeF--ThF 4 for Te

  9. Primary water chemistry monitoring from the point of view of radiation build-up

    International Nuclear Information System (INIS)

    Horvath, G.L.; Civin, V.; Pinter, T.

    1997-01-01

    Basic operational principles of a computer code system calculating the primary circuit corrosion product activities based on actual measured plant chemistry data are presented. The code system consists of two parts: FeSolub.prg: calculates the characteristic iron solubilities based on actual primary water chemistry (H 3 BO 3 KOH, ... etc.) and plant load (MW) data. A developed solubility calculation method has been applied fitted to magnetite solubility data of several authors; RADTRAN.exe: calculates primary circuit water and surface corrosion product activities based on results of FeSolub.prg or planned water chemistry data up to the next shutdown. The computer code system is going to be integrated into a general primary water chemistry monitoring and surveillance system. (author). 15 refs, 4 figs, 3 tabs

  10. Primary water chemistry monitoring from the point of view of radiation build-up

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, G L [Institute for Electrical Power Research, Budapest (Hungary); Civin, V [Hungarian Electricity Generating Board, Budapest (Hungary); Pinter, T [Nuclear Power Plant PAKS, Budapest (Hungary)

    1997-02-01

    Basic operational principles of a computer code system calculating the primary circuit corrosion product activities based on actual measured plant chemistry data are presented. The code system consists of two parts: FeSolub.prg: calculates the characteristic iron solubilities based on actual primary water chemistry (H{sub 3}BO{sub 3}KOH, ... etc.) and plant load (MW) data. A developed solubility calculation method has been applied fitted to magnetite solubility data of several authors; RADTRAN.exe: calculates primary circuit water and surface corrosion product activities based on results of FeSolub.prg or planned water chemistry data up to the next shutdown. The computer code system is going to be integrated into a general primary water chemistry monitoring and surveillance system. (author). 15 refs, 4 figs, 3 tabs.

  11. Materials behavior in alternate (hydrogen) water chemistry in the Ringhals-1 boiling water reactor

    International Nuclear Information System (INIS)

    Ljungberg, L.G.; Cubicciotti, D.; Trolle, M.

    1986-01-01

    In-plant studies on the intergranular stress corrosion cracking (IGSCC) of sensitized austenitic stainless steel (SS) have been performed at the Swedish Ringhals-1 boiling water reactor (BWR). The studies have covered the present [full-temperature (normal)] water chemistry (PWC) and the alternate (primary) water chemistry (AWC) with hydrogen addition. The test techniques applied were constant extension rate testing (CERT) and electrochemical potential (ECP) measurements. The program was covered by extensive environment monitoring. The results verify earlier laboratory studies which show that sensitized austenitic SS is susceptible to IGSCC in PWC, but not in AWC. Other pressure-bearing BWR construction materials are not adversely affected by AWC. The boundary conditions in Ringhals-1 have been established for an AWC, which is defined as an environment that does not produce IGSCC in sensitized SS. The results are compared with a similar program at Dresden-2, and the points of agreement and discordance in the results are discussed. The relevance of ECP measurements for the control of AWC is discussed

  12. Primary Water Chemistry Control during a Planned Outage at Bruce Power

    International Nuclear Information System (INIS)

    Ma, Guoping; Nashiem, Rod; Matheson, Shane; Yabar, Berman; Harper, Bill; Roberts, John G.

    2012-09-01

    Bruce Power has developed a comprehensive outage water chemistry program, which includes both primary and secondary chemistry requirements during planned outages. The purpose of the program is to emphasize the chemistry requirements during outages and subsequent start-ups in order to maintain the integrity of the systems, minimise activity transport and radiation fields, reduce the Carbon-14 release, and to ensure that the requirements are integrated with the outage management program. Prior to a planned outage, Station Chemical Technical Sections identify outage chemistry requirements to Operations and Outage Planning and ensure that work necessary to correct system chemistry issues is within outage work scope. The outage water chemistry program provides direction for establishing alternative sampling locations as demanded by the system configuration during the outage and identifies outage prerequisites for nuclear system purification capabilities. These requirements are contained in an outage checklist. The paper mainly highlights the primary water chemistry issues and chemistry control strategies during planned outages and discusses challenges and successes. (authors)

  13. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    International Nuclear Information System (INIS)

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-01

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report

  14. Water chemistry: cause and control of corrosion degradation in nuclear power plants

    International Nuclear Information System (INIS)

    Kain, Vivekanand

    2008-01-01

    The corrosion degradation of a material is directly determined by the water chemistry, material (composition, fabrication procedure and microstructure) and by the stress/strain in the material under operating conditions. Water chemistry plays an important role in both uniform corrosion and localized forms of corrosion of materials. Once we understand how water chemistry is contributing to corrosion of a material, it is logical to modify/change that water chemistry to control the corrosion degradation. In nuclear power plants, different water chemistries have been used in different components/systems. This paper will cover the origin of corrosion degradation in the Primary Heat Transport system of different reactor types, Steam Generator tubing, secondary circuit pipelines, service water pipelines and auxiliary systems and establish the role of water chemistry in causing corrosion degradation. The history of changes in water chemistry adopted in these systems to control corrosion degradation is also described. It is shown by examples that there is an obvious limitation in changing water chemistry to control corrosion degradation and in those cases, a change of material or change of the state of stresses/fabrication procedure becomes necessary. The role of water chemistry as a causative factor and also as a controlling parameter on particular types of corrosion degradation e.g. stress corrosion cracking, flow accelerated corrosion, pitting, crevice corrosion is illustrated. It will be shown that increase in dissolved oxygen content (due to radiolysis in nuclear reactors) is sufficient to make even the de-mineralized water to cause stress corrosion cracking in Boiling Water Reactors. Hydrogen Water Chemistry (by hydrogen injection) to control dissolved oxygen is shown to control the stress corrosion cracking. However, it is not possible to control dissolved oxygen at all parts of the Boiling Water Reactors. Therefore, a further refinement in terms of noble metal

  15. Water Chemistry Control Technology to Improve the Performance of Nuclear Power Plants for Extended Fuel Cycles

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Na, J. W.; Lee, E. H.

    2010-07-01

    Ο To Develop the technology to manage the problems of AOA and radiation, corrosion as long term PWR operation. Ο To Establish the advanced water chemical operating systems. - Development of the proper water chemistry guidelines for long term PWR operation. AOA(Axial Offest Anomaly) has been reported in many PWR plants in the world, including Korea, especially in the plants of higher burn-up and longer cycle operation or power up-rate. A test loop has been designed and made by KAERI, in order to investigate and mitigate AOA problems in Korea. This project included the study of hydrodynamic simulation and the modeling about AOA. The analysis of radioactive crud was performed to investigate of NPPs primary water chemical effect on AOA and to reduce the radioactive dose rate. The high temperature measurement system was developed to on-line monitor of water chemistry in nuclear power plants. The effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. The inhibition technology for fouling and SCC of SG tube was evaluated to establish the water chemistry technology of corrosion control of nuclear system. The high temperature and high pressure crevice chemistry analysis test loop was manufactured to develop the water chemistry technology of crevice chemistry control

  16. VVER operational experience - effect of preconditioning and primary water chemistry on radioactivity build-up

    International Nuclear Information System (INIS)

    Zmitko, M.; Kysela, J.; Dudjakova, K.; Martykan, M.; Janesik, J.; Hanus, V.; Marcinsky, P.

    2004-01-01

    The primary coolant technology approaches currently used in VVER units are reviewed and compared with those used in PWR units. Standard and modified water chemistries differing in boron-potassium control are discussed. Preparation of the VVER Primary Water Chemistry Guidelines in the Czech Republic is noted. Operational experience of some VVER units, operated in the Czech Republic and Slovakia, in the field of the primary water chemistry, and radioactivity transport and build-up are presented. In Mochovce and Temelin units, a surface preconditioning (passivation) procedure has been applied during hot functional tests. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. The first operational experience obtained in the course of beginning of these units operation is presented mainly with respect to the corrosion products coolant and surface activities. Effect of the initial passivation performed during hot functional tests and the primary water chemistry on corrosion products radioactivity level and radiation situation is discussed. (author)

  17. Numerical experiments on the probability of seepage into underground openings in heterogeneous fractured rock

    International Nuclear Information System (INIS)

    Birkholzer, J.; Li, G.; Tsang, C.F.; Tsang, Y.

    1998-01-01

    An important issue for the performance of underground nuclear waste repositories is the rate of seepage into the waste emplacement drifts. A prediction of this rate is particularly complicated for the potential repository site at Yucca Mountain, Nevada, because it is located in thick, unsaturated, fractured tuff formations. Underground opening in unsaturated media might act as capillary barriers, diverting water around them. In the present work, they study the potential rate of seepage into drifts as a function of the percolation flux at Yucca Mountain, based on a stochastic model of the fractured rock mass in the drift vicinity. A variety of flow scenarios are considered, assuming present-day and possible future climate conditions. They show that the heterogeneity in the flow domain is a key factor controlling seepage rates, since it causes channelized flow and local ponding in the unsaturated flow field

  18. Effect of water chemistry improvement on flow accelerated corrosion in light-water nuclear reactor

    International Nuclear Information System (INIS)

    Sugino, Wataru; Ohira, Taku; Nagata, Nobuaki; Abe, Ayumi; Takiguchi, Hideki

    2009-01-01

    Flow Accelerated Corrosion (FAC) of Carbon Steel (CS) piping has been one of main issues in Light-Water Nuclear Reactor (LWRs). Wall thinning of CS piping due to FAC increases potential risk of pipe rupture and cost for inspection and replacement of damaged pipes. In particular, corrosion products generated by FAC of CS piping brought steam generator (SG) tube corrosion and degradation of thermal performance, when it intruded and accumulated in secondary side of PWR. To preserve SG integrity by suppressing the corrosion of CS, High-AVT chemistry (Feedwater pH9.8±0.2) has been adopted to Tsuruga-2 (1160 MWe PWR, commercial operation in 1987) in July 2005 instead of conventional Low-AVT chemistry (Feedwater pH 9.3). By the High-AVT adoption, the accumulation rate of iron in SG was reduced to one-quarter of that under conventional Low-AVT. As a result, a tendency to degradation of the SG thermal efficiency was improved. On the other hand, it was clarified that High-AVT is ineffective against Flow Accelerated Corrosion (FAC) at the region where the flow turbulence is much larger. By contrast, wall thinning of CS feed water pipes due to FAC has been successfully controlled by oxygen treatment (OT) for long time in BWRs. Because Magnetite film formed on CS surface under AVT chemistry has higher solubility and porosity in comparison with Hematite film, which is formed under OT. In this paper, behavior of the FAC under various pH and dissolved oxygen concentration are discussed based on the actual wall thinning rate of BWR and PWR plant and experimental results by FAC test-loop. And, it is clarified that the FAC is suppressed even under extremely low DO concentration such as 2ppb under AVT condition in PWR. Based on this result, we propose the oxygenated water chemistry (OWC) for PWR secondary system which can mitigate the FAC of CS piping without any adverse effect for the SG integrity. Furthermore, the applicability and effectiveness of this concept developed for FAC

  19. Primary Water Chemistry Control at Units of Paks Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, J.; Pinter, G. Patek T.; Tilky, P.; Doma, A. [Paks Nuclear Power Plant Co. Ltd., Paks (Hungary); Osz, J. [Budapest University of Technology and Economics, Budapest (Hungary)

    2013-03-15

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western type PWR units, taking into consideration some Russian modifications. The political changes in the 1990s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of WWER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The need for lifetime extensions worldwide has made the development of startup and shutdown chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  20. Electrochemical potential measurements in boiling water reactors; relation to water chemistry and stress corrosion

    International Nuclear Information System (INIS)

    Indig, M.E.; Cowan, R.L.

    1981-01-01

    Electrochemical potential measurements were performed in operating boiling water reactors to determine the range of corrosion potentials that exist from cold standby to full power operation and the relationship of these measurements to reactor water chemistry. Once the corrosion potentials were known, experiments were performed in the laboratory under electrochemical control to determine potentials and equivalent dissolved oxygen concentrations where intergranular stress corrosion cracking (IGSCC) would and would not occur on welded Type-304 stainless steel. At 274 0 C, cracking occurred at potentials that were equivalent to dissolved oxygen concentration > 40 to 50 ppb. With decreasing temperature, IGSCC became more difficult and only severely sensitized stainless steel would crack. Recent in-reactor experiments combined with the previous laboratory data, have shown that injection of small concentrations of hydrogen during reactor operation can cause a significant decrease in corrosion potential which should cause immunity to IGSCC. (author)

  1. Natural convection in tunnels at Yucca Mountain and impact on drift seepage

    Energy Technology Data Exchange (ETDEWEB)

    Halecky, N.; Birkholzer, J.T.; Peterson, P.

    2010-04-15

    The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.

  2. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  3. Assessing the Impact of Animal Waste Lagoon Seepage on the Geochemistry of an Underlying Shallow Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    McNab, W W; Singleton, M J; Moran, J E; Esser, B K

    2006-03-07

    Dairy facilities and similar confined animal operation settings pose a significant nitrate contamination threat via oxidation of animal wastes and subsequent transport to shallow groundwater. While nitrate contamination resulting from application of animal manure as fertilizer to fields is well recognized, the impact of manure lagoon leakage on groundwater quality is less well characterized. In this study, a dairy facility located in the southern San Joaquin Valley of California has been instrumented with monitoring wells as part of a two-year multidisciplinary study to evaluate nitrate loading and denitrification associated with facility operations. Among multiple types of data collected from the site, groundwater and surface water samples have been analyzed for major cations, anions, pH, oxidation-reduction potential, dissolved organic carbon, and selected dissolved gases (CO{sub 2}, CH{sub 4}, N{sub 2}, Ar, Ne). Modeling of putative geochemical processes occurring within the dairy site manure lagoons shows substantial off-gassing of CO{sub 2} and CH{sub 4} in response to mineralization of organic matter. The gas ebullition appears to strip dissolved gases, including Ar and Ne, from the lagoon water leaving concentrations that are undersaturated with respect to the atmosphere. The resulting fractionated dissolved gas signature serves as an effective tracer for the lagoon water in the underlying shallow groundwater and can be used to constrain inverse geochemical models that assess mixing fractions of lagoon water and local groundwater water. Together with ion exchange and mineral equilibria reactions, identification of lagoon seepage helps explain key attributes of the local groundwater chemistry, including input and cycling of nitrogen, across the site.

  4. Characteristics of meaningful chemistry education - The case of water quality

    NARCIS (Netherlands)

    Westbroek, Hanna Barbara

    2005-01-01

    This thesis addresses the question of how to involve students in meaningful chemistry education by a proper implementation of three characteristics of meaningful: a context, a need-to-know approach and attention for student input. The characteristics were adopted as solution strategies for

  5. PWR Secondary Water Chemistry Control Status: A Summary of Industry Initiatives, Experience and Trends Relative to the EPRI PWR Secondary Water Chemistry Guidelines

    International Nuclear Information System (INIS)

    Fruzzetti, Keith; Choi, Samuel

    2012-09-01

    The latest revision of the EPRI Pressurized Water Reactor (PWR) Secondary Water Chemistry Guidelines was issued in February 2009. The Guidelines continue to focus on minimizing stress corrosion cracking (SCC) of steam generator tubes, as well as minimizing degradation of other major components / subsystems of the secondary system. The Guidelines provide a technically-based framework for a plant-specific and effective PWR secondary water chemistry program. With the issuance of Revision 7 of the Guidelines in 2009, many plants have implemented changes that allow greater flexibility on startup. For example, the previous Guidelines (Revision 6) contained a possible low power hold at 5% power and a possible mid power hold at approximately 30% power based on chemistry constraints. Revision 7 has established a range over which a plant-specific value can be chosen for the possible low power hold (between 5% and 15%) and mid power hold (between 30% and 50%). This has provided plants the ability to establish significant plant evolutions prior to reaching the possible power hold; such as establishing seal steam to the condenser, placing feed pumps in service, or initiating forward flow of heater drains. The application of this flexibility in the industry will be explored. This paper also highlights the major initiatives and industry trends with respect to PWR secondary chemistry; and outlines the recent work to effectively address them. These will be presented in light of recent operating experience, as derived from EPRI's PWR Chemistry Monitoring and Assessment (CMA) program (which contains more than 400 cycles of operating chemistry data). (authors)

  6. Water chemistry and endangered white-clawed Crayfish: a literature review and field study of water chemistry association in Austropotamobius pallipes

    Directory of Open Access Journals (Sweden)

    Haddaway N.R.

    2015-01-01

    Full Text Available Populations of the endangered white-clawed crayfish (Austropotamobius pallipes have rapidly declined in distribution and density in recent decades as a result of invasive crayfish, disease and habitat degradation. The species is thought to be particularly sensitive to water chemistry, and has been proposed as a bio-indicator of water quality. Here we detail the results of a systematic review of the literature regarding the chemistry of waterbodies inhabited by white-clawed crayfish, along with a wide-scale field study of the chemistry of crayfish-inhabited waterbodies in the UK. We use these data to examine potentially significant variables influencing crayfish distribution. Several variables appear to have thresholds that affect crayfish distribution; crayfish presence was associated with high dissolved oxygen, low conductivity, ammonium, sodium, and phosphate, and to a lesser extent low sulphate, nitrate, and total suspended solids. Some variables (magnesium, potassium, sodium, sulphate, nitrate, and total suspended solids may be tolerated at moderate to high concentrations in isolation (indicated by the presence of some populations in high levels of these variables, but suites of chemical conditions may act synergistically in situ and must be considered together. Recent efforts to conserve white-clawed crayfish have included relocations to Ark Sites; novel protected habitats with reduced risk of the introduction of disease, invasive crayfish and habitat degradation. We use our findings to propose the first detailed guidelines for common water chemistry variables of potential Ark Sites for the conservation of the species throughout its European range.

  7. Effect of Water Chemistry Variations on Corrosion of Zr-Alloys for BWR Applications

    International Nuclear Information System (INIS)

    Kim, Young-Jin; Yang- Lin, Pi; Lutz, Dan; Kucuk, Aylin; Cheng, Bo

    2012-09-01

    Two reference water chemistry conditions (60 ppb Zn and 60 μg/cm 2 Pt/Rh with either 500 ppb O 2 and 500 ppb H 2 O 2 , or 150 ppb H 2 ) were chosen for testing at 300 deg. C in refreshed autoclaves. For each reference water chemistry, the potential effects due to three chemical impurities of interest to BWRs (33 ppm Na, 10 ppm Li, and 10 ppm EHC fluid) were evaluated. Zircaloy-2 and GNF-Ziron (a Zr-based alloy with higher Fe additions than Zircaloy-2) cladding tubes were tested and the effects of tubing process variation and pre-filming were investigated. Tested channel materials included Zircaloy-2, Zircaloy-4, GNF-Ziron and NSF (a Zr-based alloy with Sn, Nb and Fe additions). The corrosion weight gain and hydrogen absorption were measured up to 12 months of exposure for a given water chemistry condition. Tests under 150 ppb H 2 based water chemistry, with or without chemical impurities, generally resulted in greater amounts of corrosion after 12 month exposure compared with 500 ppb O 2 and 500 ppb H 2 O 2 based water chemistries. Of the added chemical impurities, only 33 ppm Na addition produced slightly increased corrosion. Under various test conditions, the presence of a thin pre-film resulted in some initial corrosion benefits, but the benefits were no longer evident after 12 months exposure; however, slight hydrogen benefits remained. For GNF-Ziron cladding, hydrogen absorption was generally lower compared with similarly processed Zircaloy-2 under 150 ppb H 2 based water chemistry, when corrosion was generally higher. Of the channel material tested, NSF developed the lowest level of hydrogen absorption, particularly under 150 ppb H 2 based water chemistries. (authors)

  8. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Fruzzetti, K.; Garcia, S. [Electric Power Research Inst., Palo Alto, California (United States); Eaker, R. [Richard W. Eaker, LLC, Matthews, North Carolina (United States); Giannelli, J.; Tangen, J. [Finetech, Inc., Parsippany, New Jersey (United States); Gorman, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Sawochka, S. [NWT Corp., San Jose, California (United States)

    2010-07-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  9. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Kim, K.; Fruzzetti, K.; Garcia, S.; Eaker, R.; Giannelli, J.; Tangen, J.; Gorman, J.; Marks, C.; Sawochka, S.

    2010-01-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  10. Radioactive Seepage through Groundwater Flow from the Uranium Mines, Namibia

    Directory of Open Access Journals (Sweden)

    Tamiru Abiye

    2017-02-01

    Full Text Available The study focused on the seepage of uranium from unlined tailing dams into the alluvial aquifer in the Gawib River floodplain in Namibia where the region solely relies on groundwater for its economic activities as a result of arid climatic condition. The study reviewed previous works besides water sample collection and analyses for major ions, metals and environmental isotopes in addition to field tests on physico-chemical parameters (pH, Electrical Conductivity, Redox and T. Estimation of seepage velocity (true velocity of groundwater flow has been conducted in order to understand the extent of radioactive plume transport. The hydrochemistry, stable isotopes and tritium results show that there is uranium contamination from the unlined uranium tailings in the Gawib shallow aquifer system which suggests high permeability of the alluvial aquifer facilitating groundwater flow in the arid region. The radioactive contaminants could spread into the deeper aquifer system through the major structures such as joints and faults. The contamination plume could also spread downstream into the Swakop River unless serious interventions are employed. There is also a very high risk of the plume to reach the Atlantic Ocean through seasonal flash floods that occurs in the area.

  11. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    KAUST Repository

    Cao, Huiluo

    2015-07-21

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  12. Microbial community changes along the active seepage site of one cold seep in the Red Sea.

    KAUST Repository

    Cao, Huiluo; Zhang, Weipeng; Wang, Yong; Qian, Pei-Yuan

    2015-01-01

    The active seepage of the marine cold seeps could be a critical process for the exchange of energy between the submerged geosphere and the sea floor environment through organic-rich fluids, potentially even affecting surrounding microbial habitats. However, few studies have investigated the associated microbial community changes. In the present study, 16S rRNA genes were pyrosequenced to decipher changes in the microbial communities from the Thuwal seepage point in the Red Sea to nearby marine sediments in the brine pool, normal marine sediments and water, and benthic microbial mats. An unexpected number of reads from unclassified groups were detected in these habitats; however, the ecological functions of these groups remain unresolved. Furthermore, ammonia-oxidizing archaeal community structures were investigated using the ammonia monooxygenase subunit A (amoA) gene. Analysis of amoA showed that planktonic marine habitats, including seeps and marine water, hosted archaeal ammonia oxidizers that differed from those in microbial mats and marine sediments, suggesting modifications of the ammonia oxidizing archaeal (AOA) communities along the environmental gradient from active seepage sites to peripheral areas. Changes in the microbial community structure of AOA in different habitats (water vs. sediment) potentially correlated with changes in salinity and oxygen concentrations. Overall, the present results revealed for the first time unanticipated novel microbial groups and changes in the ammonia-oxidizing archaea in response to environmental gradients near the active seepages of a cold seep.

  13. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te 2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF 4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na 3 CrF 6 and Na 5 Cr 3 F 14 , were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li 2 BeF 4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe 2+ and Cr 3+ and the determination of the U 3+ /U 4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF 4 --NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF 4 --NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  14. Water chemistry of surface waters affected by the Fourmile Canyon wildfire, Colorado, 2010-2011

    Science.gov (United States)

    McCleskey, R. Blaine; Writer, Jeffrey H.; Murphy, Sheila F.

    2012-01-01

    In September 2010, the Fourmile Canyon fire burned about 23 percent of the Fourmile Creek watershed in Boulder County, Colo. Water-quality sampling of Fourmile Creek began within a month after the wildfire to assess its effects on surface-water chemistry. Water samples were collected from five sites along Fourmile Creek (above, within, and below the burned area) monthly during base flow, twice weekly during snowmelt runoff, and at higher frequencies during storm events. Stream discharge was also monitored. Water-quality samples were collected less frequently from an additional 6 sites on Fourmile Creek, from 11 tributaries or other inputs, and from 3 sites along Boulder Creek. The pH, electrical conductivity, temperature, specific ultraviolet absorbance, total suspended solids, and concentrations (dissolved and total) of major cations (calcium, magnesium, sodium, and potassium), anions (chloride, sulfate, alkalinity, fluoride, and bromide), nutrients (nitrate, ammonium, and phosphorus), trace metals (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, mercury, lithium, manganese, molybdenum, nickel, lead, rubidium, antimony, selenium, strontium, vanadium, and zinc), and dissolved organic carbon are here reported for 436 samples collected during 2010 and 2011.

  15. Seepage investigation by using Isotope and Geophysical Techniques in Gumti Flood Embankment/Dyke, Comilla

    International Nuclear Information System (INIS)

    Ahmed, N.; Wallin, B. G.; Majumder, R. K.; Mikail, M.; Rahman, M. S.

    2004-06-01

    Gumti Flood Control Embankment/Dyke is vital for irrigation water supply and flood control. Water seepage/leakage and slope failures are the major issues in Gumti earthen dyke. The distinct seepage and slope failure zone were observed at three places (Farizpur, Kathalia and Ebdarpur) along the countryside of left dyke. The isotopic technique has been integrated in the conventional hydrologic investigations. The isotope methodology works essentially by developing a characteristics pattern of the isotopic composition to identify the sources and flow dynamics of seeping/leaking in the dykes. Two sampling campaigns were conducted; one was on October, 2002 and the other was on July, 2003; near the seepage/leakage site for chemical analysis and stable isotopic analysis (''2H and ''1 8 O). Both samplings were done after recession of peak water level in the Gumti river. Interpretation of the hydrochemical data implies that the groundwater near the investigated seepage zones is Na-Ca-HCO 3 type and the river water is Ca-Mg-HCO 3 type. The chlorides content of both groundwater and river water are found mostly similar, indicating mixing between the two water system. The stable isotopes (''2H and ''1 8 O) of groundwater fall on the Meteoric Water Line, ranging the oxygen-18 values from -4.98 to -5.46 per mil and deuterium values from -30.0 to -33.6 per mil. It indicates the recharge from the river water during peak water level in the river Gumti. On the other hand, the stable isotopes of the Gumti river show some evaporation effect, which might have occurred due to stagnation of flowing water in the river. The oxygen-18 and deuterium values for river water range from -3.61 to -4.43 per mil and from -22.30 to -28.48 per mil respectively. These isotope results reflect the hydraulic connectivity between the river water and groundwater through the base of dyke. The earth imaging resistivity survey was carried out in the dry period along the four above mentioned areas of the Gumti

  16. Groundwater flow and heterogeneous discharge into a seepage lake

    DEFF Research Database (Denmark)

    Kazmierczak, Jolanta; Müller, Sascha; Nilsson, B.

    2016-01-01

    with the lake remained under seemingly steady state conditions across seasons, a high spatial and temporal heterogeneity in the discharge to the lake was observed. The results showed that part of the groundwater flowing from the west passes beneath the lake and discharges at the eastern shore, where groundwater......Groundwater discharge into a seepage lake was investigated by combining flux measurements, hydrochemical tracers, geological information, and a telescopic modeling approach using first two-dimensional (2-D) regional then 2-D local flow and flow path models. Discharge measurements and hydrochemical...... tracers supplement each other. Discharge measurements yield flux estimates but rarely provide information about the origin and flow path of the water. Hydrochemical tracers may reveal the origin and flow path of the water but rarely provide any information about the flux. While aquifer interacting...

  17. Stepwise Inquiry into Hard Water in a High School Chemistry Laboratory

    Science.gov (United States)

    Kakisako, Mami; Nishikawa, Kazuyuki; Nakano, Masayoshi; Harada, Kana S.; Tatsuoka, Tomoyuki; Koga, Nobuyoshi

    2016-01-01

    This study focuses on the design of a learning program to introduce complexometric titration as a method for determining water hardness in a high school chemistry laboratory. Students are introduced to the different properties and reactions of hard water in a stepwise manner so that they gain the necessary chemical knowledge and conceptual…

  18. 5. International seminar on primary and secondary side water chemistry of nuclear power plants

    International Nuclear Information System (INIS)

    2001-01-01

    The major subjects of the meetings are: water chemistry of primary and secondary coolant circuits of PWR type reactors (mainly WWER types), corrosion of steam generators, decontamination processes, treatment of radioactive waste waters and related subjects. All the 29 papers were individually indexed and abstracted for the INIS database. (R.P.)

  19. 5. International seminar on primary and secondary side water chemistry of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The major subjects of the meetings are: water chemistry of primary and secondary coolant circuits of PWR type reactors (mainly WWER types), corrosion of steam generators, decontamination processes, treatment of radioactive waste waters and related subjects. All the 29 papers were individually indexed and abstracted for the INIS database. (R.P.)

  20. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    International Nuclear Information System (INIS)

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  1. The hydrochemistry of glacial Ebba River (Petunia Bay, Central Spitsbergen): Groundwater influence on surface water chemistry

    Science.gov (United States)

    Dragon, Krzysztof; Marciniak, Marek; Szpikowski, Józef; Szpikowska, Grażyna; Wawrzyniak, Tomasz

    2015-10-01

    The article presents the investigation of surface water chemistry changes of the glacial Ebba River (Central Spitsbergen) during three melting seasons of 2008, 2009 and 2010. The twice daily water chemistry analyses allow recognition of the surface water chemistry differentiation. The surface water chemistry changes are related to the river discharge and changes in the influence of different water balance components during each melting season. One of the most important process that influence river water component concentration increase is groundwater inflow from active layer occurring on the valley area. The significance of this process is the most important at the end of the melting season when temperatures below 0 °C occur on glaciers (resulting in a slowdown of melting of ice and snow and a smaller recharge of the river by the water from the glaciers) while the flow of groundwater is still active, causing a relatively higher contribution of groundwater to the total river discharge. The findings presented in this paper show that groundwater contribution to the total polar river water balance is more important than previously thought and its recognition allow a better understanding of the hydrological processes occurring in a polar environment.

  2. Water Chemistry Control in Reducing Corrosion and Radiation Exposure at PWR Reactor

    International Nuclear Information System (INIS)

    Febrianto

    2006-01-01

    Water chemistry control plays an important role in relation to plant availability, reliability and occupational radiation exposures. Radiation exposures of nuclear plant workers are determined by the radiation rate dose and by the amount maintenance and repair work time Water chemistry has always been, from beginning of operation of power Pressurized Water Reactor, an important factor in determining the integrity of reactor components, fuel cladding integrity and minimize out of core radiation exposures. For primary system, the parameters to control the quality of water chemistry have been subject to change in time. Reactor water coolant pH need to be optimally controlled and be operated in range pH 6.9 to 7.4. At pH lower than 6.9, cause increasing the radiation exposure level and increasing coolant water pH higher than 7.4 will decrease radiation exposure level but increasing risk to fuel cladding and steam generator tube. Since beginning 90 decade, PWR water coolant pH tend to be operated at pH 7.4. This paper will discuss concerning water chemistry development in reducing corrosion and radiation exposure dose in PWR reactor. (author)

  3. Water chemistry diagnosis system for nuclear power plants

    International Nuclear Information System (INIS)

    Igarashi, Hiroo; Koya, Hiroshi; Osumi, Katsumi.

    1990-01-01

    The water quality control for the BWRs in Japan has advanced rapidly recently, and as to the dose reduction due to the decrease of radioactivity, Japan takes the position leading the world. In the background of the advanced water quality control like this and the increase of nuclear power plants in operation, the automation of arranging a large quantity of water quality control information and the heightening of its reliability have been demanded. Hitachi group developed the water quality synthetic control system which comprises the water quality data management system to process a large quantity of water quality data with a computer and the water quality diagnosis system to evaluate the state of operation of the plants by the minute change of water quality and to carry out the operational guide in the aspect of water quality control. To this water quality diagnosis system, high speed fuzzy inference is applied in order to do rapid diagnosis with fuzzy data. The trend of development of water quality control system, the construction of the water quality synthetic control system, the configuration of the water quality diagnosis system and the development of algorithm and the improvement of the reliability of maintenance are reported. (K.I.)

  4. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  5. Predicted Variations of Water Chemistry in the Primary Coolant Circuit of a Supercritical Water Reactor

    International Nuclear Information System (INIS)

    Yeh, Tsung-Kuang; Wang, Mei-Ya; Liu, Hong-Ming; Lee, Min

    2012-09-01

    In response to the demand over a higher efficiency for a nuclear power plant, various types of Generation IV nuclear reactors have been proposed. One of the new generation reactors adopts supercritical light water as the reactor coolant. While current in-service light water reactors (LWRs) bear an average thermal efficiency of 33%, the thermal efficiency of a supercritical water reactor (SCWR) could generally reach more than 44%. For LWRs, the coolants are oxidizing due to the presence of hydrogen peroxide and oxygen, and the degradation of structural materials has mainly resulted from stress corrosion cracking. Since oxygen is completely soluble in supercritical water, similar or even worse degradation phenomena are expected to appear in the structural and core components of an SCWR. To ensure proper designs of the structural components and suitable selections of the materials to meet the requirements of operation safety, it would be of great importance for the design engineers of an SCWR to be fully aware of the state of water chemistry in the primary coolant circuit (PCC). Since SCWRs are still in the stage of conceptual design and no practical data are available, a computer model was therefore developed for analyzing water chemistry variation and corrosion behavior of metallic materials in the PCC of a conceptual SCWR. In this study, a U.S. designed SCWR with a rated thermal power of 3575 MW and a coolant flow rate of 1843 kg/s was selected for investigating the variations in redox species concentration in the PCC. Our analyses indicated that the [H 2 ] and [H 2 O 2 ] at the core channel were higher than those at the other regions in the PCC of this SCWR. Due to the self-decomposition of H 2 O 2 , the core channel exhibited a lower [O 2 ] than the upper plenum. Because the middle water rod region was in parallel with the core channel region with relatively high dose rates, the [H 2 ] and [H 2 O 2 ] in this region were higher than those in the other regions

  6. Steady flow rate to a partially penetrating well with seepage face in an unconfined aquifer

    Science.gov (United States)

    Behrooz-Koohenjani, Siavash; Samani, Nozar; Kompani-Zare, Mazda

    2011-06-01

    The flow rate to fully screened, partially penetrating wells in an unconfined aquifer is numerically simulated using MODFLOW 2000, taking into account the flow from the seepage face and decrease in saturated thickness of the aquifer towards the well. A simple three-step method is developed to find the top of the seepage face and hence the seepage-face length. The method is verified by comparing it with the results of previous predictive methods. The results show that the component of flow through the seepage face can supply a major portion of the total pumping rate. Variations in flow rate as a function of the penetration degree, elevation of the water level in the well and the distance to the far constant head boundary are investigated and expressed in terms of dimensionless curves and equations. These curves and equations can be used to design the degree of penetration for which the allowable steady pumping rate is attained for a given elevation of water level in the well. The designed degree of penetration or flow rate will assure the sustainability of the aquifer storage, and can be used as a management criterion for issuing drilling well permits by groundwater protection authorities.

  7. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  8. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    Science.gov (United States)

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average

  9. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    Science.gov (United States)

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  10. Development of High Temperature Chemistry Measurement System for Establishment of On-Line Water Chemistry Surveillance Network in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yeon, Jei Won; Kim, Won Ho; Song, Kyu Seok; Joo, Ki Soo; Choi, Ke Chon; Ha, Yeong Keong; Ahn, Hong Joo; Im, Hee Jung; Maeng, Wan Young

    2010-07-01

    An integrated high-temperature water chemistry sensor (pH, E redox ) was developed for the establishment of the on-line water chemistry surveillance system in nuclear power plants. The basic performance of the integrated sensor was confirmed in high-temperature (280 .deg. C, 150kg/m 2 ) lithium borate solutions by using the relationship between the concentration of lithium ion and pH-E redox values. Especially, the effects of various environmental factors such as temperature, pressure, and flow rate on YSZ-based pH electrode were evaluated for ensuring the accuracy of high-temperature pH measurement. And the relationships between each water chemistry factor (pH, redox potential, electrical conductivity) were induced for enhancing the credibility of water chemistry measurement. In addition, on the basis of the evaluation of a nuclear plant design company, we suggested potential installation positions of the measurement system in a nuclear power plant

  11. Road maps on research and development plans for water chemistry of nuclear power systems

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke; Fuse, Motomasa; Takamori, Kenro; Tsuchiuchi, Yoshihiro; Maeda, Noriyoshi

    2008-01-01

    Water chemistry of nuclear power plants has played an important role in reduction of personnel doses, structural materials and fuel integrity assurance, and reduction of radioactive wastes production. Further contributions are requested for advanced utilization of the LWR, advanced fuels and aging management of plants. Since water chemistry has an effect on all structure and materials immersed and at the same time affected by them, the optimum control not sticking to specific issues and covering the whole plant is required for these requests. Taking account of roles and activities of the industry, governmental institutes and academia, road maps on research and development plans for water chemistry were compiled into identified eleven items with targets and counter measures taken, such as common basic technologies, dose reduction, SCC mitigation, fuel cans corrosion/hydrogen absorption mitigation, condition based maintenance and flow accelerated corrosion mitigation. (T. Tanaka)

  12. Variation of the effectiveness of hydrogen water chemistry in a boiling water reactor during power coastdown operations

    International Nuclear Information System (INIS)

    Yeh Tsungkuang; Wang Meiya; Chu, Charles F.; Chang Ching

    2009-01-01

    A theoretical model was adapted to evaluate the impact of power coastdown on the water chemistry of a commercial boiling water reactor (BWR) in this work. In principle, the power density of a nuclear reactor upon a power level decrease would immediately be lowered, followed by water chemistry variations due to reduced radiolysis of water and extended coolant residence times in the core and near-core regions. It is currently a common practice for a commercial BWR to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal feedwater hydrogen concentration may be different after a power coastdown is implemented in a BWR. A computer code DEMACE was used in the current study to investigate the impact of various power coastdown levels on major radiolytic species concentrations and electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic reactor operating under either normal water chemistry or HWC. Our analyses indicated that under a rated core flow rate the chemical species concentrations and the ECP did not vary monotonously with decreases in reactor power level at a fixed feedwater hydrogen concentration. In particular, ECP variations basically followed the patterns of hydrogen peroxide in the select regions and exhibited high values at power level of 90% for Reactor X. (author)

  13. Secondary circuit water chemistry and related problems with SG

    Energy Technology Data Exchange (ETDEWEB)

    Ignatov, V; Ivanov, V [Balakovo Nuclear Power Plant (Russian Federation)

    2001-07-01

    Necessity for SG feed water and blowdown systems modernization Balakovo NPP steam generators PGV-1000M was identified at Units with VVER-1000 during commissioning separational, thermo-hydraulic and thermo-chemical testings. It was discovered, that in zone of 'hot' header coolant salt concentration (concentration of dissolved salts) was almost 2 times more, than salt concentration in blowdown water. A number of chemical testings was performed to investigate and optimize salts distribution in water volume of PGV-1000. (R.P.)

  14. Secondary circuit water chemistry and related problems with SG

    International Nuclear Information System (INIS)

    Ignatov, V.; Ivanov, V.

    2001-01-01

    Necessity for SG feed water and blowdown systems modernization Balakovo NPP steam generators PGV-1000M was identified at Units with VVER-1000 during commissioning separational, thermo-hydraulic and thermo-chemical testings. It was discovered, that in zone of 'hot' header coolant salt concentration (concentration of dissolved salts) was almost 2 times more, than salt concentration in blowdown water. A number of chemical testings was performed to investigate and optimize salts distribution in water volume of PGV-1000. (R.P.)

  15. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    Science.gov (United States)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  16. Technical note: An inorganic water chemistry dataset (1972–2011 ...

    African Journals Online (AJOL)

    A national dataset of inorganic chemical data of surface waters (rivers, lakes, and dams) in South Africa is presented and made freely available. The dataset comprises more than 500 000 complete water analyses from 1972 up to 2011, collected from more than 2 000 sample monitoring stations in South Africa. The dataset ...

  17. IMPACT OF WATER CHEMISTRY ON LOCALIZED CORROSION OF COPPER PITTING

    Science.gov (United States)

    This project will help identify what waters are problematic in causing the corrosion of copper pipes and improve understanding of how water distribution leads to corrosion. This project will also focus on the prevention of pinhole leaks and how to reverse them once they occur. ...

  18. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  19. Study on the influence of water chemistry on fuel cladding behaviour of LWR in Japan

    International Nuclear Information System (INIS)

    Mishima, Y.

    1983-01-01

    This article presents the results of the study on the influence of water chemistry on fuel cladding behaviour, which has been performed for more than ten years on BWRs and PWRs in Japan. The post irradiation examination (P.I.E.) program of commercial reactor fuel assembly which was explained at Tokyo meeting in 1981 includes an investigation of the characteristics and build-up conditions of crud deposited on mainly BWR fuel cladding. This article also provides a summary of the results of the investigation and shows how the results are utilized for establishing effective water chemistry measures

  20. Fog water chemistry in the Namib desert, Namibia

    Science.gov (United States)

    Eckardt, Frank D.; Schemenauer, Robert S.

    This study documents the ion concentrations and ion enrichment relative to sea water, in Namib Desert fog water, with the purpose of establishing its suitability for future fogwater collection schemes, while also examining claims that Namib Desert fog water carries exceptionally high concentrations of sulphate, which may be responsible for the formation of gypsum deposits in the desert. The work suggests that Namibian fog water is at least as clean as has been reported from other coastal deserts in South America and Arabia, and provides a source of very clean water for the coastal desert region of south-western Africa. It does not appear that fog is an efficient sulphur source for the formation of the gypsum deposits, unless rare events with high concentrations of marine sulphur compounds occur.

  1. Early hydrogen water chemistry in the boiling water reactor: industry-first demonstration

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Odell, Andrew D.; Giannelli, Joseph F.

    2012-09-01

    Hydrogen injection into the BWR feedwater during power operation has resulted in significant IGSCC reductions. Further, noble metal application (NMCA) during shutdown or On-line NobleChem TM (OLNC) during power operation has greatly reduced the required hydrogen injection rate by catalyzing the hydrogen-oxygen reaction on the metal surfaces, reducing the electrochemical corrosion potential (ECP) at operating temperature to well below the mitigation ECP of -230 mV (SHE) at reactor water hydrogen to oxidant (O 2 + H 2 O 2 ) molar ratios of ≥2. Since IGSCC rates increase markedly at reduced temperature, and the potential for crack initiation exists, additional crack mitigation was desired. To close this gap in mitigation, the EPRI BWR Startup ECP Reduction research and development program commenced in 2008 to undertake laboratory and feasibility studies for adding a reductant to the reactor water system during start-ups. Under this program, ECP reductions of noble metal treated stainless steel sufficient to mitigate IGSCC at startup temperatures were achieved in the laboratory in the absence of radiation at hydrogen, hydrazine and carbohydrazide to oxygen molar ratios of ≥ 2, ≥1.5 and ≥0.7, respectively. Based on the familiarity of operating BWRs with using hydrogen, a demonstration of hydrogen injection during the startup of an actual BWR using noble metals was planned. This process, named EHWC (Early Hydrogen Water Chemistry), differs from the HDS (Hydrogen During Startup) approach that has been successful in Japan in that HDS injects sufficient hydrogen for bulk oxidant reduction whereas EHWC injects a smaller amount of hydrogen, sufficient to achieve a hydrogen:oxidant molar ratio of at least two at noble metal treated surfaces. The industry-first EHWC demonstration was performed at Exelon's Peach Bottom 3 nuclear power plant in October 2011. Prior to EHWC, Peach Bottom 3 had one NMCA (October 1999) and five annual OLNC applications (starting in 2007

  2. Control and prevention of seepage from uranium mill waste disposal facilities

    International Nuclear Information System (INIS)

    Williams, R.E.

    1978-01-01

    This paper constitutes an analysis of the technologies which are available for the prevention of movement of waste waters out of uranium mill waste disposal facilities via sub-surface routes. Hydrogeologic criteria for potential uranium mill waste disposal sites and mathematical modeling of contaminant migration in ground water are presented. Methods for prevention of seepage from uranium mill waste disposal facilities are investigated: liners, clay seals, synthetic polymeric membranes (PVC, polyethylene, chlorinated polyethylene, hypalon, butyl rubber, neoprene, elasticized polyolefin)

  3. Water chemistry control of PWR nuclear power plant

    International Nuclear Information System (INIS)

    Hino, Yuichi; Makino, Ichiro; Yamauchi, Sumio; Fukuda, Fumihito.

    1992-01-01

    In PWR power plants, the primary system taking heat out of nuclear reactors and the secondary system generating steam and driving turbines are completely separated by steam generators, accordingly, by mutually independent water treatment, both systems are to be maintained in the optimal conditions. Namely, primary system is the closed water circulation circuit of simple liquid phase though under high temperature, high pressure condition, therefore, water shows the stable physical and chemical properties, and the minute water treatment for restraining the corrosion of structural materials and reducing radioactivity can be done. Secondary system is similar to the condensate and feedwater system of thermal power plants, and is the circuit for liquid-vapor two-phase transformation, but due to the local concentration of impurities by evaporation, the strict requirement is set for secondary water quality. However, secondary system can be treated in the state without radioactivity, and this is a great merit. The outline, basic concept and execution of primary water quality control, and the outline, concept, control criteria, facilities and execution of secondary water quality control are reported. (K.I.)

  4. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    Science.gov (United States)

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-05

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

  5. Interstitial water chemistry and nutrients fluxes from tropical intertidal sediment

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Zingde, M.D.

    temporal changes in relation to their con- centrations in the overlying creek water. The high chlorinity creek water infiltrating in the bed after September, progres- sively pushed down the monsoonal low chlorinity water trapped in the sediment resulting....4-2.5%), the trend of decreasing con- centration with depth indicated some accumulation in the sediment over the years. The 1.0-2.5% Corgin core 2 commonly occurs in silty-clay sediment along the centra] west coast of India16 even in areas where there is no apparent...

  6. Insight into Chemistry on Cloud/Aerosol Water Surfaces.

    Science.gov (United States)

    Zhong, Jie; Kumar, Manoj; Francisco, Joseph S; Zeng, Xiao Cheng

    2018-05-15

    Cloud/aerosol water surfaces exert significant influence over atmospheric chemical processes. Atmospheric processes at the water surface are observed to follow mechanisms that are quite different from those in the gas phase. This Account summarizes our recent findings of new reaction pathways on the water surface. We have studied these surface reactions using Born-Oppenheimer molecular dynamics simulations. These studies provide useful information on the reaction time scale, the underlying mechanism of surface reactions, and the dynamic behavior of the product formed on the aqueous surface. According to these studies, the aerosol water surfaces confine the atmospheric species into a specific orientation depending on the hydrophilicity of atmospheric species or the hydrogen-bonding interactions between atmospheric species and interfacial water. As a result, atmospheric species are activated toward a particular reaction on the aerosol water surface. For example, the simplest Criegee intermediate (CH 2 OO) exhibits high reactivity toward the interfacial water and hydrogen sulfide, with the reaction times being a few picoseconds, 2-3 orders of magnitude faster than that in the gas phase. The presence of interfacial water molecules induces proton-transfer-based stepwise pathways for these reactions, which are not possible in the gas phase. The strong hydrophobicity of methyl substituents in larger Criegee intermediates (>C1), such as CH 3 CHOO and (CH 3 ) 2 COO, blocks the formation of the necessary prereaction complexes for the Criegee-water reaction to occur at the water droplet surface, which lowers their proton-transfer ability and hampers the reaction. The aerosol water surface provides a solvent medium for acids (e.g., HNO 3 and HCOOH) to participate in reactions via mechanisms that are different from those in the gas and bulk aqueous phases. For example, the anti-CH 3 CHOO-HNO 3 reaction in the gas phase follows a direct reaction between anti-CH 3 CHOO and HNO 3

  7. Water chemistry data acquisition, processing, evaluation and diagnostic systems in Light Water Reactors: Future improvement of plant reliability and safety

    International Nuclear Information System (INIS)

    Uchida, S.; Takiguchi, H.; Ishigure, K.

    2006-01-01

    Data acquisition, processing and evaluation systems have been applied in major Japanese PWRs and BWRs to provide (1) reliable and quick data acquisition with manpower savings in plant chemical laboratories and (2) smooth and reliable information transfer among chemists, plant operators, and supervisors. Data acquisition systems in plants consist of automatic and semi-automatic instruments for chemical analyses, e. g., X-ray fluorescence analysis and ion chromatography, while data processing systems consist of PC base-sub-systems, e.g., data storage, reliability evaluation, clear display, and document preparation for understanding the plant own water chemistry trends. Precise and reliable evaluations of water chemistry data are required in order to improve plant reliability and safety. For this, quality assurance of the water chemistry data acquisition system is needed. At the same time, theoretical models are being applied to bridge the gaps between measured water chemistry data and the information desired to understand the interaction of materials and cooling water in plants. Major models which have already been applied for plant evaluation are: (1) water radiolysis models for BWRs and PWRs; (2) crevice radiolysis model for SCC in BWRs; and (3) crevice pH model for SG tubing in PWRs. High temperature water chemistry sensors and automatic plant diagnostic systems have been applied in only restricted areas. ECP sensors are gaining popularity as tools to determine the effects of hydrogen injection in BWR systems. Automatic plant diagnostic systems based on artificial intelligence will be more popular after having sufficient experience with off line diagnostic systems. (author)

  8. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    Science.gov (United States)

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  9. Underlying mechanism in the water chemistry of nuclear systems

    International Nuclear Information System (INIS)

    Walton, G.N.

    1978-01-01

    The equilibrium between dissolved hydrogen and oxygen in the molecular decomposition of water, and the equilibrium between hydrogen ions and hydroxyl ions in the ionic dissociation of water, both constitute important underlying mechanisms in the corrosion behaviour of water. The two equilibria, and the rates of the reactions involved in water and steam, will be compared and contrasted as a function of temperature, pressure and radiation. The effects of the equilibria on the hydrolysis and solubility of ferrous and ferric ions, and the ions of other metals, will be discussed in relation to the control of conditions in the coolant circuits of nuclear reactors. A third mechanism to discussed is the electrochemical exchange reactions that can contribute to the contamination of circuits. (author)

  10. A preliminary analysis of water chemistry of the Mkuze Wetland ...

    African Journals Online (AJOL)

    drinie

    2002-01-01

    Jan 1, 2002 ... The Mkuze Wetland System in northern KwaZulu-Natal constitutes an ... water, groundwater, pan and reed swamp sites, as well as a rainwater sample. ... runoff that drains catchments, whereas aquatic ecosystems are.

  11. Effects of selected water chemistry variables on copper pitting propagation in potable water

    International Nuclear Information System (INIS)

    Ha Hung; Taxen, Claes; Williams, Keith; Scully, John

    2011-01-01

    Highlights: → The effects of water composition on pit propagation kinetics on Cu were separated from pit initiation and stabilization using the artificial pit method in a range of dilute HCO 3 - , SO 4 2- and Cl - -containing waters. → The effective polarization and Ohmic resistance of pits were lower in SO4 2- -containing solutions and greater in Cl - -containing solutions. → Relationship between the solution composition and the corrosion product identity and morphology were found. → These, in turn controlled the corrosion product Ohmic resistance and subsequently the pit growth rate. - Abstract: The pit propagation behavior of copper (UNS C11000) was investigated from an electrochemical perspective using the artificial pit method. Pit growth was studied systematically in a range of HCO 3 - , SO 4 2- and Cl - containing-waters at various concentrations. Pit propagation was mediated by the nature of the corrosion products formed both inside and over the pit mouth (i.e., cap). Certain water chemistry concentrations such as those high in sulfate were found to promote fast pitting that could be sustained over long times at a fixed applied potential but gradually stifled in all but the lowest concentration solutions. In contrast, Cl - containing waters without sulfate ions resulted in slower pit growth and eventual repassivation. These observations were interpreted through understanding of the identity, amount and porosity of corrosion products formed inside and over pits. These factors controlled their resistive nature as characterized using electrochemical impedance spectroscopy. A finite element model (FEM) was developed which included copper oxidation kinetics, transport by migration and diffusion, Cu(I) and Cu(II) solid corrosion product formation and porosity governed by equilibrium thermodynamics and a saturation index, as well as pit current and depth of penetration. The findings of the modeling were in good agreement with artificial pit experiments

  12. Concrete durability: physical chemistry of the water attack

    International Nuclear Information System (INIS)

    Faucon, P.

    1997-01-01

    Cement paste constitutes an basic medium, thermodynamically stable for high pH's. For this reason, water constitutes an aggressive environment. For hydraulic structures, or nuclear waste disposal, water must be considered as a 'chemical loading'. In the short- and medium-term water-degradation of cement paste is principally due to transport of matter between the healthy zone and the aggressive solution through diffusion of ionic species from the interstitial solution of the cement paste. In the long-term, dissolution of the surface may occur. Various cement pastes were prepared and leached with continually demineralized water. After a critical time, which depends on the type of paste, the dissolution of the surface layer in contact with water will control the degradation kinetics. The diffusive and chemical properties of the degraded layer are therefore fundamental for the prediction of the long-term behaviour of concrete in water. 29 Si Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) combined with 27 A1 MAS NMR and 57 Fe Moessbauer spectroscopy indicate that the superficial layer is formed by a CSH with a molecular structure near from the tobermorite mineral. Nuclear magnetic resonance techniques allow us to demonstrate the fundamental role of cationic substitutions occurring in the CSH during degradation on the superficial layer solubility. Our experimental results were used to model the cement paste behaviour taking into account the diffusion and the dissolution of the material. (author)

  13. Study of seepage losses from irrigation canals using radioactive tracer technique

    International Nuclear Information System (INIS)

    Ahmad, M.; Tariq, J.A.; Rashid, A.; Rafiq, M.; Iqbal, N.

    2004-06-01

    Pakistan has an intricate irrigation system comprising a huge network of canals. A significant fraction of water in irrigation canals is lost through seepage, which is further responsible for water logging and salinity in some areas. Government is considering lining of irrigation canals to overcome this twin menace. Due to involvement of huge costs, highly pervious sections where the seepage rate is appreciably high, are needed to be identified for planning and execution of remedial actions to eliminate or minimize seepage losses. The conventional methods of measuring seepage rate from canals are limited to 'ponding' and 'inflow-outflow' methods. The ponding method is usually restricted to small canals because of the costly bulkheads and water requirement, unaffordable closure of canal, non representation of the line source and variation in the rate of seepage loss with time due to the sealing effects of fine sediments settling out. Inaccurate measurement of discharge under field conditions and complication due to diversion do not favour the inflow-outflow method. It is believed that the analytical methods represent the most accurate and convenient means of determining seepage values using accurate insitu hydraulic conductivity of the subsoil determined by radiotracer, geometry of the canal and position of the groundwater. As a practical application, radiotracer experiments were carried out at Rakh branch canal near Sukhiki, District Hafizabad (Punjab) to determine groundwater filtration velocity by single well point dilution technique using Technetium-99m (sup 99m/Tc) radioactive tracer, Hydraulic conductivity (determined from filtration velocity and hydraulic gradient) and canal parameters were used in the parametric equation of parachute curve to estimate the seepage rate. The average seepage rate was 4.05 cubic meter per day per meter length of the canal (equivalent to 3.795 cusec per million square feet or 1.157 cumec per second per million square meter of

  14. Coagulation chemistries for silica removal from cooling tower water.

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  15. Selection criteria for the best secondary water chemistry

    International Nuclear Information System (INIS)

    Nordmann, F.; Fiquet, J.M.

    1996-01-01

    This paper describes, for PWR plants, the approach for selecting the best chemistry-pH, amine, corrosion inhibitors-according to the secondary system characteristics, such as presence or not of copper alloys, steam generator tubing alloy, tube support plate design, sludge pile importance. The impact of condensate polisher, sludge lancing, chemical cleaning, as well as other ways of eliminating undesirable compounds or mitigating them are also discussed. For plants with simultaneous presence of carbon steel and copper alloys, alternate amines like morpholine, or new reagents such as ethanolamine (ETA), can be selected to manage erosion-corrosion of carbon steel and decrease corrosion transport, at a pH acceptable for copper alloys (9.2 at 25 C). In more recent units, with an all ferrous system, a high pH operation, with only hydrazine addition, the easiest way, or with combined hydrazine and morpholine or ETA will be of some benefit against steam generator corrosion. When Alloy 600 has been selected, inhibitors such as boric acid, or maybe titanium oxide or cerium in the future, needs to be added in steam generators in order to decrease intergranular corrosion progression. In addition, caustic and lead contaminations must be strictly avoided, while sludge and deposits will be eliminated by lancing and chemical cleaning, if necessary. (orig.)

  16. Structural material anomaly detection system using water chemistry data, (7)

    International Nuclear Information System (INIS)

    Nagase, Makoto; Uchida, Shunsuke; Asakura, Yamato; Ohsumi, Katsumi.

    1993-01-01

    A method to detect small changes in water quality and diagnose their causes by analyzing on-line conductivity and pH data was proposed. Laboratory tests showed that effective noise reduction of measured on-line data could be got by using median filter to detect small changes of conductivity ; a relative change of 0.001 μS/cm was distinguishable. By simulating the changes of pH and conductivity in the reactor water against a small concentration change of sodium ion or sulfate ion in the feedwater, it was found that an adequate elapsed time for the diagnosis was 4 h from the start of the concentration change. A conductivity difference of 0.001 μS/cm in the reactor water made it theoretically possible to distinguish between a sodium ion concentration change of 4.6 ppt and a sulfate ion concentration change of 9.6 ppt in the feedwater. (author)

  17. COMPREHENSIVE ANALYSIS ON SEEPAGE AND STRUCTURAL STABILITY OF EARTH-ROCK DAM: A CASE STUDY OF XIQUANYAN DAM IN CHINA

    Directory of Open Access Journals (Sweden)

    Qingqing GUO

    2016-07-01

    Full Text Available Earth-rock dam is commonly used in the high-dam engineering around the world. It has been widely accepted that the analysis on structural and seepage stability plays a very important role, and it is necessary to take into account while designing the earth-rock dam. In performing the analysis of structural and seepage stability, many remarkable methods are available at current stage. However, there are still some important issues remaining unsolved, including: (1 Finite element methods (FEMs is a means of solutions to analysis seepage process, but it is often a difficult task to determine the so-called seepage coefficient, because the common-used water injection test is limited in the practical work due to the high cost and complex procedure. (2 It has long been discussed that the key parameters for structural stability analysis show a significant spatial and temporal variations. It may be partly explained by the inhomogeneous dam-filling during construction work and the developing seepage process. The consequence is that one constant value of the parameter cannot represent the above variations. In this context, we solve the above issues and introduce the solution with a practical earth-rock dam project. For determining the seepage coefficient, the data from the piezo metric tube is used to calculate the potential value, based on which the seepage coefficient can be back-analysed. Then the seepage field, as well as the seepage stability are numerically analysed using the FEM-based SEEP/W program. As to the structural safety, we take into account the spatial and temporal variations of the key parameters, and incorporate the Monte-Carlo simulation method into the commonly used M-P method to calculate the frequency distribution of the obtained structural safety factor. In this way, the structural and seepage safety can be well analysed. This study is also beneficial to provide a mature method and a theoretical insight into the earth-rock dam design

  18. Pore-water chemistry explains zinc phytotoxicity in soil.

    Science.gov (United States)

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  20. Effects of watershed experiments on water chemistry at the Marcell Experimental Forest. Chapter 14.

    Science.gov (United States)

    Stephen D. Sebestyen; Elon S. Verry

    2011-01-01

    The Marcell Experimental Forest (MEF) was established during the 1960s to study the hydrology and ecology of lowland watersheds where upland mineral soils drain to central peatlands (Boelter and Verry 1977). The effects of seven large-scale manipulations on water chemistry have been studied on the MEF watersheds and the data now span up to four decades. In this chapter...

  1. Update on materials performance and electrochemistry in hydrogen water chemistry at Dresden-2 BWR

    International Nuclear Information System (INIS)

    Indig, M.E.; Weber, J.E.; Davis, R.B.; Gordon, B.M.

    1985-01-01

    Previous studies performed in 1982 indicated that if sufficient hydrogen was injected into the Dresden-2 BWR, IGSCC of sensitized austenitic stainless steel was mitigated. The present series of experiments were aimed at verification of the above finding, determining how much time off hydrogen water chemistry (HWC) could be tolerated and how HWC affected pre-existing cracks

  2. Soil water and xylem chemistry in declining sugar maple stands in Pennsylvania

    Science.gov (United States)

    David R. DeWalle; Bryan R. Swistock; William E. Sharpe

    1999-01-01

    Evidence is accumulating that decline of sugar maple, Acer saccharum Marsh., in northern Pennsylvania may be related to overall site fertility as reflected in the chemistry of soil water and bolewood xylem. In this paper we discuss factors related to varying site fertility, including effects of soil liming, past glacialion, topographic position and...

  3. Water chemistry of secondary circuit and SG currently status NPP 'Kozloduy' 3

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, K. [Kozloduy NPP (Bulgaria)

    2002-07-01

    The author gives a historical review of the secondary water chemistry regimes of NPP Kozloduy Unit 3. Results of eddy current inspection on the steam generator of Unit 5 and quantity of the deposits on the surfaces of steam generator during 1989-2001 inspections are given. (uke)

  4. The story of the radiation chemistry of water

    International Nuclear Information System (INIS)

    Allen, A.O.

    1989-01-01

    This chapter is an account of the author's involvement in the atomic bomb project at the University of Chicago in 1942. He was assigned to study the effects of radiation on water with reference to its use for cooling a plutonium producing reactor. (UK)

  5. 91-104 Bottom Sediment Chemistry, Nutrient Balance, and Water ...

    African Journals Online (AJOL)

    USER

    (SiO2), aluminium oxide (Al2O3), ferric oxide (Fe2O3), calcium oxide (CaO), copper (Cu), phosphorus. (P) and organic carbon (C) was ... internal storage for incoming materials and can provide ..... of iron in the sediments should bind the phosphorus and limit the .... birds which heavily depend on the water bodies for food.

  6. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry.

    Science.gov (United States)

    Cremer, Paul S; Flood, Amar H; Gibb, Bruce C; Mobley, David L

    2017-12-19

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists - with their expertise in macrocyclic synthesis and measuring supramolecular interactions - have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  7. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry

    Science.gov (United States)

    Cremer, Paul S.; Flood, Amar H.; Gibb, Bruce C.; Mobley, David L.

    2018-01-01

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists -- with their expertise in macrocyclic synthesis and measuring supramolecular interactions -- have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  8. Cycle water chemistry based on film forming amines at power plants: evaluation of technical guidance documents

    Science.gov (United States)

    Dyachenko, F. V.; Petrova, T. I.

    2017-11-01

    Efficiency and reliability of the equipment in fossil power plants as well as in combined cycle power plants depend on the corrosion processes and deposit formation in steam/water circuit. In order to decrease these processes different water chemistries are used. Today the great attention is being attracted to the application of film forming amines and film forming amine products. The International Association for the Properties of Water and Steam (IAPWS) consolidated the information from all over the World, and based on the research studies and operating experience of researchers and engineers from 21 countries, developed and authorized the Technical Guidance Document: “Application of Film Forming Amines in Fossil, Combined Cycle, and Biomass Power Plants” in 2016. This article describe Russian and International technical guidance documents for the cycle water chemistries based on film forming amines at fossil and combined cycle power plants.

  9. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Shunsuke Uchida; Eishi Ibe; Katsumi Ohsumi

    1994-01-01

    Application of hydrogen water chemistry to moderate corrosive circumstances is a promising approach to preserve structural integrities of major components and structures in the primary cooling system of BWRs. The benefits of HWC application are usually accompanied by several disadvantages. After evaluating merits and demerits of HWC application, it is concluded that optimal amounts of hydrogen injected into the feed water can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. (authors). 1 fig., 4 refs

  10. Photocatalytic water splitting with acridine dyes: Guidelines from computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojun [Department of Chemistry, Technical University of Munich, D-85747 Garching (Germany); Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Karsili, Tolga N.V. [Department of Chemistry, Technical University of Munich, D-85747 Garching (Germany); Sobolewski, Andrzej L. [Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw (Poland); Domcke, Wolfgang, E-mail: domcke@ch.tum.de [Department of Chemistry, Technical University of Munich, D-85747 Garching (Germany)

    2016-01-13

    Highlights: • Photoexcited acridine dyes are able to abstract a hydrogen atom from water. • Photodetachment of the hydrogen atom from the radicals regenerates the catalyzer. • The reaction mechanisms were characterized with ab initio electronic-structure calculations. • The chromophores and radicals absorb within the range of the solar spectrum. - Abstract: The photocatalytic splitting of water into H{sup ·} and OH{sup ·} radicals in hydrogen-bonded chromophore-water complexes has been explored with computational methods for the chromophores acridine orange (AO) and benzacridine (BA). These dyes are strong absorbers within the range of the solar spectrum. It is shown that low-lying charge-transfer excited states exist in the hydrogen-bonded AO−H{sub 2}O and BA−H{sub 2}O complexes which drive the transfer of a proton from water to the chromophore, which results in AOH{sup ·}−OH{sup ·} or BAH{sup ·}−OH{sup ·} biradicals. The AOH{sup ·} and BAH{sup ·} radicals possess bright ππ{sup ∗} excited states with vertical excitation energies near 3.0 eV which are predissociated by a low-lying repulsive πσ{sup ∗} state. The conical intersections of the πσ{sup ∗} state with the ππ{sup ∗} excited states and the ground state provide a mechanism for the photodetachment of the H-atom by a second photon. Our results indicate that AO and BA are promising chromophores for water splitting with visible light.

  11. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Eiichi [Omiya Technical Institute, Saitama-ken (Japan)

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  12. Contribution to the Chemistry of Plasma-Activated Water

    Science.gov (United States)

    Julák, J.; Hujacová, A.; Scholtz, V.; Khun, J.; Holada, K.

    2018-01-01

    Plasma-activated water (PAW) was prepared by exposure to nonthermal plasma produced by a positive dc corona discharge in a transient spark regime. The activation of water was performed in atmosphere of various surrounding gases (air, nitrogen, carbon dioxide, and argon). This PAW retains its biological activity, measured on the mouse neuroblastoma cells culture, even after storage for more than one year. The highest hydrogen peroxide content was found for PAWs prepared in the atmospheres of argon or carbon dioxide, whereas the PAWs prepared in air and nitrogen exhibited lower hydrogen peroxide content. The acidity of PAWs mediated by nitric and nitrous acid formation displayed an opposite trend. It is concluded that the long-lasting biological effect of PAW is mediated by hydrogen peroxide in acid milieu only, whereas other possible active components decompose rapidly.

  13. Water chemistry and phytoplankton field and laboratory procedures

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.O.; Simmons, M.S. (eds.)

    1979-12-01

    The purpose of this manual is to serve as a guide for persons using these techniques in water quality studies and as a written record of the methods used in this laboratory at this time. It is anticipated that the manual will be updated frequently as new methods are added and the present ones are further refined. The present methods are all used routinely and have been in regular use for a year or longer. This manual is specifically written as a guide for the collection and analysis of lake water samples from the Laurentian Great Lakes. However, all of the analytical methods are easily adapted for laboratory culture or small lake studies. The descriptions contained in this manual are designed primarily as users guides oriented to the equipment available at the Great Lakes Research Division, and as most of the methods are taken from the literature, the reader is referred to the original articles for a more detailed discussion of the methods.

  14. Fasting conditions: Influence of water intake on clinical chemistry analytes.

    Science.gov (United States)

    Benozzi, Silvia F; Unger, Gisela; Campion, Amparo; Pennacchiotti, Graciela L

    2018-02-15

    Currently available recommendations regarding fasting requirements before phlebotomy do not specify any maximum water intake volume permitted during the fasting period. The aim was to study the effects of 300 mL water intake 1 h before phlebotomy on specific analytes. Blood was collected from 20 women (median age (min-max): 24 (22 - 50) years) in basal state (T 0 ) and 1 h after 300 mL water intake (T 1 ). Glucose, total proteins (TP), urea, creatinine, cystatin C, total bilirubin (BT), total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides (Tg), uric acid (UA), high-sensitivity C-reactive protein, gamma-glutamyl transferase (GGT), aspartate-aminotransferase (AST), alanine-aminotransferase and lactate-dehydrogenase (LD) were studied. Results were analyzed using Wilcoxon test. Mean difference (%) was calculated for each analyte and was further compared with reference change value (RCV). Only mean differences (%) higher than RCV were considered clinically significant. Significant differences (median T 0 vs median T 1 , P) were observed for TP (73 vs 74 g/L, 0.001); urea (4.08 vs 4.16 mmol/L, 0.010); BT (12 vs 13 µmol/L, 0.021); total cholesterol (4.9 vs 4.9 mmol/L, 0.042); Tg (1.05 vs 1.06 mmol/L, 0.002); UA (260 vs 270 µmol/L, 0.006); GGT (12 vs 12 U/L, 0.046); AST (22 vs 24 U/L, 0.001); and LD (364 vs 386 U/L, 0.001). Although the differences observed were statistically significant, they were not indicative of clinically significant changes. A water intake of 300 mL 1 h prior to phlebotomy does not interfere with the analytes studied in the present work.

  15. Bottom Sediment Chemistry, Nutrient Balance, and Water Birds in ...

    African Journals Online (AJOL)

    Water bird characteristics, nutrient loadings, and the levels of bottom sediment silicon oxide (SiO2), aluminium oxide (Al2O3), ferric oxide (Fe2O3), calcium oxide (CaO), copper (Cu), phosphorus (P) and organic carbon (C) was studied in eight high altitude (2040-2640m) small shallow (0.065-0.249 km2; 0.9-3.1 m) ...

  16. Advanced analytical techniques for boiling water reactor chemistry control

    Energy Technology Data Exchange (ETDEWEB)

    Alder, H P; Schenker, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-02-01

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs.

  17. Chemistry in water reactors: operating experience and new developments. 2 volumes

    International Nuclear Information System (INIS)

    1994-01-01

    These proceedings of the International conference on chemistry in water reactors (Operating experience and new developments), Volume 1, are divided into 8 sessions bearing on: (session 1) Primary coolant activity, corrosion products (5 conferences), (session 2) Dose reduction (4 conferences), (session 3) New developments (4 conferences), poster session: Primary coolant chemistry (16 posters), (session 4) Decontamination (5 conferences), poster session (2 posters), (session 5) BWR-Operating experience (3 conferences), (session 6) BWR-Modelling of operating experience (4 conferences), (session 7) BWR-Basic studies (4 conferences), (session 8) BWR-New technologies (3 conferences)

  18. Irradiation capability of Japanese materials test reactor for water chemistry experiments

    International Nuclear Information System (INIS)

    Hanawa, Satoshi; Hata, Kuniki; Chimi, Yasuhiro; Nishiyama, Yutaka; Nakamura, Takehiko

    2012-09-01

    Appropriate understanding of water chemistry in the core of LWRs is essential as chemical species generated due to water radiolysis by neutron and gamma-ray irradiation govern corrosive environment of structural materials in the core and its periphery, causing material degradation such as stress corrosion cracking. Theoretical model calculation such as water radiolysis calculation gives comprehensive understanding of water chemistry at irradiation field where we cannot directly monitor. For enhancement of the technology, accuracy verification of theoretical models under wide range of irradiation conditions, i.e. dose rate, temperature etc., with well quantified in-pile measurement data is essential. Japan Atomic Energy Agency (JAEA) has decided to launch water chemistry experiments for obtaining data that applicable to model verification as well as model benchmarking, by using an in-pile loop which will be installed in the Japan Materials Testing Reactor (JMTR). In order to clarify the irradiation capability of the JMTR for water chemistry experiments, preliminary investigations by water radiolysis / ECP model calculations were performed. One of the important irradiation conditions for the experiments, i.e. dose rate by neutron and gamma-ray, can be controlled by selecting irradiation position in the core. In this preliminary study, several representative irradiation positions that cover from highest to low absorption dose rate were chosen and absorption dose rate at the irradiation positions were evaluated by MCNP calculations. As a result of the calculations, it became clear that the JMTR could provide the irradiation conditions close to the BWR. The calculated absorption dose rate at each irradiation position was provided to water radiolysis calculations. The radiolysis calculations were performed under various conditions by changing absorption dose rate, water chemistry of feeding water etc. parametrically. Qualitatively, the concentration of H 2 O 2 , O 2 and

  19. A spatial and seasonal assessment of river water chemistry across North West England.

    Science.gov (United States)

    Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C

    2010-01-15

    This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important

  20. The role of water chemistry and geomorphic control in the presence of Didymosphenia geminata in Quebec

    Science.gov (United States)

    Gillis, C.; Gabor, R. S.; Cullis, J. D.; Ran, L.; Hassan, M. A.

    2010-12-01

    Didymosphenia geminata (didymo), an invasive diatom, was first officially observed and identified in the Matapedia River in Eastern Quebec in July 2006. This Atlantic salmon fishing river has several characteristics shown to favor didymo's ability to form thick, extensive benthic mats, including stable flow and oligotrophic nutrient conditions. Since the incursion, rapid colonization and inter-catchment transfer processes were observed, notably in surrounding watersheds on the Gaspé Peninsula as well as in northern New-Brunswick. All affected watersheds share favorable characteristics for didymo growth, including high light, low nutrient waters, and stable substrate. The nearby North Shore of the St. Lawrence, which also contains rivers with conditions that would favor didymo growth, has not yet shown didymo presence. This system provides a comparison to identify necessary parameters for didymo growth, with differences primarily due to geology-driven water chemistry. Pre-incursion water chemistry was compared between the two regions. Rivers in the region where didymo is present displayed a high alkalinity and corresponding higher pH, due to increases concentrations of magnesium and calcium, than rivers in regions where didymo has not appeared. Also, rivers with didymo show a lower amount of color-causing compounds, such as organic carbon, and clearer water, which supports the theory that high light levels encourage didymo growth. In addition to water chemistry, channel morphology, bed stability and flow patterns are also believed to be key elements in determining the presence of this benthic diatom. In 2007, channel morphology, bed texture, bankfull depth and width, local bed slope and didymo presence were surveyed on a 65 km stretch of the Matapedia River. Relative frequency of didymo presence showed that didymo blooms are most likely to appear in cobble-riffles than in any other morphologies. In fact, cobble riffles promote didymo establishment due to shallow

  1. Kinugasa reactions in water: from green chemistry to bioorthogonal labelling.

    Science.gov (United States)

    Chigrinova, Mariya; MacKenzie, Douglas A; Sherratt, Allison R; Cheung, Lawrence L W; Pezacki, John Paul; Pezacki, Paul

    2015-04-16

    The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I) acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.

  2. Kinugasa Reactions in Water: From Green Chemistry to Bioorthogonal Labelling

    Directory of Open Access Journals (Sweden)

    Mariya Chigrinova

    2015-04-01

    Full Text Available The Kinugasa reaction has become an efficient method for the direct synthesis of β-lactams from substituted nitrones and copper(I acetylides. In recent years, the reaction scope has been expanded to include the use of water as the solvent, and with micelle-promoted [3+2] cycloadditions followed by rearrangement furnishing high yields of β-lactams. The high yields of stable products under aqueous conditions render the modified Kinugasa reaction amenable to metabolic labelling and bioorthogonal applications. Herein, the development of methods for use of the Kinugasa reaction in aqueous media is reviewed, with emphasis on its potential use as a bioorthogonal coupling strategy.

  3. On-line water chemistry monitoring for corrosion prevention in ageing nuclear power plants

    International Nuclear Information System (INIS)

    Aaltonen, P.; Jaernstroem, R.; Kvarnstroem, R.; Chanfreau, E.

    1991-01-01

    General corrosion and consequently radiation buildup in nuclear power plants are controlled by the selection of material and the chemical environment. In power plants useful information concerning the kinetics of chemical reactions can be obtained by using high temperature, high pressure measurements for pH, conductivity and electrochemical potentials (ECP) of construction materials or redox-potential. The rates of general or uniform corrosion of materials in contact with the primary coolant are quite low and do not compromise the integrity of the primary circuit. Chemistry control should be applied in the first hand to minimize the dissolution and the transport and subsequent deposition of activated corrosion products to out-of-core regions. A computerized monitoring system for high temperature high pressure pH and electrochemical potential (ECP) has been in continuous use at the Loviisa power plant since 1988. Special emphasis has been put on learning the effect of pH and ECP control during cooldown process in order to further reduce background radiation buildup. During the shutdown for refueling outage in summer 1989 the high temperature water chemistry parameters were monitored. In addition to the high temperature water chemistry parameters concentrations of dissolved corrosion products as well as the activities of the corrosion products were measured. In this paper the results obtained through simultaneous monitoring of water chemistry parameters and concentrations of dissolved corrosion products as well as the activity measurements are presented and discussed. (author)

  4. Primary water chemistry control at units of Paks Nuclear Power Plant

    International Nuclear Information System (INIS)

    Schunk, J.; Patek, G.; Pinter, T.; Tilky, P.; Doma, A.; Osz, J.

    2010-01-01

    The primary water chemistry of the four identical units of Paks Nuclear Power Plant has been developed based on Western-type PWR units, taking into consideration some Soviet-Russian modifications. The political changes in 90s have also influenced the water chemistry specifications and directions. At PWR units the transition operational modes have been developed while in case of VVER units - in lack of central uniform regulation - this question has become the competence and responsibility of each individual plant. This problem has resulted in separate water chemistry developments with a considerable time delay. The needs for life-time extensions all over the World have made the development of start-up and shut-down chemistry procedures extremely important, since they considerably influence the long term and safe operation of plants. The uniformly structured limit value system, the principles applied for the system development, and the logic schemes for actions to be taken are discussed in the paper, both for normal operation and transition modes. (author)

  5. In-pile loop experiments in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, J.

    1986-09-01

    Results on the study of Zr-1% Nb alloy corrosion, in out-of and in-pile loops simulating the working conditions of the VVER-440 reactor (Soviet, PWR type), covered the time period May 1982-April 1986 were reported, as well as, results on transport and filtration of corrosion products. Methods and techniques used in the study included remote measurement of corrosion rate by polarizing resistance, out-of-pile loop at the temperature 350 deg. C, pressure 19 MPa, circulation 20 kgs/h and in-pile water loop with constant flow rate 10,000 kgs/h, pressure 16 MPa, temperature 330 deg. C and neutron flux 7x10 13 n/cm 2 .s. It was shown that solid suspended particles with chemical composition corresponding most frequently to magnetite or nickelous ferrite, though with non-stoichiometric composition Me x 2+ Fe 3- x 3+ O 4 were found. Continuous filtration of water by means of electromagnetic filter leads to a decrease of radioactivity of the outer epitactic layer only. Effect of filtration on the inner topotactic layer is negligible. The corrosion rates for the above-mentioned parameters are given

  6. Secondary water chemistry control practices and results of the Japanese PWR plants

    International Nuclear Information System (INIS)

    Maeda, Akihiro; Shoda, Yasuhiko; Ishihara, Nobuo; Murata, Kazutoyo; Fujiwara, Hiroyuki; Hayakawa, Hitoshi; Matsuda, Tadashi

    2012-09-01

    In Japan, since the start of the operation of the first PWR plant, Mihama Unit-1 in 1970, 24 PWR plants have been built by 2010, and all of them are in operation. Due to the plant-specific needs of management, and by flexibly incorporating the state-of-the-art insights into the design, the system configurations of the plants vary so many as 15 types. Meanwhile, the geographical feature of Japan makes all the Japanese PWR plants to have condensers cooled by sea water, and all the plants have a common system with a full-flow Condensate Polisher System (CPS). To prevent corrosion, continued improvements of the secondary water chemistry management has been performed like other countries, and one of the major features of the Japanese PWR plants is an enhanced provision for the condenser leakage. The water quality of SG (Steam Generator) has been significantly improved by the provision for the sea water leakage, in combination with other improvements in water chemistry management. Also in Japan, almost all of the treatments of the spent polisher resin and the wastewater are performed within the power plant sites. To facilitate the treatment of the waste water and the regeneration of the spent resins, either ammonia or ETA (Ethanol Amine) is selected as the pH adjustment agent for the secondary system water. Also at the ammonia treatment, high pH accomplishes the inhibition of the piping wall thinning and the lower iron transportation into SGs. In addition, the iron transported into the SG is removed by the chemical conditioning treatment called ASCA (Advanced Scale Conditioning Agent). This provides the effective recovery of the SG heat-transfer performance, and the improved SG support plate BEC (Broached Egg Crate) hole blockage rates. Basically in Japan, the secondary water chemistry management has been improved based on a single basic specification, for the variety of the plant configurations, with the plant-specific investigations and analyses. This paper summarizes

  7. Rock-Bound Arsenic Influences Ground Water and Sediment Chemistry Throughout New England

    Science.gov (United States)

    Robinson, Gilpin R.; Ayotte, Joseph D.

    2007-01-01

    The information in this report was presented at the Northeastern Region Geological Society of America meeting held March 11-14, 2007, in Durham, New Hampshire. In the New England crystalline bedrock aquifer, concentrations of arsenic that exceed the drinking water standard of 10 ?g/L occur most frequently in ground water from wells sited in specific metamorphic and igneous rock units. Geochemical investigations indicate that these geologic units typically have moderately elevated whole-rock concentrations of arsenic compared to other rocks in the region. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with specific bedrock units where average whole-rock concentrations of arsenic exceed 1.1 mg/kg and where geologic and geochemical factors produce high pH ground water. Arsenic concentrations in stream sediments collected from small drainages reflect the regional distribution of this natural arsenic source and have a strong correlation with both rock chemistry and the distribution of bedrock units with elevated arsenic chemistry. The distribution of ground water wells with As > 5 ?g/L has a strong spatial correlation with the distribution of stream sediments where concentrations of arsenic exceed 6 mg/kg. Stream sediment chemistry also has a weak correlation with the distribution of agricultural lands where arsenical pesticides were used on apple, blueberry, and potato crops. Elevated arsenic concentrations in bedrock wells, however, do not correlate with agricultural areas where arsenical pesticides were used. These results indicate that both stream sediment chemistry and the solubility and mobility of arsenic in ground water in bedrock are influenced by host-rock arsenic concentrations. Stream sediment chemistry and the distribution of geologic units have been found to be useful parameters to predict the areas of greatest concern for elevated arsenic in ground water and to estimate the likely levels of human exposure to

  8. Pore water chemistry of Rokle Bentonite (Czech Republic)

    International Nuclear Information System (INIS)

    Cervinka, R.; Vejsada, J.

    2010-01-01

    Document available in extended abstract form only. With inflowing the groundwater to Deep Geological Repository (DGR), the interaction of this water with engineering barrier materials will alter both, barrier materials and also the groundwater. One of the most important alterations represents the formation of bentonite pore water that will affect a number of important processes, e.g. corrosion of waste package materials, solubility of radionuclides, diffusion and sorption of radionuclides. The composition of bentonite pore water is influenced primarily by the composition of solid phase (bentonite), liquid phase (inflowing groundwater), the gaseous phase (partial pressure of CO 2 ), bentonite compaction and the rate of groundwater species diffusion through bentonite. Also following processes have to be taken into account: dissolution of admixtures present in the bentonite (particularly well soluble salts, e.g. KCl, NaCl, gypsum), ion exchange process and protonation and deprotonation of surface hydroxyl groups on clay minerals. Long-term stability of mineral phases and possible mineral transformation should not be neglected as well. In the Czech Republic, DGR concept takes local bentonite into account as material for both buffer and backfill. The candidate bentonite comes from the Rokle deposit (NW Bohemia) and represents complex mixture of (Ca,Mg)-Fe-rich montmorillonite, micas, kaolinite and other mineral admixtures (mainly Ca, Mg, Fe carbonates, feldspars and iron oxides). The mineralogical and chemical characteristics were published previously. This bentonite is different in composition and properties from worldwide studied Na-bentonite (e.g. MX-80, Volclay) or Na-Ca bentonite (e.g. Febex). This fact leads to the need of investigation of Rokle bentonite in greater detail to verify its suitability as a buffer and backfill in DGR. Presented task is focused on the study of pore water evolution. Our approach for this study consists in modeling the pore water using

  9. Secondary side water chemistry pH control strategy improvements

    Energy Technology Data Exchange (ETDEWEB)

    Roumiguiere, Fernando-Mario; Fandrich, Joerg; Ramminger, Ute; Hoffmann-Wankerl, Stephan; Drexler, Andreas [AREVA NP GmbH, Erlangen (Germany)

    2012-11-15

    When selecting a pH control strategy, plant design and operation characteristics have to be carefully considered. The strategy should be tailored to the plant-specific needs and requirements. Owing to the complexity of the interrelated variables, the best way is to perform a modeling with a suitable computer code. This work investigated the possibility of complementing the classic high pH all-volatile treatment (H-AVT) by addition of an organic amine at low concentrations complementarily to ammonia dosing to locally increase the pH in the water phase of the wet steam areas to counteract flow-assisted corrosion (FAC). Alternative conditioning scenarios were considered and calculated for comparative analysis using a computer code. The results obtained argue for the convenience of using ammonia as the main alkalizing agent whenever possible, avoiding multiple amine concepts and their associated drawbacks. (orig.)

  10. Old TNX Seepage Basin: Environmental information document

    International Nuclear Information System (INIS)

    Dunaway, J.K.; Johnson, W.F.; Kingley, L.E.; Simmons, R.V.; Bledsoe, H.W.; Smith, J.A.

    1986-12-01

    This document provides environmental information on postulated closure options for the Old TNX Seepage Basin at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (40 CFR 1500-1508). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a regulatory closure plan or other regulatory document to comply with required federal or state environmental regulations

  11. In-pile loop experiments in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, J.; Jindrich, K.; Masarik, V.; Fric, Z.; Chotivka, V.; Hamerska, H.; Vsolak, R.; Erben, O.

    1986-08-01

    Methods and techniques used were as follows: (a) Method of polarizing resistance for remote monitoring of instantaneous rate of uniform corrosion. (b) Out-of-pile loop at the temperature 350 degC, pressure 19 MPa, circulation 20 kgs/h, testing time 1000 h. (c) High temperature electromagnetic filter with classical solenoid and ball matrix for high pressure filtration tests. (d) High pressure and high temperature in-pile water loop with coolant flow rate 10 000 kgs/h, neutron flux in active channel 7x10 13 n/cm 2 .s, 16 MPa, 330 degC. (e) Evaluation of experimental results by chemical and radiochemical analysis of coolant, corrosion products and corrosion layer on surface. The results of measurements carried out in loop facilities can be summarized into the following conclusions: (a) In-pile and out-of-pile loops are suitable means of investigating corrosion processes and mass transport in the nuclear power plant primary circuit. (b) In studying transport phenomena in the loop, it is necessary to consider the differences in geometry of the loop and the primary circuit, mainly the ratio of irradiated and non-irradiated surfaces and volumes. (c) In the experimental facility simulating the WWER-type nuclear power plant primary circuit, solid suspended particles of a chemical composition corresponding most frequently to magnetite or nickel ferrite, though with non-stoichiometric composition Me x 2+ Fe 3-x 3+ O 4 , were found. (d) Continuous filtration of water by means of an electromagnetic filter removing large particles of corrosion products leads to a decrease in radioactivity of the outer epitactic layer only. The effect of filtration on the inner topotactic layer is negligible

  12. Secondary side water chemistry pH control strategy improvements

    International Nuclear Information System (INIS)

    Roumiguiere, Fernando-Mario; Fandrich, Joerg; Ramminger, Ute; Hoffmann-Wankerl, Stephan; Drexler, Andreas

    2012-09-01

    Over the years the PWR plant operators were aware of the need of optimizing the pH control strategy in the water-steam cycle with the focus on improvement of steam generator performance with the main goal of reducing the corrosion product ingress into the steam generators and their consequences: SG fouling, SG tube corrosion beneath deposits. To achieve this goal, it becomes necessary to harmonize three requirements: a. High overall pH along the circuit for suppression of general corrosion, requiring a volatile amine to ensure a suitable distribution in steam areas and condenser, and b. High local pH at the water phase of two-phase flow areas, requiring an either rather low volatile amine to ensure high pH in the wet steam water film, or larger amounts of a volatile amine. c. Sufficient amount of hydrazine to ensure reducing conditions in the steam generators. The basic strategy of AREVA NP GmbH (formerly KWU), successfully applied in German nuclear power plants since the late seventies consisted on the achievement of the necessary pH by means of ammonia, as generated by thermal decomposition of hydrazine. By dosing of hydrazine at the necessary amounts to ensure reducing conditions, also sufficient ammonia is generated to achieve a high overall pH along the cycle, being the target pH (25 deg. C) ≥ 9.8 resulting in < 1 ppb Fe in final feed water. This treatment is known as H-AVT (High pH - All Volatile Treatment). Main prerequisite for its application is to have a copper-free system. Eventually, H-AVT started to be applied later at some other western nuclear power plants. In some units, the high condenser exhaust flow rate applied caused a considerable amount of ammonia being removed from the cycle, resulting in too low ammonia concentrations to maintain a sufficiently high pH, making the addition of ammonia necessary. AREVA NP GmbH together with plant operators investigated the possibility of complementing the applied classical H-AVT by addition of an advanced

  13. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India

    Science.gov (United States)

    Oblinger, Jennifer A.; Moysey, Stephen M. J.; Ravindrinath, Rangoori; Guha, Chiranjit

    2010-05-01

    SummaryThe informal construction of small dams to capture runoff and artificially recharge ground water is a widespread strategy for dealing with water scarcity. A lack of technical capacity for the formal characterization of these systems, however, is often an impediment to the implementation of effective watershed management practices. Monitoring changes in reservoir storage provides a conceptually simple approach to quantify seepage, but does not account for the losses occurring when seepage is balanced by inflows to the reservoir and the stage remains approximately constant. To overcome this problem we evaluate whether a physically-based volume balance model that explicitly represents watershed processes, including reservoir inflows, can be constrained by a limited set of data readily collected by non-experts, specifically records of reservoir stage, rainfall, and evaporation. To assess the impact of parameter non-uniqueness associated with the calibration of the non-linear model, we perform a Monte Carlo analysis to quantify uncertainty in the total volume of water contributed to the subsurface by the 2007 monsoon for a dam located in the Deccan basalts near the village of Salri in Madhya Pradesh, India. The Monte Carlo analysis demonstrated that subsurface losses from the reservoir could be constrained with the available data, but additional measurements are required to constrain reservoir inflows. Our estimate of seepage from the reservoir (7.0 ± 0.6 × 10 4 m 3) is 3.5 times greater than the recharge volume estimated by considering reservoir volume changes alone. This result suggests that artificial recharge could be significantly underestimated when reservoir inflows are not explicitly included in models. Our seepage estimate also accounts for about 11% of rainfall occurring upstream of the dam and is comparable in magnitude to natural ground water recharge, thereby indicating that the reservoir plays a significant role in the hydrology of this small

  14. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    International Nuclear Information System (INIS)

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  15. Laboratorial studies on the seepage impact in open-channel flow turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Granados, Oscar; Kostecki, Stanislaw, E-mail: Oscar.Herrera-Granados@pwr.wroc.pi [Institute of Geotechnics and Hydro-engineering (I-10), Wroclaw University of Technology. Plac Grunwaldzki 9 D-2 p.112. 50-377 Wroclaw (Poland)

    2011-12-22

    In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.

  16. Laboratorial studies on the seepage impact in open-channel flow turbulence

    International Nuclear Information System (INIS)

    Herrera Granados, Oscar; Kostecki, Stanislaw

    2011-01-01

    In natural streams, the interaction between water in motion and movable beds derives in transport of material. This is a fact that causes several problems for river regulation, above all in streams which were heavily modified by human interferences. Therefore, to find solutions or at least to alleviate the negative effects that sediment transport can bring with is a topic to be researched. The impact of seepage on river sedimentation processes and open-channel flow is important for environmental issues but it is commonly neglected by water specialists. The present contribution presents the output of a series of experimental works where the influence of seepage on the open channel turbulence is analyzed at the laboratory scale. Even though that the magnitude of the groundwater flow is significantly smaller than the magnitude of the open channel flow; the output of the experiments demonstrates that seepage not only modifies the water-sediment interaction as demonstrated Herrera Granados (2008; 2010); but also is affecting the velocity field and turbulence dynamics of the open-channel flow.

  17. Effects of water chemistry and fluid dynamics on wall thinning behavior. Part 1. Development of FAC model focused on water chemistry and composition of material

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Domae, Masafumi; Ohta, Joji; Yoneda, Kimitoshi; Inada, Fumio

    2009-01-01

    Flow Accelerated Corrosion (FAC), which is one of the important subjects at fossil and nuclear power plans, is caused by the accelerated dissolution of protective oxide film due to the turbulent flow. The influence factors on FAC such as water chemistry, material, and fluid dynamics are closely related to the oxide property so that the risk of FAC can be reduced by the suitable control of water chemistry. There are some FAC models and evaluation codes of FAC rate. Some of them are used in wall thinning management of nuclear power plant in some country. Nevertheless, these FAC codes include many empirical parameters so that some uncertainty to evaluate the synergistic effectiveness of factors are the controversial point for the application of FAC code to wall thinning management in Japanese nuclear power plant. In this study, a FAC model that can evaluate the effect of temperature, NH3 concentration, chromium content, and dissolved oxygen concentration on FAC rate was developed by considering the diffusion of dissolved species. The critical dissolved oxygen concentration, which can inhibit FAC, was also calculated by this model. (author)

  18. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    Science.gov (United States)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  19. [Relationship between atmospheric particles and rain water chemistry character].

    Science.gov (United States)

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  20. Effect of Water Chemistry Factors on Flow Accelerated Corrosion : pH, DO, Hydrazine

    International Nuclear Information System (INIS)

    Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

    2013-01-01

    Flow accelerated corrosion(FAC) of the carbon steel piping in pressurized water reactors(PWRs) has been major issue in nuclear industry. Severe accident at Surry Unit 2 in 1986 initiated the worldwide interest in this area. Major parameters influencing FAC are material composition, microstructure, water chemistry, and hydrodynamics. Qualitative behaviors of FAC have been well understood but quantitative data about FAC have not been published for proprietary reason. In order to minimize the FAC in PWRs, the optimal method is to control water chemistry factors. Chemistry factors influencing FAC such as pH, corrosion potential, and hydrazine contents were reviewed in this paper. FAC rate decreased with pH up to 10 because magnetite solubility decreased with pH. Corrosion potential is generally controlled dissolved oxygen (DO) and hydrazine in secondary water. DO increased corrosion potential. FAC rate decreased with DO by stabilizing magnetite at low DO concentration or by formation of hematite at high DO concentration. Even though hydrazine is generally used to remove DO, hydrazine itself thermally decomposed to ammonia, nitrogen, and hydrogen raising pH. Hydrazine could react with iron and increased FAC rate. Effect of hydrazine on FAC is rather complex and should be careful in FAC analysis. FAC could be managed by adequate combination of pH, corrosion potential, and hydrazine

  1. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  2. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  3. Investigation of seepage under the Wenxiakou dam using radiotracer

    International Nuclear Information System (INIS)

    Li Zhangsu

    1988-01-01

    This paper describes the result of seepage observation on the dam foundation of Wenxiakou Reservoir using radioactive NaI (I-131) as a tracer. The main feature of the observing technique is to ascertain the seepages between the dam foundation and the clay core wall and around the abutment by measuring vertical flow. The results obtained from the observation have provided some important information for planning the engineering project of anti-seepage and reinforcement of the dam foundation and its right abutment. (author). 2 refs, 4 figs, 1 tab

  4. The research of materials and water chemistry for supercritical water-cooled reactors in Research Centre Rez

    International Nuclear Information System (INIS)

    Zychova, Marketa; Fukac, Rostislav; Vsolak, Rudolf; Vojacek, Ales; Ruzickova, Mariana; Vonkova, Katerina

    2012-09-01

    Research Centre Rez (CVR) is R and D company based in the Czech Republic. It was established as the subsidiary of the Nuclear Research Institute Rez plc. One of the main activities of CVR is the research of materials and chemistry for the generation IV reactor systems - especially the supercritical water-cooled one. For these experiments is CVR equipped by a supercritical water loop (SCWL) and a supercritical water autoclave (SCWA) serving for research of material and Supercritical Water-cooled Reactor (SCWR) environment compatibility experiments. SCWL is a research facility designed to material, water chemistry, radiolysis and other testing in SCWR environment, SCWA serves for complementary and supporting experiments. SCWL consists of auxiliary circuits (ensuring the required parameters as temperature, pressure and chemical conditions in the irradiation channel, purification and measurements) and irradiation channel (where specimens are exposed to the SCWR environment). The design of the loop is based on many years of experience with loop design for various types of corrosion/water chemistry experiments. Designed conditions in the test area of SCWL are 600 deg. C and 25 MPa. SCWL was designed in 2008 within the High Performance Light Water Reactor Phase 2 project and built during 2008 and 2009. The trial operations were performed in 2010 and 2011 and were divided into three phases - the first phase to verify the functionality of auxiliary circuits of the loop, the second phase to verify the complete facility (auxiliary circuits and functional irradiation channel internals) and the third phase to verify the feasibility of corrosion tests with the complete equipment and specimens. All three trial operations were very successful - designed conditions and parameters were reached. (authors)

  5. Nitrate pollution and surface water chemistry in Shimabara, Nagasaki Prefecture, Japan

    Science.gov (United States)

    Nakagawa, K.; Amano, H.

    2017-12-01

    Shimabara city has been experiencing serious nitrate pollution in groundwater. To evaluate nitrate pollution and water chemistry in surface water, water samples were collected at 42 sampling points in 15 rivers in Shimabara including a part of Unzen city from January to February 2017. Firstly, spatial distribution of water chemistry was assessed by describing stiff and piper-trilinear diagrams using major ions concentrations. Most of the samples showed Ca-HCO3 or Ca-(NO3+SO4) water types. It corresponds to groundwater chemistry. Some samples were classified into characteristic water types such as Na-Cl, (Na+K)-HCO3, and Ca-Cl. These results indicate sea water mixing and anthropogenic pollution. At the upstream of Nishi-river, although water chemistry showed Ca-HCO3, ions concentrations were higher than that of the other rivers. It indicates that this site was affected by the peripheral anthropogenic activities. Secondly, nitrate-pollution assessment was performed by using NO3-, NO2-, coprostanol (5β(H)-Cholestan-3β-ol), and cholestanol (5α(H)-Cholestan-3β-ol). NO2-N was detected at the 2 sampling points and exceeded drinking standard 0.9 mg L-1 for bottle-fed infants (WHO, 2011). NO3-N + NO2-N concentrations exceeded Japanese drinking standard 10 mg L-1 at 18 sampling points. The highest concentration was 27.5 mg L-1. Higher NO3-N levels were observed in the rivers in the northern parts of the study area. Coprostanol has been used as a fecal contamination indicator, since it can be found in only feces of higher animals. Coprostanol concentrations at 8 sampling points exceeded 700 ng L-1 (Australian drinking water standard). Coprostanol has a potential to distinguish the nitrate pollution sources between chemical fertilizer or livestock wastes, since water samples with similar NO3-N + NO2-N concentration showed distinct coprostanol concentration. The sterols ratio (5β/ (5β+5α)) exceeded 0.5 at 18 sampling points. This reveals that fecal pollution has occurred.

  6. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    Directory of Open Access Journals (Sweden)

    M. Mena

    2005-06-01

    Full Text Available Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period. No anthropogenic pollution from Volatile Organic Compounds (VOCs was observed. An overview of the soil radon behaviour as a function of the volcanic activity in the period 1994-2002 is also discussed.

  7. About water chemistry influence on equipment reliability of NPP with RBMK-1000

    International Nuclear Information System (INIS)

    Berezina, I.G.; Styazhkin, P.S.; Kritskij, V.G.

    2001-01-01

    In the paper the experience of a quantitative valuation of coolant quality influence on a reliability of some equipment elements of NPP with RBMK-1000 is offered. The choice is made of coolant quality integral parameter. The connection between indices values of coolant quality and reliability of major elements of circulation circuit equipment (including fuel claddings) is established. The reliability improvement of equipment elements operation is supported by high water chemistry quality. (orig.)

  8. Radon, water chemistry and pollution check by volatile organic compounds in springs around Popocatepetl volcano, Mexico

    OpenAIRE

    M. Mena; G. Cisniega; B. Lopez; M. A. Armienta; C. Valdés; P. Peña; N. Segovia

    2005-01-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs were analysed as a function of the 2002-2003 volcanic activity. The measurements of soil radon indicated fluctuations related to both the meteorological and sporadic explosive events. Groundwater radon showed essential differences in concentration d...

  9. Effect of water chemistry and fuel operation parameters on Zr + 1% Nb cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V G; Petrik, N G; Berezina, I G; Doilnitsina, V V [VNIPIET, St. Petersburg (Russian Federation)

    1997-02-01

    In-pile corrosion of Zr + 1%Nb fuel cladding has been studied. Zr-oxide and hydroxide solubilities at various temperatures and pH values have been calculated and correlations obtained between post-transition corrosion and the solubilities nodular corrosion and fuel operation parameters, as well as between the rate of fuel cladding degradation and water chemistry. Extrapolations of fuel assemblies behaviour to higher burnups have also performed. (author). 12 refs, 11 figs.

  10. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  11. Water-rock interaction and chemistry of groundwaters from the Canadian Shield

    International Nuclear Information System (INIS)

    Frape, S.K.; Fritz, P.; McNutt, R.H.

    1984-01-01

    The chemical and isotopic compositions of groundwaters in the crystalline rocks of the Canadian Shield reflect different degrees of rock-water interactions. The chemistry of the shallow, geochemically immature ground waters and especially of the major cations is controlled by local rock compositions, whereby dissolution reactions dominate. Conservative constituents, such as chloride and bromide, however, are not entirely a result of such reactions but appear to be readily added from leachable salts during the initial stages of the geochemical evolution of these waters. Their concentration changes little as major cations increase, until concentrations of Total Dissolved Solids (TDS) reach 3000 to 5000 mg l -1 . The isotopic composition of these shallow waters reflects local, present day precipitations. In contrast to the shallow groundwaters, the isotopic and chemical compositions of the deep, saline waters and brines are determined by extensive, low-temperature rock-water interactions. This is documented in major ion chemistries, 18 O contents and strontium isotopic compositions. These data indicate that the deep brines have been contained in hydrologically isolated pockets. The almost total loss of primary compositions make discussions on the origin of these brines very speculative. However, all brines from across the Canadian Shield have a very similar chemical composition, which probably reflects a common geochemical history. (author)

  12. Effects of iron on arsenic speciation and redox chemistry in acid mine water

    Science.gov (United States)

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2005-01-01

    Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.

  13. Comparative study of water chemistry and surface oxide composition on alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Bjoernkvist, L.; Norring, K.; Nyborg, L.

    1993-01-01

    The Ringhals 3 steam generators experience secondary IGSCC on the tubes at support plate locations. Its sister unit Ringhals 4 is so far without IGSCC. Extensive work has been carried out in order to determine the local chemistry in crevices and the composition of deposits and oxide films on the tubes. Hot soaks of the SG:s at zero power has been performed and the water chemistry in occluded crevices of the SGs was predicted to be alkaline, pH 300degreesC = 10. In addition to eddy current testing, a large number of tubes have been pulled and destructively examined. These analysis include SEM/EDS characterization of TSP crevice deposits and Auger electron spectroscopy (AES) with depth profiling to reveal the composition of the tube OD oxide film. The AES analysis show an outer oxide rich in Fe 3 O 4 , mostly deposited. The actual Alloy 600 oxide is found below the magnetite and is 1-2 μm thick. The composition profile of the oxide exhibits a Cr-depletion relative to Ni in the outer part of the oxide, whereas an enrichment is found in depth. In order to correlate the water chemistry to the oxide composition profiles and deposits on pulled tubes, reference samples were prepared in an autoclave. The environments were chosen similar to the predicted Ringhals 3 and 4 crevice chemistry. Exposure both in an alkaline (pH 320degreesC∼ 9.9) and an acidic (pH 320degreesC ∼4.3) environment, containing sodium, chloride and sulphate, was studied. Some samples were also found on the Alloy 600 samples exposed to alkaline environment. Thus the prediction of alkaline chemistry was verified. The enrichment of chromium relative to nickel was shown to be potential and time dependent resulting in an increased Cr/Ni ratio at Cr-max with increasing potential and time

  14. An evaluation of selection criteria on primary water chemistry parameters for SMART

    International Nuclear Information System (INIS)

    Choi, B. S.; Kim, S. H.; Yun, J. H.; Bae, Y. Y.; Gee, S. G.

    2003-01-01

    The selection criteria on the primary water chemistry of SMART by comparing the chemical design features with those of the current operating PWRs is analyzed. The most essential differences in water chemistry between the PWRs and SMART reactor is characterized by the presence of boron in water. SMART is boron free reactor, and the ammonia is used as a pH reagent. In SMART reactor hydrogen gas is not added to the primary coolant, but is normally generated from the radiolysis of ammonia of the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are steady state concentrations, which depend on the decomposition/combination rate of ammonia. Ammonia chemistry in SMART reactor has many advantages in that no hydrogen gas injection is needed to control the dissolved oxygen in primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of ammonia decomposition

  15. Impact of water chemistry on surface charge and aggregation of polystyrene microspheres suspensions.

    Science.gov (United States)

    Lu, Songhua; Zhu, Kairuo; Song, Wencheng; Song, Gang; Chen, Diyun; Hayat, Tasawar; Alharbi, Njud S; Chen, Changlun; Sun, Yubing

    2018-07-15

    The discharge of microplastics into aquatic environment poses the potential threat to the hydrocoles and human health. The fate and transport of microplastics in aqueous solutions are significantly influenced by water chemistry. In this study, the effect of water chemistry (i.e., pH, foreign salts and humic acid) on the surface charge and aggregation of polystyrene microsphere in aqueous solutions was conducted by batch, zeta potentials, hydrodynamic diameters, FT-IR and XPS analysis. Compared to Na + and K + , the lower negative zeta potentials and larger hydrodynamic diameters of polystyrene microspheres after introduction of Mg 2+ were observed within a wide range of pH (2.0-11.0) and ionic strength (IS, 0.01-500mmol/L). No effect of Cl - , HCO 3 - and SO 4 2- on the zeta potentials and hydrodynamic diameters of polystyrene microspheres was observed at low IS concentrations (10mmol/L). The zeta potentials of polystyrene microspheres after HA addition were decreased at pH2.0-11.0, whereas the lower hydrodynamic diameters were observed at pH<4.0. According to FT-IR and XPS analysis, the change in surface properties of polystyrene microspheres after addition of hydrated Mg 2+ and HA was attributed to surface electrostatic and/or steric repulsions. These investigations are crucial for understanding the effect of water chemistry on colloidal stability of microplastics in aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Stream water chemistry after two forest fertilizations with Skog Vital in central Sweden

    International Nuclear Information System (INIS)

    Ring, E.; Nohrstedt, H.Oe.

    1993-05-01

    A study was made of the impact of forest fertilization (non-nitrogenous mix) on the water chemistry of two streams, which drain catchment areas in east Haerjedalen in Sweden. In summer 1990, part of one of the catchment areas was fertilized by tractor at a dose of 0.6 tonnes per hectare, and part of the other by helicopter at a dose of 0.5 tonnes per hectare. The fertilizer contained base cations, sulphur, phosphorus, zinc and boron. Water samples were taken at a water-sampling station upstream of the treated area and at a water-sampling station downstream of the treated area. A total of 30 samples were made and the water was analysed for pH, alkalinity, nitrogen, phosphorus, base cations, aluminium and sulphate. Discharge was both measured and simulated, the latter using a runoff model. An estimate was made of the additional leaching resulting from fertilization. 13 refs, 12 figs, 6 tabs

  17. The analysis of physicochemical characteristics of pig farm seepage ...

    African Journals Online (AJOL)

    Dikonketso Matjuda

    -bodies, promoting ... that the seepage from pig farm degraded the natural environment by causing eutrophication, promote ... mainly livestock droppings, heavy metals, fertilizers and ... from microorganisms to insects, birds, fish, and at the.

  18. modelingthe effect the effect of contact and seepage forces

    African Journals Online (AJOL)

    eobe

    This research work has investigated the contribution of contact force and seepage force to the ... e equilibrium model has deduced an expression for the safe hydraulic head during well ...... Plastic deformation of soils simulation using DEM,.

  19. Hydrogeochemical processes controlling water and dissolved gas chemistry at the Accesa sinkhole (southern Tuscany, central Italy

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2014-05-01

    Full Text Available The 38.5 m deep Lake Accesa is a sinkhole located in southern Tuscany (Italy that shows a peculiar water composition, being characterized by relatively high total dissolved solids (TDS values (2 g L-1 and a Ca(Mg-SO4 geochemical facies. The presence of significant amounts of extra-atmospheric gases (CO2 and CH4, which increase their concentrations with depth, is also recognized. These chemical features, mimicking those commonly shown by volcanic lakes fed by hydrothermal-magmatic reservoirs, are consistent with those of mineral springs emerging in the study area whose chemistry is produced by the interaction of meteoric-derived waters with Mesozoic carbonates and Triassic evaporites. Although the lake has a pronounced thermocline, water chemistry does not show significant changes along the vertical profile. Lake water balance calculations demonstrate that Lake Accesa has >90% of its water supply from sublacustrine springs whose subterranean pathways are controlled by the local structural assessment that likely determined the sinking event, the resulting funnel-shape being then filled by the Accesa waters. Such a huge water inflow from the lake bottom (~9·106 m3 yr-1 feeds the lake effluent (Bruna River and promotes the formation of water currents, which are able to prevent the establishment of a vertical density gradient. Consequently, a continuous mixing along the whole vertical water column is established. Changes of the drainage system by the deep-originated waters in the nearby former mining district have strongly affected the outflow rates of the local mineral springs; thus, future intervention associated with the ongoing remediation activities should carefully be evaluated to preserve the peculiar chemical features of Lake Accesa.

  20. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  1. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N V; Popovitcheva, O B; Rakhimova, T V [Moscow State Univ. (Russian Federation)

    1998-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  2. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  3. Water chemistry and soil radon survey at the Poas volcano (Costa Rica

    Directory of Open Access Journals (Sweden)

    J. L. Seidel

    2005-06-01

    Full Text Available Radon-in-soil monitoring at the Poas volcano (Costa Rica has been performed together with water chemistry from the hot crater lake since 1981 and 1983 respectively. The results are discussed as a function of the eruptive evolution of the volcano over a 13 years period (1981-1994. It is shown that no definitely clear precursory radon signals have been recorded. On the contrary, ionic species concentrations are likely to be considered good precursors, together with the temperature variations of the crater lake water.

  4. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  5. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  6. Investigating the pore-water chemistry effects on the volume change behaviour of Boom clay

    Science.gov (United States)

    Deng, Y. F.; Cui, Y. J.; Tang, A. M.; Nguyen, X. P.; Li, X. L.; Van Geet, M.

    The Essen site has been chosen as an alternative site for nuclear waste disposal in Belgium. The soil formation involved at this site is the same as at Mol site: Boom clay. However, owing to its geographical situation closer to the sea, Boom clay at Essen presents a pore water salinity 4-5 times higher than Boom clay at Mol. This study aims at studying the effects of pore water salinity on the hydro-mechanical behaviour of Boom clay. Specific oedometer cells were used allowing “flushing” the pore water in soil specimen by synthetic pore water or distilled water. The synthetic pore water used was prepared with the chemistry as that for the site water: 5.037 g/L for core Ess83 and 5.578 g/L for core Ess96. Mechanical loading was then carried out on the soil specimen after flushing. The results show that water salinity effect on the liquid limit is negligible. The saturation or pore water replacement under the in situ effective stress of 2.4 MPa does not induce significant volume change. For Ess83, hydro-mechanical behaviour was found to be slightly influenced by the water salinity; on the contrary, no obvious effect was identified on the hydro-mechanical behaviour of Ess96. This can be attributed to the higher smectite content in Ess83 than in Ess96.

  7. Hydrogeology and water chemistry of Infranz catchment springs, Bahir Dar Area, Lake Tana Basin, Ethiopia

    Science.gov (United States)

    Abera, F. N.

    2017-12-01

    The major springs in the Infranz catchment are a significant source of water for Bahir city and nearby villages, while they help to sustain Infranz River and the downstream wetlands. The aim of the research was to understand the hydrogeological conditions of these high-discharge springs, and to explain the hydrochemical composition of spring waters. Water samples from rainwater and springs were collected and analyzed and compared for major cations and anions. The hydrochemical data analysis showed that all water samples of the springs have freshwater chemistry, Ca-HCO3 type, while deep groundwater shows more evolved types. This indicates limited water-rock interaction and short residence time for the spring waters. The rise of NO3- and PO43- may indicate future water quality degradation unless the anthropogenic activities upgradient and nearby are restricted. The uptake of 75% of spring water for water supply of Bahir Dar results in wetland degradation. Key words: Spring water, Infranz River, Bahir Dar, Ethiopia, hydrochemistry

  8. Water chemistry in the rives of the permafrost regions on the eastern Qinghai-Tibetan Plateau

    Science.gov (United States)

    Wu, X.; Ma, X.; Ye, L.; Liu, G.

    2017-12-01

    Qinghai-Tibetan is the largest middle-low latitude permafrost areas on the world. There are several large rivers in the plateau, and the changes of the water resources of these rivers are associated with the water resource security of more than 1.35 billion people. Due to the high gradients, these rivers have a tremendous amount of potential energy for electricity output. To promote economic and social development and provide clean energy, hydropower development has taken place on several rivers which originate on the Qinghai-Tibetan Plateau. Since dam construction affect the flow velocity, water temperature, sediments delivery as well as organic matter and nitrogen, it is important to investigate the river chemistry in the head rivers of the reservoirs. We examined the water physio-chemical characteristics in the rivers under the typical vegetation types in the eastern Qinghai-Tibetan Plateau, and further analyzed their relationship to vegetation. The results showed that the total suspended sediment in the rivers were higher within the catchment of alpine steppe, with the lowest dissolved organic carbon content. In contrast, the rivers within the meadow had the highest dissolved organic carbon and lowest total suspension sediment. The dissolved organic carbon significantly positively correlated with the proportions of the meadow and wet meadow in the catchment. The pH, turbidity, and SUVA254 and dissolved organic carbon also correlated with each other. The results suggest that the vegetation type strongly affect the water chemistry in the permafrost regions on the Qinghai-Tibetan Plateau.

  9. Relationships between precipitation and surface water chemistry in three Carolina bays

    International Nuclear Information System (INIS)

    Monegue, R.L.; Jagoe, C.H.

    1995-01-01

    Carolina Bays are shallow freshwater wetlands, the only naturally occurring lentic systems on the southeastern coastal plain. Bays are breeding sites for many amphibian species, but data on precipitation/surface water relationships and long-term chemical trends are lacking. Such data are essential to interpret major fluctuations in amphibian populations. Surface water and bulk precipitation were sampled bi-weekly for over two years at three bays along a 25 km transect on the Savannah River Site in South Carolina. Precipitation chemistry was similar at all sites; average pH was 4.56, and the major ions were H + (30.8 % of total), and SO 4 (50.3% of total). H + was positively correlated with SO 4 , suggesting the importance of anthropogenic acids to precipitation chemistry. All three bays, Rainbow Bay (RB), Thunder Bay (TB), and Ellenton Bay (EB), contained soft (specific conductivity 5--90 microS/cm), acidic water (pH 4.0--5.9) with DOM from 4--40 mg/L. The major cation for RB, TB, and EB, respectively, was: Mg (30.8 % of total); Na (27% of total); and Ca (34.2% of total). DOM was the major anion for all bays, and SO 4 represented 13 to 28 % of total anions. H + was not correlated to DOM or SO, in RB; H + was positively correlated to DOM and SO 4 in TB, and negatively correlated to DOM and SO 4 in EB. Different biogeochemical processes probably control pH and other chemical variables in each bay. While surface water H + was not directly correlated with precipitation H + , NO 3 , or SO 4 , precipitation and shallow groundwater are dominant water sources for these bays. Atmospheric inputs of anthropogenic acids and other chemicals are important factors influencing bay chemistry

  10. Water Chemistry and Clad Corrosion/Deposition Including Fuel Failures. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-03-01

    Corrosion is a principal life limiting degradation mechanism in nuclear steam supply systems, particularly taking into account the trends in increasing fuel burnup, thermal ratings and cycle length. Further, many plants have been operating with varying water chemistry regimes for many years, and issues of crud (deposition of corrosion products on other surfaces in the primary coolant circuit) are of significant concern for operators. At the meeting of the Technical Working Group on Fuel Performance and Technology (TWGFPT) in 2007, it was recommended that a technical meeting be held on the subject of water chemistry and clad corrosion and deposition, including the potential consequences for fuel failures. This proposal was supported by both the Technical Working Group on Advanced Technologies for Light Water Reactors (TWG-LWR) and the Technical Working Group on Advanced Technologies for Heavy Water Reactors (TWG-HWR), with a recommendation to hold the meeting at the National Nuclear Energy Generating Company ENERGOATOM, Ukraine. This technical meeting was part of the IAEA activities on water chemistry, which have included a series of coordinated research projects, the most recent of which, Optimisation of Water Chemistry to Ensure Reliable Water Reactor Fuel Performance at High Burnup and in Ageing Plant (FUWAC) (IAEATECDOC-1666), concluded in 2010. Previous technical meetings were held in Cadarache, France (1985), Portland, Oregon, USA (1989), Rez, Czech Republic (1993), and Hluboka nad Vltavou, Czech Republic (1998). This meeting focused on issues associated with the corrosion of fuel cladding and the deposition of corrosion products from the primary circuit onto the fuel assembly, which can cause overheating and cladding failure or lead to unplanned power shifts due to boron deposition in the clad deposits. Crud deposition on other surfaces increases radiation fields and operator dose and the meeting considered ways to minimize the generation of crud to avoid

  11. Changes in water chemistry and primary productivity of a reactor cooling reservoir (Par Pond)

    International Nuclear Information System (INIS)

    Tilly, L.J.

    1975-01-01

    Water chemistry and primary productivity of a reactor cooling reservoir have been studied for 8 years. Initially the primary productivity increased sixfold, and the dissolved solids doubled. The dissolved-solids increase appears to have been caused by additions of makeup water from the Savannah River and by evaporative concentration during the cooling process. As the dissolved-solids concentrations and the conductivity of makeup water leveled off, the primary productivity stabilized. Major cation and anion concentrations generally followed total dissolved solids through the increase and plateau; however, silica concentrations declined steadily during the initial period of increased plankton productivity. Standing crops of net seston and centrifuge seston did not increase during this initial period. The collective data show the effects of thermal input to a cooling reservoir, illustrate the need for limnological studies before reactor siting, and suggest the possibility of using makeup-water additions to power reactor cooling basins as a reservoir management tool

  12. Effects of chemistry on corrosion-erosion of steels in water and wet steam

    International Nuclear Information System (INIS)

    Berge, P.; Ducreux, J.; Saint-Paul, P.

    1981-01-01

    In steam production plants, numerous cases of degradation of steels occur when in contact with water or wet steam circulating at high velocity: in feed or discharge pumps, water reheaters, etc. When the phenomenon occurs without any mechanical wear of the metal or the oxide from the impact of solid particles (abrasion) or droplets (erosion), it is called corrosion-erosion. The phenomenon usually occurs between 100 and 250 0 C, as has been confirmed by an empirical study of the thermal and hydraulic factors which govern it. Corrosion rates can reach 1 to 2 mm/year, for a carbon steel pipe where water treated with ammonia circulates at about pH 9, at 200 0 C, and at a velocity of 5 to 10 m/s. This study evaluates the part played by the factors solely connected to the chemistry of water, with respect to the kinetics of the corrosion-erosion phenomenon. (author)

  13. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of

  14. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    Full Text Available The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN, total phosphorus (TP, NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban–agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88 between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate

  15. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  16. Influence of hydrazine primary water chemistry on corrosion of fuel cladding and primary circuit components

    International Nuclear Information System (INIS)

    Iourmanov, V.; Pashevich, V.; Bogancs, J.; Tilky, P.; Schunk, J.; Pinter, T.

    1999-01-01

    Earlier at Paks 1-4 NPP standard ammonia chemistry was in use. The following station performance indicators were improved when hydrazine primary water chemistry was introduced: occupational radiation exposures of personnel; gamma-radiation dose rates near primary system components during refuelling and maintenance outages. The reduction of radiation exposures and radiation fields were achieved without significant expenses. Recent results of experimental studies allowed to explain the mechanism of hydrazine dosing influence on: corrosion rate of structure materials in primary coolant; behaviour of soluble and insoluble corrosion products including long-life corrosion-induced radionuclides in primary system during steady-state and transient operation modes; radiolytic generation of oxidising radiolytic products in core and its corrosion activity in primary system; radiation situation during refuelling and maintenance outages; foreign material degradation and removal (including corrosion active oxidant species) from primary system during abnormal events. Operational experience and experimental data have shown that hydrazine primary water chemistry allows to reduce corrosion wear and thereby makes it possible to extend the life-time of plant components in primary system. (author)

  17. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    Science.gov (United States)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  18. Scientific basis for the choice of primary/secondary water chemistry

    International Nuclear Information System (INIS)

    Garnsey, R.

    1988-01-01

    The purpose of this paper is to illustrate the common scientific basis for the chemistry control strategies which have been developed. The evolution of chemistry control philosophies in some plant designs are outlined as examples. The essential requirement of water chemistry control is to preserve integrity of the circuit under all the environmental conditions experienced within that circuit. There may be specific additional requirements, as in the case of a PWR primary circuit, where boron concentration is used to control reactivity. The crucial requirement or concern can vary. In the primary circuit of a light water reactor the crucial requirement is to supress the activation and transportation of corrosion products and so minimize radiation fields around the circuit. On the secondary side of recirculating steam generators the critical requirement has been to preserve the integrity of generator tubing. In once-through steam generators the critical requirement may be the control of pressure losses associated with corrosion product deposits in the steam generator and the integrity of the turbine in addition to boiler integrity. (Nogami, K.)

  19. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    International Nuclear Information System (INIS)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H.

    2016-01-01

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH_T was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle

  20. The development of a neutralizing amines based reagent for maintaining the water chemistry for medium and high pressures steam boilers

    Science.gov (United States)

    Butakova, M. V.; Orlov, K. A.; Guseva, O. V.

    2017-11-01

    An overview of the development for neutralizing amine based reagent for water chemistry of steam boilers for medium and high pressures was given. Total values of the neutralization constants and the distribution coefficients of the compositions selected as a main criteria for reagent composition. Experimental results of using this new reagent for water chemistry in HRSG of power plant in oil-production company are discussed.