WorldWideScience

Sample records for sediment toxicity assessment

  1. Assessing sediment contamination using six toxicity assays

    Directory of Open Access Journals (Sweden)

    Allen G. BURTON Jr.

    2001-08-01

    Full Text Available An evaluation of sediment toxicity at Lake Orta, Italy was conducted to compare a toxicity test battery of 6 assays and to evaluate the extent of sediment contamination at various sediment depths. Lake Orta received excessive loadings of copper and ammonia during the 1900’s until a large remediation effort was conducted in 1989-90 using lime addition. Since that time, the lake has shown signs of a steady recovery of biological communities. The study results showed acute toxicity still exists in sediments at a depth of 5 cm and greater. Assays that detected the highest levels of toxicity were two whole sediment exposures (7 d using Hyalella azteca and Ceriodaphnia dubia. The MicrotoxR assay using pore water was the third most sensitive assay. The Thamnotox, Rototox, Microtox solid phase, and Seed Germination-Root Elongation (pore and solid phase assays showed occasional to no toxicity. Based on similarity of responses and assay sensitivity, the two most useful assays were the C. dubia (or H. azteca and Microtox pore water. These assays were effective at describing sediment toxicity in a weight-of-evidence approach.

  2. Assessing sediment contamination using six toxicity assays

    OpenAIRE

    Allen G. BURTON Jr.; Carolyn ROWLAND; Renato BAUDO; Monica BELTRAMI

    2001-01-01

    An evaluation of sediment toxicity at Lake Orta, Italy was conducted to compare a toxicity test battery of 6 assays and to evaluate the extent of sediment contamination at various sediment depths. Lake Orta received excessive loadings of copper and ammonia during the 1900’s until a large remediation effort was conducted in 1989-90 using lime addition. Since that time, the lake has shown signs of a steady recovery of biological communities. The study results showed acute toxicity still exists ...

  3. Regional Models for Sediment Toxicity Assessment

    Science.gov (United States)

    This paper investigates the use of empirical models to predict the toxicity of sediment samples within a region to laboratory test organisms based on sediment chemistry. In earlier work, we used a large nationwide database of matching sediment chemistry and marine amphipod sedim...

  4. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    Science.gov (United States)

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (pheavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  5. Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the water framework directive approach

    Energy Technology Data Exchange (ETDEWEB)

    Bartzke, Mariana [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Dept. Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Leipzig (Germany); Delov, Vera [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Ecotoxicology, Fraunhofer Inst. for Molecular Biology and Applied Ecology IME, Aachen (Germany); Stahlschmidt-Allner, Petra; Allner, Bernhard [Gobio GmbH, Aarbergen/Kettenbach (Germany); Oehlmann, Joerg [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany)

    2010-04-15

    Purpose: The objective of this study was to complement analyses according to the European Union Water Framework Directive (WFD) with a sediment toxicity analysis as part of an integrated river assessment. To this end, Hessian water courses were analyzed using the sediment quality triad concept according to Chapman with chemical analyses, in situ effect evaluations, and ecotoxicological assessments. For the ecotoxicological assessment (fish embryo toxicity test with Danio rerio), a new evaluation scheme was developed, the fish teratogenicity index (FTI), that allows for a classification of sediments into ecological quality classes compliant to the WFD. Materials and methods sediment and macrozoobenthos samples were taken from tributaries of the rivers Fulda and Lahn. Sediments were characterized regarding particle size, carbon, heavy metals, and polyaromatic hydrocarbon content. Macroinvertebrate samples were taken via multi-habitat sampling. The fish embryo toxicity test with D. rerio was conducted as a contact assay on the basis of DIN 38415-6. Results and discussion The integrated assessment indicated a significant influence of heavy metals and carbon content on macroinvertebrate communities. The bioaccessibility of sediment pollutants were clearly demonstrated by the FTI, which showed a wide range of adverse effects. A significant linear relationship between metals and the FTI was detected. However, there was no statistically significant evidence that macroinvertebrate communities were affected by the hydromorphological quality clements at the sampling sites. Conclusions The new scheme for the assessment of fish embryo toxicity test was successfully applied. The results suggest that sediment compounds impact macroinvertebrate communities and early development of fish. It demonstrates that the quality of sediments should be evaluated on a routine basis as part of an integrated river assessment. (orig.)

  6. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.

    Science.gov (United States)

    Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2016-09-01

    Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.

  7. Biochemical parameters in Tubifex tubifex as an integral part of complex sediment toxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Smutna, M.; Hilscherova, K.; Paskova, V. [Masaryk Univ., Brno (CZ). RECETOX (Research Centre for Environmental Chemistry and Ecotoxicology); Marsalek, B [Czech Academy of Science, Brno (Czech Republic). Centre for Cyanobacteria and their Toxins

    2008-06-15

    Background, aim, and scope Restoration of lakes and reservoirs with extensive cyanobacterial water bloom often requires evaluation of the sediment quality. Next to the chemical analysis of known pollutants, sediment bioassays should be employed to assess toxicity of the present contaminants and to make predictions of associated risk. Brno reservoir in the Czech Republic is a typical example of water bodies with long-term problems concerning cyanobacterial water blooms. Comprehensive assessment of reservoir sediment quality was conducted since successful reservoir restoration might require sediment removal. An important part of this survey focused on an examination of the utility of Tubifex tubifex and its sublethal biochemical markers for the assessment of direct sediment toxicity. Materials and methods This complex study included chemical analysis of contaminants (heavy metals, organic pollutants), ecotoxicity testing of sediment elutriates (tests with Daphnia magna, Pseudomonas putida, Sinapis alba, Scenedesmus subspicatus), and other parameters. We have tested in more detail the applicability of T. tubifex as a test organism for direct evaluation of contact sediment toxicity. Survival tests after 14 days of exposure were complemented by an assessment of parameters serving as biomarkers for sublethal effects [such as total glutathione content (GSH), activities of the enzymes glutathione transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR)]. The data matrix was subjected to multivariate analysis to interpret relationships between different parameters and possible differences among locations. Results The multivariate statistical techniques helped to clearly identify the more contaminated upstream sites and separate them from the less contaminated and reference samples. The data document closer relationships of the detected sediment contamination with results of direct sediment exposure in the T. tubifex test regarding mortality but namely

  8. Use of the aquatic plant Elodea canadensis to assess toxicity and genotoxicity of Yenisei River sediments.

    Science.gov (United States)

    Zotina, Tatiana A; Trofimova, Elena A; Medvedeva, Marina Yu; Dementyev, Dmitry V; Bolsunovsky, Alexander Ya

    2015-10-01

    The toxicity, cytotoxicity, and genotoxicity of bulk sediments from the Yenisei River (Siberia, Russia) were estimated in laboratory bioassays based on several endpoints in the aquatic plant Elodea canadensis. The bottom sediment samples were collected in the Yenisei River upstream and downstream of the sources of chemical and radioactive contamination. The testing revealed different sensitivities of Elodea endpoints to the quality of the bottom sediment: weight of shoots Elodea) was the highest in sediments with chemical pollution, whereas the highest inhibition of toxicity endpoints (shoot and root length) occurred in sediments with the highest level of radioactive pollution. The extreme response of Elodea endpoints to the quality of certain sediment samples may be regarded as related to the possible presence of unknown toxicants. The results show that E. canadensis can be used as an indicator species in laboratory contact testing of bottom sediment. The responses of shoot and root length growth endpoints of Elodea can be recommended as basic sensitivity indicators of bottom sediment toxicity. Analysis of cells carrying abnormal chromosomes in the apical root meristem of Elodea can be performed optionally in the same test to assess the genotoxicity of sediments. © 2015 SETAC.

  9. Evaluation of metals, metalloids, and ash mixture toxicity using sediment toxicity testing.

    Science.gov (United States)

    Stojak, Amber; Bonnevie, Nancy L; Jones, Daniel S

    2015-01-01

    In December 2008, a release of 4.1 million m(3) of coal ash from the Tennessee Valley Authority Kingston Fossil Plant occurred. Ash washed into the Emory River and migrated downstream into the Clinch and Tennessee Rivers. A Baseline Ecological Risk Assessment evaluated risks to ecological receptors from ash in the river system post-dredging. This article describes the approach used and results from sediment toxicity tests, discussing any causal relationships between ash, metals, and toxicity. Literature is limited in the realm of aquatic coal combustion residue (CCR) exposures and the potential magnitude of effects on benthic invertebrates. Sediment samples along a spectrum of ash content were used in a tiered toxicity testing approach and included a combination of 10 day sediment toxicity acute tests and longer-term, partial life cycle "definitive" tests with 2 species (Hyalella azteca and Chironomus dilutus). Arsenic, and to a lesser extent Se, in the ash was the most likely toxicant causing observed effects in the laboratory toxicity tests. Sites in the Emory River with the greatest statistical and biologically significant effects had As concentrations in sediments twice the probable effects concentration of 33 mg/kg. These sites contained greater than 50% ash. Sites with less than approximately 50% ash in sediments exhibited fewer significant toxic responses relative to the reference sediment in the laboratory. The results discussed here present useful evidence of only limited effects occurring from a worst-case exposure pathway. These results provided a valuable line of evidence for the overall assessment of risks to benthic invertebrates and to other ecological receptors, and were crucial to risk management and development of project remediation goals. © 2014 SETAC.

  10. Assessment of metal leachability and toxicity from sediment potentially stored on land

    OpenAIRE

    Baran, A; Tarnawski, M; Michalec, B

    2015-01-01

    The aim of this study was to assess the toxicity and metal leachability from three dredged bottom sediments potentially stored on land. Washing out was conducted at a sediment dry mass to water mass ratio of 1:10. The method relies on washing out pollutants from the examined sample using water with third degree of purity in static/quasi-dynamic conditions. The investigations comprised three 27-h washing out cycles, including leaching in static conditions (19 h) and shaking (8 h). Bottom sedim...

  11. Assessment of sediment contamination at Great Lakes Areas of Concern: the ARCS Program Toxicity-Chemistry Work Group strategy

    Science.gov (United States)

    Ross, P.E.; Burton, G.A.; Crecelius, E.A.; Filkins, J. C.; Giesy, J.P.; Ingersoll, C.G.; Landrum, P.F.; Mac, M.J.; Murphy, T.J.; Rathbun, J. E.; Smith, V. E.; Tatem, H. E.; Taylor, R.W.

    1992-01-01

    In response to a mandate in Section 118(c)(3) of the Water Quality Act of 1987, a program called Assessment and Remediation of Contaminated Sediments (ARCS) was established. Four technical work groups were formed. This paper details the research strategy of the Toxicity-Chemistry Work Group.The Work Group's general objectives are to develop survey methods and to map the degree of contamination and toxicity in bottom sediments at three study areas, which will serve as guidance for future surveys at other locations. A related objective is to use the data base that will be generated to calculate sediment quality concentrations by several methods. The information needed to achieve these goals will be collected in a series of field surveys at three areas: Saginaw Bay (MI), Grand Calumet River (IN), and Buffalo River (NY). Assessments of the extent of contamination and potential adverse effects of contaminants in sediment at each of these locations will be conducted by collecting samples for physical characterization, toxicity testing, mutagenicity testing, chemical analyses, and fish bioaccumulation assays. Fish populations will be assessed for tumors and external abnormalities, and benthic community structure will be analyzed. A mapping approach will use low-cost indicator parameters at a large number of stations, and will extrapolate by correlation from traditional chemical and biological studies at a smaller number of locations. Sediment toxicity testing includes elutriate, pore water and whole sediment bioassays in a three-tiered framework. In addition to the regular series of toxicity tests at primary mater stations, some stations are selected for a more extensive suite of tests.

  12. Sediment toxicity testing with the amphipod Ampelisca abdita in Calcasieu Estuary, Louisiana

    Science.gov (United States)

    Redmond, M.S.; Crocker, P.A.; McKenna, K.M.; Petrocelli, E.A.; Scott, K.J.; Demas, C.R.

    1996-01-01

    Discharges from chemical and petrochemical manufacturing facilities have contaminated portions of Louisiana's Calcasieu River estuary with a variety of organic and inorganic contaminants. As part of a special study, sediment toxicity testing was conducted to assess potential impact to the benthic community. Ten-day flow-through sediment toxicity tests with the amphipod Ampelisca abdita revealed significant toxicity at 68% (26 of 38) of the stations tested. A. abdita mortality was highest in the effluent-dominated bayous, which are tributaries to the Calcasieu River. Mortality was correlated with total heavy metal and total organic compound concentrations in the sediments. Ancillary experiments showed that sediment interstitial water salinity as low as 2.5 o/o-o did not significantly affect A. abdita's, response in the flow-through system; sediment storage for 7 weeks at 4??C did not significantly affect toxicity. Sediment toxicity to A. abdita was more prevalent than receiving water toxicity using three short-term chronic bioassays. Results suggest that toxicity testing using this amphipod is a valuable tool when assessing sediments containing complex contaminant mixtures and for assessing effects of pollutant loading over time. In conjunction with chemical analyses, the testing indicated that the effluent-dominated, brackish bayous (Bayou d'Inde and Bayou Verdine) were the portions of the estuary most impacted by toxicity.

  13. Bioluminescent Vibrio fischeri assays in the assessment of seasonal and spatial patterns in toxicity of contaminated river sediments

    Directory of Open Access Journals (Sweden)

    Sergio Jarque

    2016-11-01

    Full Text Available Several bacteria-based assays, notably Vibrio fischeri luminescence assays, are often used as environmental monitoring tool for toxicity in sediments that may serve as both sinks and secondary source of contamination in aquatic ecosystems. In this study, we used 30-s kinetic bioassays based on V. fischeri to evaluate the toxicity associated to sediments from five localities with different contamination inputs (Morava River and its tributary Drevnice River in the south-eastern part of the Czech Republic. Toxicity assessed as half maximal inhibitory concentration (IC50 over the course of a year-long sampling was compared in bottom sediments and freshly trapped particulate material. Standard approach based on testing of aqueous elutriates was compared with toxicity of whole sediments (contact suspension toxicity. Bottom sediments showed lower toxicity compared to freshly trapped suspended materials in all cases. On the other hand, standardized elutriates induced generally weaker effects than suspended sediments likely due to losses during the extraction process. Toxicity generally increased during winter reaching maximum peaks in early spring months in all five sites. Total organic carbon (TOC was found to be highly correlated with toxic effects. Toxicity from sites with direct industrial and agricultural water inputs also correlated with concentrations of metals, polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs. Single time point sampling followed by the extraction and testing of elutriates, do not truly reflect the spatial and temporal variability in natural sediments and may lead to underestimation of ecotoxic risks.

  14. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    Science.gov (United States)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  15. Toxicity assessment of sediments from three European river basins using a sediment contact test battery

    NARCIS (Netherlands)

    Tuikka, A.I.; Schmitt, C.; Hoess, S.; Bandow, N; von der Ohe, P.; de Zwart, D.; de Deckere, E.; Streck, G.; Mothes, S.; van Hattum, A.G.M.; Kocan, A.; Brix, R.; Brack, W.; Barcelo, D.; Sormunen, A.; Kukkonen, J.V.K.

    2011-01-01

    The toxicity of four polluted sediments and their corresponding reference sediments from three European river basins were investigated using a battery of six sediment contact tests representing three different trophic levels. The tests included were chronic tests with the oligochaete Lumbriculus

  16. A SEDIMENT TOXICITY METHOD USING LEMNA MINOR, DUCKWEED

    Science.gov (United States)

    We developed a Lemna minor sediment toxicity test method to assess sediment contaminants which may affect plants. This 96-hour test used 15 ml of sediment and 2 ml of overlying water which was renewed after 48 hours. Sand was used as the control sediment and also to dilute test ...

  17. The use of bioassays to assess the toxicity of sediment in an acid ...

    African Journals Online (AJOL)

    Exposure of river sediment from 7 sampling sites to these bioassays provided an eco-toxicological estimation of the acute toxicity and chronic toxicity emanating from the contaminated sediments. Physico-chemical analyses revealed higher levels of sediment contamination closer to the mine. The bioassays displayed a ...

  18. Characterizing toxicity of metal-contaminated sediments from mining areas

    International Nuclear Information System (INIS)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    Highlights: • We review methods for testing toxicity of sediments affected by metals. • Toxicity testing provides site-specific assessment of impacts on resident biota. • Goals are to document extent of toxicity and associations with metal exposure. • Need to characterize bioavailability of metals in sediment and pore water. • Toxicity data is basis for guidelines used to predict hazards of metal toxicity. - Abstract: This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate

  19. Assessment of sediment quality based on toxic equivalent benzo[a]Pyrene concentration

    International Nuclear Information System (INIS)

    King, T.L.; Lee, K.

    2004-01-01

    This study examined benzo[a]pyrene (B[a]P) as an indicator and its thresholds for polycyclic aromatic hydrocarbons (PAH) in sediments. The indicator, based on toxicity and carcinogenic effects, was selected to assess the marine environment and changes in marine environmental quality (MEQ) in Sydney Harbour, Nova Scotia. It was shown that the bioavailability of B[a]P and other PAHs is greatly affected by the quality and quantity of dissolved organic matter and organic carbon content. Two coal coke facilities were constructed on the shore of Sydney Harbour in the 19th century. For many years, the coke-ovens discharged toxic liquid effluent through the Tar Ponds into the harbour, contaminating the ground and surface water with arsenic, lead and other toxins. It also led to the accumulation of PAHs and polychlorinated biphenyls. A recent assessment of PAH contamination of Sydney Harbour has focused on the exposure of organisms to contaminants as well as the biological effects on the organisms. All samples collected from the South Arm of Sydney Harbour exceeded the upper threshold of established regulatory guidelines. Samples from the Northwest Arm were within regulatory limits, suggesting that industrial and municipal sources were the primary sources of pollution. PAH concentrations were used to identify sediments that exceed effects thresholds based on MEQ guidelines. The results were compared to actual observations of biological effects. Toxic equivalency factors were established for B[a]P and other PAHs in order to estimate cumulative exposure levels. The concentrations can be compared to regulatory sediment quality guidelines established in Canada and the United States for the protection of marine life. 34 refs., 6 tabs., 2 figs

  20. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    Science.gov (United States)

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Comparative performances of eggs and embryos of sea urchin (Paracentrotus lividus) in toxicity bioassays used for assessment of marine sediment quality.

    Science.gov (United States)

    Khosrovyan, A; Rodríguez-Romero, A; Salamanca, M J; Del Valls, T A; Riba, I; Serrano, F

    2013-05-15

    The potential toxicity of sediments from various ports was assessed by means of two different liquid-phase toxicity bioassays (acute and chronic) with embryos and eggs of sea urchin Paracentrotus lividus. Performances of embryos and eggs of P. lividus in these bioassays were compared for their interchangeable applicability in integrated sediment quality assessment. The obtained endpoints (percentages of normally developed plutei and fertilized eggs) were linked to physical and chemical properties of sediments and demonstrated dependence on sediment contamination. The endpoints in the two bioassays were strongly correlated and generally exhibited similar tendency throughout the samples. Therein, embryos demonstrated higher sensitivity to elutriate exposure, compared to eggs. It was concluded that these tests could be used interchangeably for testing toxicity of marine sediments. Preferential use of any of the bioassays can be determined by the discriminatory capacity of the test or vulnerability consideration of the test subject to the surrounding conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Sediment porewater toxicity assessment studies in the vicinity of offshore oil and gas production in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Carr, R. S.; Chapman, D. C.; Presley, B. J.; Biedenbach, J. M.; Robertson, L.

    1996-01-01

    Sediment chemical analyses and porewater toxicity tests were conducted in the vicinity of five offshore oil and gas platforms in the Gulf of Mexico to determine the potential long-term environmental impacts of offshore oil and gas exploration and production. Evidence of toxicity was obtained from four of the five platforms from data on sea urchin fertilization and embryonic development. The majority of toxic samples were collected within 150 m of the platform. Sediment concentrations of several metals were well in excess of sediment quality assessment guidelines at a number of stations. Porewater metal concentrations were found to be high enough to account for the observed toxicity. The general conclusion reached from these toxicity tests was that the contaminant-induced impacts from the offshore platforms were confined to a limited area in the immediate vicinity of the platform. 23 refs., 8 tabs., 2 figs

  3. Sediment porewater toxicity assessment studies in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico

    Science.gov (United States)

    Carr, R.S.; Chapman, D.C.; Presley, B.J.; Biedenbach, J.M.; Robertson, L.; Boothe, P.; Kilada, R.; Wade, T.; Montagna, P.

    1996-01-01

    As part of a multidisciplinary program to assess the potential long-term impacts of offshore oil and gas exploration and production activities in the Gulf of Mexico, sediment chemical analyses and porewater toxicity tests were conducted in the vicinity of five offshore platforms. Based on data from sea urchin fertilization and embryological development assays, toxicity was observed near four of the five platforms sampled; the majority of the toxic samples were collected within 150 m of a platform. There was excellent agreement among the results of porewater tests with three different species (sea urchin embryological development, polychaete reproduction, and copepod nauplii survival). The sediment concentrations of several metals were well in excess of sediment quality assessment guidelines at a number of stations, and good agreement was observed between predicted and observed toxicity. Porewater metal concentrations compared with EC50, LOEC, and NOEC values generated for water-only exposures indicated that the porewater concentrations for several metals were high enough to account for the observed toxicity. Results of these studies utilizing highly sensitive toxicity tests suggest that the contaminant-induced impacts from offshore platforms are limited to a localized area in the immediate vicinity of the platforms. 

  4. Sediment toxicity assessment in the Lagoon of Venice (Italy) using Paracentrotus lividus (Echinodermata: Echinoidea) fertilization and embryo bioassays.

    Science.gov (United States)

    Volpi Ghirardini, A; Arizzi Novelli, A; Tagliapietra, D

    2005-09-01

    The capacity of two toxicity bioassays (fertilization and embryo toxicity tests) to discriminate sediment toxicity using the sea urchin Paracentrotus lividus was tested in five stations with different levels of pollution in the Lagoon of Venice. Two stations were located in estuarine sites, two in the industrial zone, and one in a site at the top of our quality gradient (reference). Elutriate was chosen as sediment matrix to assess the potential effects of bioavailable pollutants in the water column as a consequence of sediment resuspension (dredging and dumping, fishing gear, etc.). An experimental design based on Quality Assurance/Quality Control procedures (QA/QC) was adopted in order to set the methodological basis for an effective use of these bioassays in monitoring programs. Results revealed both higher embriotoxicity than spermiotoxicity in all stations and the efficacy of combined use of both toxicity bioassays in discriminating differing pollution/bioavailability between stations and periods. The good representativeness of the integrated sampling scheme and the standardization of all experimental phases yielded high precision of results. Clear Toxicity Fingerprints were evidenced for the investigated sites through the combined use of both bioassays. A good fit between ecotoxicological data and chemical contamination levels was found, except for unnatural sediment texture.

  5. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Nowell, Lisa H., E-mail: lhnowell@usgs.gov [U.S. Geological Survey, California Water Science Center, Placer Hall, 6000 J Street, Sacramento, CA 95819 (United States); Norman, Julia E., E-mail: jnorman@usgs.gov [U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5" t" h Avenue, Portland, OR 97201 (United States); Ingersoll, Christopher G., E-mail: cingersoll@usgs.gov [U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, MO 65021 (United States); Moran, Patrick W., E-mail: pwmoran@usgs.gov [U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402 (United States)

    2016-04-15

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  6. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    International Nuclear Information System (INIS)

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical/chemical characteristics

  7. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    Science.gov (United States)

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Addition of contaminant bioavailability and species susceptibility to a sediment toxicity assessment: Application in an urban stream in China

    International Nuclear Information System (INIS)

    Li, Huizhen; Sun, Baoquan; Chen, Xin; Lydy, Michael J.; You, Jing

    2013-01-01

    Sediments collected from an urban creek in China exhibited high acute toxicity to Hyalella azteca with 81.3% of sediments being toxic. A toxic unit (TU) estimation demonstrated that the pyrethroid, cypermethrin, was the major contributor to toxicity. The traditional TU approach, however, overestimated the toxicity. Reduced bioavailability of sediment-associated cypermethrin due to sequestration explained the overestimation. Additionally, antagonism among multiple contaminants and species susceptibility to various contaminants also contributed to the unexpectedly low toxicity to H. azteca. Bioavailable TUs derived from the bioavailability-based approaches, Tenax extraction and matrix-solid phase microextraction (matrix-SPME), showed better correlations with the noted toxicity compared to traditional TUs. As the first successful attempt to use matrix-SPME for estimating toxicity caused by emerging insecticides in field sediment, the present study found freely dissolved cypermethrin concentrations significantly improved the prediction of sediment toxicity to H. azteca compared to organic carbon normalized and Tenax extractable concentrations. Highlights: •Over 80% sediments from an urban stream in China were acutely toxic to H. azteca. •Toxic unit analysis showed cypermethrin was the major contributor to toxicity. •The traditional toxic unit approach overestimated sediment toxicity. •Reduced bioavailability was the reason for overestimating sediment toxicity. •Freely dissolved cypermethrin concentrations greatly improved toxicity prediction. -- Field sediment toxicity caused by current-use pesticides could be more accurately evaluated by incorporating bioavailability measurements into the toxic unit analysis

  9. Toxicity assessment of reference and natural freshwater sediments with the luminotox assay

    CSIR Research Space (South Africa)

    Dellamatrice, PM

    2006-08-01

    Full Text Available to exist between LuminoTox-Solid Phase Assay (Lum-SPA) and Microtox Solid Phase Assay (Mic-SPA) indicating that both tests display a similar toxicity response pattern for CRM sediments having differing contaminant profiles. The sediment elutriate Lum...

  10. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    Science.gov (United States)

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development and application of freshwater sediment-toxicity benchmarks for currently used pesticides

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Ingersoll, Christopher G.; Moran, Patrick W.

    2016-01-01

    Sediment-toxicity benchmarks are needed to interpret the biological significance of currently used pesticides detected in whole sediments. Two types of freshwater sediment benchmarks for pesticides were developed using spiked-sediment bioassay (SSB) data from the literature. These benchmarks can be used to interpret sediment-toxicity data or to assess the potential toxicity of pesticides in whole sediment. The Likely Effect Benchmark (LEB) defines a pesticide concentration in whole sediment above which there is a high probability of adverse effects on benthic invertebrates, and the Threshold Effect Benchmark (TEB) defines a concentration below which adverse effects are unlikely. For compounds without available SSBs, benchmarks were estimated using equilibrium partitioning (EqP). When a sediment sample contains a pesticide mixture, benchmark quotients can be summed for all detected pesticides to produce an indicator of potential toxicity for that mixture. Benchmarks were developed for 48 pesticide compounds using SSB data and 81 compounds using the EqP approach. In an example application, data for pesticides measured in sediment from 197 streams across the United States were evaluated using these benchmarks, and compared to measured toxicity from whole-sediment toxicity tests conducted with the amphipod Hyalella azteca (28-d exposures) and the midge Chironomus dilutus (10-d exposures). Amphipod survival, weight, and biomass were significantly and inversely related to summed benchmark quotients, whereas midge survival, weight, and biomass showed no relationship to benchmarks. Samples with LEB exceedances were rare (n = 3), but all were toxic to amphipods (i.e., significantly different from control). Significant toxicity to amphipods was observed for 72% of samples exceeding one or more TEBs, compared to 18% of samples below all TEBs. Factors affecting toxicity below TEBs may include the presence of contaminants other than pesticides, physical

  12. A comparison of sediment toxicity test methods at three Great Lake Areas of Concern

    Science.gov (United States)

    Burton, G. Allen; Ingersoll, Christopher G.; Burnett, LouAnn C.; Henry, Mary; Hinman, Mark L.; Klaine, Stephen J.; Landrum, Peter F.; Ross, Phillipe; Tuchman, Marc

    1996-01-01

    The significance of sediment contamination is often evaluated using sediment toxicity (bioassay) testing. There are relatively few “standardized” test methods for evaluating sediments. Popular sediment toxicity methods examine the extractable water (elutriate), interstitial water, or whole (bulk) sediment phases using test species spanning the aquatic food chain from bacteria to fish. The current study was designed to evaluate which toxicity tests were most useful in evaluations of sediment contamination at three Great Lake Areas of Concern. Responses of 24 different organisms including fish, mayflies, amphipods, midges, cladocerans, rotifers, macrophytes, algae, and bacteria were compared using whole sediment or elutriate toxicity assays. Sediments from several sites in the Buffalo River, Calumet River (Indiana Harbor), and Saginaw River were tested, as part of the U.S. Environmental Protection Agency's (USEPA) Assessment and Remediation of Contaminated Sediments (ARCS) Project. Results indicated several assays to be sensitive to sediment toxicity and able to discriminate between differing levels of toxicity. Many of the assay responses were significantly correlated to other toxicity responses and were similar based on factor analysis. For most applications, a test design consisting of two to three assays should adequately detect sediment toxicity, consisting of various groupings of the following species: Hyalella azteca, Ceriodaphnia dubia, Chironomus riparius, Chironomus tentans, Daphnia magna, Pimephales promelas, Hexagenia bilineata, Diporeia sp., Hydrilla verticillata, or Lemna minor.

  13. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.; Ivey, Chris D.; Kunz, James L.; Kemble, Nile E.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    This study evaluated the chronic toxicity of Ni-spiked freshwater sediments to benthic invertebrates. A 2-step spiking procedure (spiking and sediment dilution) and a 2-stage equilibration period (10 wk anaerobic and 1 wk aerobic) were used to spike 8 freshwater sediments with wide ranges of acid-volatile sulfide (AVS; 0.94–38 µmol/g) and total organic carbon (TOC; 0.42–10%). Chronic sediment toxicity tests were conducted with 8 invertebrates (Hyalella azteca, Gammarus pseudolimnaeus, Chironomus riparius, Chironomus dilutus, Hexagenia sp., Lumbriculus variegatus, Tubifex tubifex, and Lampsilis siliquoidea) in 2 spiked sediments. Nickel toxicity thresholds estimated from species-sensitivity distributions were 97 µg/g and 752 µg/g (total recoverable Ni; dry wt basis) for sediments with low and high concentrations of AVS and TOC, respectively. Sensitive species were tested with 6 additional sediments. The 20% effect concentrations (EC20s) for Hyalella and Gammarus, but not Hexagenia, were consistent with US Environmental Protection Agency benchmarks based on Ni in porewater and in simultaneously extracted metals (SEM) normalized to AVS and TOC. For Hexagenia, sediment EC20s increased at less than an equimolar basis with increased AVS, and toxicity occurred in several sediments with Ni concentrations in SEM less than AVS. The authors hypothesize that circulation of oxygenated water by Hexagenia led to oxidation of AVS in burrows, creating microenvironments with high Ni exposure. Despite these unexpected results, a strong relationship between Hexagenia EC20s and AVS could provide a basis for conservative site-specific sediment quality guidelines for Ni.

  14. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    Science.gov (United States)

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Toxicities of sediments below 10 effluent outfalls to near-coastal areas of the Gulf of Mexico

    International Nuclear Information System (INIS)

    Lewis, M.; Weber, D.; Stanley, R.

    1995-01-01

    The chemical quality and toxicities of sediments collected in the receiving waters below 10 wastewater outfalls to Northwest Florida coastal areas were evaluated at multiple stations during 1994--1996. Eight types of toxicity tests using 11 test species were used to assess acute and chronic toxicity of the sediments collected below industrial, municipal, power generation and pulp mill outfalls. The primary objectives of the study were to evaluate the relative ability of different assessment procedures to detect toxicity and to provide some much-needed perspective on the impact of major point sources on sediment quality in Gulf of Mexico estuaries. The major chemical contaminants were heavy metals and PAHs. Acute and chronic toxicities were noted. Results of tests with sediment collected at the same location but several months later often differed. The most sensitive species were mysids and an estuarine amphipod. The least sensitive species were fish and macrophyte seedlings. There was poor correlation of effluent toxicity to sediment toxicity in the receiving water. Toxicity of the effluents was greater than that of the sediments. Overall, the unavailability of relevant chronic toxicity methods, uncertain criteria for choice of control stations, lack of guidance on frequency of testing and the dynamic physical and chemical characteristics of sediments are factors that need consideration if sediment monitoring is to be part of the NPDES regulatory process

  16. Development of a chronic sediment toxicity test for marine benthic amphipods

    International Nuclear Information System (INIS)

    DeWitt, T.H.; Redmond, M.S.; Sewall, J.E.; Swartz, R.C.

    1992-12-01

    The results of the research effort culminated in the development of a research method for assessing the chronic toxicity of contaminated marine and estuarine sediments using the benthic amphipod, Leptocheirus plumulosus. The first chapter describes the efforts at collecting, handling, and culturing four estuarine amphipods from Chesapeake Bay, including L. plumulosus. This chapter includes maps of the distribution and abundance of these amphipods within Chesapeake Bay and methodologies for establishing cultures of amphipods which could be readily adopted by other laboratories. The second chapter reports the development of acute and chronic sediment toxicity test methods for L. plumulosus, its sensitivity to non-contaminant environmental variables, cadmium, two polynuclear aromatic hydrocarbons, and contaminated sediment from Baltimore Harbor, MD. The third chapter reports the authors attempts to develop a chronic sediment toxicity test with Ampelisca abdita

  17. Assessment of sediment toxicity in the Lagoon of Venice (Italy) using a multi-species set of bioassays.

    Science.gov (United States)

    Picone, Marco; Bergamin, Martina; Losso, Chiara; Delaney, Eugenia; Arizzi Novelli, Alessandra; Ghirardini, Annamaria Volpi

    2016-01-01

    Within the framework of a Weight of Evidence (WoE) approach, a set of four toxicity bioassays involving the amphipod Corophium volutator (10 d lethality test on whole sediment), the sea urchin Paracentrotus lividus (fertilization and embryo toxicity tests on elutriate) and the pacific oyster Crassostrea gigas (embryo toxicity test on elutriate) was applied to sediments from 10 sampling sites of the Venice Lagoon (Italy). Sediments were collected during three campaigns carried out in May 2004 (spring campaign), October 2004 (autumn campaign) and February 2005 (winter campaign). Toxicity tests were performed on all sediment samples. Sediment grain-size and chemistry were measured during spring and autumn campaigns. This research investigated (i) the ability of toxicity tests in discriminating among sites with different contamination level, (ii) the occurrence of a gradient of effect among sampling sites, (iii) the possible correlation among toxicity tests, sediment chemistry, grain size and organic carbon, and (iv) the possible occurrence of toxicity seasonal variability. Sediment contamination levels were from low to moderate. No acute toxicity toward amphipods was observed, while sea urchin fertilization was affected only in few sites in just a single campaign. Short-term effects on larval development of sea urchin and oyster evidenced a clear spatial trend among sites, with increasing effects along the axis connecting the sea-inlets with the industrial area. The set of bioassays allowed the identification of a spatial gradient of effect, with decreasing toxicity from the industrial area toward the sea-inlets. Multivariate data analysis showed that the malformations of oyster embryos were significantly correlated to the industrial contamination (metals, polynuclear aromatic hydrocarbons, hexachlorobenzene and polychlorinated biphenyls), while sea urchin development to sediment concentrations of As, Cr and organic carbon. Both embryo toxicity tests were

  18. Characterizing toxicity of metal-contaminated sediments from mining areas

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2015-01-01

    This paper reviews methods for testing the toxicity of metals associated with freshwater sediments, linking toxic effects with metal exposure and bioavailability, and developing sediment quality guidelines. The most broadly applicable approach for characterizing metal toxicity is whole-sediment toxicity testing, which attempts to simulate natural exposure conditions in the laboratory. Standard methods for whole-sediment testing can be adapted to test a wide variety of taxa. Chronic sediment tests that characterize effects on multiple endpoints (e.g., survival, growth, and reproduction) can be highly sensitive indicators of adverse effects on resident invertebrate taxa. Methods for testing of aqueous phases (pore water, overlying water, or elutriates) are used less frequently. Analysis of sediment toxicity data focuses on statistical comparisons between responses in sediments from the study area and responses in one or more uncontaminated reference sediments. For large or complex study areas, a greater number of reference sediments is recommended to reliably define the normal range of responses in uncontaminated sediments – the ‘reference envelope’. Data on metal concentrations and effects on test organisms across a gradient of contamination may allow development of concentration-response models, which estimate metal concentrations associated with specified levels of toxic effects (e.g. 20% effect concentration or EC20). Comparisons of toxic effects in laboratory tests with measures of impacts on resident benthic invertebrate communities can help document causal relationships between metal contamination and biological effects. Total or total-recoverable metal concentrations in sediments are the most common measure of metal contamination in sediments, but metal concentrations in labile sediment fractions (e.g., determined as part of selective sediment extraction protocols) may better represent metal bioavailability. Metals released by the weak-acid extraction

  19. The impact of sediment bioturbation by secondary organisms on metal bioavailability, bioaccumulation and toxicity to target organisms in benthic bioassays: Implications for sediment quality assessment

    International Nuclear Information System (INIS)

    Remaili, Timothy M.; Simpson, Stuart L.; Amato, Elvio D.; Spadaro, David A.; Jarolimek, Chad V.; Jolley, Dianne F.

    2016-01-01

    Bioturbation alters the properties of sediments and modifies contaminant bioavailability to benthic organisms. These naturally occurring disturbances are seldom considered during the assessment of sediment quality. We investigated how the presence (High bioturbation) and absence (Low bioturbation) of a strongly bioturbating amphipod within three different sediments influenced metal bioavailability, survival and bioaccumulation of metals to the bivalve Tellina deltoidalis. The concentrations of dissolved copper decreased and manganese increased with increased bioturbation. For copper a strong correlation was observed between increased bivalve survival (53–100%) and dissolved concentrations in the overlying water. Increased bioturbation intensity resulted in greater tissue concentrations for chromium and zinc in some test sediments. Overall, the results highlight the strong influence that the natural bioturbation activities from one organism may have on the risk contaminants pose to other organisms within the local environment. The characterisation of field-based exposure conditions concerning the biotic or abiotic resuspension of sediments and the rate of attenuation of released contaminants through dilution or readsorption may enable laboratory-based bioassay designs to be adapted to better match those of the assessed environment. - Highlights: • Bioturbation intensity modifies metal exposure and outcomes of sediment bioassays. • Sediment fluxes of Cu decrease and Mn and Zn increase with increased bioturbation. • Strong correlations between bioaccumulated and dissolved Cd, Cr, Pb, Zn, Cu and Ni. • Weak correlations between bioaccumulated and particulate metals. - This study investigated the impact of sediment bioturbation intensity on metal bioavailability and toxicity to aquatic organisms, and the implications of this to toxicity test design.

  20. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Comber, S.D.W. [WRc-NSF, Henley Road, Medmenham, Marlow, Buckinghamshire, SL7 2HD (United Kingdom)]. E-mail: sean.comber@atkinsglobal.com; Conrad, A.U. [Weinberg Group, Blue Tower, Box 16, B-1050 Brussels (Belgium); Hoess, S. [ECOSSA, Thierschstrasser 43, 80538, Muenchen (Germany); Webb, S. [CEFIC, Ave E. Van Nieuwenhuyse 4, B-1160 Brussels (Belgium); Marshall, S. [Unilever Research, Environment Centre, Bebington, Wirral, Merseyside, L63 3JW (United Kingdom)

    2006-11-15

    The toxicity of linear alkylbenzene sulphonates (LAS), to freshwater benthic organisms was assessed during exposure to spiked sediment. Lethal and sub-lethal end-points were monitored for two organisms (oligochaete Lumbriculus variegatus and nematode Caenorhabditis elegans). Results demonstrated relatively low toxicity (LOECs >100 mg/kg dry weight). No observed effect concentrations (NOECs) of 81 mg/kg dw (Lumbriculus) and 100 mg/kg dw (Caenorhabditis) were determined. For the oligochaete, no specific endpoint was particularly sensitive to LAS. For the nematode, egg production was the most sensitive endpoint. Significant degradation was measured over the 28-day duration of the Lumbriculus study, equating to a half-life of 20 days in sediment. - This paper provides sediment toxicity data for LAS, essential for a detailed and accurate environment risk assessment.

  1. Chronic toxicity of sediment-associated linear alkylbenzene sulphonates (LAS) to freshwater benthic organisms

    International Nuclear Information System (INIS)

    Comber, S.D.W.; Conrad, A.U.; Hoess, S.; Webb, S.; Marshall, S.

    2006-01-01

    The toxicity of linear alkylbenzene sulphonates (LAS), to freshwater benthic organisms was assessed during exposure to spiked sediment. Lethal and sub-lethal end-points were monitored for two organisms (oligochaete Lumbriculus variegatus and nematode Caenorhabditis elegans). Results demonstrated relatively low toxicity (LOECs >100 mg/kg dry weight). No observed effect concentrations (NOECs) of 81 mg/kg dw (Lumbriculus) and 100 mg/kg dw (Caenorhabditis) were determined. For the oligochaete, no specific endpoint was particularly sensitive to LAS. For the nematode, egg production was the most sensitive endpoint. Significant degradation was measured over the 28-day duration of the Lumbriculus study, equating to a half-life of 20 days in sediment. - This paper provides sediment toxicity data for LAS, essential for a detailed and accurate environment risk assessment

  2. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia

    International Nuclear Information System (INIS)

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-01-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system. - Highlights: • The Magdalena River has high levels of some metals such as Cd, Cu, and Ni. • Most sediment extracts affected lethality, growth, and locomotion of C. elegans. • Sediment extracts induced expression changes in mtl-2, sod-4, and gst-1. • Sediment toxicity was primarily associated with Cd and Pb. • Highest toxicity was observed for samples collected in mining and industrial areas. - In Magdalena River sediments, Cd and Pb were associated with toxicity in Caenorhabditis elegans and expression of stress response genes were related to

  3. Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures

    Science.gov (United States)

    Mwangi, Joseph N.; Wang, Ning; Ritts, Andrew; Kunz, James L.; Ingersoll, Christopher G.; Li, Hao; Deng, Baolin

    2011-01-01

    Silicon carbide nanowires (SiCNW) are insoluble in water. When released into an aquatic environment, SiCNW would likely accumulate in sediment. The objective of this study was to assess the toxicity of SiCNW to four freshwater sediment-dwelling organisms: amphipods (Hyalella azteca), midges (Chironomus dilutus), oligochaetes (Lumbriculus variegatus), and mussels (Lampsilis siliquoidea). Amphipods were exposed to either sonicated or nonsonicated SiCNW in water (1.0 g/L) for 48 h. Midges, mussels, and oligochaetes were exposed only to sonicated SiCNW in water for 96 h. In addition, amphipods were exposed to sonicated SiCNW in whole sediment for 10 d (44% SiCNW on dry wt basis). Mean 48-h survival of amphipods exposed to nonsonicated SiCNW in water was not significantly different from the control, whereas mean survival of amphipods exposed to sonicated SiCNW in two 48-h exposures (0 or 15% survival) was significantly different from the control (90 or 98% survival). In contrast, no effect of sonicated SiCNW was observed on survival of midges, mussels, or oligochaetes. Survival of amphipods was not significantly reduced in 10-d exposures to sonicated SiCNW either mixed in the sediment or layered on the sediment surface. However, significant reduction in amphipod biomass was observed with the SiCNW either mixed in sediment or layered on the sediment surface, and the reduction was more pronounced for SiCNW layered on the sediment. These results indicated that, under the experimental conditions, nonsonicated SiCNW in water were not acutely toxic to amphipods, sonicated SiCNW in water were acutely toxic to the amphipods, but not to other organisms tested, and sonicated SiCNW in sediment affected the growth but not the survival of amphipods.

  4. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain: Metal distribution, toxicity, bioaccumulation and benthic community structure

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The Mar Menor coastal lagoon is one of the largest of the Mediterranean Sea. Ancient mining activities in the mountains near its southern basin have resulted in metal contamination in the sediment. The metal bioavailability of these sediments was determined through laboratory toxicity bioassays using three Mediterranean sea urchin species and two amphipod species, and by means of field bioaccumulation measurements involving the seagrass Cymodocea nodosa. The effect of sediment metal contamination on benthic communities was assessed through benthic infaunal analyses, applying classical descriptive parameters and multivariate techniques. The sediments affected by the mining activities presented high levels of toxicity and metals were also accumulated in the seagrass tissues, pointing to metal bioavailability. Although the classical benthic indices were not clear indicators of disturbance, the multivariate techniques applied provided more consistent conclusions.

  5. Assessment of sediments from Tiete River - toxicity and trace elements - from Salesopolis to Suzano counties, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Alegre, Gabriel F.; Borrely, Sueli; Nascimento, Thuany M.; Favaro, Deborah I.T.

    2009-01-01

    In the present study, sediment samples from the Tiete River were evaluated for toxicity and trace metals (5 sampling sites). The studied region includes Salesopolis to Suzano and surroundings, a highly industrialized area. The study involved toxicity evaluation (sediment, elutriate and pore-water) and the distribution of some major, trace and rare earth elements on sediments. Multielemental analysis was carried out by instrumental neutron activation analysis (INAA) and total mercury by cold vapor atomic absorption technique (CV AAS). The concentration values obtained for the metals As, Cr, Hg and Zn in the sediment samples were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL). Regarding toxicity, whole sediments and elutriate fractions were evaluated using chronic assays for Ceriodaphnia dubia, while the pore water was carried out for Vibrio fischeri toxicity assays. These assays followed Brazilian Standardized Methods (ABNT). Whole sediments and elutriate evidenced negative biological effects, even at Salesopolis county, the control site (less impacted area). The worst effects were obtained at Mogi das Cruzes and Suzano counties (sampling stations 3 and 4). The elutriate fractions collected at the same stations showed acute toxicity in two of three samples (C. dubia). When pore water was evaluated, a toxicity gradient which increased as the river flowed through Mogi das Cruzes county was obtained. Regarding toxic metal contents in the sediment samples points 3 and 4 exceeded the TEL oriented values for As, Cr, Hg and Zn and point 4 also exceeded the PEL values for all these elements. (author)

  6. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon.

    Science.gov (United States)

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia; Ghirardini, Annamaria Volpi; Kusk, Kresten Ole

    2018-01-01

    The early-life stages of development of the calanoid copepod Acartia tonsa from egg to copepodite I is proposed as an endpoint for assessing sediment toxicity by exposing newly released eggs directly onto the sediment-water interface. A preliminary study of 5 sediment samples collected in the lagoon of Venice highlighted that the larval development rate (LDR) and the early-life stages (ELS) mortality endpoints with A. tonsa are more sensitive than the standard amphipod mortality test; moreover LDR resulted in a more reliable endpoint than ELS mortality, due to the interference of the sediment with the recovery of unhatched eggs and dead larvae. The LDR data collected in a definitive study of 48 sediment samples from the Venice Lagoon has been analysed together with the preliminary data to evaluate the statistical performances of the bioassay (among replicate variance and minimum significant difference between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus purpuratus embryotoxicity test), sediments (Neanthes arenaceodentata survival and growth test) and porewater (S. purpuratus); the LDR endpoint did, however, show a slightly higher variance as compared with other tests used in the Lagoon of Venice, such as 10-d amphipod lethality test and larval development with sea urchin and bivalves embryos. Sediment toxicity data highlighted the high sensitivity and the clear ability of the larval development to discriminate among sediments characterized by different levels of contamination. The data of the definitive study evidenced that inhibition of the larval development was not affected by grain-size and the organic carbon content of the sediment; in contrast, a strong correlation between inhibition of the larval development

  7. Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand

    Science.gov (United States)

    Abrahim, G. M. S.; Parker, R. J.; Nichol, S. L.

    2007-07-01

    Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.

  8. Toxicity of sediment pore water associated with offshore oil and gas platforms in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Carr, R.S.; Chapman, D.C.

    1993-01-01

    As a part of a multidisciplinary program to assess the long-term impacts of offshore petroleum production in the Gulf of Mexico, a series of sediment porewater toxicity tests were conducted. Sediments were samples from five petroleum production platforms along five radial transects. Pore water was extracted from the sediment using a pressure extraction device, centrifuged, and frozen for later toxicity testing and chemical analysis. The sea urchin (Arbacia punctulata) embryological development assay and fertilization assay were used to assess porewater toxicity. Significant decreases in normal development of embryos was observed at 14 stations and fertilization was reduced at three stations. All stations with reduced fertilization also showed impaired development in the embryological development assay. All but three toxic sites were within 150 m of the platform. The six most toxic stations were at one platform near the Flower Garden reef, occurring near the platform along three radii; toxicity was always greater at the first site on a radium than at the second. Toxicity is discussed in relation to metal and hydrocarbon concentrations in whole sediment and in pore water

  9. Assessment of the acute toxicity of eutrophic sediments after the addition of calcium nitrate (Ibirité reservoir, Minas Gerais-SE Brazil: initial laboratory experiments

    Directory of Open Access Journals (Sweden)

    H. Janke

    Full Text Available This study evaluated the acute toxicity of sediment in a eutrophic reservoir after remediation with a calcium nitrate solution to retain phosphorus. The study involved microcosms of surface sediments and water from the sediment-water interface in the Ibirité reservoir. This reservoir, located in the vicinity of metropolitan Belo Horizonte (Minas Gerais, SE Brazil, is a water body that receives treated effluents from an oil refinery (REGAP-Petrobras, as well as high loads of untreated urban effluents from the city of Ibirité and surrounding areas and industrial effluents from a major industrial park. Incubation times of the treatment experiments were: t = 0, t = 5, t = 10, t = 25, t = 50, t = 85 and t = 135 days. One control microcosm and three treated microcosms were analysed in each time interval. Acute toxicity of water samples was assessed with Ceriodaphnia silvestrii Daday, 1902 and that of bulk sediment samples with Chironomus xanthus Rempel, 1939. Toxicity tests were carried out concomitantly with chemical analyses of dissolved inorganic nitrogen species (ammonia, nitrate and nitrite, sulfate and metals in the water samples of the microcosms. Acid volatile sulfides (AVS, simultaneously extracted metal (SEM and potentially bioavailable metal were analyzed in bulk sediment samples. Neither of the tested organisms showed toxicity in the control microcosm samples. The water column of the treated microcosm showed toxicity to C. silvestrii, starting at t = 10 days, while the sediment pore water toxicity started at t = 0 day. However, toxicity was found to decline from t = 85 days to t = 135 days. Sediments showed toxicity to C. xanthus during the entire experiment, except at the longest incubation time (t = 135 days. The overall results indicate that nitrate, which reached concentrations exceeding 1,200 mg N-NO3- L-1 in the sediment pore water of the treated microcosms, was most probably responsible for the toxicity of the samples. Although

  10. Development of a bioassay to assess the toxicity of oil sands sediments to pike (Esox lucius)

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, D.; Yuan, H.; Tumber, V.; Parrott, J. [Environment Canada, Ottawa, ON (Canada); Raine, J. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    Pike (Esox lucius) are a commercially sought fish species that inhabit the Athabasca River, which flows through the Athabasca oil sands. The fish are exposed to natural sources of bitumen from the McMurray formation. This study was conducted to design and implement a daily-renewal bioassay to assess the toxicity of oil sands to this fish species and to obtain information regarding the development of pike exposed to bitumen. Eggs were collected and fertilized with milt from spawning wild pike captured from Lake Diefenbaker in Saskatchewan. The fertilized eggs were exposed to different concentrations of sediments or culture water only (negative controls) until complete yolk absorption of control fish, approximately 15 days post-hatch. For the rest of the experiment, brine shrimp were fed to the walleye embryos every day after hatching. The developing fish were examined for morphological deformities, survival, hatching success, and changes in weight and length. The research findings indicated that pike is less sensitive than walleye and fathead minnow to the toxicity of oil sands sediments.

  11. Effects-based spatial assessment of contaminated estuarine sediments from Bear Creek, Baltimore Harbor, MD, USA.

    Science.gov (United States)

    Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T

    2017-10-01

    Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This

  12. Prospective Environmental Risk Assessment for Sediment-Bound Organic Chemicals: A Proposal for Tiered Effect Assessment.

    Science.gov (United States)

    Diepens, Noël J; Koelmans, Albert A; Baveco, Hans; van den Brink, Paul J; van den Heuvel-Greve, Martine J; Brock, Theo C M

    A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.

  13. Wastewater canal Vojlovica, industrial complex Pančevo, Serbia – preliminary ecotoxicological assessment of contaminated sediment

    Directory of Open Access Journals (Sweden)

    IVANA PLANOJEVIĆ

    2011-03-01

    Full Text Available Effluents collected from the industrial complex of Pančevo, Serbia (oil refinery, petrochemical plant, and fertilizer factory, are discharged into a wastewater canal entering the Danube River. In this study, which was focused on sediment assessment, a complex triad approach consisting of chemical analysis, sediment toxicity tests and macrozoobenthos community analysis was applied. In toxicity tests on sediment elutriates, the following responses were registered – stimulatory effect in algal bioassay, no effect in acute test with Daphnia magna, and low to moderate toxicity in the conventional Vibrio fischeri test. Moderate to high toxicities were recorded in solid phase tests on Myriophyllum aquaticum and V. fischeri. High content of Hg, certain PAHs and non-characterised sediment contaminants accumulated over years contribute not only to the registered toxicity, but also to the complete absence of macrozoobenthos. The obtained results proved that regularly measured conventional and priority pollutants are hardly ever the only toxic contaminants present in sediments. Toxicity tests, in particular the contact test, might guide towards a better selection of parameters to be regularly or occasionally monitored. In addition, complete sediment toxicity tests proved to be an appropriate method for assessing the bioavailability of the chemically detected contaminants. The analysis of the macrozoobenthos composition and structure as inevitable part of sediment risk assessment procedures integrates the effects of multiple stressors and gives a realistic insight into not only sediment contamination by toxic pollutants, but also the sediment status in general.

  14. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    Science.gov (United States)

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  15. Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe

    International Nuclear Information System (INIS)

    Hsu, P.; Matthaei, A.; Heise, S.; Ahlf, W.

    2007-01-01

    Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation. - Significant impacts of hydrological and biological factors on the ecotoxicological quality in two European rivers (Elbe and Dommel)

  16. Calculating background levels for ecological risk parameters in toxic harbor sediment

    Science.gov (United States)

    Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.

    2007-01-01

    Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated

  17. Effectiveness of bioremediation in reducing toxicity in oiled intertidal sediments

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.

    1995-01-01

    A 123-day field study was conducted with in situ enclosures to compare the effectiveness of bioremediation strategies based in inorganic and organic fertilizer additions to accelerate the biodegradation rates and reduce the toxicity of Venture trademark condensate stranded within sand-beach sediments. Comparison of the two fertilizer formulations with identical nitrogen and phosphorus concentrations showed that the organic fertilizer stimulated bacterial productivity within the oiled sediments to the greatest extent. However, detailed chemical analysis indicated that inorganic fertilizer additions were the most effective in enhancing condensate biodegradation rates. The Microtox reg-sign Solid-Phase Test (SPT) bioassay was determined to be sensitive to Venture Condensate in laboratory tests. Subsequent application of this procedure to oiled sediment in the field showed a reduction in sediment toxicity over time. However, the Microtox reg-sign bioassay procedure did not identify significant reductions in sediment toxicity following bioremediation treatment. An observed increase in toxicity following periodic additions of the organic fertilizer was attributed to rapid biodegradation rates of the fertilizer, which resulted in the production of toxic metabolic products

  18. Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination - Determination of toxicity thresholds

    International Nuclear Information System (INIS)

    Hoess, S.; Ahlf, W.; Fahnenstich, C.; Gilberg, D.; Hollert, H.; Melbye, K.; Meller, M.; Hammers-Wirtz, M.; Heininger, P.; Neumann-Hensel, H.; Ottermanns, R.; Ratte, H.-T.

    2010-01-01

    Freshwater sediments with low levels of anthropogenic contamination and a broad range of geochemical properties were investigated using various sediment-contact tests in order to study the natural variability and to define toxicity thresholds for the various toxicity endpoints. Tests were performed with bacteria (Arthrobacter globiformis), yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), oligochaetes (Lumbriculus variegatus), higher plants (Myriophyllum aquaticum), and the eggs of zebrafish (Danio rerio). The variability in the response of some of the contact tests could be explained by particle size distribution and organic content. Only for two native sediments could a pollution effect not be excluded. Based on the minimal detectable difference (MDD) and the maximal tolerable inhibition (MTI), toxicity thresholds (% inhibition compared to the control) were derived for each toxicity parameter: >20% for plant growth and fish-egg survival, >25% for nematode growth and oligochaete reproduction, >50% for nematode reproduction and >60% for bacterial enzyme activity. - Sediment-contact tests require toxicity thresholds based on their variability in native sediments with low-level contamination.

  19. Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination - Determination of toxicity thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Hoess, S., E-mail: hoess@ecossa.d [Ecossa, Giselastr. 6, 82319 Starnberg (Germany); Institute of Biodiversity - Network (IBN), Dreikronengasse 2, 93047 Regensburg (Germany); Ahlf, W., E-mail: ahlf@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Technical University Hamburg-Harburg, Eissendorfer Str. 40, 21071 Hamburg (Germany); Fahnenstich, C. [Institute of Environmental Technology and Energy Economics, Technical University Hamburg-Harburg, Eissendorfer Str. 40, 21071 Hamburg (Germany); Gilberg, D., E-mail: d-gilberg@ect.d [ECT Oekotoxikologie, Boettgerstr. 2-14, 65439 Floersheim (Germany); Hollert, H., E-mail: henner.hollert@bio5.rwth-aachen.d [Department of Ecosystem Analysis, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Melbye, K. [Dr. Fintelmann and Dr. Meyer, Mendelssohnstr. 15D, 22761 Hamburg (Germany); Meller, M., E-mail: m-meller@ecotox-consult.d [ECT Oekotoxikologie, Boettgerstr. 2-14, 65439 Floersheim (Germany); Hammers-Wirtz, M., E-mail: hammers-wirtz@gaiac.rwth-aachen.d [Research Institute for Ecosystem Analysis and Assessment (gaiac), RWTH Aachen University, Worringerweg 1, 52056 Aachen (Germany); Heininger, P., E-mail: heininger@bafg.d [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56070 Koblenz (Germany); Neumann-Hensel, H., E-mail: hensel@fintelmann-meyer.d [Dr. Fintelmann and Dr. Meyer, Mendelssohnstr. 15D, 22761 Hamburg (Germany); Ottermanns, R., E-mail: ottermanns@bio5.rwth-aachen.d [Chair for Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Ratte, H.-T., E-mail: toni.ratte@bio5.rwth-aachen.d [Chair for Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology 5), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany)

    2010-09-15

    Freshwater sediments with low levels of anthropogenic contamination and a broad range of geochemical properties were investigated using various sediment-contact tests in order to study the natural variability and to define toxicity thresholds for the various toxicity endpoints. Tests were performed with bacteria (Arthrobacter globiformis), yeast (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), oligochaetes (Lumbriculus variegatus), higher plants (Myriophyllum aquaticum), and the eggs of zebrafish (Danio rerio). The variability in the response of some of the contact tests could be explained by particle size distribution and organic content. Only for two native sediments could a pollution effect not be excluded. Based on the minimal detectable difference (MDD) and the maximal tolerable inhibition (MTI), toxicity thresholds (% inhibition compared to the control) were derived for each toxicity parameter: >20% for plant growth and fish-egg survival, >25% for nematode growth and oligochaete reproduction, >50% for nematode reproduction and >60% for bacterial enzyme activity. - Sediment-contact tests require toxicity thresholds based on their variability in native sediments with low-level contamination.

  20. Mapping sediment contamination and toxicity in Winter Quarters Bay, McMurdo Station, Antarctica.

    Science.gov (United States)

    Crockett, Alan B; White, Gregory J

    2003-07-01

    Winter Quarters Bay (WQB) is a small embayment located adjacent to McMurdo Station, the largest research base in Antarctica. The bay is approximately 250 m wide and long, with a maximum depth of 33 m. Historically, trash from the McMurdo Station was piled on the steep shoreline of WQB, doused with fuel and ignited. That practice has ceased, and the adjacent land area has been regraded to cover the residual waste. The bottom of WQB remains littered with drums, equipment, tanks, tires, cables, and other objects, especially the southeastern side of the bay where dumping took place. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. The objectives of this study were to map the distribution of organic contaminants in WQB, assess the toxicity of WQB sediments using a simple microbial test, and determine correlations between toxicity and contaminant levels. The study suggests that adverse ecological effects have occurred from one or more of the contaminants found in WQB but the source of the toxic impacts to bay sediments remains unknown. Whole sediment toxicity was only correlated with oil-equivalent while solvent extracts of sediments were correlated with PAHs and oil-equivalent. The authors recommend that an integrated research plan be developed that focuses on determining what additional information is needed to make informed decisions on possible remediation of WQB.

  1. Can interpreting sediment toxicity tests a mega sites benefit from novel approaches to normalization to address batching of tests?

    Science.gov (United States)

    Sediment toxicity tests are a key tool used in Ecological Risk Assessments for contaminated sediment sites. Interpreting test results and defining toxicity is often a challenge. This is particularly true at mega sites where the testing regime is large, and by necessity performed ...

  2. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond

    International Nuclear Information System (INIS)

    Mayer, T.; Rochfort, Q.; Borgmann, U.; Snodgrass, W.

    2008-01-01

    A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride. - Effects of chlorides on metal chemistry and toxicity of sediment porewater in a stormwater detention pond impacted by road salts

  3. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    Science.gov (United States)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  4. Isolating the impact of sediment toxicity in urban streams

    International Nuclear Information System (INIS)

    Marshall, Stephen; Pettigrove, Vincent; Carew, Melissa; Hoffmann, Ary

    2010-01-01

    Several factors can contribute to the ecological degradation of stream catchments following urbanization, but it is often difficult to separate their relative importance. We isolated the impact of polluted sediment on the condition of an urban stream in Melbourne, Australia, using two complementary approaches. Using a rapid bioassessment approach, indices of stream condition were calculated based on macroinvertebrate field surveys. Urban stream reaches supported impoverished macroinvertebrate communities, and contained potentially toxic concentrations of heavy metals and hydrocarbons. Using a field microcosm approach, a bioassay was carried out to assess sediment pollution effects on native macroinvertebrates. Sediment from urban sites substantially altered the microcosm macroinvertebrate community, most likely due to elevated heavy metal and hydrocarbon concentrations. Macroinvertebrate surveys combined with a bioassay approach based on field microcosms can help isolate the effect of stream pollutants in degraded ecosystems. - Field microcosms isolate the ecological impact of polluted sediment in an urban stream.

  5. Toxicity and biodegradation of PCBs in contaminated sediments

    International Nuclear Information System (INIS)

    Dercova, K.; Cicmanova, J.; Lovecka, P.; Demnerova, K.; Mackova, M.; Hucko, P.; Kusnir, P.

    2006-01-01

    PCBs represent a serious ecological problem due to their low degradability, high toxicity, and strong bioaccumulation. Because of many environmental and economical problems, there are efforts to develop bio-remediation technologies for decontamination of the PCB-polluted areas. PCB were used by storage of spent nuclear fuel in nuclear power plants Jaslovske Bohunice. In the locality of the former producer of PCB - Chemko Strazske a. s. - big amount of these substances is still persisting in sediments and soil. The goal of this study was to analyze the contaminated sediments from Strazsky canal and Zemplinska Sirava water reservoir from several points of view. The study of eco-toxicity confirmed that both sediments were toxic for various tested organisms. The genotoxicity test has not proved the mutagenic effect. The subsequent step included microbiological analysis of the contaminated sediments and isolation of pure bacterial cultures capable of degrading PCBs. In order to determine the genetic potential for their biodegradability, the gene bphA1 was identified using PCR technique in their genomes. This gene codes the enzyme biphenyl-dioxygenase, which is responsible for PCB degradation. The final goal was to perform aerobic biodegradation of PCBs in the sediments. The bacteria present in both sediments are able to degrade certain low chlorinated congeners. The issue of biodiversity is still open and has to be studied to reveal the real cooperation between bacteria. (authors)

  6. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  7. Amphipod and Sea Urchin tests to assess the toxicity of Mediterranean sediments: the case of Portmán Bay

    Directory of Open Access Journals (Sweden)

    A. Cesar

    2004-04-01

    Full Text Available The sediment formed by the tailings of an abandoned mine, which discharged into Portmán Bay, Murcia, SE-Spain, was tested to establish a possible gradient of heavy metals. The results were compared with tolerance limits of what was calculated from control sites. Whole sediment toxicity tests were performed on two amphipod species, Gammarus aequicauda and Microdeutopus gryllotalpa, while sediment-water interface and porewater toxicity tests were performed on three sea urchins species, Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis. The sensitivity of these marine organisms was evaluated by exposure tests using the reference substances: ammonium chloride (NH4Cl, cadmium chloride (CdCl2, potassium dichromate (K2Cr2O7, sodium dodecyl sulfate (C12H25NaO4S and zinc sulfate (ZnSO4. The concentration of heavy metals decreased along the pollution gradient. Amphipod 10 day acute toxicity tests clearly demonstrated the gradient of toxicity. The sediment-water interface tests conducted with sea urchins also pointed to a pollution gradient and were more sensitive than the tests involving amphipods.

  8. Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments

    Science.gov (United States)

    Abessa, D.M.S.; Carr, R.S.; Rachid, B.R.F.; Sousa, E.C.P.M.; Hortelani, M.A.; Sarkis, J.E.

    2005-01-01

    The submarine sewage outfall of Santos (SSOS) is situated in the Santos Bay (São Paulo, Brazil) and is potentially a significant source of contaminants to the adjacent marine ecosystem. The present study aimed to assess the influence of SSOS on the sediment toxicity and contamination at Santos Bay. At the disposal site, sediments tended to be finer, organically richer and exhibited higher levels of surfactants and metals, sometimes exceeding the “Threshold Effect Level” values. The SSOS influence was more evident toward the East, where the sediments exhibited higher levels of TOC, total S and metals during the summer 2000 sampling campaign. Sediment toxicity to amphipods was consistently detected in four of the five stations studied. Amphipod survival tended to correlate negatively to Hg, total N and % mud. This work provides evidence that the SSOS discharge affects the quality of sediments from Santos Bay, and that control procedures are warranted.

  9. Assessing condition of macroinvertebrate communities and sediment toxicity in the St. Lawrence River at Massena Area-of-Concern

    Science.gov (United States)

    Duffy, Brian T.; Baldigo, Barry P.; Smith, Alexander J.; George, Scott D.; David, Anthony M.

    2016-01-01

    In 1972, the USA and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement. In subsequent amendments, part of the St. Lawrence River at Massena, New York and segments of three tributaries, were designated as an Area of Concern (AOC) due to the effects of polychlorinated biphenyls (PCBs), lead and copper contamination, and habitat degradation and resulting impairment to several beneficial uses. Because sediments have been largely remediated, the present study was initiated to evaluate the current status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate communities and sediment toxicity tests using Chironomus dilutus were used to test the hypotheses that community condition and sediment toxicity at AOC sites were not significantly different from those of adjacent reference sites. Grain size was found to be the main driver of community composition and macroinvertebrate assemblages, and bioassessment metrics did not differ significantly between AOC and reference sites of the same sediment class. Median growth of C. dilutus and its survival in three of the four river systems did not differ significantly in sediments from AOC and reference sites. Comparable macroinvertebrate assemblages and general lack of toxicity across most AOC and reference sites suggest that the quality of sediments should not significantly impair benthic macroinvertebrate communities in most sites in the St. Lawrence River AOC.

  10. Bioassay of Lake Onego bottom sediments toxicity based on their chemical composition and deepwater macrozoobenthos state

    Directory of Open Access Journals (Sweden)

    Kalinkina Nataliya Michailovna

    2017-03-01

    Full Text Available The bioassay of the toxicity of bottom sediments sampled in different areas of Lake Onega was carried out by crustaceans biotesting (Ceriodaphnia affinis Lillijeborg. It was shown that in the most areas of Lake Onega there are non-toxic bottom sediments. Toxic bottom sediments were found in Kondopogskaya Bay, intensively polluted with pulp-and-paper mill wastewaters. For the first time in the deep central part of Lake Onega the area was revealed where the toxic bottom sediments contain a high content of iron, manganese and other trace elements typical for the central areas of the lake. The mapping of the bottom of Lake Onega was accomplished, and three zones were identified based on the analysis of the data concerning the chemical composition of bottom sediments, bioassay toxicity data and the results of the deepwater macrozoobenthos assessment. For each zone the parameters of the main groups of benthos (Amphipoda, Oligochaeta, Chironomidae were defined. The first zone is located in the area of intensive anthropogenic influence (Kondopogskaya Bay, Petrozavodskaya Bay, Povenets Bay, Kizhi Skerries. The second zone is located mostly in the deep part of Petrozavodskaya Bay, where the most intensive development of amphipods is observed. The third area is identified for the first time: it is located in the central deep part of Lake Onega, where the communities of macrozoobenthos are limited by a natural toxic factor.

  11. Potential risks of metal toxicity in contaminated sediments of Deule river in Northern France

    International Nuclear Information System (INIS)

    Lourino-Cabana, Beatriz; Lesven, Ludovic; Charriau, Adeline; Billon, Gabriel; Ouddane, Baghdad; Boughriet, Abdel

    2011-01-01

    Research highlights: → A historical environmental pollution is evidenced with reference to background levels. → Sedimentary trace metals partitioning is examined under undisturbed conditions. → Anoxia and diagenetic processes induce geochemical and mineralogical variabilities. → Do metals present in particles and pore waters exhibit a potential toxicity risk? → Behaviour of binding fractions contributes to trace metals scavenging. - Abstract: The aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deule river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deule river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3 cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water quality data recommended

  12. Assessing condition of macroinvertebrate communities and bed sediment toxicity in the Rochester Embayment Area of Concern, New York, USA

    Science.gov (United States)

    Duffy, Brian; George, Scott D.; Baldigo, Barry P.; Smith, Alexander J.

    2017-01-01

    The United States and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement in 1972. The lowest reach of the Genesee River and the Rochester Embayment on Lake Ontario between Bogus Point and Nine Mile Point, including Braddock Bay, were designated as an Area of Concern (AOC) due to effects of contaminated sediments and physical disturbance on several beneficial uses. Following sediment remedial efforts and with conditions improving in the AOC, the present study was conducted to reevaluate the status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate community assessments and 10-day Chironomus dilutus bioassays were used to test the hypotheses that sediments within the AOC were no more toxic than sediments from surrounding reference areas. The study was separated into three discrete systems (Genesee River, Lake Ontario, and Braddock Bay) and non-parametric analyses determined that a multimetric index of benthic macroinvertebrate community integrity was significantly higher at AOC sites compared to reference sites on the Genesee River and in Braddock Bay while AOC and reference sites on Lake Ontario did not differ significantly. Survival and growth of C. dilutus were also similar between AOC and reference sites for each system with the exception of significantly higher growth at reference sites on Lake Ontario. Results generally indicated that the condition of benthos and toxicity of sediment of the Rochester Embayment AOC are similar to or better than that in the surrounding area.

  13. Hazard identification of contaminated sites. Ranking potential toxicity of organic sediment extracts in crustacean and fish

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, J.; Sundberg, H.; Aakerman, G.; Grunder, K.; Eklund, B.; Breitholtz, M. [Dept. of Applied Environmental Science (ITM), Stockholm Univ. (Sweden)

    2008-09-15

    -polar compounds, which are normally not considered in risk assessment of sediment since they are focused on compounds isolated in the hexane fraction. Conclusions The ranking of the five sediments followed the expected pattern of potential toxicity in both organisms, i.e., sediments with known pollution history caused major effects while reference sediments caused minor effects in the two test systems. Silica gel turned out to be an excellent carrier for exposure of N. spinipes to very hydrophobic and otherwise non-bioavailable sediment extracts. Recommendations and perspectives: Since both test systems demonstrated that a substantial part of the potential toxicity was caused by semi-polar compounds in the acetone fractions, this study enlightens our poor understanding of which compounds are causing adverse effects in environmental samples. Therefore, by investigating potential toxicity (i.e., hazard identification) as a first screening step in prioritizing processes, these implications could be avoided. For proper sediment risk assessment, we however recommended whole sediment toxicity tests to be used for selected sites at following tiers. (orig.)

  14. Assessing ecorelevance of emerging chemicals in sediments

    DEFF Research Database (Denmark)

    Forbes, Valery E.; Selck, Henriette; Salvito, D.

    2007-01-01

    Environmental monitoring of the Great Lakes and elsewhere has detected the presence of a wide variety of chemicals which has raised concern that these chemicals pose risks to resident species. Sediments are of particular interest due to their tendency to accumulate hydrophobic and persistent...... chemicals and because less is known about toxic effects of chemicals to sediment-feeding organisms than to pelagic species. Data collected on the polycyclic musks provides available evidence relevant to assessing exposure and effects in Great Lakes' sediments. Studies at Roskilde University demonstrate how...

  15. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Comber, S.D.W. [Atkins Ltd, Chilbrook, Oasis Business Park, Eynsham, Oxford, OX29 4AH (United Kingdom)], E-mail: sean.comber@atkinsglobal.com; Rule, K.L. [Centre for Environmental Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Conrad, A.U. [Scottish Environmental Protection Agency, SEPA Corporate Office, Erskine Court Castle Business Park, Stirling FK9 4TR (United Kingdom); Hoess, S. [ECOSSA, Thierschstrasser 43, 80538 Muenchen (Germany); Webb, S.F. [Procter and Gamble, Temselaan 100, Strombeek-Bever B1853 (Belgium); Marshall, S. [Unilever Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom)

    2008-05-15

    Dimethyldioctadecylammonium chloride (DODMAC, CAS No. 107-64-2) is the principal active component of Di(hydrogenated tallow alkyl) dimethylammonium chloride (DHTDMAC, CAS No. 61789-80-8), a cationic surfactant formerly used principally in laundry fabric softeners. After discharge to water, DODMAC partitions strongly to sediment, therefore the assessment of the effects of DODMAC to benthic organisms is essential in any risk assessment. Chronic toxicity studies were conducted with Lumbriculus variegatus (Oligochaete), Tubifex tubifex (Oligochaete) and Caenorhabditis elegans (Nematode). NOECs were greater than 5738, 1515 and 1351 mg/kg dw, respectively, even for sub-lethal effects. Measurement of the route of uptake of DODMAC by L. variegatus demonstrated the relative importance of uptake via ingestion (86%) compared with direct contact with the sediment and via pore water (14%). The overall tendency of DODMAC to bioaccumulate, however, was low with measured accumulation factors of 0.22 and 0.78 for L. variegatus and T. tubifex, respectively. - The cationic surfactant, DODMAC, exhibits low bioavailability and toxicity to sediment dwelling organisms, with uptake dominated by ingestion.

  16. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates

    International Nuclear Information System (INIS)

    Comber, S.D.W.; Rule, K.L.; Conrad, A.U.; Hoess, S.; Webb, S.F.; Marshall, S.

    2008-01-01

    Dimethyldioctadecylammonium chloride (DODMAC, CAS No. 107-64-2) is the principal active component of Di(hydrogenated tallow alkyl) dimethylammonium chloride (DHTDMAC, CAS No. 61789-80-8), a cationic surfactant formerly used principally in laundry fabric softeners. After discharge to water, DODMAC partitions strongly to sediment, therefore the assessment of the effects of DODMAC to benthic organisms is essential in any risk assessment. Chronic toxicity studies were conducted with Lumbriculus variegatus (Oligochaete), Tubifex tubifex (Oligochaete) and Caenorhabditis elegans (Nematode). NOECs were greater than 5738, 1515 and 1351 mg/kg dw, respectively, even for sub-lethal effects. Measurement of the route of uptake of DODMAC by L. variegatus demonstrated the relative importance of uptake via ingestion (86%) compared with direct contact with the sediment and via pore water (14%). The overall tendency of DODMAC to bioaccumulate, however, was low with measured accumulation factors of 0.22 and 0.78 for L. variegatus and T. tubifex, respectively. - The cationic surfactant, DODMAC, exhibits low bioavailability and toxicity to sediment dwelling organisms, with uptake dominated by ingestion

  17. Toxicity of lead-contaminated sediment to mute swans

    Science.gov (United States)

    Day, D.D.; Beyer, W.N.; Hoffman, D.J.; Morton, Alexandra; Sileo, L.; Audet, D.J.; Ottinger, M.A.

    2003-01-01

    Most ecotoxicological risk assessments of wildlife emphasize contaminant exposure through ingestion of food and water. However, the role of incidental ingestion of sediment-bound contaminants has not been adequately appreciated in these assessments. This study evaluates the toxicological consequences of contamination of sediments with metals from hard-rock mining and smelting activities. Lead-contaminated sediments collected from the Coeur d'Alene River Basin in Idaho were combined with either a commercial avian maintenance diet or ground rice and fed to captive mute swans (Cygnus olor) for 6 weeks. Experimental treatments consisted of maintenance or rice diets containing 0, 12 (no rice group), or 24% highly contaminated (3,950 ug/g lead) sediment or 24% reference (9.7 ug/g lead) sediment. Although none of the swans died, the group fed a rice diet containing 24% lead-contaminated sediment were the most severely affected, experiencing a 24% decrease in mean body weight, including three birds that became emaciated. All birds in this treatment group had nephrosis; abnormally dark, viscous bile; and significant (p < 0.05) reductions in hematocrit and hemoglobin concentrations compared to their pretreatment levels. This group also had the greatest mean concentrations of lead in blood (3.2 ug/g), brain (2.2 ug/g), and liver (8.5 ug/g). These birds had significant (alpha = 0.05) increases in mean plasma alanine aminotransferase activity, cholesterol, and uric acid concentrations and decreased plasma triglyceride concentrations compared to all other treatment groups. After 14 days of exposure, mean protoporphyrin concentrations increased substantially, and mean delta-aminolevulinic acid dehydratase activity decreased by more than 95% in all groups fed diets containing highly contaminated sediments. All swans fed diets that contained 24% lead-contaminated sediment had renal acid-fast intranuclear inclusion bodies, which are diagnostic of lead poisoning in waterfowl. Body

  18. Acute and chronic toxicity of sediment samples from Guanabara Bay (RJ) during the rainy period

    OpenAIRE

    Maranho,Luciane Alves; Abreu,Ilene Matanó; Santelli,Ricardo Erthal; Cordeiro,Renato Campelo; Soares-Gomes,Abílio; Moreira,Lucas Buruaem; Morais,Rodofley Davino; Abessa,Denis Moledo de Sousa

    2010-01-01

    Guanabara Bay is a marine-estuarine environment of high ecological and socio-economic importance, subject to a variety of environmental impacts. Sediment is the eventual repository for most substances introduced into water bodies and may, therefore, provide an integrated measure of the environmental quality, which can be assessed by many different approaches. In this project, the quality of sediments from Guanabara Bay was evaluated by the ecotoxicological approach: whole-sediment toxicity te...

  19. Can the integration of multiple biomarkers and sediment geochemistry aid solving the complexity of sediment risk assessment? A case study with a benthic fish

    International Nuclear Information System (INIS)

    Costa, Pedro M.; Caeiro, Sandra; Vale, Carlos; DelValls, T. Àngel; Costa, Maria H.

    2012-01-01

    Surveying toxicity of complex geochemical media as aquatic sediments often yields results that are either difficult to interpret or even contradictory to acknowledged theory. Multi-level biomarkers were investigated in a benthic fish exposed to estuarine sediments through laboratory and in situ bioassays, to evaluate their employment either in ecological risk assessment or in more mechanistic approaches to assess sediment-bound toxicity. Biomarkers reflecting lesions (such as genotoxicity or histopathology), regardless of their low or absent specificity to contaminants, are efficient in segregating exposure to contaminated from uncontaminated sediments even when classical biomarkers like CYP1A and metallothionein induction are inconclusive. Conversely, proteomics and gene transcription analyses provided information on the mechanics of toxicity and aided explaining response variation as a function of metabolic imbalance and impairment of defences against insult. In situ bioassays, although less expedite and more affected by confounding factors, produced data better correlated to overall sediment contamination. Highlights: ► Sediment-bound contaminant mixtures can yield unexpected biomarker responses in fish. ► Biomarkers reflecting lesions are sturdier predictors of pollution by mixed xenobiotics. ► Proteomics and gene transcription analyses disclosed the existence of complex patterns of response to toxicity. ► Laboratory bioassays are less impacted by noise variables but tend to lose ecological relevance. - Evaluation of multi-level biomarker responses in fish for ecological risk assessment

  20. Ecological risk assessment of toxic organic pollutant and heavy metals in water and sediment from a landscape lake in Tianjin City, China.

    Science.gov (United States)

    Zhang, Ying; Liu, Yuanyuan; Niu, Zhiguang; Jin, Shaopei

    2017-05-01

    To estimate the ecological risk of toxic organic pollutant (formaldehyde) and heavy metals (mercury (Hg), arsenic (As), cadmium (Cd), and chromium (Cr)) in water and sediment from a landscape Lake in Tianjin City, an ecological risk assessment was performed. The risk quotient (RQ) method and the AQUATOX model were used to assess the ecological risk of formaldehyde in landscape water. Meanwhile, the RQ method and the potential ecological risk index method were used to assess the ecological risk of four heavy metals in water and sediment from the studied landscape lake, respectively. The results revealed that the maximum concentration of formaldehyde in landscape water was lower than the environmental quality standards of surface water in China. The maximum simulated concentrations of formaldehyde in phytoplankton and invertebrates were 3.15 and 22.91 μg/L, respectively, which were far less than its toxicity data values (1000 and 510 μg/L, respectively), suggesting that formaldehyde in landscape water was at a safe level for aquatic organisms. The RQ model indicated that the risks of phytoplankton and invertebrates were higher than that of fish posed by Hg and Cd in landscape water, and the risks from As and Cr were acceptable for all test organisms. Cd is the most important pollution factor among all heavy metals in sediment from studied landscape lake, and the pollution factor sequence of heavy metals was Hg > As > Cr > Cd. The values of risk index (RI) for four heavy metals in samples a and b were 43.48 and 72.66, which were much lower than the threshold value (150), suggesting that the ecological risk posed by heavy metals in sediment was negligible.

  1. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China.

    Science.gov (United States)

    Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei

    2016-06-01

    Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the

  2. Are PAHS the Right Metric for Assessing Toxicity Related to Oils, Tars, Creosote and Similar Contaminants in Sediments?

    Science.gov (United States)

    Oils, tars, and other non-aqueous phase hydrocarbon liquids (NAPLs) are common sources of contamination in aquatic sediments, and the toxicity of such contamination has generally been attributed to component chemicals, particularly PAHs. While there is no doubt PAHs can be toxic ...

  3. Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida

    Science.gov (United States)

    MacDonald, D.D.; Carr, R.S.; Eckenrod, D.; Greening, H.; Grabe, S.; Ingersoll, C.G.; Janicki, S.; Janicki, T.; Lindskoog, R.A.; Long, E.R.; Pribble, R.; Sloane, G.; Smorong, D.E.

    2004-01-01

    Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.

  4. Chronic toxicity of unresolved complex mixtures (UCM) of hydrocarbons in marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Scarlett, A.; Galloway, T.S. [Plymouth Univ., Drake Circus (United Kingdom). School of Biological Sciences; Rowland, S.J. [Plymouth Univ., Drake Circus (United Kingdom). School of Earth, Ocean and Environmental Sciences

    2007-08-15

    Background, Aim and Scope: Unresolved complex mixtures (UCM) of hydrocarbons, containing many thousands of compounds which cannot be resolved by conventional gas chromatography (GC), are common contaminants of sediments but little is known of their potential to affect sediment-dwelling organisms. Evidence exists for reduced health status in mussels, arising from aqueous exposure to aromatic UCM components acting through a narcotic mode of action. However, UCM contaminants in sediments may not be sufficiently bioavailable to elicit toxic effects. The aim of our study was therefore to measure the sublethal effects of chronic exposure to model UCM-dominated oils at environmentally realistic concentrations and compare this to effects produced by a UCM containing weathered crude oil. A further aim was to determine which, if any, fractions of the oils were responsible for any observed toxicity. Materials and Methods: Whole oils were spiked into estuarine sediment to give nominal concentrations of 500 {mu}g g-1 dry weight. Juveniles of the estuarine amphipod Corophium volutator were exposed to the contaminated sediment for 35 days and their survival, growth rate and reproductive success quantified. Using an effect-directed fractionation approach, the oils were fractionated into aliphatic and two aromatic fractions by open column chromatography and their toxicity assessed by further chronic exposures using juvenile C. volutator. Results: The growth rates of amphipods were reduced following exposure to the oils although this was only statistically significant for the weathered oil; reproductive success was reduced by all oil exposures. Sediment spiked with UCM fractions also caused reduced growth and reproduction but no particular fraction was found to be responsible for the observed toxicity. Survivorship was not affected by any oil or fraction. Discussion: The study showed that chronic exposure to sediments contaminated by UCM-dominated oils could have population level

  5. Using aquatic macroinvertebrate species traits to build test batteries for sediment toxicity assessment: accounting for the diversity of potential biological responses to toxicants.

    Science.gov (United States)

    Ducrot, Virginie; Usseglio-Polatera, Philippe; Péry, T Alexandre R R; Mouthon, Jacques; Lafont, Michel; Roger, Marie-Claude; Garric, Jeanne; Férard, Jean-François

    2005-09-01

    An original species-selection method for the building of test batteries is presented. This method is based on the statistical analysis of the biological and ecological trait patterns of species. It has been applied to build a macroinvertebrate test battery for the assessment of sediment toxicity, which efficiently describes the diversity of benthic macroinvertebrate biological responses to toxicants in a large European lowland river. First, 109 potential representatives of benthic communities of European lowland rivers were selected from a list of 479 taxa, considering 11 biological traits accounting for the main routes of exposure to a sediment-bound toxicant and eight ecological traits providing an adequate description of habitat characteristics used by the taxa. Second, their biological and ecological trait patterns were compared using coinertia analysis. This comparison allowed the clustering of taxa into groups of organisms that exhibited similar life-history characteristics, physiological and behavioral features, and similar habitat use. Groups exhibited various sizes (7-35 taxa), taxonomic compositions, and biological and ecological features. Main differences among group characteristics concerned morphology, substrate preferendum and habitat utilization, nutritional features, maximal size, and life-history strategy. Third, the best representatives of the mean biological and ecological characteristics of each group were included in the test battery. The final selection was composed of Chironomus riparius (Insecta: Diptera), Branchiura sowerbyi (Oligochaeta: Tubificidae), Lumbriculus variegatus (Oligochaeta: Lumbriculidae), Valvata piscinalis (Gastropoda: Valvatidae), and Sericostoma personatum (Trichoptera: Sericostomatidae). This approach permitted the biological and ecological variety of the battery to be maximized. Because biological and ecological traits of taxa determine species sensitivity, such maximization should permit the battery to better account

  6. Quality Assurance Project Plan for Verification of Sediment Ecotoxicity Assessment Ring(SEA Ring)

    Science.gov (United States)

    The objective of the verification is to test the efficacy and ability of the Sediment Ecotoxicity Assessment Ring (SEA Ring) to evaluate the toxicity of contaminants in the sediment, at the sediment-water interface, and WC to organisms that live in those respective environments.

  7. Mapping the extent and relative toxicity of sediments, Winter Quarters Bay, Antarctica

    International Nuclear Information System (INIS)

    Crockett, A.; White, G.; Huynh, H.

    1995-01-01

    McMurdo Station was established in the mid 1950s and is the largest research station in Antarctica. In earlier days, wastes were dumped on the steep shores of Winter Quarters Bay, dosed with up to 19,000 L of diesel or jet fuel and ignited. Along with periodic fuel spills, and the discharge of raw sewage the Bay became littered with trash and contaminated with elevated levels of metals, PCBs and petroleum hydrocarbons. The original benthic community was essentially totally replaced with more opportunistic species. In 1993, a study was initiated to map the distribution of PCB and hydrocarbon contamination as well as determine sediment pore water toxicity. Sediments were collected from over forty locations with an Ekman dredge after drilling through about 210 cm of ice. Maps of sediment particle size distribution, percent organic carbon, total PCBs, total petroleum hydrocarbons, etc. were developed. Potential toxicity was mapped by normalizing the data to 1 percent organic carbon and comparing the data with various sediment quality criteria. While onsite sediment pore water toxicity tests showed essentially no impacts, the new Microtox trademark chronic bioassay on both pore water and solvent extra showed considerable toxic effects. This paper compares the relative levels of contamination, with sediment quality criteria and toxicity as determined by a chronic microbial bioassays

  8. Can behavioural responses of Lumbriculus variegatus (Oligochaeta) assess sediment toxicity? A case study with sediments exposed to acid mine drainage

    International Nuclear Information System (INIS)

    Sardo, A.M.; Soares, A.M.V.M.

    2010-01-01

    The Sao Domingos mine (Portugal) is, potentially, a good site for ecotoxicological studies, due to a pH and metal gradient of acid mine drainage. In this study, the toxicity of several mine sediments was evaluated using the aquatic oligochaete Lumbriculus variegatus as a test organism. Our hypothesis was that exposure to contaminated sediments would cause behavioural early warning responses in L. variegatus. Five sites, with pH ranging from 2.5 to 6.5, and with associated metals, were investigated. The results showed poor sediment quality in most of the collected sediments and Fe, S and As were the dominant elements in the samples. High mortalities were observed, ranging from 32.6 to 100%, indicating severe contamination. The collected sediments did not support good L. variegatus growth and significantly changed its behaviour. Early warning responses consisted of decreased locomotion and decreased peristaltic movements. A behaviour inhibition will affect the ecosystem balance by limiting the organisms' ability to avoid capture, which leads to a higher risk of predation. - Behavioural responses of the aquatic oligochaeta Lumbriculus variegatus may be used to detect early warning responses.

  9. Results of toxicity tests and chemical analyses conducted on sediments collected from the TNX Outfall Delta Operable Unit, July 1999

    International Nuclear Information System (INIS)

    Specht, W.L.

    2000-01-01

    In order to provide unit specific toxicity data that will be used to address critical uncertainty in the ecological risk assessment (ERA) for the TNX Outfall Delta Operable Unit (TNXOD OU), sediments were collected from eight locations in the Inner Swamp portion of the operable unit and two unit specific background locations. These samples were analyzed for total mercury, total uranium, and sediment toxicity

  10. Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test.

    Science.gov (United States)

    Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada

    2014-01-01

    Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.

  11. Sediment contamination of residential streams in the metropolitan kansas city area, USA: Part II. whole-sediment toxicity to the amphipod hyalella azteca

    Science.gov (United States)

    Tao, J.; Ingersoll, C.G.; Kemble, N.E.; Dias, J.R.; Murowchick, J.B.; Welker, G.; Huggins, D.

    2010-01-01

    This is the second part of a study that evaluates the influence of nonpoint sources on the sediment quality of five adjacent streams within the metropolitan Kansas City area, central United States. Physical, chemical, and toxicity data (Hyalella azteca 28-day whole-sediment toxicity test) for 29 samples collected in 2003 were used for this evaluation, and the potential causes for the toxic effects were explored. The sediments exhibited a low to moderate toxicity, with five samples identified as toxic to H. azteca. Metals did not likely cause the toxicity based on low concentrations of metals in the pore water and elevated concentrations of acid volatile sulfide in the sediments. Although individual polycyclic aromatic hydrocarbons (PAHs) frequently exceeded effect-based sediment quality guidelines [probable effect concentrations (PECs)], only four of the samples had a PEC quotient (PEC-Q) for total PAHs over 1.0 and only one of these four samples was identified as toxic. For the mean PEC-Q for organochlorine compounds (chlordane, dieldrin, sum DDEs), 4 of the 12 samples with a mean PEC-Q above 1.0 were toxic and 4 of the 8 samples with a mean PEC-Q above 3.0 were toxic. Additionally, four of eight samples were toxic, with a mean PEC-Q above 1.0 based on metals, PAHs, polychlorinated biphenyls (PCBs), and organochlorine pesticides. The increase in the incidence of toxicity with the increase in the mean PEC-Q based on organochlorine pesticides or based on metals, PAHs, PCBs, and organochlorine pesticides suggests that organochlorine pesticides might have contributed to the observed toxicity and that the use of a mean PEC-Q, rather than PEC-Qs for individual compounds, might be more informative in predicting toxic effects. Our study shows that stream sediments subject to predominant nonpoint sources contamination can be toxic and that many factors, including analysis of a full suite of PAHs and pesticides of both past and present urban applications and the origins of

  12. Toxicity of sediment-associated pesticides to Chironomus dilutus and Hyalella azteca.

    Science.gov (United States)

    Ding, Yuping; Weston, Donald P; You, Jing; Rothert, Amanda K; Lydy, Michael J

    2011-07-01

    Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC₅₀) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no-observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC₅₀ of 1-2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC₅₀s 2.8-26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC₅₀s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the

  13. What Food and Feeding Rates are Optimum for the Chironomus dilutus Sediment Toxicity Test Method?

    Science.gov (United States)

    Laboratory tests with benthic macroinvertebrates are commonly used to assess the toxicity of both contaminated sediments and individual chemicals. Among the standard procedures for benthic macroinvertebrates are 10-d, 20-d, and life cycle exposures using the midge, Chironomus ...

  14. Ecotoxicological assessment of water and sediment of the Corumbataí River, SP, Brazil

    Directory of Open Access Journals (Sweden)

    GM. Jardim

    Full Text Available The Corumbataí River drains an economically important area which is mainly represented by the municipalities of Piracicaba and Rio Claro. In view of the impacts caused by the discharge of industrial waste and domestic sewage into the Piracicaba River, the Corumbataí has become increasingly significant as a source of water for the municipality of Piracicaba. However, chemical, physical, and microbiological analyses carried out prior to the present study had already indicated a decline in the quality of the Corumbataí waters. This study aimed to assess, through water and sediment samples, both acute and chronic toxicity to Daphnia magna and Daphnia similis, and to analyze acid-volatile sulfide (AVS and simultaneously extracted metal (SEM in the sediment. Resulting data were intended to be a contribution to future projects for the management and recuperation of this system. To that aim, water and sediment were collected at seven Corumbataí sampling stations in November 2003 and March 2004. Acute toxicity to D. similis was detected in water and sediment samples from the Piracicaba station, located at the mouth of the Corumbataí River. Chronic toxicity was identified in the water or sediment samples of all stations, with the exception of Analândia Montante (upstream, at the head of the river. This was found to affect survival, growth, and fecundity of the test-organisms. The AVS and SEM analyses showed the bioavailability of the metals, thus explaining toxicity found in bioassaying samples of water and sediment. The use of two test-organism species made it possible to obtain a better assessment of the condition of both water and sediment samples of the Corumbataí River.

  15. Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications

    Science.gov (United States)

    Ingersoll, C.G.; Ankley, G.T.; Benoit, D.A.; Brunson, E.L.; Burton, G.A.; Dwyer, F.J.; Hoke, R.A.; Landrum, P.F.; Norberg-King, T. J.; Winger, P.V.

    1995-01-01

    This paper reviews recent developments in methods for evaluating the toxicity and bioaccumulation of contaminants associated with freshwater sediments and summarizes example case studies demonstrating the application of these methods. Over the past decade, research has emphasized development of more specific testing procedures for conducting 10-d toxicity tests with the amphipod Hyalella azteca and the midge Chironomus tentans. Toxicity endpoints measured in these tests are survival for H. azteca and survival and growth for C. tentans. Guidance has also been developed for conducting 28-d bioaccumulation tests with the oligochaete Lumbriculus variegatus, including determination of bioaccumulation kinetics for different compound classes. These methods have been applied to a variety of sediments to address issues ranging from site assessments to bioavailability of organic and inorganic contaminants using field-collected and laboratory-spiked samples. Survival and growth of controls routinely meet or exceed test acceptability criteria. Results of laboratory bioaccumulation studies with L. variegatus have been confirmed with comparisons to residues (PCBs, PAHs, DDT) present from synoptically collected field populations of oligochaetes. Additional method development is currently underway to develop chronic toxicity tests and to provide additional data-confirming responses observed in laboratory sediment tests with natural benthic populations.

  16. Identifying the cause of sediment toxicity in agricultural sediments: the role of pyrethroids and nine seldom-measured hydrophobic pesticides.

    Science.gov (United States)

    Weston, Donald P; Ding, Yuping; Zhang, Minghua; Lydy, Michael J

    2013-01-01

    Few currently used agricultural pesticides are routinely monitored for in the environment. Even if concentrations are known, sediment LC(50) values are often lacking for common sediment toxicity testing species. To help fill this data gap, sediments in California's Central Valley were tested for nine hydrophobic pesticides seldom analyzed: abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin. Most were detected, but rarely at concentrations acutely toxic to Hyalella azteca or Chironomus dilutus. Only abamectin, fenpropathrin, and methyl parathion were found at concentrations of potential concern, and only in one or two samples. One-quarter of over 100 samples from agriculture-affected waterways exhibited toxicity, and in three-fourths of the toxic samples, pyrethroids exceeded concentrations expected to cause toxicity. The pyrethroid Bi-fen-thrin in particular, as well as lambda-cyhalothrin, cypermethrin, esfenvalerate, permethrin, and the organophosphate chlorpyrifos, were primarily responsible for the observed toxicity, rather than the more novel analytes, despite the fact that much of the sampling targeted areas of greatest use of the novel pesticides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Ecotoxicological assessment of sediments from Tiete river between Salesopolis and Suzano, SP (Brazil)

    International Nuclear Information System (INIS)

    Alegre, Gabriel Fonseca

    2009-01-01

    Once introduced into the aquatic environment, many substances can bind or be adsorbed by organic particles in suspension. Depending on the river morphology and hydrological conditions, these particles in suspension containing the contaminants can be deposited along its course, becoming part of the bottom sediments, making them actual sinks and often a source of contamination for the water column and benthic organisms. In the assessment of water, sediment has been one of the most important indicators of the contamination levels in aquatic ecosystems, representing the deposition of contaminants in the environment that occurred over the years and even decades. The Tiete River cross the Sao Paulo state, however, in the metropolitan region of Sao Paulo, the river shows the most severe degradation. In the region of Salesopolis, the waters of the Tiete River are used for public supply, but across the city of Mogi das Cruzes the water quality decreases significantly. Considering the importance of the Tiete river and the sediment for the aquatic biota, this study aimed to evaluate the toxicity of the sediment at five points along the Tiete river, between the cities of Salesopolis and Suzano, Sao Paulo. Four sampling were carried out: two in the summer (rainy season) and two in winter (dry season). The whole sediment was assessed by acute and chronic toxicity tests with Hyalella azteca and Ceriodaphnia dubia, respectively, the elutriate was assessed by chronic toxicity test using C. dubia, while the porewater was evaluated by acute toxicity test with Vibrio fischeri. Samples of river water were also evaluated for chronic toxicity tests with C. dubia. The quantification of metals and hydrocarbons in sediment samples was also carried out in order to correlate the biological effects with the chemical contamination. The obtained results with the whole sediment test indicate Mogi das Cruzes and Suzano cities as the most toxic sites and also as the sites with the highest

  18. Toxicity assessment using different bioassays and microbial biosensors.

    Science.gov (United States)

    Hassan, Sedky H A; Van Ginkel, Steven W; Hussein, Mohamed A M; Abskharon, Romany; Oh, Sang-Eun

    2016-01-01

    Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    Science.gov (United States)

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  20. Comparison of test specific sediment effect concentrations with marine sediment quality assessment guidelines

    International Nuclear Information System (INIS)

    Carr, R.S.; Biedenbach, J.M.; MacDonald, D.D.

    1995-01-01

    As part of NOAA's National Status and Trends (NS and T) Bioeffects Assessment program and studies conducted by the National Biological Service, numerous sediment quality assessment surveys have recently been conducted along the Atlantic and Gulf coasts of the US using the sea urchin (Arbacia punctulata) fertilization and embryological development tests with pore water. Additional toxicity tests were also conducted in conjunction with most of these studies. The areas that have been sampled include Boston harbor, Massachusetts; Charleston Harbor, Winyah Bay, and Savannah River, South Carolina; St. Simon Sound, Georgia; Biscayne Bay, Tampa Bay, Choctawhatchee Bay, Apalachicola Bay, St. Andrew Bay, and Pensacola Bay, Florida; Galveston Bay, Lavaca Bay, and Sabine Lake, Texas, and 200 stations in the vicinity of offshore oil and gas production platforms in the Gulf of Mexico. Sufficient data are now available from this series of surveys to calculate test specific sediment effect concentrations (SECs). Based on these recent studies, SECs were developed for the sea urchin porewater and amphipod tests and compared with existing marine sediment quality assessment guidelines

  1. Effects of sediment-spiked lufenuron on benthic macroinvertebrates in outdoor microcosms and single-species toxicity tests

    Energy Technology Data Exchange (ETDEWEB)

    Brock, T.C.M., E-mail: theo.brock@wur.nl [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Bas, D.A. [Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (Netherlands); Belgers, J.D.M. [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Bibbe, L. [Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (Netherlands); Boerwinkel, M-C.; Crum, S.J.H. [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Diepens, N.J. [Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen (Netherlands); Kraak, M.H.S.; Vonk, J.A. [Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam (Netherlands); Roessink, I. [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2016-08-15

    Highlights: • In outdoor microcosms constructed with lufenuron-spiked sediment we observed that this insecticide persistent in the sediment compartment. • Sediment exposure to lufenuron caused population-level declines (insects and crustaceans) and increases (mainly oligochaete worms) of benthic invertebrates. • The direct and indirect effects observed in the microcosms were supported by results of sediment-spiked single species tests with Chironomus riparius, Hyalella azteca and Lumbriculus variegatus. • The tier-1 effect assessment procedure for sediment organisms recommended by the European Food Safety Authority is protective for the treatment-related responses observed in the microcosm test. - Abstract: Sediment ecotoxicity studies were conducted with lufenuron to (i) complement the results of a water-spiked mesocosm experiment with this lipophilic benzoylurea insecticide, (ii) to explore the predictive value of laboratory single-species tests for population and community-level responses of benthic macroinvertebrates, and (iii) to calibrate the tier-1 effect assessment procedure for sediment organisms. For this purpose the concentration-response relationships for macroinvertebrates between sediment-spiked microcosms and those of 28-d sediment-spiked single-species toxicity tests with Chironomus riparius, Hyalella azteca and Lumbriculus variegatus were compared. Lufenuron persisted in the sediment of the microcosms. On average, 87.7% of the initial lufenuron concentration could still be detected in the sediment after 12 weeks. Overall, benthic insects and crustaceans showed treatment-related declines and oligochaetes treatment-related increases. The lowest population-level NOEC in the microcosms was 0.79 μg lufenuron/g organic carbon in dry sediment (μg a.s./g OC) for Tanytarsini, Chironomini and Dero sp. Multivariate analysis of the responses of benthic macroinvertebrates revealed a community-level NOEC of 0.79 μg a.s./g OC. The treatment

  2. Development and application of a sediment toxicity test using the benthic cladoceran Chydorus sphaericus

    International Nuclear Information System (INIS)

    Dekker, T.; Greve, G.D.; Ter Laak, T.L.; Boivin, M.E.; Veuger, B.; Gortzak, G.; Dumfries, S.; Luecker, S.M.G.; Kraak, M.H.S.; Admiraal, W.; Geest, H.G. van der

    2006-01-01

    This study reports on the development and application of a whole sediment toxicity test using a benthic cladoceran Chydorus sphaericus, as an alternative for the use of pelagic daphnids. A C. sphaericus laboratory culture was started and its performance under control conditions was optimised. The test was firstly validated by determining dose-response relationships for aqueous cadmium and copper and ammonia, showing a sensitivity of C. sphaericus (96 h LC 5 values of 594 μg Cd/L, 191 μg Cu/L and 46 mg ammonia/L at pH 8) similar to that of daphnids. Next, sediment was introduced into the test system and a series of contaminated sediments from polluted locations were tested. A significant negative correlation between survival and toxicant concentrations was observed. It is concluded that the test developed in the present study using the benthic cladoceran C. sphaericus is suitable for routine laboratory sediment toxicity testing. - A test was developed for assaying sediment toxicity using a commonly occurring small-bodied cladoceran

  3. Contaminants in stream sediments from seven United States metropolitan areas: part II—sediment toxicity to the amphipod Hyalella azteca and the midge Chironomus dilutus

    Science.gov (United States)

    Kemble, Nile E.; Hardesty, Douglas K.; Ingersoll, Christopher G.; Kunz, James L.; Sibley, Paul K.; Calhoun, Daniel L.; Gilliom, Robert J.; Kuivila, Kathryn; Nowell, Lisa H.; Moran, Patrick W.

    2013-01-01

    Relationships between sediment toxicity and sediment chemistry were evaluated for 98 samples collected from seven metropolitan study areas across the United States. Sediment-toxicity tests were conducted with the amphipod Hyalella azteca (28 day exposures) and with the midge Chironomus dilutus (10 day exposures). Overall, 33 % of the samples were toxic to amphipods and 12 % of the samples were toxic to midge based on comparisons with reference conditions within each study area. Significant correlations were observed between toxicity end points and sediment concentrations of trace elements, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), or organochlorine (OC) pesticides; however, these correlations were typically weak, and contaminant concentrations were usually below sediment-toxicity thresholds. Concentrations of the pyrethroid bifenthrin exceeded an estimated threshold of 0.49 ng/g (at 1 % total organic carbon) in 14 % of the samples. Of the samples that exceeded this bifenthrin toxicity threshold, 79 % were toxic to amphipods compared with 25 % toxicity for the samples below this threshold. Application of mean probable effect concentration quotients (PECQs) based on measures of groups of contaminants (trace elements, total PAHs, total PCBs,OCpesticides, and pyrethroid pesticides [bifenthrin in particular]) improved the correct classification of samples as toxic or not toxic to amphipods compared with measures of individual groups of contaminants. Sediments are a repository for many contaminants released into surface waters. Because of this, organisms inhabiting sediments may be exposed to a wide range of contaminants (United States Environmental Protection Agency (USEPA) United States Environmental Protection Agency 2000; American Society for Testing and Materials [ASTM] American Society for Testing and Materials International 2012). Contaminants of potential concern in sediments typically include trace elements (metals

  4. Toxicity of sediment cores collected from the Ashtabula River in northeastern Ohio, USA, to the amphipod Hyalella azteca

    Science.gov (United States)

    Ingersoll, C.G.; Kemble, N.E.; Kunz, J.L.; Brumbaugh, W.G.; MacDonald, D.D.; Smorong, D.

    2009-01-01

    This study was conducted to support a Natural Resource Damage Assessment and Restoration project associated with the Ashtabula River in Ohio. The objective of the study was to evaluate the chemistry and toxicity of 50 sediment samples obtained from five cores collected from the Ashtabula River (10 samples/core, with each 10-cm-diameter core collected to a total depth of about 150 cm). Effects of chemicals of potential concern (COPCs) measured in the sediment samples were evaluated by measuring whole-sediment chemistry and whole-sediment toxicity in the sediment samples (including polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], organochlorine pesticides, and metals). Effects on the amphipod Hyalella azteca at the end of a 28-day sediment toxicity test were determined by comparing survival or length of amphipods in individual sediment samples in the cores to the range of responses of amphipods exposed to selected reference sediments that were also collected from the cores. Mean survival or length of amphipods was below the lower limit of the reference envelope in 56% of the sediment samples. Concentrations of total PCBs alone in some samples or concentrations of total PAHs alone in other samples were likely high enough to have caused the reduced survival or length of amphipods (i.e., concentrations of PAHs or PCBs exceeded mechanistically based and empirically based sediment quality guidelines). While elevated concentrations of ammonia in pore water may have contributed to the reduced length of amphipods, it is unlikely that the reduced length was caused solely by elevated ammonia (i.e., concentrations of ammonia were not significantly correlated with the concentrations of PCBs or PAHs and concentrations of ammonia were elevated both in the reference sediments and in the test sediments). Results of this study show that PAHs, PCBs, and ammonia are the primary COPCs that are likely causing or substantially contributing to the toxicity to

  5. USE OF POWDERED COCONUT CHARCOAL AS A TOXICITY IDENTIFICATION AND EVALUATION MANIPULATION FOR ORGANIC TOXICANTS IN MARINE SEDIMENTS

    Science.gov (United States)

    We report on a procedure using powdered coconut charcoal to sequester organic contaminants and reduce toxicity in sediments as part of a series of toxicity identification and evaluation (TIE) methods. Powdered coconut charcoal (PCC) was effective in reducing the toxicity of endos...

  6. Comparison of Toxicity of Sediments from Rivers with Different Levels of Anthropogenic Load (Middle Volga Region, Russia Based on Elutriate and Whole Sediment Tests

    Directory of Open Access Journals (Sweden)

    N.Yu. Stepanova

    2016-09-01

    Full Text Available Description of chemical characteristics and toxicity testing of whole sediment and elutri-ate have been performed with 35 samples taken during the monitoring of rivers in the Middle Volga region (Tatarstan, Russia in 2013. The locations analyzed are sites associated with agriculture, forestry, and petroleum hydrocarbons (oil production. The toxicity tests include: (1 Chlorella vulgaris (algal elutriate test, (2 Paramecium caudatum (ciliate elutriate test, (3 Daphnia magna (cladoceran whole sediment toxicity test, and (4 Heterocypris incongruens (ostracod whole sediment toxicity test. The concentrations of metals in 43% of sediment samples have been found to exceed probable effect concentration sediment quality guidelines (SQGs. However, the concentrations of polycyclic aromatic hydrocarbons (PAHs and organochlorine pesticides have turned out to be below SQGs in most sites. The correlation analysis has shown metal toxicity to daphnid reproduction and ostracod growth (R2 = 0.34–0.64 and ammonia (R2 = 0.49–0.54. A higher percentage of samples have shown toxicity in the whole sediment tests (86% compared to the elutriate tests (54%. A total of 91% of samples have demonstrated toxicity for at least one species. Toxicity has been most frequently observed for daphnid reproduction (83% of samples and ostracod growth (56% of samples compared to daphnid (23% survival, ostracod (11% survival, and ciliate reproduction (54% or algal growth (54%. The most polluted sediments have been registered in the area of oil production. The comparison of toxicity of the samples from different types of areas has indicated that 100% of samples from the oil production area, 94% of samples from the agricultural area, and 50% of samples from the forest area were toxic to at least one test organism.

  7. Toxic evaluations of sediments in Tokyo Bay, Japan, using Japanese medaka embryos.

    Science.gov (United States)

    Uno, Seiichi; Kokushi, Emiko; Kawano, Machi; McElroy, Anne E; Koyama, Jiro

    2017-12-01

    Toxic risks of sediments collected from seven sites in Tokyo Bay were evaluated using Japanese medaka embryos. Those sediments with slight pore water were placed in grass petri dishes without overlying water. The most remarkable effect in the field sediment was to cause hatching delay in embryos, and the longest time until hatching took was 12.5 ± 1.6 days post-fertilization (dpf), although that in control group was 10.1 ± 0.7 dpf. A significant delay in hatching was observed at four sites. Because total carbon concentrations were relatively high in sediments at three of these four sites, several chemicals were expected to be residues in these sites and could cause their delay. Although extreme mortality was not observed at all sites, sediments collected from the site close to Kawasaki city induced 10 % mortality. Polycyclic aromatic hydrocarbon (PAH) concentrations were remarkably high at this site compared with other sites, and thus PAH toxicities could be causing the mortality. Concentration of heavy metals such as cadmium, copper, lead, and zinc in sediments were also determined, but no clear relationship was found between toxicities to embryos and the distribution of their concentrations.

  8. Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas).

    Science.gov (United States)

    Geffard, O; Budzinski, H; Augagneur, S; Seaman, M N; His, E

    2001-07-01

    Gametes (sperm) and fertilized eggs (embryos) of the Mediterranean sea urchin, Paracentrotus lividus, and the Japanese oyster, Crassostrea gigas, were used to investigate the toxicity of two marine sediments, one polluted by polycyclic aromatic hydrocarbons (PAH) and the other by heavy metals. The sediment samples were freeze-dried for storage, and three different treatments were used for analysis: whole sediment, unfiltered elutriate, and filtered elutriate. The two sediments were toxic to sea urchin spermatozoa but not to oyster spermatozoa, and embryotoxicity was almost always the more sensitive endpoint for toxicity assessment. As a rule, whole sediment was more toxic than the elutriates by nearly two orders of magnitude. With respect to embryotoxicity, the whole sediments and the elutriates of the PAH-contaminated sediment were more toxic to oyster embryos, whereas the elutriates of the sediment polluted by heavy metals had stronger effects on sea urchin embryos. The results confirm that bioassays with Japanese oyster embryos provide a more sensitive appraisal of toxicity in the marine environment than bioassays with other developmental stages. As a whole, Mediterranean sea urchins and Japanese oysters were similar in overall sensitivity and are therefore both equally suited as bioassay organisms, but tests with oysters are more reproducible because of the better performance of the controls.

  9. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Mayer, D.W.; Argo, R.S.

    1982-02-01

    A hydrodynamic model, CAFE-I, a wave refraction model, LO3D, and a sediment and contaminant transport model, FETRA, were selected as tools for evaluating exposure levels of radionuclides, heavy metals, and other toxic chemicals in coastal waters. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interactions (e.g., adsorption and desorption), and the mechanisms governing the transport, deposition, and resuspension of contaminated sediments

  10. Physical and chemical parameters of sediment extraction and fractionation that influence toxicity, as evaluated by microtox (trade name)

    International Nuclear Information System (INIS)

    Ho, K.T.Y.; Quinn, J.G.

    1993-01-01

    Several physical and chemical parameters of sediment extraction and fractionation of organic compounds that influence bioassay results were evaluated. Each parameter was evaluated with a photoluminescent bacterial bioassay (Microtox) as an end point. Three solvents (acetonitrile, acetone, and methanol) were studied for their ability to extract toxic organic components from marine sediments. Acetone extracted the most toxicity, with no difference between acetonitrile and methanol. Two methods of fractionating sediment extracts (silica-gel-column chromatography (SGCC) and acid-base fractionation) were compared. SGCC was more useful because it resulted in a wider range of responses and was faster to perform than acid-base fractionation. Microtox was used to rank four marine sediments with respect to toxicity and to determine if one chemical class (or fraction) was consistently more toxic among different sediments. With some caveats, Microtox results agreed with general chemical concentration trends and other bioassay results in distinguishing between contaminated and noncontaminated sediments. Although results indicated there was not a consistently most toxic fraction among sediments, there was a consistently least toxic fraction. The effect of sediment storage time on toxicity was also evaluated. Results indicated that the most stable chemical fraction (containing nonpolar hydrocarbons) did not change toxicologically for 30 weeks, whereas the more chemically active fraction (containing ketones, quinones, and carboxyls) changed as soon as one week

  11. Evaluation of the toxicity of sediments from the Anniston PCB Site to the mussel Lampsilis siliquoidea

    Science.gov (United States)

    Schein, Allison; Sinclair, Jesse A.; MacDonald, Donald D.; Ingersoll, Christopher G.; Kemble, Nile E.; Kunz, James L.

    2015-01-01

    The Anniston Polychlorinated Biphenyl (PCB) Site is located in the vicinity of the municipality of Anniston in Calhoun County, in the north-eastern portion of Alabama. Although there are a variety of land-use activities within the Choccolocco Creek watershed, environmental concerns in the area have focused mainly on releases of PCBs to aquatic and riparian habitats. PCBs were manufactured by Monsanto, Inc. at the Anniston facility from 1935 to 1971. The chemicals of potential concern (COPCs) in sediments at the Anniston PCB Site include: PCBs, mercury, metals, polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphorous pesticides, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs). The purpose of this study was to evaluate the toxicity of PCB-contaminated sediments to the juvenile fatmucket mussel (Lampsilis siliquoidea) and to characterize relationships between sediment chemistry and the toxicity of sediment samples collected from the Anniston PCB Site using laboratory sediment testing. Samples were collected in August 2010 from OU-4 of the Anniston PCB Site, as well as from selected reference locations. A total of 32 samples were initially collected from six test sites and one reference site within the watershed. A total of 23 of these 32 samples were evaluated in 28-day whole-sediment toxicity tests conducted with juvenile mussels (L. siliquoidea). Physical and chemical characterization of whole sediment included grain size, total organic carbon (TOC), nutrients, PCBs, parent and alkylated PAHs, organochlorine pesticides, PCDD/PCDFs, total metals, simultaneously extracted metals (SEM), and acid volatile sulfide (AVS). Sediment collected from Snow Creek and Choccolocco Creek contained a variety of COPCs. Organic contaminants detected in sediment included PCBs, organochlorine pesticides, PCDDs/PCDFs, and PAHs. In general, the highest

  12. Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity.

    Science.gov (United States)

    Arfaeinia, Hossein; Nabipour, Iraj; Ostovar, Afshin; Asadgol, Zahra; Abuee, Ehsan; Keshtkar, Mozhgan; Dobaradaran, Sina

    2016-05-01

    Sediment samples from the coastal area of Asaluyeh harbor were collected during autumn and spring 2015. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEMs) were measured to assess the sediment quality and potential ecological risks. The average concentrations (and relative standard deviation (RSD)) of AVS in the industrial sediments were 12.32 μmol/g (36.91) and 6.34 μmol/g (80.05) in autumn and spring, respectively, while in the urban area, these values were 0.44 μmol/g (123.50) and 0.31 μmol/g (160.0) in autumn and spring, respectively. The average concentrations of SEM (and RSD) in the industrial sediments were 15.02 μmol/g (14.38) and 12.34 μmol/g (20.65) in autumn and spring, respectively, while in the urban area, these values were 1.10 μmol/g (43.03) and 1.06 μmol/g (55.59) in autumn and spring, respectively. Zn was the predominant component (34.25-86.24 %) of SEM, while the corresponding value for Cd, much more toxic ingredient, was less than 1 %. Some of the coastal sediments in the harbor of Asaluyeh (20 and 47 % in autumn and spring, respectively) had expected adverse biological effects based on the suggested criterion by United States Environmental Protection Agency (USEPA), while most stations (80 and 53 % in autumn and spring, respectively) had uncertain adverse effects.

  13. Integrated quality assessment of sediments from harbour areas in Santos-São Vicente Estuarine System, Southern Brazil

    Science.gov (United States)

    Buruaem, Lucas Moreira; de Castro, Ítalo Braga; Hortellani, Marcos Antonio; Taniguchi, Satie; Fillmann, Gilberto; Sasaki, Silvio Tarou; Varella Petti, Mônica Angélica; Sarkis, Jorge Eduardo de Souza; Bícego, Márcia Caruso; Maranho, Luciane Alves; Davanso, Marcela Bergo; Nonato, Edmundo Ferraz; Cesar, Augusto; Costa-Lotufo, Leticia Veras; Abessa, Denis Moledo de Souza

    2013-09-01

    Santos-São Vicente Estuarine System is a highly populated coastal zone in Brazil and where it is located the major port of Latin America. Historically, port activities, industrial and domestic effluents discharges have constituted the main sources of contaminants to estuarine system. This study aimed to assess the recent status of sediment quality from 5 zones of Port of Santos by applying a lines-of-evidence approach through integrating results of: (1) acute toxicity of whole sediment and chronic toxicity of liquid phases; (2) grain size, organic matter, organic carbon, nitrogen, phosphorus, trace metals, polycyclic aromatic hydrocarbons, linear alkylbenzenes and butyltins; (3) benthic community descriptors. Results revealed a gradient of increasing contamination for metals and organic compounds, alongside with their geochemical carriers. Sediment liquid phases were more toxic compared to whole sediment. Low number of species and individuals indicated the impoverishment of benthic community. The use of site-specific sediment quality guidelines was more appropriate to predict sediment toxicity. The integration of results through Sediment Quality Triad approach and principal component analysis allowed observing the effects of natural stressors and dredging on sediment quality and benthic distribution. Even with recent governmental efforts to control, pollution is still relevant in Port of Santos and a threat to local ecosystems.

  14. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks

    OpenAIRE

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian N. L.; Revitt, D. Mike

    2010-01-01

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelin...

  15. Development of a bioassay using walleye (Sander vitreus) to assess the toxicity of oil sands sediments

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, D.; Yuan, H.; Tumber, V.; Parrott, J. [Environment Canada, Ottawa, ON (Canada); Raine, J. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2010-07-01

    This study examined the effects of sediments from the Athabasca oil sands area on fish development and survival. Walleye (Sander vitreus) which inhabit the Athabasca River are exposed to natural sources of bitumen eroding from the McMurray formation. This study described the design and implementation of a daily-renewal bioassay to evaluate the potential effects of toxicants on walleye development. Eggs were collected and fertilized with milt from spawning wild walleye captured from Lake Diefenbaker in Saskatchewan. The fertilized eggs were exposed to different concentrations of sediments or culture water only (negative controls) until complete yolk absorption of control fish. The walleye embryos were fed brine shrimp daily after hatching and the developing fish were examined for morphological deformities, survival, hatching success, and changes in weight and length between treatments. Organics concentrations in fish tissues and water were measured when possible. Fathead minnows and northern pikes will also be exposed to the same sediments in order to compare the relative sensitivity of the three species.

  16. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests—extraction, storage, and handling techniques

    Science.gov (United States)

    Carr, R.S.; Chapman, D.C.

    1995-01-01

    A series of studies was conducted to compare different porewater extraction techniques and to evaluate the effects of sediment and porewater storage conditions on the toxicity of pore water, using assays with the sea urchin Arbacia punctulata. If care is taken in the selection of materials, several different porewater extraction techniques (pressurized squeezing, centrifugation, vacuum) yield samples with similar toxicity. Where the primary contaminants of concern are highly hydrophobic organic compounds, centrifugation is the method of choice for minimizing the loss of contaminants during the extraction procedure. No difference was found in the toxicity of pore water obtained with the Teflon® and polyvinyl chloride pressurized extraction devices. Different types of filters in the squeeze extraction devices apparently adsorbed soluble contaminants to varying degrees. The amount of fine suspended particulate material remaining in the pore water after the initial extraction varied among the methods. For most of the sediments tested, freezing and thawing did not affect the toxicity of porewater samples obtained by the pressurized squeeze extraction method. Pore water obtained by other methods (centrifugation, vacuum) and frozen without additional removal of suspended particulates by centrifugation may exhibit increased toxicity compared with the unfrozen sample.The toxicity of pore water extracted from refrigerated (4°C) sediments exhibited substantial short-term (days, weeks) changes. Similarly, sediment pore water extracted over time from a simulated amphipod solid-phase toxicity test changed substantially in toxicity. For the sediments tested, the direction and magnitude of change in toxicity of pore water extracted from both refrigerated and solid-phase test sediments was unpredictable.

  17. Toxicity of lead-contaminated sediment to mallards

    Science.gov (United States)

    Heinz, G.H.; Hoffman, D.J.; Sileo, L.; Audet, D.J.; LeCaptain, L.J.

    1999-01-01

    Because consumption of lead-contaminated sediment has been suspected as the cause of waterfowl mortality in the Coeur d?Alene River basin in Idaho, we studied the bioavailability and toxicity of this sediment to mallards (Anas platyrhynchos). In experiment 1, one of 10 adult male mallards died when fed a pelleted commercial duck diet that contained 24% lead-contaminated sediment (with 3,400 μg/g lead in the sediment). Protoporphyrin levels in the blood increased as the percentage of lead-contaminated sediment in the diet increased. Birds fed 24% lead-contaminated sediment exhibited atrophy of the breast muscles, green staining of the feathers around the vent, viscous bile, green staining of the gizzard lining, and renal tubular intranuclear inclusion bodies. Mallards fed 24% lead-contaminated sediment had means of 6.1 μg/g of lead in the blood and 28 μg/g in the liver (wet-weight basis) and 1,660 μg/g in the feces (dry-weight basis). In experiment 2, we raised the dietary concentration of the lead-contaminated sediment to 48%, but only about 20% sediment was actually ingested due to food washing by the birds. Protoporphyrin levels were elevated in the lead-exposed birds, and all of the mallards fed 48% lead-contaminated sediment had renal tubular intranuclear inclusion bodies. The concentrations of lead in the liver were 9.1 μg/g for mallards fed 24% lead-contaminated sediment and 16 μg/g for mallards fed 48% lead-contaminated sediment. In experiment 3, four of five mallards died when fed a ground corn diet containing 24% lead-contaminated sediment (with 4,000 μg/g lead in this sample of sediment), but none died when the 24% lead-contaminated sediment was mixed into a nutritionally balanced commercial duck diet; estimated actual ingestion rates for sediment were 14% and 17% for the corn and commercial diets. Lead exposure caused elevations in protoporphyrin, and four of the five mallards fed 24% lead-contaminated sediment in a commercial diet and all five

  18. Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays

    International Nuclear Information System (INIS)

    Antunes, S.C.; Figueiredo, D.R. de; Marques, S.M.; Castro, B.B.; Pereira, R.; Goncalves, F.

    2007-01-01

    Uranium mining activities in Cunha Baixa, Mangualde (Portugal), were extensive between 1967 and 1993, with high production of poor ore. Ore exploitation left millions of tons of tailings in the surrounding area, close to human houses. Contamination of the area (water and soil compartment) presently represents a serious hazard to humans and wildlife. The aim of this work was to evaluate the acute toxicity of water and sediments from a pond that floods a uranium mine pit, in two periods (spring and autumn). High contents of metals were found in water samples (chiefly Mn, Fe, Al, U, Sr). A battery of assays was applied to screen the acute toxicity of the different compartments using algae, crustaceans and dipterans. Results showed that the sediments were non-toxic, unlike the superficial water. Water toxicity was higher in the autumn, when the effluent was more acidic, compared to spring. In the water toxicity assays, the relative sensitivity of the test species used was Daphnia longispina > Pseudokirchneriella subcapitata > Daphnia magna. The present study is part of the chemical and ecotoxicological characterisation of the aquatic compartment performed in the Tier 1 of the Ecological Risk Assessment of the Cunha Baixa mining area

  19. Importance of dose metrics for lethal and sublethal sediment metal toxicity in the oligochaete worm Lumbriculus variegatus

    Energy Technology Data Exchange (ETDEWEB)

    Penttinen, O.P.; Kilpi-Koski, J.; Toivainen, K. [Helsinki Univ., Lahti (Finland). Dept. of Ecology end Environmental Sciences; Jokela, M. [Mikkeli Univ. of Applied Sciences, Mikkeli (Finland); Vaeisaenen, A. [Jyvaeskylae Univ. (Finland). Dept. of Chemistry

    2008-02-15

    Background, aims, and scope. There is an increasing demand for controlled toxicity tests to predict biological effects related to sediment metal contamination. In this context, questions of metal-specific factors, sensitivity of toxicity endpoints, and variability in exposure duration arise. In addition, the choice of the dose metrics for responses is equally important and is related to the applicability of the concept of critical body residue (CBR) in exposure assessments, as well as being the main focus of this study. Methods. Experiments were conducted to assess toxicity of Cd, Cr, Cu and Pb to the oligochaete worm Lumbriculus variegatus with the aim of determining CBRs for two response metrics. Mortality and feeding activity of worms exposed to sediment-spiked metals were used as end-points in connection with residue analyses from both the organisms and the surrounding media. Results. LC50 values were 0.3, 1.4, 5.2, and 6.7 mg/L (from 4.7 {mu}mol/L to 128.0 {mu}mol/L), and the order of toxicity, from most toxic to least toxic, was Cu > Cd > Pb>Cr. By relating toxicity to body residue, variability in toxicity among the metals decreased and the order of toxicity was altered. The highest lethal residue value was obtained for Cu (10.8 mmol/kg) and the lowest was obtained for Cd (2.3 mmol/kg). In the 10-d sublethal test, both time and metal exposure were an important source of variation in the feeding activity of worms. The significant treatment effects were observed from worms exposed to Cd or Pb, with the controls yielding the highest feeding rate. However, quantitative changes in the measured end-point did not correlate with the exposure concentrations or body residues, which remained an order of magnitude lower than in the acute exposures. (orig.)

  20. Impact of a flood disaster on sediment toxicity in a major river system - the Elbe flood 2002 as a case study

    International Nuclear Information System (INIS)

    Oetken, Matthias; Stachel, Burkhard; Pfenninger, Markus; Oehlmann, Joerg

    2005-01-01

    The ecotoxicological implications of a flooding disaster were investigated with the exceptional Elbe flood in August 2002 as an example. Sediment samples were taken shortly after the flood at 37 sites. For toxicity assessment the midge Chironomus riparius (Insecta) and the mudsnail Potamopyrgus antipodarum (Gastropoda) were exposed to the sediment samples for 28 days. For a subset of 19 sampling sites, the contamination level and the biological response of both species were also recorded before the flood in 2000. The direct comparison of biological responses at identical sites revealed significant differences for samples taken before and immediately after the flood. After flood sediments of the river Elbe caused both higher emergence rates in the midge and higher numbers of embryos in the mudsnail. Contrary to expectations the toxicity of the sediments decreased after the flood, probably because of a dilution of toxic substances along the river Elbe and a reduction in bioavailability of pollutants as a result of increasing TOC values after the flood. - The extraordinary Elbe flood in August 2002 did not result in an overall increase of environmental contamination

  1. Effect Of Environmental Load On The Toxicity Of Bottom Sediments

    Directory of Open Access Journals (Sweden)

    Šestinová Oľga

    2015-06-01

    Full Text Available This study is devoted to Ecotoxicity tests, Terrestrial Plant Test (modification of OECD 208, Phytotoxkit microbiotest on Sinapis alba and chronic tests of Earthworm (Eisenia veneta, modification of OECD Guidelines for the testing of chemicals 317, Bioaccumulation in Terrestrial Oligochaetes on polluted sediments. Earthworms can accelerate the removal of contaminants from soil. The study materials are river sediments, which were obtained from a monitoring station - the Water reservoir the Ružín No.1 particularly, the river Hornád, Hnilec and sample from sludge bed Rudňany. The samples of sediment were used to assess of the potential phytotoxic effect of heavy metals on higher plants. Total mortality was established in earthworms using chronic toxicity test after 7 and 28 exposure days. Based on the phytotoxicity testing, phytotoxic effects of the metals contaminated sediments from the sludge bed Rudňany on S. alba seeds was observed. The largest concentration differences were recorded in the sample R7 after 7 days earthworms exposure. The earthworms mortality was not influenced by sediment neither after 7 nor 28 exposure days The spectra of samples H, HO and R showed broad peak at 1 419 - 1 512 cm−1 characteristic for carbonate radical. In the spectra of the samples (R and R7 the vibration of C-H groups at 2 926 and 2 921 cm−1, respectively were also observed, demonstrating the presence of organic matter. Our research will continue with determination of metals concentration in earthworms.

  2. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Mayer, D.W.; Argo, R.S.

    1982-01-01

    Models are presented to estimate the migration of toxic contaminants in coastal waters. Ocean current is simulated by the vertically-averaged, finite element, two-demensional model known as CAFE-I with the Galerkin weighted residual technique. The refraction of locally generated waves or swells is simulated by the wave refraction model, LO3D. Using computed current, depth, and wave characteristics, the finite element model, FETRA, simulated sediment and contaminant transport in coastal waters, estuaries and rivers. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interaction, and the mechanism governing the transport, deposition, and resuspension of contaminated sediment. Several simple equations such as the unsteady, advection-diffusion equation, the equation for noncohesive-sediment load due to wind-induced waves in offshore and surf zones, and the equation for sediment-radionuclide transport simulation were solved during the preliminary testing of the model. (Kato, T.)

  3. Toxic effects of zinc from trout farm sediments on ATP, protein, and hemoglobin concentrations of Limnodrilus hoffmeisteri.

    Science.gov (United States)

    Martinez-Tabche, L; Gutiérrez Cabrera, I; Gómez Oliván, L; Galar Martinez, M; Germán Faz, C

    2000-04-14

    Zinc (Zn) is a nutritionally essential metal, and deficiency results in severe health consequences to aquatic organisms. In this study toxicity data for Limnodrilus hoffmeisteri produced by Zn in systems using three natural sediments (trout farms: El Oyamel, El Truchón, and El Potrero) are presented. Hemoglobin, adenosine triphosphate (ATP), and protein concentrations were measured in L. hoffmeisteri exposed to spiked sediments, as indicators of exposure. Physicochemical characteristics of water and sediments were also considered. Zn concentrations were measured in water and sediment. El Oyamel, El Truchón, and El Potrero pond sediments did not have similar physicochemical characteristics. Zn concentrations of water obtained from the rustic ponds were near 0.4575 mg/L; however, this metal was always found to be higher in the sediments (0.0271-0.9754 mg/kg). The bioassay with worms demonstrated that pond sediments from El Oyamel, El Potrero, and El Truchón produced toxicity since ATP and protein concentrations were low compared to controls (organisms without metal). All spiked sediments had a significant reduction effect on ATP, protein, and hemoglobin concentrations. This investigation clearly shows that sediments of El Truchón, El Oyamel, and El Potrero possess toxicity potential. These results suggest the usefulness of these bioassays to evaluate the toxicity of sediments polluted with heavy metals.

  4. Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds

    International Nuclear Information System (INIS)

    Siegler, Katie; Phillips, Bryn M.; Anderson, Brian S.; Voorhees, Jennifer P.; Tjeerdema, Ron S.

    2015-01-01

    California's Stream Pollution Trends program (SPoT) assesses long-term water quality trends, using 100 base-of-the-watershed sampling sites. Annual statewide sediment surveys from 2008 to 2012 identified consistent levels of statewide toxicity (19%), using the freshwater amphipod Hyalella azteca. Significant contaminant trends included a decrease in PCBs, stable concentrations of metals and PAHs, and a statewide increase in detections and concentrations of pyrethroid pesticides. The pyrethroid pesticide bifenthrin was detected in 69% of samples (n = 410). Detection of toxicity increased in a subset of samples tested at a more environmentally relevant test temperature (15 °C), and the magnitude of toxicity was much greater, indicating pyrethroid pesticides as a probable cause. Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. Principal components analysis related pyrethroids, metals and total organic carbon to urban land use. - Highlights: • Toxicity and contaminant concentrations were higher in urban dominated watersheds. • Average and range of total pyrethroid concentrations increased between 2008 and 2012. • Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. - Detections and concentrations of current use pesticides are increasing in California urban watersheds, while legacy organochlorine contaminants are decreasing statewide.

  5. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    Directory of Open Access Journals (Sweden)

    Reifferscheid Georg

    2009-04-01

    Full Text Available Abstract Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay and endocrine disruption (YES test. Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments.

  6. Acute and chronic toxicity of sediment samples from Guanabara Bay (RJ during the rainy period

    Directory of Open Access Journals (Sweden)

    Luciane Alves Maranho

    2010-06-01

    Full Text Available Guanabara Bay is a marine-estuarine environment of high ecological and socio-economic importance, subject to a variety of environmental impacts. Sediment is the eventual repository for most substances introduced into water bodies and may, therefore, provide an integrated measure of the environmental quality, which can be assessed by many different approaches. In this project, the quality of sediments from Guanabara Bay was evaluated by the ecotoxicological approach: whole-sediment toxicity tests, using Tiburonella viscana, and porewater, elutriate and sediment-water interface chronic toxicity tests, using embryos of Lytechinus variegatus, were applied. Sediments were collected at 14 sampling stations, distributed across the bay. Chronic tests showed significant toxicity in most of the sediment samples. Sediments from stations 1, 2, 3, 6, 8, 10, 11, 12 and 15 showed acute toxicity as well. The results of the different tests were well correlated, and their integration showed that the sediments analyzed were considered unsuitable for aquatic life, resulting in the environmental degradation of Guanabara Bay. In this context, the control of pollution sources and multi-purpose management are required to improve the environmental quality.A Baía de Guanabara é um ambiente marinho-estuarino de grande relevância ecológica e sócio-econômica, e sujeita a uma ampla gama de impactos ambientais. O sedimento é o principal destino para a maioria das substâncias introduzidas nos corpos d'água, podendo fornecer uma medida integrada da qualidade ambiental, a qual pode ser avaliada por várias abordagens. Neste projeto, a qualidade de sedimentos da Baía de Guanabara foi por uma abordagem ecotoxicológica, por meio de testes de toxicidade aguda de sedimento integral, utilizando Tiburonella viscana, e testes de toxicidade crônica de água intersticial, elutriato e interface sedimento-água, utilizando embriões de Lytechinus variegatus. Os sedimentos foram

  7. Toxicity of harbour canal sediments before dredging and after off shore disposal

    NARCIS (Netherlands)

    Van den Hurk, P.; Eertman, R.H.M.; Stronkhorst, J.

    1997-01-01

    Dredge material from an entrance waterway to the port of Rotterdam and sediments from the North Sea off-shore disposal site were tested for toxicity using three different sediment bioassays, The goals of the study were to evaluate if bioassays generate useful additional information to chemical based

  8. APPLICATION OF SEDIMENT QUALITY GUIDELINES IN THE ASSESSMENT OF MANGROVE SURFACE SEDIMENT IN MENGKABONG LAGOON, SABAH, MALAYSIA

    Directory of Open Access Journals (Sweden)

    S. M. Praveena, M. Radojevic, M. H. Abdullah, A. Z. Aris

    2008-01-01

    Full Text Available There have been numerous sediment quality guidelines developed to monitor the sediments. Sediment quality guidelines are very useful to screen sediment contamination by comparing sediment contaminant concentration with the corresponding quality guideline, provide useful tools for screening sediment chemical data to identify pollutants of concern and prioritise problem sites and relatively good predictors of contaminations. However, these guidelines are chemical specific and do not include biological parameters. Aquatic ecosystems, including sediments, must be assessed in multiple components (biological data, toxicity, physicochemistry by using intregrated approaches in order to establish a complete and comprehensive set of sediment quality guidelines. Numerous sediment quality guidelines Washington Department of Ecology Sediment Quality Guideline, Australian and New Zealand Environment and Conservation Council, Swedish Environmental Sediment Quality, Screening Quick Reference Table, Portuguese Legislation on the Classification of Dredged Materials in Coastal Zones and Interim Sediment Quality Guideline for Hong Kong have been applied to the Mengkabong lagoon mangrove sediment and discussed. The most appropriate guideline that meets the prioritization criteria consistent with international initiatives and regulations is interim sediment quality values for Hong Kong. The guideline verifies that all the metals are below the Interim Sediment Quality Value-low. However, site-specific, biological testing and ecological analysis of exisiting benthics community structure related to sediment contamination are needed for final decision making in the case of Mengkabong lagoon.

  9. Bioavailability and toxicity of metals from a contaminated sediment by acid mine drainage: linking exposure-response relationships of the freshwater bivalve Corbicula fluminea to contaminated sediment.

    Science.gov (United States)

    Sarmiento, Aguasanta M; Bonnail, Estefanía; Nieto, José Miguel; DelValls, Ángel

    2016-11-01

    Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.

  10. Biomarker responsiveness in different tissues of caged Ruditapes philippinarum and its use within an integrated sediment quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Gomez, Julia, E-mail: julia.ramosgomez@uca.es [UNITWIN/UNESCO/WiCoP, Departamento de Quimica Fisica, Universidad de Cadiz, Facultad de Ciencias del Mar y Ambientales, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain); Coz, Alberto; Viguri, Javier R. [Dpto. Ingenieria Quimica y Quimica Inorganica, ETSIIT, Universidad de Cantabria, Avda. los Castros, s/n 39005 Santander (Spain); Luque, Angel [Departamento de Biologia, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Gran Canaria, The Canary Islands (Spain); Martin-Diaz, M. Laura [UNITWIN/UNESCO/WiCoP, Departamento de Quimica Fisica, Universidad de Cadiz, Facultad de Ciencias del Mar y Ambientales, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain); Centro Andaluz de Ciencia y Tecnologia Marinas (CACYTMAR), Universidad de Cadiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain); DelValls, T. Angel [UNITWIN/UNESCO/WiCoP, Departamento de Quimica Fisica, Universidad de Cadiz, Facultad de Ciencias del Mar y Ambientales, Campus Universitario de Puerto Real, 11510 Puerto Real, Cadiz (Spain)

    2011-07-15

    Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase -EROD-, dibenzylfluorescein dealkylase -DBF-, glutathione S-transferase -GST), antioxidant enzymes (glutathione reductase -GR- and glutathione peroxidase -GPX), lipid peroxidation -LPO- and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cadiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cadiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment. - Highlights: > Ruditapes philippinarum is sensitive to sediment contamination at biochemical level. > Digestive gland biomarkers showed the best correlations with sediment contaminants. > Presence of potentially toxic chemicals not analyzed in this research was unmasked. > Multivariate analysis allowed the identification of toxic xenobiotic and possible sources. > Inner area of Santander Bay presented the highest sediment toxicity. - Integration of Ruditapes philippinarum biomarker results and sediment chemistry distinguished xenobiotic exposure and sediment toxicity in coastal areas of Spain.

  11. Assessment of the ecotoxicity of urban estuarine sediment using benthic and pelagic copepod bioassays

    Directory of Open Access Journals (Sweden)

    Maria P. Charry

    2018-05-01

    Full Text Available Urban estuarine sediments are sinks to a range of contaminants of anthropogenic origin, and a key challenge is to characterize the risk of these compounds to receiving environments. In this study, the toxicity of urban estuarine sediments was tested using acute and chronic bioassays in the benthic harpacticoid Quinquelaophonte sp., and in the planktonic calanoid Gladioferens pectinatus, two New Zealand copepod species. The sediment samples from the estuary tributary sites significantly impacted reproduction in Quinquelaophonte sp. However, results from one of the estuary sites were not significantly different to those from the tributaries sites, suggesting that chemicals other than trace metals, polycyclic aromatic hydrocarbons and ammonia may be the causative stressors. Sediment elutriate samples had significant effects on reproductive endpoints in G. pectinatus, and on the induction of DNA damage in cells, as shown by the comet assay. The results indicate that sediment contamination at the Ahuriri Estuary has the potential to impact biological processes of benthic and pelagic organisms. The approach used provides a standardized methodology to assess the toxicity of estuarine sediments.

  12. Assessment of the ecotoxicity of urban estuarine sediment using benthic and pelagic copepod bioassays.

    Science.gov (United States)

    Charry, Maria P; Keesing, Vaughan; Costello, Mark; Tremblay, Louis A

    2018-01-01

    Urban estuarine sediments are sinks to a range of contaminants of anthropogenic origin, and a key challenge is to characterize the risk of these compounds to receiving environments. In this study, the toxicity of urban estuarine sediments was tested using acute and chronic bioassays in the benthic harpacticoid Quinquelaophonte sp., and in the planktonic calanoid Gladioferens pectinatus , two New Zealand copepod species. The sediment samples from the estuary tributary sites significantly impacted reproduction in Quinquelaophonte sp. However, results from one of the estuary sites were not significantly different to those from the tributaries sites, suggesting that chemicals other than trace metals, polycyclic aromatic hydrocarbons and ammonia may be the causative stressors. Sediment elutriate samples had significant effects on reproductive endpoints in G. pectinatus , and on the induction of DNA damage in cells, as shown by the comet assay. The results indicate that sediment contamination at the Ahuriri Estuary has the potential to impact biological processes of benthic and pelagic organisms. The approach used provides a standardized methodology to assess the toxicity of estuarine sediments.

  13. Biogeochemical controls on the speciation and aquatic toxicity of vanadium and other metals in sediments from a river reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Nedrich, Sara M.; Chappaz, Anthony; Hudson, Michelle L.; Brown, Steven S.; Burton, G. Allen

    2018-01-01

    Effects of hydrologic variability on reservoir biogeochemistry are relatively unknown, particularly for less studied metals like vanadium (V). Further, few studies have investigated the fate and effects of sediment-associated V to aquatic organisms in hydrologically variable systems. Our primary objective was to assess effects of hydrologic manipulation on speciation and toxicity of V (range: 635 to 1620 mg kg- 1) and other metals to Hyalella azteca and Daphnia magna. Sediments were collected from a reservoir located in a former mining area and microcosm experiments were conducted to emulate 7-day drying and inundation periods. Despite high sediment concentrations, V bioavailability remained low with no significant effects to organism survival, growth, or reproduction. The lack of V toxicity was attributed to reduced speciation (III, IV), non-labile complexation, and sorption to Al/Fe/Mn-oxyhydroxides. Zinc (Zn) increased in surface and porewater with inundation, for some sediments exceeding the U.S. EPA threshold for chronic toxicity. While no effects of Zn to organism survival or growth were observed, Zn body concentrations were negatively correlated with H. azteca growth. Results from this study indicate that V bioavailability and environmental risk is dependent on V-speciation, and V is less influenced by hydrologic variability than more labile metals such as Zn.

  14. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  15. Evaluation of toxicity to the amphipod, Hyalella azteca, and to the midge, Chironomus dilutus; and bioaccumulation by the oligochaete, Lumbriculus variegatus, with exposure to PCB-contaminated sediments from Anniston, Alabama

    Science.gov (United States)

    Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.; Brumbaugh, William G.; Coady, Matthew R.; Farrar, J. Daniel; Lotufo, Guilherme R.; Kemble, Nile E.; Kunz, James L.; Stanley, Jacob K.; Sinclair, Jesse A.; Ingersoll, Christopher G.; Steevens, Jeffery A.; MacDonald, Donald D.

    2014-01-01

    The U.S. Environmental Protection Agency (USEPA) requested that as part of the remedial investigation for the Anniston, Alabama Polychlorinated Biphenyl (PCB) Site (Anniston PCB Site), that Pharmacia Corporation and Solutia Inc. (P/S) perform long-term reproduction toxicity tests with the amphipod, Hyalella azteca, and the midge, Chironomus dilutus, and bioaccumulation tests with the oligochaete, Lumbriculus variegatus, using sediment samples collected from reference locations and from Operable Unit 4 of the Anniston PCB Site. The sediment toxicity testing and sediment bioaccumulation results will be used by ARCADIS U.S., Inc. (ARCADIS) as part of a weight-of-evidence assessment to evaluate risks and establish sediment remediation goals for contaminants to sediment-dwelling organisms inhabiting the Anniston PCB Site. The goal of this study was to characterize relations between sediment chemistry and sediment toxicity and relations between sediment chemistry and sediment bioaccumulation in samples of sediments collected from the Anniston PCB Site. A total of 32 samples were evaluated from six test sites and one reference site to provide a wide range in concentrations of chemicals of potential concern (COPCs) including PCBs in samples of whole sediment. The goal of this study was not to determine the extent of sediment contamination across the Anniston PCB Site. Hence, the test sites or samples collected from within a test site were not selected to represent the spatial extent of sediment contamination across the Anniston PCB Site. Sediment chemistry, pore-water chemistry, and sediment toxicity data were generated for 26 sediment samples from the Anniston PCB Site. All of the samples were evaluated to determine if they qualified as reference sediment samples. Those samples that met the chemical selection criteria and biological selection criteria were identified as reference samples and used to develop the reference envelope for each toxicity test endpoint. Physical

  16. Toxic elements in sediment from two water bodies near Brazilian Multipurpose Reactor: RMB installation area

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tatiane B.S.C. da; Stellato, Thamiris B.; Monteiro, Lucilena R.; Marques, Joyce R.; Faustino, Mainara G.; Santos, Camila F.R.T.T.; Oliveira, Cintia C. de; Miranda, Gabrielle S.; Pires, Maria Aparecida F.; Cotrim, Marycel E.B., E-mail: tatianebscs@live.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Aquatic ecosystems are directly affected by contaminants, such as, toxic elements that do not remain in sediment in a insoluble form. Anthropogenic and natural actions influence sediment dynamics that could lead to a potential contaminant accumulation. Therefore, to evaluate possible environmental impacts is,in many cases, mandatory. Environmental impact assessment studies are a licensing tool that seeks to control degradation activities, taking into account the legal and regulatory provisions and technical standards applicable to the case. The present study aims to evaluate the sediment quality in the area of influence of the Brazilian Multipurpose Nuclear Reactor (RMB) to be installed in the contiguous area of the Experimental Center of Aramar of the Technological Center of the Navy in São Paulo (CTMSP), located in the city of Iperó - SP. The potentially toxic elements As, Cd and Hg were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and Cr, Cu, Ni and Zn by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results were compared with Canadian Council of Ministers of the Environment (CCME) guideline values (TEL and PEL) and the maximum permitted values of Resolution 454/12. These toxic elements (As, Cd, Hg, Cr, Cu, Ni and Zn) were found below maximum allowed concentrations from national and international legislation. This study provides support for RMB post-completion evaluations, in order to prevent these elements to exceed tolerated levels, ensuring ecological, social and economic values. (author)

  17. Toxic elements in sediment from two water bodies near Brazilian Multipurpose Reactor: RMB installation area

    International Nuclear Information System (INIS)

    Silva, Tatiane B.S.C. da; Stellato, Thamiris B.; Monteiro, Lucilena R.; Marques, Joyce R.; Faustino, Mainara G.; Santos, Camila F.R.T.T.; Oliveira, Cintia C. de; Miranda, Gabrielle S.; Pires, Maria Aparecida F.; Cotrim, Marycel E.B.

    2017-01-01

    Aquatic ecosystems are directly affected by contaminants, such as, toxic elements that do not remain in sediment in a insoluble form. Anthropogenic and natural actions influence sediment dynamics that could lead to a potential contaminant accumulation. Therefore, to evaluate possible environmental impacts is,in many cases, mandatory. Environmental impact assessment studies are a licensing tool that seeks to control degradation activities, taking into account the legal and regulatory provisions and technical standards applicable to the case. The present study aims to evaluate the sediment quality in the area of influence of the Brazilian Multipurpose Nuclear Reactor (RMB) to be installed in the contiguous area of the Experimental Center of Aramar of the Technological Center of the Navy in São Paulo (CTMSP), located in the city of Iperó - SP. The potentially toxic elements As, Cd and Hg were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS) and Cr, Cu, Ni and Zn by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Results were compared with Canadian Council of Ministers of the Environment (CCME) guideline values (TEL and PEL) and the maximum permitted values of Resolution 454/12. These toxic elements (As, Cd, Hg, Cr, Cu, Ni and Zn) were found below maximum allowed concentrations from national and international legislation. This study provides support for RMB post-completion evaluations, in order to prevent these elements to exceed tolerated levels, ensuring ecological, social and economic values. (author)

  18. Contaminant levels and toxicity of sediments and water of Baltimore Harbor and Back River, Maryland

    International Nuclear Information System (INIS)

    Logan, D.T.; Jacobs, F.; Mehrotra, N.

    1995-01-01

    The Patapsco and Back River Watershed drains the Baltimore metropolitan area, Maryland's most heavily industrialized and urbanized region. Due to the intensive development and industrialization of the Baltimore metropolitan area over the past 250 years, high levels of contaminants have been discharged into Baltimore Harbor on the Patapsco River and into the Back River. Pollutants historically discharged include heavy metals, petroleum hydrocarbons, pesticides, cyanide, sewage, other organic chemicals, and nutrients. Sources have included industrial and municipal discharges, sewerage overflows, urban runoff, and leaks and spills from vessels and on-land facilities. The Maryland Department of the Environment undertook this study of ambient conditions as part of a developing strategy to assess and improve conditions in the Chesapeake Bay and its tributaries. Past studies were compiled, evaluated, and synthesized to identify the areas of degraded conditions and contaminants of possible concern. Sediment contaminant levels were assessed using historical sediment chemistry data, Effects Range Low and Median concentrations (ER-L and ER-M) as toxicological benchmarks, and a sum of toxicity units approach for multiple contaminants. Data on toxicity testing and biological monitoring was compared to sediment and water quality data. Fish tissue data were used to examine bioaccumulated chemicals. A computerized Geographical Information System (GIS) was used to manipulate and display complex geographical data. The final identification of areas and chemicals of potential concern relied on a syntheses of these results as well as information on present and past contaminant loadings

  19. Assessment of toxicity of radioactively contaminated sediments of the Yenisei River for aquatic plants in laboratory assay

    Energy Technology Data Exchange (ETDEWEB)

    Zotina, T.; Trofimova, E.; Medvedeva, M.; Bolsunovsky, A. [Institute of Biophysic SB RAS (Russian Federation)

    2014-07-01

    The Yenisei River has been subjected to radioactive contamination due to the operation of the Mining-and-Chemical Combine (Rosatom) (MCC) producing weapon-grade plutonium for more than fifty years (1958-2010). As a result, high activities of long-lived artificial radionuclides (Cs-137, Pu-238, 239, 241, Am-241) were deposited in sediments of the river. Bottom sediments of the Yenisei River downstream of the Krasnoyarsk city are also polluted with heavy metals because of industrial discharges and from the water catchment area. The purpose of this research was to estimate the ability of submersed macrophytes Elodea canadensis and Myriophyllum spicatum to serve as indicators of toxicity of bottom sediments of the Yenisei River. Activities of artificial radionuclides in the biomass of aquatic plants sampled in the Yenisei River upstream of the MCC were below detection limit (< 0.5 Bq/kg of dry mass for Cs-137). The activities of artificial radionuclides in the biomass of macrophytes sampled in the Yenisei River in the vicinity of the MCC in autumn 2012 were (Bq/kg of dry mass): 67±4 for Co-60, 16±2 for Cs-137, and 8±1 for Eu-152. For eco-toxicological experiments, top 20-cm layers of bottom sediments (BS) were collected from the Yenisei River at three sites in the vicinity of the MCC (No. 2-4) and at one site upstream of the MCC (No. 1). Samples of sediments contained natural isotope K-40 (240-330 Bq/kg, fresh mass) and artificial radionuclides: Co-60 (up to 70 Bq/kg), Cs-137 (0.8-1400 Bq/kg), Eu-152, 154 (up to 220 Bq/kg), Am-241 (up to 40 Bq/kg). The total activity concentration of radionuclides measured on an HPGe-Gamma-spectrometer (Canberra, U.S.) in samples of BS No. 1-4 was 330, 500, 880 and 1580 Bq/kg of fresh mass, respectively. Apical shoots of submersed macrophytes were planted in sediments (6-9 shoots per sediment sub-sample in three replicates). Endpoints of shoot and root growth were used as toxicity indicators; the number of cells with chromosome

  20. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses.

    Science.gov (United States)

    Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme

    2017-08-01

    Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment

  1. Preparation and characterization of nickel-spiked freshwater sediments for toxicity tests: toward more environmentally realistic nickel partitioning

    Science.gov (United States)

    Brumbaugh, William G.; Besser, John M.; Ingersoll, Christopher G.; May, Thomas W.; Ivey, Chris D.; Schlekat, Christian E.; Garman, Emily R.

    2013-01-01

    Two spiking methods were compared and nickel (Ni) partitioning was evaluated during a series of toxicity tests with 8 different freshwater sediments having a range of physicochemical characteristics. A 2-step spiking approach with immediate pH adjustment by addition of NaOH at a 2:1 molar ratio to the spiked Ni was effective in producing consistent pH and other chemical characteristics across a range of Ni spiking levels. When Ni was spiked into sediment having a high acid-volatile sulfide and organic matter content, a total equilibration period of at least 10 wk was needed to stabilize Ni partitioning. However, highest spiking levels evidently exceeded sediment binding capacities; therefore, a 7-d equilibration in toxicity test chambers and 8 volume-additions/d of aerobic overlying water were used to avoid unrealistic Ni partitioning during toxicity testing. The 7-d pretest equilibration allowed excess spiked Ni and other ions from pH adjustment to diffuse from sediment porewater and promoted development of an environmentally relevant, 0.5- to 1-cm oxic/suboxic sediment layer in the test chambers. Among the 8 different spiked sediments, the logarithm of sediment/porewater distribution coefficient values (log Kd) for Ni during the toxicity tests ranged from 3.5 to 4.5. These Kd values closely match the range of values reported for various field Ni-contaminated sediments, indicating that testing conditions with our spiked sediments were environmentally realistic.

  2. Biomarker responsiveness in different tissues of caged Ruditapes philippinarum and its use within an integrated sediment quality assessment

    International Nuclear Information System (INIS)

    Ramos-Gomez, Julia; Coz, Alberto; Viguri, Javier R.; Luque, Angel; Martin-Diaz, M. Laura; DelValls, T. Angel

    2011-01-01

    Biomarkers comprising activities of biotransformation enzymes (ethoxyresorufin-O-deethylase -EROD-, dibenzylfluorescein dealkylase -DBF-, glutathione S-transferase -GST), antioxidant enzymes (glutathione reductase -GR- and glutathione peroxidase -GPX), lipid peroxidation -LPO- and DNA strand breaks were analyzed in the clam Ruditapes philippinarum caged at Cadiz Bay, Santander Bay and Las Palmas de Gran Canaria (LPGC) Port (Spain). Sediments were characterized. Digestive gland was the most sensitive tissue to sediment contamination. In Cadiz Bay, changes in LPO regarding day 0 were related with metals. In LPGC Port, DBF, EROD, and GST activity responses suggested the presence of undetermined contaminants which might have led to DNA damage. In Santander Bay, PAHs were related with EROD activity, organic and metal contamination was found to be associated with GR and GST activities and DNA damage presented significant (p < 0.05) induction. R. philippinarum was sensitive to sediment contamination at biochemical level. Biomarkers allowed chemical exposure and sediment quality assessment. - Highlights: → Ruditapes philippinarum is sensitive to sediment contamination at biochemical level. → Digestive gland biomarkers showed the best correlations with sediment contaminants. → Presence of potentially toxic chemicals not analyzed in this research was unmasked. → Multivariate analysis allowed the identification of toxic xenobiotic and possible sources. → Inner area of Santander Bay presented the highest sediment toxicity. - Integration of Ruditapes philippinarum biomarker results and sediment chemistry distinguished xenobiotic exposure and sediment toxicity in coastal areas of Spain.

  3. Fractionation and potential toxic risk of metals from superficial sediment in Itaipu Lake--boundary between Brazil and Paraguay.

    Science.gov (United States)

    Kalwa, Miguel; Quináia, Sueli Pércio; Pletsch, Adelmo L; Techy, Laura; Felsner, Maria Lurdes

    2013-01-01

    The objective of this study was to evaluate fractions of metals (labile and pseudo-total) extracted from sediment samples collected in Itaipu Lake (boundary between Brazil and Paraguay) and to assess the dynamics and mobility of these fractions by identifying the same bioavailability and ecological risk to metals in the aquatic environment. The concentrations of metal ions were determined by flame atomic absorption spectrometry. There was a correlation between the metal ions, both in the labile and the pseudo-total, with regard to particle size. To assess metals concentrations in sediment, numerical sediment-quality guidelines were applied. The concentrations of aluminum, cadmium, iron, manganese, lead, and zinc in all sediment samples are lower than the proposed probable effects level (PEL), thus possibly indicating that there are no harmful effects from these metals. In contrast, concentrations of copper, chromium, and nickel exceeded the PEL in some samples, thus indicating that these stations are at potential risk. The level of contamination in sediments of Itaipu Lake for all metals was evaluated using contamination factor, degree of contamination, and sum-of-metals toxic unit.

  4. Metal assessment in sediments from the Guarapiranga Reservoir

    International Nuclear Information System (INIS)

    Coutinho, Suellen N.; Figueiredo, Ana Maria G.; Quináglia, Gilson A.

    2017-01-01

    The study of the distribution of metals in sediments is very important from the point of view of environmental pollution once the sediment concentrates metals in aquatic systems and represents a relevant contamination monitor. The analysis of sediments has been used to evaluate the quality of aquatic systems in relation to the concentration of metals. This study aimed to assess sediment contamination by metals in the Guarapiranga Reservoir. Sediment and water samples were analyzed by ICP OES (Inductively Coupled Plasma Optical Emission Spectrometry) for As, Cd, Cr, Cu, Ni, Pb and Zn and by CV AAS (Cold Vapor Atomic Absorption Spectrophotometry) for Hg. The sediment samples results were compared to TEL (Threshold Effect Level) and PEL (Probable Effect Level) guidance values and RRV (Reference Regional Values). Geoaccumulation Index (I geo ) was calculated to evaluate metals pollution degree using reference values established for metals and metalloids in sediments from the Upper Tietê Basin and E H -pH diagrams were applied to explain chemical forms and bioavailability of toxic metals in sediment samples. In general, most of the analyzed elements exceeded TEL values and Cr, Cu and Zn exceeded RRV guidelines. The high concentrations of Cu found in this reservoir can be explained by the frequent application of CuSO 4 algicide, mainly at sampling site S-03. The I geo indicated moderated polluted sediments by Zn and moderately to extremely polluted sediments by Cu, especially at S-03, in agreement with the TEL, PEL and RRV values comparison. These results may indicate potential risk of the reservoir water quality. (author)

  5. Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil).

    Science.gov (United States)

    Oliveira, D D; Souza-Santos, L P; Silva, H K P; Macedo, S J

    2014-06-01

    Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-03-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. The authors did not study all potential toxic effects, but, on the basis of those that they did consider, they concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  7. Toxicity of stormwater treatment pond sediments to Hyallela azteca (Amphipoda)

    Science.gov (United States)

    Karouna-Renier, N.K.; Sparling, D.W.

    1997-01-01

    Stormwater wetlands are created to contain runoff from human developments and are designed to retain contaminants such as heavy metals, petroleum hydrocarbons, silt, pesticides, and nutrients before the runoff enter natural waterways. Because of this design, stormwater wetlands have a potential of becoming toxic sinks to organisms utilizing the wetlands for habitat. We conducted a 10-day sediment bioassay on Hyallela azteca as part of a larger study on the possible hazards of stormwater wetlands to aquatic invertebrates. Water and sediments from 10 wetlands separated into reference, residential, commercial, and highway land uses were used. No differences in survival were observed among land use categories, possibly because the ratio of acid volatile sulfides/simultaneously extractable metals (AVS/SEM) was > 1.0 for all of the ponds tested; values > 1 in this ratio are indications that toxic metals may not be bioavailable. Survival and growth rates correlated positively with AVS.

  8. Disturbances to metal partitioning during toxicity testing of iron(II)-rich estuarine pore waters and whole sediments.

    Science.gov (United States)

    Simpson, Stuart L; Batley, Graeme E

    2003-02-01

    Metal partitioning is altered when suboxic estuarine sediments containing Fe(II)-rich pore waters are disturbed during collection, preparation, and toxicity testing. Experiments with model Fe(II)-rich pore waters demonstrated the rates at which adsorptive losses of Cd, Cu, Ni, Mn, Pb, and Zn occur upon exposure to air. Experiments with Zn-contaminated estuarine sediments demonstrated large and often unpredictable changes to metal partitioning during sediment storage, removal of organisms, and homogenization before testing. Small modifications to conditions, such as aeration of overlying waters, caused large changes to the metal partitioning. Disturbances caused by sediment collection required many weeks for reestablishment of equilibrium. Bioturbation by benthic organisms led to oxidation of pore-water Fe(II) and lower Zn fluxes because of the formation of Fe hydroxide precipitates that adsorb pore-water Zn. For five weeks after the addition of organisms to sediments, Zn fluxes increased slowly as the organisms established themselves in the sediments, indicating that the establishment of equilibrium was not rapid. The results are discussed in terms of the dynamic nature of suboxic, Fe(II)-rich estuarine sediments, how organisms perturb their environment, and the importance of understanding chemistry in toxicity testing with whole sediments or pore water. Recommendations are provided for the handling of sediments for toxicity testing.

  9. The Assessment of Sediment Heavy Metal Pollution in Begej Canal (Serbia)

    Science.gov (United States)

    Krčmar, Dejan; Trickovic, Jelena; Grba, Nenad; Becelic Tomin, Milena; Pesic, Vesna; Varga, Natasa; Dalmacija, Bozo

    2016-04-01

    Accumulation of heavy metals in aquatic systems has received huge concern due to their toxicity, persistence and subsequent accumulation in aquatic sediments. One of the most crucial properties of the metals, which differentiate them from organic pollutants, is that they are not biodegradable in the environment. Metals are part of biogeochemical cycles with aquatic sediments acting as their ultimate sinks for longer periods of time. However, when environmental conditions change (pH, redox potential, etc.) sediments act as secondary sources of metal pollution. The toxicity and mobility of metals depend strongly on the way they are associated with sediments. Therefore, information on the total concentrations of metals in sediment alone should not be used to assess the environmental impact of polluted sediments. The Begej Canal is navigation canal between Romania and Serbia and it is a part of Danube-Tisa-Danube hydrosystem in Vojvodina (Northern Province of Serbia). Approximately, 500,000 m3 of sediment is accumulated in Begej canal which currently prevents canal's primary function - navigability. The objective of the present study was to assess the chemical quality of Begej canal sediments regarding heavy metals content. The concentrations of heavy metals were as follows: Cd - 2.4-4.9 mg/kg, Cr - 125-349 mg/kg, Cu - 65-124 mg/kg, Pb - 47-113 mg/kg, Ni - 45-88 mg/kg and Zn - 362-602 mg/kg. According to Serbian legislation (Official gazette, no. 50/12), sediment of Begej canal is the third class sediment which means that special measures should be taken in case of its removal from watercourse and final disposal in order to prevent contamination of other environmental compartments (soil, ground waters, surface waters, wildlife). Therefore, determination of third class has important economic and social implications. Additional tests to assess sediment quality included determination of contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). In

  10. Ecological and human health sediment risk assessment for a hydrocarbon-impacted site in Lake Athabasca

    International Nuclear Information System (INIS)

    Mcdonald, B.; Wagenaar, A.; LaPorte, J.; Misfeldt, G.; Chatwell, I.

    2009-01-01

    The operation of a public port facility near Uranium City, Saskatchewan has resulted in elevated levels of hydrocarbons in soil, groundwater and sediment. Remedial action in the uplands portion of the site was successful and a risk management approach was initiated for the aquatic portion of the site in order to resolve human health and ecological issues. Ecological risks were assessed using a sediment weight-of-evidence approach involving chemistry, toxicity, bioaccumulation and benthic community structure. Human health risks were assessed via fish consumption, water ingestion and direct contact according to Health Canada guidance. This presentation included an overview of the general risk assessment approach as well as site-specific data and findings. The primary focus was on the challenges confronted during the risk assessment process, such as the need to include alkylated PAHs as a COPC in the human health risk assessment and to evaluate ongoing propeller wash and sediment resuspension for sediment risk management, even though the facility is no longer operational.

  11. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella

    DEFF Research Database (Denmark)

    Rosenkrantz, Rikke Tjørnhøj; Pollino, Carmel A.; Nugegoda, Dayanthi

    2008-01-01

    of 50 ml/L and 100 ml/L, while the 7 h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp....... on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared...... to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events. (C) 2008 Elsevier Ltd. All rights reserved....

  12. Linking toxicity profiles to pollutants in sludge and sediments

    Czech Academy of Sciences Publication Activity Database

    Stiborová, H.; Kolář, Michal; Vrkoslavová, J.; Pulkrabová, J.; Hajslova, J.; Demnerová, K.; Uhlík, O.

    2017-01-01

    Roč. 321, zima (2017), s. 672-680 ISSN 0304-3894 R&D Projects: GA ČR(CZ) GA15-02328S Institutional support: RVO:68378050 Keywords : polycyclic aromatic-hydrocarbons * Toxicity * Contamination * Sludge * Sediments * Priority pollutants * Constrained correspondence analysis (CCS) Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Other biological topics Impact factor: 6.065, year: 2016

  13. Metal assessment in sediments from the Guarapiranga Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, Suellen N.; Figueiredo, Ana Maria G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Quináglia, Gilson A., E-mail: sncoutinho@usp.br, E-mail: anamaria@ipen.br, E-mail: gquinaglia@sp.gov.br [Companhia Ambiental do Estado de São Paulo (CETESB), São Paulo, SP (Brazil)

    2017-07-01

    The study of the distribution of metals in sediments is very important from the point of view of environmental pollution once the sediment concentrates metals in aquatic systems and represents a relevant contamination monitor. The analysis of sediments has been used to evaluate the quality of aquatic systems in relation to the concentration of metals. This study aimed to assess sediment contamination by metals in the Guarapiranga Reservoir. Sediment and water samples were analyzed by ICP OES (Inductively Coupled Plasma Optical Emission Spectrometry) for As, Cd, Cr, Cu, Ni, Pb and Zn and by CV AAS (Cold Vapor Atomic Absorption Spectrophotometry) for Hg. The sediment samples results were compared to TEL (Threshold Effect Level) and PEL (Probable Effect Level) guidance values and RRV (Reference Regional Values). Geoaccumulation Index (I{sub geo}) was calculated to evaluate metals pollution degree using reference values established for metals and metalloids in sediments from the Upper Tietê Basin and E{sub H}-pH diagrams were applied to explain chemical forms and bioavailability of toxic metals in sediment samples. In general, most of the analyzed elements exceeded TEL values and Cr, Cu and Zn exceeded RRV guidelines. The high concentrations of Cu found in this reservoir can be explained by the frequent application of CuSO{sub 4} algicide, mainly at sampling site S-03. The I{sub geo} indicated moderated polluted sediments by Zn and moderately to extremely polluted sediments by Cu, especially at S-03, in agreement with the TEL, PEL and RRV values comparison. These results may indicate potential risk of the reservoir water quality. (author)

  14. Toxicity of oiled sediments treated with bioremediation agents: A shoreline experiment in Delaware, USA

    International Nuclear Information System (INIS)

    Mearna, A.; Doe, K.; Fisher, W.; Lee, K.; Mueller, C.

    1995-01-01

    Using a randomized complete block design, a battery of five pore water and sediment bioassays were used to monitor and compare toxicity among un-oiled, oiled (light Nigerian crude) and nutrient and bacteria-treated shoreline plots on a sandy beach. Tests included sea urchin fertilization, water and modified-solid phase microtox, 10-day amphipod survival and grass shrimp embryo bioassays. During the 13-week study, bioremediation treatment with nutrients and/or bacteria did not decrease toxicity relative to that in untreated plots. Results from at least one bioassay suggested that, relative to no treatment, treatment may have increased toxicity for several weeks. The least and most sensitive tests were sea urchin fertilization (pore water) and 10-day amphipod test, respectively. Coupled with chemical monitoring, the study produced a large data-base for evaluating toxic concentrations of petroleum hydrocarbons in sandy sediments

  15. Resolving the false-negative issues of the nonpolar organic amendment in whole-sediment toxicity identification evaluations.

    Science.gov (United States)

    Mehler, W Tyler; Keough, Michael J; Pettigrove, Vincent

    2018-04-01

    Three common false-negative scenarios have been encountered with amendment addition in whole-sediment toxicity identification evaluations (TIEs): dilution of toxicity by amendment addition (i.e., not toxic enough), not enough amendment present to reduce toxicity (i.e., too toxic), and the amendment itself elicits a toxic response (i.e., secondary amendment effect). One such amendment in which all 3 types of false-negatives have been observed is with the nonpolar organic amendment (activated carbon or powdered coconut charcoal). The objective of the present study was to reduce the likelihood of encountering false-negatives with this amendment and to increase the value of the whole-sediment TIE bioassay. To do this, the present study evaluated the effects of various activated carbon additions to survival, growth, emergence, and mean development rate of Chironomus tepperi. Using this information, an alternative method for this amendment was developed which utilized a combination of multiple amendment addition ratios based on wet weight (1%, lower likelihood of the secondary amendment effect; 5%, higher reduction of contaminant) and nonconventional endpoints (emergence, mean development rate). This alternative method was then validated in the laboratory (using spiked sediments) and with contaminated field sediments. Using these multiple activated carbon ratios in combination with additional endpoints (namely, emergence) reduced the likelihood of all 3 types of false-negatives and provided a more sensitive evaluation of risk. Environ Toxicol Chem 2018;37:1219-1230. © 2017 SETAC. © 2017 SETAC.

  16. Sediment Chemistry and Toxicity in Barnegat Bay, New Jersey: Pre- and Post- Hurricane Sandy, 2012-2013.

    Science.gov (United States)

    Romanok, Kristin M.; Szabo, Zoltan; Reilly, Timothy J.; Defne, Zafer; Ganju, Neil K.

    2016-01-01

    Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.

  17. Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: The role of bioavailability and enzymatic activities

    International Nuclear Information System (INIS)

    Chen, Xin; Li, Huizhen; You, Jing

    2015-01-01

    Pyrethroid insecticides and metals commonly co-occurred in sediment and caused toxicity to benthic organisms jointly. To improve accuracy in assessing risk of the sediments contaminated by insecticides and metals, it is of great importance to understand interaction between the contaminants and reasons for the interaction. In the current study, permethrin and cadmium were chosen as representative contaminants to study joint toxicity of pyrethroids and metals to a benthic invertebrate Chironomus dilutus. A median effect/combination index-isobologram was applied to evaluate the interaction between sediment-bound permethrin and cadmium at three dose ratios. Antagonistic interaction was observed in the midges for all treatments. Comparatively, cadmium-dominated group (the ratio of toxicity contribution from permethrin and cadmium was 1:3) showed stronger antagonism than equitoxicity (1:1) and permethrin-dominated groups (3:1). The reasons for the observed antagonism were elucidated from two aspects, including bioavailability and enzymatic activity. The bioavailability of permethrin, expressed as the freely dissolved concentrations in sediment porewater and measured by solid phase microextraction, was not altered by the addition of cadmium, suggesting the change in permethrin bioavailability was not the reason for the antagonism. On the other hand, the activities of metabolic enzymes, glutathione S-transferase and carboxylesterase in the midges which were exposed to mixtures of permethrin and cadmium were significantly higher than those in the midges exposed to permethrin solely. Cadmium considerably enhanced the detoxifying processes of permethrin in the midges, which largely explained the observed antagonistic interaction between permethrin and cadmium. - Highlights: • Sediment-bound permethrin and cadmium acted antagonistically to Chironomus dilutus. • Antagonism of permethrin and cadmium to the midges was noted at various dose ratios. • Addition of cadmium did

  18. Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, R.M.; Perron, M.M.; Friedman, C.L.; Suuberg, E.M.; Pennell, K.G.; Cantwell, M.G.; Pelletier, M.C.; Ho, K.T.; Serbst, J.R.; Ryba, S.A. [US EPA, Narragansett, RI (USA). Office for Research and Development

    2009-01-15

    Approaches for cleaning up contaminated sediments range from dredging to in situ treatment. In this study, we discuss the effects of amending reference and contaminated sediments with coal fly ash to reduce the bioavailability and toxicity of a field sediment contaminated with polycyclic aromatic hydrocarbons (PAHs). Six fly ashes and a coconut charcoal were evaluated in 7-d whole sediment toxicity tests with a marine amphipod (Ampelisca abdita) and mysid (Americamysis bahia). Fly ashes with high carbon content and the coconut charcoal showed proficiency at reducing toxicity. Some of the fly ashes demonstrated toxicity in the reference treatments. It is suspected that some of this toxicity is related to the presence of ammonia associated with fly ashes as a result of postoxidation treatment to reduce nitrous oxide emissions. Relatively simple methods exist to remove ammonia from fly ash before use, and fly ashes with low ammonia content are available. Fly ashes were also shown to effectively reduce overlying water concentrations of several PAHs. No evidence was seen of the release of the metals cadmium, copper, nickel, or lead from the fly ashes. A preliminary 28-d polychaete bioaccumulation study with one of the high-carbon fly ashes and a reference sediment was also performed. Although preliminary, no evidence was seen of adverse effects to worm growth or lipid content or of accumulation of PAHs or mercury from exposure to the fly ash. These data show fly ashes with high carbon content could represent viable remedial materials for reducing the bioavailability of organic contaminants in sediments.

  19. Effects of oil sands sediments on fish

    International Nuclear Information System (INIS)

    Parrott, J.; Colavecchia, M.; Hewitt, L.; Sherry, J.; Headley, J.; Turcotte, D.; Liber, K.

    2010-01-01

    This paper described a collaborative project organized by Natural Resources Canada (NRCan) Panel of Energy Research and Development (PERD) with researchers from Environment Canada and the University of Saskatchewan. The 4-year study was conducted to assess the toxicity of oil sands sediments and river waters, and reclamation ponds and sediments on laboratory-raised fish. Three sediments from rivers were evaluated for their potential to cause adverse impacts on fathead minnow eggs and larvae for a period of 18 days. The study monitored hatching, larval survival, development, and growth. Naphthenic acids (NA), polycyclic aromatic hydrocarbons (PAHs) and metals were measured in the sediments to determine if the compounds can be correlated with observed toxicity. The study will also assess walleye eggs exposed to sediments, and in situ fish exposures. Toxicity identification and evaluation (TIE) studies will be conducted to isolate the fractions that may affect fish development and growth.

  20. RELEVANCE OF ROOTED VASCULAR PLANTS AS INDICATORS OF ESTUARINE SEDIMENT QUALITY

    Science.gov (United States)

    Toxicity assessments and numerical quality assessment guidelines for estuarine sediments are rarely based on information for aquatic plants. The effect of this lack of information on contaminated sediment evaluations is largely unknown. For this reason, the toxicities of whole se...

  1. An evaluation of contaminated estuarine sites using sediment quality guidelines and ecological assessment methodologies.

    Science.gov (United States)

    Fulton, M; Key, P; Wirth, E; Leight, A K; Daugomah, J; Bearden, D; Sivertsen, S; Scott, G

    2006-10-01

    Toxic contaminants may enter estuarine ecosystems through a variety of pathways. When sediment contaminant levels become sufficiently high, they may impact resident biota. One approach to predict sediment-associated toxicity in estuarine ecosystems involves the use of sediment quality guidelines (ERMs, ERLs) and site-specific contaminant chemistry while a second approach utilizes site-specific ecological sampling to assess impacts at the population or community level. The goal of this study was to utilize an integrated approach including chemical contaminant analysis, sediment quality guidelines and grass shrimp population monitoring to evaluate the impact of contaminants from industrial sources. Three impacted sites and one reference site were selected for study. Grass shrimp populations were sampled using a push-netting approach. Sediment samples were collected at each site and analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Contaminant levels were then compared to sediment quality guidelines. In general, grass shrimp population densities at the sites decreased as the ERM quotients increased. Grass shrimp densities were significantly reduced at the impacted site that had an ERM exceedance for chromium and the highest Mean ERM quotient. Regression analysis indicated that sediment chromium concentrations were negatively correlated with grass shrimp density. Grass shrimp size was reduced at two sites with intermediate levels of contamination. These findings support the use of both sediment quality guidelines and site-specific population monitoring to evaluate the impacts of sediment-associated contaminants in estuarine systems.

  2. PAHs concentration and toxicity in organic solvent extracts of atmospheric particulate matter and sea sediments.

    Science.gov (United States)

    Ozaki, Noriatsu; Takeuchi, Shin-ya; Kojima, Keisuke; Kindaichi, Tomonori; Komatsu, Toshiko; Fukushima, Takehiko

    2012-01-01

    The concentration of polycyclic aromatic hydrocarbons (PAHs) and the toxicity to marine bacteria (Vibrio fischeri) were measured for the organic solvent extracts of sea sediments collected from an urban watershed area (Hiroshima Bay) of Japan and compared with the concentrations and toxicity of atmospheric particulate matter (PM). In atmospheric PM, the PAHs concentration was highest in fine particulate matter (FPM) collected during cold seasons. The concentrations of sea sediments were 0.01-0.001 times those of atmospheric PM. 1/EC50 was 1-10 L g(-1) PM for atmospheric PM and 0.1-1 L g(-1) dry solids for sea sediments. These results imply that toxic substances from atmospheric PM are diluted several tens or hundreds of times in sea sediments. The ratio of the 1/EC50 to PAHs concentration ((1/EC50)/16PAHs) was stable for all sea sediments (0.1-1 L μg(-1) 16PAHs) and was the same order of magnitude as that of FPM and coarse particulate matter (CPM). The ratio of sediments collected from the west was more similar to that of CPM while that from the east was more similar to FPM, possibly because of hydraulic differences among water bodies. The PAHs concentration pattern analyses (principal component analysis and isomer ratio analysis) were conducted and the results showed that the PAHs pattern in sea sediments was quite different to that of FPM and CPM. Comparison with previously conducted PAHs analyses suggested that biomass burning residues comprised a major portion of these other sources.

  3. Sediment nickel bioavailability and toxicity to estuarine crustaceans of contrasting bioturbative behaviors--an evaluation of the SEM-AVS paradigm.

    Science.gov (United States)

    Chandler, G Thomas; Schlekat, Christian E; Garman, Emily R; He, Lijian; Washburn, Katherine M; Stewart, Emily R; Ferry, John L

    2014-11-04

    Robust sediment quality criteria require chemistry and toxicity data predictive of concentrations where population/community response should occur under known geochemical conditions. Understanding kinetic and geochemical effects on toxicant bioavailability is key, and these are influenced by infaunal sediment bioturbation. This study used fine-scale sediment and porewater measurement of contrasting infaunal effects on carbon-normalized SEM-AVS to evaluate safe or potentially toxic nickel concentrations in a high-binding Spartina saltmarsh sediment (4%TOC; 35-45 μmol-S2-·g(-1)). Two crustaceans producing sharply contrasting bioturbation--the copepod Amphiascus tenuiremis and amphipod Leptocheirus plumulosus--were cultured in oxic to anoxic sediments with SEM[Ni]-AVS, TOC, porewater [Ni], and porewater DOC measured weekly. From 180 to 750 μg-Ni·g(-1) sediment, amphipod bioturbation reduced [AVS] and enhanced porewater [Ni]. Significant amphipod uptake, mortality, and growth-depression occurred at the higher sediment [Ni] even when [SEM-AVS]/foc suggested acceptable risk. Less bioturbative copepods produced higher AVS and porewater DOC but exhibited net population growth despite porewater [Ni] 1.3-1.7× their aqueous [Ni] LOEC. Copepod aqueous tests with/without dissolved organic matter showed significant aqueous DOC protection, which suggests porewater DOC attenuates sediment Ni toxicity. The SEM[Ni]-AVS relationship was predictive of acceptable risk for copepods at the important population-growth level.

  4. Effects of dredging operations on sediment quality. Contaminant mobilization in dredged sediments from the Port of Santos, SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ronaldo J.; Santos, Fernando C.; Mozeto, Antonio A. [Lab. de Biogeoquimica Ambiental, Dept. de Quimica, Univ. Federal de Sao Carlos, Sao Paulo, SP (Brazil); Abessa, Denis M.S.; Maranho, Luciane A.; Davanso, Marcela B. [Campus Experimental do Litoral Paulista, UNESP - Univ. Estadual Paulista ' Julio de Mesquita Filho' , Sao Paulo, SP (Brazil); Nascimento, Marcos R.L. do [Lab. de Pocos de Caldas (LAPOC), CNEN-Comissao Nacional de Energia Nuclear, MG (Brazil)

    2009-10-15

    Background, aim, and scope Contaminated sediments are a worldwide problem, and mobilization of contaminants is one of the most critical issues in environmental risk assessment insofar as dredging projects are concerned. The investigation of how toxic compounds are mobilized during dredging operations in the channel of the Port of Santos, Brazil, was conducted in an attempt to assess changes in the bioavailability and toxicity of these contaminants. Materials and methods Bulk sediment samples and their interstitial waters and elutriates were subjected to chemical evaluation and ecotoxicological assessment. Samples were collected from the channel before dredging, from the dredge's hopper, and from the disposal site and its surroundings. Results The results indicate that the bulk sediments from the dredging site are contaminated moderately with As, Pb, and Zn and severely with Hg, and that polycyclic aromatic hydrocarbon (PAH) concentrations are relatively high. Our results also show a 50% increase in PAH concentrations in suspended solids in the water collected from the hopper dredge. This finding is of great concern, since it refers to the dredge overflow water which is pumped back into the ecosystem. Acute toxicity tests on bulk sediment using the amphipod Tiburonella viscana showed no toxicity, while chronic tests with the sea urchin Lytechinus variegatus showed toxicity in the interstitial waters and elutriates. Results are compared with widely used sediment quality guidelines and with a sediment quality assessment scheme based on various lines of evidence. Conclusions The data presented here indicate that the sediments collected in this port show a certain degree of contamination, especially those from the inner part of the channel. The classification established in this study indicated that sediments from the dredged channel are impacted detrimentally and that sea disposal may disperse contaminants. According to this classification, the sediments are

  5. Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Hintzen, Emily P. [Department of Environmental Studies, Baylor University, Waco, TX 76798 (United States); Lydy, Michael J. [Fisheries and Illinois Aquaculture Center, and Department of Zoology, Southern Illinois University, Carbondale, IL 62091 (United States); Belden, Jason B. [Department of Zoology, Oklahoma State University, 430 Life Science West, Stillwater, OK 74078 (United States)], E-mail: jbelden@okstate.edu

    2009-01-15

    Despite heavy insecticide usage in urban areas, only a few studies have investigated the impact of current-use insecticides on benthic invertebrates in urban streams. The objective of this study was to measure the presence and concentration of current-use pesticides in sediments of residential streams in central Texas. Additionally, toxicity of these sediments to Hyalella azteca was evaluated. Sediment samples were collected from several sites in urban streams over the course of a year, of which, 66% had greater than one toxic unit (TU) of insecticide. Bifenthrin was the greatest contributor accounting for 65% of the TUs, and sediment toxicity to H. azteca correlated with the magnitude of total insecticides and bifenthrin TUs. The results of this study further raise concerns over the environmental consequences posed by many current-use insecticides, especially pyrethroids, in urban settings. - This study examined the presence of insecticides in Texas stream sediments as a model for evaluating the potential impact of urban insecticide use in the Southern United States.

  6. Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas

    International Nuclear Information System (INIS)

    Hintzen, Emily P.; Lydy, Michael J.; Belden, Jason B.

    2009-01-01

    Despite heavy insecticide usage in urban areas, only a few studies have investigated the impact of current-use insecticides on benthic invertebrates in urban streams. The objective of this study was to measure the presence and concentration of current-use pesticides in sediments of residential streams in central Texas. Additionally, toxicity of these sediments to Hyalella azteca was evaluated. Sediment samples were collected from several sites in urban streams over the course of a year, of which, 66% had greater than one toxic unit (TU) of insecticide. Bifenthrin was the greatest contributor accounting for 65% of the TUs, and sediment toxicity to H. azteca correlated with the magnitude of total insecticides and bifenthrin TUs. The results of this study further raise concerns over the environmental consequences posed by many current-use insecticides, especially pyrethroids, in urban settings. - This study examined the presence of insecticides in Texas stream sediments as a model for evaluating the potential impact of urban insecticide use in the Southern United States

  7. Pollution, toxicity, and ecological risk of heavy metals in surface river sediments of a large basin undergoing rapid economic development.

    Science.gov (United States)

    Tang, Wenzhong; Zhang, Chao; Zhao, Yu; Shan, Baoqing; Song, Zhixin

    2017-05-01

    A comprehensive and detailed investigation of heavy metal pollution, toxicity, and ecological risk assessment was conducted for the surface river sediments of the Haihe Basin in China based on 220 sampling sites selected in 2013. The average concentrations of Cr, Cu, Ni, Pb, and Zn in the sediments were 129 mg/kg, 63.4 mg/kg, 36.6 mg/kg, 50.0 mg/kg, and 202 mg/kg, respectively. As indicated by the geoaccumulation and pollution load indices, most surface river sediments of the Haihe Basin were contaminated with the investigated metals, especially in the junction region of the Zi Ya He and Hei Long Gang watersheds. The 5 heavy metals in the sediments all had anthropogenic sources, and the enrichment degrees followed the order Cu > Pb > Zn > Cr > Ni, with mean enrichment factors of 3.27, 2.77, 2.58, 1.81, and 1.44, respectively. According to the mean index of comprehensive potential ecological risk (38.9), the studied sediments of the Haihe Basin showed low potential ecological risk, but the sediments were potentially biologically toxic based on the mean probable effect concentration quotient (0.547), which may be the result of speciation of the 5 metals in the sediments. The results indicate that heavy metal pollution should be considered during the development of ecological restoration strategies in the Haihe Basin. Environ Toxicol Chem 2017;36:1149-1155. © 2016 SETAC. © 2016 SETAC.

  8. Assessment of streambed sediment contamination by heavy metals: The case of the Gabes Catchment, South-eastern Tunisia

    Science.gov (United States)

    Dahri, Noura; Atoui, Abdelfattah; Ellouze, Manel; Abida, Habib

    2018-04-01

    This study deals with the assessment of the behaviour of seven heavy metals (Cd, Zn, Cu, Pb, Ni, Cr and As) in streambed sediments within the Gabes Catchment, located in South-eastern Tunisia. To understand the effect of intense human activities in the Gabes Basin on the quality of the environment, 22 sediment samples, spread all over the study basin, were taken and analyzed for heavy metals. Heavy metal concentrations were shown to vary in the following order: Zn > Pb > Cu > Cr > Ni > Cd > As. Sediment quality was assessed based on the evaluation of various indices. A total of 27% of the sampling stations are characterised by sediment Enrichment Factors (EF) exceeding 40, reflecting extremely severe pollution. This result was also confirmed by different indices, including Sediment Pollution Index (SPI), Pollution Load Index (PLI) and Geo-accumulation index. The calculation of Mean Effect Range-Median Quotient (M-ERM-Q) indicated that in stream discharge, all metals have a probability of 21% to be toxic. The ecological toxicity risk of heavy metals increases close to urban (traffic activity) and industrial activities (industrial complex of Gabes). Close to Gabes City, the situation and the degree of contamination that may be transferred into marine ecosystems is worrisome and requires immediate intervention.

  9. National Status and Trends: Bioeffects Program - Magnitude and Extent of Sediment Toxicity in Four Bays of the Florida Panhandle: Pensacola, Choctawhatchee, St. Andrew and Apalachicola

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The toxicity of sediments in Pensacola, Choctawhatchee, St. Andrew and Apalachicola Bays was determined as part of bioeffects assessments performed by NOAA's...

  10. Contamination by persistent toxic substances in surface sediment of urban rivers in Chaohu City, China.

    Science.gov (United States)

    Li, Feipeng; Zhang, Haiping; Meng, Xiangzhou; Chen, Ling; Yin, Daqiang

    2012-01-01

    The concentration and spatial distribution of persistent toxic substances (PTS) in the river sediment in Chaohu City, China were investigated. A total of nine surface sediments were collected and the selected PTS pollutants including six heavy metals and nineteen polybrominated diphenyl ethers (PBDEs) were analyzed. The mean heavy metal concentrations (in mg/kg, dry weight) ranged within 0.18-1.53 (Hg), 50.08-200.18 (Cu), 118.70-313.65 (Zn), 50.77-310.85 (Cr), 37.12-92.72 (Pb) and 13.29-197.24 (As), and Cu, Zn and As have been regarded as the main metal pollutants. The levels of PBDEs (1.2-12.1 ng/g) and BDE-209 (2.4-30.5 ng/g) were at the middle level of the global range. BDE-209 was the predominant congener (67.0%-85.7%), which agrees with the fact that technical deca-BDE mixtures are the dominant PBDE formulation in China. The relative high level of PTS pollutants in the western part of the city is probably owing to the intensive agricultural activities and lack of sewerage system there. The ecological risk assessment with the sediment quality guidelines (SOGs) indicates that the urban river sediments in the city have been heavily contaminated by heavy metals with probable ecotoxicological impacts on freshwater organisms and the main toxic pollutants are Hg and As. The results of current study imply that the city, and perhaps many other small cities in China as well, requires immediate pollution control measures with emphasis on not only conventional organic pollutants but also on PTS such as heavy metals and PBDEs.

  11. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    Full Text Available Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2 = 0.536, pyrethroid toxic unit (0.576, and cumulative mortality of Hyalella azteca (0.570. The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  12. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.

    Science.gov (United States)

    Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig

    2010-07-01

    Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.

  13. Human Health Risk Assessment of Artisanal Miners Exposed to Toxic Chemicals in Water and Sediments in the Prestea Huni Valley District of Ghana

    Science.gov (United States)

    Obiri, Samuel; Yeboah, Philip O.; Osae, Shiloh; Adu-kumi, Sam; Cobbina, Samuel J.; Armah, Frederick A.; Ason, Benjamin; Antwi, Edward; Quansah, Reginald

    2016-01-01

    A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR—Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10−3. The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10−4 to 1 × 10−6. These findings call for case-control epidemiological studies to establish the relationship between exposure to the

  14. Human Health Risk Assessment of Artisanal Miners Exposed to Toxic Chemicals in Water and Sediments in the Prestea Huni Valley District of Ghana.

    Science.gov (United States)

    Obiri, Samuel; Yeboah, Philip O; Osae, Shiloh; Adu-Kumi, Sam; Cobbina, Samuel J; Armah, Frederick A; Ason, Benjamin; Antwi, Edward; Quansah, Reginald

    2016-01-18

    A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR-Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA). The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As), 0.17 μg/L to 340 μg/L (Cd), 0.17 μg/L to 122 μg/L (Pb) and 132 μg/L to 866 μg/L (Hg), respectively. These measured concentrations of arsenic (As), mercury (Hg), cadmium (Cd) and lead (Pb) were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE) and reasonable maximum exposure (RME) parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd), 1.45 (Pb), 4.60 (Hg) and 1.98 (As); while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10(-3). The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10(-4) to 1 × 10(-6). These findings call for case-control epidemiological studies to establish the relationship between exposure to the

  15. Human Health Risk Assessment of Artisanal Miners Exposed to Toxic Chemicals in Water and Sediments in the PresteaHuni Valley District of Ghana

    Directory of Open Access Journals (Sweden)

    Samuel Obiri

    2016-01-01

    Full Text Available A human health risk assessment of artisanal miners exposed to toxic metals in water bodies and sediments in the PresteaHuni Valley District of Ghana was carried out in this study, in line with US EPA risk assessment guidelines. A total of 70 water and 30 sediment samples were collected from surface water bodies in areas impacted by the operations of artisanal small-scale gold mines in the study area and analyzed for physico-chemical parameters such as pH, TDS, conductivity, turbidity as well as metals and metalloids such as As, Cd, Hg and Pb at CSIR—Water Research Institute using standard methods for the examination of wastewater as outlined by American Water Works Association (AWWA. The mean concentrations of As, Cd, Hg and Pb in water samples ranged from 15 μg/L to 325 μg/L (As, 0.17 μg/L to 340 μg/L (Cd, 0.17 μg/L to 122 μg/L (Pb and 132 μg/L to 866 μg/L (Hg, respectively. These measured concentrations of arsenic (As, mercury (Hg, cadmium (Cd and lead (Pb were used as input parameters to calculate the cancer and non-cancer health risks from exposure to these metals in surface water bodies and sediments based on an occupational exposure scenario using central tendency exposure (CTE and reasonable maximum exposure (RME parameters. The results of the non-cancer human health risk assessment for small-scale miners working around river Anikoko expressed in terms of hazard quotients based on CTE parameters are as follows: 0.04 (Cd, 1.45 (Pb, 4.60 (Hg and 1.98 (As; while cancer health risk faced by ASGM miners in Dumase exposed to As in River Mansi via oral ingestion of water is 3.1 × 10−3. The hazard quotient results obtained from this study in most cases were above the HQ guidance value of 1.0, furthermore the cancer health risk results were found to be higher than the USEPA guidance value of 1 × 10−4 to 1 × 10−6. These findings call for case-control epidemiological studies to establish the relationship between exposure to the

  16. Effects of untreated hospital effluents on the accumulation of toxic metals in sediments of receiving system under tropical conditions: case of South India and Democratic Republic of Congo.

    Science.gov (United States)

    Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John

    2013-10-01

    Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence.

    Science.gov (United States)

    Fairchild, J F; Kemble, N E; Allert, A L; Brumbaugh, W G; Ingersoll, C G; Dowling, B; Gruenenfelder, C; Roland, J L

    2012-07-01

    From 1930 to 1995, the Upper Columbia River (UCR) of northeast Washington State received approximately 12 million metric tons of smelter slag and associated effluents from a large smelter facility located in Trail, British Columbia, approximately 10 km north of the United States-Canadian border. Studies conducted during the past two decades have demonstrated the presence of toxic concentrations of heavy metals in slag-based sandy sediments, including cadmium, copper, zinc, and lead in the UCR area as well as the downstream reservoir portion of Lake Roosevelt. We conducted standardized whole-sediment toxicity tests with the amphipod Hyalella azteca (28-day) and the midge Chironomus dilutus (10-day) on 11 samples, including both UCR and study-specific reference sediments. Metal concentrations in sediments were modeled for potential toxicity using three approaches: (1) probable effects quotients (PEQs) based on total recoverable metals (TRMs) and simultaneously extracted metals (SEMs); (2) SEMs corrected for acid-volatile sulfides (AVS; i.e., ∑SEM - AVS); and (3) ∑SEM - AVS normalized to the fractional organic carbon (f(oc)) (i.e., ∑SEM - AVS/f(oc)). The most highly metal-contaminated sample (∑PEQ(TRM) = 132; ∑PEQ(SEM) = 54; ∑SEM - AVS = 323; and ∑SEM - AVS/(foc) = 64,600 umol/g) from the UCR was dominated by weathered slag sediment particles and resulted in 80% mortality and 94% decrease in biomass of amphipods; in addition, this sample significantly decreased growth of midge by 10%. The traditional ∑AVS - SEM, uncorrected for organic carbon, was the most accurate approach for estimating the effects of metals in the UCR. Treatment of the toxic slag sediment with 20% Resinex SIR-300 metal-chelating resin significantly decreased the toxicity of the sample. Samples ∑SEM - AVS > 244 was not toxic to amphipods or midge in laboratory testing, indicating that this value may be an approximate threshold for effects in the UCR. In situ benthic invertebrate

  18. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    Science.gov (United States)

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-01-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for six weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, to estimate the sediment?s toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets but none of 22 organochlorine compounds included in the analyses were detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies, but these elements did not accumulate in the livers of the treated swans and probably were not readily available in the sediment. Although ingestion of the Anacostia River sediment caused subtle toxicological effects in swans, we concluded from pathological examinations and weight data that the treated swans remained basically healthy.

  19. SEDIMENT CHEMICAL CONTAMINATION AND TOXICITY ASSOCIATED WITH A COASTAL GOLF COURSE COMPLEX.

    Science.gov (United States)

    The increasing density of golf courses represents a potential source of sediment contamination to nearby coastal areas, the chemical and biological magnitude of which is almost unknown. The objective of this study was to determine the concentrations of contaminants and toxicities...

  20. Metal toxicity in a sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates?

    International Nuclear Information System (INIS)

    Carmen Casado-Martinez, M.; Smith, Brian D.; Luoma, Samuel N.; Rainbow, Philip S.

    2010-01-01

    We followed the net accumulation of As, Cu and Zn in the deposit-feeding polychaete Arenicola marina exposed in the laboratory to natural metal-contaminated sediments, one exposure leading to mass mortality between day 10 and 20, and the other not causing lethality over a period of 60 days of exposure. The worms showed lower total accumulated metal concentrations just before mortality occurred (<20 days) at the lethal exposure, than after 30 days of exposure to sediments not causing mortality. Moreover rates of accumulation of As, Cu and Zn were significantly higher in the lethal exposure than in the sublethal exposure. Our results show that it is not possible to link mortality to a critical total body concentration, and we add to a growing body of literature indicating that metal toxicity occurs when organisms cannot cope with overwhelming influx and subsequent accumulation rates. - Laboratory exposures with the deposit-feeding polychaete Arenicola marina suggest that toxicity is not caused by the accumulated concentration of toxic metals in the body of the animal, but by the rate at which the toxic metal is accumulated.

  1. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    Science.gov (United States)

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  2. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    Science.gov (United States)

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  3. Assessment of heavy metals pollution using AVS-SEM and fractionation techniques in Edku Lagoon sediments, Mediterranean Sea, Egypt.

    Science.gov (United States)

    El Zokm, Gehan M; Okbah, Mohamed A; Younis, Alaa M

    2015-01-01

    A method is presented to evaluate the fractionation of metals (Fe, Zn, Cu, Pb, Cd and Ni), acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) in Edku lagoon sediments. Thirteen sediment samples were collected from the study area in the period of 2010-2011 to assess the potential bioavailability and toxicity of the selected metals. According to classification of the Interim Sediment Quality Quidelines (ISQG), five stations near the drains exhibited 10% toxic probability. The high AVS and low ∑SEM ranges in Summer were identified as 6-138 and 0.86-3.3 µmol g(-1) dry wet, respectively which are referring to the low mobility of heavy metals in this season and vice versa for winter (2.5-23.9 and 1.16-3.82 µmol g(-1) dry wet, respectively). According to the evaluation of USEPA, all sediment samples showed ∑SEM/AVS heavy metals in Edku lagoon sediments posed a low risk of adverse biological effects due to cadmium, copper, lead, nickel and zinc in all evaluated stations.

  4. Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry

    International Nuclear Information System (INIS)

    Bosch, Carme; Olivares, Alba; Faria, Melissa; Navas, Jose M.; Olmo, Ivan del; Grimalt, Joan O.; Pina, Benjamin; Barata, Carlos

    2009-01-01

    A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.

  5. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system (MON 0818) in aquatic microcosms

    Science.gov (United States)

    Wang, N.; Besser, J.M.; Buckler, D.R.; Honegger, J.L.; Ingersoll, C.G.; Johnson, B. Thomas; Kurtzweil, M.L.; MacGregor, J.; McKee, M.J.

    2005-01-01

    The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water–sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l−1 nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43–83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23–97%) was only observed in overlying water sampled from water–sediment microcosms during the first 24 h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4–6 mg l−1) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.

  6. Biological and chemical characterization of harbour sediments from the Stockholm area

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, Britta; Elfstroem, Maria; Bengtsson, Bengt-Erik; Breitholtz, Magnus [Dept. of Applied Environmental Science (ITM), Stockholm Univ. (Sweden); Gallego, Irene [Granada Univ. (Spain)

    2010-01-15

    Purpose: The main objective of the current study was to assess the impact of pleasure boat activities on harbour sediment quality in the Stockholm area. Sediment contamination is a growing ecological issue, and there is consequently a need to use sediment bioassays in combination with chemical analysis to determine the impact on the ecosystem. To generate sediment toxicity data relevant for the Baltic Sea, a secondary objective was to further develop and evaluate two well-established bioassays for saltwater, with the macroalga Ceramium tenuicorne and the crustacean Nitocra spinipes, to be useful also for toxicity testing of whole sediment. A major concern has been to minimize any manipulation of the sediments. A third objective was to assess whether a simple leaching procedure could be used to simulate sediment toxicity by comparing results from whole sediment and leachate tests. Materials and methods: Surface sediments (0-2 cm) from five different types of pleasure boat harbours were collected. Chemical measurements of boat related compounds, i.e. tin organic substances (tributyltin (TBT), dibutyl tin, and monobutyl tin), polyaromatic hydrocarbons (PAHs), copper, zinc, lead, tin and irgarol were conducted. The sediments were tested for toxic effects using the established Microtox {sup registered} test as well as the developed sediment tests with C. tenuicorne and N. spinipes. The endpoints are growth inhibition for the algal test and for the crustacean test mortality of larvae and rate of development expressed as the ratio between nauplia and copepodites. Two different procedures have been compared with both organisms, i.e. exposure to whole sediment and to leachate. The duration of both tests is around 1 week. Results and discussion: All harbour locations were more or less heavily contaminated with remnants from use of antifouling paints. The sediment in a smaller marina (ca. 250 boats) contained the highest levels of TBT (max 1,400 {mu}g/kg dry weight (dw

  7. Use of toxicity assessment to develop site specific remediation criteria for oil and gas facilities : guidance manual

    International Nuclear Information System (INIS)

    1996-01-01

    The results of a two year study into the evaluation of toxicity-based methods to develop site-specific, risk-based cleanup objectives for the decommissioning of oil and gas facilities were compiled into a manual of guidance. The two basic approaches used in determining remediation criteria for contaminated sites are: (1) comparison of the concentrations of chemicals found on-site with broad regional or national soil and water quality objectives developed for the chemicals involved, and (2) site-specific risk assessment. Toxicity tests are used to test organisms such as earthworms, lettuce seeds, or larval fish directly in the soil, water or sediment suspected of being contaminated. The effects of any contamination on the survival, growth, reproduction, and behaviour of the test organisms are then evaluated. The manual provides guidance in: (1) using toxicity assessments within the regulatory framework of site decommissioning, (2) performing a toxicity assessment, and (3) developing site-specific criteria for a risk assessment. 18 refs., 3 tabs., 5 figs

  8. Application of a new sediment contact test with Myriophyllum aquaticum and of the Aquatic Lemna test to assess the sediment quality of Lake Skadar

    Energy Technology Data Exchange (ETDEWEB)

    Stesevic, D.; Sundic, D.; Mijovic, S. [Montenegro Univ., Podgorica (ME). Faculty of Sciences; Feiler, U.; Heininger, P. [Federal Institute of Hydrology, Koblenz (Germany); Erdinger, L. [Heidelberg Univ. (Germany). Inst. of Hygiene; Seiler, T.B.; Hollert, H. [Heidelberg Univ. (Germany). Dept. of Zoology; RWTH Aachen (Germany). Inst. fuer Umweltforschung - Biologie V

    2007-10-15

    Goal, Scope and Background: Situated in the transboundary belt between Montenegro and Albania, the Lake Skadar is the largest freshwater reservoir in Southeastern Europe. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Skadar and its extensive adjacent wetlands are internationally recognised as a site of significance and importance (Ramsar site). Within the last 10 to 20 years, Lake Skadar was exposed to intensive pollution. For the assessment of the ecotoxic load of the sediments sampled in Lake Skadar, a triad approach was recently applied. Overall, a complex spectrum of ecotoxic loads was elucidated. The aim of the present study was to use plant-based bioassays for assessing the sediment quality of Lake Skadar in order to facilitate and complement the triad test battery. The newly developed sediment contact test with Myriophyllum aquaticum and the aquatic growth inhibition test with Lemna minor were applied to native sediments and pore water, respectively, allowing the investigation of different toxicity-effects caused by particle-bound pollutants as well as pollutants in the interstitial water. This investigation is the first application of the novel sediment contact test with Myriophyllum aquaticum to lake sediments. Materials and Methods: Sediment samples were taken from nine selected sites at Lake Skadar and investigated by the sediment contact assay with Myriophyllum aquaticum. The pore water was extracted from these sediment samples to be analysed in the aquatic growth inhibition test with Lemna minor. The results of the sediment contact tests were compared with each other and with those of the aquatic growth inhibition test. Results and Discussion: Both applied macrophyte biotests revealed distinct changes in the growth behaviour of the two macrophytes subsequent to the exposure to the investigated natural sediments of Lake Skadar. The Myriophyllum sediment contact test revealed significant toxicity in

  9. Extraction, identification and quantification of heavy metals in Venice lagoon sediments using toxicity tests with microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Passarini, F.; Rampazzo, G.; Volpi Ghirardini, A.; Sperni, L.; Salizzato, M.; Pavoni, B. [Venice Univ., Venice (Italy). Dipt. di Scienze Ambientali

    2000-02-01

    Sediments are the major sink for metal pollutants in the aquatic ecosystem but also an important source for the release of them in the water. In order to assess the contribution of heavy metals to the total sediment toxicity, a methodology that permits to integrate the chemical approach with a direct toxicological approach has been ste up. Toxicological results using Microtox test are compared with analytical results. [Italian] I sedimenti sono il principale deposito per contaminanti metalli nel''ecosistema acquatico, ma anche una fonte importnate di rilascio nell'acqua. Al fine di valutare il contributo dei metalli pesanti alla tossicita' totale del sedimento, e' stata messa a punto una metodologia che permette di integrare l'appoccio chimico con un approccio tossicologico diretto. I risultati dei test di tossicita' Microtox vengono confrontati con i risultati analitici.

  10. Field validation of a battery of biomarkers to assess sediment quality in Spanish ports

    International Nuclear Information System (INIS)

    Martin-Diaz, M.L.; Blasco, J.; Sales, D.; DelValls, T.A.

    2008-01-01

    Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR. - A battery of biomarkers shows exposure to metals and organic compounds

  11. Field validation of a battery of biomarkers to assess sediment quality in Spanish ports

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Diaz, M.L. [Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Consejo Superior de Investigaciones Cientificas, Instituto de Ciencias Marinas de Andalucia, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain)], E-mail: laura.martin@uca.es; Blasco, J. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencias Marinas de Andalucia, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Departamento Ciencias Ambientales y Tecnologia de los Alimentos, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain); DelValls, T.A. [Departamento de Quimica Fisica, Facultad de Ciencias del Mar y Ambientales, Poligono Rio San Pedro s/n, 11510 Puerto Real, Cadiz (Spain)

    2008-02-15

    Two marine invertebrates, the crab Carcinus maenas and the clam Ruditapes philippinarum, were used as bioindicator species to assess contamination when exposed in situ to sediment from different sites from four Spanish ports Cadiz (SW Spain), Huelva (SW Spain), Bilbao (NE Spain) and Pasajes (NE Spain). In an attempt to determine sediments toxicity, a combination of exposure biomarkers was analyzed in both species: metallothionein-like-proteins (MTLPs), ethoxyresorufin O-deethylase (EROD), glutathione S-transferase activity (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). In parallel, physical and chemical characterization of the different sediments was performed and biological responses related to the contaminants. Significant induction of MTLPs was observed when organisms were exposed to metal contaminated sediments (port of Huelva), and EROD and GPX activities after exposure to sediments containing organic compounds (port of Bilbao and Pasajes). No significant interspecies differences were observed in biomarker responses except for the GST and GR. - A battery of biomarkers shows exposure to metals and organic compounds.

  12. Levels of potentially toxic metals in water, sediment and peat from Wonderfonteinspruit, North West Province, South Africa.

    Science.gov (United States)

    Nsaka, Ntumba C; McCrindle, Robert I; Ambushe, Abayneh A

    2018-04-30

    Environmental monitoring of the levels of potentially toxic metals is of importance because of possible adverse effects on living species. This study was conducted to assess the levels of Cd, Cr, Cu, Hg, Mn, Pb, U and V in water, sediment and peat samples collected from the region of Wonderfonteinspruit. Water samples were simply filtered and acidified with HNO 3 prior to analysis. Sediment and peat were oven-dried, ground, sieved and mineralised using a microwave digestion system. Concentrations of the selected elements in all samples were determined by inductively coupled plasma-mass spectrometry. A Zeeman mercury analyser was also used for quantification of Hg in the same sediment and peat samples. The method validation was carried out using SRM 1643e water and BCR 320R sediment certified reference materials. The results showed no significant difference at 95% level of confidence between the certified and measured values after using the Student's t-test. The levels of Cd, Cr, Cu, Pb, V and U found in rivers and dams were lower than the tentative South African water quality range guideline for domestic and irrigation purposes. However, water from dams and certain rivers was unsuitable for irrigation and domestic use.

  13. An Exploratory Analysis of Stream Teratogenicity and Human Health Using Zebrafish Whole-Sediment Toxicity Test

    Directory of Open Access Journals (Sweden)

    Matthew Dellinger

    2014-02-01

    Full Text Available This study demonstrates a novel application of effect-based toxicity testing for streams that may provide indications of co-perturbation to ecological and human health. For this study, a sediment contact assay using zebrafish (Danio rerio embryos was adapted to serve as an indicator of teratogenic stress within river sediments. Sediment samples were collected from Lake Michigan tributary watersheds. Sediment contact assay responses were then compared to prevalence of congenital heart disease (CHD and vital statistic birth indicators aggregated from civil divisions associated with the watersheds. Significant risk relationships were detected between variation in early life-stage (ELS endpoints of zebrafish embryos 72 h post-fertilization and the birth prevalence of human congenital heart disease, low birthweight and infant mortality. Examination of principal components of ELS endpoints suggests that variance related to embryo heart and circulatory malformations is most closely associated with human CHD prevalence. Though toxicity assays are sometimes used prospectively, this form of investigation can only be conducted retrospectively. These results support the hypothesis that bioassays normally used for ecological screening can be useful as indicators of environmental stress to humans and expand our understanding of environmental–human health linkages.

  14. Spatiotemporal trend analysis of metal concentrations in sediments of a residential California stream with toxicity and regulatory implications.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D; Killen, William D

    2017-06-07

    The objective of this study was to determine if concentrations of arsenic, cadmium, chromium, copper, lead, nickel and zinc measured in the sediments of a residential stream in California (Pleasant Grove Creek) have changed temporally or spatially from 2006 to 2016. Threshold Effect Levels (TELs), conservative ecological effects benchmarks, and exceedances for the seven metals were also evaluated over the 11-year time period to provide insight into potential metal toxicity to resident benthic communities. In addition, the bioavailability of metals in sediments was also determined by calculating Simultaneous Extracted Metal/Acid Volatle Sulfide (SEM/AVS) ratios to allow an additional assessment of toxicity. Regulatory implications of this data set and the role of metal toxicity are also discussed. Stream-wide temporal trend analysis showed no statistically significant trends for any of the metals. However, spatial analysis for several sites located near storm drains did show a significant increase for most metals over the 11-year period. TEL exceedances during the 7 years of sampling, spanning 2006-2016, were reported for all metals with the number of exceedances ranging from 47 for copper and zinc to 1 for lead. A spatial analysis showed that the highest number of TEL exceedances and the highest number of SEM/AVS ratios greater than one with at least one metal exceeding a TEL occurred at upstream sites. The potentially toxic metal concentrations reported in Pleasant Grove Creek should be used in the 303 (d) listing process for impaired water bodies in California.

  15. National Air Toxic Assessments (NATA) Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Air Toxics Assessment was conducted by EPA in 2002 to assess air toxics emissions in order to identify and prioritize air toxics, emission source types...

  16. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Adriana C., E-mail: ABejarano@researchplanning.co [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States); Michel, Jacqueline [Research Planning Inc., 1121 Park St., Columbia, SC 29201 (United States)

    2010-05-15

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU{sub FCV,43}). Samples were assigned to risk categories according to ESBTU{sub FCV,43} values: no-risk (<=1), low (>1-<=2), low-medium (>2-<=3), medium (>3-<=5) and high-risk (>5). Sixty seven percent of samples had ESBTU{sub FCV,43} > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  17. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: Environmental legacy after twelve years of the Gulf war oil spill

    International Nuclear Information System (INIS)

    Bejarano, Adriana C.; Michel, Jacqueline

    2010-01-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU FCV,43 ). Samples were assigned to risk categories according to ESBTU FCV,43 values: no-risk (≤1), low (>1-≤2), low-medium (>2-≤3), medium (>3-≤5) and high-risk (>5). Sixty seven percent of samples had ESBTU FCV,43 > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30-<60 cm layer from heavily oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. - Risk Assessment of PAHs in shoreline sediments 12 years after the Gulf War oil spill.

  18. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment

    International Nuclear Information System (INIS)

    Libralato, Giovanni; Losso, Chiara; Arizzi Novelli, Alessandra; Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele; Cepak, Franka; Volpi Ghirardini, Annamaria

    2008-01-01

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater. - A sediment washing technique was assessed for port contaminated sediment remediation and reuse, indicating its reduced efficiency and the need for further improvements

  19. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment

    Energy Technology Data Exchange (ETDEWEB)

    Libralato, Giovanni [Environmental Sciences Department, Venice University Ca Foscari, Campo della Celestia 2737/b, I-30122 Venice (Italy)], E-mail: giovanni.libralato@unive.it; Losso, Chiara; Arizzi Novelli, Alessandra [Environmental Sciences Department, Venice University Ca Foscari, Campo della Celestia 2737/b, I-30122 Venice (Italy); Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele [Environmental Department, Venice Port Authority, Zattere 1401, I-30123, Venice (Italy); Cepak, Franka [Institute of Public Health, Vojkovo nabrezje 4a, 6000 Koper (Slovenia); Volpi Ghirardini, Annamaria [Environmental Sciences Department, Venice University Ca Foscari, Campo della Celestia 2737/b, I-30122 Venice (Italy)

    2008-12-15

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater. - A sediment washing technique was assessed for port contaminated sediment remediation and reuse, indicating its reduced efficiency and the need for further improvements.

  20. Ecotoxicological assessment of the pharmaceutical compound Triclosan to freshwater invertebrates with emphasis to spiked sediment tests

    International Nuclear Information System (INIS)

    Pusceddu, Fabio Hermes

    2009-01-01

    The increasing of Pharmaceutical and Personal Care Products (PPCPs) occurrence in the aquatic environment cause adverse effects on the human health and aquatic communities. The environmental risk of the PPCPs associated with the possibility of synergic effects between PCPPs and the increase of the use of synthetic organic compounds, unchained a great concern on the toxic potential to biota aquatic. Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is a pharmaceutical compound widely used due your antibacterial mechanism effect, found in at least 932 products such as shampoos, toilet soaps, deodorants, lotions, toothpaste, detergents, socks and underwear, among others. Currently, studies about the Triclosan toxicity in the water and, mainly in the sediment, are poorly. We have the knowledge that the photodegradation of this product results into dichlorodibenzo-p-dioxin, and now it has great discussion on environmental agencies, like EPA, about the release or restriction of this product. The aim of this work is to assess the effects of Triclosan on mortality of insect larvae Chironomus xanthus and mortality and reproduction inhibition of microcrustacea Ceriodaphnia dubia exposed to Triclosan spiked sediments based on standard methods EPA and OECD. The EC50;96H obtained on acute toxicity tests with C. xanthus was 45,26 mg.Kg -1 . The chronic toxicity tests with C. dubia using spiked sediments were performed following the procedure in Burton and MacPherson (1995). A no-observed-effect concentrations and lowest-observed-effect concentration were 5,78 e 6,94 mg.Kg -1 , respectively. (author)

  1. Ecotoxicological Assessment of Sediment Leachates of Small Watercourses in the Brno City Suburban Area (South Moravia, Czech Republic

    Directory of Open Access Journals (Sweden)

    Miroslava Beklová

    2010-01-01

    Full Text Available Sediments of two small watercourses Leskava and Troubsky Brook in the Brno city suburban area were examined for their ecotoxicity. Using a standard procedure, extracts of the sediments were prepared for diagnostic tests. These extracts were tested for acute toxicity to fresh-water organisms. The ecotoxicological tests were performed on the fresh-water alga Pseudokirchneriella subcapitata, the vascular water plant Lemna minor, on a representative of invertebrates – the water flea Daphnia magna and on the Xenopus laevis frog embryo and luminiscent Vibrio fischeri bacteria. Possible toxic effects were evaluated using the test determining the inhibition of the growth of white mustard root Sinapis alba. Results of ecotoxicological assessment of sediment leachates showed that their quality varied significantly during the year. Differences were found between results of sediment evaluations from different collection profiles, which may indicate effects of point source pollution. Of the ecotoxicological tests used, the most sensitive organisms included the green algae Pseudokirchneriella subcapitata, bioluminiscent bacteria Vibrio fischeri and the African clawed frog Xenopus laevis. The highest concentrations of arsenic were found by chemical analysis in both spring and autumn sediment leachate samples collected at Site L1 (Leskava. The highest organic pollutant concentrations were found in autumn sediment leachate samples from Site L1. In total PAH sums, phenanthrene was the dominant pollutant at all the sites investigated.

  2. Evaluation and selection of test methods for assessment of contaminated sediments in the Baltic Sea

    DEFF Research Database (Denmark)

    Lehtonen, Kari; Ahvo, Aino; Berezina, Nadya

    The purpose of the CONTEST project (2014-15) is to test, develop, evaluate and select suitable biological methods to be applied in the quantitative and qualitative assessment of toxicity of anthropogenically contaminated sediments in the Baltic Sea marine region. Here is presented results from...... showed large variability in the sensitivity of the different biotests. Most of the tests applied showed concentration-dependent effects on the test organisms. New experiments will be carried out in 2015. The CONTEST project is funded by the Nordic Council of Ministers and the Finnish Ministry...... a set of pilot experiments, which were performed by the participating laboratories. Chemical analysis of the contaminated harbour sediment chosen as the test matrix confirmed the presence of high concentrations of polycyclic aromatic hydrocarbons, organotins and trace metals, and the sediment...

  3. USE OF ULVA LACTUCA TO DISTINGUISH PH DEPENDENT TOXICANTS IN MARINE WATERS AND SEDIMENTS

    Science.gov (United States)

    Ulva lactuca (sea lettuce) is a cosmopolitan marine attached green seaweed capable of sequestering high environmental levels of ammonia. Ammonia can be acutely toxic to marine organisms and is often found in dredged sediments from highly industrial areas or from areas with high c...

  4. Integrative assessment of coastal pollution: Development and evaluation of sediment quality criteria from chemical contamination and ecotoxicological data

    Science.gov (United States)

    Bellas, Juan; Nieto, Óscar; Beiras, Ricardo

    2011-04-01

    Elutriate embryo-larval bioassays with sea-urchins ( Paracentrotus lividus) were conducted concurrently with chemical analyses of sediments and biota as part of an integrative assessment of pollution in highly productive coastal regions. High metal contents and organic compounds in sediments and mussels were found in localised areas from the inner part of the estuaries indicating a clear anthropogenic influence. In particular, average maximum concentrations of 2803 mg Cu/kg dw, 776 mg Pb/kg dw, 2.5 mg Hg/kg dw and 5803 μg ∑ 7PAHs/kg dw were measured in sediments from the most polluted sites. Significant correlations were observed between sediment chemistry and toxicity bioassays. Moreover, the Mantel test revealed a significant correlation ( rM=0.80; pbioassays identified polluted sites and quantified the level of toxicity, providing a cost-effective tool to complement the routine chemical monitoring currently conducted in European coastal waters with ecologically relevant information. This is in line with the recent European legislation that advocates the use of biological tools with the ultimate aim of protecting marine resources from anthropogenic substances that will affect their sensitive early life stages.

  5. Assessing Photoinduced Toxicity of Polycyclic Aromatic Hydrocarbons in an Urbanized Estuary

    Directory of Open Access Journals (Sweden)

    M. Vo

    2004-12-01

    Full Text Available Increases in contaminants associated with urban sprawl are a particular concern in the rapidly developing coastal areas of the southeastern United States. Polycyclic aromatic hydrocarbons (PAHs are contaminants associated with vehicle emissions and runoff from impervious surfaces. Increased vehicular traffic and more impervious surfaces lead to an increased loading of PAHs into coastal estuarine systems. The phototoxic effect of PAH-contaminated sediments on a sediment-dwelling meiobenthic copepod, Amphiascus tenuiremis, was estimated in Murrells Inlet, a small, high-salinity estuary with moderate urbanization located in Georgetown and Horry Counties, South Carolina, USA. Field-determined solar ultraviolet radiation (UV and UV extinction coefficients were incorporated into laboratory toxicity experiments, and a model was developed to predict areas of specific hazard to A. tenuiremis in the estuary. The model incorporated laboratory toxicity data, UV extinction coefficients, and historical sediment chemistry and bathymetric data within a spatial model of sedimentary areas of the estuary. The model predicted that approximately 8-16% of the total creek habitat suitable for meiobenthic copepods is at risk to photoinduced PAH toxicity. This area is in the northern, more developed part of Murrells Inlet.

  6. Towards more ecological relevance in sediment toxicity testing with fish: Evaluation of multiple bioassays with embryos of the benthic weatherfish (Misgurnus fossilis).

    Science.gov (United States)

    Schreiber, Benjamin; Fischer, Jonas; Schiwy, Sabrina; Hollert, Henner; Schulz, Ralf

    2018-04-01

    The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish (Misgurnus fossilis) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish (Danio rerio) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96h-LC 50 ) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare

  7. Vertical distribution, composition profiles, sources and toxicity assessment of PAH residues in the reclaimed mudflat sediments from the adjacent Thane Creek of Mumbai.

    Science.gov (United States)

    Basavaiah, N; Mohite, R D; Singare, P U; Reddy, A V R; Singhal, R K; Blaha, U

    2017-05-15

    A study on vertical distribution of magnetic susceptibility, carcinogenic and endocrine disrupting PAHs was performed in the reclaimed mudflat sediments adjacent to the Thane Creek of Mumbai. The 5-rings PAHs and ΣC-PAHs were more dominant at 120cm depth contributing 52.23% and 60.19% respectively to ∑PAHs. The average ratio values of LMW/HMW PAHs (0.58); Fla/(Fla+Pyr) (0.50); Ant/(Ant+Phe) (0.50); BaA/(Chry+BaA) (0.48); BaP/BghiP (2.06), Phe/Ant (1.03) and BaA/Chr (0.93) indicate that the PAH contamination might have raised due to inefficient combustion and pyrogenic emissions during the open burning of solid waste in the vicinity. This was further supported by the anthropogenic ferri(o)magnetic loading over the last 100years influencing the Creek sediments. The PAHs toxicity estimation was performed by calculating the toxic equivalent quantity (TEQ) value of 8.62ng TEQ/g which was below the safe level (600ng TEQ/g) suggested by the Canadian risk-based soil criterion for protection of human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ecotoxicological assessment of sediments from Tiete river between Salesopolis and Suzano, SP (Brazil); Avaliacao ecotoxicologica de sedimentos do rio Tiete, entre os municipios de Salesopolis e Suzano, SP

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, Gabriel Fonseca

    2009-07-01

    Once introduced into the aquatic environment, many substances can bind or be adsorbed by organic particles in suspension. Depending on the river morphology and hydrological conditions, these particles in suspension containing the contaminants can be deposited along its course, becoming part of the bottom sediments, making them actual sinks and often a source of contamination for the water column and benthic organisms. In the assessment of water, sediment has been one of the most important indicators of the contamination levels in aquatic ecosystems, representing the deposition of contaminants in the environment that occurred over the years and even decades. The Tiete River cross the Sao Paulo state, however, in the metropolitan region of Sao Paulo, the river shows the most severe degradation. In the region of Salesopolis, the waters of the Tiete River are used for public supply, but across the city of Mogi das Cruzes the water quality decreases significantly. Considering the importance of the Tiete river and the sediment for the aquatic biota, this study aimed to evaluate the toxicity of the sediment at five points along the Tiete river, between the cities of Salesopolis and Suzano, Sao Paulo. Four sampling were carried out: two in the summer (rainy season) and two in winter (dry season). The whole sediment was assessed by acute and chronic toxicity tests with Hyalella azteca and Ceriodaphnia dubia, respectively, the elutriate was assessed by chronic toxicity test using C. dubia, while the porewater was evaluated by acute toxicity test with Vibrio fischeri. Samples of river water were also evaluated for chronic toxicity tests with C. dubia. The quantification of metals and hydrocarbons in sediment samples was also carried out in order to correlate the biological effects with the chemical contamination. The obtained results with the whole sediment test indicate Mogi das Cruzes and Suzano cities as the most toxic sites and also as the sites with the highest

  9. Ecotoxicological evaluation of sediments applied to environmental forensic investigation

    Directory of Open Access Journals (Sweden)

    R. H. Alves

    Full Text Available Abstract The present study aimed to evaluate the potential for using toxicity assays with sediment samples for the detection of water pollution caused by the discharge of tannery effluents into water bodies and its application to environmental forensic investigation. The study included ecotoxicological evaluation of sediments, survey of benthic organisms in the field, as well as chromium, cadmium and lead dosage which provided data for a sediment quality triad evaluation. The sediment samples showed acute and chronic toxicity to the bioindicators, low biodiversity of benthic macrofauna and high chromium concentration, reaching up to 4365 mg.Kg–1. A close relationship was observed between the separate results of ecotoxicological sediment evaluation and the sediment quality triad. The sediment ecotoxicological assessment proved to be applicable to tracking sources of contamination related to tanneries and similar activities in environmental forensics.

  10. Larval development ratio test with the calanoid copepod Acartia tonsa as a new bioassay to assess marine sediment quality.

    Science.gov (United States)

    Buttino, Isabella; Vitiello, Valentina; Macchia, Simona; Scuderi, Alice; Pellegrini, David

    2018-03-01

    The copepod Acartia tonsa was used as a model species to assess marine sediment quality. Acute and chronic bioassays, such as larval development ratio (LDR) and different end-points were evaluated. As a pelagic species, A. tonsa is mainly exposed to water-soluble toxicants and bioassays are commonly performed in seawater. However, an interaction among A. tonsa eggs and the first larval stages with marine sediments might occur in shallow water environments. Here we tested two different LDR protocols by incubating A. tonsa eggs in elutriates and sediments coming from two areas located in Tuscany Region (Central Italy): Livorno harbour and Viareggio coast. The end-points analyzed were larval mortality (LM) and development inhibition (DI) expressed as the percentage of copepods that completed the metamorphosis from nauplius to copepodite. Aims of this study were: i) to verify the suitability of A. tonsa copepod for the bioassay with sediment and ii) to compare the sensitivity of A. tonsa exposed to different matrices, such as water and sediment. A preliminary acute test was also performed. Acute tests showed the highest toxicity of Livorno's samples (two out of three) compared to Viareggio samples, for which no effect was observed. On the contrary, LDR tests with sediments and elutriates revealed some toxic effects also for Viareggio's samples. Results were discussed with regards to the chemical characterization of the samples. Our results indicated that different end-points were affected in A. tonsa, depending on the matrices to which the copepods were exposed and on the test used. Bioassays with elutriates and sediments are suggested and LDR test could help decision-makers to identify a more appropriate management of dredging materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Toxicity of smelter slag-contaminated sediments from Upper Lake Roosevelt and associated metals to early life stage White Sturgeon (Acipenser transmontanus Richardson, 1836)

    Science.gov (United States)

    Little, E.E.; Calfee, R.D.; Linder, G.

    2014-01-01

    The toxicity of five smelter slag-contaminated sediments from the upper Columbia River and metals associated with those slags (cadmium, copper, zinc) was evaluated in 96-h exposures of White Sturgeon (Acipenser transmontanus Richardson, 1836) at 8 and 30 days post-hatch. Leachates prepared from slag-contaminated sediments were evaluated for toxicity. Leachates yielded a maximum aqueous copper concentration of 11.8 μg L−1 observed in sediment collected at Dead Man's Eddy (DME), the sampling site nearest the smelter. All leachates were nonlethal to sturgeon that were 8 day post-hatch (dph), but leachates from three of the five sediments were toxic to fish that were 30 dph, suggesting that the latter life stage is highly vulnerable to metals exposure. Fish maintained consistent and prolonged contact with sediments and did not avoid contaminated sediments when provided a choice between contaminated and uncontaminated sediments. White Sturgeon also failed to avoid aqueous copper (1.5–20 μg L−1). In water-only 96-h exposures of 35 dph sturgeon with the three metals, similar toxicity was observed during exposure to water spiked with copper alone and in combination with cadmium and zinc. Cadmium ranging from 3.2 to 41 μg L−1 or zinc ranging from 21 to 275 μg L−1 was not lethal, but induced adverse behavioral changes including a loss of equilibrium. These results suggest that metals associated with smelter slags may pose an increased exposure risk to early life stage sturgeon if fish occupy areas contaminated by slags.

  12. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    Science.gov (United States)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  13. Deposition behavior, risk assessment and source identification of heavy metals in reservoir sediments of Northeast China.

    Science.gov (United States)

    Zhu, Lin; Liu, Jianwei; Xu, Shiguo; Xie, Zaigang

    2017-08-01

    Sediment cores from five reservoirs, located in the Liaoning and Jilin Provinces in Northeast China, were collected to investigate the accumulation and potential toxicity of heavy metals (Fe, Mn, Cu, Cd, Pb, Zn, and Cr) during a sampling campaign in February, 2015. The results showed that all the detected metals accumulated significantly, especially Cd, compared to their respective background values. Among these reservoirs, Biliuhe Reservoir had markedly increasing trends for organic matter and all the metals, among which Mn was elevated by 280% to 3411mg/kg in a core of only 18cm in depth. Xinlicheng Reservoir was characterized by heavy siltation and varying metal distribution due to its regular geometric features and pulsed flood events. The Enrichment factor (EF) and geo-accumulation index (I geo ) indicated Cd was strongly enriched by anthropogenic inputs, with the values of EF and I geo greater than 8 and 3, respectively. The toxicity assessment calculated using consensus-based sediment quality guidelines (SQGs) implied the whole cores of Tanghe and Dahuofang and the upper cores of Biliuhe, Xinlicheng and Fengman exhibited toxicity to sediment-dwelling organisms. Cr contributed more to Q m-PEC than the other heavy metals, because only Cr exceeded the probable effect concentration (PEC) despite its low enrichment. According to the results of correlation analysis (CA) and principal components analysis (PCA), mining industries and agricultural activities within the basin were the main anthropogenic pollution sources for these heavy metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Integrative assessment of sediment quality in lower basin affected by former mining in Brazil.

    Science.gov (United States)

    Bonnail, Estefanía; Buruaem, Lucas M; Morais, Lucas G; Araujo, Giuliana S; Abessa, Denis M S; Sarmiento, Aguasanta M; Ángel DelValls, T

    2017-06-13

    The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.

  15. Integrated assessment of mangrove sediments in the Camamu Bay (Bahia, Brazil).

    Science.gov (United States)

    Paixão, Joana F; de Oliveira, Olívia M C; Dominguez, José M L; Almeida, Edna dos Santos; Carvalho, Gilson Correia; Magalhães, Wagner F

    2011-03-01

    Camamu Bay, an Environmentally Protected Area, may be affected by the pressures of tourism and oil exploration in the adjacent continental platform. The current quality of the mangrove sediments was evaluated by porewater bioassays using embryos of Crassostrea rhizophorae and by an analysis of benthic macrofauna and its relationships with organic compounds, trace metals and bioavailability. Porewater toxicity varied from low to moderate in the majority of the samples, and polychaetes dominated the benthos. The Grande Island sampling station (Station 1) presented more sandy sediments, differentiated macrobenthic assemblages and the highest metal concentrations in relation to other stations and guideline values, and it was the only station that indicated a possible bioavailability of metals. The origin of the metals (mainly barium) is most likely associated with the barite ore deposits located in the Grande and Pequena islands. These results may be useful for future assessment of the impact of oil exploration in the coastal region. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. UTMTOX, Toxic Chemical Transport in Atmosphere, Ground Water, Sediments

    International Nuclear Information System (INIS)

    1988-01-01

    A - Description of program or function: UTMTOX is a unified transport model for toxic materials. It combines hydrologic, atmospheric, and sediment transport in one computer code and extends the scope to predict the transport of not only trace metals but also many chemical compounds, including organics. UTMTOX is capable of calculating 1) the atmospheric dispersion of up to 20 chemicals from a maximum of 10 point, 10 line, and 10 area sources; 2) deposition of one chemical at a time in both wet and dry form on foliage or the surface of the earth; 3) surface flow and erosion; 4) percolation through the soil to a stream channel; and 5) flow in the stream channel to the outfall of a watershed. B - Method of solution: UTMTOX calculates rates of flux of chemicals from release to the atmosphere, through deposition on a watershed, infiltration, and runoff from the soil to flow in the stream channel and the associated sediment transport. From these values, mass balances can be established, budgets for the chemical can be made, and concentrations in many environmental compartments can be estimated. Since the coupling is established among three major submodels, they can share data

  17. Distribution and toxicity of current-use insecticides in sediment of a lake receiving waters from areas in transition to urbanization

    International Nuclear Information System (INIS)

    Wang Jizhong; Li Huizhen; You Jing

    2012-01-01

    Current-use insecticides including organophosphate (OPs) and synthetic pyrethroid (SPs) insecticides were analyzed in 35 sediment samples collected from Chaohu Lake in China, where a transition from a traditional agricultural to a modern urbanized society is ongoing. Total concentrations of five OPs and eight SPs ranged from 0.029 to 0.681 ng/g dry weight and 0.016–301 ng/g dry weight, respectively. Toxic unit analysis showed that 13% of the sediment samples likely produced over 50% of the mortality for benthic invertebrates. Analysis also showed that cypermethrin was the principal contributor to the toxicity. Spatial distribution evaluation implied that OPs were mainly from non-point sources associated with agricultural activities. Conversely, SPs may have been derived from runoff of inflowing rivers through urban regions, as their concentrations were well-correlated with concentrations of other urban-oriented contaminants. - Highlights: ► Though lower than urban sites, pyrethroid insecticides in Chaohu Lake, China may cause toxicity to benthic invertebrates. ► Concentrations of pyrethroids were well correlated with those of other urban-oriented contaminants, e.g. PAHs and LABs. ► Spatial distribution showed urban runoff was the major source of pyrethroids deposited in the lake sediment. ► Conversely, organophosphate insecticides were mainly associated with agricultural non-point sources. - Evaluation of the distribution, potential toxicity, and input sources of organophosphate and pyrethroid insecticides in sediment from Chaohu Lake, China.

  18. Ecotoxicological assessment of sediments from the Port of Santos and the disposal sites of dredged material

    Directory of Open Access Journals (Sweden)

    Eduinetty Ceci P. M. Sousa

    2007-06-01

    Full Text Available The dredging of sediments from the Santos Channel is necessary to allow the navigation of ships operating in the Port of Santos. The disposal sites for such sediments are situated on the coastal zone, in front of the Santos Bay. The present paper aimed at evaluating the toxicity of sediments collected at the Santos Channel and at the former and current sediment disposal sites. Whole sediment tests with amphipods and elutriate assays with sea-urchin embryos were used. The samples from the Santos Channel were considered the most toxic: all the sediment samples from this area showed toxicity. Moreover, some samples from both former and new sediment disposal sites exhibited toxicity. Therefore, results showed that sediments from the studied areas present evidences of degradation; however, further studies are required to determine relationships between toxicity and contamination. Results also suggested that the disposal of dredged sediments should be re-evaluated.A dragagem dos sedimentos do Canal de Santos é necessária para permitir o trânsito de navios que operam no Porto de Santos. As áreas de disposição do material dragado estão situadas na zona costeira, em frente à Baía de Santos. Este estudo visou avaliar a qualidade dos sedimentos do Canal de Santos e das áreas de disposição atuais e antigas, utilizando testes de toxicidade de sedimento integral com anfípodos e de toxicidade de elutriatos com embriões de ouriço do mar. As amostras do Canal de Santos foram consideradas as mais tóxicas: todas as amostras dessa área foram consideradas significativamente tóxicas. Além disso, algumas amostras das áreas de disposição exibiram toxicidade. Os resultados mostraram, portanto, que os sedimentos apresentam evidências de degradação em sua qualidade, porém novos estudos devem ser conduzidos visando determinar as relações entre contaminação e toxicidade. Os resultados sugerem ainda que a disposição dos sedimentos dragados

  19. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    Science.gov (United States)

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  20. Toxicity of sediments from Bahía de Chetumal, México, as assessed by hepatic EROD induction and histology in nile tilapia Oreochromis niloticus.

    Science.gov (United States)

    Zapata-Pérez, O; Simá-Alvarez, R; Noreña-Barroso, E; Güemes, J; Gold-Bouchot, G; Ortega, A; Albores-Medina, A

    2000-01-01

    The effect of environmental pollutants present in sediments obtained from Bahía de Chetumal, a bay on the border between Mexico and Belize, was studied in nile tilapia (Oreochromis niloticus) intraperitoneally injected with sediment extracts from six different sites of the Bay. Sediment samples used for the study contained a variety of organic chemicals such as organochlorine pesticides, polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs). Total cytochrome P-450 and EROD activity were measured in fish liver. Haematological and histological analyses were also carried out. Hepatic P-450 content in treated fish increased from 43 to 240%, and EROD activity from 85 to 160% compared to controls. Extracts from two sampling sites inhibited EROD activity. There were positive significant correlations between P-450 content and the levels of PCBs 44 and 128. EROD activity correlated to HCB, op'-DDE, pp'-DDE, pp'-DDD, mirex and PCB 18 concentrations. Blood examination showed cell degeneration and binucleated leukocytes with abnormal chromatin. Extract treatment also resulted in foci of hyperplasia on the basement of gill lamellae, hypertrophy and oedema in gills and liver necrosis. Control fish showed no abnormalities. The results demonstrate that sediments from Bahía of Chetumal have the potential to cause histopathological, haematological and biochemical alterations in fish. The administration of sediment extracts to fish may serve as a useful test to screen the toxicity of sediments from different areas.

  1. Ecotoxicological evaluation of industrial port of Venice (Italy) sediment samples after a decontamination treatment.

    Science.gov (United States)

    Libralato, Giovanni; Losso, Chiara; Arizzi Novelli, Alessandra; Citron, Marta; Della Sala, Stefano; Zanotto, Emanuele; Cepak, Franka; Volpi Ghirardini, Annamaria

    2008-12-01

    This work assesses the ecotoxicological effects of polluted sediment after a decontamination treatment process using a new sediment washing technique. Sediment samples were collected from four sites in Marghera Port industrial channels (Venice, Italy). Ecotoxicological evaluations were performed with Vibrio fischeri and Crassostrea gigas bioassays. Whole sediment and elutriate were deemed as the most suitable environmental matrices for this study. Toxicity scores developed in the Lagoon of Venice for V. fischeri on whole sediment and for C. gigas on elutriate were considered for the final ranking of samples. Ecotoxicological results showed that the treated sediment samples presented both acute and sub-chronic toxicities, which were mainly attributed to the presence of some remaining chemicals such as metals and polyaromatic hydrocarbons. The acute toxicity ranged from low to medium, while the sub-chronic one from absent to very high, suggesting that treated sediments could not be reused in direct contact with seawater.

  2. Environmental Risk Assessment Based on High-Resolution Spatial Maps of Potentially Toxic Elements Sampled on Stream Sediments of Santiago, Cape Verde

    Directory of Open Access Journals (Sweden)

    Marina M. S. Cabral Pinto

    2014-10-01

    Full Text Available Geochemical mapping is the base knowledge to identify the regions of the planet with critical contents of potentially toxic elements from either natural or anthropogenic sources. Sediments, soils and waters are the vehicles which link the inorganic environment to life through the supply of essential macro and micro nutrients. The chemical composition of surface geological materials may cause metabolic changes which may favor the occurrence of endemic diseases in humans. In order to better understand the relationships between environmental geochemistry and public health, we present environmental risk maps of some harmful elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn in the stream sediments of Santiago, Cape Verde, identifying the potentially harmful areas in this island. The Estimated Background Values (EBV of Cd, Co, Cr, Ni and V were found to be above the Canadian guidelines for any type of use of stream sediments and also above the target values of the Dutch and United States guidelines. The Probably Effect Concentrations (PEC, above which harmful effects are likely in sediment dwelling organisms, were found for Cr and Ni. Some associations between the geological formations of the island and the composition of stream sediments were identified and confirmed by descriptive statistics and by Principal Component Analysis (PCA. The EBV spatial distribution of the metals and the results of PCA allowed us to establish relationships between the EBV maps and the geological formations. The first two PCA modes indicate that heavy metals in Santiago stream sediments are mainly originated from weathering of underlying bedrocks. The first metal association (Co, V, Cr, and Mn; first PCA mode consists of elements enriched in basic rocks and compatible elements. The second association of variables (Zn and Cd as opposed to Ni; second PCA mode appears to be strongly controlled by the composition of alkaline volcanic rocks and pyroclastic rocks. So, the

  3. Large-scale risk assessment of polycyclic aromatic hydrocarbons in shoreline sediments from Saudi Arabia: environmental legacy after twelve years of the Gulf war oil spill.

    Science.gov (United States)

    Bejarano, Adriana C; Michel, Jacqueline

    2010-05-01

    A large-scale assessment of polycyclic aromatic hydrocarbons (PAHs) from the 1991 Gulf War oil spill was performed for 2002-2003 sediment samples (n = 1679) collected from habitats along the shoreline of Saudi Arabia. Benthic sediment toxicity was characterized using the Equilibrium Partitioning Sediment Benchmark Toxic Unit approach for 43 PAHs (ESBTU(FCV,43)). Samples were assigned to risk categories according to ESBTU(FCV,43) values: no-risk (1 - 2 - 3 - 5). Sixty seven percent of samples had ESBTU(FCV,43) > 1 indicating potential adverse ecological effects. Sediments from the 0-30 cm layer from tidal flats, and the >30 - oiled halophytes and mangroves had high frequency of high-risk samples. No-risk samples were characterized by chrysene enrichment and depletion of lighter molecular weight PAHs, while high-risk samples showed little oil weathering and PAH patterns similar to 1993 samples. North of Safaniya sediments were not likely to pose adverse ecological effects contrary to sediments south of Tanaqib. Landscape and geomorphology has played a role on the distribution and persistence in sediments of oil from the Gulf War. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Sediment toxicity data from stations in U.S. coastal waters from 19910318 to 19930303 (NCEI Accession 9400004)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The accession contains Sediment Toxicity data collected from Gulf of Mexico, Hudson Bay, New York Bight, North American Coastline-North, and Pamlico Sound as part of...

  5. National Status and Trends: Bioeffects Program - Magnitude and Extent of Sediment Toxicity in the Hudson-Raritan Estuary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A survey of the toxicity of sediments was performed by NOAA's National Status and Trends (NSandT) Program throughout the Hudson-Raritan Estuary. The objectives of...

  6. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method

    Directory of Open Access Journals (Sweden)

    Aifeng Qiu

    2016-12-01

    Full Text Available Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri, zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD, ammonium nitrogen (NH4+-N, and total nitrogen (TN were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri. The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH4+-N, and acute bio-toxicity of landfill leachate.

  7. Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method.

    Science.gov (United States)

    Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian

    2016-12-21

    Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri , zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH₄⁺-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri . The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH₄⁺-N, and acute bio-toxicity of landfill leachate.

  8. Management of Bottom Sediments Containing Toxic Substances: Proceedings of the U.S./Japan Experts Meeting (11th) Held in Seattle, Washington, on 4-6 November 1985.

    Science.gov (United States)

    1987-04-01

    potential environmental impact of organotins and their effect on the dredging permit proenp, Eighteen-day-old mysids were exposed to tributyltin ( TBT ...sediment. The TBT toxicant became a significant deleterious factor by day 8. After 10 days control survival was 100 per- cent with sediment and 95 percent...It is generally accepted that the TBT cation is the toxic component and the anion is not a factor in its toxicity . TBT degradation products are less

  9. An assessment of mercury in estuarine sediment and tissue in Southern New Jersey using public domain data

    Science.gov (United States)

    Ng, Kara; Szabo, Zoltan; Reilly, Pamela A.; Barringer, Julia; Smalling, Kelly L.

    2016-01-01

    Mercury (Hg) is considered a contaminant of global concern for coastal environments due to its toxicity, widespread occurrence in sediment, and bioaccumulation in tissue. Coastal New Jersey, USA, is characterized by shallow bays and wetlands that provide critical habitat for wildlife but share space with expanding urban landscapes. This study was designed as an assessment of the magnitude and distribution of Hg in coastal New Jersey sediments and critical species using publicly available data to highlight potential data gaps. Mercury concentrations in estuary sediments can exceed 2 μg/g and correlate with concentrations of other metals. Based on existing data, the concentrations of Hg in mussels in southern New Jersey are comparable to those observed in other urbanized Atlantic Coast estuaries. Lack of methylmercury data for sediments, other media, and tissues are data gaps needing to be filled for a clearer understanding of the impacts of Hg inputs to the ecosystem.

  10. Incorporating Contaminant Bioavailability into Sediment Quality Assessment Frameworks

    Science.gov (United States)

    The recently adopted sediment quality assessment framework for evaluating bay and estuarine sediments in the State of California incorporates bulk sediment chemistry as a key line of evidence(LOE) but does not address the bioavailability of measured contaminants. Thus, the chemis...

  11. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China

    International Nuclear Information System (INIS)

    Zheng Na; Wang Qichao; Liang Zhongzhu; Zheng Dongmei

    2008-01-01

    Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity. - Sediment in Wuli River, Cishan River, and Lianshan River has been contaminated by heavy metals and adverse effects would be expected frequently in Wuli River and Cishan River

  12. Sediment and contaminant transport in a marine environment

    International Nuclear Information System (INIS)

    Onishi, Y.; Thompson, F.L.

    1986-01-01

    The finite-element model FETRA is an unsteady, verically averaged two-dimensional model to simulate the transport of sediment and contaminants (radionuclides, heavy metals, pesticides, etc.) in coastal and estuarine water. The model, together with the hydrodynamic model CAFE-I, was applied to the Irish Sea to predict the migration and accumulation of sediment (both cohesive and noncohesive) and of a radionuclide (dissolved and sediment-sorbed) in a tide- and wind-driven system. The study demonstrated that FETRA is a useful tool for assessing sediment and toxic contaminant transport in a marine environment

  13. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    Science.gov (United States)

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  14. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, J., E-mail: judit.kalman@uca.es [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bonnail-Miguel, E. [Department of Physical-Chemistry, University of Cadiz, Poligono Industrial Rio San Pedro s/n, 11,510 Puerto Real, Cadiz (Spain); Smith, B.D. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Bury, N.R. [Division of Diabetes and Nutritional Science, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Rainbow, P.S. [Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)

    2015-02-15

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity.

  15. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field

    International Nuclear Information System (INIS)

    Kalman, J.; Bonnail-Miguel, E.; Smith, B.D.; Bury, N.R.; Rainbow, P.S.

    2015-01-01

    The relationship between the subcellular distribution of accumulated toxic metals into five operational fractions (subsequently combined into presumed detoxified and non-detoxified components) and toxicity in the clam Scrobicularia plana was investigated under different laboratory exposures. Clams were exposed to metal contaminated media (water and diet) and analysed for the partitioning of accumulated As, Cu and Zn into subcellular fractions. In general, metallothionein-like proteins, metal-rich granules and cellular debris in different proportions acted as main storage sites of accumulated metals in the clam soft tissues for these three metals. No significant differences were noted in the accumulation rates of As, Cu and Zn of groups of individuals with or without apparent signs of toxicity after up to 30 days of exposure to naturally contaminated sediment mixtures. There was, however, an increased proportional accumulation of Cu in the non-detoxified fraction with increased Cu accumulation rate in the clams, suggesting that the Cu uptake rate from contaminated sediments exceeded the combined rates of elimination and detoxification of Cu, with the subsequent likelihood for toxic effects in the clams. - Highlights: • Scrobicularia plana accumulated As, Cu and Zn from naturally toxic sediments. • Toxic metals were accumulated in detoxified and non-detoxified components. • Cu accumulation in the non-detoxified pool increased with increased Cu uptake rate. • Cu uptake rate exceeded combined loss and detoxification rates to cause toxicity

  16. Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay

    Science.gov (United States)

    Liu, Li; Chen, Ling; Floehr, Tilman; Xiao, Hongxia; Bluhm, Kerstin; Hollert, Henner; Wu, Lingling

    2015-01-01

    Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components. PMID:26606056

  17. Phytotoxkit® and Ostracodtoxkit® tests for assessing the toxicity of sediment samples with high concentration of heavy metals

    Science.gov (United States)

    Garcia-Lorenzo, Maria Luz; Martinez-Sanchez, Maria Jose; Molina, Jose; Hernandez-Cordoba, Manuel

    2010-05-01

    To estimate the risk of contaminants, chemical methods need to be complemented with biological methods. Ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. The aim of this study was to evaluate the sensitivity and applicability of two bioassays representing multiple trophic levels, for the preliminary ecotoxicological screening of sediments from sites contaminated by mining activities: a chronic toxicity test with the ostracod Heterocypris incongruens and a phytotoxicity test using Lepidium sativum, Sorghum saccharatum and Sinapis alba seeds. For this study, 30 soils samples were collected from the Sierra Minera (Murcia, SE Spain) for general analytical determinations and the total metal content (Pb, Zn, Cd and As) was determined. The Phytotoxkit® test measures the decrease in (or the absence of) seed germination and of the growth of the young roots after 3 days of exposure of seeds of selected higher plants to a contaminated matrix compared with the controls germinated in a reference soil. The plants selected for the Phytotoxkit® microbiotest were: the monocotyl Sorghum saccharatum (Sorgho) and the dicotyls Lepidium sativum (Garden cress) and Sinapis alba (mustard) (Phytotoxkit®, 2004). The percent inhibition of seed germination (SG) and root growth inhibition (RI) for each plant were calculated. Ostracodtoxkit® test consists of placing freshly hatched ostracod neonates in multiwell cups in 2 ml synthetic freshwater, with 300 µl sediment and 3x107 algal cells (Selenastrum capricornutum). After 6 days, incubation at 25 °C in darkness, the mortality of test organisms was determined (Ostracodtoxkit® FTM, 2001) and growth inhibition was calculated. Soil samples showed a mean pH value of 6.0 in water and 5.7 in KCl. The EC varied from 1.0 dS m-1 to 56.2 dS m-1, with a mean value of 17.7 dS m-1. The mean value for Pb was 0.84 mg kg-1, 10593 mg kg-1 for Zn, 23.18 mg kg-1 for Cd and 0.16 mg kg-1 for As

  18. Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu, India.

    Science.gov (United States)

    Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John

    2015-09-01

    Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.

  19. The combined use of the PLHC-1 cell line and the recombinant yeast assay to assess the environmental quality of estuarine and coastal sediments.

    Science.gov (United States)

    Schnell, Sabine; Olivares, Alba; Piña, Benjamin; Echavarri-Erasun, Beatriz; Lacorte, Silvia; Porte, Cinta

    2013-12-15

    Sediment contamination poses a potential risk for both ecosystems and human health. Risk assessment is troublesome as sediments contain complex mixtures of toxicants, and traditional chemical analyses can neither provide information about potential hazards to organisms nor identify and measure all present contaminants. This work combines the use of the PLHC-1 cell line and the recombinant yeast assay (RYA) to assess the environmental quality of estuarine and coastal sediments. The application of multiple endpoints (cytotoxicity, generation of oxidative stress, presence of CYP1A inducing agents, micronucleus formation and estrogenicity) revealed that the organic extracts of those sediments affected by industrial activities or collected near harbours and untreated urban discharges showed significant cytotoxicity, micronuclei and CYP1A induction. The study highlights the usefulness of the applied bioassays to identify those sediments that could pose risk to aquatic organisms and that require further action to improve their environmental quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper

    2008-03-31

    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  1. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments

    Energy Technology Data Exchange (ETDEWEB)

    Jenner, H.A.; Janssen-Mommen, J.P.M. (Kema Environmental Services, Arnhem (Netherlands))

    1993-07-01

    Duckweed, Lemna minor, was used for testing single elements and leachates of coal ashes and sediments by expressing growth as surface coverage. The EC50 for the elements Cd, Cu, Zn, As(III), As(V), Se(IV), Se(VI), SeO[sub 2] were 0.86, 2.2, 4.4, 8.4, 297, 21, 67, 37 [mu]M respectively. Leachates were tested of pulverized coal fuel ash (PFA), including 'low NO[sub x]' ashes, coal gasification slag (CGS), and, as a reference, the polluted sediments of a canal. The concentrations of elements in leachates of 'low NO[sub x]' PFA were higher than those in leachates of conventional PFA. The leaching of anions from PFA was quicker than the cations. CGS showed an absolutely minimal element leaching. Comparison of the effects of conventional PFA with sediments from Rotterdam harbor, River Rhine, and the canal shows PFA to be the far less toxic one. The sediment samples from the canal demonstrated strong growth inhibition, probably due to high zinc concentrations originating from industrial activity.

  2. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments

    Energy Technology Data Exchange (ETDEWEB)

    Jenner, H A; Janssen-Mommen, J P.M. [Kema Environmental Services, Arnhem (Netherlands)

    1993-07-01

    Duckweed, Lemna minor, was used for testing single elements and leachates of coal ashes and sediments by expressing growth as surface coverage. The EC50 for the elements Cd, Cu, Zn, As(III), As(V), Se(IV), Se(VI), SeO[sub 2] were 0.86, 2.2, 4.4, 8.4, 297, 21, 67, 37 [mu]M respectively. Leachates were tested of pulverized coal fuel ash (PFA), including 'low NO[sub x]' ashes, coal gasification slag (CGS), and, as a reference, the polluted sediments of a canal. The concentrations of elements in leachates of 'low NO[sub x]' PFA were higher than those in leachates of conventional PFA. The leaching of anions from PFA was quicker than the cations. CGS showed an absolutely minimal element leaching. Comparison of the effects of conventional PFA with sediments from Rotterdam harbor, River Rhine, and the canal shows PFA to be the far less toxic one. The sediment samples from the canal demonstrated strong growth inhibition, probably due to high zinc concentrations originating from industrial activity.

  3. Polycyclic Aromatic Hydrocarbons in Surface Sediments from the Southern Shores of the Caspian Sea, Anzali City: Toxicity Assessment and Source Identification

    Directory of Open Access Journals (Sweden)

    Rokhsareh Azimi

    2015-10-01

    Full Text Available The Caspian Sea has recently experienced great damages due to intense pressure from human activities, petroleum contaminant discharges from oil extraction and refining activities, and domestic and industrial wastewaters discharged into the environment. The aim of this study was to determine the sources and levels of one of the most dangerous oil pollutants ‒ polycyclic aromatic hydrocarbons ‒ in the southern shores of the Caspian Sea (Anzali City. The data would be compared with standard PAHs concentrations in order to derive the information required for designing appropriate management measures. For the purposes of this study, nine surface sediment samples were collected from the experimental field and gas chromatography with mass spectrometry (GC-MS was used to analyze the samples for their contaminants. The total PAHs concentrations ranged from 736 to 9009 ng g-1d.w with an increasing trend along the east-west direction. Also, multiple indexes were used to detect the petrogenic origin of these compounds. Compared with sediment quality guidelines (SQGs of Florida (TELs/PELs, the levels for half the PAH compounds exceeded TELs. Moreover, naphthalene, fluorine, and phenanthrene concentrations exceeded the PELs in some stations, indicating likely acute toxic effects. However, comparison with sediment quality guidelines (SQGs of the United States (TELs/PELs revealed that most of the compounds at the stations investigated were lower than ERLs. It was concluded that the quality guidelines of the Florida State are more conservative for protecting the biotic organisms in the region.

  4. Review of the use of Ceramium tenuicorne growth inhibition test for testing toxicity of substances, effluents, products sediment and soil

    Science.gov (United States)

    Eklund, Britta

    2017-08-01

    A growth inhibition test has been developed based on two clones of the red macroalga Ceramium tenuicorne, one originating from 7 PSU and the other from 20 PSU. The species can be adapted to different salinities and the test can be carried out between 4 and 32 PSU. This test became an ISO standard in 2010 (ISO 107 10) for testing of chemicals and water effluents. In this study new and published data has been compiled on toxicity of single substances, waste waters from pulp mills, leachates from antifouling paints, harbour sediments and soil used for maintenance of leisure boats. The results show that the alga is sensitive to both metals and organic compounds and to biocides used in antifouling paints. By testing leachates from antifouling paints these could be ranked according to their toxicity. Similarly, the toxicity of waste waters from pulp mills was determined and the efficiency of secondary treatment evaluated. Further, the test method proved useful to test the toxicity in sediment samples. Sediments from small town harbours and ship lanes were shown to be harmful and compounds originating from antifouling paints were responsible for a large part of the inhibiting effect. The alga proved to be sensitive to contaminants leaking from boat yard soil. The growth inhibition test is a robust test that has high repeatability and reproducibility and easily can be applied on water, soil and sediment samples without being too costly. The species is found worl-wide in temperate waters, which makes the results relevant for large areas. In the Baltic Sea C. tenuicorne is the most common red alga species and is thus particularly relevant for this area. The overall results show that contaminants from boat activities and the use of antifouling paints in particular pose a threat to the environment.

  5. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints.

    Science.gov (United States)

    Pusceddu, F H; Choueri, R B; Pereira, C D S; Cortez, F S; Santos, D R A; Moreno, B B; Santos, A R; Rogero, J R; Cesar, A

    2018-01-01

    The guidelines for the Environmental Risk Assessment (ERA) of pharmaceuticals and personal care products (PPCP) recommend the use of standard ecotoxicity assays and the assessment of endpoints at the individual level to evaluate potential effects of PPCP on biota. However, effects at the sub-individual level can also affect the ecological fitness of marine organisms chronically exposed to PPCP. The aim of the current study was to evaluate the environmental risk of two PPCP in marine sediments: triclosan (TCS) and ibuprofen (IBU), using sub-individual and developmental endpoints. The environmental levels of TCS and IBU were quantified in marine sediments from the vicinities of the Santos submarine sewage outfall (Santos Bay, São Paulo, Brazil) at 15.14 and 49.0 ng g -1 , respectively. A battery (n = 3) of chronic bioassays (embryo-larval development) with a sea urchin (Lytechinus variegatus) and a bivalve (Perna perna) were performed using two exposure conditions: sediment-water interface and elutriates. Moreover, physiological stress through the Neutral Red Retention Time Assay (NRRT) was assessed in the estuarine bivalve Mytella charruana exposed to TCS and IBU spiked sediments. These compounds affected the development of L. variegatus and P. perna (75 ng g -1 for TCS and 15 ng g -1 for IBU), and caused a significant decrease in M. charruana lysosomal membrane stability at environmentally relevant concentrations (0.08 ng g -1 for TCS and 0.15 ng g -1 for IBU). Chemical and ecotoxicological data were integrated and the risk quotient estimated for TCS and IBU were higher than 1.0, indicating a high environmental risk of these compounds in sediments. These are the first data of sediment risk assessment of pharmaceuticals and personal care products of Latin America. In addition, the results suggest that the ERA based only on individual-level and standard toxicity tests may overlook other biological effects that can affect the health of marine organisms

  6. Chemical and biological assessment of Cd-polluted sediment for land use: The effect of stabilization using chitosan-coated zeolite.

    Science.gov (United States)

    Wen, Jia; Zeng, Guangming

    2018-04-15

    Disposal of dredged sediment contaminated with heavy metals on site or in landfills inevitably causes leaching of metals that generate new environmental problems. In this study, we investigated the effectiveness of stabilizing heavy metal Cd in sediment taken from Dongting Lake, China, using a chitosan-coated zeolite, and assessed the feasibility of reusing the stabilized sediment in river bank soil based on chemical and biological analyses. Results showed that the addition of chitosan-coated zeolite significantly reduced acid-exchangeable Cd by 8% in the dredged sediment and 7% in a sediment-soil mixture. Cadmium leachability was greatly reduced in the amended sediment or sediment-soil mixture. Toxicity bioassay using Eisenia fetida showed the mortality rate of worms reduced by 16% in sediment-soil mixture with a Cd concentration of 550 mg/kg and by 17% under a Cd concentration of 250 mg/kg, both with the addition of modified zeolite. Moreover, assimilation of Cd in the earthworms was decreased by a maximum of 36 mg/kg in the sediment-soil mixture with zeolite amendment. These results indicate that the reuse of Cd-contaminated sediment following chitosan-coated zeolite modification is a feasible option for treating the dredged sediment, and could thus benefit both aquatic and terrestrial systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Geospatial risk assessment and trace element concentration in reef associated sediments, northern part of Gulf of Mannar biosphere reserve, Southeast Coast of India.

    Science.gov (United States)

    Krishnakumar, S; Ramasamy, S; Simon Peter, T; Godson, Prince S; Chandrasekar, N; Magesh, N S

    2017-12-15

    Fifty two surface sediments were collected from the northern part of the Gulf of Mannar biosphere reserve to assess the geospatial risk of sediments. We found that distribution of organic matter and CaCO 3 distributions were locally controlled by the mangrove litters and fragmented coral debris. In addition, Fe and Mn concentrations in the marine sediments were probably supplied through the riverine input and natural processes. The Geo-accumulation of elements fall under the uncontaminated category except Pb. Lead show a wide range of contamination from uncontaminated-moderately contaminated to extremely contaminated category. The sediment toxicity level of the elements revealed that the majority of the sediments fall under moderately to highly polluted sediments (23.07-28.84%). The grades of potential ecological risk suggest that predominant sediments fall under low to moderate risk category (55.7-32.7%). The accumulation level of trace elements clearly suggests that the coral reef ecosystem is under low to moderate risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Phytotoxic effects of bottom sediments from Ignalina NPP wastewater canals and cooler

    International Nuclear Information System (INIS)

    Montvydiene, D.

    2002-01-01

    In the paper impact of Ignalina Nuclear Power Plant (INPP) waste upon phytotoxicity of sediments from Lake Drukshiai was recognized. Samples of bottom sediments were collected from various wastewater canals of INPP, from the canal of wastewater treatment plant (WWTP), small lake and rivulet, which are on the route of that wastes into Drukshiai. In 1995, 132 sites of Drukshiai were observed in order to assess the phytotoxicity of its bottom sediments. The research was carried out in July of 1993-2000. Number of somatic mutations (pink, colourless and morphological) and nonviable stamen hairs (the quantity of whose indicates lethality, when hair contains less than 12 cells) in Tradescantia (clone 02) stamen hair (SH) system was counted. Genotoxic effect of bottom sediments on Tradescantia was estimated according to Sparrow et al. (1972) and Marciulioniene et al. (1996). Genotoxic effects were considered weak if amount of somatic mutations not exceeded 1%, there were no non-viable stamen hairs, and medium effect was when the number of somatic mutations was between 1.0-4.0% and non-viable stamen hairs did not reach 40,0%. As well as strong effect was when numbers of somatic mutations and non-viable stamen hairs exceeding 4.0% and 40.0%, respectively. L. sativum is a rather sensitive, widely applied biotest because of its simplicity, cheapness and short duration. This test based on Magone (1989) method and lasted for 48 hours, after which time the seeds germination and root length of seedlings was measured. Tested bottom sediments causing percent inhibitions of 100-60%, 61-40%, 41-20%, and 20-0% were classified as highly toxic, moderately toxic, slightly toxic and non-toxic, respectively. Estimations in both cases were run in triplicates. The data were estimated using the analysis of variance with significance defined at α = 0,05. It was established that in accordance with the phytotoxic impact, the wastes discharged by INPP into Drukshiai in 1993-2000 are attributed

  9. Interaction of fine sediment with alluvial streambeds

    Science.gov (United States)

    Jobson, Harvey E.; Carey, William P.

    1989-01-01

    More knowledge is needed about the physical processes that control the transport of fine sediment moving over an alluvial bed. The knowledge is needed to design rational sampling and monitoring programs that assess the transport and fate of toxic substances in surface waters because the toxics are often associated with silt- and clay-sized particles. This technical note reviews some of the past research in areas that may contribute to an increased understanding of the processes involved. An alluvial streambed can have a large capacity to store fine sediments that are extracted from the flow when instream concentrations are high and it can gradually release fine sediment to the flow when the instream concentrations are low. Several types of storage mechanisms are available depending on the relative size distribution of the suspended load and bed material, as well as the flow hydraulics. Alluvial flow tends to segregate the deposited material according to size and density. Some of the storage locations are temporary, but some can store the fine sediment for very long periods of time.

  10. Assessment of Surficial Loads of Heavy Metals in sediment of Ipo ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Commons Attribution License (CCL), which permits unrestricted use, ... medium, provided the original work is properly cited. ... toxicants terminates in the aquatic system as a result ... Statistical analysis: One way analysis of variance. (ANOVA) .... Table 4: Ecological risk factors for heavy metals in Ipo and Sombriero sediment.

  11. Ecotoxicological assessment of the pharmaceutical compound Triclosan to freshwater invertebrates with emphasis to spiked sediment tests; Avaliacao ecotoxicologica do farmaco Triclosan para invertebrados de agua doce com enfase em ensaios com sedimento marcado ('spiked sediment')

    Energy Technology Data Exchange (ETDEWEB)

    Pusceddu, Fabio Hermes

    2009-07-01

    The increasing of Pharmaceutical and Personal Care Products (PPCPs) occurrence in the aquatic environment cause adverse effects on the human health and aquatic communities. The environmental risk of the PPCPs associated with the possibility of synergic effects between PCPPs and the increase of the use of synthetic organic compounds, unchained a great concern on the toxic potential to biota aquatic. Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is a pharmaceutical compound widely used due your antibacterial mechanism effect, found in at least 932 products such as shampoos, toilet soaps, deodorants, lotions, toothpaste, detergents, socks and underwear, among others. Currently, studies about the Triclosan toxicity in the water and, mainly in the sediment, are poorly. We have the knowledge that the photodegradation of this product results into dichlorodibenzo-p-dioxin, and now it has great discussion on environmental agencies, like EPA, about the release or restriction of this product. The aim of this work is to assess the effects of Triclosan on mortality of insect larvae Chironomus xanthus and mortality and reproduction inhibition of microcrustacea Ceriodaphnia dubia exposed to Triclosan spiked sediments based on standard methods EPA and OECD. The EC50;96H obtained on acute toxicity tests with C. xanthus was 45,26 mg.Kg{sup -1}. The chronic toxicity tests with C. dubia using spiked sediments were performed following the procedure in Burton and MacPherson (1995). A no-observed-effect concentrations and lowest-observed-effect concentration were 5,78 e 6,94 mg.Kg{sup -1}, respectively. (author)

  12. In situ exposures using caged organisms: a multi-compartment approach to detect aquatic toxicity and bioaccumulation

    International Nuclear Information System (INIS)

    Burton, G. Allen; Greenberg, Marc S.; Rowland, Carolyn D.; Irvine, Cameron A.; Lavoie, Daniel R.; Brooker, John A.; Moore, Laurie; Raymer, Delia F.N.; McWilliam, Ruth A.

    2005-01-01

    An in situ toxicity and bioaccumulation assessment approach is described to assess stressor exposure and effects in surface waters (low and high flow), the sediment-water interface, surficial sediments and pore waters (including groundwater upwellings). This approach can be used for exposing species, representing major functional and taxonomic groups. Pimephales promelas, Daphnia magna, Ceriodaphnia dubia, Hyalella azteca, Hyalella sp., Chironomus tentans, Lumbriculus variegatus, Hydra attenuatta, Hexagenia sp. and Baetis tibialis were successfully used to measure effects on survival, growth, feeding, and/or uptake. Stressors identified included chemical toxicants, suspended solids, photo-induced toxicity, indigenous predators, and flow. Responses varied between laboratory and in situ exposures in many cases and were attributed to differing exposure dynamics and sample-processing artifacts. These in situ exposure approaches provide unique assessment information that is complementary to traditional laboratory-based toxicity and bioaccumulation testing and reduce the uncertainties of extrapolating from the laboratory to field responses. - In situ exposures provide unique information that is complementary to traditional lab-based toxicity results

  13. Abstracts of the 31. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Burridge, L.E.; Haya, K.; Niimi, A.J.

    2004-01-01

    This conference provided an opportunity for an informal exchange of recent research information and knowledge on aquatic and environmental toxicology. Topics ranged from basic aquatic toxicology to applications in environmental monitoring, setting regulations and developing criteria for sediment and water quality. The workshops were attended by representatives from industry, governments and universities. The current challenges and approaches to deal with aquatic toxicology and their biological effect on aquatic biota were discussed. The sessions were entitled as follows: environmental effects monitoring; pesticides; ecological risk assessment; sediment disposal at sea; oil and gas; pharmaceuticals; artifactual toxicity in municipal waste water; sediment and soil toxicity; contaminants in aquatic systems; biological effects; and discoveries in aquatic sciences. The conference included 4 plenary sessions and 119 platform papers, of which 24 papers have been indexed separately for inclusion in this database. refs., tabs., figs

  14. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  15. Monitoring the effectiveness of remediation techniques using sediment toxicity tests with the amphipod Eohaustorius estuarius

    International Nuclear Information System (INIS)

    Doe, K.G.; Jackman, P.M.; Lee, K.

    2002-01-01

    The results of a controlled oil release experiment of weathered crude oil was presented. The released oil was applied to a tidal saltwater marsh at Conrod's Beach, Nova Scotia, Canada. The study included 3 replicate blocks which included 2 unoiled treatments and 4 oiled treatments for each block. One unoiled site had no treatment, the second unoiled site had nutrient addition to examine the effect of nutrients. The oiled treatments included natural attenuation, nutrient addition, nutrient addition with plants, and nutrient addition with a garden aerator to introduce oxygen. A standard lab procedure was used to analyze the sediments to determine the effectiveness of the technique as well as the toxic effects on the survival of the amphipod Eohaustorius estuarius. Test results indicated that the unoiled sites were non-toxic, with a slight decrease in survival in the treatment with nutrient addition. All the oiled sites were very toxic at first, but toxicity decreased gradually with time. Treatment with nutrient addition with a garden aerator proved to be the most complete and fastest detoxification method. 8 refs., 4 tabs., 2 figs

  16. National Status and Trends: Bioeffects Program - Biological Effects of Toxic Contaminants in Sediments from Long Island Sound and Environs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A survey of sediment toxicity was carried out by NOAA's National Status and Trends Program in the coastal bays that surround Long Island Sound in New York and...

  17. Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-ecosystem regional assessment (SEcoRA).

    Science.gov (United States)

    Apitz, Sabine E

    2012-01-15

    There is a growing trend to include a consideration of ecosystem services, the benefits that people obtain from ecosystems, within decision frameworks. Not more than a decade ago, sediment management efforts were largely site-specific and held little attention except in terms of managing contaminant inputs and addressing sediments as a nuisance at commercial ports and harbors. Sediments figure extensively in the Millennium Ecosystem Assessment; however, contaminated sediment is not the dominant concern. Rather, the focus is on land and water use and management on the landscape scale, which can profoundly affect soil and sediment quality, quantity and fate. Habitat change and loss, due to changes in sediment inputs, whether reductions (resulting in the loss of beaches, storm protection, nutrient inputs, etc.) or increases (resulting in lake, reservoir and wetland infilling, coral reef smothering, etc.); eutrophication and reductions in nutrient inputs, and disturbance due to development and fishing practices are considered major drivers, with significant consequences for biodiversity and the provision and resilience of ecosystem functions and services. As a mobile connecting medium between various parts of the ecosystem via the hydrocycle, sediments both contaminated and uncontaminated, play both positive and negative roles in the viability and sustainability of social, economic, and ecological objectives. How these roles are interpreted depends upon whether sediment status (defined in terms of sediment quality, quantity, location and transport) is appropriate to the needs of a given endpoint; understanding and managing the dynamic interactions of sediment status on a diverse range of endpoints at the landscape or watershed scale should be the focus of sediment management. This paper seeks to provide a language and conceptual framework upon which sediment-ecosystem regional assessments (SEcoRAs) can be developed in support of that goal. Copyright © 2011 Elsevier B

  18. Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?

    NARCIS (Netherlands)

    Lahr, J.; Maas-Diepeveen, J.L.; Stuijfzand, S.C.; Leonards, P.E.G.; Drueke, J.M.; Luecker, S.; Espeldoorn, A.

    2003-01-01

    In order to identify the cause of toxicity in sediments and suspended matter, a large number of samples with different degrees of contamination was taken at various locations in The Netherlands. Standard acute bioassays were carried out with the bacterium Vibrio fischeri, the rotifer Brachionus

  19. Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments

    International Nuclear Information System (INIS)

    Harwood, Amanda D.; Landrum, Peter F.; Weston, Donald P.; Lydy, Michael J.

    2013-01-01

    The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. - Highlights: ► Can use bioavailability-based methods for pyrethroids in sediments. ► Tenax was a more sensitive technique. ► Tenax extractable concentrations relate to invertebrate mortality. - This research provides an important first step in using bioavailability-based techniques for estimating the bioavailability and toxicity of hydrophobic pesticides in field sediments.

  20. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments.

    Science.gov (United States)

    Prica, M; Dalmacija, B; Roncević, S; Krcmar, D; Becelić, M

    2008-01-25

    The acid-volatile sulfide (AVS), simultaneously extracted metals (SEM), total metals, and pore-water metal concentrations were studied in Vojvodina (Serbia) sediments. In Serbia, there are no regulations concerning sediment quality standards and sediment management. Harmonization of legislation in the domain of environmental protection with EU requirements will increase the significance of the sediment issue. Sediment quality was assessed according to Dutch standards, but the results were also compared with Canadian and USEPA (United States Environmental Protection Agency) guidelines for sediment quality. A comparison of the results based on different criteria for sediment quality assessment shows that they are sometimes contradictory. Therefore, a single approach to quality assessment may be insufficient. The Sigma[SEM]/[AVS] ratio was found to be greater than one at several locations that were already recognized as places of high risk based on Dutch standards. Some other samples had Sigma[SEM]/[AVS]AVS]>1 can cause increased toxicity because there are many other metal-binding phases in sediments. Metals that are associated with AVS may be released within sediments through storms, dredging activities, oxidation, etc., and may have adverse environmental impacts. This has to be taken into account during dredging, which is for some sediments necessary because the sediment is of class 4 (Dutch evaluation), because the dredging process will certainly increase the concentration of bioavailable heavy metals and disturb the sedimentation dynamics. The obtained results will be invaluable for future activities regarding dredging and sediment management in the country.

  1. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    International Nuclear Information System (INIS)

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-01-01

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  2. An integrated assessment of pollution and biological effects in flounder, mussels and sediment in the southern Baltic Sea coastal area.

    Science.gov (United States)

    Dabrowska, Henryka; Kopko, Orest; Lehtonen, Kari K; Lang, Thomas; Waszak, Ilona; Balode, Maija; Strode, Evita

    2017-02-01

    Organic and metal contaminants and biological effects were investigated in flounder, mussels, and sediments in the southern Baltic Sea coastal area in order to assess environmental quality status in that area. Four sites were selected, including two within the Gulf of Gdańsk (GoG). In biota and sediment at each site, DDTs dominated over PCBs and PBDEs were the least abundant among organic contaminants. Their concentrations decreased progressively outward from GoG. Among metal contaminants, the levels of Hg, Pb, and Cd were elevated in GoG. Biomarkers in flounder, EROD activity and DNA SB, showed moderate positive correlations with organic and metal contaminants. In flounder, the integrated biomarker index (IBR/n) presented a spatial trend coherent with chemical pollution index (CPI), but there was no clear spatial correspondence between IBR/n and CPI in mussels nor between sediment toxicity index (STI) and sediment CPI. The integrated assessment of contaminant and biological effect data against available assessment criteria indicated that in biota, the contaminant assessment thresholds were most often exceeded by CB-118, heptachlor, PBDE, and Hg (in the GoG sediments by p,p'-DDT, Hg and Cd), while of the biological determinants, the threshold was breeched by AChE activity in mussels in GoG. Applying the ICES/OSPAR traffic-light approach showed that of the 50 parameters assessed at each site, there were 18% of determinants in the red color category in the two GoG sites and 8% of determinants in the two sites outside GoG, which indicated that none of the four investigated sites attained good environmental status (GES).

  3. In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.

    Science.gov (United States)

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.

  4. Heavy metal in sediments of Ziya River in northern China: distribution, potential risks, and source apportionment.

    Science.gov (United States)

    Zhu, Xiaolei; Shan, Baoqing; Tang, Wenzhong

    2016-12-01

    The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.

  5. Ecotoxicological assessment of the pharmaceutical compound Triclosan to freshwater invertebrates with emphasis to spiked sediment tests; Avaliacao ecotoxicologica do farmaco Triclosan para invertebrados de agua doce com enfase em ensaios com sedimento marcado ('spiked sediment')

    Energy Technology Data Exchange (ETDEWEB)

    Pusceddu, Fabio Hermes

    2009-07-01

    The increasing of Pharmaceutical and Personal Care Products (PPCPs) occurrence in the aquatic environment cause adverse effects on the human health and aquatic communities. The environmental risk of the PPCPs associated with the possibility of synergic effects between PCPPs and the increase of the use of synthetic organic compounds, unchained a great concern on the toxic potential to biota aquatic. Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is a pharmaceutical compound widely used due your antibacterial mechanism effect, found in at least 932 products such as shampoos, toilet soaps, deodorants, lotions, toothpaste, detergents, socks and underwear, among others. Currently, studies about the Triclosan toxicity in the water and, mainly in the sediment, are poorly. We have the knowledge that the photodegradation of this product results into dichlorodibenzo-p-dioxin, and now it has great discussion on environmental agencies, like EPA, about the release or restriction of this product. The aim of this work is to assess the effects of Triclosan on mortality of insect larvae Chironomus xanthus and mortality and reproduction inhibition of microcrustacea Ceriodaphnia dubia exposed to Triclosan spiked sediments based on standard methods EPA and OECD. The EC50;96H obtained on acute toxicity tests with C. xanthus was 45,26 mg.Kg{sup -1}. The chronic toxicity tests with C. dubia using spiked sediments were performed following the procedure in Burton and MacPherson (1995). A no-observed-effect concentrations and lowest-observed-effect concentration were 5,78 e 6,94 mg.Kg{sup -1}, respectively. (author)

  6. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nørgaard Schmidt, Stine; Mäenpää, Kimmo

    Hydrophobic organic contaminants (HOCs) reaching the aquatic environment are largely stored in sediments. The risk of contaminated sediments is challenging to assess since traditional exhaustive extraction methods yield total HOC concentrations, whereas freely dissolved concentrations (Cfree......) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of polluted sediments. Glass jars with µm-thin silicone coatings on the inner walls can be used for ex situ equilibration while a device housing several silicone-coated fibers can be used for in situ equilibration. In both cases, parallel sampling with varying silicone thicknesses can be applied to confirm...

  7. The assessment of sediment screening risk in Venice Lagoon and other coastal areas using international sediment quality guidelines

    International Nuclear Information System (INIS)

    Apitz, S.A.; Barbanti, A.; Bocci, M.; Delaney, E.; Bernstein, A.G.; Montobbio, L.

    2007-01-01

    A number of studies carried out in recent years have shown the presence of a wide range of contaminants in the Venice Lagoon. It is important to have a good understanding of the ecological quality of Venice Lagoon sediments, in order to: i) define and locate areas where a threat to the environment is present and therefore an intervention is needed (i.e. in situ assessment and management); and ii) define sustainable and environmentally correct ways of managing sediments which are to be dredged for navigational purposes or in relation to other interventions (i.e., ex situ management). Materials and Methods: To examine how various regional and international SQGs 'classed' screening risk in Venice Lagoon sediments, data on median contaminant levels in surface sediments in Venice Lagoon resulting from a literature review were compared to a range of local and international sediment quality guidelines (SQGs). Then data on sediment contaminant levels in various areas and sub-basins of Venice Lagoon (main Lagoon, Porto Marghera and Venice City Canals) and in other regional and international transitional and coastal ecosystems with various levels of human impact (urbanization and industrialization) were evaluated based upon a selected consensus-based SQG. Finally, screening sediment quality for all of Venice Lagoon was mapped and contoured, relative to this consensus-based SQG and briefly compared with direct toxicity measurement through a battery of bioassays. Results: SQGs allow the sediment areas to be put in terms of potential, or screening, risk. Although there were some differences depending upon which specific SQGs were applied, the Venice SQGs and other international SQGs provided the same general picture of screening risk in Venice Lagoon despite geographic differences. Venice Lagoon South has the lowest screening risk levels, Venice Lagoon Central/North has the highest (and is nearest to the Porto Marghera and Venice City Canals sites). Discussion: The Venice

  8. Biotest-directed identification of toxic organic compounds in sediments - a contribution to risk assessment of complex contaminations using the small river Spittelwasser as an example; Biotestorientierte Identifikation toxischer organischer Sedimentinhaltsstoffe - ein Beitrag zur Risikoanalyse komplexer Kontaminationen am Beispiel des Spittelwassers

    Energy Technology Data Exchange (ETDEWEB)

    Brack, W.; Altenburger, R.; Ensenbach, U.; Nehls, S.; Segner, H.; Schueuermann, G. [UFZ Centre for Environmental Research, Leipzig (Germany). Dept. of Chemical Ecotoxicology

    2000-11-01

    Risk assessment of chemicals intentionally or unintentionally emitted to the environment is an important task of preventive environmental protection. Risk assessment combines effects assessment with exposure assessment. It identifies negative effects of the respective chemical and the concentration range necessary for exhibiting these effects. This range of effect concentrations is related to the expected exposure range in the ecosystem, that shall be protected, calculating probabilities for the effect to arise. Ecosystems such as sediments as a rule are not contaminated with a single pollutant but with complex mixtures of naturally occurring and anthropogenic compounds of unknown composition. Risk assessment of complex environmental contamination therefore requires a previous step of identification of potentially effective pollutants. Powerful tools to meet this requirement are bioassay-directed chemical analysis (Fernandez et al. 1992) and toxicity identification and evaluation (TIE) (Mount and Carnahan 1989, Mount 1989, Norberg-King et al. 1992). They combine biotests with biotest-directed fractionation and chemical analysis to a sequential procedure characterising and finally identifying those compounds causing measurable effects. Effect-directed identification of organic toxicants in sediment extracts is demonstrated using the small river of Spittelwasser in the industrial region of Bitterfeld (Sachsen-Anhalt) as an example (Fig. 1). (orig.) [German] Die Abschaetzung der Risiken durch Chemikalien, die bewusst oder unbewusst in die Umwelt eingebracht werden, stellt eine zentrale Aufgabe vorbeugenden Umweltschutzes dar. Diese Risikoanalyse verknuepft Wirkungs- und Expositionsanalyse, indem sie moegliche unerwuenschte Wirkungen der jeweiligen Chemikalie identifiziert, den Konzentrationsbereich ermittelt, in dem diese Wirkungen eintreten, und diesen mit der zu erwartenden Exposition des zu schuetzenden Systems in Beziehung setzt mit dem Ziel, eine

  9. Compatibility of hydroxypropyl-β-cyclodextrin with algal toxicity bioassays

    International Nuclear Information System (INIS)

    Fai, Patricia Bi; Grant, Alastair; Reid, Brian J.

    2009-01-01

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-β-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO 4 ), with IC50 values of 0.82 μM and 0.85 μM, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides

  10. Compatibility of hydroxypropyl-{beta}-cyclodextrin with algal toxicity bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Fai, Patricia Bi; Grant, Alastair [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)], E-mail: b.reid@uea.ac.uk

    2009-01-15

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO{sub 4}), with IC50 values of 0.82 {mu}M and 0.85 {mu}M, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides.

  11. Input-variable sensitivity assessment for sediment transport relations

    Science.gov (United States)

    Fernández, Roberto; Garcia, Marcelo H.

    2017-09-01

    A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.

  12. Metal contamination in water sediments; Contaminacion por metales en sedimentos acuaticos

    Energy Technology Data Exchange (ETDEWEB)

    Usero Garcia, J.; Morillo Aguado, J.; Gracia Manarillo, I. [Universidad de Sevilla. Sevilla (Spain)

    1997-09-01

    The origin, distribution, and behaviour of metals in aquatic systems, and factors affecting the solubilization and entry into the water column of metals associated with sediments are examined. Also, the interaction of these metals with and toxic effects on living organisms are studied. Finally, the existing methods for assessing the degree of pollution of sediments and the mobility of the metals associated with the sediments are explained. In the second section of this paper, the methods used for sampling, preparing, and analysing the sediments are described. (Author) 48 refs.

  13. Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison.

    Science.gov (United States)

    De Orte, M R; Lombardi, A T; Sarmiento, A M; Basallote, M D; Rodriguez-Romero, A; Riba, I; Del Valls, A

    2014-05-01

    The injection and storage of CO2 into marine geological formations has been suggested as a mitigation measure to prevent global warming. However, storage leaks are possible resulting in several effects in the ecosystem. Laboratory-scale experiments were performed to evaluate the effects of CO2 leakage on the fate of metals and on the growth of the microalgae Phaeodactylum tricornutum. Metal contaminated sediments were collected and submitted to acidification by means of CO2 injection or by adding HCl. Sediments elutriate were prepared to perform toxicity tests. The results showed that sediment acidification enhanced the release of metals to elutriates. Iron and zinc were the metals most influenced by this process and their concentration increased greatly with pH decreases. Diatom growth was inhibited by both processes: acidification and the presence of metals. Data obtained is this study is useful to calculate the potential risk of CCS activities to the marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Recovery of ostracod with known ages in differently textured sediments and comparison of toxicity of heavily contaminated sediments with ostracod Heterocypris incongruens and amphipod Hyalella azteca

    Science.gov (United States)

    Stepanova, N. Yu; Nikitin, O. V.; Latypova, V. Z.; Vybornova, I. B.; Galieva, G. S.; Okunev, R. V.

    2018-01-01

    The recovery of 1-, 4-, 6,-, and 8-d-old ostracods (Heterocypris incongruens) from sediments with different texture has been evaluated. The recovery of ostracods at all ages has been in agreement with the acceptability criterion of 80% of survival for sediment tests. The recovery of ostracods has turned out to be equal to or more than 80% for sand and silt sediments, respectively. The comparison of survival rates between ostracods and amphipods has shown good convergence in the tests of heavily contaminated sediments (R2=0.75, pquality criteria (TEC) have been exceeded mostly for total petroleum hydrocarbons (100% samples), Cr (100%), Ni (87%), Cu (87%), Pb (47%), and Cd (53%). The content of acid volatile sulfides (AVS) has been significantly higher than that of simultaneously extracted metals (SEM). The obtained results have indicated that, metals (Cu, Zn, Cd, Ni, and Pb) are non-bioavailable. Only one sample has exceeded TEC for PAHs (dibenz[a,h]anthracene). It was observed that, no significant correlation between the effect of toxicity and the chemical content.

  15. Supplementary guidance for the investigation and risk-assessment of potentially contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K.; Spadaro, P.; Starr, J.; Thomas, J. [Arcadis, Arnhem (Netherlands); Hildenbrand, B. [Energy Institute, London (United Kingdom); Smith, J.W.N.; Dunk, M.; Grosjean, T.; De Ibarra, M.; Medve, A.; Den Haan, K.

    2013-11-15

    This report provides guidance on the investigation and assessment of potentially contaminated sediments, focusing on the inland, estuarine and coastal environments. It is designed as a complementary, technical companion document to Energy Institute and CONCAWE (2013) report 'Guidance on characterising, assessing and managing risks associated with potentially contaminated sediments' (Report E1001). It highlights a number of significant challenges associated with assessing the aquatic and water bottom environment, which means that a sediment assessment should not be undertaken lightly. Where a decision is taken to undertake a site assessment, this report promotes the use of an iterative process of Conceptual Site Model (CSM) development, data collection, data evaluation and a continuous CSM refinement, taking into account the results obtained. Risk-based assessment is described throughout the report, entailing four tiers of assessment, which progress from a qualitative assessment (Tier 0) through to a detailed cause-attribution assessment (Tier 3), in which the decrease in uncertainty in the assessment process is balanced against the increased costs and timescales with progress to a higher tier assessment. The application of this evidence-driven risk-based approach to sediment site management, including remedial control measures, should help to overcome at least some of the challenges associated with contaminants in sediment sites in Europe, and promote a sustainable approach to sediment management on a case-by-case basis.

  16. Relative sensitivity of an amphipod Hyalella azteca, a midge Chironomus dilutus, and a unionid mussel Lampsilis siliquoidea to a toxic sediment

    Science.gov (United States)

    Ingersoll, Christopher G.; Kunz, James L.; Hughes, Jamie P.; Wang, Ning; Ireland, D. Scott; Mount, David R.; Hockett, J. Russell; Valenti, Ted W

    2015-01-01

    The objective of the present study was to evaluate the relative sensitivity of test organisms in exposures to dilutions of a highly toxic sediment contaminated with metals and organic compounds. One dilution series was prepared using control sand (low total organic carbon [TOC; TOC [∼10% TOC, higher binding capacity for contaminants]). Test organisms included an amphipod (Hyalella azteca; 10-d and 28-d exposures), a midge (Chironomus dilutus; 20-d and 48-d exposures started with <1-h-old larvae, and 13-d and 48-d exposures started with 7-d-old larvae), and a unionid mussel (Lampsilis siliquoidea; 28-d exposures). Relative species sensitivity depended on the toxicity endpoint and the diluent. All 3 species were more sensitive in sand dilutions than in West Bearskin Lake sediment dilutions. The <1-h-old C. dilutus were more sensitive than 7-d-old C. dilutus, but replicate variability was high in exposures started with the younger midge larvae. Larval biomass and adult emergence endpoints of C. dilutus exhibited a similar sensitivity. Survival, weight, and biomass of H. azteca were more sensitive endpoints in 28-d exposures than in 10-d exposures. Weight and biomass of L. siliquoidea were sensitive endpoints in both sand and West Bearskin Lake sediment dilutions. Metals, ammonia, oil, and other organic contaminants may have contributed to the observed toxicity.

  17. Determination of trace and toxic elements in marine sediments collected from the strait of Malacca, Malaysia

    International Nuclear Information System (INIS)

    Wee Boon Siong; Abdul Khalik Hj. Wood

    2007-01-01

    The Strait of Malacca has been a major route for international trade with heavy traffic of large vessels navigating through the narrow waterway everyday. Beside, the Strait of Malacca has some natural ecosystem which requires proper protection from human activities. Therefore, the Malaysian government has initiated a project to monitor the pollution level at the Strait of Malacca. As a result, sampling expeditions had been conducted to collect marine samples to be analyzed for trace and toxic elements as well as organic pollutions and radionuclides. The focus of this report is to determine trace and toxic element concentration in surface sediment samples collected from 18 sampling locations at the Strait of Malacca was reported. (author)

  18. Accumulation of toxic metals and organic micro-pollutants in sediments from tropical urban rivers, Kinshasa, Democratic Republic of the Congo.

    Science.gov (United States)

    Kilunga, Pitchouna I; Sivalingam, Periyasamy; Laffite, Amandine; Grandjean, Dominique; Mulaji, Crispin K; de Alencastro, Luiz Felippe; Mpiana, Pius T; Poté, John

    2017-07-01

    The increasing contamination of fresh water resource by toxic metals and Persistence Organic Pollutants (POPs) is a major environmental concern globally. In the present investigation, surface sediments collected from three main rivers named, Makelele, Kalamu and Nsanga, draining through the city of Kinshasa, Democratic Republic of the Congo, were characterized for grain size, organic matter, toxic metals, POPs (including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs)), and polycyclic aromatic hydrocarbons (PAHs). Furthermore, enrichment factor (EF) and geoaccumulation index (Igeo) were performed to determine metal source and pollution status. The results highlighted high concentration of toxic metals in all sediment samples, reaching the values (mg kg -1 ) of 325 (Cu), 549 (Zn), 165 (Pb) and 1.5 (Cd). High values of PCBs and OCPs were detected in sediment samples, e.g. in Makelele river, PCB values ranged from 0.9 to 10.9 with total PCBs (∑7 PCBs × 4.3): 169.3 μg kg -1 ; OCPs from 21.6 to 146.8 with ∑OCPs: 270.6 μg kg -1 . The PBDEs concentrations were higher in investigated rivers comparatively with values detected in many rivers from Sub-Saharan Africa. The ΣPAHs value ranged from 22.6 to 1011.9 μg kg -1 . River contamination may be explained by local intense domestic activities, urban and agricultural runoff, industrial and hospital wastewaters discharge into the rivers without prior treatment. This research provides not only a first baseline information on the extent of contamination in this tropical ecosystem but also represents useful tools incorporated to evaluate sediment quality in the river receiving systems which can be applied to similar aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Toxicity of sediment-associated substituted phenylamine antioxidants on the early life stages of Pimephales promelas and a characterization of effects on freshwater organisms.

    Science.gov (United States)

    Prosser, Ryan S; Parrott, Joanne L; Galicia, Melissa; Shires, Kallie; Sullivan, Cheryl; Toito, John; Bartlett, Adrienne J; Milani, Danielle; Gillis, Patty L; Balakrishnan, Vimal K

    2017-10-01

    Substituted phenylamine antioxidants (SPAs) are high production volume chemicals that are incorporated into a variety of commercial products (e.g., polymers, dyes, lubricants). There are few data on chronic toxicity of SPAs to fish and no data on the toxicity of SPAs to the early life stages of fish. The physicochemical properties of SPAs would suggest that if they were to enter an aquatic ecosystem they would partition into sediment. Therefore, the present study focused on investigating the chronic effect of sediment-associated SPAs to the early life stages of the fathead minnow (Pimephales promelas). Eggs and larvae were exposed to sediment spiked with diphenylamine (DPA), N-phenyl-1-napthylamine (PNA), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (DPPDA), or 4,4'-methylene-bis[N-sec-butylaniline] (MBA). The most sensitive endpoint for DPA, PNA, and DPPDA was total survival with 21-d median lethal concentrations (LC50s) based on concentration in overlying water of 1920, 74, and 35 μg/L, respectively. The most sensitive endpoint for MBA was growth with a 21-d median effective concentration (EC50) of 71 μg/L. The same endpoints were the most sensitive in terms of concentrations of DPA, PNA, DPPDA, and MBA in sediment (101, 54, 111, and 76 μg/g dry wt, respectively). Species sensitivity distributions (SSDs) were constructed for each SPA based on acute and chronic toxicity data generated in the present study and found in the literature. Overall, P. promelas was in the midrange of chronic sensitivity, with the most sensitive species being Tubifex tubifex. The SSDs indicate that DPA based on concentration in water is the least toxic to aquatic biota of the 4 SPAs investigated. The constructed SSDs indicate that a concentration in water and sediment of 1 μg/L and 1 μg/g dry weight, respectively, would be protective of >95% of the aquatic species tested. Environ Toxicol Chem 2017;36:2730-2738. © 2017 SETAC. © 2017 SETAC.

  20. Risk assessment of trace metal-polluted coastal sediments on Hainan Island: A full-scale set of 474 geographical locations covering the entire island.

    Science.gov (United States)

    Li, Feng; Lin, Ze-Feng; Wen, Jia-Sheng; Wei, Yan-Sha; Gan, Hua-Yang; He, Hai-Jun; Lin, Jin-Qin; Xia, Zhen; Chen, Bi-Shuang; Guo, Wen-Jie; Tan, Cha-Sheng; Cai, Hua-Yang

    2017-12-15

    Hainan Island is the second largest island and one of the most famous tourist destinations in China, but sediment contamination by trace metals in coastal areas is a major issue. However, full-scale risk assessments of trace metal-polluted coastal sediments are lacking. In this study, coastal surface sediments from 474 geographical locations covering almost the entire island were collected to identify risk-related variables. Controlling factors and possible sources of trace metals were identified, and the toxicity effects were carefully evaluated. Our results suggest that trace-metal pollution in coastal sediments, which was mainly caused by Pb, Zn and Cu emissions, has primarily resulted from industrial sewage and shipping activities and has threatened the offshore ecosystem of Hainan Island and warrants extensive consideration. This is the first study that has systematically investigated trace metal-polluted coastal sediments throughout the entirety of Hainan Island and provides solid evidence for sustainable marine management in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Congener-specific model for polychlorinated biphenyl effect on otter (Lutra lutra) and associated sediment quality criteria

    NARCIS (Netherlands)

    Traas, T.P.; Luttik, R.; Klepper, O.; Beurskens, J.E.M.; Smit, M.D.; Leonards, P.E.G.; Hattum, van A.G.M.; Aldenberg, T.

    2001-01-01

    A model for risk assessment was built for simultaneous, congener-specific PCB bioaccumulation from sediment to fish to otters (Lutra lutra). Toxic equivalence factors (TEFs) were used to sum individual congeners in otters to a toxic equivalent concentration (TEQ) relative to

  2. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta

    International Nuclear Information System (INIS)

    Su Tingzhi; Shu Shi; Shi Honglan; Wang Jianmin; Adams, Craig; Witt, Emitt C.

    2008-01-01

    This study provided a comprehensive assessment of seven toxic trace elements (As, Pb, V, Cr, Cd, Cu, and Hg) in the soil/sediment of Katrina affected greater New Orleans region 1 month after the recession of flood water. Results indicated significant contamination of As and V and non-significant contamination of Cd, Cr, Cu, Hg and Pb at most sampling sites. Compared to the reported EPA Region 6 soil background inorganic levels, except As, the concentrations of other six elements had greatly increased throughout the studied area; St. Bernard Parish and Plaquemines Parish showed greater contamination than other regions. Comparison between pre- and post-Katrina data in similar areas, and data for surface, shallow, and deep samples indicated that the trace element distribution in post-Katrina New Orleans was not obviously attributed to the flooding. This study suggests that more detailed study of As and V contamination at identified locations is needed. - This article provides an in-depth assessment of the contamination of As, Pb, V, Cr, Cd, Cu, and Hg in post-Katrina greater New Orleans region

  3. Fractionation distribution and preliminary ecological risk assessment of As, Hg and Cd in ornithogenic sediments from the Ross Sea region, East Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Chuangneng [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Liu, Xiaodong, E-mail: ycx@ustc.edu.cn [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Nie, Yaguang [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Emslie, Steven D. [Department of Biology and Marine Biology, University of North Carolina Wilmington, 601S. College Road, Wilmington, NC 28403 (United States)

    2015-12-15

    To evaluate mobility of toxic elements and their potential ecological risk caused by seabird biovectors, the fractionation distributions of arsenic (As), mercury (Hg) and cadmium (Cd) were investigated in three ornithogenic sediment profiles from the Ross Sea region, East Antarctica. The results show residual As holds a dominant position, and Hg mainly derives from residual, organic matter-bound and humic acid-bound fractions, indicating weak mobility of As and Hg. However, exchangeable Cd occupies a considerable proportion in studied samples, suggesting Cd has strong mobility. The preliminary evaluation of Sediment Quality Guidelines (SGQs) shows adverse biological effects may occur occasionally for As and Cd, and rarely for Hg. Using Risk Assessment Code (RAC), the ecological risk is assessed at moderate, low and very high for As, Hg and Cd pollution, respectively. Organic matter derived from guano is the main factor controlling the mobility of Hg and Cd through adsorption and complexation. - Highlights: • Residual As holds a dominant position in ornithogenic sediments. • Hg mainly derives from residual, organic matter-bound and humic acid-bound fractions. • Exchangeable Cd occupies a considerable proportion in ornithogenic sediments. • TOC is the main factor controlling the mobility of Hg and Cd in studied sediments.

  4. Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, F.; Leung, A.O.W.; Wu, S.C.; Yang, M.S. [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2009-07-15

    A multi-trophic, multi-exposure phase assessment approach was applied to characterize the toxicity of sediments collected from two rivers in Guiyu, China, an e-waste recycling centre. Elutriate toxicity tests (bacterium Vibrio fischeri and microalga Selenastrum capricornutum) and whole sediment toxicity test (crustacean Heterocypris incongruens) showed that most sediments exhibited acute toxicity, due to elevated heavy metals and PAHs levels, and low pH caused by uncontrolled acid discharge. The survival rates of crustaceans were negatively (p < 0.05) correlated with total PAHs in sediments (411-1755 mg kg{sup -1}); EC50s of V. fischeri on the elutriates were significantly correlated with elutriate pH (p < 0.01). Significant (p < 0.05) correlations between the induction of hepatic metallothionein in tilapia (Oreochromis mossambicus) and metal concentrations (Cu, Zn, Pb) in sediments were also observed, when fish were fed with diets containing sediment. The results showed that uncontrolled e-waste recycling activities may bring adverse effects to local aquatic ecosystem. - Toxicity tests using different trophic organisms provided important information, supplementing chemical analyses.

  5. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    Science.gov (United States)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  6. Induction of mouthpart deformities in chironomid larvae exposed to contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Di Veroli, Alessandra [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Goretti, Enzo [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Paumen, Miriam Leon; Kraak, Michiel H.S.; Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam (Netherlands)

    2012-07-15

    The aim of the present study was to improve the cause-effect relationship between toxicant exposure and chironomid mouthpart deformities, by linking induction of mouthpart deformities to contaminated field sediments, metal mixtures and a mutagenic polycyclic aromatic compound metabolite (acridone). Mouthpart deformities in Chironomus riparius larvae were induced by both the heavy metal mixture and by acridone. A clear correlation between metal concentrations in the sediment and deformities incidence was only observed when the contaminated field sediments were left out of the analysis, probably because these natural sediments contained other toxic compounds, which could be responsible for a higher incidence of deformities than predicted by the measured metal concentrations only. The present study clearly improved the cause-effect relationship between toxicant exposure and the induction of mouthpart deformities. It is concluded that the incidence of mouthpart deformities may better reflect the potential toxicity of contaminated sediments than chemical analysis. - Highlights: Black-Right-Pointing-Pointer We tested the induction of deformities in C. riparius in laboratory toxicity experiments. Black-Right-Pointing-Pointer We used field sediments and spiked sediments with heavy metals and mutagenic PAC. Black-Right-Pointing-Pointer Mouthpart deformities were induced both by heavy metal mixtures and by acridone. Black-Right-Pointing-Pointer A correlation between metal concentrations in the sediment and deformities was found. Black-Right-Pointing-Pointer Mouthpart deformities better reflect the toxicity of sediments than chemical analysis. - Mouthpart deformities of Chironomus riparius larvae better reflect the toxicity of sediments than chemical analysis.

  7. Comparison of five bioassay techniques for assessing sediment-bound contaminants

    OpenAIRE

    Ahlf, Wolfgang; Calmano, Wolfgang; Erhard, Judith; Förstner, Ulrich

    1989-01-01

    Biological response could not be predicted based on chemical concentration of the sediment contaminants. Bioassays integrate the response of test organisms to contaminants and nutrients. Comparative results of five acute bioassays indicated that Neubauer phytoassay was the most sensitive. The mircobial biomass and algal growth tests indicated a response to the availability of contaminants and nutrients. These results suggest the usefulness of a diversity of bioassays in toxicity testing of se...

  8. Evidence for the bioavailability of PAH from oiled beach sediments in situ

    International Nuclear Information System (INIS)

    Hodson, P.V.; Cross, T.; Ewert, A.; Zambon, S.; Lee, K.

    2002-01-01

    Biological responses that reflect the flux of hydrocarbons through fish can be used to determine the impact that oil spills have on fish. In this study, the exposure and toxicity to fish of oiled sediments was assessed in a freshwater semidiurnal tidal area of the St. Lawrence River in Quebec and at a tidal salt marsh at Petpeswick Inlet in Nova Scotia. The effectiveness of wetland bioremediation strategies was assessed by monitoring the bioavailability and toxicity of oil-derived polycyclic aromatic hydrocarbons (PAH) to early life stages of fish. Bioavailability was assessed through laboratory bioassays of cytochrome P450 (CYP1A) enzymes in trout exposed to 500 g of sediments in 10 L of water. PAH was found to be still bioavailable to fish up to 14 months after oiling, but the extent of exposure decreased steadily over time. The study presented a worst-case scenario in which sediments are disturbed and mixed. When beach sediments were not disturbed, however, PAH was also bioavailable in situ 12 months after oiling, but to a much lesser degree. It was concluded that these tests are a good way to show the benefits of oil spill remediation in reducing the exposure of fish to PAH. 8 refs., 5 figs

  9. Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments.

    Science.gov (United States)

    Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A

    2014-06-01

    In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.

  10. Genotoxic and teratogenic potential of marine sediment extracts investigated with comet assay and zebrafish test

    International Nuclear Information System (INIS)

    Kammann, Ulrike; Biselli, Scarlett; Huehnerfuss, Heinrich; Reineke, Ninja; Theobald, Norbert; Vobach, Michael; Wosniok, Werner

    2004-01-01

    Organic extracts of marine sediments from the North Sea and the Baltic Sea were investigated with two toxicity assays. The comet assay based on the fish cell line Epithelioma papulosum cyprini (EPC) was applied to determine the genotoxic potential; zebrafish embryos (Danio rerio) were used to quantify the teratogenic potential of the samples. EC 50 values were calculated from dose-response curves for both test systems. Highest teratogenic and genotoxic effects normalised to total organic carbon (TOC) content were detected in sediment samples of different origins. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) are not likely to be the causes of the observed effects, as demonstrated by a two-step fractionation procedure of selected extracts. The toxic potential was more pronounced in fractions having polarity higher than those possessed by PAHs and PCBs. The suitability of the two in vitro test systems for assessing genotoxic and teratogenic effects of marine sediment extracts could be demonstrated. - Capsule: In vitro toxicity assays are used to assess genotoxic and teratogenic effects of environmental extracts

  11. An alternative approach to assessing feasibility of flushing sediment from reservoirs

    Directory of Open Access Journals (Sweden)

    Elfimov Valeriy Ivanovich

    2014-07-01

    Full Text Available Effective parameters on feasibility of sediment flushing through reservoirs include hydrological, hydraulic, and topographic properties of the reservoirs. In this study, the performances of the Decision tree forest (DTF and Group method of data handling (GMDH for assessing feasibility of flushing sediment from reservoirs, were investigated. In this way, Decision tree Forest, that combines multiple Decision tree, used to evaluate the relative importance of factors affecting flushing sediment. At the second step, GMDH deployed to predict the feasibility of flushing sediment from reservoirs. Results indicate that these models, as an efficient novel approach with an acceptable range of error, can be used successfully for assessing feasibility of flushing sediment from reservoirs.

  12. Benthic invertebrate exposure and chronic toxicity risk analysis for cyclic volatile methylsiloxanes: Comparison of hazard quotient and probabilistic risk assessment approaches.

    Science.gov (United States)

    Woodburn, Kent B; Seston, Rita M; Kim, Jaeshin; Powell, David E

    2018-02-01

    This study utilized probabilistic risk assessment techniques to compare field sediment concentrations of the cyclic volatile methylsiloxane (cVMS) materials octamethylcyclotetrasiloxane (D4, CAS # 556-67-2), decamethylcyclopentasiloxane (D5, CAS # 541-02-6), and dodecamethylcyclohexasiloxane (D6, CAS # 540-97-6) to effect levels for these compounds determined in laboratory chronic toxicity tests with benthic organisms. The concentration data for D4/D5/D6 in sediment were individually sorted and the 95th centile concentrations determined in sediment on an organic carbon (OC) fugacity basis. These concentrations were then compared to interpolated 5th centile benthic sediment no-observed effect concentration (NOEC) fugacity levels, calculated from a distribution of chronic D4/D5/D6 toxicologic assays per OECD guidelines using a variety of standard benthic species. The benthic invertebrate fugacity biota NOEC values were then compared to field-measured invertebrate biota fugacity levels to see if risk assessment evaluations were similar on a field sediment and field biota basis. No overlap was noted for D4 and D5 95th centile sediment and biota fugacity levels and their respective 5th centile benthic organism NOEC values. For D6, there was a small level of overlap at the exposure 95th centile sediment fugacity and the 5th centile benthic organism NOEC fugacity value; the sediment fugacities indicate that a negligible risk (1%) exists for benthic species exposed to D6. In contrast, there was no indication of risk when the field invertebrate exposure 95th centile biota fugacity and the 5th centile benthic organism NOEC fugacity values were compared. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Weight-of-evidence on environmental impact assessment of metal contaminated sediments in the São Francisco river (Três Marias - Minas Gerais - Brazil: a case study

    Directory of Open Access Journals (Sweden)

    DF. Almeida

    Full Text Available The weight-of-evidence - WOE approach was used to assess the environmental impact of sediments contaminated by metals in the São Francisco river and one of its tributaries, Consciência creek, both affected by anthropic activities, in the region of Três Marias (Minas Gerais/Brazil. The assessment provided support to a risk management decision. The WOE was based on bulk metal analysis, AVS-SEM assays, elutriate tests, ecotoxicity assays, benthic community assessment and a comparison for the reference area. Brazilian legislation and other available literature were used as criteria to evaluate the lines of evidence. All samples, except for the reference area, presented some contamination. However, geochemical testing for bioavailability studies showed that toxicity is unlikely as suggested by the chemical results. Ecotoxicity and benthic structure studies provided further information to support decision making. Metal acid volatile sulfide formation mechanisms were identified, which can eventually attenuate metal toxicity observed. The removal of active sources of contamination (for example, from tailings dumps associated with Monitoring Natural Recovery could be sufficient to eventually lessen the risk of the biota in São Francisco river sediments.

  14. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implications for a regional risk assessment

    International Nuclear Information System (INIS)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J.; You, Jing

    2014-01-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air–water flux, including air–water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air–water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. - Highlights: • Transport fluxes of chlorpyrifos and pyrethroids were assessed in Guangzhou, China. • Sediment acted as a sink for chlorpyrifos and pyrethroids. • Air-to-water transport decreased the exposure risk of atmospheric chlorpyrifos. • Dynamic transport might increase the risk of pyrethroids in air and sediment. • Flux-based pesticide concentrations provide a way to estimate sediment toxicity. - Regional risk assessment could be improved by integrating dynamic flux information derived from inter-compartmental models

  15. Determining the sources of fine-grained sediment using the Sediment Source Assessment Tool (Sed_SAT)

    Science.gov (United States)

    Gorman Sanisaca, Lillian E.; Gellis, Allen C.; Lorenz, David L.

    2017-07-27

    A sound understanding of sources contributing to instream sediment flux in a watershed is important when developing total maximum daily load (TMDL) management strategies designed to reduce suspended sediment in streams. Sediment fingerprinting and sediment budget approaches are two techniques that, when used jointly, can qualify and quantify the major sources of sediment in a given watershed. The sediment fingerprinting approach uses trace element concentrations from samples in known potential source areas to determine a clear signature of each potential source. A mixing model is then used to determine the relative source contribution to the target suspended sediment samples.The computational steps required to apportion sediment for each target sample are quite involved and time intensive, a problem the Sediment Source Assessment Tool (Sed_SAT) addresses. Sed_SAT is a user-friendly statistical model that guides the user through the necessary steps in order to quantify the relative contributions of sediment sources in a given watershed. The model is written using the statistical software R (R Core Team, 2016b) and utilizes Microsoft Access® as a user interface but requires no prior knowledge of R or Microsoft Access® to successfully run the model successfully. Sed_SAT identifies outliers, corrects for differences in size and organic content in the source samples relative to the target samples, evaluates the conservative behavior of tracers used in fingerprinting by applying a “Bracket Test,” identifies tracers with the highest discriminatory power, and provides robust error analysis through a Monte Carlo simulation following the mixing model. Quantifying sediment source contributions using the sediment fingerprinting approach provides local, State, and Federal land management agencies with important information needed to implement effective strategies to reduce sediment. Sed_SAT is designed to assist these agencies in applying the sediment fingerprinting

  16. Testing lagoonal sediments with early life stages of the copepod Acartia tonsa (Dana): An approach to assess sediment toxicity in the Venice Lagoon

    DEFF Research Database (Denmark)

    Picone, Marco; Bergamin, Martina; Delaney, Eugenia

    2018-01-01

    between samples and control) and to investigate the possible correlation with sediment chemistry and physical properties. The results showed that statistical performances of the LDR test with A. tonsa correspond with the outcomes of other tests applied to the sediment-water interface (Strongylocentrotus...

  17. Assessing temporal variations in connectivity through suspended sediment hysteresis analysis

    Science.gov (United States)

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; Melland, Alice; Mellander, Per-Erik; hUallacháin, Daire Ó.

    2016-04-01

    Connectivity provides a valuable concept for understanding catchment-scale sediment dynamics. In intensive agricultural catchments, land management through tillage, high livestock densities and extensive land drainage practices significantly change hydromorphological behaviour and alter sediment supply and downstream delivery. Analysis of suspended sediment-discharge hysteresis has offered insights into sediment dynamics but typically on a limited selection of events. Greater availability of continuous high-resolution discharge and turbidity data and qualitative hysteresis metrics enables assessment of sediment dynamics during more events and over time. This paper assesses the utility of this approach to explore seasonal variations in connectivity. Data were collected from three small (c. 10 km2) intensive agricultural catchments in Ireland with contrasting morphologies, soil types, land use patterns and management practices, and are broadly defined as low-permeability supporting grassland, moderate-permeability supporting arable and high-permeability supporting arable. Suspended sediment concentration (using calibrated turbidity measurements) and discharge data were collected at 10-min resolution from each catchment outlet and precipitation data were collected from a weather station within each catchment. Event databases (67-90 events per catchment) collated information on sediment export metrics, hysteresis category (e.g., clockwise, anti-clockwise, no hysteresis), numeric hysteresis index, and potential hydro-meteorological controls on sediment transport including precipitation amount, duration, intensity, stream flow and antecedent soil moisture and rainfall. Statistical analysis of potential controls on sediment export was undertaken using Pearson's correlation coefficient on separate hysteresis categories in each catchment. Sediment hysteresis fluctuations through time were subsequently assessed using the hysteresis index. Results showed the numeric

  18. Improvement of a free software tool for the assessment of sediment connectivity

    Science.gov (United States)

    Crema, Stefano; Lanni, Cristiano; Goldin, Beatrice; Marchi, Lorenzo; Cavalli, Marco

    2015-04-01

    Sediment connectivity expresses the degree of linkage that controls sediment fluxes throughout landscape, in particular between sediment sources and downstream areas. The assessment of sediment connectivity becomes a key issue when dealing with risk mitigation and priorities of intervention in the territory. In this work, the authors report the improvements made to an open source and stand-alone application (SedInConnect, http://www.sedalp.eu/download/tools.shtml), along with extensive applications to alpine catchments. SedInConnect calculates a sediment connectivity index as expressed in Cavalli et al. (2013); the software improvements consisted primarily in the introduction of the sink feature, i.e. areas that act as traps for sediment produced upstream (e.g., lakes, sediment traps). Based on user-defined sinks, the software decouples those parts of the catchment that do not deliver sediment to a selected target of interest (e.g., fan apex, main drainage network). In this way the assessment of sediment connectivity is achieved by taking in consideration effective sediment contributing areas. Sediment connectivity analysis has been carried out on several catchments in the South Tyrol alpine area (Northern Italy) with the goal of achieving a fast and objective characterization of the topographic control on sediment transfer. In addition to depicting the variability of sediment connectivity inside each basin, the index of connectivity has proved to be a valuable indicator of the dominant process characterizing the basin sediment dynamics (debris flow, bedload, mixed behavior). The characterization of the dominant process is of great importance for the hazard and risk assessment in mountain areas, and for choice and design of structural and non-structural intervention measures. The recognition of the dominant sediment transport process by the index of connectivity is in agreement with evidences arising from post-event field surveys and with the application of

  19. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    ) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of polluted sediments. Glass jars with µm-thin silicone coatings on the inner walls can be used for ex situ equilibration while a device housing several silicone-coated fibers can be used for in situ equilibration. In both cases, parallel sampling with varying silicone thicknesses can be applied to confirm...... will focus at the latest developments in equilibrium sampling concepts and methods. Further, we will explain how these approaches can provide a new basis for a thermodynamic assessment of polluted sediments....

  20. Assessing the ecological risk of polycyclic aromatic hydrocarbons in sediments at Langkawi Island, Malaysia.

    Science.gov (United States)

    Nasher, Essam; Heng, Lee Yook; Zakaria, Zuriati; Surif, Salmijah

    2013-01-01

    Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH) in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID) was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g⁻¹ with a mean concentration of 1167.00 ± 24 ng g⁻¹, lower than the SQG effects range-low (3442 ng g⁻¹). The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites.

  1. Effects of clay minerals and organic matter in formulated sediments on the bioavailability of sediment-associated uranium to the freshwater midge, Chironomus dilutus

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Sarah E., E-mail: sarah.crawford@usask.ca [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 (Canada); Liber, Karsten, E-mail: karsten.liber@usask.ca [Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 (Canada); School of Environment and Sustainability, 117 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5C8 (Canada); Institute of Loess Plateau, 92 Wucheng Road, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2015-11-01

    It is well established that bioavailability influences metal toxicity in aquatic ecosystems. However, the factors and mechanisms that influence uranium (U) bioavailability and toxicity in sediment have not been thoroughly evaluated, despite evidence that suggests different sediment components can influence the sorption and interaction of some metals. Given that dissolved U is generally accepted as being the primary bioavailable fraction of U, it is hypothesized that adsorption and interaction of U with different sediment components will influence the bioavailability of U in sediment. We investigated the effects of key sediment physicochemical properties on the bioavailability of U to a model freshwater benthic invertebrate, Chironomus dilutus. Several 10-day spiked sediment bioaccumulation experiments were performed, exposing C. dilutus larvae to a variety of formulated sediments spiked with different concentrations of U (5, 50 and/or 200 mg U/kg d.w.). Mean accumulation of U in C. dilutus larvae decreased significantly from 1195 to 10 mg U/kg d.w. as kaolin clay content increased from 0% to 60% in sediment spiked with 50 mg U/kg d.w. Similarly, higher organic matter content also resulted in a significant reduction of U bioaccumulation in C. dilutus larvae, indicating a reduction in U bioavailability. Concentrations of U in both the overlying water and sediment pore water displayed a strong positive relationship to U bioaccumulation in C. dilutus larvae (r{sup 2} = 0.77, p < 0.001 and r{sup 2} = 0.57, p < 0.001, respectively) for all experiments, while total U concentrations in the sediment had a poor relationship to U bioaccumulation (r{sup 2} = 0.10, p = 0.028). Results from this research confirm that sediment clay and organic matter content play a significant role in altering U bioavailability, which is important in informing risk assessments of U contaminated sites and in the development of site-specific sediment quality guidelines for U. - Highlights: • We

  2. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview.

    Science.gov (United States)

    Li, Huizhen; Cheng, Fei; Wei, Yanli; Lydy, Michael J; You, Jing

    2017-02-15

    Pyrethroids are the third most applied group of insecticides worldwide and are extensively used in agricultural and non-agricultural applications. Pyrethroids exhibit low toxicity to mammals, but have extremely high toxicity to fish and non-target invertebrates. Their high hydrophobicity, along with pseudo-persistence due to continuous input, indicates that pyrethroids will accumulate in sediment, pose long-term exposure concerns to benthic invertebrates and ultimately cause significant risk to benthic communities and aquatic ecosystems. The current review synthesizes the reported sediment concentrations of pyrethroids and associated toxicity to benthic invertebrates on a global scale. Geographically, the most studied area was North America, followed by Asia, Europe, Australia and Africa. Pyrethroids were frequently detected in both agricultural and urban sediments, and bifenthrin and cypermethrin were identified as the main contributors to toxicity in benthic invertebrates. Simulated hazard quotients (HQ) for sediment-associated pyrethroids to benthic organisms ranged from 10.5±31.1 (bifenthrin) to 41.7±204 (cypermethrin), suggesting significant risk. The current study has provided evidence that pyrethroids are not only commonly detected in the aquatic environment, but also can cause toxic effects to benthic invertebrates, and calls for better development of accurate sediment quality criteria and effective ecological risk assessment methods for this emerging class of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development of a sample preparation method for the analysis of current-use pesticides in sediment using gas chromatography.

    Science.gov (United States)

    Wang, Dongli; Weston, Donald P; Ding, Yuping; Lydy, Michael J

    2010-02-01

    Pyrethroid insecticides have been implicated as the cause of sediment toxicity to Hyalella azteca in both agricultural and urban areas of California; however, for a subset of these toxic sediments (approximately 30%), the cause of toxicity remains unidentified. This article describes the analytical method development for seven additional pesticides that are being examined to determine if they might play a role in the unexplained toxicity. A pressurized liquid extraction method was optimized to simultaneously extract diazinon, methyl parathion, oxyfluorfen, dicofol, fenpropathrin, pyraclostrobin, and indoxacarb from sediment, and the extracts were cleaned using a two-step solid-phase extraction procedure. The final extract was analyzed for the target pesticides by gas chromatography/nitrogen-phosphorus detector (GC/NPD), and gas chromatography/electron capture detector (GC/ECD), after sulfur was removed by shaking with copper and cold crystallization. Three sediments were used as reference matrices to assess method accuracy and precision. Method detection limits were 0.23-1.8 ng/g dry sediment using seven replicates of sediment spiked at 1.0 ng/g dry sediment. Recoveries ranged from 61.6 to 118% with relative standard deviations of 2.1-17% when spiked at 5.0 and 50 ng/g dry sediment. The three reference sediments, spiked with 50 ng/g dry weight of the pesticide mixture, were aged for 0.25, 1, 4, 7, and 14 days. Recoveries of the pesticides in the sediments generally decreased with increased aging time, but the magnitude of the decline was pesticide and sediment dependent. The developed method was applied to field-collected sediments from the Central Valley of California.

  4. Civil migration and risk assessment methodology

    International Nuclear Information System (INIS)

    Onishi, Y.; Brown, S.M.; Olsen, A.R.; Parkhurst, M.A.

    1981-01-01

    To provide a scientific basis for risk assessment and decision making, the Chemical Migration and Risk Assessment (CMRA) Methodology was developed to simulate overland and instream toxic containment migration and fate, and to predict the probability of acute and chronic impacts on aquatic biota. The simulation results indicated that the time between the pesticide application and the subsequent runoff producing event was the most important factor determining the amount of the alachlor. The study also revealed that sediment transport has important effects on contaminant migration when sediment concentrations in receiving streams are high or contaminants are highly susceptible to adsorption by sediment. Although the capabilities of the CMRA methodology were only partially tested in this study, the results demonstrate that methodology can be used as a scientific decision-making tool for toxic chemical regulations, a research tool to evaluate the relative significance of various transport and degradation phenomena, as well as a tool to examine the effectiveness of toxic chemical control practice

  5. Site-specific sediment clean-up objectives developed by the sediment quality triad

    International Nuclear Information System (INIS)

    Redman, S.; Janisch, T.

    1995-01-01

    Sediment chemistry, sediment toxicity, and benthic macroinvertebrate community data were collected and evaluated in concert (1) to characterize adverse effects of hydrocarbon and metal contaminants in the sediments of a small inlet of Superior Bay, Lake Superior and a tributary creek and (2) to derive numeric objectives for the clean up of this system. Sediments from reference locations and eight study sites were analyzed for a range of contaminants, including hydrocarbons (measured both as diesel range organics (DRO) and oil and grease), lead, chromium, and ammonia. A range of sediment toxicity was observed across the eight study sites using a variety of tests and endpoints: Hyalella azteca (10 day survival and growth), Chironomus tentans (10 day survival and growth), Ceriodaphnia dubia (48 hour survival), and Daphnia magna (48 hour survival and 10 day survival and reproduction). A range of alterations of the benthic macroinvertebrate community compared with communities from reference locations were observed. Benthic community alterations were summarized quantitatively by taxa richness and Shannon-Weiner mean diversity. Lowest effect levels determined through this study included 150 microg/g dry sediment for DRO (as measured in this study) and 40 microg/g dry sediment for lead. Effects thresholds determined through this study included 1,500 microg/g dry sediment for DRO and 90 microg/g dry sediment for lead. These levels and concentrations measured in relevant reference locations are being used to define objectives for sediment clean up in the inlet and creek

  6. A novel approach for assessments of erythrocyte sedimentation rate.

    Science.gov (United States)

    Pribush, A; Hatskelzon, L; Meyerstein, N

    2011-06-01

    Previous studies have shown that the dispersed phase of sedimenting blood undergoes dramatic structural changes: Discrete red blood cell (RBC) aggregates formed shortly after a settling tube is filled with blood are combined into a continuous network followed by its collapse via the formation of plasma channels, and finally, the collapsed network is dispersed into individual fragments. Based on this scheme of structural transformation, a novel approach for assessments of erythrocyte sedimentation is suggested. Information about erythrocyte sedimentation is extracted from time records of the blood conductivity measured after a dispersion of RBC network into individual fragments. It was found that the sedimentation velocity of RBC network fragments correlates positively with the intensity of attractive intercellular interactions, whereas no effect of hematocrit (Hct) was observed. Thus, unlike Westergren erythrocyte sedimentation rate, sedimentation data obtained by the proposed method do not require correction for Hct. © 2010 Blackwell Publishing Ltd.

  7. Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, John E., E-mail: john.weinstein@citadel.edu [Department of Biology, The Citadel, Charleston, SC (United States); Crawford, Kevin D. [Department of Chemistry, University of Wisconsin-Oshkosh, Oshkosh, WI (United States); Garner, Thomas R. [Institute of Environmental Toxicology, Clemson University, Pendleton, SC (United States); Flemming, Alan J. [South Carolina Department of Health and Environmental Control, Charleston, SC (United States)

    2010-06-15

    Screening-level ecological and human health assessments were performed for polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of 19 stormwater detention ponds located in coastal South Carolina. For ecological screening benchmarks, we used threshold and probable effect concentrations (TEC and PEC) derived from consensus-based sediment quality guidelines for individual PAH analytes and equilibrium partitioning sediment benchmarks-toxic units ({Sigma}ESB-TU) derived for PAH mixtures. For human health benchmarks, we used preliminary remediation goals (PRGs). Sediments of five stormwater ponds (four commercial ponds and one residential pond with a large drainage area) exceeded PEC values for several PAH analytes and the {Sigma}ESB-TU safe value of 1 for PAH mixtures. These same five stormwater ponds also exceeded the PRG values for five carcinogenic PAH analytes. These results suggest that the PAH levels in sediments from certain commercial and residential ponds have the potential to pose moderate to high risks for adverse, chronic effects to benthic organisms in situ and an increased risk of cancer to humans ex situ following excavation and on-site disposal. We recommend that sediment from these stormwater ponds be tested prior to excavation to determine the appropriate method of disposal. We also recommend that regulatory agencies enforce guidelines for periodic sediment removal as this should reduce both in situ and ex situ risks resulting from sediment PAH exposure.

  8. Screening-level ecological and human health risk assessment of polycyclic aromatic hydrocarbons in stormwater detention pond sediments of Coastal South Carolina, USA

    International Nuclear Information System (INIS)

    Weinstein, John E.; Crawford, Kevin D.; Garner, Thomas R.; Flemming, Alan J.

    2010-01-01

    Screening-level ecological and human health assessments were performed for polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of 19 stormwater detention ponds located in coastal South Carolina. For ecological screening benchmarks, we used threshold and probable effect concentrations (TEC and PEC) derived from consensus-based sediment quality guidelines for individual PAH analytes and equilibrium partitioning sediment benchmarks-toxic units (ΣESB-TU) derived for PAH mixtures. For human health benchmarks, we used preliminary remediation goals (PRGs). Sediments of five stormwater ponds (four commercial ponds and one residential pond with a large drainage area) exceeded PEC values for several PAH analytes and the ΣESB-TU safe value of 1 for PAH mixtures. These same five stormwater ponds also exceeded the PRG values for five carcinogenic PAH analytes. These results suggest that the PAH levels in sediments from certain commercial and residential ponds have the potential to pose moderate to high risks for adverse, chronic effects to benthic organisms in situ and an increased risk of cancer to humans ex situ following excavation and on-site disposal. We recommend that sediment from these stormwater ponds be tested prior to excavation to determine the appropriate method of disposal. We also recommend that regulatory agencies enforce guidelines for periodic sediment removal as this should reduce both in situ and ex situ risks resulting from sediment PAH exposure.

  9. Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments

    Energy Technology Data Exchange (ETDEWEB)

    Perrodin, Yves, E-mail: perrodin@entpe.fr [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Donguy, Gilles [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Bazin, Christine [INSAVALOR, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Volatier, Laurence; Durrieu, Claude [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Bony, Sylvie; Devaux, Alain [Universite de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); INRA, USC IGH, UMR LEHNA, 2, rue Maurice Audin, 69518 Vaulx-en-Velin (France); Abdelghafour, Mohammed; Moretto, Robert [INSAVALOR, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex (France)

    2012-08-01

    The dredged sediments of polluted seaports now raise complex management problems since it is no longer possible to discharge them into the sea. This results in the need to manage them on land, raising other types of technical, economic and environmental problems. Regarding the technical and economic dimensions, traditional waste treatment methods have proved to be poorly adapted, due to very high costs and low absorbable volumes. In this context, filling quarries in coastal areas with treated sediments could represent an interesting alternative for these materials. Nevertheless, for the environmental dimension, it is necessary to demonstrate that this possibility is harmless to inland ecosystems. Consequently, a specific ecotoxicological risk assessment methodology has been formulated and tested on three sediments taken from seaboards of France, in view to providing an operational and usable tool for the prior validation of any operation to fill quarries with treated seaport sediments. This method incorporates the formulation of a global conceptual model of the scenario studied and the definition of protocols for each of its steps: the characterisation of exposures (based on a simulation of sediment deposit), the characterisation of effects (via the study of sediments ecotoxicity), and the final ecotoxicological risk assessment performed as a calculation of a risk quotient. It includes the implementation in parallel of two types of complementary approach: the 'substances' approach derived from the European methodology for assessing new substances placed on the market, and the 'matrix' approach which is similar to methods developed in France to assess ecological risks in other domains (waste management, polluted site management, Horizontal-Ellipsis ). The application of this dual approach to the three sediments tested led to conclude with reliability that the project to deposit sediments '1' and '2' presented a low risk for

  10. Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments

    International Nuclear Information System (INIS)

    Perrodin, Yves; Donguy, Gilles; Bazin, Christine; Volatier, Laurence; Durrieu, Claude; Bony, Sylvie; Devaux, Alain; Abdelghafour, Mohammed; Moretto, Robert

    2012-01-01

    The dredged sediments of polluted seaports now raise complex management problems since it is no longer possible to discharge them into the sea. This results in the need to manage them on land, raising other types of technical, economic and environmental problems. Regarding the technical and economic dimensions, traditional waste treatment methods have proved to be poorly adapted, due to very high costs and low absorbable volumes. In this context, filling quarries in coastal areas with treated sediments could represent an interesting alternative for these materials. Nevertheless, for the environmental dimension, it is necessary to demonstrate that this possibility is harmless to inland ecosystems. Consequently, a specific ecotoxicological risk assessment methodology has been formulated and tested on three sediments taken from seaboards of France, in view to providing an operational and usable tool for the prior validation of any operation to fill quarries with treated seaport sediments. This method incorporates the formulation of a global conceptual model of the scenario studied and the definition of protocols for each of its steps: the characterisation of exposures (based on a simulation of sediment deposit), the characterisation of effects (via the study of sediments ecotoxicity), and the final ecotoxicological risk assessment performed as a calculation of a risk quotient. It includes the implementation in parallel of two types of complementary approach: the “substances” approach derived from the European methodology for assessing new substances placed on the market, and the “matrix” approach which is similar to methods developed in France to assess ecological risks in other domains (waste management, polluted site management, …). The application of this dual approach to the three sediments tested led to conclude with reliability that the project to deposit sediments “1” and “2” presented a low risk for the peripheral aquatic ecosystems while

  11. The use of Ampelisca abdita growth rate as an indicator of sediment quality

    International Nuclear Information System (INIS)

    Weston, D.P.; Thompson, B.

    1995-01-01

    Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs. the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well

  12. The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis.

    Science.gov (United States)

    Chai, Minwei; Shen, Xiaoxue; Li, Ruili; Qiu, Guoyu

    2015-08-15

    The risks of heavy metal in Futian mangrove forest sediment were assessed using the acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) methods. The results indicated that AVS distributions were more variable than the SEM distributions at all 16 sampling sites. The positive correlation between AVS and SEM indicated that their similar formative and existing conditions and that AVS acted as an important carrier for SEM. The major SEM component was Zn (69.7.3-94.2%), whereas the Cd contribution (the most toxic metal present) to SEM was no more than 1%. The possible adverse effects caused by heavy metals at ten sampling sites may be due to higher levels of SEMs, rather than AVSs. The total organic carbon (TOC) was an important metal-binding phase in the sediments. Taking into account the TOC concentration, there were no adverse effects due to heavy metals in any of the Futian mangrove forest sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. ACUTE TOXICITY OF FIVE SEDIMENT-ASSOCIATED METALS, INDIVIDUALLY AND IN A MIXTURE, TO THE ESTUARINE MEIOBENTHIC HARPACTICOID COPEPOD AMPHIASCUS TENUIREMIS. (R825279)

    Science.gov (United States)

    AbstractThe acute effects of many individual, seawater-solubilized metals on meiobenthic copepods and nematodes are well known. In sediments, however, metals most often occur as mixtures, and it is not known whether such mixtures exhibit simple additive toxicity to me...

  14. Surface sediment quality relative to port activities: A contaminant-spectrum assessment.

    Science.gov (United States)

    Yu, Shen; Hong, Bing; Ma, Jun; Chen, Yongshan; Xi, Xiuping; Gao, Jingbo; Hu, Xiuqin; Xu, Xiangrong; Sun, Yuxin

    2017-10-15

    Ports are facing increasing environmental concerns with their importance to the global economy. Numerous studies indicated sediment quality deterioration in ports; however, the deterioration is not discriminated for each port activity. This study investigated a spectrum of contaminants (metals and organic pollutants) in surface sediments at 20 sampling points in Port Ningbo, China, one of the top five world ports by volume. The spectrum of contaminants (metals and organic pollutants) was quantified following marine sediment quality guidelines of China and USA and surface sediment quality was assessed according to thresholds of the two guidelines. Coupling a categorical matrix of port activities with the matrix of sedimentary contaminants revealed that contaminants were highly associated with the port operations. Ship repair posed a severe chemical risk to sediment. Operations of crude oil and coal loadings were two top activities related to organic pollutants in sediments while port operations of ore and container loadings discharged metals. Among the 20 sampling points, Cu, Zn, Pb, and DDT and its metabolites were the priority contaminants influencing sediment quality. Overall, surface sediments in Port Ningbo had relatively low environmental risks but ship repair is an environmental concern that must be addressed. This study provides a practical approach for port activity-related quality assessment of surface sediments in ports that could be applicable in many world sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Assessing diversity and phytoremediation potential of mangroves for copper contaminated sediments in Subic Bay, Philippines

    Science.gov (United States)

    Toxic metal pollution of water and soil is a major environmental problem and most conventional remediation approaches may not provide adequate solutions. An alternative way of reducing copper (Cu) concentration from contaminated sediments is through phytoremediation. Presently, there are few researc...

  16. The application of plant tests for sediment evaluation; Der Einsatz von Pflanzentests bei der Sedimentbewertung

    Energy Technology Data Exchange (ETDEWEB)

    Feiler, U. [Bundesanstalt fuer Gewaesserkunde, Koblenz (Germany); Claus, E. [Bundesanstalt fuer Gewaesserkunde, Berlin (Germany); Heininger, P. [Bundesanstalt fuer Gewaesserkunde, Koblenz (Germany); Bundesanstalt fuer Gewaesserkunde, Berlin (Germany)

    2002-07-01

    The aim of the present study is to demonstrate that the use of higher plants in biotests for analyses of anthropogenically contaminated sediments yields valuable results, which may be included in a concept for the integrated assessment of waters. The results of this study prove that the selected aquatic plant, Lemna minor, is basically able to indicate contamination. In the aquatic test of the sediment extracts, it showed weak, but very selective, responses to certain classes of contaminants. Fractionating of the sample and subsequent chemical analysis combined with toxicity tests allow to narrow down the groups of substances causing toxic effects. This toxicity was confirmed by analyses of the pore waters and whole sediment samples. Together with other toxicity tests (e.g. standardized bioassays) and combined with biological benthos examinations, an overall judgment can be given for the integrated assessment of waters. (orig.) [German] Ziel der hier vorgestellten Untersuchungen war es zu zeigen, dass der Einsatz von hoeheren Pflanzen in Biotests zur Untersuchung anthropogenen belasteter Sedimente wertvolle Ergebnisse liefert, die in einem Konzept zur integrierten Gewaesserbewertung verwendet werden koennen. Die Ergebnisse dieser Arbeit machen deutlich, dass die ausgewaehlte Wasserpflanze Lemna minor Schadstoffbelastungen grundsaetzlich anzeigt. Im aquatischen Test der Sedimentextrakte weist sie eine zwar schwache, aber sehr selektive Reaktion auf bestimmte Schadstoffklassen auf. Die Fraktionierung der Probe mit anschliessender Stoffanlayse kombiniert mit Toxizitaetstests erlaubt die Eingrenzung der toxisch wirksamen Stoffgruppen. Diese toxische Belastung wurde durch die Porenwasser- und Gesamtsedimentuntersuchung bestaetigt. Zusammen mit weiteren Toxizitaetstests (z.B. standardisierte Biotests) und in Kombination mit benthosbiologischen Untersuchngen ergibt sich eine Gesamtaussage zur integrierten Gewaesserbewertung. (orig.)

  17. Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Bioaccumulation from Bedded Sediments

    Science.gov (United States)

    1993-09-01

    Sediments were also analyzed for tributyltins . dibutyltins, and monobutyltins ( TBT , DBT, and MBT) by the Naval Command and Con- trol and Ocean... toxicity observed in earlier studies with OC sediment appears to be explained by a lack of contaminant uptake. Only tributyltin and silver were...Dillon, T. M., Suedel, B. C. (1991). "Chronic toxicity of tributyltin on the marine polychaete worm. Neanthes arenaceodentata," Aquatic Toxicol. 21, 181

  18. Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka.

    Science.gov (United States)

    Le Bihanic, Florane; Clérandeau, Christelle; Le Menach, Karyn; Morin, Bénédicte; Budzinski, Hélène; Cousin, Xavier; Cachot, Jérôme

    2014-12-01

    In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g(-1) dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.

  19. Integrated fate and toxicity assessment for site contaminants

    International Nuclear Information System (INIS)

    MacDonell, Margaret; Peterson, John; Finster, Molly; Douglas, R.

    2007-01-01

    Understanding the fate and toxicity of environmental contaminants is essential to framing practical management decisions. Forms and bioavailable concentrations often change over time due to natural physical, chemical, and biological processes. For some sites, hundreds of contaminants may be of initial interest, and even small projects can involve a substantial number of contaminants. With multiple assessments common, attention to effectiveness and efficiency is important, and integrating fate and toxicity information provides a valuable way to focus the analyses. Fate assessments help identify what forms may be present where and when, while toxicity information indicates what health effects could result if people were exposed. The integration process is illustrated by an application for the Hanford site, to support long-term management decisions for the cesium and strontium capsules. Fate data, health-based benchmarks, and related toxicity information were effectively combined to indicate performance targets for chemicals and radionuclides identified for capsule leachate that could migrate to groundwater. More than 50 relevant benchmarks and toxicity context were identified for 15 of the 17 study contaminants; values for chronic drinking water exposure provided the common basis for selected indicators. For two chemicals, toxicity information was identified from the scientific literature to guide the performance targets. (authors)

  20. An Assessment of health risk associated with mercury in soil and sediment from East Fork Poplar Creek, Oak Ridge, Tennessee. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Revis, N.; Holdsworth, G.; Bingham, G.; King, A.; Elmore, J.

    1989-04-01

    This report presents results from a study conducted to determine the toxicity of Mercury in soils sediments samples. Mice were fed via diet, soils and sediment, from various locations along the East Fork Poplar creek. Tissue distribution of pollutants was determined at various intervals. The tissue level relative to toxicity was used to determine the effect of a complex matrix on the gastrointestinal absorption and tissue distribution of the pollutants (other pollutants included cadmium and selenium).

  1. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves

    International Nuclear Information System (INIS)

    Basallote, M. Dolores; Rodríguez-Romero, Araceli; De Orte, Manoela R.; Del Valls, T. Ángel; Riba, Inmaculada

    2015-01-01

    Highlights: • Short-term tests using juveniles of bivalves to study the effects of CO 2 dissolved. • CO 2 causes effects if the threshold concentration of the organism is overlapped. • Flows of escaped CO 2 would affect the geochemical composition of sediment–seawater. • CO 2 -induced acidification would affect differently to marine sediment toxicity. - Abstract: The effects of the acidification associated with CO 2 leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO 2 -induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO 2 -bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1, 6.6, 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 to 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO 2 and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves

  2. Ecotoxicological risk assessment linked to infilling quarries with treated dredged seaport sediments.

    Science.gov (United States)

    Perrodin, Yves; Donguy, Gilles; Bazin, Christine; Volatier, Laurence; Durrieu, Claude; Bony, Sylvie; Devaux, Alain; Abdelghafour, Mohammed; Moretto, Robert

    2012-08-01

    The dredged sediments of polluted seaports now raise complex management problems since it is no longer possible to discharge them into the sea. This results in the need to manage them on land, raising other types of technical, economic and environmental problems. Regarding the technical and economic dimensions, traditional waste treatment methods have proved to be poorly adapted, due to very high costs and low absorbable volumes. In this context, filling quarries in coastal areas with treated sediments could represent an interesting alternative for these materials. Nevertheless, for the environmental dimension, it is necessary to demonstrate that this possibility is harmless to inland ecosystems. Consequently, a specific ecotoxicological risk assessment methodology has been formulated and tested on three sediments taken from seaboards of France, in view to providing an operational and usable tool for the prior validation of any operation to fill quarries with treated seaport sediments. This method incorporates the formulation of a global conceptual model of the scenario studied and the definition of protocols for each of its steps: the characterisation of exposures (based on a simulation of sediment deposit), the characterisation of effects (via the study of sediments ecotoxicity), and the final ecotoxicological risk assessment performed as a calculation of a risk quotient. It includes the implementation in parallel of two types of complementary approach: the "substances" approach derived from the European methodology for assessing new substances placed on the market, and the "matrix" approach which is similar to methods developed in France to assess ecological risks in other domains (waste management, polluted site management, …). The application of this dual approach to the three sediments tested led to conclude with reliability that the project to deposit sediments "1" and "2" presented a low risk for the peripheral aquatic ecosystems while sediment "3

  3. Development of a toxicity-based fractionation approach for the identification of phototoxic PAHs in pore water

    International Nuclear Information System (INIS)

    Kosian, P.A.; Makynen, E.A.; Ankley, G.T.; Monson, P.D.

    1995-01-01

    Environmental matrices often contain complex mixtures of chemical compounds, however, typically only a few chemicals are responsible for observed toxicity. To determine those chemicals responsible for toxicity, a toxicity-based fractionation technique coupled with gas chromatography/mass spectrometry (GC/MS) has been used for the isolation and identification of nonpolar toxicants in aqueous samples. In this study, this technique was modified to separate and identify polycyclic aromatic hydrocarbons (PAHs) responsible for phototoxicity in pore water. Whole pore water, obtained from sediments collected near an oil refinery discharge site, was found to be toxic to Lumbriculus variegatus in the presence of ultraviolet (UV) light. Solid phase extraction disks and high pressure liquid chromatography were used, in conjunction with toxicity tests with L. variegatus, to extract and fractionate phototoxic chemicals from the pore water. GC/MS analysis was performed on the toxic fractions and a tentative list of compound identifications were made based on interpretation of mass spectra and elution information from the chromatographic separation. The compounds identified include PAHs and substituted PAHs that are known or predicted to be phototoxic in the presence of UV light. The results show that a modified toxicity-based fractionation approach can be successfully applied to identify phototoxic PAHs in sediment pore water and therefore used in the assessment of contaminated sediments

  4. Assessment of trace metals pollution in estuarine sediments using SEM-AVS and ERM-ERL predictions.

    Science.gov (United States)

    Garcia, Carlos Alexandre Borges; Passos, Elisangela de Andrade; Alves, José do Patrocínio Hora

    2011-10-01

    This paper presents the distributions of the investigation of trace metals geochemistry in surface sediments of the Sergipe river estuary, northeast Brazil. Analyses were carried out by Flame or electrothermal atomic absorption spectrometry (FAAS or ETAAS). Principal component analysis was applied to results to identify any groupings among the different sampling sites. In order to determine the extent of contamination, taking into account natural variability within the region, metal concentrations were normalized relative to aluminium. Cr, Cu, Ni and Zn contamination was observed in sediments from the area receiving highest inputs of domestic wastes, while cadmium contamination occurred in sediments from the region affected by highest inflows of industrial effluents. Possible toxicity related to these metals was examined using the relationship simultaneously extracted metals/acid volatile sulfide and by comparing sediment chemical data with sediment quality guidelines ERL-ERM values. Results obtained using the two methods were in agreement and indicated that adverse effects on aquatic biota should rarely occur.

  5. River sediment metal and nutrient variations along an urban-agriculture gradient in an arid austral landscape: implications for environmental health.

    Science.gov (United States)

    Dalu, Tatenda; Wasserman, Ryan J; Wu, Qihang; Froneman, William P; Weyl, Olaf L F

    2018-01-01

    The effect of metals on environmental health is well documented and monitoring these and other pollutants is considered an important part of environmental management. Developing countries are yet to fully appreciate the direct impacts of pollution on aquatic ecosystems and as such, information on pollution dynamics is scant. Here, we assessed the temporal and spatial dynamics of stream sediment metal and nutrient concentrations using contaminant indices (e.g. enrichment factors, pollution load and toxic risk indices) in an arid temperate environment over the wet and dry seasons. The mean sediment nutrient, organic matter and metal concentration were highest during the dry season, with high values being observed for the urban environment. Sediment contaminant assessment scores indicated that during the wet season, the sediment quality was acceptable, but not so during the dry season. The dry season had low to moderate levels of enrichment for metals B, Cu, Cr, Fe, Mg, K and Zn. Overall, applying the sediment pollution load index highlighted poor quality river sediment along the length of the river. Toxic risk index indicated that most sites posed no toxic risk. The results of this study highlighted that river discharge plays a major role in structuring temporal differences in sediment quality. It was also evident that infrastructure degradation was likely contributing to the observed state of the river quality. The study contributes to our understanding of pollution dynamics in arid temperate landscapes where vast temporal differences in base flow characterise the riverscape. Such information is further useful for contrasting sediment pollution dynamics in aquatic environments with other climatic regions.

  6. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Science.gov (United States)

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell

  7. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Directory of Open Access Journals (Sweden)

    Chrisler William B

    2010-11-01

    Full Text Available Abstract Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL. We have developed a computational model of solution particokinetics (sedimentation, diffusion and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation and the Stokes-Einstein equation (diffusion. Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm, 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a

  8. Organic carbon source in formulated sediments influences life traits and gene expression of Caenorhabditis elegans.

    Science.gov (United States)

    Franzen, Julia; Menzel, Ralph; Höss, Sebastian; Claus, Evelyn; Steinberg, Christian E W

    2012-03-01

    River water quality is strongly influenced by their sediments and their associated pollutants. To assess the toxic potential of sediments, sediment toxicity tests require reliable control sediments, potentially including formulated control sediments as one major option. Although some standardization has been carried out, one critical issue still remains the quality of sediment organic matter (SOM). Organic carbon not only binds hydrophobic contaminants, but may be a source of mild toxicity, even if the SOM is essentially uncontaminated. We tested two different sources of organic carbon and the mixture of both (Sphagnum peat (P) and one commercial humic substances preparation-HuminFeed(®), HF) in terms of life trait variables and expression profiles of selected life performance and stress genes of the nematode Caenorhabditis elegans. In synchronous cultures, gene expression profiling was done after 6 and 48 h, respectively. The uncontaminated Sphagnum P reduced growth, but increased numbers of offspring, whereas HF did not significantly alter life trait variables. The 6 h expression profile showed most of the studied stress genes repressed, except for slight to strong induction in cyp-35B1 (all exposures), gst-38 (only mixture), and small hsp-16 genes (all exposures). After 48 h, the expression of almost all studied genes increased, particularly genes coding for antioxidative defense, multiple xenobiotic resistance, vitellogenin-like proteins, and genes regulating lifespan. Overall, even essentially uncontaminated SOM may induce several modes of action on the molecular level in C. elegans which may lead to false results if testing synthetic xenobiotics. This contribution is a plea for a strict standardization of the SOM quality in formulated sediments and to check for corresponding effects in other model sediment organisms, especially if using molecular toxicity endpoints.

  9. Acute aquatic toxicity of tire and road wear particles to alga, daphnid, and fish.

    Science.gov (United States)

    Marwood, Christopher; McAtee, Britt; Kreider, Marisa; Ogle, R Scott; Finley, Brent; Sweet, Len; Panko, Julie

    2011-11-01

    Previous studies have indicated that tire tread particles are toxic to aquatic species, but few studies have evaluated the toxicity of such particles using sediment, the likely reservoir of tire wear particles in the environment. In this study, the acute toxicity of tire and road wear particles (TRWP) was assessed in Pseudokirchneriella subcapita, Daphnia magna, and Pimephales promelas using a sediment elutriate (100, 500, 1000 or 10000 mg/l TRWP). Under standard test temperature conditions, no concentration response was observed and EC/LC(50) values were greater than 10,000 mg/l. Additional tests using D. magna were performed both with and without sediment in elutriates collected under heated conditions designed to promote the release of chemicals from the rubber matrix to understand what environmental factors may influence the toxicity of TRWP. Toxicity was only observed for elutriates generated from TRWP leached under high-temperature conditions and the lowest EC/LC(50) value was 5,000 mg/l. In an effort to identify potential toxic chemical constituent(s) in the heated leachates, toxicity identification evaluation (TIE) studies and chemical analysis of the leachate were conducted. The TIE coupled with chemical analysis (liquid chromatography/mass spectrometry/mass spectrometry [LC/MS/MS] and inductively coupled plasma/mass spectrometry [ICP/MS]) of the leachate identified zinc and aniline as candidate toxicants. However, based on the high EC/LC(50) values and the limited conditions under which toxicity was observed, TRWP should be considered a low risk to aquatic ecosystems under acute exposure scenarios.

  10. Assessment of exposure-response functions for rocket-emission toxicants

    National Research Council Canada - National Science Library

    Subcommittee on Rocket-Emission Toxicants, National Research Council

    ... aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants...

  11. Human Health Toxicity Values in Superfund Risk Assessments

    Science.gov (United States)

    This memorandum revises the hierarchy of human health toxicity values generally recommended for use inr isk assessments, originally presented in Risk Assessment Guidance for Superfund Volume I, Part A.

  12. Quick, portable toxicity testing of marine or terrigenous fluids, sediments, or chemicals with bioluminescent organism

    International Nuclear Information System (INIS)

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L.

    1995-01-01

    A hand-held, battery-operated instrument, which measures bioluminescence inhibition of the microscopic marine dinoflagellate Pyrocystis lunula, is capable of field-testing substances for toxicity. The organism is sensitive to ppb of strong toxicants. It tolerates some solvents in concentrations necessary for testing lipophylic samples. A test consumes only micrograms of sample. This method requires no adjustments for salinity, pH, color, or turbidity. It has been used successfully to test oil-well drilling fluids, brines produced with oil, waters and sediments from streams and lakes and petroleum-plant effluents containing contaminants such as benzene. The test is non-specific; however, if the substance is known, the end-point effects a direct measurement of its concentration. One-hour toxicity screening tests in the field produce results comparable to the standard four-hour laboratory test. Keeping the sample in the dark during incubation and testing, together with shortness of the overall procedure, eliminates anomalies from light-sensitive substances. Day-to-day variation, as well as among test replicates, is less than 10%. This quick method yields results comparable with a quick test that uses Photobacterium phosphoria, and with 96-hour tests that use Mysidopsis bahia, Artemia salina, Gonyaulax polyedra, Pimephales promelas, Ceriodaphnia dubia, and Cyprinodon variegatus

  13. Using a tiered approach based on ecotoxicological techniques to assess the ecological risks of contamination in a subtropical estuarine protected area.

    Science.gov (United States)

    Campos, B G; Cruz, A C F; Buruaem, L M; Rodrigues, A P C; Machado, W T V; Abessa, D M S

    2016-02-15

    This study sought to assess the ecological risks of sediments from the northern portion of an estuarine protected area (Cananéia-Iguape-Peruíbe Protected Area--CIP-PA). The CIP-PA is located on the southern coast of São Paulo State, Brazil and is influenced by former mining activities along the Ribeira de Iguape River (RIR). We used a tiered approach based on multiple lines of evidence (geochemical analyses, toxicity tests, and whole sediment toxicity identification and evaluation) in order to assess environmental quality. The sediments presented a heterogeneous composition, but the samples collected close to the RIR exhibited higher concentrations of metals (Cd, Cr, Cu, Pb) and toxicity. Multivariate analysis showed that toxicity was associated with metals, mud, organic matter, and CaCO3 quantities. The whole-sediment toxicity identification evaluation approach indicated that ammonia and metals were responsible for sediment toxicity. Overall, we concluded that the sediments collected at depositional areas from the northern portion of the CIP-PA presented high levels of metals, which originated from former mining areas located in the upper RIR basin, and that this contamination had toxic effects on aquatic invertebrates. The tiered approach was useful for identifying the degradation of sediment quality and also for indicating the causes of toxicity. Because the CIP-PA is an important estuarine protected area that is ecologically at risk, large-scale measures are required to control the sources of contamination.

  14. Distribution, Source, and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Surface Sediment of Liaodong Bay, Northeast China

    Science.gov (United States)

    Xu, Shuang; Tao, Ping; Li, Yuxia; Guo, Qi; Zhang, Yan; Wang, Man; Jia, Hongliang; Shao, Mihua

    2018-01-01

    Sixteen polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from Liaodong Bay, northeast China. The concentration levels of total PAHs (Σ16PAHs) in sediment were 11.0˜249.6 ng·g-1 dry weight (dw), with a mean value of 89.9 ng·g-1 dry weight (dw). From the point of the spatial distribution, high PAHs levels were found in the western areas of Liaodong Bay. In the paper, sources of PAHs were investigated by diagnostic ratios, which indicated that pyrogenic sources were the main sources of PAHs in the sediment of Liaodong Bay. Therefore, selected PAH levels in sediments were compared with Sediments Quality Guidelines (ERM-ERL indexes) for evaluation probable toxic effects on marine organism.

  15. Assessing remediation of contaminated sediments using multiple biological endpoints: sediment toxicity, food web tissue contamination, biotic condition and DNA damage.

    Science.gov (United States)

    The Ottawa River is a component of the Maumee River Area of Concern (AOC) as defined by the International Joint Commission’s Great Lakes Water Quality Agreement. A sediment remediation project took place in the lower 14.2 km of the river where urban and industrial activitie...

  16. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges

    NARCIS (Netherlands)

    Rye, H.; Reed, M.; Frost, T.K.; Smit, M.G.D.; Durgut, S.

    2008-01-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was

  17. Ecotoxicological Assessment of Water and Sediment Pollution of the Iskar River bellow Samokov

    Directory of Open Access Journals (Sweden)

    Ivan Diadovski

    2005-04-01

    Full Text Available A system of integral ecological indices has been worked out to assess the level of pollution of water and sediments with hazardous substances. A model for the dynamics of the integral index for water and sediments pollution is proposed. This index was applied for ecotoxicological assessment of water and sediments pollution of the Iskar river bellow Samokov. A modification method on time series analysis is applied.

  18. Heavy metal pollution assessment in the sediments of lake Chad ...

    African Journals Online (AJOL)

    Sediments were collected from Dumba and KwataYobe of Lake Chad, Nigerian Sector.The aim was to assess the pollution statusof the sediments of the lake. The concentration of heavy metals, Cadmium (Cd), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), lead (Pb), Z (Zn) and Arsenic (As) were ...

  19. In vitro cytotoxic and teratogenic potential of sediment extracts from Skadar Lake using fish cell line RTL-W1 and Danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Perović Andrej

    2013-01-01

    Full Text Available As a part of Sediment Quality Triad (SQT, organic extracts of sediment from Skadar Lake (a Mediterranean lake and the largest freshwater reservoir in southeastern Europe were investigated in order to evaluate possible ecotoxicological contamination by organic pollutants and to obtain a comprehensive insight into the ecotoxicological hazard. Sediments were investigated for toxicity by two different bioassays. Acute cytotoxicity was investigated using the fibroblast-like cell line RTL-W1 (Oncorhynchus mykiss in combination with the neutral red retention assay. The embryos of zebrafish (Danio rerio were used to assess the toxic and teratogenic potential of organic extracts of the sediment. Preliminary results point to the presence of a cytotoxic and teratogenic potential in Skadar Lake sediment extracts in certain locations.

  20. Ecological impact assessment of sediment remediation in a metal-contaminated lowland river using translocated zebra mussels and resident macroinvertebrates

    International Nuclear Information System (INIS)

    De Jonge, M.; Belpaire, C.; Geeraerts, C.; De Cooman, W.; Blust, R.; Bervoets, L.

    2012-01-01

    The present study investigated to what extent accumulated metal levels in aquatic invertebrates can reflect environmental contamination and how these tissue levels can be related to alterations in macroinvertebrate communities in the dredged River Dommel. Metal accumulation was measured in translocated zebra mussels (Dreissena polymorpha) and resident Chironomidae. Furthermore, macroinvertebrate community composition was assessed. Our results indicated that trends of total metal concentrations in surface water of the Dommel in time are reflected well by metal levels in tissue of D. polymorpha. In contrast, sediment-bound metals were the most dominant exposure route for Chironomidae. Alterations in macroinvertebrate community composition were observed during dredging and significant relations between metal levels in invertebrate tissues and ecological responses were found. Our results demonstrated that metal accumulation in both zebra mussels and Chironomidae can be used as an integrated measure of metal bioavailability and to predict ecological effects of metal toxicity on macroinvertebrate communities. - Highlights: ► The use of tissue concentrations to assess environmental metal pollution was studied. ► Metal accumulation was measured in caged zebra mussels and resident Chironomidae. ► Shell condition of mussels and macroinvertebrate taxa distribution was assessed. ► Different accumulation between biota and relations with community level were found. ► Bioaccumulation is an integrated measure of metal toxicity in aquatic communities. - Metal accumulation in selected aquatic invertebrates can be used as an integrated measure of metal bioavailability and to predict ecological effects of metal toxicity.

  1. Improving toxicity assessment of pesticide mixtures: the use of polar passive sampling devices extracts in microalgae toxicity tests

    Directory of Open Access Journals (Sweden)

    Sandra KIM TIAM

    2016-09-01

    Full Text Available Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively aimed i at characterizing the toxic potential of waters using dose-response curves, and ii at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed.

  2. Subacute Oral Toxicity Assessment of Alchornea cordifolia ...

    African Journals Online (AJOL)

    Erah

    2010-10-21

    Oct 21, 2010 ... Histopathological assessment of liver sections of treated-rats showed normal ... Keywords: Alchornea cordifolia, Rats, Subacute oral toxicity, Neutrophils, Hepatocytes, Hydropic ..... albino rats against acetaminophen-induced.

  3. The environmental state of Lake Ladoga sediments, Russia

    International Nuclear Information System (INIS)

    Pellinen, J.; Ristola, T.; Kukkonen, J.; Leppaenen, M.; Hoof, P.L. van; Robbins, J.A.

    1994-01-01

    The authors collected sediments in the summer 1993 from Lake Ladoga for chemical analyses and toxicity tests to assess the state of the lake. The sediments were analyzed for heavy metals, fluorides, chlorinated hydrocarbons, polyaromatic hydrocarbons, and certain radionuclides related to the fallout from the Chernobyl accident. In general, the concentrations of toxic chemicals were low. Most chemicals were below the limit of detection. The range of the total concentration of 17 PCB congeners was from 6 to 30 ng/kg dw; the highest value was at the pulp and paper mill located in the northeastern shore of the lake (Pitkaeranta). The highest concentrations of Cr, Co, Ni, Cu, Zn, Pb were 10, 42, 46, 36, 188, and 143 μg/g dw, respectively. Arsene was not detected at all and Cd only at one out of 12 sites studied. The toxicological testing with larvae of a midge, Chironomus riparius, and Daphnia magna resulted in only slight effects which may in part be related to different physical characteristics of the sediments rather than to toxic effects. The highest mortality was 75% at the deepest part of the lake (close to Valamo Island) which was believed to be the least polluted. The highest heavy metal concentrations and slow development of the larvae were observed for the same site. In the south of the lake at the Volhov Bay which receives effluents from forest and aluminum industry, the mortality was 10--50%

  4. Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota

    Science.gov (United States)

    Tangen, Brian A.; Laubhan, Murray K.; Gleason, Robert A.

    2014-01-01

    Accelerated sedimentation of reservoirs and riverine impoundments is a major concern throughout the United States. Sediments not only fill impoundments and reduce their effective life span, but they can reduce water quality by increasing turbidity and introducing harmful chemical constituents such as heavy metals, toxic elements, and nutrients. U.S. Fish and Wildlife Service national wildlife refuges in the north-central part of the United States have documented high amounts of sediment accretion in some wetlands that could negatively affect important aquatic habitats for migratory birds and other wetland-dependent wildlife. Therefore, information pertaining to sediment accumulation in refuge impoundments potentially is important to guide conservation planning, including future management actions of individual impoundments. Lands comprising Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges, collectively known as the Souris River Basin refuges, encompass reaches of the Des Lacs and Souris Rivers of northwestern North Dakota. The riverine impoundments of the Souris River Basin refuges are vulnerable to sedimentation because of the construction of in-stream dams that interrupt and slow river flows and because of post-European settlement land-use changes that have increased the potential for soil erosion and transport to rivers. Information regarding sediments does not exist for these refuges, and U.S. Fish and Wildlife Service personnel have expressed interest in assessing refuge impoundments to support refuge management decisions. Sediment cores and surface sediment samples were collected from impoundments within Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges during 2004–05. Cores were used to estimate sediment accretion rates using radioisotope (cesium-137 [137Cs], lead-210 [210Pb]) dating techniques. Sediment cores and surface samples were analyzed for a suite of elements and agrichemicals, respectively. Examination of

  5. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.

    Science.gov (United States)

    Karikari-Yeboah, Ohene; Addai-Mensah, Jonas

    2017-02-01

    Pyrite-rich sediments would, invariably, undergo redox reactions which would lead to acidic aqueous environment containing solubilized toxic metal species. When such sediments are subjected to preload, a technique employed by geotechnical engineers to improve the load-bearing capacity of highly compressible formation, transient flow of pore water, accompanied by acidity transfer, would occur as a response. Despite the concomitant environmental and socio-economic significance, to date, there has been limited interdisciplinary research on the underpinning geotechnical engineering and geo-environmental science issues for pyrite-rich sediments under preload. In this study, we investigate the effect of pyrite-rich sediment pore water transfer under preload surcharge on the receiving environment and the impact on the groundwater speciation and quality. Sediment samples were obtained at close depth intervals from boreholes established within pristine areas and those subjected to the preload application. Soil and pore water samples were subjected to solid/solution speciation, moisture contents, soil pH and the Atterberg Limits' analyses using standard analytical techniques and methods. Standpipes were also installed in the boreholes for groundwater sampling and in situ monitoring of water quality parameters. It is shown that the imposition of preload surcharge over pyritic sediment created a reducing environment rich in SO 4 2- , iron oxide minerals and organic matter. This reducing environment fostered organic carbon catabolism to generate excess pyrite and bicarbonate alkalinity, which would invariably impact adversely on soil quality and plant growth. These were accompanied by increase in pH, dissolved Al, Ca, Mg and K species beneath the surcharge.

  6. Assessment of adsorption behavior of dibutyltin (DBT) to clay-rich sediments in comparison to the highly toxic tributyltin (TBT)

    International Nuclear Information System (INIS)

    Hoch, Marion; Alonso-Azcarate, Jacinto; Lischick, Martin

    2003-01-01

    Adsorption of dibutyltin to marine sediments is influenced by the type of predominating clay material. - The sorption behavior of dibutyltin (DBT) to four types of natural clay-rich sediments as a function of pH and salinity was studied. The strongest affinity of DBT was found to the montmorillonite-rich sediment, which is characterized by the highest specific surface area and cation exchange capacity of the four used sediments. K d values range between 12 and 40 (l/kg) on simulated marine conditions (pH 8, salinity 32%o). A maximum of DBT adsorption was found at a salinity of 0%o and pH 6. Desorption occurred over the entire studied pH range (4-8) when contaminated sediments interact with butyltin-free water. The maximum of desorption coincided with the minimum of adsorption, and vice versa. The results of DBT adsorption are compared with tributyltin (TBT), and the mechanism of the adsorption process is discussed

  7. Life cycle assessment for dredged sediment placement strategies.

    Science.gov (United States)

    Bates, Matthew E; Fox-Lent, Cate; Seymour, Linda; Wender, Ben A; Linkov, Igor

    2015-04-01

    Dredging to maintain navigable waterways is important for supporting trade and economic sustainability. Dredged sediments are removed from the waterways and then must be managed in a way that meets regulatory standards and properly balances management costs and risks. Selection of a best management alternative often results in stakeholder conflict regarding tradeoffs between local environmental impacts associated with less expensive alternatives (e.g., open water placement), more expensive measures that require sediment disposal in constructed facilities far away (e.g., landfills), or beneficial uses that may be perceived as risky (e.g., beach nourishment or island creation). Current sediment-placement decisions often focus on local and immediate environmental effects from the sediment itself, ignoring a variety of distributed and long-term effects from transportation and placement activities. These extended effects have implications for climate change, resource consumption, and environmental and human health, which may be meaningful topics for many stakeholders not currently considered. Life-Cycle Assessment (LCA) provides a systematic and quantitative method for accounting for this wider range of impacts and benefits across all sediment management project stages and time horizons. This paper applies a cradle-to-use LCA to dredged-sediment placement through a comparative analysis of potential upland, open water, and containment-island placement alternatives in the Long Island Sound region of NY/CT. Results suggest that, in cases dealing with uncontaminated sediments, upland placement may be the most environmentally burdensome alternative, per ton-kilometer of placed material, due to the emissions associated with diesel fuel combustion and electricity production and consumption required for the extra handling and transportation. These results can be traded-off with the ecosystem impacts of the sediments themselves in a decision-making framework. Published by

  8. Validating potential toxicity assays to assess petroleum hydrocarbon toxicity in polar soil.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Potential microbial activities are commonly used to assess soil toxicity of petroleum hydrocarbons (PHC) and are assumed to be a surrogate for microbial activity within the soil ecosystem. However, this assumption needs to be evaluated for frozen soil, in which microbial activity is limited by liquid water (θ(liquid)). Influence of θ(liquid) on in situ toxicity was evaluated and compared to the toxicity endpoints of potential microbial activities using soil from an aged diesel fuel spill at Casey Station, East Antarctica. To determine in situ toxicity, gross mineralization and nitrification rates were determined by the stable isotope dilution technique. Petroleum hydrocarbon-contaminated soil (0-8,000 mg kg(-1)), packed at bulk densities of 1.4, 1.7, and 2.0 g cm(-3) to manipulate liquid water content, was incubated at -5°C for one, two, and three months. Although θ(liquid) did not have a significant effect on gross mineralization or nitrification, gross nitrification was sensitive to PHC contamination, with toxicity decreasing over time. In contrast, gross mineralization was not sensitive to PHC contamination. Toxic response of gross nitrification was comparable to potential nitrification activity (PNA) with similar EC25 (effective concentration causing a 25% effect in the test population) values determined by both measurement endpoints (400 mg kg(-1) for gross nitrification compared to 200 mg kg(-1) for PNA), indicating that potential microbial activity assays are good surrogates for in situ toxicity of PHC contamination in polar regions. Copyright © 2011 SETAC.

  9. Equilibrium Partitioning Sediment Benchmarks (ESBs) for the ...

    Science.gov (United States)

    This document describes procedures to determine the concentrations of nonionic organic chemicals in sediment interstitial waters. In previous ESB documents, the general equilibrium partitioning (EqP) approach was chosen for the derivation of sediment benchmarks because it accounts for the varying bioavailability of chemicals in different sediments and allows for the incorporation of the appropriate biological effects concentration. This provides for the derivation of benchmarks that are causally linked to the specific chemical, applicable across sediments, and appropriately protective of benthic organisms.  This equilibrium partitioning sediment benchmark (ESB) document was prepared by scientists from the Atlantic Ecology Division, Mid-Continent Ecology Division, and Western Ecology Division, the Office of Water, and private consultants. The document describes procedures to determine the interstitial water concentrations of nonionic organic chemicals in contaminated sediments. Based on these concentrations, guidance is provided on the derivation of toxic units to assess whether the sediments are likely to cause adverse effects to benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it is based on the concentrations of chemical(s) that are known to be harmful and bioavailable in the environment.  This document, and five others published over the last nine years, will be useful for the Program Offices, including Superfund, a

  10. Using an interlaboratory study to revise methods for conducting 10-d to 42-d water or sediment toxicity tests with Hyalella azteca

    Science.gov (United States)

    Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Hammer, Edward J.; Mount, David R.; Hockett, J. Russell; Norberg-King, Teresa J.; Soucek, Dave; Taylor, Lisa

    2016-01-01

    Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast–cerophyll–trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca.

  11. An in situ postexposure feeding assay with Carcinus maenas for estuarine sediment-overlying water toxicity evaluations

    International Nuclear Information System (INIS)

    Moreira, Susana M.; Moreira-Santos, Matilde; Guilhermino, Lucia; Ribeiro, Rui

    2006-01-01

    This study developed and evaluated a short-term sublethal in situ toxicity assay for estuarine sediment-overlying waters, with the crab Carcinus maenas (L.) based on postexposure feeding. It consisted of a 48-h in situ exposure period followed by a short postexposure feeding period (30 min). A precise method for quantifying feeding, using the Polychaeta Hediste (Nereis) diversicolor Mueller as food source, was first developed. The sensitivity of the postexposure feeding response was verified by comparing it to that of lethality, upon cadmium exposure. The influence of environmental conditions prevailing during exposure (salinity, temperature, substrate, light regime, and food availability) on postexposure feeding was also addressed. The potential of this in situ assay was then investigated by deploying organisms at ten sites, located in reference and contaminated Portuguese estuaries. Organism recovery ranged between 90% and 100% and a significant postexposure feeding depression (16.3-72.7%) was observed at all contaminated sites relatively to references. - A new sub-lethal toxicity assay is presented for marine invertebrates

  12. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    Science.gov (United States)

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  13. Assessing Sediment Yield and the Effect of Best Management Practices on Sediment Yield Reduction for Tutuila Island, American Samoa

    Science.gov (United States)

    Leta, O. T.; Dulai, H.; El-Kadi, A. I.

    2017-12-01

    Upland soil erosion and sedimentation are the main threats for riparian and coastal reef ecosystems in Pacific islands. Here, due to small size of the watersheds and steep slope, the residence time of rainfall runoff and its suspended load is short. Fagaalu bay, located on the island of Tutuila (American Samoa) has been identified as a priority watershed, due to degraded coral reef condition and reduction of stream water quality from heavy anthropogenic activity yielding high nutrients and sediment loads to the receiving water bodies. This study aimed to estimate the sediment yield to the Fagaalu stream and assess the impact of Best Management Practices (BMP) on sediment yield reduction. For this, the Soil and Water Assessment Tool (SWAT) model was applied, calibrated, and validated for both daily streamflow and sediment load simulation. The model also estimated the sediment yield contributions from existing land use types of Fagaalu and identified soil erosion prone areas for introducing BMP scenarios in the watershed. Then, three BMP scenarios, such as stone bund, retention pond, and filter strip were treated on bare (quarry area), agricultural, and shrub land use types. It was found that the bare land with quarry activity yielded the highest annual average sediment yield of 133 ton per hectare (t ha-1) followed by agriculture (26.1 t ha-1) while the lowest sediment yield of 0.2 t ha-1 was estimated for the forested part of the watershed. Additionally, the bare land area (2 ha) contributed approximately 65% (207 ha) of the watershed's sediment yield, which is 4.0 t ha-1. The latter signifies the high impact as well as contribution of anthropogenic activity on sediment yield. The use of different BMP scenarios generally reduced the sediment yield to the coastal reef of Fagaalu watershed. However, treating the quarry activity area with stone bund showed the highest sediment yield reduction as compared to the other two BMP scenarios. This study provides an estimate

  14. Life-cycle effects of sediment-associated uranium on Chironomus riparius (diptera: chironomidae)

    Energy Technology Data Exchange (ETDEWEB)

    Dias, V.; Ksas, B.; Camilleri, V.; Bonzom, J.M. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    In aquatic ecosystems, sediments function as reservoir for many of the more persistent chemicals that are introduced into surface waters. Sediments provide a habitat for various benthic macro-invertebrates, which are exposed to sediment-associated chemicals both directly and via food intake. These chemicals may be directly toxic to benthic macro-invertebrates and can be integrated into food chain. Benthic macro-invertebrates play an important role in the ecosystem structure and functioning. In particular, they represent an important component of aquatic food chains. Among the non biologically essential metals, data concerning uranium fate and effects on freshwater benthic invertebrates are sparse. The present study aimed to estimate effects of a chronic uranium exposure on life-cycle traits of Chironomus riparius. To achieve this goal, (i) first instar larvae were exposed to a series of concentrations of uranium via the sediment, and (ii) a number of developmental (e.g. growth) and reproductive (e.g. emergence, fecundity, viability) endpoints, through parental and into F1 generations, were evaluated. Within the framework of ecological risk assessment, these data will help the derivation of a sediment guideline value for uranium that does not currently exist in France or elsewhere due to a lack of toxicity data. (author)

  15. Life-cycle effects of sediment-associated uranium on Chironomus riparius (diptera: chironomidae)

    International Nuclear Information System (INIS)

    Dias, V.; Ksas, B.; Camilleri, V.; Bonzom, J.M.

    2004-01-01

    In aquatic ecosystems, sediments function as reservoir for many of the more persistent chemicals that are introduced into surface waters. Sediments provide a habitat for various benthic macro-invertebrates, which are exposed to sediment-associated chemicals both directly and via food intake. These chemicals may be directly toxic to benthic macro-invertebrates and can be integrated into food chain. Benthic macro-invertebrates play an important role in the ecosystem structure and functioning. In particular, they represent an important component of aquatic food chains. Among the non biologically essential metals, data concerning uranium fate and effects on freshwater benthic invertebrates are sparse. The present study aimed to estimate effects of a chronic uranium exposure on life-cycle traits of Chironomus riparius. To achieve this goal, (i) first instar larvae were exposed to a series of concentrations of uranium via the sediment, and (ii) a number of developmental (e.g. growth) and reproductive (e.g. emergence, fecundity, viability) endpoints, through parental and into F1 generations, were evaluated. Within the framework of ecological risk assessment, these data will help the derivation of a sediment guideline value for uranium that does not currently exist in France or elsewhere due to a lack of toxicity data. (author)

  16. LCIA selection methods for assessing toxic releases

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Birkved, Morten; Hauschild, Michael Zwicky

    2002-01-01

    the inventory that contribute significantly to the impact categories on ecotoxicity and human toxicity to focus the characterisation work. The reason why the selection methods are more important for the chemical-related impact categories than for other impact categories is the extremely high number......Characterization of toxic emissions in life cycle impact assessment (LCIA) is in many cases severely limited by the lack of characterization factors for the emissions mapped in the inventory. The number of substances assigned characterization factors for (eco)toxicity included in the dominating LCA....... The methods are evaluated against a set of pre-defined criteria (comprising consistency with characterization and data requirement) and applied to case studies and a test set of chemicals. The reported work is part of the EU-project OMNIITOX....

  17. A scheme to scientifically and accurately assess cadmium pollution of river sediments, through consideration of bioavailability when assessing ecological risk.

    Science.gov (United States)

    Song, Zhixin; Tang, Wenzhong; Shan, Baoqing

    2017-10-01

    Evaluating heavy metal pollution status and ecological risk in river sediments is a complex task, requiring consideration of contaminant pollution levels, as well as effects of biological processes within the river system. There are currently no simple or low-cost approaches to heavy metal assessment in river sediments. Here, we introduce a system of assessment for pollution status of heavy metals in river sediments, using measurements of Cd in the Shaocun River sediments as a case study. This system can be used to identify high-risk zones of the river that should be given more attention. First, we evaluated the pollution status of Cd in the river sediments based on their total Cd content, and calculated a risk assessment, using local geochemical background values at various sites along the river. Using both acetic acid and ethylenediaminetetraacetic acid to extracted the fractions of Cd in sediments, and used DGT to evaluate the bioavailability of Cd. Thus, DGT provided a measure of potentially bioavailable concentrations of Cd concentrations in the sediments. Last, we measured Cd contents in plant tissue collected at the same site to compare with our other measures. A Pearson's correlation analysis showed that Cd-Plant correlated significantly with Cd-HAc, (r = 0.788, P < 0.01), Cd-EDTA (r = 0.925, P < 0.01), Cd-DGT (r = 0.976, P < 0.01), and Cd-Total (r = 0.635, P < 0.05). We demonstrate that this system of assessment is a useful means of assessing heavy metal pollution status and ecological risk in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Determination of Heavy and Toxic Trace Elements in Sediments of Qarun Lake Using Instrumental Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    Hamed, A.; Abd EI-Samad, M.; Soliman, N.F.

    2011-01-01

    An investigation of certain heavy and toxic trace elements in 15 sediment samples from different areas at Qarun Lake was performed by a neutron activation technique using the neutron irradiation facilities of the Second Egyptian Research Reactor (ETRR-2). The samples together with two sets of gold foils (one bare and the other covered with cadmium) and two Standard Reference Materials IAEA (Soil-7) were irradiated at the core of the reactor in two capsules for 8520 seconds, another two capsules each has two sets of gold foils (one bare and the other covered with cadmium) are used to determine the neutron fluxes around the sediment samples. The gamma-rays of nuclides from the irradiated samples were carried out by means of a well calibrated high resolution HPGe detection system. The concentrations of product nuclides containing in the irradiated samples were determined from the peak counting-rates of the prominent gamma-ray lines for the corresponding nuclides using Single External Comparator Method (k 0 -Standardization Method) which called k 0 -NAA technique. The neutron flux ratios (f) in the same radiation sites of the sediment samples bottles were calculated as well as the cadmium ratios (R e d). MS Excel work books were constructed and used in our calculation. The total contents of As , Ba , Ca ,Co, Cr ,Cs, Eu ,Hf ,Hg,Na ,Ru ,Sc ,Se ,Sm ,Sn ,Sr ,Th ,Rb ,Zn ,and Zr in these samples were measured. The objectives .of this study were evaluated to identify the variations of concentration of some elements that have an impact on environmental pollutions. The results indicated that the concentrations of toxic trace elements of Ba, Cr, Se, Sn, Hg, Sin and Zn may represent pollutions problem

  19. A comparison of the response of Simocephalus mixtus (Cladocera) and Daphnia magna to contaminated freshwater sediments.

    Science.gov (United States)

    Martínez-Jerónimo, Fernando; Cruz-Cisneros, Jade Lizette; García-Hernández, Leonardo

    2008-09-01

    The southeast region of Mexico is characterized by intensive oil industry activities carried out by the national public enterprise Petróleos Mexicanos (PEMEX). The freshwater lagoon "El Limón", located in the municipality of Macuspana, state of Tabasco, Mexico, has received over 40 years discharges of untreated waste waters from the Petrochemical Complex "Ciudad PEMEX", located on the border of the lagoon. To assess the toxicity of the sediments and, hence, to obtain information on the biological effects of these contaminating discharges, the cladoceran Simocephalus mixtus was used as a test organism in acute (48h) and chronic (12d) toxicity assays. For comparison purposes, bioassays were also conducted with the reference cladoceran Daphnia magna. The sediments of this lagoon contain important amounts of metals and hydrocarbons that have been accumulated over time; however, the acute tests only registered reduced lethal effects on the test organisms (maxima of 10% and 17% mortality for D. magna and S. mixtus, respectively). This may be due to low bioavailability of the pollutants present in the sediments. On the other hand, partial or total inhibition and delay in the start of reproduction, reduction in clutch sizes, reduced survival, as well as reduction in the size of adults and offspring were recorded in the chronic assays. The most evident chronic effects were found in S. mixtus; in this species, reproduction was inhibited up to 72%, whereas D. magna was only affected by 24%. We determined that S. mixtus is a more sensitive test organism than D. magna to assess whole-sediment toxicity in tropical environments, and that chronic exposure bioassays are required for an integrated sediment evaluation. The sediments from "El Limón" lagoon induced chronic intoxication responses and, therefore, remediation measures are urgently needed to recover environmental conditions suitable for the development of its aquatic biota.

  20. Toxicity of contaminants in lagoons and pannes of the Indiana Dunes National Lakeshore

    International Nuclear Information System (INIS)

    Gillespie, R.; Speelman, J.; Stewart, P.M.

    1995-01-01

    Contaminants in water and sediments of lagoons and pannes were 2--90 times greater at sites adjacent to slag and coal piles than those at reference sites. One site (Lagoon-US5) had sediments with very high concentrations of toxic organics (e.g. naphthalene, phenanthrene, dibenzofuran). Although analyses indicated a gradient of contaminant concentration with distance from their sources, toxicity assays were somewhat equivocal. With the exception of less reproduction in Ceriodaphnia at one lagoon site (US3 = 0.55 of reference), survival of fathead minnows and reproduction in Ceriodaphnia in lagoon and panne waters varied independently of the contaminant concentration. In fact, there was better Ceriodaphnia reproduction in water from two contaminated sites (Lagoon-US5, Panne-WP1) than in water from reference sites. Fathead minnow survival, Ceriodaphnia survival, Ceriodaphnia reproduction, amphipod survival, and amphipod growth varied among sites in toxicity assays with sediments, 100% mortality of fatheads at Lagoon-US5, 100% mortality of Ceriodaphnia at Lagoon-US3, and less survival of fathead minnows at Lagoon-US3 indicate possible toxicity from contaminants in sediments at these sites. Of all organisms and end-points tested, Ceriodaphnia survival seemed to be most closely associated with concentrations of contaminants in lagoon water and sediments. Amphipod survival also varied with contaminants in sediments, however, survival in sediments of contaminated sites ranged only from 0.90--0.93 of reference sites. Although the results are not consistent among organisms, toxicity assays indicate that sediments from the lagoon site with the highest contaminants (Lagoon-US5) and possibly those from another contaminated lagoon site (Lagoon-US3) could be toxic to aquatic organisms. Water and sediments from contaminated panne sites do not appear to be toxic to aquatic test organisms

  1. Sediment quality and ecorisk assessment factors for a major river system

    International Nuclear Information System (INIS)

    Johnson, V.G.; Wagner, J.J.; Cutshall, N.H.

    1993-08-01

    Sediment-related water quality and risk assessment parameters for the Columbia River were developed using heavy metal loading and concentration data from Lake Roosevelt (river km 1120) to the mouth and adjacent coastal zone. Correlation of Pb, Zn, Hg, and Cd concentrations in downstream sediments with refinery operations in British Columbia suggest that solutes with K d 's > 10 5 reach about 1 to 5 μg/g per metric ton/year of input. A low-suspended load (upriver avg. <10 mg/L) and high particle-surface reactivity account for the high clay-fraction contaminant concentrations. In addition, a sediment exposure path was demonstrated based on analysis of post-shutdown biodynamics of a heavy metal radiotracer. The slow decline in sediment was attributed to resuspension, bioturbation, and anthropogenic disturbances. The above findings suggest that conservative sediment quality criteria should be used to restrict additional contaminant loading in the upper drainage basin. The issuance of an advisory for Lake Roosevelt, due in part to Hg accumulation in large sport fish, suggests more restrictive controls are needed. A monitoring strategy for assessing human exposure potential and the ecological health of the river is proposed

  2. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances.

    Science.gov (United States)

    Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi

    2016-09-01

    Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evaluation of the threat of marine CO{sub 2} leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Basallote, M. Dolores, E-mail: dolores.basallote@uca.es [Cátedra UNESCO/UNITWIN WiCop, Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz (Spain); Rodríguez-Romero, Araceli [Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Río San Pedro, 11510 Puerto Real, Cádiz (Spain); De Orte, Manoela R.; Del Valls, T. Ángel; Riba, Inmaculada [Cátedra UNESCO/UNITWIN WiCop, Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz (Spain)

    2015-09-15

    Highlights: • Short-term tests using juveniles of bivalves to study the effects of CO{sub 2} dissolved. • CO{sub 2} causes effects if the threshold concentration of the organism is overlapped. • Flows of escaped CO{sub 2} would affect the geochemical composition of sediment–seawater. • CO{sub 2}-induced acidification would affect differently to marine sediment toxicity. - Abstract: The effects of the acidification associated with CO{sub 2} leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO{sub 2}-induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO{sub 2}-bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1, 6.6, 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 to 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO{sub 2} and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves.

  4. heavy metal pollution asse al pollution assessment in the sediments

    African Journals Online (AJOL)

    User

    ABSTRACT. Sediments were collected from Dumba and to assess the pollution statusof the sedim. Cadmium (Cd), Chromium (Cr), Copper (Cu. (Zn) and Arsenic (As) were analysed using concentration of heavy metals varies bet with standard average shale to assess pollution in Dumba and KwataYobe sedi assessed ...

  5. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Tamara, E-mail: t.s.galloway@exeter.ac.u [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Lewis, Ceri [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Dolciotti, Ida [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy); Johnston, Blair D. [School of Biosciences, Hatherly Laboratories, University of Exeter, EX4 4PS, Exeter, Devon (United Kingdom); Moger, Julian [School of Physics, Stocker Road, University of Exeter, Devon EX4 4QL (United Kingdom); Regoli, Francesco [Universita Politecnica delle Marche, Institute of Biology and Genetics, Via Ranieri, Monte Dago, 60121 Ancona (Italy)

    2010-05-15

    The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO{sub 2} and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO{sub 2}, with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO{sub 2} of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected. - This study explores the hypothesis that nano-TiO{sub 2} and single walled nanotubes (SWNT) can cause sublethal impacts to Arenicola marina exposed through natural sediments.

  6. Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach.

    Science.gov (United States)

    Shyleshchandran, Mohanachandran Nair; Mohan, Mahesh; Ramasamy, Eswara Venkatesaperumal

    2018-03-01

    Contamination of estuarine system due to heavy metals is a severe issue in tropical countries, especially in India. For the evaluation of the risk due to heavy metals, the current study assessed spatial and temporal variation of acid-volatile sulfide (AVS), simultaneously extracted metal (SEM), and total metal concentration as toxicity indicator of aquatic sediments in Vembanad Lake System (VLS), India. Surface sediment samples collected from 12 locations from the northern portion of VLS for 4 years during different seasons. The results suggest, in post-monsoon season, 91% of the sampling locations possessed high bioavailability of metals and results in toxicity to aquatic biota. The average seasonal distribution of SEM during the period of observations was in the order post-monsoon > pre-monsoon > monsoon (1.76 ± 2.00 > 1.35 ± 0.60 > 0.80 ± 0.54 μmol/g). The concentration of individual metals on ∑SEM are in the order SEM Zn > SEM Cu> SEM Cd ≈ SEM Pb > SEM Hg. Considering annual ΣSEM/AVS ratio, 83% of the sites cross the critical value of 'One,' reveals that active sulfide phase of the sediment for fixing the metals is saturated. The molar ratio (differences between SEM and AVS) and its normalized organic carbon ratio reveals that in the post-monsoon season, about 42% of the sites are in the category of adverse effects are possible. The study suggests the toxicity and mobility of the metals largely depend on the available AVS, and the current situation may pose harm to benthic organisms.

  7. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir.

    Science.gov (United States)

    Liang, Ao; Wang, Yechun; Guo, Hongtao; Bo, Lei; Zhang, Sheng; Bai, Yili

    2015-10-01

    To assess the heavy metal pollution in Changshou Lake, sediments were collected from nine sites at three periods (dry, normal, and wet) in 2013. The Hg, As, Cr, Cd, Pb, Cu, and Zn levels were then determined. The index of geoaccumulation (I geo) and the sediment pollution index (SPI) were applied to the sediment assessment, and Pearson's correlation analysis and factor analysis (FA) were performed to identify common pollution sources in the basin. The results showed that heavy metals presented significant spatial variations with Cr, Cd, Pb, Cu, Zn, Hg, and As concentrations of 29.66~42.58, 0.62~0.91, 24.91~37.96, 21.18~74.91, 41.65~86.86, 0.079~0.152, and 20.17~36.88 mg kg(-1), respectively, and no obvious variations were found among the different periods. The average contents of the metals followed the order Zn > Cu > Cr > Pb > As > Cd > Hg, which showed a high pollution in the sediments collected from open water and at the river mouth. The assessment results indicated that toxic heavy metals presented obvious pollution with I Hg of 0.64~1.36 (moderately polluted), I Cd of 1.66~2.22 (moderately to heavily polluted), and I As of 1.21~2.07 (moderately to heavily polluted). The heavy metal pollution states followed the order Cd > As > Hg > Cu > Pb > Zn > Cr, and the SPI showed that the sediment collected from open water area was more polluted than those obtained from the tributaries and the river mouth. Cr, Cd, Hg, Pb, Cu, As, and Zn were mainly attributed to sediment weathering with Hg, Pb, and Cu and partially due to domestic sewage from the upper reaches. These results indicate that the more attention should be paid to the inner loads of sediment in order to achieve improvements in reservoir water quality after the control of external pollution.

  8. Effects of copper on invertebrate–sediment interactions

    International Nuclear Information System (INIS)

    Hunting, E.R.; Mulder, C.; Kraak, M.H.S.; Breure, A.M.; Admiraal, W.

    2013-01-01

    Toxicants potentially decouple links between biodiversity and ecosystem processes. This study aimed to evaluate how toxicants affect invertebrate bioturbation and decomposition. Effects of copper on functionally distinct macrofaunal species (Asellus aquaticus and Tubifex spp.), decomposition (release of dissolved organic carbon, DOC) and Average Metabolic Response (AMR) and Community Metabolic Diversity (CMD) of bacteria were determined in 5-day microcosm experiments. Bioturbation was assessed as sediment redox potential (Eh) profiles. Concentration–response curves of the functional parameters DOC, and the faunal mediated AMR and CMD in the presence of Tubifex spp. depended on Tubifex spp. survival, i.e. similar EC 50 values for both endpoints. In contrast, functional parameters in the presence of A. aquaticus were more sensitive than survival. Sediment Eh-profiles showed that reduced decomposition was caused by reduced sediment reworking by A. aquaticus at sub-lethal copper concentrations. These observations hint at a decoupling of invertebrate community structure and ecosystem functioning upon stress. -- Highlights: •We compared invertebrate survival and functional responses to copper amendment. •Differential functional responses depending on invertebrate species. •Reduced functional responses with A. aquaticus at sub-lethal copper concentrations. •Sub-lethal copper concentrations reduced the bioturbating activities of A. aquaticus. •Stress decouples invertebrate community structure and ecosystem functioning. -- Sub-lethal copper concentrations reduced the bioturbating activities of A. aquaticus and invertebrate effects on decomposition, bacterial activity and community metabolic diversity

  9. Proceedings of the 22nd annual aquatic toxicity workshop: October 2-4, 1995, St. Andrews, New Brunswick

    Energy Technology Data Exchange (ETDEWEB)

    Haya, K.; Niimi, A.J. [eds.

    1996-02-01

    The proceedings contain copies (in many cases in abstract form only) of the 4 plenary, 87 platform, and 28 poster presentations. The sessions are: working with industry; toxicology and chemistry in watershed management; bioassay: ecological risk assessment; toxicity identification and reduction; fate and effects of PAHs in the aquatic environment; PCBs in waterways: transport and toxicity; mercury in aquatic ecosystems; sediment toxicity; bio-markers of pollution; statistics for estimating potency from non-quantal data; advances in micro-scale aquatic toxicity; aquatic toxicity of water birds; and aquatic pathology and its role in forensic science. One paper is abstracted separately.

  10. Evaluation of the concentration of toxic metals and rare ground elements in samples of sediments of the Billings and Guarapiranga systems reservoirs

    International Nuclear Information System (INIS)

    Silva, Larissa de Souza

    2017-01-01

    The excessive urbanization process of the Sao Paulo Metropolitan Region resulted in the loss of the natural characteristics of its water courses causing serious changes in flow and quality regimes. The objective of this study was evaluate the concentration of toxic metals, semi metals As, Sb and Se, and rare earth elements present in surface sediment samples collected at the Billings, Guarapiranga and Rio Grande Reservoirs. The Ag, Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se and Zn elements were analyzed using Optical Emission Spectrometry With Inductively Coupled Plasma (ICP OES). Some major, trace and rare earth elements (Ce, Eu, La, Lu, Nd, Sm, Tb and Yb) were analyzed by the Instrumental Neutron Activation Analysis (INAA) technique. The total Hg concentration was determined by Cold Vapor Atomic Absorption Spectrometry technique (CVAAS). The validation of the methodologies was performed by means of the certified reference material analyses. To assess the sources of anthropogenic contamination, the enrichment factor (EF) and the geoaccumulation index (IGeo) were calculated. The results obtained for both techniques were compared with TEL and PEL oriented values established by CCME (Canadian Council of Ministers of the Environment) and adopted by CETESB (Environmental Company of the Sao Paulo State). All sampling points showed concentration values for toxic metals >TEL and 2 points at Billings Reservoir (BILL02030 and 02100), values > PEL for As, Cr, Cu, Hg, Ni, Pb and Zn, probably due to the entrance of the Pinheiros River waters and drainage basins of the Cocaia and Borore streams. The calculated EF and IGeo values indicated possible anthropogenic contamination for Sb and Se for the elements determined by ICP OES and As, Cr, Sb and Zn, obtained by INAA. The Billings reservoir presented, in general, the highest concentrations for the analyzed elements, indicating a poor quality of its sediments. This study confirms the need of a frequent

  11. Acute toxicity of pyraclostrobin and trifloxystrobin to Hyalella azteca.

    Science.gov (United States)

    Morrison, Shane A; McMurry, Scott T; Smith, Loren M; Belden, Jason B

    2013-07-01

    Fungicide application rates on row crop agriculture have increased across the United States, and subsequently, contamination of adjacent wetlands can occur through spray drift or field runoff. To investigate fungicide toxicity, Hyalella azteca amphipods were exposed to 2 fungicide formulations, Headline and Stratego, and their active strobilurin ingredients, pyraclostrobin and trifloxystrobin. Water-only exposures resulted in similar median lethal concentration (LC50; 20-25 µg/L) values for formulations and strobilurin ingredients, suggesting that toxicity is due to strobilurin ingredients. These values were below concentrations that could occur following spray drift over embedded cropland wetlands. When fungicides were added to overlying water of sediment-water microcosms, toxicity was reduced by 500% for Headline and 160% for Stratego, compared with water-only exposures, based on the total amount of fungicide added to the systems. In addition, when fungicides were added to sediment prior to the addition of water, the reduction in toxicity was even greater, with no toxicity occurring at environmentally relevant levels. Differences in toxicity among exposure groups were explained by dissipation from water as toxicity values based on measured water concentrations were within 20% between all systems. The present study reinforces previous studies that Headline and Stratego are toxic to nontarget aquatic organisms. However, the presence of sediment is likely to ameliorate some toxicity of fungicide formulations, especially if spraying occurs prior to wetland inundation. Copyright © 2013 SETAC.

  12. Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea.

    Science.gov (United States)

    El-Said, Ghada F; Draz, Suzanne E O; El-Sadaawy, Manal M; Moneer, Abeer A

    2014-01-01

    Spatial distribution of heavy metals (Co, Cu, Ni, Cr, Mn, Zn and Fe) was studied on Lake Edku's surface sediments in relation to sedimentology and geochemistry characteristics and their contamination status on the ecological system. Lake Edku's sediments were dominated by sandy silt and silty sand textures and were enriched with carbonate content (9.83-58.46%). Iron and manganese were the most abundant heavy metals with ranges of 1.69 to 8.06 mg g(-1) and 0.88 to 3.27 mg g(-1), respectively. Cobalt and nickel showed a harmonic distribution along the studied sediments. The results were interpreted by the statistical means. The heavy metal pollution status and their ecological risk in Lake Edku was evaluated using the sediment quality guidelines and the contamination assessment methods (geoaccumulation, pollution load and potential ecological risk indices, enrichment factor, contamination degree as well as effect range median (ERM) and probable effect level (PEL) quotients). Amongst the determined heavy metals, zinc had the most ecological risk. Overall, the heavy metals in surface sediments showed ecological effect range from moderate to considerable risk, specially, in the stations in front of the seawater and in drain sources that had the highest toxic priority.

  13. Integrative assessment of coastal marine pollution in the Bay of Santander and the Upper Galician Rias

    Science.gov (United States)

    Rial, Diego; León, Víctor M.; Bellas, Juan

    2017-12-01

    Sediments from the Rias of A Coruña, Ferrol, Betanzos and Ares (n = 26) and the Bay of Santander (n = 11) were sampled in July 2012. The concentration of organic contaminants in sediment elutriates (CBs, PAHs, pesticides and personal care products) and sea urchin (Paracentrotus lividus) embryotoxicity were assessed. Relevant concentrations of organic pollutants were detected in the elutriates (ΣContaminants values, whereas sediment elutriates from the Rias of Ares and Betanzos showed no marked toxicity. Stations located close to the city of Ferrol showed moderate to high toxicity, which is indicative of a nearby source of contamination. On the contrary, the outer area of the Ria of Ferrol was classified as "Good" according to the calculated toxic units. These results allowed for an integrative assessment of the environmental quality of the studied areas.

  14. Chronic toxicity of contaminated sediments on reproduction and histopathology of the crustacean Gammarus fossarum and relationship with the chemical contamination and in vitro effects

    Energy Technology Data Exchange (ETDEWEB)

    Mazurova, Edita; Hilscherova, Klara; Sidlova-Stepankova, Tereza; Blaha, Ludek [Faculty of Science, RECETOX, Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk Univ., Brno (Czech Republic); Koehler, Heinz R. [Animal Physiological Ecology, Univ. of Tuebingen (Germany); Triebskorn, Rita [Steinbeis-Transfer Center for Ecotoxicology and Ecophysiology, Rottenburg (Germany); Jungmann, Dirk [Inst. of Hydrobiology, Dresden Univ. of Tech. (Germany); Giesy, John P. [Dept. of Veterinary Biomedical Sciences and Toxicology Centre, Univ. of Saskatchewan, Saskatoon (Canada); Zoology Dept., National Food Safety and Toxicology Center, and Center for Integrative Toxicology Center, and Center for Integrative Toxicology, Michigan State Univ., East Lansing, MI (United States); Biology and Chemistry Dept., City Univ. of Hong Kong, Kowloon, Hong Kong (China); School of the Environment, Nanjing Univ. (China)

    2010-04-15

    The aim of the present study was to investigate possible relationships between the sediment contaminants and the occurrence of intersex in situ. Two of the studied sediments were from polluted sites with increased occurrence of intersex crustaceans (Lake Pilnok, black coal mining area in the Czech Republic, inhabited by the crayfish Pontastacus leptodactylus population with 18% of intersex; creek Lockwitzbach in Germany with Gammarus fossarum population with about 7% of intersex). Materials and methods Sediments were studied by a combined approach that included (1) determination of concentrations of metals and traditionally analyzed organic pollutants such as polychlorinated biphenyls, pesticides, and polycyclic aromatic hydrocarbons (PAHs); (2) examination of the in vitro potencies to activate aryl hydrocarbon (AhR), estrogen (ER), and androgen receptor-mediated responses; and (3) in vivo whole sediment exposures during a 12-week reproduction toxicity study with benthic amphipod G. fossarum. (orig.)

  15. Assessment of sediment quality in dredged and undredged areas of the Trenton Channel of the Detroit River, Michigan USA, using the sediment quality triad

    Science.gov (United States)

    Besser, John M.; Giesy, John P.; Kubitz, Jody A.; Verbrugge, David A.; Coon, Thomas G.; Braselton, W. Emmett

    1996-01-01

    The “sediment quality triad” approach was used to assess the effects of dredging on the sediment quality of a new marina in the Trenton Channel of the Detroit River, and to evaluate spatial and temporal variation in sediment quality in the Trenton Channel. Samples were collected in November of 1993 (10 months after dredging) and characterized by chemical analysis, sediment bioassays, and assessment of benthic invertebrate communities. The three study components indicated little difference in sediment quality at dredged sites in the marina relative to nearby areas in the Trenton Channel, and little change in sediment quality of Trenton Channel sites relative to conditions reported in the mid-1980s. These results suggest that improvement in sediment quality in the Trenton Channel, due to dredging or natural processes, will depend on elimination of sediment “hot spots” and other upstream contaminant sources. Concentrations of chemical contaminants, especially metals and polycyclic aromatic hydrocarbons, exceeded concentrations associated with effects on biota and were significantly correlated with results of sediment bioassays and characteristics of benthic communities. Laboratory sediment bioassays with Hyalella azteca andChironomus tentans produced better discrimination among sites with differing degrees of contamination than did characterization of benthic communities, which were dominated by oligochaetes at all sites in the marina and the Trenton Channel.

  16. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses

    NARCIS (Netherlands)

    Lange, de H.J.; Griethuysen, van C.; Koelmans, A.A.

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the

  17. Occurrence, ecological risk assessment, and spatio-temporal variation of polychlorinated biphenyls (PCBs) in water and sediments along River Ravi and its northern tributaries, Pakistan.

    Science.gov (United States)

    Baqar, Mujtaba; Sadef, Yumna; Ahmad, Sajid Rashid; Mahmood, Adeel; Qadir, Abdul; Aslam, Iqra; Li, Jun; Zhang, Gan

    2017-12-01

    Ecological risk assessment, spatio-temporal variation, and source apportionment of polychlorinated biphenyls (PCBs) were studied in surface sediments and water from River Ravi and its three northern tributaries (Nullah Deg, Nullah Basantar, and Nullah Bein) in Pakistan. In total, 35 PCB congeners were analyzed along 27 sampling stations in pre-monsoon and post-monsoon seasons. The ∑ 35 PCB concentration ranged from 1.06 to 95.76 ng/g (dw) in sediments and 1.94 to 11.66 ng/L in water samples, with hexa-CBs and tetra-CBs as most dominant homologs in sediments and water matrixes, respectively. The ∑ 8 DL-PCB levels were 0.33-22.13 ng/g (dw) and 0.16-1.95 ng/L in sediments and water samples, respectively. The WHO-toxic equivalent values were ranged from 1.18 × 10 -6 to 0.012 ng/L and 1.8 × 10 -6 to 0.031 ng/g in water and sediments matrixes, respectively. The ecological risk assessment indicates considerable potential ecological risk during pre-monsoon season ([Formula: see text] = 95.17) and moderate potential ecological risk during post-monsoon season ([Formula: see text] = 49.11). The industrial and urban releases were recognized as key ongoing sources for high PCB levels in environment. Therefore, we recommend more freshwater ecological studies to be conducted in the study area and firm regulatory initiatives are required to be taken in debt to the Stockholm Convention, 2001 to cop up with PCB contamination on emergency basis.

  18. Toxicity of carbon nanotubes to freshwater aquatic invertebrates

    Science.gov (United States)

    Mwangi, Joseph N.; Wang, Ning; Ingersoll, Christopher G.; Hardesty, Doug K.; Brunson, Eric L.; Li, Hao; Deng, Baolin

    2012-01-01

    Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the "metal-free" CNTs contributed to the toxicity.

  19. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    Science.gov (United States)

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the  Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  20. What is the pollution status of North Sea sediments?

    International Nuclear Information System (INIS)

    Chapman, P.M.; Heip, C.; Cofino, W.

    1993-01-01

    A March 1990 international sea-going workshop in Bremerhaven, Germany provided the opportunity to conduct detailed sediment toxicity testing in concert with studies of fish histopathology, bioaccumulation, benthic community structure, and sediment chemical contamination in the North Sea. Two gradients of sediment chemical contamination were tested, one from an abandoned oil platform and the other from the mouth of the Elbe River northward to the Dogger Bank. Using a preponderance of evidence approach, it was determined that sediments nearest the Elbe are moderately polluted (pollution is defined as contamination, toxicity, and community alteration) and that sediments offshore and at the Dogger Bank are unpolluted. Sediments nearest the oil platform showed evidence for a low level of pollution, but there was no evidence of pollution 125 m from the platform. The results suggest the testable hypothesis that North Sea sediments away from point sources of pollution such as coastal areas and drilling platforms are presently not polluted. 46 refs., 2 figs., 6 tabs

  1. Evaluation of natural toxicity on MICROTOX solid-phase test. The pelitic normalization

    International Nuclear Information System (INIS)

    Onorati, F.; Pellegrini, D.; Ausili, A.

    1999-01-01

    In sediment toxicity testing Microtox solid-phase test (SPT) is one of the most used and standardised bioassay. Nevertheless, its real sensitivity and discriminatory power is still unclear, because of several interferences principally related to the matrix composition. Using reference sediments, characterised with chemical and physical analysis, it was possible to find a significant relationship between their natural toxicity and the pelitic fraction that allows to estimate the natural component of the acute toxicity in contaminated samples. This relationship arrows a more sensitive and valid interpretation than raw data and it is used to develop a sediment toxicity index (STI) based on radio to reference (RTR) concept, applicable to harbour contaminated samples [it

  2. Lead Speciation and Bioavailability in Apatite-Amended Sediments

    Directory of Open Access Journals (Sweden)

    Kirk G. Scheckel

    2011-01-01

    Full Text Available The in situ sequestration of lead (Pb in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions underwent conversion to hydrocerussite and anglesite. Sediments mixed with apatite exhibited limited conversion to pyromorphite, the hypothesized end product. Conversion of PbS to pyromorphite is inhibited under reducing conditions, and pyromorphite formation appears limited to reaction with pore water Pb and PbS oxidation products. Porewater Pb values were decreased by 94% or more when sediment was amended with apatite. The acute toxicity of the sediment Pb was evaluated with Hyalella azteca and bioaccumulation of Pb with Lumbriculus variegatus. The growth of H. azteca may be mildly inhibited in contaminated sediment, with apatite-amended sediments exhibiting on average a higher growth weight by approximately 20%. The bioaccumulation of Pb in L. variegatus tissue decreased with increased phosphate loading in contaminated sediment. The study indicates limited effectiveness of apatite in sequestering Pb if present as PbS under reducing conditions, but sequestration of porewater Pb and stabilization of near-surface sediment may be a feasible and alternative approach to decreasing potential toxicity of Pb.

  3. Effects of flow regime and flooding on heavy metal availability in sediment and soil of a dynamic river system

    NARCIS (Netherlands)

    Poot, A.; Gillissen, F.; Koelmans, A.A.

    2007-01-01

    The acid volatile sulphide (AVS) and simultaneously extracted metals (¿SEM) method is increasingly used for risk assessment of toxic metals. In this study, we assessed spatial and temporal variations of AVS and ¿SEM in river sediments and floodplain soils, addressing influence of flow regime and

  4. Integrated Use of n-Alkanes and PAH to Evaluate the Anthropogenic Hydrocarbon Sources and the Toxicity Assessment of Surface Sediments from the Southwestern Coasts of the Caspian Sea

    Directory of Open Access Journals (Sweden)

    Golshan Shirneshan

    2017-07-01

    Full Text Available Polycyclic aromatic hydrocarbon (PAH compounds and normal alkanes form a large group of undegradable environmental contaminats. This study aims to determine the sources and distribution of oil pollution (PAH compounds and normal alkanes in the sediments of the southwestern coastal areas of the Caspian Sea and to compare their levels with the relevant standards. For this purpose, 18 surface sediment samples were collected from depths of 10, 20, and 50 meters along two transects in the vertical direction located in the coastal areas of Sangachin and Hashtpar (Gilan Province. The samples were then examined using mass-spectrometric gas chromatography. The origins of n-alkanes were identified using CPI index (0.76-0.95, U/R (3.30‒6.57, and Pristane/Phytane (0.21‒0.42. The sources of PAHs were determined using the index ratios of LMW/HMW (1.93‒13.37, Phenanthrene/Anthracene (11.44‒ 16.7, Chrysene/Benzo (a anthracene (4.69‒10/33, Fluoranthene/Pyrene (0.53‒0.69, and MP/P (0.05‒0.08. Results confirmed the dominant petrogenic source of the hydrocarbons found in the region. The total concentrations of 30 aliphatic hydrocarbons and PAHs in the sediments ranged from 823.8 to 3899.5 µg/g and from 626.95 to 3842.5362 ng/g, respectively. Comparison of the measured PAH concentrations with US sediment quality guidelines revealed that the levels of naphthalene, fluorine, Acenaphthylene, and Acenaphthene exceeded the ERLs at stations with depths of 50m in Sangachin and Hashtpar while comparisons with Canadian standards indicated that they were higher than PELs at all the stations sampled. A major point of great concern is the high concentration of naphthalene as the most toxic PAH compound, which naturally warrants due attention to adopt appropriate management programs.

  5. Assessment of sediment contamination in Casco Bay, Maine, USA

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Terry L. [Geochemical and Environmental Research Group, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States); Sweet, Stephen T. [Geochemical and Environmental Research Group, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States)], E-mail: sweet@gerg.tamu.edu; Klein, Andrew G. [Geography Department, Texas A and M University, 814B Eller O and M Building, College Station, TX 77843 (United States)

    2008-04-15

    The current status of contaminant concentrations in Casco Bay, decadal trends of these contaminants and changes in their geographical distribution are assessed using sediment samples collected approximately 10 years apart. In general, regulated contaminants appeared to be decreasing in concentration. Total PAH and dioxins/furans concentrations did not significantly change over this period. Total organochlorine pesticides, 4,4-DDE, 4,4-DDD, total DDT, PCB, tributyltin and total butyltin decreased in concentration. Trace element concentrations in sediments decreased at the majority of the sampling sites for chromium, nickel, and selenium while arsenic, cadmium, copper, lead, mercury, silver, and zinc remained relatively constant. None of the contaminants measured has increased by more than a factor of 2. Selected sites located in the Inner Bay, where concentrations are higher and new inputs were more likely, showed increased concentrations of contaminants. Most contaminants were not found at concentrations expected to adversely affect sediment biota based on ERL/ERM guidelines. - Sediment studies indicate decadal decreases for many chemical contaminants in Casco Bay.

  6. Assessment of sediment contamination in Casco Bay, Maine, USA

    International Nuclear Information System (INIS)

    Wade, Terry L.; Sweet, Stephen T.; Klein, Andrew G.

    2008-01-01

    The current status of contaminant concentrations in Casco Bay, decadal trends of these contaminants and changes in their geographical distribution are assessed using sediment samples collected approximately 10 years apart. In general, regulated contaminants appeared to be decreasing in concentration. Total PAH and dioxins/furans concentrations did not significantly change over this period. Total organochlorine pesticides, 4,4-DDE, 4,4-DDD, total DDT, PCB, tributyltin and total butyltin decreased in concentration. Trace element concentrations in sediments decreased at the majority of the sampling sites for chromium, nickel, and selenium while arsenic, cadmium, copper, lead, mercury, silver, and zinc remained relatively constant. None of the contaminants measured has increased by more than a factor of 2. Selected sites located in the Inner Bay, where concentrations are higher and new inputs were more likely, showed increased concentrations of contaminants. Most contaminants were not found at concentrations expected to adversely affect sediment biota based on ERL/ERM guidelines. - Sediment studies indicate decadal decreases for many chemical contaminants in Casco Bay

  7. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    Science.gov (United States)

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  8. A study of arsenic and chromium contamination in freshwater sediments

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Abdul Khalik Wood; Alias Mohd Yusof; Mohd Suhaimi Hamzah; Md Suhaimi Elias; Shamsiah Abdul Rahman

    2008-08-01

    Arsenic (As) is generally known for its toxicity while chromium (Cr) at the appropriate amount is an essential element to man and becomes quite toxic in excessive amount. Anthropogenic activities such as industrialization, agricultural and urbanization have led to the contamination of toxic elements into aquatic that finally end up in the sediment system. Environmental process like diagenetic process causes the toxic metals to migrate from the bedrock materials into the sediment surface and lastly into the water column. This process has been recognized to be the factor of arsenic contamination in well water in several countries such as Bangladesh, Taiwan, USA and Canada. A number of samples of freshwater sediments from identified rivers and lakes at Johor Bharu area had been analyzed to determine the concentration level of As and Cr using neutron activation analysis (NAA) technique. Certified Reference Material (CRM) namely BCSS-1 and IAEA Soil-7 were applied to provide good quality assurance control. The results obtained show that the concentrations of As in the rivers and lakes are 10-33 mg/g and 18-62 mg/g, respectively. The concentrations of Cr in the rivers range between 25 mg/g to125 mg/g, while in the lake sediments the concentrations range between 173 mg/g to 301 mg/g. The lakes sediments have higher As and Cr contents than the river sediment. The results of the As and Cr concentrations were then compared to the background value proposed by National Oceanic and Atmospheric Administration (NOAA), USA and interim freshwater sediment quality guidelines value established by Canadian Sediment Quality Guidelines for The Protection of Aquatic Life. (Author)

  9. Chemometric Analysis for Pollution Source Assessment of Harbour Sediments in Arctic Locations

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Lejon, Tore; Jensen, Pernille Erland

    2015-01-01

    Pollution levels, pollutant distribution and potential source assessments based on multivariate analysis (chemometrics) were made for harbour sediments from two Arctic locations; Hammerfest in Norway and Sisimiut in Greenland. High levels of heavy metals were detected in addition to organic...... pollutants. Preliminary assessments based on principal component analysis (PCA) revealed different sources and pollutant distribution in the sediments of the two harbours. Tributyltin (TBT) was, however, found to originate from point source(s), and the highest concentrations of TBT in both harbours were...... indicated relation primarily to German, Russian and American mixtures in Hammerfest; and American, Russian and Japanese mixtures in Sisimiut. PCA was shown to be an important tool for identifying pollutant sources and differences in pollutant composition in relation to sediment characteristics....

  10. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    Science.gov (United States)

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  11. Arsenic, Chromium, and Other Potentially Toxic Elements in the Rocks and Sediments of Oropos-Kalamos Basin, Attica, Greece

    Directory of Open Access Journals (Sweden)

    D. Alexakis

    2014-01-01

    Full Text Available Rocks and sediments are non-anthropogenic sources of elements contamination. In this study, a series of potentially toxic elements were quantified in rocks and sediments of the Oropos-Kalamos basin. Only As, Hg, Pb, and Sb contents, in all the examined rocks and sediments, were higher than the levels given in international literature. Concentration of the elements As, Cr, Hg, Mo, Ni, and U is highly elevated in the lignite compared to crustal element averages. The enrichment of Cr and Ni in the lignite can be attributed to the known ultramafic rock masses surrounding the basin, while enrichment of As, Hg, Mo, Sb, and U is associated with the past geothermal activity of the Upper Miocene (about 15 million years ago. Nickel and Cr were transported into the lignite deposition basin by rivers and streams draining ultramafic rock bodies. The results of this study imply the natural source of Cr3+ and Cr6+ contamination of the Oropos-Kalamos groundwater, since high Cr contents were also recorded in the lignite (212.3 mg kg−1, chromiferous iron ore occurrences (256.6 mg kg−1, and alluvial deposits (212.5 mg kg−1, indicating Cr leaching and transportation to the depositional basin dating from the Upper Miocene age.

  12. Assessing the environmental availability of uranium in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, J.E.; Holdren, G.R. Jr.; Krupa, K.M.; Lindenmeier, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1994-06-01

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments.

  13. Assessing the environmental availability of uranium in soils and sediments

    International Nuclear Information System (INIS)

    Amonette, J.E.; Holdren, G.R. Jr.; Krupa, K.M.; Lindenmeier, C.W.

    1994-06-01

    Soils and sediments contaminated with uranium pose certain environmental and ecological risks. At low to moderate levels of contamination, the magnitude of these risks depends not only on the absolute concentrations of uranium in the material but also on the availability of the uranium to drinking water supplies, plants, or higher organisms. Rational approaches for regulating the clean-up of sites contaminated with uranium, therefore, should consider the value of assessing the environmental availability of uranium at the site before making decisions regarding remediation. The purpose of this work is to review existing approaches and procedures to determine their potential applicability for assessing the environmental availability of uranium in bulk soils or sediments. In addition to making the recommendations regarding methodology, the authors have tabulated data from the literature on the aqueous complexes of uranium and major uranium minerals, examined the possibility of predicting environmental availability of uranium based on thermodynamic solubility data, and compiled a representative list of analytical laboratories capable of performing environmental analyses of uranium in soils and sediments

  14. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment.

    Science.gov (United States)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J; You, Jing

    2014-07-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air-water flux, including air-water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air-water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Impaired growth in the polychaete Armandia brevis exposed to tributyltin in sediment.

    Science.gov (United States)

    Meador, J P; Rice, C A

    2001-03-01

    Juveniles of the opheliid polychaete, Armandia brevis, were exposed to sediment-associated tributyltin (TBT) for 42 days to evaluate toxicity and bioaccumulation. Growth in this species was inhibited in a dose-response fashion by increasing concentrations of TBT. Even though the biota-sediment accumulation factor (BSAF) for TBT declined for the higher sediment concentrations, the total butyltins in tissue increased over all sediment concentrations. At the highest sediment concentrations, polychaetes bioaccumulated less TBT than expected, which was most likely due to reduced uptake and continued metabolism of the parent compound. The less than expected BSAF values exhibited by animals at the exposure concentrations causing severe effects are an important finding for assessing responses in the field. It appears that severe biological effects can occur in long-term experiments without the expected high tissue concentrations; an observation likely explained by altered toxicokinetics. Analysis of variance determined the lowest observed effect concentration for growth to be 191 ng/g sediment dry wt. for 21 days of exposure and 101 ng/g sediment dry wt. at day 42, indicating that 21 days was insufficient for delineating the steady-state toxicity response. When based on regression analysis, the sediment concentration causing a 25% inhibition in growth at 42 days exposure was 93 ng/g dry wt. (total organic carbon = 0.58%). A dose-response association was also determined for polychaete net weight and TBT in tissue. The tissue residue associated with a 25% reduction in growth was 2834 ng/g dry wt. at day 42. A comparison of these results with previous work indicates that juveniles are approximately three times more sensitive than adults to TBT exposure. The sediment concentrations affecting growth in this species are commonly found in urban waterways indicating potentially severe impacts for this and other sensitive species.

  16. Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia.

    Science.gov (United States)

    Cheng, Wan Hee; Yap, Chee Kong

    2015-09-01

    Samples of mangrove snails Nerita lineata and surface sediments were collected from nine geographical sampling sites in Peninsular Malaysia to determine the concentrations of eight metals. For the soft tissues, the ranges of metal concentrations (μg g(-1) dry weight (dw)) were 3.49-9.02 for As, 0.69-6.25 for Cd, 6.33-25.82 for Cu, 0.71-6.53 for Cr, 221-1285 for Fe, 1.03-50.47 for Pb, and 102.7-130.7 for Zn while Hg as 4.00-64.0 μg kg(-1) dw(-1). For sediments, the ranges were 21.81-59.49 for As, 1.11-2.00 for Cd, 5.59-28.71 for Cu, 18.93-62.91 for Cr, 12973-48916 for Fe, 25.36-172.57 for Pb, and 29.35-130.34 for Zn while for Hg as 2.66-312 μg kg(-1) dw(-1). To determine the ecological risks on the surface habitat sediments, sediment quality guidelines (SQGs), the geochemical indices, and potential ecological risk index (PERI) were used. Based on the SQGs, all the metals investigated were most unlikely to cause any adverse effects. Based on geoaccumulation index and enrichment factor, the sediments were also not polluted by the studied metals. The PERI values based on As, Cd, Cu, Cr, Hg, Pb and Zn in this study were found as 'low ecological risk'. In order to assess the potential health risks, the estimated daily intakes (EDI) of snails were found to be all lower than the RfD guidelines for all metals, except for Pb in some sites investigated. Furthermore, the calculated target hazard quotients (THQ) were found to be less than 1. However, the calculated total target hazard quotients (TTHQ) from all sites were found to be more than 1 for high level consumers except KPPuteh. Therefore, moderate amount of intake is advisable to avoid human health risks to the consumers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    Science.gov (United States)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  18. On the use of mixture toxicity assessment in REACH and the water framework directive

    DEFF Research Database (Denmark)

    Syberg, Kristian; Jensen, T.S.; Cedergreen, Nina

    2009-01-01

      This review seeks to connect the scientific theory of mixture toxicity to its implementation within different regulatory frameworks. The aim is to demonstrate how mixture toxicity assessment can be more thoroughly integrated into the European chemical regulations, REACH and the Water Framework...... of how the methods could be applied within REACH and WFD. It is concluded that oncentration addition should be applied as a default model for mixture toxicity assessment. Furthermore, it is concluded that REACH and WFD only include mixture toxicity assessments in specific situations. However, it is shown...

  19. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-02-01

    Full Text Available Trace metals contamination of rivers and sediments remains a global threat to biodiversity and humans. This study was carried out to assess the variation pattern in trace metals contamination in Mvudi River water and sediments for the period of January–June 2014. Metal concentrations were analyzed using an inductively-coupled plasma optical emission spectrometer after nitric acid digestion. A compliance study for the water samples was performed using the guidelines of the Department of Water Affairs and Forestry (DWAF of South Africa and the World Health Organization (WHO. The National Oceanic and Atmospheric Administration (NOAA sediment quality guidelines for marine and estuarine sediments and the Canadian Council of Ministers of the Environment sediment guidelines (CCME for freshwater sediments were used to determine the possible toxic effects of the metals on aquatic organisms. pH (7.2–7.7 and conductivity (10.5–16.1 mS/m values complied with DWAF and WHO standards for domestic water use. Turbidity values in nephelometric turbidity units (NTU were in the range of 1.9–429 and exceeded the guideline values. The monthly average levels of trace metals in the water and sediments of Mvudi River were in the range of: Al (1.01–9.644 mg/L and 4296–5557 mg/kg, Cd (0.0003–0.002 mg/L and from below the detection limit to 2.19 mg/kg, Cr (0.015–0.357 mg/L and 44.23–149.52 mg/kg, Cu (0.024–0.185 mg/L and 13.22–1027 mg/kg, Fe (0.702–2.645 mg/L and 3840–6982 mg/kg, Mn (0.081–0.521 mg/L and 279–1638 mg/kg, Pb (0.002–0.042 mg/L and 1.775-4.157 mg/kg and Zn (0.031–0.261 mg/L and 14.481–39.88 mg/kg. The average concentrations of Al, Cr, Fe, Mn and Pb in the water samples exceeded the recommended guidelines of DWAF and WHO for domestic water use. High concentrations of Al and Fe were determined in the sediment samples. Generally, the concentrations of Cd, Cr and Cu in the sediments exceeded the corresponding effect range low

  20. Assessment of environmentally available metals in sediment samples from water for public supply of the city of Palmas, Tocantis, Brazil

    International Nuclear Information System (INIS)

    Oliveira, Bruna Rafaela

    2012-01-01

    The sediments are an important compartment used as a tool for assessment of aquatic ecosystems quality, for indicating the presence of contaminants released continuously into the environment as a result of human activities. Among chemical substances discharged to surface water, there are metals that in undesirable amounts, can be toxic to biota. Due to the importance of sediment and of shortage of data of water quality of the Araguaia-Tocantins river system, the present study conducted an assessment of environmentally available metals in sediment samples from water for public supply of the city of Palmas, in Tocantins, Brazil. The concentrations of As, Cd, Pb and Se were analyzed by Graphite Furnace Atomic Absorption Spectrometry (GFAAS), Ag, Al, B, Ba, Be, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Sb, Sc, Si, Ti, V and Zn were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES) and Hg by Cold Vapor Atomic Absorption Spectrometry (CVAAS). Two partial solubilization processes were performed for a comparative study, one with HCl 0,1 M and agitation at room temperature, considered a milder method for metal extraction from anthropogenic origin, and another with HNO 3 8 M and microwave heating, considered as an alternative to more complex methods of total digestion, since it provides a good evaluation of the total concentration of the elements. The sediment quality evaluation was realized by comparing the concentration values of the elements As, Cd, Cr, Cu, Hg, Ni, Pb and Zn with the quality guidelines (TEL and PEL) adopted by Canadian Council of Minister of the Environment (CCME), to thereby contribute to the environmental quality of the water of the Araguaia-Tocantins river system. (author)

  1. Geogenically vs. anthropogenic pollution of river sediments by potentially toxic trace elements on model locations; Geogenne vs. antropogenne znecistenie riecnych sedimentov potencialne toxickymi stopovymi prvkami na modelovych lokalitach

    Energy Technology Data Exchange (ETDEWEB)

    Pazicka, A. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra geochemie, 84215 Bratislava (Slovakia); Michnova, J. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra loziskovej geologie, 84215 Bratislava (Slovakia)

    2013-04-16

    Rtg diffraction analysis was used to evaluate the stream sediments mineralogical composition of Maly Dunaj, Nitra and Hron rivers. Identified minerals in the sediment samples, in addition with chemical analysis of selected elements (As, Sb, Hg, Cu, Pb), helped to determine the origin (geogenic vs. anthropogenic) of these potentially toxic trace elements. The results show that Maly Dunaj sediments are mostly loaded with anthropogenic contamination (agriculture, industry). Heavy minerals identified in Nitra sediments suggest natural higher concentrations of Cu, Pb and Fe. On the other hand As and Hg contamination is caused by human activities. The main sources are the coal ash impoundments in Zemianske Kostolany and Chalmova (for As) and Novacke chemicke zavody a.s. (for Hg). Stream sediments of Hron river are mostly influneced by the geology of the catchment area (Sb - As deposits in Nizke Tatry, volcanics). (authors)

  2. Ecotoxicological bioassays of sediment leachates in a river bed flanked by decommissioned pesticide plants in Nantong City, East China.

    Science.gov (United States)

    Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian

    2017-03-01

    Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.

  3. Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan

    Science.gov (United States)

    Dong, Cheng-Di; Chen, Chih-Feng; Chen, Chiu-Wen

    2015-04-01

    Fifty-eight sediment samples were collected from the Kaohsiung Harbor (Taiwan) for analyses of monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT), using gas chromatography/flame photometric detector (GC/FPD). The concentration of total butyltins (ΣBTs), sum of MBT, DBT, and TBT, varied from 3.9 to 158.5 ng Sn/g dw in sediment samples with TBT being the major component of the sediment samples, except for the vicinity of the Love River mouth where MBT was the most abundant BT compound (a proportion of over 57%). Based on the BTs concentration, distribution, composition and correlations, the sources of BTs found in harbor sediments are shipping activities, and TBT is the main pollutant; the estuary (i.e. Love River) has been the anthropogenic source of MBT from upstream inputs. Influences of TBT on aquatic organisms are evaluated using the toxicity guidelines proposed by the US EPA (US Environmental Protection Agency) and the ACCI (assessment class criterion for imposex) proposed by OSPAR (Oslo and Paris Commission). The evaluation shows that the TBT contained in the sediment at Kaohsiung Harbor is likely to have a negative influence at ACCI class C because gastropods present imposex and TBT levels are above ecotoxicological assessment criteria (EAC) limits.

  4. Evaluation of the toxicity of organic matter in marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    The inhibitory effects of the organics from the sediment along the east coast of India on acetylcholinesterase (AChE) in-vitro were evaluated. Sediment samples collected from the surface layers at various depths were extracted. Each of the extracts...

  5. Ecotoxiocological Studies of Niger Delta Sediments using Duckweed (L. Minor) Growth Inhibition Test

    International Nuclear Information System (INIS)

    Olajire, A. A.; Alternburger, R.; Brack, W.

    2003-01-01

    This study was undertaken to evaluate the toxicity of sediments collected from the Niger Delta (Nigeria) to Lemna minor, a sensitive aquatic weed regularly used for ecotoxicological studies. Also, the study wanted to determine if L. minor can be used as an effective bioassay organism by oil companies and chemical industries in Nigeria. Essentially, the experimental approach involved exposure of L. minor under standard laboratory conditions to sediments and toxicity is presented as percent inhibition of growth of L. minor cultures after 7 days. The result of the present study showed that there is differential toxicity among the sediments analyzed, and we found that for 0.25mg/ml of growth rate (%1) decreases in the order: SDOGN(42.6%) >SDWRR (33.7%)> SDALD (20.5%) >SDUGBO (17.1%) ? SDWRR were clorotic and had lost their roots, indicating the very high toxicity of the soluble organic contaminants in these sediments. Lemna minor proved to be a practical bioassay organism because the L. minor toxicity test is simple, sensitive and cost effective

  6. Metal pollution assessment in the surface sediment of Lake Nasser, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed E. Goher

    2014-01-01

    Full Text Available Eight heavy metals were measured seasonally in the sediment of Lake Nasser during 2013. 27 sites were chosen through 9 sectors across the main channel of the lake from Abu-Simbel to Aswan High Dam to assess the levels of the selected metals. The abundance of these metals was in the order of Fe > Mn > Zn > Cr > Ni > Cu > Pb > Cd, with mean concentrations of 12.41 mg/g, 279.56, 35.38, 30.79, 27.56, 21.78, 11.21 and 0.183 μg/g, respectively. Heavy metals are positively correlated with fine particles (mud fractions and organic matter accumulation. The results showed perspicuous spatial high significant differences (P < 0.01 for all the measured metals. Fe, Cr, Ni, Pb and Cd exhibited temporally high significant differences (P < 0.01 before and after the flood period. Four Pollution Indices were used for the environmental assessment of Lake Nasser sediment. The indices included three single indices, Enrichment Factor (EF, Index of Geo-accumulation (Igeo and Contamination Factor (CF. While the fourth, Pollution Load Index (PLI was an integrated index. The pollution indexes confirmed that the Lake Nasser sediment was not contaminated with these elements. Sediments of Lake Nasser may be represented as a reference for the pre-industrial background of River Nile Sediments downstream Aswan High Dam.

  7. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges.

    Science.gov (United States)

    Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin

    2008-04-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.

  8. Health risk assessment linked to filling coastal quarries with treated dredged seaport sediments

    International Nuclear Information System (INIS)

    Perrodin, Yves; Donguy, Gilles; Emmanuel, Evens; Winiarski, Thierry

    2014-01-01

    Dredged seaport sediments raise complex management problems since it is no longer possible to discharge them into the sea. Traditional waste treatments are poorly adapted for these materials in terms of absorbable volumes and cost. In this context, filling quarries with treated sediments appears interesting but its safety regarding human health must be demonstrated. To achieve this, a specific methodology for assessing health risks has been developed and tested on three seaport sediments. This methodology includes the development of a conceptual model of the global scenario studied and the definition of specific protocols for each of its major steps. The approach proposed includes in particular the use of metrological and experimental tools that are new in this context: (i) an experimental lysimeter for characterizing the deposit emissions, and (ii) a geological radar for identifying potential preferential pathways between the sediment deposit and the groundwater. The application of this approach on the three sediments tested for the scenario studied showed the absence of health risk associated with the consumption of groundwater for substances having a “threshold effect” (risk quotient −6 ). - Highlights: • The release of polluted dredged seaport sediments into the sea must be avoided. • Their use after treatment for the filling-up of quarries is proposed by managers. • An original health risk assessment methodology was created to validate this option. • It includes the use of a lysimeter and a georadar for the exposure assessment stage. • The example studied concludes to a health risk linked to arsenic in the groundwater

  9. The sediments of the Venice Lagoon (Italy) evaluated in a screening risk assessment approach: part I--application of international sediment quality guidelines.

    Science.gov (United States)

    Apitz, Sabine E; Barbanti, Andrea; Bocci, Martina; Carlin, Anna; Montobbio, Laura; Bernstein, Alberto Giulio

    2007-07-01

    A number of studies carried out in recent years have shown the presence of a wide range of contaminants in the Venice Lagoon. It is important to have a good understanding of the ecological quality of Venice Lagoon sediments in order to 1) define and locate areas where a threat to the environment is present and therefore an intervention is needed (i.e., in situ assessment and management); and 2) define sustainable and environmentally correct ways of managing sediments that are to be dredged for navigational purposes or in relation to other interventions (i.e., ex situ management). This study reports on a critical comparison of chemical quality of sediments in Venice Lagoon and its subregions. Data on the Venice Lagoon were compiled from several studies conducted during the past decade on surface sediment contamination; temporal variation and risks for contaminants at depth were not addressed. The comparison of observed pollutant concentrations with local and internationally used sediment quality guidelines (SQGs) was used as a tool to benchmark different sites and for a tier I (screening) ecological risk assessment. Meaning and relevance of a number of SQGs are discussed, together with the options available for carrying out the comparison with sediment data. The screening of the Venice Lagoon sediment quality is discussed from a risk-assessment perspective and appropriate values for use in an in situ-ex situ management framework are suggested. Although there were some differences depending upon which specific SQGs were applied, different SQGs provided the same general picture of screening risk in Venice Lagoon: Although there are geographic differences, median levels for several contaminants in surface sediments exceeded a number of SQGs. Many contaminants exceed threshold effects SQGs, and Hg exceeds probable effects SQGs in most sub-basins except the southern Lagoon. Venice Lagoon south has the lowest screening risk levels, Venice Lagoon central/north has the

  10. The use of bioassays to assess the toxicity of sediment in an acid mine drainage impacted river in Gauteng (South Africa)

    OpenAIRE

    Singh, P; Nel, A; Durand, JF

    2017-01-01

    Sediment contamination may occur from various anthropogenic activities, such as mining-, agricultural- and industrial practices. Many of the contaminants arising from these activities enter the aquatic system and precipitate from the surrounding water, becoming bound to sediment particles. These bound contaminants may reach concentrations higher than in the overlying water. Although water quality may be acceptable, an aquatic system may still be at risk if the contaminated sediment were to be...

  11. Use of hydra for chronic toxicity assessment of waters intended for human consumption

    International Nuclear Information System (INIS)

    Arkhipchuk, Victor V.; Blaise, Christian; Malinovskaya, Maria V.

    2006-01-01

    Methods developed with the cnidarian, Hydra attenuata (Pallas), have proven effective for screening acute toxicity in aqueous samples, whereas their use in revealing (sub)chronic toxic effects have had mitigated success. We therefore sought to explore manifestations of hydra mortality and abnormal morphological changes, as well as the reproductive capacity of hydras to further enhance the bioassay sensitivity and to assess (sub)chronic toxicity. These parameters were recorded following the onset of experiments after 8, 12 and 19-21 days of hydra exposure. Results obtained with potable waters (30 brands of bottled waters and artesian waters from 9 wells) showed chronic sublethal and lethal effects or reproduction rate inhibition for most samples. The effectiveness of the hydra toxicity test was demonstrated in comparison with other widely used bioassays. Our previous and present investigations suggest that hydra is a reliable and relevant test organism for the assessment of acute and chronic water toxicity. - Hydra is a reliable and relevant test organism for the assessment of acute and chronic toxicity of waters intended for human consumption

  12. Assessment of the Developmental Toxicity of Epidermal Growth ...

    African Journals Online (AJOL)

    developmental toxicity, using the embryonic stem cell test (EST), as well as ascertain how EGF ... differentiation of embryonic stem cells, EST was used to assess changes in different blastodermic ..... However, as an extraneous drug, it is worth.

  13. Exposure dose response relationships of the freshwater bivalve Hyridella australis to cadmium spiked sediments

    International Nuclear Information System (INIS)

    Marasinghe Wadige, Chamani P.M.; Maher, William A.; Taylor, Anne M.; Krikowa, Frank

    2014-01-01

    Highlights: • The exposure–dose–response approach was used to assess cadmium exposure and toxicity. • Accumulated cadmium in H. australis reflected the sediment cadmium exposure. • Spill over of cadmium into the biologically active pool was observed. • Increased cadmium resulted in measurable biological effects. • H. australis has the potential to be a cadmium biomonitor in freshwater environments. - Abstract: To understand how benthic biota may respond to the additive or antagonistic effects of metal mixtures in the environment it is first necessary to examine their responses to the individual metals. In this context, laboratory controlled single metal-spiked sediment toxicity tests are useful to assess this. The exposure–dose–response relationships of Hyridella australis to cadmium-spiked sediments were, therefore, investigated in laboratory microcosms. H. australis was exposed to individual cadmium spiked sediments (<0.05 (control), 4 ± 0.3 (low) and 15 ± 1 (high) μg/g dry mass) for 28 days. Dose was measured as cadmium accumulation in whole soft body and individual tissues at weekly intervals over the exposure period. Dose was further examined as sub-cellular localisation of cadmium in hepatopancreas tissues. The biological responses in terms of enzymatic and cellular biomarkers were measured in hepatopancreas tissues at day 28. H. australis accumulated cadmium from spiked sediments with an 8-fold (low exposure organisms) and 16-fold (high exposure organisms) increase at day 28 compared to control organisms. The accumulated tissue cadmium concentrations reflected the sediment cadmium exposure at day 28. Cadmium accumulation in high exposure organisms was inversely related to the tissue calcium concentrations. Gills of H. australis showed significantly higher cadmium accumulation than the other tissues. Accumulated cadmium in biologically active and biologically detoxified metal pools was not significantly different in cadmium exposed

  14. Selected elements and organic chemicals in bed sediment and fish tissue of the Tualatin River basin, Oregon, 1992-96

    Science.gov (United States)

    Bonn, Bernadine A.

    1999-01-01

    A variety of elements and organic compounds have entered the environment as a result of human activities. Such substances find their way to aquatic sediments from direct discharges to waterways, atmospheric emissions, and runoff. Some of these chemicals are known to harm fish or wildlife, either by direct toxicity, by reducing viability, or by limiting reproductive success. In aquatic systems, sediments become the eventual sink for most of these chemicals. Analyzing the sediments provides a first step in a chemical inventory that can lead to an assessment of potential biological impacts (Kennicutt and others, 1994).

  15. Combining contamination indexes, sediment quality guidelines and multivariate data analysis for metal pollution assessment in marine sediments of Cienfuegos Bay, Cuba.

    Science.gov (United States)

    Peña-Icart, Mirella; Pereira-Filho, Edenir Rodrigues; Lopes Fialho, Lucimar; Nóbrega, Joaquim A; Alonso-Hernández, Carlos; Bolaños-Alvarez, Yoelvis; Pomares-Alfonso, Mario S

    2017-02-01

    The purpose of the present work was to combine several tools for assessing metal pollution in marine sediments from Cienfuegos Bay. Fourteen surface sediments collected in 2013 were evaluated. Concentrations of As, Cu, Ni, Zn and V decreased respect to those previous reported. The metal contamination was spatially distributed in the north and south parts of the bay. According to the contamination factor (CF) enrichment factor (EF) and index of geoaccumulation (I geo ), Cd and Cu were classified in that order as the most contaminated elements in most sediment. Comparison of the total metal concentrations with the threshold (TELs) and probable (PELs) effect levels in sediment quality guidelines suggested a more worrisome situation for Cu, of which concentrations were occasional associated with adverse biological effects in thirteen sediments, followed by Ni in nine sediments; while adverse effects were rarely associated with Cd. Probably, Cu could be considered as the most dangerous in the whole bay because it was classified in the high contamination levels by all indexes and, simultaneously, associated to occasional adverse effects in most samples. Despite the bioavailability was partially evaluated with the HCl method, the low extraction of Ni (<3% in all samples) and Cu (<55%, except sample 3) and the relative high extraction of Cd (50% or more, except sample 14) could be considered as an attenuating (Ni and Cu) or increasing (Cd) factor in the risk assessment of those element. Copyright © 2016. Published by Elsevier Ltd.

  16. Risk assessment of metals in road-deposited sediment along an urban–rural gradient

    International Nuclear Information System (INIS)

    Zhao, Hongtao; Li, Xuyong

    2013-01-01

    We applied the traditional risk assessment methods originally designed for soils and river sediments to evaluation of risk associated with metals in road-deposited sediment (RDS) along an urban–rural gradient that included central urban (UCA), urban village (UVA), central suburban county (CSA), rural town (RTA), and rural village (RVA) areas in the Beijing metropolitan region. A new indicator RI RDS was developed which integrated the RDS characteristics of mobility, grain size and amount with the potential ecological risk index. The risk associated with metals in RDS in urban areas was generally higher than that in rural areas based on the assessment using traditional methods, but the risk was higher in urban and rural village areas than the areas with higher administration units based on the indicator RI RDS . These findings implied that RDS characteristics variation with the urban–rural gradient must be considered in metal risk assessment and RDS washoff pollution control. Highlights: ► Spatial pattern of metal risk level associated with road-deposited sediment (RDS) along urban–rural gradients varied. ► Risk level of metals changed significantly when grain size was considered. ► A new index integrating RDS characteristics and potential ecological risk was developed. ► Results from the new index were improved relative to those of traditional assessment methods. -- A new index integrating road-deposited sediment characteristics and potential ecological risk was developed to assess metal risk along the urban–rural gradient

  17. Radiological assessment of dam water and sediments for natural ...

    African Journals Online (AJOL)

    Radiological assessment of dam water and sediments for natural radioactivity and its overall health detriments. ... No artificial gamma emitting radionuclide was detected in the samples. The projected ... However, the chances of radiological hazard to the health of human from radioactivity in the soil were generally low.

  18. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests.

    Science.gov (United States)

    Mavakala, Bienvenu K; Le Faucheur, Séverine; Mulaji, Crispin K; Laffite, Amandine; Devarajan, Naresh; Biey, Emmanuel M; Giuliani, Gregory; Otamonga, Jean-Paul; Kabatusuila, Prosper; Mpiana, Pius T; Poté, John

    2016-09-01

    Management of municipal solid wastes in many countries consists of waste disposal into landfill without treatment or selective collection of solid waste fractions including plastics, paper, glass, metals, electronic waste, and organic fraction leading to the unsolved problem of contamination of numerous ecosystems such as air, soil, surface, and ground water. Knowledge of leachate composition is critical in risk assessment of long-term impact of landfills on human health and the environment as well as for prevention of negative outcomes. The research presented in this paper investigates the seasonal variation of draining leachate composition and resulting toxicity as well as the contamination status of soil/sediment from lagoon basins receiving leachates from landfill in Mpasa, a suburb of Kinshasa in the Democratic Republic of the Congo. Samples were collected during the dry and rainy seasons and analyzed for pH, electrical conductivity, dissolved oxygen, soluble ions, toxic metals, and were then subjected to toxicity tests. Results highlight the significant seasonal difference in leachate physicochemical composition. Affected soil/sediment showed higher values for toxic metals than leachates, indicating the possibility of using lagoon system for the purification of landfill leachates, especially for organic matter and heavy metal sedimentation. However, the ecotoxicity tests demonstrated that leachates are still a significant source of toxicity for terrestrial and benthic organisms. Therefore, landfill leachates should not be discarded into the environment (soil or surface water) without prior treatment. Interest in the use of macrophytes in lagoon system is growing and toxic metal retention in lagoon basin receiving systems needs to be fully investigated in the future. This study presents useful tools for evaluating landfill leachate quality and risk in lagoon systems which can be applied to similar environmental compartments. Copyright © 2016 Elsevier Ltd. All

  19. Acid-volatile sulfide and simultaneously extracted metals in surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea: concentrations, spatial distributions and the indication of heavy metal pollution status.

    Science.gov (United States)

    Zhuang, Wen; Gao, Xuelu

    2013-11-15

    Surface sediments were collected from the coastal waters of southwestern Laizhou Bay and the rivers it connects with during summer and autumn 2012. The acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) were measured to assess the sediment quality. The results showed that not all sediments with [SEM]-[AVS]>0 were capable of causing toxicity because the organic carbon is also an important metal-binding phase in sediments. Suppose the sediments had not been disturbed and the criteria of US Environmental Protection Agency had been followed, heavy metals in this area had no adverse biological effects in both seasons except for few riverine samples. The major ingredient of SEM was Zn, whereas the contribution of Cd - the most toxic metal studied - to SEM was <1%. The distributions of AVS and SEM in riverine sediments were more easily affected by anthropogenic activity compared with those in marine sediments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Development and application of an innovative expert decision support system to manage sediments and to assess environmental risk in freshwater ecosystems.

    Science.gov (United States)

    Dagnino, Alessandro; Bo, Tiziano; Copetta, Andrea; Fenoglio, Stefano; Oliveri, Caterina; Bencivenga, Mauro; Felli, Angelo; Viarengo, Aldo

    2013-10-01

    With the aim of supporting decision makers to manage contamination in freshwater environments, an innovative expert decision support system (EDSS) was developed. The EDSS was applied in a sediment quality assessment along the Bormida river (NW, Italy) which has been heavily contaminated by an upstream industrial site for more than a century. Sampling sites were classified by means of comparing chemical concentrations with effect-based target values (threshold and probable effect concentrations). The level of each contaminant and the combined toxic pressure were used to rank sites into three categories: (i) uncontaminated (8 sites), (ii) mildly contaminated (4) and (iii) heavily contaminated (19). In heavily contaminated sediments, an environmental risk index (EnvRI) was determined by means of integrating chemical data with ecotoxicological and ecological parameters (triad approach). In addition a sediment risk index (SedRI) was computed from combining chemical and ecotoxicological data. Eight sites exhibited EnvRI values ≥0.25, the safety threshold level (range of EnvRI values: 0.14-0.31) whereas SedRI exceeded the safety threshold level at 6 sites (range of SedRI values: 0.16-0.36). At sites classified as mildly contaminated, sublethal biomarkers were integrated with chemical data into a biological vulnerability index (BVI), which exceeded the safety threshold level at one site (BVI value: 0.28). Finally, potential human risk was assessed in selected stations (11 sites) by integrating genotoxicity biomarkers (GTI index falling in the range 0.00-0.53). General conclusions drawn from the EDSS data include: (i) in sites classified as heavily contaminated, only a few exhibited some significant, yet limited, effects on biodiversity; (ii) restrictions in re-using sediments from heavily contaminated sites found little support in ecotoxicological data; (iii) in the majority of the sites classified as mildly contaminated, tested organisms exhibited low response levels

  1. Distribution of polychlorinated biphenyl residues in sediments and blue mussels (Mytilus galloprovincialis) from Port Elizabeth Harbour, South Africa.

    Science.gov (United States)

    Kampire, E; Rubidge, G; Adams, J B

    2015-02-15

    Sediment and Mytilus galloprovincialis samples collected from the Port Elizabeth Harbour were analysed for six indicator PCB congeners to assess their contamination status. The concentrations of total PCBs in sediments and M. galloprovincialis ranged from 0.56 to 2.35 ng/g dry weight and 14.48 to 21.37 ng/g wet weight, respectively. Congeners 138 and 153 were dominant and accounted for an average of 29% and 24% of total PCBs in M. galloprovincialis; 32% and 30% in sediments, respectively. Sediments are home to a wide variety of aquatic life. None of the sediments analysed exceeded the PCB limits recommended the Canadian interim sediment quality guideline and the South African recommended sediment guidelines (21.6 ng/g). Both humans and aquatic life are sensitive to the toxic effects of PCBs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Toxicity assessment of organochlorine compounds detected in water environment using cultured human cell lines; Hito yurai saibo baiyokei wo mochiita suikankyo shiryochu no yuki enso kagobutsu no dokusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kunimoto, M; Yonemoto, J; Soma, Y; Nakasugi, O [National Institute for Environmental Studies, Tsukuba (Japan)

    1997-11-10

    As part of validation processes of in vitro toxicity assays for the risk assessment of environmental hazards, we applied an in vitro toxicity test using two human cell lines, neuroblastoma NB-1 cells and glioblastoma U-87 MG cells, to the assessment of organochlorine compounds detected in the water environment. The in vitro toxicity assay using NB-1 cells was calibrated by testing reference chemicals proposed by MEIC (Multicenter Evaluation of In Vitro Cytotoxicity), an international program for the validation of in vitro cytotoxicity assays. Beforehand, an assay using cells in frozen stock without subcultivation was examined by comparing IC50 values with the ordinary assay using subcultured cells. IC50 values for MEIC reference chemicals from the former assay showed good correlation with those from the latter assay, suggesting that the assay using cells in frozen stock can be used at least for the assessment of basal cytotoxicity. IC50 values for ten organochlorine compounds frequently detected in the sediment samples from contaminated rivers, p-chloroaniline, 3,4-dichloroaniline, p-dichlorobenzene, o-dichlorobenzene, Tris (2-chloroethyl)-phosphate, 2,5-dichlorophenol, 2,5-dichloroanisol, Triclosan and Triclocarban, were obtained with the in vitro assays and compared with their LD50 values in rats. No significant correlation, however, was seen between the IC50 and LD50 values, indicating that further improvement of in vitro toxicity assays is necessary for the application to the risk assessment of environmental hazards. 7 refs., 4 figs., 1 tab.

  3. Content, distribution and fate of 33 elements in sediments of rivers receiving wastewater in Hanoi, Vietnam

    International Nuclear Information System (INIS)

    Marcussen, Helle; Dalsgaard, Anders; Holm, Peter E.

    2008-01-01

    Untreated industrial and domestic wastewater from Hanoi city is discharged into rivers that supply water for various agricultural and aquacultural food production systems. The aim of this study was to assess the content, distribution and fate of 33 elements in the sediment and pore water of the main wastewater receiving rivers. The sediment was polluted with potentially toxic elements (PTEs) with maximum concentrations of 73 As, 427 Cd, 281 Cr, 240 Cu, 218 Ni, 363 Pb, 12.5 Sb and 1240 Zn mg kg -1 d.w. Observed distribution coefficients (log 10 K d,obs ) were calculated as the ratio between sediment (mg kg -1 d.w.) and pore water (mg L -1 ) concentrations. Maxima log 10 K d,obs were >4.26 Cd, >6.60 Cu, 4.78 Ni, 7.01 Pb and 6.62 Zn. The high values show a strong PTE retention and indicate the importance of both sorption and precipitation as retention mechanisms. Sulphide precipitation was a likely mechanism due to highly reduced conditions. - Sorption and precipitation processes are important in retention of potentially toxic elements in Hanoi river sediment and prevent elements entering food production systems

  4. Assessment of Heavy Metal Pollution in Sediment and Polychaete ...

    African Journals Online (AJOL)

    Metal pollution in the Mzinga creek mangrove stand was assessed and compared with a relatively pristine mangrove forest at Ras Dege in Dar es Salaam. The concentrations of cadmium, chromium, copper, lead and zinc in sediment and polychaete worms (Capitella sp.) were analyzed by ICP-AES and mercury was ...

  5. Sediment quality in the north coastal basin of Massachusetts, 2003

    Science.gov (United States)

    Breault, Robert F.; Ashman, Mary S.; Heath, Douglas

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, completed a reconnaissance-level study of bottom-sediment quality in selected lakes, rivers, and estuaries in the North Coastal Basin of Massachusetts. Bottom-sediment grab samples were collected from 20 sites in the North River, Lake Quannapowitt, Saugus River, Mill River, Shute Brook, Sea Plane Basin, Pines River, and Bear Creek. The samples were tested for various types of potentially harmful contaminants? including 33 elements, 17 polyaromatic hydrocarbons (PAHs), 22 organochlorine pesticides, and 7 polychlorinated biphenyl (PCB) mixtures (Aroclors)?to benthic organisms (bottom-dwelling) and humans. The results were compared among sampling sites, to background concentrations, and to concen-trations measured in other urban rivers, and sediment-quality guidelines were used to predict toxicity at the sampling sites to benthic organisms and humans. Because there are no standards for human toxicity for aquatic sediment, standards for contaminated upland soil were used. Contaminant concentrations measured in sediment collected from the North Coastal Basin generally were equal to or greater than concentrations in sediment from uncontaminated rivers throughout New England. Contaminants in North Coastal Basin sediment with elevated concentrations (above back-ground levels) included arsenic, chromium, copper, lead, nickel, and zinc, some of the PAHs, dichlorodiphenyltrichloro-ethane (DDT) and its metabolites, and dieldrin. No PCBs were measured above the detection limits. Measured concentrations of arsenic, chromium, and lead were also generally greater than those measured in other urban rivers throughout the conter-minous United States. With one exception (arsenic), local con-centrations measured in sediment samples collected from the North Coastal Basin were lower than concentrations measured in sediment collected from two of three urban rivers draining to Boston

  6. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  7. Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations.

    Science.gov (United States)

    Burgess, R M; Perron, M M; Cantwell, M G; Ho, K T; Serbst, J R; Pelletier, M C

    2004-11-01

    Ammonia occurs in marine waters including effluents, receiving waters, and sediment interstitial waters. At sufficiently high concentrations, ammonia can be toxic to aquatic species. Toxicity identification evaluation (TIE) methods provide researchers with tools for identifying aquatic toxicants. For identifying ammonia toxicity, there are several possible methods including pH alteration and volatilization, Ulva lactuca addition, microbial degradation, and zeolite addition. Zeolite addition has been used successfully in freshwater systems to decrease ammonia concentrations and toxicity for several decades. However, zeolite in marine systems has been used less because ions in the seawater interfere with zeolite's ability to adsorb ammonia. The objective of this study was to develop a zeolite method for removing ammonia from marine waters. To accomplish this objective, we performed a series of zeolite slurry and column chromatography studies to determine uptake rate and capacity and to evaluate the effects of salinity and pH on ammonia removal. We also assessed the interaction of zeolite with several toxic metals. Success of the methods was also evaluated by measuring toxicity to two marine species: the mysid Americamysis bahia and the amphipod Ampelisca abdita. Column chromatography proved to be effective at removing a wide range of ammonia concentrations under several experimental conditions. Conversely, the slurry method was inconsistent and variable in its overall performance in removing ammonia and cannot be recommended. The metals copper, lead, and zinc were removed by zeolite in both the slurry and column treatments. The zeolite column was successful in removing ammonia toxicity for both the mysid and the amphipod, whereas the slurry was less effective. This study demonstrated that zeolite column chromatography is a useful tool for conducting marine water TIEs to decrease ammonia concentrations and characterize toxicity.

  8. Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan.

    Science.gov (United States)

    Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M

    2018-03-01

    The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Development of a Transgenic Model to Assess Bioavailable Genotoxicity in Sediments

    National Research Council Canada - National Science Library

    1999-01-01

    This technical note describes the rationale for using transgenic animal models to assess the potential genotoxicity of sediments, the benefits that can be obtained using such models versus currently...

  10. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    Science.gov (United States)

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  11. Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays.

    Science.gov (United States)

    Piva, Francesco; Ciaprini, Francesco; Onorati, Fulvio; Benedetti, Maura; Fattorini, Daniele; Ausili, Antonella; Regoli, Francesco

    2011-04-01

    Quality assessments are crucial to all activities related to removal and management of sediments. Following a multidisciplinary, weight of evidence approach, a new model is presented here for comprehensive assessment of hazards associated to polluted sediments. The lines of evidence considered were sediment chemistry, assessment of bioavailability, sub-lethal effects on biomarkers, and ecotoxicological bioassays. A conceptual and software-assisted model was developed with logical flow-charts elaborating results from each line of evidence on the basis of several chemical and biological parameters, normative guidelines or scientific evidence; the data are thus summarized into four specific synthetic indices, before their integration into an overall sediment hazard evaluation. This model was validated using European eels (Anguilla anguilla) as the bioindicator species, exposed under laboratory conditions to sediments from an industrial site, and caged under field conditions in two harbour areas. The concentrations of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and trace metals were much higher in the industrial compared to harbour sediments, and accordingly the bioaccumulation in liver and gills of exposed eels showed marked differences between conditions seen. Among biomarkers, significant variations were observed for cytochrome P450-related responses, oxidative stress biomarkers, lysosomal stability and genotoxic effects; the overall elaboration of these data, as those of standard ecotoxicological bioassays with bacteria, algae and copepods, confirmed a higher level of biological hazard for industrial sediments. Based on comparisons with expert judgment, the model presented efficiently discriminates between the various conditions, both as individual modules and as an integrated final evaluation, and it appears to be a powerful tool to support more complex processes of environmental risk assessment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments

    International Nuclear Information System (INIS)

    Suresh, G.; Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V.

    2011-01-01

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. - Highlights: →Sediments radioactivity, mineralogical and heavy metal characterization have been analyzed. → Absorbed dose rate, PLI and kaolinite increase towards the river mouth. → Influence of minerals and heavy metals on level of radioactivity is assessed.

  13. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, G., E-mail: gsureshphy_1983@yahoo.co.in [Department of Physics Thiruvalluvar College of Engg and Tech, Ponnur hills, Vandavasi, Tamilnadu 604 505 (India); Ramasamy, V. [Department of Physics, Annamalai University, Tamilnadu (India); Meenakshisundaram, V. [Health and Safety Division, IGCAR, Kalpakkam, Tamilnadu (India); Venkatachalapathy, R. [CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamilnadu (India); Ponnusamy, V. [Department of Physics, MIT Campus, Anna University Chennai, Tamilnadu (India)

    2011-10-15

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. - Highlights: >Sediments radioactivity, mineralogical and heavy metal characterization have been analyzed. > Absorbed dose rate, PLI and kaolinite increase towards the river mouth. > Influence of minerals and heavy metals on level of radioactivity is assessed.

  14. Health risk assessment linked to filling coastal quarries with treated dredged seaport sediments

    Energy Technology Data Exchange (ETDEWEB)

    Perrodin, Yves, E-mail: yves.perrodin@entpe.fr [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Donguy, Gilles [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France); Emmanuel, Evens [Laboratoire de Qualité de l' Eau et de l' Environnement, Université Quisqueya, BP 796 Port-au-Prince (Haiti); Winiarski, Thierry [Université de Lyon, ENTPE, UMR CNRS 5023, Laboratoire LEHNA, 2 rue Maurice Audin, 69518 Vaulx-en-Velin (France)

    2014-07-01

    Dredged seaport sediments raise complex management problems since it is no longer possible to discharge them into the sea. Traditional waste treatments are poorly adapted for these materials in terms of absorbable volumes and cost. In this context, filling quarries with treated sediments appears interesting but its safety regarding human health must be demonstrated. To achieve this, a specific methodology for assessing health risks has been developed and tested on three seaport sediments. This methodology includes the development of a conceptual model of the global scenario studied and the definition of specific protocols for each of its major steps. The approach proposed includes in particular the use of metrological and experimental tools that are new in this context: (i) an experimental lysimeter for characterizing the deposit emissions, and (ii) a geological radar for identifying potential preferential pathways between the sediment deposit and the groundwater. The application of this approach on the three sediments tested for the scenario studied showed the absence of health risk associated with the consumption of groundwater for substances having a “threshold effect” (risk quotient < 1), and an acceptable risk for substances having a “non-threshold effect”, with the notable exception of arsenic (individual risk equal to 3.10{sup −6}). - Highlights: • The release of polluted dredged seaport sediments into the sea must be avoided. • Their use after treatment for the filling-up of quarries is proposed by managers. • An original health risk assessment methodology was created to validate this option. • It includes the use of a lysimeter and a georadar for the exposure assessment stage. • The example studied concludes to a health risk linked to arsenic in the groundwater.

  15. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    Science.gov (United States)

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    -based criteria are commonly lower values than the hardness-based criteria and thus suggest a greater degree or magnitude of impairment at the sampling locations. The riffle-habitat benthic invertebrate richness and abundance data correlate strongly with the extent of impact based on water quality for both brooks. Similarly, the fish community assessments document degraded conditions throughout most of Pike Hill Brook, whereas the data for the tributary to Cookville Brook suggest less degradation to this brook. The sediment environment shows similar extents of impairment to the surface-water environment, with most sampling locations in Pike Hill Brook, including the wetland areas, and the tributary to Cookville Brook affected. Sediment impairment is caused by elevated copper concentrations, although localized degradation due to elevated cadmium and zinc concentrations was documented on the basis of exceedances of probable effects concentrations (PECs). In contrast to impairment determined by exceedances of PECs, equilibrium-partitioning sediment benchmarks (based on simultaneously extracted metals, acid volatile sulfides, and total organic carbon) predict no toxic effects in sediments at the background locations and uncertain toxic effects throughout Pike Hill Brook and the tributary to Cookville Brook, with the exception of the most downstream Cookville Brook location, which indicated no toxic effects. Acute laboratory toxicity testing using the amphipod Hyalella azteca and the midge Chironomus dilutus on pore waters extracted from sediment in situ indicate impairment (based on tests with H. azteca) at only one location in Pike Hill Brook and no impairment in the tributary to Cookville Brook. Chronic laboratory sediment toxicity testing using H. azteca and C. dilutus indicated toxicity in Pike Hill Brook at several locations in the lower reach and two locations in the tributary to Cookville Brook. Toxicity was not indicated for either species in sediment from the most acidic

  16. Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels

    Science.gov (United States)

    Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.

    2018-01-01

    Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.

  17. ASSESSMENT OF HEAVY METALS CONTENTS IN BOTTOM SEDIMENTS OF BUG RIVER

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-07-01

    Full Text Available The development of industry, agriculture, and transport contributes to an increased environmental pollution by heavy metals. The aim of the study was preliminary assessment of the contents of selected metals (lead, cobalt, copper, chromium, cadmium and nickel in the sediments of Bug river. The study comprised part of the river flowing through Poland. It was found that the Bug river sediments are not contaminated in respect to the content of tested metals. Based on the analysis of the study results, these metals can be lined up in the following order: Cr > Pb > Cu > Ni > Co > Cd. Statistical analysis showed that copper and chromium occur in Bug river sediments in forms bindings with organic matter in majority of cases. The granulometric analysis of sediments from Bug river revealed the largest percentage of two fractions: 1.0–0.2 mm with average of 47.7 ± 19.77% and 0.2–0.1 mm with average of 20.6 ± 7.7%. These are the dominant fractions with the accumulation of metals in river sediments, which has been confirmed by statistical analysis.

  18. assessment of the toxicity of radiographic developer effluent

    African Journals Online (AJOL)

    Stephen

    ASSESSMENT OF THE TOXICITY OF RADIOGRAPHIC DEVELOPER ... as a source of food (protein), sporting tools for anglers; and a vital part of the ecosystem (tertiary ... in estuaries and coastal waters which because of the ... particularly vulnerable (Dicks, 1983; Health 1987). .... discharges into the marine and coastal.

  19. Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina).

    Science.gov (United States)

    Mugni, H; Ronco, A; Bonetto, C

    2011-03-01

    Toxicity to the locally dominant amphipod Hyalella curvispina was assessed in a first-order stream running through a cultivated farm. Cypermethrin, chlorpyrifos, endosulfan and glyphosate were sprayed throughout the studied period. Toxicity was assayed under controlled laboratory conditions with runoff and stream water samples taken from the field under steady state and flood conditions. Ephemeral toxicity pulses were observed as a consequence of farm pesticide applications. After pesticide application, runoff water showed 100% mortality to H. curvispina for 1 month, but no mortality thereafter. Toxicity persistence was shortest in stream water, intermediate in stream sediments and longest in soil samples. Runoff had a more important toxicity effect than the exposure to direct aerial fumigation. The regional environmental features determining fast toxicity dissipation are discussed. Copyright © 2010. Published by Elsevier Inc.

  20. Assessment of Measurement Uncertainty Values of the Scandium Determination in Marine Sediment

    International Nuclear Information System (INIS)

    Rina-Mulyaningsih, Th.

    2005-01-01

    The result value of testing is meaningless if it isn't completed with uncertainty value. So that with the analysis result Sc in the marine sediment sample. It was assessed the uncertainty measurement of Sc analysis in marine sediment. The experiment was done in AAN Serpong laboratory. The result of calculation uncertainty on Sc analysis showed that the uncertainty components come from: preparation of sample and standard/comparator, purity of standard, counting statistics (sample and standard), repeatability, nuclear data and decay correction. The assessment on uncertainty must be done for the analysis of others elements, because each elements has difference nuclear and physical properties. (author)

  1. Metal and trace element sediment assessment from two estuarine systems: Santos/Sao Vicente and Cananeia, State of Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Amorim, Eduardo Paulo de

    2012-01-01

    oriented values adopted by CETESB for toxic metals content in sediments, area 1 surpassed the TEL limits for some metals, mainly for Hg. Sediments from area 2 and 3 (except station 14), did not exceed the limits for most of the metals analyzed. Although the sediments from Cananeia region were composed mainly of sandy fractions, in some stations the pelitic fraction was greatly significant. From the results obtained in the region, the concentration levels of metals potentially available such as Cd, Cr, Cu, Hg, Ni, Pb and Zn were below the limits TEL and PEL oriented values and CONAMA 344/2004 resolution for the 3 areas assessed: area 1 (Cananeia sea), area 2 (Trapande Bay) and area 3 (Cubatao sea). Enrichment Factor (EF) and Geoaccumulation index (Igeo), geochemical tools used for contamination assessment were used to evaluate the contamination level in both estuaries. Multivariate statistical analysis was applied to the results which were then compared to the results of other published studies in these regions (Santos/Sao Vicente and Cananeia). (author)

  2. DO TIE LABORATORY BASED ASSESSMENT METHODS REALLY PREDICT FIELD EFFECTS?

    Science.gov (United States)

    Sediment Toxicity Identification and Evaluation (TIE) methods have been developed for both porewaters and whole sediments. These relatively simple laboratory methods are designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whethe...

  3. Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

    Science.gov (United States)

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Wang, Sheng-Wei

    2015-03-01

    This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The use of multivariate analysis to link sediment contamination and toxicity data to establish sediment quality guidelines: an example in the Gulf of Cadiz (Spain); El uso del analisis multivariante en la union de datos de toxicidad y contaminacion para establecer guias de calidad de sedimento: Un ejemplo en la Bahia de Cadiz (Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Del Valls, T. Angel; Forja, Jesus M [Departamento de Quimica Fisica, Facultad de Ciencias del Mar, Universidad de Cadiz, Cadiz, (Spain); Gomez-Parra, Abelardo [Instituto de Ciencias Marinas de Andalucia, CSIC, Puerto Real, Cadiz, (Spain)

    1998-03-01

    To evaluate marine sediment quality in the Gulf of Cadiz, chemical concentration and toxicity test endpoints from sediments were linked using multivariate analysis. Sediment samples were collected synoptically at seven stations in two littoral ecosystems of the Gulf of Cadiz (five in the Bay of Cadiz and two in the salt marsh of the Barbate River), and subjected to six separate, replicated sediment toxicity tests and comprehensive sediment chemistry analyses. The toxic effects of sediments were tested using three operational sediment phases: whole sediment, using the estuarine amphipod Microdeutopus gryllotalpa (10 d static: survival) and the estuarine clam Ruditapes philippinaru (48 h static: survival) and of the marine fish Sparus aurata (48 h static. Survival); and interstitial water, using populations of the estuarine rotifer Brachionus Plicatilis (7 d static: Population decline) and of the marine bacteria Photobacterium phosphoreum (Microtox ). To evaluate the levels of contamination, the concentrations in the sediments of organic carbon, 14 trace metals (Fe, Mn, Cu, Zn, Pb, Cd, Ag, Hg, As, Sn, V, Ni, Co and Cr) and the surfactant linear alkylbenzenesulphonate (LAS) were measured. The results of the toxicity tests were compared in a dose-response relationship between sites, demonstrating a general agreement between the toxicity values determined by all the tests, except in the case of interstitial water toxicity (principally due to toxic mixtures of trace metals). Data derived from sediment chemistry and bioassays were assembled by multivariate statistical techniques (PCA and factor analysis), showing that the two data types could be represented by only five factors corresponding to five overlapping chemical-biological effect relations. Positive prevalence of these factors in the cases studied was used to establish those ranges in chemical concentrations associated with adverse effects. The sediment quality guidelines, in terms of concentrations at or below

  5. Sediment toxicity data from the NOAA National Status and Trends Program, March 1991 to July 1996 (NODC Accession 9800146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of its bioeffects assessment program. NOAA has begun a series of surveys of the toxicity and other biological effects of toxicants in selected bays and...

  6. Evaluation of potential relationships between benthic community structure and toxic metals in Laizhou Bay.

    Science.gov (United States)

    Wu, Bin; Song, Jinming; Li, Xuegang

    2014-10-15

    The objective of the present study was to examine the relationships between benthic community structure and toxic metals using bivariate/multivariate techniques at 17 sediment locations in Laizhou Bay, North China. Sediment chemical data were evaluated against geochemical background values and sediment quality guidelines, which identified Cu and As as contaminants of concern with a moderate potential for adverse effects. Benthic community data were subjected to non-metric multidimensional scaling, which generated four groups of stations. Spearman rank correlation was then employed to explore the relationships between the major axes of heavy metals and benthic community structure. However, weak and insignificant correlations were found between these axes, indicating that contaminants of concern may not be the primary explanatory factors. Polychaeta were abundant in southern Laizhou Bay, serving as a warning regarding the health status of the ecosystem. Integrated sediment quality assessment showed sediments from northern central locations were impaired, displaying less diverse benthos and higher metal contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Assessment of sediment quality collected from the Tunku Abdul Rahman National Park, Sabah

    International Nuclear Information System (INIS)

    Mohd Suhaimi Elias; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Siong, Wee Boon; Nazaratul Ashifa Abdullah Salim

    2012-01-01

    Assessment of source and sediment quality was carried out on marine sediments collected from the Tuanku Abdul Rahman National Park. Enrichment factors (EF), pollution load index (PLI) and geo-accumulation index (Igeo) were used to identify the sources of pollution, degree of contamination and sediment quality, respectively. Elemental analyses of marine sediment samples were performed by using the Instrumental Neutron Activation Analysis (INAA). Results from the Tunku Abdul Rahman National Park of Sabah indicated that most of the elements are considered to be from lithological or natural origin with EF values of less than 2 except for As (10 stations), Cr (3 stations), Lu (5 stations), Mg (2 stations), Sb (6 stations) and U (3 stations). For the sediment quality, most of the study area can be categorised as unpolluted for most of the elements (Igeo value < 2) except for As, Cr, Lu, Mg, Sb and U. A few study areas were slightly low contaminated with As, Cr, Lu, Mg, Sb and U. The contamination of As, Cr, Lu, Mg, Sb and U in the study area can be categorised as moderate with Igeo values ranged from 1 to 2. Meanwhile, the results of PLI value for sediment were ranged from 0.93 to 1.47 (PLI < 50) indicating there are not required to perform drastic rectification measures for the screening of the elements in the Tunku Abdul Rahman Park. Overall, assessment of the sediment quality at the Tunku Abdul Rahman National Park showed a few elements such as As, Cr, Lu, Mg, Sb and U were slightly enriched while most of the elements were similar to background values. (author)

  8. Dredged Material Evaluations: Review of Zooplankton Toxicity Test Methods for Marine Water Quality Evaluations

    Science.gov (United States)

    2016-09-01

    term impacts of the DM while settling through the water column (elutriate toxicity tests), and long-term toxicity (whole sediment toxicity tests) and...elutriates are prepared according to guidance (USEPA/USACE 1991; 1998) by mixing sediment and site water and allowing settling for prescribed periods...of water and waste water . 17th ed. Washington, DC: APHA. Arnold, W. R., R. L. Diamond, and D. S. Smith. 2010a. The effects of salinity, pH, and

  9. Associations between dioxins/furans and dioxin-like PCBs in estuarine sediment and blue crab

    Science.gov (United States)

    Liebens, J.; Mohrherr, C.J.; Karouna-Renier, N. K.; Snyder, R.A.; Rao, K.R.

    2011-01-01

    The objective of the present study was to evaluate the relationships between the quantity, toxicity, and compositional profile of dioxin/furan compounds (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in estuarine sediment and in the blue crab (Callinectes sapidus). Sediment and blue crab samples were collected in three small urban estuaries that are in relatively close proximity to each other. Results show that differences between PCDD/F and DL-PCB mass concentrations and total toxic equivalents (TEQ) toxicity in sediments of the three estuaries are reflected in those of the blue crab. TEQs are higher in the hepatopancreas of the crabs than in the sediment, but the concentration factor is inversely proportional to the TEQ in the sediments. Congener profiles in the crabs are systematically different from those in the sediments, and the difference is more pronounced for PCDD/Fs than for DL-PCBs, possibly due to differences in metabolization rates. Compared with sediment profiles, more lesser-chlorinated PCDD/Fs that have higher TEFs accumulate in crab hepatopancreas. This selective bioaccumulation of PCDD/Fs results in a TEQ augmentation in crab hepatopancreas compared with sediments. The bioaccumulation in the blue crab is also selective for PCDD/Fs over DL-PCBs. ?? 2011 Springer Science+Business Media B.V.

  10. Identification and determination of the contribution of iron-steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China.

    Science.gov (United States)

    Zhang, Liu; Bai, Ya-Shu; Wang, Ji-Zhong; Peng, Shu-Chuan; Chen, Tian-Hu; Yin, Da-Qiang

    2016-11-01

    Seventeen polycyclic aromatic hydrocarbon (PAH) compounds were determined in surface sediments collected from the Chaohu Lake (a large shallow lake in eastern China) and its tributaries. Both diagnostic ratios and a receptor model (positive matrix factorization, PMF) were applied to identify and determine the contribution of a local iron-steel manufacturing plant located in the Nanfei River (NFR) to the Chaohu Lake basin. The results show that sites located in the downstream of the steel plant contained concentrations of 17 PAH (Σ 17 PAH) approximately two orders of magnitudes higher than those from other sites. Five factors were identified by the PMF model, including industrial waste, wood/biomass burning, diagenetic origin, domestic coal combustion, and industrial combustion. Our findings suggest that sediments in the downstream of the plant and in the western part of the Chaohu Lake were predominantly affected by industrial coal combustion. A mixture of pyrolytic origins impacted urban sediments in the upstream of the plant, whereas diagenetic origins along with coal and biomass burning were suggested to influence the eastern part and rural tributaries of the lake. To assess the potential ecological risk and toxicity caused by the iron-steel plant, sediment toxicity was evaluated by the PMF model, sediment quality guideline, and toxic equivalent factors. All of the three approaches suggested PAH accumulation in the NFR sediments could produce significant adverse ecological effects and half of the sediment toxicity in the NFR may be attributed to the emissions from the iron-steel plant. Some rural locations also exhibited PAH concentrations above probable effects, most likely contributed by wood/biomass burning.

  11. Heavy metals pollution status in surface sediments (rivers and artifical lakes, Serbia)

    Science.gov (United States)

    Sakan, Sanja; Đorđević, Dragana

    2017-04-01

    Potentially hazardous trace elements, often in literature referred as "heavy metals", are deemed serious pollutants due to their toxicity, persistence and non-degradability in the environment. These elements play an important role in extent of water pollution and threaten the health of populations and ecosystems. As the sink of heavy metals, sediment beds adsorb metals in quantities that are many times higher than those found in the water column in the long-term polluted water environment. It is believed that most of the metal content, as much as 90% in aquatic sediments is bound to sediments. Metal contamination in these sediments could be directly affect the river water quality, resulting in potential consequences to the sensitive lowest levels of the food chain and ultimately to human health. The objective of this research was the evaluation of heavy metal contamination level in sediments of the most important rivers and artificial lakes in Serbia. The heavy metal enrichment in studied sediments was conducted by using: determination of total metal content, sequential extraction procedure for the fractionation of studied elements, quantification of the metal enrichment degree in the sediments by calculating geo-accumulation indices, determination of actual and potential element availability and application of BRAI index for the assessment of heavy metal bioavailability. The sediments were found to be contaminated by heavy metals to various extents, mostly with Cd, Cu, and Zn. The significant variation in heavy metal distribution among samples collected in this large region, encompassing all Serbian watersheds, suggests the selective contamination of sediments by heavy metals. Elevated concentrations of elements in most cases were detected in samples of river sediments, since artificial lake reservoirs are usually built in rural areas, where the less anthropogenic pollution. Rivers often flow through the towns and these water basins less or more loaded

  12. Assessing reproductive toxicity of two environmental toxicants with a novel in vitro human spermatogenic model

    Directory of Open Access Journals (Sweden)

    Charles A. Easley, IV

    2015-05-01

    Full Text Available Environmental influences and insults by reproductive toxicant exposure can lead to impaired spermatogenesis or infertility. Understanding how toxicants disrupt spermatogenesis is critical for determining how environmental factors contribute to impaired fertility. While current animal models are available, understanding of the reproductive toxic effects on human fertility requires a more robust model system. We recently demonstrated that human pluripotent stem cells can differentiate into spermatogonial stem cells/spermatogonia, primary and secondary spermatocytes, and haploid spermatids; a model that mimics many aspects of human spermatogenesis. Here, using this model system, we examine the effects of 2-bromopropane (2-BP and 1,2,dibromo-3-chloropropane (DBCP on in vitro human spermatogenesis. 2-BP and DBCP are non-endocrine disrupting toxicants that are known to impact male fertility. We show that acute treatment with either 2-BP or DBCP induces a reduction in germ cell viability through apoptosis. 2-BP and DBCP affect viability of different cell populations as 2-BP primarily reduces spermatocyte viability, whereas DBCP exerts a much greater effect on spermatogonia. Acute treatment with 2-BP or DBCP also reduces the percentage of haploid spermatids. Both 2-BP and DBCP induce reactive oxygen species (ROS formation leading to an oxidized cellular environment. Taken together, these results suggest that acute exposure with 2-BP or DBCP causes human germ cell death in vitro by inducing ROS formation. This system represents a unique platform for assessing human reproductive toxicity potential of various environmental toxicants in a rapid, efficient, and unbiased format.

  13. A Hydrograph-Based Sediment Availability Assessment: Implications for Mississippi River Sediment Diversion

    Directory of Open Access Journals (Sweden)

    Timothy Rosen

    2014-03-01

    Full Text Available The Mississippi River Delta Plain has undergone substantial land loss caused by subsidence, relative sea-level rise, and loss of connectivity to the Mississippi River. Many restoration projects rely on diversions from the Mississippi River, but uncertainty exists about the timing and the amount of actually available sediment. This study examined long-term (1980–2010 suspended sediment yield as affected by different hydrologic regimes to determine actual suspended sediment availability and how this may affect diversion management. A stage hydrograph-based approach was employed to quantify total suspended sediment load (SSL of the lower Mississippi River at Tarbert Landing during three river flow conditions: Peak Flow Stage (stage = 16.8 m, discharge >32,000 m3 s−1, High Flow Stage (stage = 14.6 m, discharge = 25,000–32,000 m3 s−1, and Intermediate Flow Stage (Stage = 12.1 m, discharge = 18,000–25,000 m3 s−1. Suspended sediment concentration (SSC and SSL were maximized during High Flow and Intermediate Flow Stages, accounting for approximately 50% of the total annual sediment yield, even though duration of the stages accounted for only one-third of a year. Peak Flow Stage had the highest discharge, but significantly lower SSC (p < 0.05, indicating that diversion of the river at this stage would be less effective for sediment capture. The lower Mississippi River showed significantly higher SSC (p < 0.0001 and SSL (p < 0.0001 during the rising than the receding limb. When the flood pulse was rising, Intermediate Flow and High Flow Stages showed greater SSC and SSL than Peak Flow Stage. Together, Intermediate Flow and High Flow Stages on the rising limb annually discharged 28 megatonnes over approximately 42 days, identifying this to be the best period for sediment capture and diversion.

  14. Evaluation of older bay mud sediment from Richmond Harbor, California

    Energy Technology Data Exchange (ETDEWEB)

    Pinza, M.R.; Mayhew, H.L.; Word, J.Q.

    1996-09-01

    The older, bay mud (OBM) unit predates modem man and could act as a barrier to the downward transport of contaminants from the younger bay mud (YBM) because of its hard-packed consistency. However, its chemical and biological nature have not been well characterized. Battelle/Marine Sciences Laboratory (MSL) conducted three independent studies of OBM sediment in January 1993, January 1994, and October 1994. These studies evaluated potential chemical contamination and biological effects of OBM that could occur as a result of dredging and disposal activities. These evaluations were performed by conducting chemical analysis, solid-phase toxicity tests, suspended- particulate-phase (SPP) toxicity tests, and bioaccumulation tests on the OBM sediment. If the sediment chemistry and toxicity results showed no or minimal contamination and toxicological responses, then either the OBM could be left exposed in Richmond Harbor after dredging the YBM without leaving a source of contamination, or if the project depths necessitate, the OBM would be acceptable for disposal at an appropriate disposal site.

  15. An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment.

    Science.gov (United States)

    Webster, Carl A; Di Silvio, Desire; Devarajan, Aarthi; Bigini, Paolo; Micotti, Edoardo; Giudice, Chiara; Salmona, Mario; Wheeler, Grant N; Sherwood, Victoria; Bombelli, Francesca Baldelli

    2016-03-01

    With the rise in production of nanoparticles (NPs) for an ever-increasing number of applications, there is an urgent need to efficiently assess their potential toxicity. We propose a NP hazard assessment protocol that combines mammalian cytotoxicity data with embryonic vertebrate abnormality scoring to determine an overall toxicity index. We observed that, after exposure to a range of NPs, Xenopus phenotypic scoring showed a strong correlation with cell based in vitro assays. Magnetite-cored NPs, negative for toxicity in vitro and Xenopus, were further confirmed as nontoxic in mice. The results highlight the potential of Xenopus embryo analysis as a fast screening approach for toxicity assessment of NPs, which could be introduced for the routine testing of nanomaterials.

  16. Preliminary sediments quality assessment of the Midia Port aquatorium - Black Sea - Romania

    Science.gov (United States)

    Catianis, I.; Ungureanu, C.; Stanica, A.

    2012-04-01

    in a smaller quota sandy fractions. Mineralogically, quartz dominates the sandy and silty fractions of sediments mass, being subsequently followed by a large spectrum of other minerals: feldspar, mica minerals, chlorite, heavy minerals, etc. Besides the mainly siliciclastic mass, sediments are rich in organic matter, with lower contents of carbonates. Some of the sediments are contaminated with petroleum products. All measured water samples were polluted with heavy metals (As, B, Se) and sulphates. Sediments show different contents of chemical compounds, in relation with the spatial distribution of the harbor sectors. Highest concentrations of total volatiles compounds were found in sediments from Waste Oil Buffer Area and Ships Transit Area. Microbiologically contaminated sediments were found in Cargo Terminal Area, Waste Oil Buffer Area and Ships Transit Area. Some samples from Cargo Terminal Area and Ships Transit Area present toxicity signs. Acknowledgments: "This work was supported by the strategic grant POSDRU/89/1.5/S/58852; Project "Postdoctoral program for training scientific researchers" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007 - 2013", and was performed with scientific and technical assistance provided by NIRD GeoEcoMar - Romania, during the Sedi Port Sil -Project, Life 09ENV/IT/000158

  17. Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia)

    International Nuclear Information System (INIS)

    Youssef, Mohamed; El-Sorogy, Abdelbaset; Al Kahtany, Khaled; Al Otiaby, Naif

    2015-01-01

    Highlights: • The present work deal with the environmental assessment of Tarut Island Coastal area. • Thirty eight surface sediments samples have been chemically analyzed. • Thirteen major and trace metals have been recorded. • The area of study is highly polluted with Arsenic and Mercury. - Abstract: Thirty eight surface sediments samples have been collected in the area around Tarut Island, Saudi Arabian Gulf to determine the spatial distribution of metals, and to assess the magnitude of pollution. Total concentrations of Fe, Mn, As, B, Cd, Co, Cr, Cu, Hg, Mo, Pb, Se, and Zn in the sediments were measured using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Nature of sediments and heavy metals distribution reflect marked changes in lithology, biological activities in Tarut bay. Very high arsenic concentrations were reported in all studied locations from Tarut Island. The concentrations of Mercury are generally high comparing to the reported values from the Gulf of Oman, Red Sea. The concentrations of As and Hg exceeded the wet threshold safety values (MEC, PEC) indicating possible As and Hg contamination. Dredging and land filling, sewage, and oil pollution are the most important sources of pollution in the study area

  18. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses.

    Science.gov (United States)

    De Lange, H J; Van Griethuysen, C; Koelmans, A A

    2008-01-01

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the disturbance of the sediment. AVS and Simultaneously Extracted Metal (SEM) concentrations were compared to bioassay responses with the freshwater benthic macroinvertebrate Asellus aquaticus. Storage conditions and sediment treatment affected AVS but not SEM levels. AVS can be used as a proxy for sediment disturbance. The best way to pretreat the sediment for use in a bioassay in order to maintain initial AVS conditions was to sample the sediment with an Ekman grab, immediately store it in a jar without headspace, and freeze it as soon as possible. In a survey using seven different sediments, bioassay responses of A. aquaticus were correlated with SEM and AVS characteristics.

  19. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    International Nuclear Information System (INIS)

    Fukuda, Satoshi

    1989-01-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs

  20. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Satoshi (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-09-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs.

  1. Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran.

    Science.gov (United States)

    Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M

    2018-04-11

    The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.

  2. Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides

    International Nuclear Information System (INIS)

    Zapata, F.

    2002-01-01

    Soil erosion and sedimentation are major environmental and agricultural threats worldwide. There is an urgent need for obtaining reliable information on the rates of these processes to establish the magnitude of the problems and to underpin the selection of soil erosion/sedimentation control technologies, including assessment of their economic and environmental on-site and off-site impacts. The quest for alternative techniques for assessing soil erosion to complement existing classical methods directed attention to the use of environmental radionuclides. Including the latest research developments made in the refinement and standardization of the 137 Cs technique by 25 research groups worldwide and featuring the contributions of a selected team of leading experts in the field, this handbook provides a comprehensive coverage of the methodologies for using radionuclides, primarily 137Cs and 210Pb to establish rates and spatial patterns of soil redistribution and determine the geochronology of sediment deposits. This Handbook is an up-to-date resource for soil and environmental scientists, hydrologists, geomorphologists, geologists, agronomists, ecologists, and upper-level undergraduate and graduate students in these disciplines. (author)

  3. Vertical distribution of potentially toxic elements in sediments impacted by intertidal geothermal hot springs (Bahia Concepcion, Gulf of California)

    Science.gov (United States)

    Leal-Acosta, M. L.; Shumilin, E.

    2016-12-01

    The intertidal geothermal hot springs (GHS) in Bahia Concepcion, Gulf of California are the source of potentially toxic elements to the adjacent marine environment surrounded by mangroves trees. The anoxic sediments enriched in organic carbon accumulate As, Hg and other heavy metals that can be bioavailable for the biota. To know the vertical distribution of these elements the geochemistry of a short sediment core was carried out. It was collected in June, 2010 in the mangrove area near to GHS (1 m) during a low tide, pushing manually a polypropylene tube into the sediments. The extracted sediment core was cut with plastic knife on 1 cm thick sub-samples, stored in plastic bags and transported on ice to the laboratory. The major and trace elements contents were determinate by ICP-MS after total digestion with stronger acids (HClO4-HNO3-HCl-HF). Certificate reference materials were used for the quality control of the method obtaining good recoveries for most of the elements (80-105%). The sediment core had high maximum contents of CaCO3 (70%) and total organic carbon (12%). The concentration of Hg along the core ranges from 650 to 74300 mg kg-1 and had more than three orders of magnitude above the reference values of 40 mg kg-1 for the Upper Continental Crust (UCC)1. In contrast, As ranges from 12 to 258 mg kg-1 resulting in more than one order of magnitude respect to UCC1 (1.7 mg kg-1). Similar pattern result for Mn, Cu, Pb, and Zn with the maximum values of 3200 mg kg-1, 42 mg kg-1, 12.4 mg kg-1, 71 mg kg-1 respectively that coincide with the maximum for As at the same core depth (4 cm). The Ca, Li, Co, Sb, U, and Mg also show high contents in comparison with the UCC1reference values. The maximum contents of Mo and Cd coincide with maximum concentration of sulfur (2%) at 6 to 8 cm. The enrichment factor calculated using Al as normalizing element showed Cd (7-280), As (26-329) and Hg (23-1196) as highly enriched mainly in the first centimeters of the sediment core

  4. Evaluation of Ignalina NPP waste waters toxicity by use of biotest complex

    International Nuclear Information System (INIS)

    Marchiulioniene, D.

    1995-01-01

    The impact of lake Drukshiai various biotop waters and bottom sediments on test-organisms Tradescantia higher plants, as well as trout Salmo gairdneri spawn and larvae was investigated in 1988 - 1994. It was determined that toxic matters, heavy metals and radionuclides among them, discharge into lake Drukshiai with Ignalina NPP waste waters. They accumulate in components of ecosystem, especially in bottom sediments. The gradual increase of toxic impact caused by water and bottom sediments is observed in the investigated lake biotops. The highest toxity levels were in 1993. Maximal toxity is caused by chemical matters. (author). 11 refs., 4 tabs., 3 figs

  5. Occurrences, sources and risk assessment of short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yellow River, China.

    Science.gov (United States)

    Qiao, Lin; Xia, Dan; Gao, Lirong; Huang, Huiting; Zheng, Minghui

    2016-12-01

    Chlorinated paraffins (CPs), one class of hydrophobic and toxic compounds, are easily adsorbed into sediments and then pose potential risks to the ecosystem and human health. However, few researches on short- and medium-chain CPs (SCCPs and MCCPs) in sediments have been performed. In order to comprehensively investigate the spatial distributions, sources, and ecological risks of CPs, sediments collected from the middle reaches of the Yellow River were analyzed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS). The concentrations of SCCPs and MCCPs ranged from 11.6 to 9.76 × 10 3  ng/g dry weight (dw) and from 8.33 to 168 ng/g dw, respectively. No significant correlation was found between total organic carbon (TOC) and CP concentrations (P > 0.05). The spatial distributions showed that contamination levels of CPs were relevant to human activities. In addition, two types of sediment samples were classified by hierarchical cluster analysis (HCA) and results indicated the predominant congener groups were C 10 Cl 6-7 for SCCPs and C 14 Cl 7-8 for MCCPs. Principal component analysis (PCA) revealed that SCCPs and MCCPs in the sediments may have different sources, and SCCPs are likely to come from the production and use of CP-42 and CP-52. Moreover, complex environmental processes, including long-range transportation via the atmosphere and/or river, deposition and degradation of CPs, resulted in increased abundances of short chain and low chlorinated congeners in sediment samples compared with commercial mixtures, and different homolog patterns among samples. The significant negative correlation between SCCP concentrations and MCCP/SCCP ratios could be related to long-range transport of CPs. A preliminary risk assessment indicated that CPs at current levels posed no significant ecological risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Toxicity assessment of unintentional exposure to multiple chemicals

    International Nuclear Information System (INIS)

    Mumtaz, M.M.; Ruiz, P.; De Rosa, C.T.

    2007-01-01

    Typically exposure to environmental chemicals is unintentional, and often the exposure is to chemical mixtures, either simultaneously or sequentially. When exposure occurs, in public health practice, it is prudent to ascertain if thresholds for harmful health effects are exceeded, whether by individual chemicals or by chemicals in combination. Three alternative approaches are available for assessing the toxicity of chemical mixtures. Each approach, however, has shortcomings. As the procedures of each approach are described in this paper, at various steps research needs are identified. Recently, reliance has increased on computational toxicology methods for predicting toxicological effects when data are limited. Advances in molecular biology, identification of biomarkers, and availability of accurate and sensitive methods allow us to more precisely define the relationships between multiple chemical exposures and health effects, both qualitatively and quantitatively. Key research needs are best fulfilled through collaborative research. It is through such collaborations that resources are most effectively leveraged to further develop and apply toxicity assessment methods that advance public health practices in vulnerable communities

  7. Fate of petroleum hydrocarbons and toxic organics in Louisiana coastal environments

    International Nuclear Information System (INIS)

    DeLaune, R.D.; Gambrell, R.P.; Pardue, J.H.; Patrick, W.H. Jr.

    1991-01-01

    Numerous potentially toxic compounds are entering Louisiana's inshore and nearshore coastal environments. To a large degree there is insufficient information for predicting the fate and effect of these materials in aquatic environments. Studies documenting the impact of petroleum hydrocarbons entering Louisiana coastal wetlands are summarized. Also included are research findings on factors affecting the persistence of petroleum hydrocarbons and other toxic organics (pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D), creosote, etc.) in sediment-water systems. Sediment pH and redox conditions have been found to play an important role in the microbial degradation of toxic organics. Most of the hydrocarbons investigated degrade more rapidly under high redox (aerobic) conditions although there are exceptions (e.g., 1,1,1-trichloro-2,2-bis(4-chlorophenyl)(DDT) and polychlorobiphenyls (PCBs)). Some of these compounds, due to their slow degradation in anaerobic sediment, may persist in the system for decades

  8. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    Science.gov (United States)

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  9. Benthic organisms and marine toxic substances and pollutants collected using net and sediment samplers from the MT MITCHELL and other platforms from 22 May 1974 to 27 May 1974 (NODC Accession 7800886)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic organisms and marine toxic substances and pollutants were collected using sediment sampler and net casts in the coastal waters of the East coast of US. Data...

  10. Assessment of the metals concentration in sediments of Chimaliapan Lagoon, Lerma, Mexico State

    International Nuclear Information System (INIS)

    Perez V, I. A.

    2015-01-01

    The San Pedro Tultepec Lagoon of Quiroga in Lerma, known as Chimaliapan Lagoon is one of the Cienegas of the high course of the Lerma river. Considering that the lagoon is adjacent to an industrial area, have been altered the natural conditions of the channels, degrading the water quality and affecting the systems with different pollution sources, among which are industrial and municipal discharges and runoff of farmland. For this reason was decided to conduct a study in order to assess the concentration of metals in sediments of 4 sites and 4 downloads of the Chimaliapan Lagoon in order to infer the possible natural contributions and/or anthropogenic metals and their impact on both flora and fauna and the population that is supplied with the same, while assessing levels of enrichment of Ti, Cr, Mn, Fe, Cu, Zn and Pb metals as a result of contributions previously mentioned applying the technique of Energy Dispersive X-ray Fluorescence (EDXRF). According to the results by EDXRF, the sediments of the Lagoon assessed with the criterion of the EPA for the disposal of dredged sediments at this site, Mn and Fe only slightly exceed this criterion, then considering the Canadian criteria for the protection of aquatic life OMe, might have slight effects of Cr, Mn, Fe and Cu. Sediment discharges, evaluated with the same criteria indicate that Cr and Pb exceed the limit recommended by the EPA for the disposal of dredged sediments and Cr, Cu and Zn exceed the limit recommended for the protection of aquatic life OMe, noting that these metals may cause slight effects on organisms living in the Lagoon, such as carp and other organisms that live there, causing potential effects on humans through the food chain. (Author)

  11. Sanitary Assessment of Hazardous Materials Exposed To Highly Toxic Chemical Compounds

    International Nuclear Information System (INIS)

    Rembovskiy, V.; Ermolaeva, E.

    2007-01-01

    Industrial or terroristic accidents in which toxic chemicals (TC) are the main or attendant damaging factors should be regarded as a new challenge for experts, because of little knowledge on the methodology to estimating the long-term risk for humans due to contamination of the building materials and environment. In the Russian Federation, there appeared to be a kind of model systems for developing an algorithm for solving these or similar problems. Under dismantling and liquidation of the former facilities for chemical weapon production (FCWP) the building materials are regarded as potential waste products the fate of which (processing, warehousing, utilization, and destruction) is dependent on their possible hazard for human population and environment. The standard approaches for hazard assessment of waste products of the FCWP turned out to be insufficient. When conducting the present work, the following problems have been solved: 1. Selection of representative samples taking into consideration a diversity of construction materials, great quantities of potentially toxic waste materials, information on the production conditions, breakdowns in the process of production, accidents, composition of the decontaminators used, decontamination frequency, etc. 2. Analysis of TC in composite matrixes complicated by the following problems: extraction, masking effects of concomitant components during indirect analysis, lack of certified methods of direct analysis of TC, discrepancy of results of GC and direct GCMS analysis, low sensitivity of GCMS analysis, big volume of samples (more than 0.5 kg), heterogeneity of physical-chemical properties of different matrixes influencing the process of degradation of TC. 3. Hazard assessment of the wastes in toxic-and-sanitary experiment relying on non-specific signs of intoxication due to relatively low percentage of TC and masking effects of various matrix components. Application of the integral toxicity tests with soil

  12. Cellular toxicity and bioaccumulationof silver nanoparticles in the marine polychaete, Nereis diversicolor

    DEFF Research Database (Denmark)

    cong, Yi; Banta, Gary Thomas; Selck, Henriette

    (comet assay) and bioaccumulation as endpoints. Prior to the toxicity experiment, the physical-chemical properties of Ag NPs were fully characterized. The nominal concentrations used in all exposure scenarios were 0, 5, 10, 25, 50 and 100 µg Ag/g dry weight (dw) sediment. Lysosomal membrane stability...... of Nereis coelomocytes, which was measured by neutral red retention time (NRRT), decreased in a concentration-dependent manner in all Ag treatments, indicating increased permeability of lysosomal membranes. Comet assay results showed that Ag was able to cause DNA damage in Nereis coelomocytes regardless......In this study, the toxicities of commercial silver nanoparticles (Ag NPs, 20 and 80 nm) were compared with the toxicities of Ag+ ions in the marine sediment-dwelling polychaete, Nereis diversicolor, after 10 d of sediment exposure, using lysosomal membrane stability (neutral red assay), DNA damage...

  13. Toxic metals enrichment in the surficial sediments of a eutrophic tropical estuary (Cochin Backwaters, Southwest coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, G.D.; Rejomon G.; Shaiju, P.; Muraleedharan, K.R.; Nair, S.M.; Chandramohanakumar, N.

    changes. Enrichments factors using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. An assessment of degree of pollution-categorized sediments as moderately polluted with Cu and Pb, moderately...

  14. DEVELOPING STANDARDS FOR ASSESSING ENVIRONMENTAL CHEMICAL, PHYSICAL, AND BIOLOGICAL STRESSORS THROUGH ASTM COMMITTEE E47: A PAST FOUNDATION OF PROVEN STANDARDS, A FUTURE OF GREAT POTENTIAL AND OPPORTUNITY

    Science.gov (United States)

    Development of standards associated with assessing the bioavailability of contaminants in sediment will be used as a case study for how standards have been developed through Committee E47. In 1987, Committee E47 established Subcommittee E47.03 on Sediment Assessment and Toxicity....

  15. Sedimentation, sediment quality, and upstream channel stability, John Redmond Reservoir, east-central Kansas, 1964-2009

    Science.gov (United States)

    Juracek, Kyle E.

    2010-01-01

    net yields of total nitrogen and total phosphorus from the reservoir basin were 779 pounds per square mile per year and 342 pounds per square mile per year, respectively. Trace element concentrations in the bottom sediment of John Redmond Reservoir generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Organochlorine compounds either were not detected or were detected at concentrations that were less than the threshold-effects guidelines. Stream channel banks, compared to channel beds, likely are a more important source of sediment to John Redmond Reservoir from the upstream basin. Other sediment sources include surface-soil erosion in the basin and shoreline erosion in the reservoir.

  16. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses

    Energy Technology Data Exchange (ETDEWEB)

    Lange, H.J. de [Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen University and Research Centre, P.O. Box 8080, 6700 DD, Wageningen (Netherlands); Centre for Ecosystem Studies, Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA, Wageningen (Netherlands)], E-mail: marieke.delange@wur.nl; Griethuysen, C. van; Koelmans, A.A. [Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen University and Research Centre, P.O. Box 8080, 6700 DD, Wageningen (Netherlands)

    2008-01-15

    Sediment treatment and sediment storage may alter sediment toxicity, and consequently biotic response. Purpose of our study was to combine these three aspects (treatment-toxicity-biotic response) in one integrated approach. We used Acid Volatile Sulfide (AVS) concentrations as a proxy of the disturbance of the sediment. AVS and Simultaneously Extracted Metal (SEM) concentrations were compared to bioassay responses with the freshwater benthic macroinvertebrate Asellus aquaticus. Storage conditions and sediment treatment affected AVS but not SEM levels. AVS can be used as a proxy for sediment disturbance. The best way to pretreat the sediment for use in a bioassay in order to maintain initial AVS conditions was to sample the sediment with an Ekman grab, immediately store it in a jar without headspace, and freeze it as soon as possible. In a survey using seven different sediments, bioassay responses of A. aquaticus were correlated with SEM and AVS characteristics. - Change in AVS is a good proxy for sediment disturbance and combined with SEM it can be used as a suitable predictor for biotic effects of sediment contamination.

  17. Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, Jaana, E-mail: jaana.wallin@jyu.fi [Finnish Environment Institute SYKE, Survontie 9 A, FI-40500 Jyväskylä (Finland); Karjalainen, Anna K. [Finnish Environment Institute SYKE, Survontie 9 A, FI-40500 Jyväskylä (Finland); Schultz, Eija [Finnish Environment Institute SYKE, Hakuninmaantie 6, FI-00430 Helsinki (Finland); Järvistö, Johanna; Leppänen, Matti; Vuori, Kari-Matti [Finnish Environment Institute SYKE, Survontie 9 A, FI-40500 Jyväskylä (Finland)

    2015-03-01

    Acidity and leaching of metals from acid sulphate soils (ASSs) impair the water quality of receiving surface waters. The largest ASS areas in Europe are found in the coasts of the northern Baltic Sea. We used weight-of-evidence (WoE) approach to assess potential risks in 14 estuary sites affected by ASS in the Gulf of Finland, northern Baltic Sea. The assessment was based on exposure and effect profiles utilizing sediment and water metal concentrations and concurrent pH variation, sediment toxicity tests using the luminescent bacterium Vibrio fischeri and the midge Chironomus riparius, and the ecological status of benthic macroinvertebrate communities. Sediment metal concentrations were compared to national sediment quality criteria/guidelines, and water metal concentrations to environmental quality standards (EQSs). Hazard quotients (HQs) were established for maximum aluminium, cadmium and zinc concentrations at low pH based on applicable US EPA toxicity database. Sediment metal concentrations were clearly elevated in most of the studied estuaries. The EQS of cadmium (0.1 μg/l) was exceeded in 3 estuaries out of 14. The pH-minima were below the national threshold value (5.5) between good and satisfactory water quality in 10 estuaries. V. fischeri bioluminescence indicated toxicity of the sediments but toxic response was not observed in the C. riparius emergence test. Benthic invertebrate communities were deteriorated in 6 out of 14 sites based on the benthic invertebrate quality index. The overall ecotoxicological risk was assessed as low in five, moderate in three and high in five of the estuary sites. The risk assessment utilizing the WoE approach indicated that harmful effects of ASSs are likely to occur in the Baltic Sea river estuaries located at the ASS hotspot area. - Highlights: • Acid sulphate soils release high amounts of metals and acidity. • Metals and acidity are transported to estuary sites. • Acid sulphate soils impair the ecological status

  18. Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida.

    Science.gov (United States)

    Coelho, C; Foret, C; Bazin, C; Leduc, L; Hammada, M; Inácio, M; Bedell, J P

    2018-09-01

    Soils and sediments are susceptible to anthropogenic contamination with Metallic Trace Elements (MTEs) and it can present some risks to ecosystems and human health. The levels of Cd, Cu, Fe, Ni, Pb and Zn were assessed in soils (C, G, K, L) from Estarreja (Portugal) and sediments from a stormwater basin in Lyon (DJG), a harbour (LDB) and a Rhône river site (TRS) (France). An ecotoxicological study was performed with Eisenia fetida (E. fetida) to infer about potential transfer risks to the soil invertebrates. To assess risks associated with MTEs contamination, it is important to know their total concentrations, fractionation and the potential available fractions. CaCl 2 , DTPA and NaOAc extractions were performed to assess the extractable and available MTEs fractions. The studied sediments were much more contaminated than the soils for all the MTEs analysed. The trace elements fraction linked with DTPA extraction shows higher values when compared with the NaOAc and the CaCl 2 pools. Low mortality effects were recorded in the tests with E. fetida. The MTEs levels in soils and sediments and the concentrations bioaccumulated in adult earthworms contributed to a reduction in the number of juveniles produced. E. fetida adults and juveniles accumulated ETMs as follows: Cd > Cu = Zn > Ni > Pb > Fe. Determined BAFs were mostly lower than 1 with some higher values for Cd, Cu and Zn. Calculated SET and ERITME indexes allowed to classify the samples from the most to the less toxic for E. fetida as: LDB > DJG > L > G > C > K > TRS. Despite this order of toxicity, the earthworms exposed to the sediment TRS presented the lowest reproduction rate. The combination of "chemical" measurements with the calculation of BAFs, but especially SET and ERITME indexes can be a useful tool in risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. [Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of Qingshan Reservoir in Lin' an City, Zhejiang Province of East China].

    Science.gov (United States)

    Zhang, Fen; Yang, Chang-Ming; Pan, Rui-Jie

    2013-09-01

    A total of 8 representative surface sediment sampling sites were collected from the Qingshan Reservoir in Lin'an City of Zhejiang Province to investigate the differences in the total concentrations of As, Cr, Cu, Ni, Mn, Pb, and Zn among the sampling sites. The different forms of the heavy metals, i. e., acid soluble, easily reducible, easily oxidizable, and residual, were determined by BCR sequential extraction method, and the pollution degrees and potential ecological risk, of the heavy metals in the surface sediments at different sampling sites of the Reservoir were assessed by using geo-accumulation index (I(geo)) and Hakanson potential ecological risk index. There existed obvious spatial differences in the total concentrations of the heavy metals in the surface sediments of the Reservoir. The sampling sites nearby the estuaries of the tributaries flowing through downtowns and heavy industrial parks to the Reservoir had obviously higher heavy metals concentrations in surface sediments, as compared to the other sampling sites. In the sediments, Mn was mainly in acid extractable form, Cu and Pb were mainly in reducible form, and As was mainly in residual form. The surface sediments at the sampling sites nearby the estuaries of the tributaries flowing through downtowns to the Reservoir had higher proportions of acid extractable and reducibles forms of the heavy metals, which would have definite potential toxic risk to aquatic organisms. Among the 7 heavy metals in the surface sediments, As showed the highest pollution degree, followed by Cu, Ni, Mn, Pb, and Zn, which were at moderate pollution degree, while Cr was at non-pollution degree, with relatively low potential ecological risk. Through the comparison of the sampling sites, it was observed that the surface sediments at the sites nearby the estuaries of Jinxi River and Hengxi River flowing through downtowns and heavy industrial parks to the Reservoir showed obviously higher heavy metals pollution degree and

  20. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius

    Science.gov (United States)

    Ingersoll, Christopher G.; Haverland, Pamela S.; Brunson, Eric L.; Canfield, Timothy J.; Dwyer, F. James; Henke, Chris; Kemble, Nile E.; Mount, David R.; Fox, Richard G.

    1996-01-01

    Procedures are described for calculating and evaluating sediment effect concentrations (SECs) using laboratory data on the toxicity of contaminants associated with field-collected sediment to the amphipod Hyalella azteca and the midge Chironomus riparius. SECs are defined as the concentrations of individual contaminants in sediment below which toxicity is rarely observed and above which toxicity is frequently observed. The objective of the present study was to develop SECs to classify toxicity data for Great Lake sediment samples tested with Hyalella azteca and Chironomus riparius. This SEC database included samples from additional sites across the United States in order to make the database as robust as possible. Three types of SECs were calculated from these data: (1) Effect Range Low (ERL) and Effect Range Median (ERM), (2) Threshold Effect Level (TEL) and Probable Effect Level (PEL), and (3) No Effect Concentration (NEC). We were able to calculate SECs primarily for total metals, simultaneously extracted metals, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). The ranges of concentrations in sediment were too narrow in our database to adequately evaluate SECs for butyltins, methyl mercury, polychlorinated dioxins and furans, or chlorinated pesticides. About 60 to 80% of the sediment samples in the database are correctly classified as toxic or not toxic depending on type of SEC evaluated. ERMs and ERLs are generally as reliable as paired PELs and TELs at classifying both toxic and non-toxic samples in our database. Reliability of the SECs in terms of correctly classifying sediment samples is similar between ERMs and NECs; however, ERMs minimize Type I error (false positives) relative to ERLs and minimize Type II error (false negatives) relative to NECs. Correct classification of samples can be improved by using only the most reliable individual SECs for chemicals (i.e., those with a higher percentage of correct classification). SECs

  1. Uncovering the exposure mechanisms of sunken heavy oil that makes it chronically toxic to early life stages of fish

    International Nuclear Information System (INIS)

    Martin, J.; Young, G.; Lemire, B.; Hodson, P.

    2010-01-01

    A train derailment in 2005 caused the release of 150,000 litres of No. 6 heavy fuel oil into a lake in Alberta. The oil is a residue of the crude oil refinement process and contains 3-4 ringed alkylated forms of polycyclic aromatic hydrocarbons (PAH) that are known to cause sub-lethal toxic responses during the early life stages of rainbow trout. Because the oil does not disperse well, oil patches still persist in near-shore sediments of the lake where fish spawn. This study assessed how the behaviour of heavy oil in water interacts with exposure and toxicity to the early life stages of fish. Daily renewal tests with heavy fuel oil coated on glass plate demonstrated higher levels of toxicity to trout embryos than oil that was mechanically or chemically dispersed. A flow-through oil gravel column was used to assess whether the toxic constituents of the heavy oil are transferred quickly enough to cause toxicity. The aim of the study was to develop exposure and toxicity test methods that accurately reflect the behaviour of heavy oil after a spill.

  2. Benthic organism and marine toxic substances and pollutants collected using net and sediment sampler casts from NOAA Ship RESEARCHER in Gulf of Mexico from 1979-07-23 to 1980-12-13 (NODC Accession 8200103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic organism and marine toxic substances and pollutants were collected using net, sediment sampler, and other instruments from NOAA Ship RESEARCHER and other...

  3. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment

    OpenAIRE

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Background Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) appro...

  4. Sediment contaminants and biological effects in southern California: Use of a multivariate statistical approach to assess biological impact

    International Nuclear Information System (INIS)

    Maxon, C.L.; Barnett, A.M.; Diener, D.R.

    1997-01-01

    This study attempts to predict biological toxicity and benthic community impact in sediments collected from two southern California sites. Contaminant concentrations and grain size were evaluated as predictors using a two-step multivariate approach. The first step used principal component analysis (PCA) to describe contamination type and magnitude present at each site. Four dominant PC vectors, explaining 88% of the total variance, each corresponded to a unique physical and/or chemical signature. The four PC vectors, in decreasing order of importance, were: (1) high molecular weight polynuclear aromatic hydrocarbons (PAH), most likely from combusted or weathered petroleum; (2) low molecular weight alkylated PAH, primarily from weathered fuel product; (3) low molecular weight nonalkylated PAH, indicating a fresh petroleum-related origin; and (4) fine-grained sediments and metals. The second step used stepwise regression analysis to predict individual biological effects (dependent) variables using the four PC vectors as independent variables. Results showed that sediment grain size alone was the best predictor of amphipod mortality. Contaminant vectors showed discrete depositional areas independent of grain size. Neither contaminant concentrations nor PCA vectors were good predictors of biological effects, most likely due to the low concentrations in sediments

  5. Assessing PAHs pollution in Shandong coastal area (China) by combination of chemical analysis and responses of reproductive toxicity in crab Portunus trituberculatus.

    Science.gov (United States)

    Pan, Luqing; Xu, Ruiyi; Wen, Jianmin; Guo, Ruiming

    2017-06-01

    The concentrations of PAHs in seawater and sediments were measured at three selected sites (S1, S2, and S3) along the coastal area of Shandong (China) in April, May, and June, 2015, which ranged from 29.72 to 123.88 ng/L and 82.62 to 232.63 ng/g, respectively. Meanwhile, the reproductive toxicity responses in crab Portunus trituberculatus were also evaluated to assess the pollution of PAHs during the sampling period. Chemical analysis showed that S3 was the most PAH-contaminated area while S1 was the least, and the biochemical parameters concerned with reproduction were efficiently responded to the three sites, especially in S3 (p coastal area of Shandong, China.

  6. Evaluation of the toxicity of organic matter in marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    stream_size 3 stream_content_type text/plain stream_name 2_Int_Conf_Waste_Mgmt_Chem_Petrochem_Ind_Toxic_Mgmt_1991_258.pdf.txt stream_source_info 2_Int_Conf_Waste_Mgmt_Chem_Petrochem_Ind_Toxic_Mgmt_1991_258.pdf.txt Content...

  7. 137Cs in marine sediments of Admiralty Bay, King George Island, Antarctica

    International Nuclear Information System (INIS)

    Ferreira, Paulo Alves de Lima; Ribeiro, Andreza Portella; Nascimento, Mylene Giseli do; Martins, Cesar de Castro; Mahiques, Michel Michaelovitch de; Montone, Rosalinda Carmelo; Figueira, Rubens Cesar Lopes

    2013-01-01

    The radionuclide cesium-137 ( 137 Cs) is produced exclusively by anthropogenic processes and primarily by nuclear explosions. This study determined the reference inventory that is 137 Cs associated with the element's original input, and utilized the levels of activity of this radionuclide previously measured in five sediment profiles collected from Admiralty Bay, Antarctica, to investigate the mobility of this element in the environment. 137 Cs has a half-life of 30 years. Because of this, it is environmentally persistent and has been shown to accumulate in marine organisms. The mean reference inventory of this radionuclide in Admiralty Bay sediments, determined using high resolution gamma ray spectrometry, was 20.23 ± 8.94 Bq m −2 , and within the ambient 137 Cs activity range. A model of 137 Cs diffusion–convection was applied to data collected from 1 cm intervals in sediment cores with the aim of providing insights with respect to this element's behavior in sediments. Model results showed a significant correlation between measured and modeled values using the concentrations of 137 Cs, and estimated input into the system from the global fallout of past nuclear tests and expected values based on local sedimentation rates. Results highlight the importance of accounting for the vertical diffusion of 137 Cs in marine sediments when used as a tracer for environmental processes and for assessing potential bioavailability. - Highlights: ► Cesium-137 ( 137 Cs) is produced exclusively by anthropogenic processes. ► A model of diffusion–convection simulated 137 Cs environmental behavior. ► This is important for assessing the bioavailability of this toxic element. ► In Antarctica ice cover influenced the input to the sediments

  8. Assessing the transport of PAH in the surficial sediment layer by passive sampler approach.

    Science.gov (United States)

    Belles, Angel; Alary, Claire; Criquet, Justine; Ivanovsky, Anastasia; Billon, Gabriel

    2017-02-01

    A new method based on passive samplers has been developed to assess the diffusive flux of fluorene, fluoranthene and pyrene in the sediment bed and across the sediment-water interface. The dissolved compound concentration gradient in the sediment in the vertical direction was measured at the outlet of a storm water pond by using polyethylene strips as passive samplers. Simultaneously, the dissipation of a set of tracer compounds preloaded in the passive samplers was measured to estimate the effective diffusion coefficients of the pollutants in the sediment. Both measurements were used to evaluate the diffusive flux of the compounds according to Fick's first law. The diffusive fluxes of the 3 studied compounds have been estimated with a centimetre-scale resolution in the upper 44cm of the sediment. According to the higher compound diffusion coefficient and the steeper concentration gradient in the surficial sediment layer, the results show that the net flux of compounds near the sediment interface (1cm depth) is on average 500 times higher than in the deep sediment, with average fluxes at 1cm depth on the order of 5, 0.1 and 0.1ng/m 2 /y for fluorene, fluoranthene and pyrene, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Pesticides in the Ebro River basin: Occurrence and risk assessment

    International Nuclear Information System (INIS)

    Ccanccapa, Alexander; Masiá, Ana; Navarro-Ortega, Alícia; Picó, Yolanda; Barceló, Damià

    2016-01-01

    In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g"−"1). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TU_s_i_t_e for water and sediments showed values < 1 for the three bioassays. In both matrices, daphnia and fish were more sensitive to the mixture of pesticide residues present. - Highlights: • Wide occurrence of pesticides in water and in lesser extent in sediment and biota. • Ecotoxicological pesticide risk assessment in the Ebro river and its tributaries. • Sum TU_s_i_t_e pointed out daphnia as more sensitive to the pesticide residue mixture. • Chronic toxicity test (RQ) showed risk in three trophic level (algae, daphnia and fish). - Evidence of water, sediment and biota contamination by a cocktail of pesticide residues especially hazardous for Daphnia.

  10. Marine toxic substances and pollutants data from sediment corer and other instruments from NOAA Ship RESEARCHER and other platforms in the Caribbean Sea from 1980-07-16 to 1987-11-29 (NODC Accession 8800013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine toxic substance and pollutants data were collected using sediment corer and other instruments in the Caribbean Sea from NOAA Ship RESEARCHER and other...

  11. Optimizing the performance of the amphipod, Hyalella azteca, in chronic toxicity tests: Results of feeding studies with various foods and feeding regimes

    Science.gov (United States)

    The freshwater amphipod, Hyalella azteca, is a common organism used for sediment toxicity testing. Standard methods for 10-d and 42-d sediment toxicity tests with H. azteca were last revised and published by USEPA/ASTM in 2000. While Hyalella azteca methods exist for sediment tox...

  12. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles.

    Science.gov (United States)

    Bakand, Shahnaz; Hayes, Amanda

    2016-06-14

    Novel engineered nanoparticles (NPs), nanomaterial (NM) products and composites, are continually emerging worldwide. Many potential benefits are expected from their commercial applications; however, these benefits should always be balanced against risks. Potential toxic effects of NM exposure have been highlighted, but, as there is a lack of understanding about potential interactions of nanomaterials (NMs) with biological systems, these side effects are often ignored. NPs are able to translocate to the bloodstream, cross body membrane barriers effectively, and affect organs and tissues at cellular and molecular levels. NPs may pass the blood-brain barrier (BBB) and gain access to the brain. The interactions of NPs with biological milieu and resulted toxic effects are significantly associated with their small size distribution, large surface area to mass ratio (SA/MR), and surface characteristics. NMs are able to cross tissue and cell membranes, enter into cellular compartments, and cause cellular injury as well as toxicity. The extremely large SA/MR of NPs is also available to undergo reactions. An increased surface area of the identical chemical will increase surface reactivity, adsorption properties, and potential toxicity. This review explores biological pathways of NPs, their toxic potential, and underlying mechanisms responsible for such toxic effects. The necessity of toxicological risk assessment to human health should be emphasised as an integral part of NM design and manufacture.

  13. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shahnaz Bakand

    2016-06-01

    Full Text Available Novel engineered nanoparticles (NPs, nanomaterial (NM products and composites, are continually emerging worldwide. Many potential benefits are expected from their commercial applications; however, these benefits should always be balanced against risks. Potential toxic effects of NM exposure have been highlighted, but, as there is a lack of understanding about potential interactions of nanomaterials (NMs with biological systems, these side effects are often ignored. NPs are able to translocate to the bloodstream, cross body membrane barriers effectively, and affect organs and tissues at cellular and molecular levels. NPs may pass the blood–brain barrier (BBB and gain access to the brain. The interactions of NPs with biological milieu and resulted toxic effects are significantly associated with their small size distribution, large surface area to mass ratio (SA/MR, and surface characteristics. NMs are able to cross tissue and cell membranes, enter into cellular compartments, and cause cellular injury as well as toxicity. The extremely large SA/MR of NPs is also available to undergo reactions. An increased surface area of the identical chemical will increase surface reactivity, adsorption properties, and potential toxicity. This review explores biological pathways of NPs, their toxic potential, and underlying mechanisms responsible for such toxic effects. The necessity of toxicological risk assessment to human health should be emphasised as an integral part of NM design and manufacture.

  14. Assessment of potential biological activities and distributions of endocrine-disrupting chemicals in sediments of the west coast of South Korea.

    Science.gov (United States)

    Jeon, Seungyeon; Hong, Seongjin; Kwon, Bong-Oh; Park, Jinsoon; Song, Sung Joon; Giesy, John P; Khim, Jong Seong

    2017-02-01

    The west coast of Korea has experienced environmental deterioration for more than half a century. In the present study, we specifically aimed to: i) evaluate potential toxicities of contaminants in sediments that cause effects mediated through the aryl hydrocarbon receptor (AhR) and estrogen receptor (ER); ii) determine spatio-temporal distributions of polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APs); and iii) identify causes of greater potencies of samples. From 2010 to 2014, sediments were collected from 12 major estuarine and coastal regions along the west coast of South Korea. In vitro cell bioassays were performed to determine AhR- and ER-mediated potencies using H4IIE-luc and MVLN cells, respectively. Fifteen PAHs and six APs in sediments were identified by GC/MSD. Results of bioassays generally showed a low-to-moderate degree of contamination, however, greater AhR- and ER-mediated potencies were measured at some locations. Concentrations of PAHs and APs varied among locations, which indicated that sources were independently affected by the surrounding environment (e.g., industrial complex and cities). Results of bioassays were generally well correlated with concentrations of putative causative chemicals. Benzo[k]fluoranthene, dibenz[a,h]anthracene, and benzo[b]fluoranthene were the major AhR agonists, explaining approximately 30% of the bioassay-derived benzo[a]pyrene equivalent concentration (BaP-EQ). Unknown AhR and ER agonists and potential mixture effects remain in question. Overall, the present study provides baseline information on chemical contaminations and potential toxicity of sediments in a fairly wide geographical region of the west coast of South Korea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Rončević, Srđan; Spasojević, Jelena; Maletić, Snežana; Jazić, Jelena Molnar; Isakovski, Marijana Kragulj; Agbaba, Jasmina; Grgić, Marko; Dalmacija, Božo

    2016-02-01

    Large amounts of sediment are dredged globally every year. This sediment is often contaminated with low concentrations of metals, polycyclic aromatic hydrocarbons, pesticides and other organic pollutants. Some of this sediment is disposed of on land, creating a need for risk assessment of the sediment disposal method, to minimize the degradation of environmental quality and prevent risks to human health. Evaluating the available fractions of certain polycyclic aromatic hydrocarbons is very important, as in the presence of various organisms, they are believed to be easily subject to the processes of bioaccumulation, biosorption and transformation. In order to determine the applicability of applying these methods for the evaluation of pollutant bioavailability in sediments, the desorption kinetics from the sediment of various polycyclic aromatic hydrocarbons in the presence of Tenax and XAD4 were examined over the course of 216 h. Changes in the PAH concentrations in dredged sediments using five different seed plants during a short time of period (10 days) were also followed. Using chemical extraction techniques with Tenax and XAD4, a time of around 24 h is enough to achieve equilibrium for all four PAHs. Results showed good agreement between the seed accumulation and PAH extraction methods with both agents. If we compare the two extraction techniques, XAD4 gave better results for phenanthrene, pyrene and benzo(a)pyrene, and Tenax gave better results for chrysene.

  16. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

  17. Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial

    International Nuclear Information System (INIS)

    King, Rosalind F.; Royle, Anna; Putwain, Philip D.; Dickinson, Nicholas M.

    2006-01-01

    Metal mobility and degradation of organic pollutants were investigated in a contaminated canal sediment in NW England. Sediment was dredged and exposed above the water surface, planted with multiple taxa of Salix, Populus and Alnus and monitored over 32 months. Short-term metal fractionation and phytotoxicity during sediment oxidation were also evaluated in separate laboratory studies. Zinc and Pb redistributed into more mobile fractions, which increased toxicity of the sediment to plants in the laboratory. In contrast, at the canal site, mobility of most elements decreased and total concentrations of Zn, Pb, Cu and Cd fell. Petroleum hydrocarbon concentrations decreased, but the tree-planted treatments appeared less effective at reducing PAH concentrations than treatments colonised by invasive plants. Tree survivorship decreased over time, suggesting increasing phytotoxicity of the exposed sediment in the longer term. Trees provided little benefit in terms of sediment remediation. Options for future management of the sediment are evaluated. - Highly mobilised and toxic metals in a dredged canal sediment provided unexpected responses in a phytoremediation trial

  18. Toxicological assessment of aquatic ecosystems: application to watercraft contaminants in shallow water environments

    Science.gov (United States)

    Winger, P.V.; Kemmish, Michael J.

    2002-01-01

    -species and/or various life stages with different sensitivities to contaminants may offer a more conservative assessment of toxicity than single species testing. Using a ?weight of evidence? approach, the Sediment Quality Trial produces a robust evaluation of habitat quality and includes a measure of contaminant concentrations in the sediment, an assessment of sediment/pore-water toxicity to laboratory animals, and an evaluation of in situ biological assemblages. Field and laboratory procedures are available that can be used to ascertain habitat quality, identify contaminants causing environmental degradation and delineate aquatic systems requiring mitigation of protective efforts. These studies provide the scientific data that are integral to developing an environmental risk assessment of contaminants from watercraft use in shallow water systems.

  19. Sediment predictions in Wadi Al-Naft using soil water assessment tool

    Directory of Open Access Journals (Sweden)

    Alwan Imzahim Abdulkareem

    2018-01-01

    Full Text Available Sediment production is the amount of sediment in the unit area that is transported through the basin by water transfer over a specified period of time. The main aim of present study is to predict sediment yield of Wadi, Al-Naft watershed with 8820 Km2area, that is located in the North-East of Diyala Governorate in Iraq, using Soil-Water Assessment Tool, (SWAT and to predict the impact of land management and the input data including the land use, soil type, and soil texture maps which are obtained from Landsat-8 satellite image. Digital Elevation Model,(DEM with resolution (14 14 meter is used to delineate the watershed with the aid of model. Three Land-sat images were used to cover the study area which were mosaic processed and the study area masked- up from the mosaic, image. The area of study has been registries by Arc-GIS 10.2 and digitized the soil hydrologic group through assistant of Soil Plant Assistant Water Model, (SPAW which was progressed by USDA, Agricultural, Research Service, using the data of soil textural and organic matter from Food and Agriculture Organization (FAO, the available water content, saturated hydraulic conductivity, and bulk density. The results of average, sediment depth and the maximum upland sediment for simulation period (2010-2020 were predicted to be (1.7 mm, and (12.57 Mg/ha, respectively.

  20. Introduction to Toxicity and Risk Assessment for Project Chemists

    Science.gov (United States)

    2012-03-27

    Toxicity of Hexavalent Chromium  External review complete  EPA will wait until studies underway on carcinogenic mode of action are complete to...finalize the assessment  NJ and Cal values for hex chrome 16 Risk-Based Screening Levels Resident Soil (mg/kg) Resident Water Use (µg/L) DRAFT 0.04