WorldWideScience

Sample records for secretion system expression

  1. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    Science.gov (United States)

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  2. Expression and Quorum Sensing Regulation of Type III Secretion System Genes of Vibrio harveyi during Infection of Gnotobiotic Brine Shrimp.

    Directory of Open Access Journals (Sweden)

    H A Darshanee Ruwandeepika

    Full Text Available Type III secretion systems enable pathogens to inject their virulence factors directly into the cytoplasm of the host cells. The type III secretion system of Vibrio harveyi, a major pathogen of aquatic organisms and a model species in quorum sensing studies, is repressed by the quorum sensing master regulator LuxR. In this study, we found that during infection of gnotobiotic brine shrimp larvae, the expression levels of three type III secretion operons in V. harveyi increased within the first 12h after challenge and decreased again thereafter. The in vivo expression levels were highest in a mutant with a quorum sensing system that is locked in low cell density configuration (minimal LuxR levels and lowest in a mutant with a quorum sensing system that is locked in the high cell density configuration (maximal LuxR levels, which is consistent with repression of type III secretion by LuxR. Remarkably, in vivo expression levels of the type III secretion system genes were much (> 1000 fold higher than the in vitro expression levels, indicating that (currently unknown host factors significantly induce the type III secretion system. Given the fact that type III secretion is energy-consuming, repression by the quorum sensing master regulators might be a mechanism to save energy under conditions where it does not provide an advantage to the cells.

  3. Cell individuality: the bistable gene expression of the type III secretion system in Dickeya dadantii 3937.

    Science.gov (United States)

    Zeng, Quan; Laiosa, Michael D; Steeber, Douglas A; Biddle, Eulandria M; Peng, Quan; Yang, Ching-Hong

    2012-01-01

    Dickeya dadantii 3937 is a gram-negative phytopathogenic bacterium that expresses genes encoding a type III secretion system (T3SS) in a bistable pattern when cultured in a homogeneous minimal media. In this work, we further characterized the bistable gene expression of T3SS at the single-cell level. We demonstrated that bistable expression of the HrpL-regulon genes, such as hrpA and hrpN, is controlled by the same regulatory mechanism. We also showed that the expression level of the T3SS master regulatory gene hrpL plays an important role in the development of the bistable expression of hrpA. A high expression level of hrpL is required but unable to guarantee the high-state expression of hrpA in a cell. In addition, bistable expression patterns of T3SS genes in other gram-negative pathogens of the Enterobacteriaceae and Pseudomonadaceae families were also described in this study. This suggests that the T3SS bistability might be a conserved population behavior in several gram-negative bacterial pathogens.

  4. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages.

    Directory of Open Access Journals (Sweden)

    Daniel Unterweger

    Full Text Available The type VI secretion system (T6SS mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria and a eukaryote (the social amoeba Dictyostelium discoideum. Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.

  5. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    OpenAIRE

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem; Ojaghian, Mohammad; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-01-01

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-i...

  6. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2015-09-01

    Full Text Available Valine glycine repeat G (VgrG proteins are regarded as one of two effectors of Type VI secretion system (T6SS which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.

  7. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis.

    Science.gov (United States)

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem Ullah; Ojaghian, Mohammad Reza; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-09-11

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H₂O₂ and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.

  8. Type VI secretion system.

    Science.gov (United States)

    Salomon, Dor; Orth, Kim

    2015-03-30

    Bacteria employ a variety of tools to survive in a competitive environment. Salomon and Orth describe one such tool-the Type 6 Secretion Systems used by bacteria to deliver a variety of toxins into competing cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Correction: The role of coupled positive feedback in the expression of the SPI1 type three secretion system in Salmonella.

    Directory of Open Access Journals (Sweden)

    Supreet Saini

    2010-08-01

    Full Text Available Salmonella enterica serovar Typhimurium is a common food-borne pathogen that induces inflammatory diarrhea and invades intestinal epithelial cells using a type three secretion system (T3SS encoded within Salmonella pathogenicity island 1 (SPI1. The genes encoding the SPI1 T3SS are tightly regulated by a network of interacting transcriptional regulators involving three coupled positive feedback loops. While the core architecture of the SPI1 gene circuit has been determined, the relative roles of these interacting regulators and associated feedback loops are still unknown. To determine the function of this circuit, we measured gene expression dynamics at both population and single-cell resolution in a number of SPI1 regulatory mutants. Using these data, we constructed a mathematical model of the SPI1 gene circuit. Analysis of the model predicted that the circuit serves two functions. The first is to place a threshold on SPI1 activation, ensuring that the genes encoding the T3SS are expressed only in response to the appropriate combination of environmental and cellular cues. The second is to amplify SPI1 gene expression. To experimentally test these predictions, we rewired the SPI1 genetic circuit by changing its regulatory architecture. This enabled us to directly test our predictions regarding the function of the circuit by varying the strength and dynamics of the activating signal. Collectively, our experimental and computational results enable us to deconstruct this complex circuit and determine the role of its individual components in regulating SPI1 gene expression dynamics.

  10. In vitro expression of Sec-dependent pathway and type 4B secretion system in Piscirickettsia salmonis.

    Science.gov (United States)

    Cortés, Marcos; Sánchez, Patricio; Ruiz, Pamela; Haro, Ronie; Sáez, Jerson; Sánchez, Fabián; Hernández, Mauricio; Oliver, Cristian; Yáñez, Alejandro J

    2017-09-01

    Piscirickettsia salmonis is an intracellular bacterium and the causative agent of Piscirickettsiosis, a disease responsible for considerable mortalities in the Chilean salmon farming industry. Currently, P. salmonis protein translocation across the membrane and the mechanisms by which virulence factors are delivered to host cells are poorly understood. However, it is known that Gram-negative bacteria possess several mechanisms that transport proteins to the periplasmic and extracellular compartments. The aim of this study was to evaluate the expressional changes of several genes in the P. salmonis Sec-dependent pathway and type 4B secretion system during in vitro infection. Genes homologous and the main proteins belonging to Sec-dependent pathway and Type 4 Dot/Icm secretion system were found in the genome and proteome of P. salmonis AUSTRAL-005 strain. Additionally, several genes of these protein transport mechanisms were overexpressed during in vitro P. salmonis infection in SHK-1 cell line. The obtained data indicate that the Sec-dependent pathway and Type 4B secretion system are biologically active during P. salmonis infection. These mechanisms could contribute to the recycling of proteins into the inner and outer bacterial membrane and in translocate virulence factors to infected cell, which would favor the structural integrity and virulence of this bacterium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system.

    Science.gov (United States)

    Lu, Yun-Yueh; Franz, Bettina; Truttmann, Matthias C; Riess, Tanja; Gay-Fraret, Jérémie; Faustmann, Marco; Kempf, Volkhard A J; Dehio, Christoph

    2013-05-01

    The Gram-negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae - each displaying multiple functions in host cell interaction - have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that most isolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4-dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA-dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of

  12. The YsrS Paralog DygS Has the Capacity To Activate Expression of the Yersinia enterocolitica Ysa Type III Secretion System.

    Science.gov (United States)

    Walker, Kimberly A; Griggs, Lauren A; Obrist, Markus; Bode, Addys; Summers, R Patrick; Miller, Virginia L

    2016-06-15

    The Yersinia enterocolitica Ysa type III secretion system (T3SS) is associated with intracellular survival, and, like other characterized T3SSs, it is tightly controlled. Expression of the ysa genes is only detected following growth at low temperatures (26°C) and in high concentrations of sodium chloride (290 mM) in the medium. The YsrSTR phosphorelay (PR) system is required for ysa expression and likely responds to NaCl. During our investigations into the Ysr PR system, we discovered that genes YE3578 and YE3579 are remarkably similar to ysrR and ysrS, respectively, and are probably a consequence of a gene duplication event. The amino acid differences between YE3578 and ysrR are primarily clustered into two short regions. The differences between YE3579 and ysrS are nearly all located in the periplasmic sensing domain; the cytoplasmic domains are 98% identical. We investigated whether these paralogs were capable of activating ysa gene expression. We found that the sensor paralog, named DygS, is capable of compensating for loss of ysrS, but the response regulator paralog, DygR, cannot complement a ysrR gene deletion. In addition, YsrR, but not DygR, interacts with the histidine phosphorelay protein YsrT. Thus, DygS likely activates ysa gene expression in response to a signal other than NaCl and provides an example of a phosphorelay system in which two sensor kinases feed into the same regulatory pathway. All organisms need mechanisms to promote survival in changing environments. Prokaryotic phosphorelay systems are minimally comprised of a histidine kinase (HK) that senses an extracellular stimulus and a response regulator (RR) but can contain three or more proteins. Through gene duplication, a unique hybrid HK was created. We show that, while the hybrid appears to retain all of the phosphorelay functions, it responds to a different signal than the original. Both HKs transmit the signal to the same RR, which activates a promoter that transcribes a set of genes

  13. Prolonged Expression of Secreted Enzymes in Dogs After Liver-Directed Delivery of Sleeping Beauty Transposons: Implications for Non-Viral Gene Therapy of Systemic Disease.

    Science.gov (United States)

    Aronovich, Elena L; Hyland, Kendra A; Hall, Bryan C; Bell, Jason B; Olson, Erik R; Rusten, Myra Urness; Hunter, David W; Ellinwood, N Matthew; McIvor, R Scott; Hackett, Perry B

    2017-07-01

    The non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion. This study reports that immunosuppression of dogs with gadolinium chloride (GdCl 3 ) prolonged the presence of cSEAP in the circulation up to 5.5 months after a single vector infusion. Transgene expression declined gradually but appeared to stabilize after about 2 months at approximately fourfold baseline level. Durability of transgenic protein expression in the plasma was inversely associated with transient increase of liver enzymes alanine transaminase and aspartate transaminase in response to the plasmid delivery procedure, which suggests a deleterious effect of hepatocellular toxicity on transgene expression. GdCl 3 treatment was ineffective for repeat vector infusions. In parallel studies, dogs were infused with potentially therapeutic transposons. Activities of transgenic IDUA and GUSB in plasma peaked at 50-350% of wildtype, but in the absence of immunosuppression lasted only a few days. Transposition was detectable by excision assay only when the most efficient transposase, SB100X, was used. Dogs infused with transposons encoding canine clotting factor IX (cFIX) were treated with GdCl 3 and showed expression profiles similar to those in cSEAP-infused dogs, with expression peaking at 40% wt (2 μg/mL). It is concluded that GdCl 3 can support extended transgene expression after hydrodynamic introduction of SB transposons in dogs, but that alternative

  14. The cytotoxic type 3 secretion system 1 of Vibrio rewires host gene expression to subvert cell death and activate cell survival pathways.

    Science.gov (United States)

    De Nisco, Nicole J; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-05-16

    Bacterial effectors potently manipulate host signaling pathways. The marine bacterium Vibrio parahaemolyticus ( V. para ) delivers effectors into host cells through two type 3 secretion systems (T3SSs). T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate nonapoptotic cell death. To understand how the concerted action of T3SS1 effectors globally affects host cell signaling, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1 + ) to those in cells infected with V. para lacking T3SS1 (T3SS1 - ). Overall, the host transcriptional response to both T3SS1 + and T3SS1 - V. para was rapid, robust, and temporally dynamic. T3SS1 rewired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors targeted host cells at the posttranslational level to cause cytotoxicity, V. para T3SS1 also precipitated a host transcriptional response that initially activated cell survival and repressed cell death networks. The increased expression of several key prosurvival transcripts mediated by T3SS1 depended on a host signaling pathway that is silenced posttranslationally later in infection. Together, our analysis reveals a complex interplay between the roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. Copyright © 2017, American Association for the Advancement of Science.

  15. Postreplication Roles of the Brucella VirB Type IV Secretion System Uncovered via Conditional Expression of the VirB11 ATPase

    Directory of Open Access Journals (Sweden)

    Erin P. Smith

    2016-11-01

    Full Text Available Brucella abortus, the bacterial agent of the worldwide zoonosis brucellosis, primarily infects host phagocytes, where it undergoes an intracellular cycle within a dedicated membrane-bound vacuole, the Brucella-containing vacuole (BCV. Initially of endosomal origin (eBCV, BCVs are remodeled into replication-permissive organelles (rBCV derived from the host endoplasmic reticulum, a process that requires modulation of host secretory functions via delivery of effector proteins by the Brucella VirB type IV secretion system (T4SS. Following replication, rBCVs are converted into autophagic vacuoles (aBCVs that facilitate bacterial egress and subsequent infections, arguing that the bacterium sequentially manipulates multiple cellular pathways to complete its cycle. The VirB T4SS is essential for rBCV biogenesis, as VirB-deficient mutants are stalled in eBCVs and cannot mediate rBCV biogenesis. This has precluded analysis of whether the VirB apparatus also drives subsequent stages of the Brucella intracellular cycle. To address this issue, we have generated a B. abortus strain in which VirB T4SS function is conditionally controlled via anhydrotetracycline (ATc-dependent complementation of a deletion of the virB11 gene encoding the VirB11 ATPase. We show in murine bone marrow-derived macrophages (BMMs that early VirB production is essential for optimal rBCV biogenesis and bacterial replication. Transient expression of virB11 prior to infection was sufficient to mediate normal rBCV biogenesis and bacterial replication but led to T4SS inactivation and decreased aBCV formation and bacterial release, indicating that these postreplication stages are also T4SS dependent. Hence, our findings support the hypothesis of additional, postreplication roles of type IV secretion in the Brucella intracellular cycle.

  16. Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion.

    Directory of Open Access Journals (Sweden)

    Yuko Nakagawa

    Full Text Available BACKGROUND: Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS: The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+ ([Ca(2+](c and cAMP ([cAMP](c were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+](c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+](c response. The effect of sucralose on [Ca(2+](c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q inhibitor. Sucralose also induced sustained elevation of [cAMP](c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS: Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+ and cAMP-dependent mechanisms.

  17. Development of a Method to Monitor Gene Expression in Single Bacterial Cells During the Interaction With Plants and Use to Study the Expression of the Type III Secretion System in Single Cells of Dickeya dadantii in Potato

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2018-06-01

    Full Text Available Dickeya dadantii is a bacterial plant pathogen that causes soft rot disease on a wide range of host plants. The type III secretion system (T3SS is an important virulence factor in D. dadantii. Expression of the T3SS is induced in the plant apoplast or in hrp-inducing minimal medium (hrp-MM, and is repressed in nutrient-rich media. Despite the understanding of induction conditions, how individual cells in a clonal bacterial population respond to these conditions and modulate T3SS expression is not well understood. In our previous study, we reported that in a clonal population, only a small proportion of bacteria highly expressed T3SS genes while the majority of the population did not express T3SS genes under hrp-MM condition. In this study, we developed a method that enabled in situ observation and quantification of gene expression in single bacterial cells in planta. Using this technique, we observed that the expression of the T3SS genes hrpA and hrpN is restricted to a small proportion of D. dadantii cells during the infection of potato. We also report that the expression of T3SS genes is higher at early stages of infection compared to later stages. This expression modulation is achieved through adjusting the ratio of T3SS ON and T3SS OFF cells and the expression intensity of T3SS ON cells. Our findings not only shed light into how bacteria use a bi-stable gene expression manner to modulate an important virulence factor, but also provide a useful tool to study gene expression in individual bacterial cells in planta.

  18. Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

    Science.gov (United States)

    Wu, Yvonne T.; Tam, Connie; Zhu, Lucia S.; Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ~108 cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ~180-fold (pbacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (p=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (p=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (p = 0.04) and 1.89 ± 0.26-fold (p<.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis. PMID:27670247

  19. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Hui; Zhang, Jinliang; Xi, Li; Zhang, Junbo; Chen, Chuangfu

    2017-03-01

    The pathogenic mechanisms of Brucella are still poorly understood. GntR is a transcriptional regulator and plays an important role in the intracellular survival of Brucella. To investigate whether GntR is involved in the cytotoxicity of Brucella abortus (B. abortus), we created a 2308ΔgntR mutant of B. abortus 2308 (S2308). Lactate dehydrogenase (LDH) cytotoxicity assays using a murine macrophage cell line (RAW 264.7) show that high-dose infection with the parental strain produces a high level of cytotoxicity to macrophages, but the 2308ΔgntR mutant exhibits a very low level of cytotoxicity, indicating that mutation of GntR impairs the cytotoxicity of B. abortus to macrophages. After the macrophages are infected with 2308ΔgntR, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8) increase and are slightly higher than that for the S2308 infected group, indicating that the 2308ΔgntR mutant could induce the secretion of inflammatory cytokines. The virulence factor detection experiments indicate that genes involved in the type IV secretion system (T4SS) and quorum sensing system (QSS) are down-regulated in 2308ΔgntR. The lower levels of survival of 2308ΔgntR under various stress conditions and the increased sensitivity of 2308ΔgntR to polymyxin B suggest that GntR is a virulence factor and that deletion of gntR reduces of B. abortus to stress conditions. Taken together, our results demonstrate that GntR is involved in the cytotoxicity, virulence and intracellular survival of B. abortus during its infection.

  20. Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle

    International Nuclear Information System (INIS)

    Deane, Janet E.; Cordes, Frank S.; Roversi, Pietro; Johnson, Steven; Kenjale, Roma; Picking, William D.; Picking, Wendy L.; Lea, Susan M.; Blocker, Ariel

    2006-01-01

    A monodisperse truncation mutant of MxiH, the subunit of the S. flexneri type III secretion system needle, has been crystallized. SeMet derivatives and a uranyl derivative have undergone preliminary crystallographic analysis. A monodisperse truncation mutant of MxiH, the subunit of the needle from the Shigella flexneri type III secretion system (TTSS), has been overexpressed and purified. Crystals were grown of native and selenomethionine-labelled MxiH CΔ5 and diffraction data were collected to 1.9 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 183.4, b = 28.1, c = 27.8 Å, β = 96.5°. An anomalous difference Patterson map calculated with the data from the SeMet-labelled crystals revealed a single peak on the Harker section v = 0. Inspection of a uranyl derivative also revealed one peak in the isomorphous difference Patterson map on the Harker section v = 0. Analysis of the self-rotation function indicates the presence of a twofold non-crystallographic symmetry axis approximately along a. The calculated Matthews coefficient is 1.9 Å 3 Da −1 for two molecules per asymmetric unit, corresponding to a solvent content of 33%

  1. Expression, purification, crystallization and preliminary crystallographic analysis of MxiH, a subunit of the Shigella flexneri type III secretion system needle

    Energy Technology Data Exchange (ETDEWEB)

    Deane, Janet E.; Cordes, Frank S.; Roversi, Pietro [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Kenjale, Roma; Picking, William D.; Picking, Wendy L. [Department of Molecular Biosciences, University of Kansas (United States); Lea, Susan M., E-mail: susan.lea@biop.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Blocker, Ariel [Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom)

    2006-03-01

    A monodisperse truncation mutant of MxiH, the subunit of the S. flexneri type III secretion system needle, has been crystallized. SeMet derivatives and a uranyl derivative have undergone preliminary crystallographic analysis. A monodisperse truncation mutant of MxiH, the subunit of the needle from the Shigella flexneri type III secretion system (TTSS), has been overexpressed and purified. Crystals were grown of native and selenomethionine-labelled MxiH{sub CΔ5} and diffraction data were collected to 1.9 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 183.4, b = 28.1, c = 27.8 Å, β = 96.5°. An anomalous difference Patterson map calculated with the data from the SeMet-labelled crystals revealed a single peak on the Harker section v = 0. Inspection of a uranyl derivative also revealed one peak in the isomorphous difference Patterson map on the Harker section v = 0. Analysis of the self-rotation function indicates the presence of a twofold non-crystallographic symmetry axis approximately along a. The calculated Matthews coefficient is 1.9 Å{sup 3} Da{sup −1} for two molecules per asymmetric unit, corresponding to a solvent content of 33%.

  2. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Roversi, Pietro [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Espina, Marianela [Department of Molecular Biosciences, University of Kansas (United States); Deane, Janet E. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Birket, Susan; Picking, William D. [Department of Molecular Biosciences, University of Kansas (United States); Blocker, Ariel [Sir William Dunn School of Pathology, University of Oxford (United Kingdom); Picking, Wendy L. [Department of Molecular Biosciences, University of Kansas (United States); Lea, Susan M., E-mail: susan.lea@path.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford (United Kingdom); Sir William Dunn School of Pathology, University of Oxford (United Kingdom)

    2006-09-01

    IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported. IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.

  3. Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    International Nuclear Information System (INIS)

    Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E.; Birket, Susan; Picking, William D.; Blocker, Ariel; Picking, Wendy L.; Lea, Susan M.

    2006-01-01

    IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported. IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2 1 2 1 2 1 , with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit

  4. Expression, purification, crystallization and preliminary crystallographic analysis of BipD, a component of the Burkholderia pseudomallei type III secretion system

    International Nuclear Information System (INIS)

    Roversi, Pietro; Johnson, Steven; Field, Terry; Deane, Janet E.; Galyov, Edouard E.; Lea, Susan M.

    2006-01-01

    A construct consisting of residues 10–310 of mature BipD, a component of the B. pseudomallei type III secretion system, has been crystallized. Native BipD crystals and SeMet and K 2 PtCl 4 derivative crystals have undergone preliminary crystallographic analysis. A construct consisting of residues 10–310 of BipD, a component of the Burkholderia pseudomallei type III secretion system (T3SS), has been overexpressed as a GST fusion, cleaved from the GST tag and purified. Crystals were grown of native and selenomethionine-labelled BipD. The crystals grow in two different polymorphs from the same condition. The first polymorph belongs to space group C222, with unit-cell parameters a = 103.98, b = 122.79, c = 49.17 Å, a calculated Matthews coefficient of 2.4 Å 3 Da −1 (47% solvent content) and one molecule per asymmetric unit. The second polymorph belongs to space group P2 1 2 1 2, with unit-cell parameters a = 136.47, b = 89.84, c = 50.15 Å, and a calculated Matthews coefficient of 2.3 Å 3 Da −1 (45% solvent content) for two molecules per asymmetric unit (analysis of the self-rotation function indicates the presence of a weak twofold non-crystallographic symmetry axis in this P2 1 2 1 2 form). The native crystals of both forms give diffraction data to 2.7 Å resolution, while the SeMet-labelled P2 1 2 1 2 crystals diffract to 3.3 Å resolution. A K 2 PtCl 4 derivative of the P2 1 2 1 2 form was also obtained and data were collected to 2.7 Å with radiation of wavelength λ = 0.933 Å. The Pt-derivative anomalous difference Patterson map revealed two self-peaks on the Harker sections

  5. Heterologous transporter expression for improved fatty alcohol secretion in yeast

    DEFF Research Database (Denmark)

    Hu, Yating; Zhu, Zhiwei; Nielsen, Jens

    2017-01-01

    The yeast Saccharomyces cerevisiae is an attractive host for industrial scale production of biofuels including fatty alcohols due to its robustness and tolerance towards harsh fermentation conditions. Many metabolic engineering strategies have been applied to generate high fatty alcohol production...... transporters tested, human FATP1 was shown to mediate fatty alcohol export in a high fatty alcohol production yeast strain. An approximately five-fold increase of fatty alcohol secretion was achieved. The results indicate that the overall cell fitness benefited from fatty alcohol secretion and that the acyl......-CoA synthase activity of FATP1 contributed to increased cell growth as well. This is the first study that enabled an increased cell fitness for fatty alcohol production by heterologous transporter expression in yeast, and this investigation indicates a new potential function of FATP1, which has been known...

  6. Expression in E. coli systems

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Kristiansen, Karsten; Nøhr, Jane

    2003-01-01

    intracellularly in soluble form. In E. coli, proteins containing disulfide bonds are best produced by secretion because the disulfide forming foldases reside in the periplasm. Likewise, a correct N-terminus is more likely to be obtained upon secretion. Moreover, potentially toxic proteins are more likely......Owing to cost advantage, speed of production, and often high product yield (up to 50% of total cell protein), expression in Escherichia coli is generally the first choice when attempting to express a recombinant protein. Expression systems exist to produce recombinant protein intracellularly...

  7. Secret-key rates and privacy leakage in biometric systems

    NARCIS (Netherlands)

    Ignatenko, T.

    2009-01-01

    In this thesis both the generation of secret keys from biometric data and the binding of secret keys to biometric data are investigated. These secret keys can be used to regulate access to sensitive data, services, and environments. In a biometric secrecy system a secret key is generated or chosen

  8. Expression, purification, crystallization and preliminary crystallographic analysis of BipD, a component of the Burkholderia pseudomallei type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Roversi, Pietro; Johnson, Steven [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Field, Terry [Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN (United Kingdom); Deane, Janet E. [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Galyov, Edouard E. [Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN (United Kingdom); Lea, Susan M., E-mail: susan.lea@biop.ox.ac.uk [Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU (United Kingdom); Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom)

    2006-09-01

    A construct consisting of residues 10–310 of mature BipD, a component of the B. pseudomallei type III secretion system, has been crystallized. Native BipD crystals and SeMet and K{sub 2}PtCl{sub 4} derivative crystals have undergone preliminary crystallographic analysis. A construct consisting of residues 10–310 of BipD, a component of the Burkholderia pseudomallei type III secretion system (T3SS), has been overexpressed as a GST fusion, cleaved from the GST tag and purified. Crystals were grown of native and selenomethionine-labelled BipD. The crystals grow in two different polymorphs from the same condition. The first polymorph belongs to space group C222, with unit-cell parameters a = 103.98, b = 122.79, c = 49.17 Å, a calculated Matthews coefficient of 2.4 Å{sup 3} Da{sup −1} (47% solvent content) and one molecule per asymmetric unit. The second polymorph belongs to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 136.47, b = 89.84, c = 50.15 Å, and a calculated Matthews coefficient of 2.3 Å{sup 3} Da{sup −1} (45% solvent content) for two molecules per asymmetric unit (analysis of the self-rotation function indicates the presence of a weak twofold non-crystallographic symmetry axis in this P2{sub 1}2{sub 1}2 form). The native crystals of both forms give diffraction data to 2.7 Å resolution, while the SeMet-labelled P2{sub 1}2{sub 1}2 crystals diffract to 3.3 Å resolution. A K{sub 2}PtCl{sub 4} derivative of the P2{sub 1}2{sub 1}2 form was also obtained and data were collected to 2.7 Å with radiation of wavelength λ = 0.933 Å. The Pt-derivative anomalous difference Patterson map revealed two self-peaks on the Harker sections.

  9. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    2015-08-01

    Full Text Available The type VI secretion system (T6SS is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are "orphan" effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.

  10. Expressed prostatic secretion biomarkers improve stratification of NCCN active surveillance candidates: performance of secretion capacity and TMPRSS2:ERG models.

    Science.gov (United States)

    Whelan, Christopher; Kawachi, Mark; Smith, David D; Linehan, Jennifer; Babilonia, Gail; Mejia, Rosa; Wilson, Timothy; Smith, Steven S

    2014-01-01

    Active surveillance is a viable patient option for prostate cancer provided that a clinical determination of low risk and presumably organ confined disease can be made. To standardize risk stratification schemes the NCCN (National Comprehensive Cancer Network®) provides guidelines for the active surveillance option. We determined the effectiveness of expressed prostatic secretion biomarkers for detecting occult risk factors in NCCN active surveillance candidates. Expressed prostatic secretion specimens were obtained before robot-assisted radical prostatectomy. Secretion capacity biomarkers, including total RNA and expressed prostatic secretion specimen volume, were measured by standard techniques. RNA expression biomarkers, including TXNRD1 mRNA, prostate specific antigen mRNA, TMPRSS2:ERG fusion mRNA and PCA3 mRNA, were measured by quantitative reverse-transcription polymerase chain reaction. Of the 528 patients from whom expressed prostatic secretions were collected 216 were eligible for active surveillance under NCCN guidelines. Variable selection on logistic regression identified 2 models, including one featuring types III and VI TMPRSS2:ERG variants, and one featuring 2 secretion capacity biomarkers. Of the 2 high performing models the secretion capacity model was most effective for detecting cases in this group that were up-staged or up-staged plus upgraded. It decreased the risk of up-staging in patients with a negative test almost eightfold and decreased the risk of up-staging plus upgrading about fivefold while doubling the prevalence of up-staging in the positive test group. Noninvasive expressed prostatic secretion testing may improve patient acceptance of active surveillance by dramatically reducing the presence of occult risk factors among those eligible for active surveillance under NCCN guidelines. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Heterologous protein secretion in Lactococcus lactis: a novel antigen delivery system

    Directory of Open Access Journals (Sweden)

    Langella P.

    1999-01-01

    Full Text Available Lactic acid bacteria (LAB are Gram-positive bacteria and are generally regarded as safe (GRAS organisms. Therefore, LAB could be used for heterologous protein secretion and they are good potential candidates as antigen delivery vehicles. To develop such live vaccines, a better control of protein secretion is required. We developed an efficient secretion system in the model LAB, Lactococcus lactis. Staphylococcal nuclease (Nuc was used as the reporter protein. We first observed that the quantity of secreted Nuc correlated with the copy number of the cloning vector. The nuc gene was cloned on a high-copy number cloning vector and no perturbation of the metabolism of the secreting strain was observed. Replacement of nuc native promoter by a strong lactococcal one led to a significant increase of nuc expression. Secretion efficiency (SE of Nuc in L. lactis was low, i.e., only 60% of the synthesized Nuc was secreted. Insertion of a synthetic propeptide between the signal peptide and the mature moiety of Nuc increased the SE of Nuc. On the basis of these results, we developed a secretion system and we applied it to the construction of an L. lactis strain which secretes a bovine coronavirus (BCV epitope-protein fusion (BCV-Nuc. BCV-Nuc was recognized by both anti-BCV and anti-Nuc antibodies. Secretion of this antigenic fusion is the first step towards the development of a novel antigen delivery system based on LAB-secreting strains.

  12. A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125

    Directory of Open Access Journals (Sweden)

    Marino Gennaro

    2006-12-01

    Full Text Available Abstract Background The final aim of recombinant protein production is both to have a high specific production rate and a high product quality. It was already shown that using cold-adapted bacteria as host vectors, some "intractable" proteins can be efficiently produced at temperature as low as 4°C. Results A novel genetic system for the production and secretion of recombinant proteins in the Antarctic Gram-negative bacterium Pseudoalteromonas haloplanktis TAC125 was set up. This system aims at combining the low temperature recombinant product production with the advantages of extra-cellular protein targeting. The psychrophilic α-amylase from Pseudoalteromonas haloplanktis TAB23 was used as secretion carrier. Three chimerical proteins were produced by fusing intra-cellular proteins to C-terminus of the psychrophilic α-amylase and their secretion was analysed. Data reported in this paper demonstrate that all tested chimeras were translocated with a secretion yield always higher than 80%. Conclusion Data presented here demonstrate that the "cold" gene-expression system is efficient since the secretion yield of tested chimeras is always above 80%. These secretion performances place the α-amylase derived secretion system amongst the best heterologous secretion systems in Gram-negative bacteria reported so far. As for the quality of the secreted passenger proteins, data presented suggest that the system also allows the correct disulphide bond formation of chimera components, secreting a fully active passenger.

  13. Secretory signal peptide modification for optimized antibody-fragment expression-secretion in Leishmania tarentolae

    Directory of Open Access Journals (Sweden)

    Klatt Stephan

    2012-07-01

    Full Text Available Abstract Background Secretory signal peptides (SPs are well-known sequence motifs targeting proteins for translocation across the endoplasmic reticulum membrane. After passing through the secretory pathway, most proteins are secreted to the environment. Here, we describe the modification of an expression vector containing the SP from secreted acid phosphatase 1 (SAP1 of Leishmania mexicana for optimized protein expression-secretion in the eukaryotic parasite Leishmania tarentolae with regard to recombinant antibody fragments. For experimental design the online tool SignalP was used, which predicts the presence and location of SPs and their cleavage sites in polypeptides. To evaluate the signal peptide cleavage site as well as changes of expression, SPs were N-terminally linked to single-chain Fragment variables (scFv’s. The ability of L. tarentolae to express complex eukaryotic proteins with highly diverse post-translational modifications and its easy bacteria-like handling, makes the parasite a promising expression system for secretory proteins. Results We generated four vectors with different SP-sequence modifications based on in-silico analyses with SignalP in respect to cleavage probability and location, named pLTEX-2 to pLTEX-5. To evaluate their functionality, we cloned four individual scFv-fragments into the vectors and transfected all 16 constructs into L. tarentolae. Independently from the expressed scFv, pLTEX-5 derived constructs showed the highest expression rate, followed by pLTEX-4 and pLTEX-2, whereas only low amounts of protein could be obtained from pLTEX-3 clones, indicating dysfunction of the SP. Next, we analysed the SP cleavage sites by Edman degradation. For pLTEX-2, -4, and -5 derived scFv’s, the results corresponded to in-silico predictions, whereas pLTEX-3 derived scFv’s contained one additional amino-acid (AA. Conclusions The obtained results demonstrate the importance of SP-sequence optimization for efficient

  14. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Science.gov (United States)

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  15. Yersinia Type III Secretion System Master Regulator LcrF

    Science.gov (United States)

    Schwiesow, Leah; Lam, Hanh

    2015-01-01

    Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters. PMID:26644429

  16. Secret rate - Privacy leakage in biometric systems

    NARCIS (Netherlands)

    Ignatenko, T.; Willems, F.M.J.

    2009-01-01

    Ahlswede and Csiszár [1993] introduced the concept of secret sharing. In their source model two terminals observe two correlated sequences. It is the objective of the terminals to form a common secret by interchanging a public message (helper data) in such a way that the secrecy leakage is

  17. The ESX system in Bacillus subtilis mediates protein secretion.

    Directory of Open Access Journals (Sweden)

    Laura A Huppert

    Full Text Available Esat-6 protein secretion systems (ESX or Ess are required for the virulence of several human pathogens, most notably Mycobacterium tuberculosis and Staphylococcus aureus. These secretion systems are defined by a conserved FtsK/SpoIIIE family ATPase and one or more WXG100 family secreted substrates. Gene clusters coding for ESX systems have been identified amongst many organisms including the highly tractable model system, Bacillus subtilis. In this study, we demonstrate that the B. subtilis yuk/yue locus codes for a nonessential ESX secretion system. We develop a functional secretion assay to demonstrate that each of the locus gene products is specifically required for secretion of the WXG100 virulence factor homolog, YukE. We then employ an unbiased approach to search for additional secreted substrates. By quantitative profiling of culture supernatants, we find that YukE may be the sole substrate that depends on the FtsK/SpoIIIE family ATPase for secretion. We discuss potential functional implications for secretion of a unique substrate.

  18. Differential expression pattern of antimicrobial peptides in nasal mucosa and secretion.

    Science.gov (United States)

    Laudien, Martin; Dressel, Stefanie; Harder, Jürgen; Gläser, Regine

    2011-03-01

    The intact nasal barrier is a prerequisite for a functioning defense of the upper airway system, in particular the permanent threat by inhaled potentially harmful microorganisms. Antimicrobial peptides (AMP) play an important role in maintaining barrier function. There is few data about AMP in respect of nasal mucosa. This study is addressed to gain further insight into the differential AMP expression and secretion pattern according to defined anatomical regions of the vestibulum nasi and turbinates. ELISA was applied to quantify concentrations of AMP RNase-7, psoriasin, hBD-2, hBD-3 and LL-37 in nasal secretions of 20 healthy volunteers. Immunohistochemistry was used to detect the local cellular sources of AMP in the vestibulum nasi (squamous epithelium) and compared to the mucosa of the turbinates (pseudostratified epithelium) in 10 healthy volunteers. Expression of RNase 7 and psoriasin was detected in all nasal secretion specimens, whereas LL-37 was detected in 16, hBD-2 in 5 and hBD-3 in 6 specimens. In the vestibulum nasi, luminal cell layers were demonstrated as local cellular sources for hBD-3 and RNase 7, whereas psoriasin was found in all layers of the stratified squamous epithelium. LL-37 was detected in 1 stroma cells sample, whereas hBD-2 was not detected at all. In turbinate biopsie,s hBD-3 and LL-37 were detectable in the epithelium, stroma cells and submucosal glands. RNase 7 was only present in submucosal glands. HBD-2 and psoriasin were not detected. These data demonstrate that the nasal epithelium contains a chemical defense shield through the expression and secretion of various AMP.

  19. In silico dissection of Type VII Secretion System components across

    Indian Academy of Sciences (India)

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacteriun tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information ...

  20. A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria.

    Directory of Open Access Journals (Sweden)

    Annika Osswald

    Full Text Available Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria.

  1. A Phytase-Based Reporter System for Identification of Functional Secretion Signals in Bifidobacteria

    Science.gov (United States)

    Osswald, Annika; Westermann, Christina; Sun, Zhongke; Riedel, Christian U.

    2015-01-01

    Health-promoting effects have been attributed to a number of Bifidobacterium sp. strains. These effects as well as the ability to colonise the host depend on secreted proteins. Moreover, rational design of protein secretion systems bears the potential for the generation of novel probiotic bifidobacteria with improved health-promoting or therapeutic properties. To date, there is only very limited data on secretion signals of bifidobacteria available. Using in silico analysis, we demonstrate that all bifidobacteria encode the major components of Sec-dependent secretion machineries but only B. longum strains harbour Tat protein translocation systems. A reporter plasmid for secretion signals in bifidobacteria was established by fusing the coding sequence of the signal peptide of a sialidase of Bifidobacterium bifidum S17 to the phytase gene appA of E. coli. The recombinant strain showed increased phytase activity in spent culture supernatants and reduced phytase levels in crude extracts compared to the control indicating efficient phytase secretion. The reporter plasmid was used to screen seven predicted signal peptides in B. bifidum S17 and B. longum E18. The tested signal peptides differed substantially in their efficacy to mediate protein secretion in different host strains. An efficient signal peptide was used for expression and secretion of a therapeutically relevant protein in B. bifidum S17. Expression of a secreted cytosine deaminase led to a 100-fold reduced sensitivity of B. bifidum S17 to 5-fluorocytosine compared to the non-secreted cytosine deaminase suggesting efficient conversion of 5-fluorocytosine to the cytotoxic cancer drug 5-fluorouracil by cytosine deaminase occurred outside the bacterial cell. Selection of appropriate signal peptides for defined protein secretion might improve therapeutic efficacy as well as probiotic properties of bifidobacteria. PMID:26086721

  2. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    Science.gov (United States)

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  3. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Withers, III, Sydnor T.; Dominguez, Miguel A.; DeLisa, Matthew P.; Haitjema, Charles H.

    2017-02-21

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  4. Distribution and diversity of bacterial secretion systems across metagenomic datasets.

    Science.gov (United States)

    Barret, Matthieu; Egan, Frank; O'Gara, Fergal

    2013-02-01

    Bacteria can manipulate their surrounding environment through the secretion of proteins into other living organisms and into the extracellular milieu. In Gram stain negative bacteria this process is mediated by different types of secretion systems from type I through type VI secretion system (T1SS-T6SS). In this study the prevalence of these secretion systems in 312 publicly available microbiomes derived from a wide range of ecosystems was investigated by a gene-centric approach. Our analysis demonstrates that some secretion systems are over-represented in some specific samples. In addition, some T3SS and T6SS phylogenetic clusters were specifically enriched in particular ecological niches, which could indicate specific bacterial adaptation to these environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    João Vitor Dutra Molino

    Full Text Available Efficient protein secretion is a desirable trait for any recombinant protein expression system, together with simple, low-cost, and defined media, such as the typical media used for photosynthetic cultures of microalgae. However, low titers of secreted heterologous proteins are usually obtained, even with the most extensively studied microalga Chlamydomonas reinhardtii, preventing their industrial application. In this study, we aimed to expand and evaluate secretory signal peptides (SP for heterologous protein secretion in C. reinhardtii by comparing previously described SP with untested sequences. We compared the SPs from arylsulfatase 1 and carbonic anhydrase 1, with those of untried SPs from binding protein 1, an ice-binding protein, and six sequences identified in silico. We identified over 2000 unique SPs using the SignalP 4.0 software. mCherry fluorescence was used to compare the protein secretion of up to 96 colonies for each construct, non-secretion construct, and parental wild-type cc1690 cells. Supernatant fluorescence varied according to the SP used, with a 10-fold difference observed between the highest and lowest secretors. Moreover, two SPs identified in silico secreted the highest amount of mCherry. Our results demonstrate that the SP should be carefully selected and that efficient sequences can be coded in the C. reinhardtii genome. The SPs described here expand the portfolio available for research on heterologous protein secretion and for biomanufacturing applications.

  6. Developmental co-expression of small molecular weight apolipoprotein B synthesis and triacylglycerol secretion

    International Nuclear Information System (INIS)

    Coleman, R.A.; Haynes, E.B.; Sand, T.M.; Davis, R.A.

    1987-01-01

    The development of the liver's ability to coordinately express the synthesis and secretion of the two major components of very low density lipoproteins (VLDL): triacylglycerol (TG) and apolipoprotein B (apo B) was examined in cultured hepatocytes obtained from fetal, suckling and adult rats. Hepatocytes from fetal and suckling rats synthesized and secreted TG at rates lower than that displayed by adult cells. When TG synthesis was equalized by adding oleic acid to the culture medium, fetal cells still secreted only 39% as much TG as did adult cells. To determine the basis for the apparent defect in VLDL assembly/secretion displayed by fetal cells, the synthesis and secretion of [ 35 S]methionine-labeled apo B was quantified by immunoprecipitation. Although adult and fetal cells synthesized and secreted large molecular weight apo B at similar rates, the synthesis and secretion of small molecular weight apo B was 2-fold greater in adult cells. These data suggest that the ability to assemble/secrete VLDL triacylglycerol varies in parallel with the developmental expression of small molecular weight apo B. Furthermore, these studies show the usefulness of the cultured rat hepatocyte model for examining the ontogeny and regulation of VLDL assembly/secretion

  7. Generation and evaluation of mammalian secreted and membrane protein expression libraries for high-throughput target discovery.

    Science.gov (United States)

    Panavas, Tadas; Lu, Jin; Liu, Xuesong; Winkis, Ann-Marie; Powers, Gordon; Naso, Michael F; Amegadzie, Bernard

    2011-09-01

    Expressed protein libraries are becoming a critical tool for new target discovery in the pharmaceutical industry. In order to get the most meaningful and comprehensive results from protein library screens, it is essential to have library proteins in their native conformation with proper post-translation modifications. This goal is achieved by expressing untagged human proteins in a human cell background. We optimized the transfection and cell culture conditions to maximize protein expression in a 96-well format so that the expression levels were comparable with the levels observed in shake flasks. For detection purposes, we engineered a 'tag after stop codon' system. Depending on the expression conditions, it was possible to express either native or tagged proteins from the same expression vector set. We created a human secretion protein library of 1432 candidates and a small plasma membrane protein set of about 500 candidates. Utilizing the optimized expression conditions, we expressed and analyzed both libraries by SDS-PAGE gel electrophoresis and Western blotting. Two thirds of secreted proteins could be detected by Western-blot analyses; almost half of them were visible on Coomassie stained gels. In this paper, we describe protein expression libraries that can be easily produced in mammalian expression systems in a 96-well format, with one protein expressed per well. The libraries and methods described allow for the development of robust, high-throughput functional screens designed to assay for protein specific functions associated with a relevant disease-specific activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Extracellular secretion of a recombinant therapeutic peptide by Bacillus halodurans utilizing a modified flagellin type III secretion system

    CSIR Research Space (South Africa)

    Berger, E

    2011-08-01

    Full Text Available further 3.5-fold increase in the secretion of recombinant peptide fusions. Conclusions: The type III flagellar secretion system of B. halodurans has been shown to successfully secrete a therapeutic peptide as a heterologous flagellin fusion. Improvements...

  9. Trade Secret Law and Information Systems: Can Your Students Keep a Secret?

    Science.gov (United States)

    Willey, Lorrie; Ford, Janet C.; White, Barbara Jo; Clapper, Danial L.

    2011-01-01

    The impact of intellectual property (IP) law on information systems (IS) professionals in business cannot be overstated. The IS 2010 model curriculum guidelines for undergraduate IS programs stress the importance of information security and knowledge about IP. While copyright and patents are the most well-known types of IP, another, trade secrets,…

  10. Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Su Lingqia

    2012-01-01

    Full Text Available Abstract Background Extracellular expression of proteins has an absolute advantage in a large-scale industrial production. In our previous study, Thermobifida fusca cutinase, an enzyme mainly utilized in textile industry, was expressed via type II secretory system in Escherichia coli BL21(DE3, and it was found that parts of the expressed protein was accumulated in the periplasmic space. Due to the fact that alpha-hemolysin secretion system can export target proteins directly from cytoplasm across both cell membrane of E. coli to the culture medium, thus in the present study we investigated the expression of cutinase using this alpha-hemolysin secretion system. Results T. fusca cutinase was fused with the specific signal peptide of alpha-hemolysin scretion system and expressed in E. coli BL21(DE3. In addition, HlyB and HlyD, strain-specific translocation components of alpha-hemolysin secretion system, were coexpressed to facilitate the enzyme expression. The cultivation of this engineered cell showed that cutinase activity in the culture medium reached 334 U/ml, which is 2.5 times that from type II secretion pathway under the same culture condition. The recombinant cutinase was further purified. Biochemical characterization of purified enzyme, which had an α-hemolysin secretion pathway signal peptide attached, had substrate specificity, pH and temperature profile, as well as application capability in bioscouring similar to that of wild-type cutinase. Conclusions In the present study, T. fusca cutinase was successfully secreted to the culture media by α-hemolysin secretion system. This is the first report of cutinase being efficiently secreted by this pathway. Due to the limited cases of successful expression of industrial enzyme by E. coli α-hemolysin secretion system, our study further explored the utilization of this pathway in industrial enzymes.

  11. The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression.

    Science.gov (United States)

    Kroken, Abby R; Chen, Camille K; Evans, David J; Yahr, Timothy L; Fleiszig, Suzanne M J

    2018-05-01

    Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103Δ exoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is often referred to as an extracellular

  12. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion.

    Science.gov (United States)

    Wulff-Strobel, Christine R; Williams, Andrew W; Straley, Susan C

    2002-01-01

    LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.

  13. AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system.

    Science.gov (United States)

    Kohler, Petra L; Hamilton, Holly L; Cloud-Hansen, Karen; Dillard, Joseph P

    2007-08-01

    Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.

  14. Effective Information Systems: What's the Secret?

    Science.gov (United States)

    Kirkham, Sandi

    1994-01-01

    Argues that false assumptions about user needs implicit in methodologies for building information systems have resulted in inadequate and inflexible systems. Checkland's Soft Systems Methodology is examined as a useful alternative. Its fundamental features are described, and examples of models demonstrate how the methodology can facilitate…

  15. High-level expression, secretion, and purification of the thermostable aqualysin I from Thermus aquaticus YT-1 in Pichia pastoris

    DEFF Research Database (Denmark)

    Oledzka, G.; Dabrowski, Slawomir; Kur, J.

    2003-01-01

    Aqualysin I is a heat-stable subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile. We report the high-level expression of an aqualysin I protein using its native signal sequence for secretion in the methylotrophic yeast, Pichia...... to that of the native enzyme. We also explored the possibility of secreting the GAP expressed aqualysin I in P. pastoris by in-frame fusion of the Saccharomyces cerevisiae alpha-factor secretion signal. However, the levels of secreted pro-aqualysin I particles were approximately 10 times lower, possibly...

  16. Maximized Autotransporter-Mediated Expression (MATE for Surface Display and Secretion of Recombinant Proteins in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Shanna Sichwart

    2015-01-01

    Full Text Available A new optimized system for the surface display and secretion of recombinant proteins is described, termed MATE (maximized autotransporter-mediated expression. It is based on an artificial gene consisting of the coding region for the signal peptide of CtxB, a multiple cloning site for passenger gene insertion, flanked by coding sequences for linear epitopes for monoclonal antibodies and OmpT, and factor Xa protease cleavage sites followed by a codon-optimized DNA sequence of the linker and the β-barrel of the type V autotransporter EhaA from Escherichia coli under control of an IPTG-inducible T5 promoter. The MATE system enabled the continuous secretion of recombinant passenger mCherry via OmpT-mediated cleavage, using native OmpT protease activity in E. coli when grown at 37 °C. It is the first example to show that native OmpT activity is sufficient to facilitate the secretion of a correctly folded target protein in preparative amounts obtaining 240 μg of purified mCherry from 800 mL of crude culture supernatant. Because the release of mCherry was achieved by a simple transfer of the encoding plasmid from an OmpT-negative to an OmpT-positive strain, it bears the option to use surface display for screening purposes and secretion for production of the selected variant. A single plasmid could therefore be used for continuous secretion in OmpT-positive strains or surface display in OmpT-negative strains. In conclusion, the MATE system appears to be a versatile tool for the surface display and for the secretion of target proteins in E. coli.

  17. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.

    Science.gov (United States)

    Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee

    2010-10-15

    Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of

  18. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Tong Minyan

    2010-10-01

    Full Text Available Abstract Background Effectors of Type III Secretion System (T3SS play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i comprehensive annotation of experimental status of effectors, ii submission and curation review of records by users of the database, and iii the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%. Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors

  19. Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System*

    Science.gov (United States)

    Fritsch, Maximilian J.; Trunk, Katharina; Diniz, Juliana Alcoforado; Guo, Manman; Trost, Matthias; Coulthurst, Sarah J.

    2013-01-01

    It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial

  20. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots

    Directory of Open Access Journals (Sweden)

    LUCIA KUSUMAWATI

    2013-09-01

    Full Text Available Subtilisin-like serine protease (MtSBT, serine carboxypeptidase (MtSCP, MtN5, non-specific lipid transfer protein (MtnsLTP, early nodulin2-like protein (MtENOD2-like, FAD-binding domain containing protein (MtFAD-BP1, and rhicadhesin receptor protein (MtRHRE1 were among 34 proteins found in the supernatant of M. truncatula 2HA and sickle cell suspension cultures. This study investigated the expression of genes encoding those proteins in roots and developing nodules. Two methods were used: quantitative real time RT-PCR and gene expression analysis (with promoter:GUS fusion in roots. Those proteins are predicted as secreted proteins which is indirectly supported by the findings that promoter:GUS fusions of six of the seven genes encoding secreted proteins were strongly expressed in the vascular bundle of transgenic hairy roots. All six genes have expressed in 14-day old nodule. The expression levels of the selected seven genes were quantified in Sinorhizobium-inoculated and control plants using quantitative real time RT-PCR. In conclusion, among seven genes encoding secreted proteins analyzed, the expression level of only one gene, MtN5, was up-regulated significantly in inoculated root segments compared to controls. The expression of MtSBT1, MtSCP1, MtnsLTP, MtFAD-BP1, MtRHRE1 and MtN5 were higher in root tip than in other tissues examined.

  1. In silico dissection of Type VII Secretion System components across ...

    Indian Academy of Sciences (India)

    2016-02-12

    Feb 12, 2016 ... Bio-Sciences R&D Division, TCS Innovation Labs, Tata Research Development & Design Centre, ... Type VII Secretion System (T7SS) is one of the factors involved in virulence of ... Such wide distribution of T7SS and.

  2. Identification of genes encoding the type IX secretion system and secreted proteins in Flavobacterium columnare IA-S-4

    Science.gov (United States)

    Flavobacterium columnare, a member of the phylum Bacteroidetes, causes columnaris disease in wild and aquaculture-reared freshwater fish. The mechanisms responsible for columnaris disease are not known. Many members of the phylum Bacteroidetes use type IX secretion systems (T9SSs) to secrete enzymes...

  3. Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice.

    Science.gov (United States)

    Tang, Xiaobin; Zhang, Bo; Jarrell, Justin A; Price, Jordan V; Dai, Hongjie; Utz, Paul J; Strober, Samuel

    2014-05-01

    Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19(+) B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108(lo)CD4(-)NK1.1(-) phenotype, whereas the IL-21 secreting subset expressed the Ly108(hi)CD4(+)NK1.1(-) phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A novel two-component system involved in secretion stress response in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.

  5. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35.

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    Full Text Available The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS, which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs in their C-termini. Hemin-binding protein 35 (HBP35, which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.

  6. Engineering yeast for the expression and secretion of cellulase cocktails

    Science.gov (United States)

    Enzyme systems that digest the cellulose in plant cell walls have potential value in the biorefining of renewable feedstocks such as crop residues, straws, and grasses to biofuels and other bioproducts. The bacterium Clostridium cellulovorans is a useful source of biomass-degrading enzymes because ...

  7. Small-Molecule Inhibitors of the Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Lingling Gu

    2015-09-01

    Full Text Available Drug-resistant pathogens have presented increasing challenges to the discovery and development of new antibacterial agents. The type III secretion system (T3SS, existing in bacterial chromosomes or plasmids, is one of the most complicated protein secretion systems. T3SSs of animal and plant pathogens possess many highly conserved main structural components comprised of about 20 proteins. Many Gram-negative bacteria carry T3SS as a major virulence determinant, and using the T3SS, the bacteria secrete and inject effector proteins into target host cells, triggering disease symptoms. Therefore, T3SS has emerged as an attractive target for antimicrobial therapeutics. In recent years, many T3SS-targeting small-molecule inhibitors have been discovered; these inhibitors prevent the bacteria from injecting effector proteins and from causing pathophysiology in host cells. Targeting the virulence of Gram-negative pathogens, rather than their survival, is an innovative and promising approach that may greatly reduce selection pressures on pathogens to develop drug-resistant mutations. This article summarizes recent progress in the search for promising small-molecule T3SS inhibitors that target the secretion and translocation of bacterial effector proteins.

  8. A novel secret image sharing scheme based on chaotic system

    Science.gov (United States)

    Li, Li; Abd El-Latif, Ahmed A.; Wang, Chuanjun; Li, Qiong; Niu, Xiamu

    2012-04-01

    In this paper, we propose a new secret image sharing scheme based on chaotic system and Shamir's method. The new scheme protects the shadow images with confidentiality and loss-tolerance simultaneously. In the new scheme, we generate the key sequence based on chaotic system and then encrypt the original image during the sharing phase. Experimental results and analysis of the proposed scheme demonstrate a better performance than other schemes and confirm a high probability to resist brute force attack.

  9. Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells

    Science.gov (United States)

    Sabeva, Nadezhda S; McPhaul, Christopher M; Li, Xiangan; Cory, Theodore J.; Feola, David J.; Graf, Gregory A

    2010-01-01

    Phytosterol supplements lower low density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E deficient mice, suggesting that the cholesterol lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may either be beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux, and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect of cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest, but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL-induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion. PMID:21111593

  10. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Lee, E.Y.H.P.; Lee, W.H.; Parry, G.; Bissell, M.J.

    1985-01-01

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  11. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    KAUST Repository

    Zimaro, Tamara; Thomas, Ludivine; Marondedze, Claudius; Sgro, Germá n G; Garofalo, Cecilia G; Ficarra, Florencia A; Gehring, Christoph A; Ottado, Jorgelina; Gottig, Natalia

    2014-01-01

    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system

  12. Sex-specific differences in corticosterone secretion, behavioral phenotypes and expression of TrkB.T1 and TrkB.FL receptor isoforms: Impact of systemic TrkB inhibition and combinatory stress exposure in adolescence.

    Science.gov (United States)

    Azogu, Idu; Liang, Jacky; Plamondon, Helene

    2018-05-09

    Stress exposure has been implicated in the development of mood disorders, although little is known about the lasting effects of repeated stress during the adolescent period on sex-specific differences in endocrine and plasticity-signaling responses in adulthood. Using a 10-day combinatory stress paradigm (postnatal day (PND) 26 to 35), we examined sex-specific impact of adolescent stress and inhibition of tyrosine-related kinase B (TrkB) receptor (ANA-12; 0.5 mg/kg, i.p.) on 1) adolescent blood corticosterone levels, 2) adult locomotion and anxiety-like behavior, and 3) region-specific differences in endogenous TrkB full-length (TrkB.FL) and truncated (TrkB.T1) receptor isoforms. Blood collected on days 1, 5 and 10 revealed elevated basal and stress-induced CORT secretion in females compared to males, while ANA-12 attenuated CORT elevations post stress in both sexes. As adults, all females exhibited higher locomotor and exploratory activity than males in the open field test and elevated plus maze, and differences were comparable in the forced swim within stress-naïve and stress groups. Biochemically, vehicle-treated males showed elevated TrkB.T1 and TrkB.FL compared to vehicle-treated females in the PFC, hippocampus and NAc, and levels were consistently attenuated by ANA-12 treatment in non-stress males. With regards to stress exposure, expression of both isoforms was strongly down-regulated in the NAc of males only and was associated with increased TrkB.T1 in the PFC. ANA-12 enhanced expression in females, independent of stress exposure, compared to vehicle-treated counterparts, expression being increased for TrkB.T1 versus TrkB.FL and magnitude of the changes being region-specific. In contrast, ANA-12 effects in stressed males were restricted to inhibition of both isoforms in the hippocampus. Together, our findings support that TrkB activation, contingent on stress exposure, differentially affects TrkB isoform regulation during adulthood. Sex

  13. Burkholderia cenocepacia type VI secretion system mediates escape of type II secreted proteins into the cytoplasm of infected macrophages.

    Directory of Open Access Journals (Sweden)

    Roberto Rosales-Reyes

    Full Text Available Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1β secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1β secretion and pyroptosis. Moreover, IL-1β secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS. We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1β secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.

  14. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    Science.gov (United States)

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Protein secretion in human mammary epithelial cells following HER1 receptor activation: influence of HER2 and HER3 expression

    International Nuclear Information System (INIS)

    Zhang, Yi; Gonzalez, Rachel M; Zangar, Richard C

    2011-01-01

    Protein secretion by mammary cells results in autocrine and paracrine signaling that defines cell growth, migration and the extracellular environment. Even so, we have a limited understanding of the cellular processes that regulate protein secretion. In this study, we utilize human epithelial mammary cell (HMEC) lines that were engineered to express different levels of HER1, HER2 and HER3. Using an ELISA microarray platform, we evaluate the effects of epidermal growth factor family receptor (HER) expression on protein secretion in the HMEC lines upon initiation of HER1 receptor activation. The secreted proteins include three HER1 ligands, interleukins 1α and 18, RANTES, vascular-endothelial and platelet-derived growth factors, matrix metalloproteases 1, 2 and 9, and the extracellular portion of the HER1 and HER2 proteins. In addition, we investigate whether MAPK/Erk and PI3K/Akt signaling regulate protein secretion in these cell lines and if so, whether the involvement of HER2 or HER3 receptor alters their response to MAPK/Erk and PI3K/Akt signal pathway inhibition in terms of protein secretion. Differential expression of HER2 and HER3 receptors alters the secretion of a variety of growth factors, cytokines, and proteases. Some alterations in protein secretion are still observed when MAPK/Erk or PI3K/Akt signaling is inhibited. This study suggests that HER overexpression orchestrates broad changes in the tumor microenvironment by altering the secretion of a diverse variety of biologically active proteins

  16. Intrathecal injection of naked plasmid DNA provides long-term expression of secreted proteins.

    Science.gov (United States)

    Hughes, Travis S; Langer, Stephen J; Johnson, Kirk W; Chavez, Raymond A; Watkins, Linda R; Milligan, Erin D; Leinwand, Leslie A

    2009-01-01

    Therapeutic benefit has been reported to result from intrathecal (i.t.) injection of transgene vectors, including naked DNA. However, most studies using naked DNA have measured only the transgene expression of intracellular proteins. Here we demonstrate that i.t. injection of naked DNA can result in long-term expression of secreted proteins. Plasmids expressing either secreted alkaline phosphatase (SEAP) or human interleukin-10 (hIL-10) were injected into the i.t. space in rats, and transgene products were repeatedly measured in the cerebrospinal fluid (CSF). Both SEAP and hIL-10 were maximal at 1 and 2 days after the injection and still detectable at 4 months. The utilization of a plasmid having two features that are hypothesized to increase gene expression (matrix attachment regions (MARs) and lack of CpG dinucleotides) resulted in a significant increase in gene expression. Reinjection of SEAP or hIL-10 plasmids after 4 months significantly increased protein levels at 1 and 14 days after the reinjection. SEAP was uniformly distributed between the DNA delivery site (approximately vertebral level T13) and the lumbar puncture site (L5/L6 inter-vertebral space), was reduced at the cisterna magna, and was detectable, though at much lower levels, in serum. These data suggest that naked DNA has the potential to be used as a therapeutic tool for applications that require long-term release of transgenes into the CSF.

  17. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  18. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Cobos Everardo

    2005-01-01

    Full Text Available Abstract Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20 with three members (FAM20A, FAM20B and FAM20C in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating

  19. Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells.

    Science.gov (United States)

    Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A

    2017-10-31

    Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.

  20. Evaluation of insulin expression and secretion in genetically engineered gut K and L-cells

    Directory of Open Access Journals (Sweden)

    Ahmad Zalinah

    2012-09-01

    Full Text Available Abstract Background Gene therapy could provide an effective treatment of diabetes. Previous studies have investigated the potential for several cell and tissue types to produce mature and active insulin. Gut K and L-cells could be potential candidate hosts for gene therapy because of their special features. Results In this study, we isolated gut K and L-cells to compare the potential of both cell types to produce insulin when exposed to similar conditions. The isolated pure K and L-cells were transfected with recombinant plasmids encoding insulin and with specific promoters for K or L-cells. Insulin expression was studied in response to glucose or meat hydrolysate. We found that glucose and meat hydrolysate efficiently induced insulin secretion from K and L-cells. However, the effects of meat hydrolysate on insulin secretion were more potent in both cells compared with glucose. Results of enzyme-linked immunosorbent assays showed that L-cells secreted more insulin compared with K-cells regardless of the stimulator, although this difference was not statistically significant. Conclusion The responses of K and L-cells to stimulation with glucose or meat hydrolysate were generally comparable. Therefore, both K and L-cells show similar potential to be used as surrogate cells for insulin gene expression in vitro. The potential use of these cells for diabetic gene therapy warrants further investigation.

  1. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm.We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals.Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic

  2. Skin sensitizer identification by IL-8 secretion and CD86 expression on THP-1 cells.

    Science.gov (United States)

    Parise, Carolina Bellini; Sá-Rocha, Vanessa Moura; Moraes, Jane Zveiter

    2015-12-25

    Substantial progress has been made in the development of alternative methods for skin sensitization in the last decade in several countries around the world. Brazil is experiencing an increasing concern about using animals for product development, since the publication of the Law 9605/1998, which prohibits the use of animals when an alternative method is available. In this way, an in vitro test to evaluate allergenic potential is a pressing need.This preliminary study started setting the use of myelomonocytic THP-1 cell line, according to the human cell line activation test (h-CLAT), already under validation process. We found that 48-h chemical exposure was necessary to identify 22 out of 23 sensitizers by the analyses of CD86 expression. In addition, the CD54 expression analyses presented a poor efficiency to discriminate sensitizers from non-sensitizers in our conditions. In view of these results, we looked for changes of pro-inflammatory interleukin profile. The IL-8 secretion analyses after 24-h chemical incubation seemed to be an alternative for CD54 expression assessing.Altogether, our findings showed that the combination of the analyses of CD86 expression and IL-8 secretion allowed predicting allergenicity.

  3. The role of secreted frizzled-related protein 2 expression in prostate cancer.

    LENUS (Irish Health Repository)

    O'Hurley, Gillian

    2012-02-01

    AIMS: Improved prostate cancer (PCa)-specific biomarkers are urgently required to distinguish between indolent and aggressive disease, in order to avoid overtreatment. In this study, we investigated the prostatic tissue expression of secreted frizzled-related protein (SFRP)-2. METHODS AND RESULTS: Following immunohistochemical analysis on PCa tissue microarrays with samples from 216 patients, strong\\/moderate SFRP-2 expression was observed in epithelial cells of benign prostatic hyperplasia, and negative\\/weak SFRP-2 expression was observed in the majority of tumour epithelia. However, among Gleason grade 5 carcinomas, 40% showed strong\\/moderate SFRP-2 expression and 60% showed negative SFRP-2 expression in epithelial cells. Further microscopic evaluation of Gleason grade 5 tumours revealed different morphological patterns, corresponding with differential SFRP-2 expression. The first subgroup (referred to as Type A) appeared to have a morphologically solid growth pattern, whereas the second subgroup (referred to as Type B) appeared to have a more diffuse pattern. Furthermore, 100% (4\\/4) of Type A patients experienced biochemical recurrence, as compared with 0% (0\\/6) of Type B patients. CONCLUSIONS: These results imply: (i) that there is a loss of SFRP-2 expression from benign to malignant prostate glands; and (ii) differential SFRP-2 expression among two possible subgroups of Gleason grade 5 tumours.

  4. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    Full Text Available Angiotensin-converting enzyme (ACE regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS. Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  5. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Science.gov (United States)

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  6. Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer.

    Science.gov (United States)

    Pera, Edgar M; Kim, James I; Martinez, Sarah L; Brechner, Mariel; Li, Su Yu; Wessely, Oliver; De Robertis, E M

    2002-08-01

    Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.

  7. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria.

    Science.gov (United States)

    Borrero, Juan; Jiménez, Juan J; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2011-10-20

    Replacement of the leader sequence (LS) of the bacteriocin enterocin A (LS(entA)) by the signal peptides (SP) of the protein Usp45 (SP(usp45)), and the bacteriocins enterocin P (SP(entP)), and hiracin JM79 (SP(hirJM79)) permits the production, secretion, and functional expression of EntA by different lactic acid bacteria (LAB). Chimeric genes encoding the SP(usp45), the SP(entP), and the SP(hirJM79) fused to mature EntA plus the EntA immunity genes (entA+entiA) were cloned into the expression vectors pNZ8048 and pMSP3545, under control of the inducible P(nisA) promoter, and in pMG36c, under control of the constitutive P(32) promoter. The amount, antimicrobial activity, and specific antimicrobial activity of the EntA produced by the recombinant Lactococcus lactis, Enterococcus faecium, E. faecalis, Lactobacillus sakei and Pediococcus acidilactici hosts varied depending on the signal peptide, the expression vector, and the host strain. However, the antimicrobial activity and the specific antimicrobial activity of the EntA produced by most of the LAB transformants was lower than expected from their production. The supernatants of the recombinant L. lactis NZ9000 (pNZUAI) and L. lactis NZ9000 (pNZHAI), overproducers of EntA, showed a 1.2- to 5.1-fold higher antimicrobial activity than that of the natural producer E. faecium T136 against different Listeria spp. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. DLP system and the secret of personal correspondence

    Directory of Open Access Journals (Sweden)

    Mavrinskaya T.V.

    2017-04-01

    Full Text Available according to the authors, every day a number of threats to information security increases, and this requires an increase in resources (systems of information protection of organizations and enterprises. There are many information security tools with different functionality, but the main mean of preventing information leakage is the Date Loss Prevention (DLP system. If you need to establish control over the leak of confidential information there appear a number of questions of conformity of decisions with the legislation and regulations. This article describes the issue of compliance functionality of a DLP system the provisions and requirements of the legislation in the sphere of protection of family and personal secrets, as well as compliance with the Constitutional right of citizens to privacy of correspondence.

  9. Two-partner secretion systems of Neisseria meningitidis associated with invasive clonal complexes

    NARCIS (Netherlands)

    van Ulsen, Peter; Rutten, Lucy; Feller, Moniek; Tommassen, Jan; van der Ende, Arie

    2008-01-01

    The two-partner secretion (TPS) pathway is widespread among gram-negative bacteria and facilitates the secretion of very large and often virulence-related proteins. TPS systems consist of a secreted TpsA protein and a TpsB protein involved in TpsA transport across the outer membrane. Sequenced

  10. Control of Secreted Protein Gene Expression and the Mammalian Secretome by the Metabolic Regulator PGC-1α.

    Science.gov (United States)

    Minsky, Neri; Roeder, Robert G

    2017-01-06

    Secreted proteins serve pivotal roles in the development of multicellular organisms, acting as structural matrix, extracellular enzymes, and signal molecules. However, how the secretome is regulated remains incompletely understood. Here we demonstrate, unexpectedly, that peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), a critical transcriptional co-activator of metabolic gene expression, functions to down-regulate the expression of diverse genes encoding secreted molecules and extracellular matrix components to modulate the secretome. Using cell lines, primary cells, and mice, we show that both endogenous and exogenous PGC-1α down-regulate the expression of numerous genes encoding secreted molecules. Mechanistically, results obtained using mRNA stability measurements as well as intronic RNA expression analysis are consistent with a transcriptional effect of PGC-1α on the expression of genes encoding secreted proteins. Interestingly, PGC-1α requires the central heat shock response regulator heat shock factor protein 1 (HSF1) to affect some of its targets, and both factors co-reside on several target genes encoding secreted molecules in cells. Finally, using a mass spectrometric analysis of secreted proteins, we demonstrate that PGC-1α modulates the secretome of mouse embryonic fibroblasts. Our results define a link between a key pathway controlling metabolic regulation and the regulation of the mammalian secretome. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Effect of Serum and Oxygen Concentration on Gene Expression and Secretion of Paracrine Factors by Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Patrick Page

    2014-01-01

    Full Text Available Mesenchymal stem cells (MSC secrete paracrine factors that may exert a protective effect on the heart after coronary artery occlusion. This study was done to determine the effect of hypoxia and serum levels on the mRNA expression and secretion of paracrine factors. Mouse bone marrow MSC were cultured with 5% or 20% serum and in either normoxic (21% O2 or hypoxic (1% O2 conditions. Expression of mRNA for vascular endothelial growth factor (VEGF, monocyte chemotactic protein-1 (MCP-1, macrophage inflammatory protein-1α (MIP-1α, MIP-1β, and matrix metalloproteinase-2 (MMP-2 was determined by RT-qPCR. Secretion into the culture media was determined by ELISA. Hypoxia caused a reduction in gene expression for MCP-1 and an increase for VEGF (5% serum, MIP-1α, MIP-1β, and MMP-2. Serum reduction lowered gene expression for VEGF (normoxia, MCP-1 (hypoxia, MIP-1α (hypoxia, MIP-1β (hypoxia, and MMP-2 (hypoxia and increased gene expression for MMP-2 (normoxia. The level of secretion of these factors into the media generally paralleled gene expression with some exceptions. These data demonstrate that serum and oxygen levels have a significant effect on the gene expression and secretion of paracrine factors by MSC which will affect how MSC interact in vivo during myocardial ischemia.

  12. The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation

    KAUST Repository

    Zimaro, Tamara

    2014-04-18

    Background: Several bacterial plant pathogens colonize their hosts through the secretion of effector proteins by a Type III protein secretion system (T3SS). The role of T3SS in bacterial pathogenesis is well established but whether this system is involved in multicellular processes, such as bacterial biofilm formation has not been elucidated. Here, the phytopathogen Xanthomonas citri subsp. citri (X. citri) was used as a model to gain further insights about the role of the T3SS in biofilm formation. Results: The capacity of biofilm formation of different X. citri T3SS mutants was compared to the wild type strain and it was observed that this secretion system was necessary for this process. Moreover, the T3SS mutants adhered proficiently to leaf surfaces but were impaired in leaf-associated growth. A proteomic study of biofilm cells showed that the lack of the T3SS causes changes in the expression of proteins involved in metabolic processes, energy generation, exopolysaccharide (EPS) production and bacterial motility as well as outer membrane proteins. Furthermore, EPS production and bacterial motility were also altered in the T3SS mutants. Conclusions: Our results indicate a novel role for T3SS in X. citri in the modulation of biofilm formation. Since this process increases X. citri virulence, this study reveals new functions of T3SS in pathogenesis. 2014 Zimaro et al.; licensee BioMed Central Ltd.

  13. Incomplete KLK7 Secretion and Upregulated LEKTI Expression Underlie Hyperkeratotic Stratum Corneum in Atopic Dermatitis.

    Science.gov (United States)

    Igawa, Satomi; Kishibe, Mari; Minami-Hori, Masako; Honma, Masaru; Tsujimura, Hisashi; Ishikawa, Junko; Fujimura, Tsutomu; Murakami, Masamoto; Ishida-Yamamoto, Akemi

    2017-02-01

    Atopic dermatitis (AD) is a common inflammatory skin disorder. Chronic AD lesions present hyperkeratosis, indicating a disturbed desquamation process. KLK7 is a serine protease involved in the proteolysis of extracellular corneodesmosome components, including desmocollin 1 and corneodesmosin, which leads to desquamation. KLK7 is secreted by lamellar granules and upregulated in AD lesional skin. However, despite increased KLK7 protein levels, immunostaining and electron microscopy indicated numerous corneodesmosomes remaining in the uppermost layer of the stratum corneum from AD lesions. We aimed to clarify the discrepancy between KLK7 overexpression and retention of corneodesmosomes on AD corneocytes. Western blot analysis indicated abnormal corneodesmosin degradation patterns in stratum corneum from AD lesions. The KLK activity of tape-stripped corneocytes from AD lesions was not significantly elevated in in situ zymography, which was our new attempt to detect the protease activity more precisely than conventional assays. This ineffective KLK activation was associated with impaired KLK7 secretion from lamellar granules and increased expression of LEKTI in AD. Such imbalances in protease-protease inhibitor interactions could lead to abnormal proteolysis of corneodesmosomes and compact hyperkeratosis. Upregulated expression of LEKTI might be a compensatory mechanism to prevent further barrier dysfunction in AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells

    DEFF Research Database (Denmark)

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle

    2009-01-01

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone cou...

  15. Aberrant expression and secretion of heat shock protein 90 in patients with bullous pemphigoid.

    Directory of Open Access Journals (Sweden)

    Stefan Tukaj

    Full Text Available The cell stress chaperone heat shock protein 90 (Hsp90 has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP, the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP.

  16. High-resolution time series of Pseudomonas aeruginosa gene expression and rhamnolipid secretion through growth curve synchronization

    Directory of Open Access Journals (Sweden)

    Xavier João B

    2011-06-01

    Full Text Available Abstract Background Online spectrophotometric measurements allow monitoring dynamic biological processes with high-time resolution. Contrastingly, numerous other methods require laborious treatment of samples and can only be carried out offline. Integrating both types of measurement would allow analyzing biological processes more comprehensively. A typical example of this problem is acquiring quantitative data on rhamnolipid secretion by the opportunistic pathogen Pseudomonas aeruginosa. P. aeruginosa cell growth can be measured by optical density (OD600 and gene expression can be measured using reporter fusions with a fluorescent protein, allowing high time resolution monitoring. However, measuring the secreted rhamnolipid biosurfactants requires laborious sample processing, which makes this an offline measurement. Results Here, we propose a method to integrate growth curve data with endpoint measurements of secreted metabolites that is inspired by a model of exponential cell growth. If serial diluting an inoculum gives reproducible time series shifted in time, then time series of endpoint measurements can be reconstructed using calculated time shifts between dilutions. We illustrate the method using measured rhamnolipid secretion by P. aeruginosa as endpoint measurements and we integrate these measurements with high-resolution growth curves measured by OD600 and expression of rhamnolipid synthesis genes monitored using a reporter fusion. Two-fold serial dilution allowed integrating rhamnolipid measurements at a ~0.4 h-1 frequency with high-time resolved data measured at a 6 h-1 frequency. We show how this simple method can be used in combination with mutants lacking specific genes in the rhamnolipid synthesis or quorum sensing regulation to acquire rich dynamic data on P. aeruginosa virulence regulation. Additionally, the linear relation between the ratio of inocula and the time-shift between curves produces high-precision measurements of

  17. Calcimimetic R568 inhibits tetrodotoxin-sensitive colonic electrolyte secretion and reduces c-fos expression in myenteric neurons.

    Science.gov (United States)

    Sun, Xiangrong; Tang, Lieqi; Winesett, Steven; Chang, Wenhan; Cheng, Sam Xianjun

    2018-02-01

    Calcium-sensing receptor (CaSR) is expressed on neurons of both submucosal and myenteric plexuses of the enteric nervous system (ENS) and the CaSR agonist R568 inhibited Cl - secretion in intestine. The purpose of this study was to localize the primary site of action of R568 in the ENS and to explore how CaSR regulates secretion through the ENS. Two preparations of rat proximal and distal colon were used. The full-thickness preparation contained both the submucosal and myenteric plexuses, whereas for the "stripped" preparation the myenteric plexus with the muscle layers was removed. Both preparations were mounted onto Ussing chambers and Cl - secretory responses were compared by measuring changes in short circuit current (I sc ). Two tissue-specific CaSR knockouts (i.e., neuron-specific vs. enterocyte-specific) were generated to compare the effect of R568 on expression of c-fos protein in myenteric neurons by immunocytochemistry. In full-thickness colons, tetrodotoxin (TTX) inhibited I sc , both in proximal and distal colons. A nearly identical inhibition was produced by R568. However, in stripped preparations, while the effect of TTX on I sc largely remained, the effect of R568 was nearly completely eliminated. In keeping with this, R568 reduced c-fos protein expression only in myenteric neurons of wild type mice and mutant mice that contained CaSR in neurons (i.e., villin Cre/Casr flox/flox mice), but not in myenteric neurons of nestin Cre/Casr flox/flox mice in which neuronal cell CaSR was eliminated. These results indicate that R568 exerts its anti-secretory effects predominantly via CaSR-mediated inhibition of neuronal activity in the myenteric plexus. Published by Elsevier Inc.

  18. The molecular mechanism of leptin secretion and expression induced by aristolochic acid in kidney fibroblast.

    Directory of Open Access Journals (Sweden)

    Tsung-Chieh Lin

    Full Text Available BACKGROUND: Leptin is a peptide hormone playing pivotal role in regulating food intake and energy expenditure. Growing evidence has suggested the pro-inflammatory and fibrogenic properties of leptin. In addition, patients with renal fibrosis have higher level of plasma leptin, which was due to the increased leptin production. Aristolochic acid (AA is a botanical toxin characterized to associate with the development of renal fibrosis including tubulointerstitial fibrosis. However, whether leptin is upregulated to participate in AA-induced kidney fibrosis remain completely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, leptin expression was increased by sublethal dose of AA in kidney fibroblast NRK49f determined by enzyme-linked immunosorbent assay and Western blot. Data from real-time reverse transcriptase-polymerase chain reaction revealed that leptin was upregulated by AA at transcriptional level. DNA binding activity of CCAAT enhancer binding protein α (C/EBP α, one of the transcription factors for leptin gene, was enhanced in DNA affinity precipitation assay and chromatin immunoprecipitation experiments. Knockdown of C/EBP α expression by small interfering RNA markedly reduced AA-induced leptin expression. Moreover, AA promoted Akt interaction with p-PDK1, and increased phosphorylated activation of Akt. Akt knockdown, and inhibition of Akt signaling by LY294002 and mTOR inhibitor rapamycin reduced leptin expression. Furthermore, treatment of LY294002 or rapamycin significantly suppressed AA-induced C/EBP α DNA-binding activity. These results suggest that Akt and C/EBP α activation were involved in AA-regulated leptin expression. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate the first that AA could induce secretion and expression of fibrogenic leptin in kidney fibroblasts, which reveal potential involvement of leptin in the progression of kidney fibrosis in aristolochic acid nephropathy.

  19. RNA-seq based expression analysis of the CHO cell protein secretion pathway

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kaas, Christian Schrøder; Kildegaard, Helene Faustrup

    The Chinese hamster ovary (CHO) cell-line is the predominant mammalian industrial cell line being used to produce recombinant therapeutic proteins. Although CHO cells have been used for more than 25 years, the genome sequence was first published in 2011. So far there have been limited studies...... of the cell biology of the CHO cell and the potential of cell line engineering. To elucidate the poorly understood cellular processes that control and limit recombinant protein production and secretion, a system-wide study was initiated to identify possible engineering targets relevant for therapeutic protein...

  20. Unfolded Protein Response (UPR Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martin Hampel

    Full Text Available The unfolded protein response (UPR, a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER, coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  1. The Burkholderia pseudomallei Proteins BapA and BapC Are Secreted TTSS3 Effectors and BapB Levels Modulate Expression of BopE.

    Directory of Open Access Journals (Sweden)

    Puthayalai Treerat

    Full Text Available Many Gram-negative pathogens use a type III secretion system (TTSS for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.

  2. N-acyl-L-homoserine lactone-mediated regulation of the Lip secretion system in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Riedel, K.; Ohnesorg, T.; Krogfelt, K.A.

    2001-01-01

    The analysis of Serratia liquefaciens MG1 'luxAB insertion mutants that are responsive to N-butanoyl-L-homoserine lactone revealed that expression of lipB is controlled by the swr quorum-sensing system. LipB is part of the Lip exporter, a type I secretion system, which is responsible for the secr......The analysis of Serratia liquefaciens MG1 'luxAB insertion mutants that are responsive to N-butanoyl-L-homoserine lactone revealed that expression of lipB is controlled by the swr quorum-sensing system. LipB is part of the Lip exporter, a type I secretion system, which is responsible...

  3. Isthmin 1 Is a Secreted Protein Expressed in Skin, Mucosal Tissues, and NK, NKT, and Th17 Cells

    OpenAIRE

    Valle-Rios, Ricardo; Maravillas-Montero, José L.; Burkhardt, Amanda M.; Martinez, Cynthia; Buhren, Bettina Alexandra; Homey, Bernhard; Gerber, Peter Arne; Robinson, Octavio; Hevezi, Peter; Zlotnik, Albert

    2014-01-01

    Using a comprehensive microarray database of human gene expression, we identified that in mammals, a secreted protein known as isthmin 1 (ISM1) is expressed in skin, mucosal tissues, and selected lymphocyte populations. ISM1 was originally identified in Xenopus brain during development, and it encodes a predicted ∼50-kDa protein containing a signal peptide, a thrombospondin domain, and an adhesion-associated domain. We confirmed the pattern of expression of ISM1 in both human and mouse tissue...

  4. Presep: predicting the propensity of a protein being secreted into the supernatant when expressed in Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Jian Tian

    Full Text Available Pichia pastoris is commonly used for the production of recombinant proteins due to its preferential secretion of recombinant proteins, resulting in lower production costs and increased yields of target proteins. However, not all recombinant proteins can be successfully secreted in P. pastoris. A computational method that predicts the likelihood of a protein being secreted into the supernatant would be of considerable value; however, to the best of our knowledge, no such tool has yet been developed. We present a machine-learning approach called Presep to assess the likelihood of a recombinant protein being secreted by P. pastoris based on its pseudo amino acid composition (PseAA. Using a 20-fold cross validation, Presep demonstrated a high degree of accuracy, with Matthews correlation coefficient (MCC and overall accuracy (Q2 scores of 0.78 and 95%, respectively. Computational results were validated experimentally, with six β-galactosidase genes expressed in P. pastoris strain GS115 to verify Presep model predictions. A strong correlation (R(2 = 0.967 was observed between Presep prediction secretion propensity and the experimental secretion percentage. Together, these results demonstrate the ability of the Presep model for predicting the secretion propensity of P. pastoris for a given protein. This model may serve as a valuable tool for determining the utility of P. pastoris as a host organism prior to initiating biological experiments. The Presep prediction tool can be freely downloaded at http://www.mobioinfor.cn/Presep.

  5. Type-IVC Secretion System: A Novel Subclass of Type IV Secretion System (T4SS) Common Existing in Gram-Positive Genus Streptococcus

    Science.gov (United States)

    Chen, Chen; Gao, George F.

    2012-01-01

    A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296

  6. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery.

    Directory of Open Access Journals (Sweden)

    Tatsuya Yamamoto

    Full Text Available We previously reported that secreted phosphoprotein 1 (SPP1 mRNA is expressed in neurons whose axons form the corticospinal tract (CST of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1 was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat. SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.

  7. Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering.

    Science.gov (United States)

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Shao, Yongpin; Ma, Peter X

    2016-05-01

    Myelination of Schwann cells (SCs) is critical for the success of peripheral nerve regeneration, and biomaterials that can promote SCs' neurotrophin secretion as scaffolds are beneficial for nerve repair. Here we present a biomaterials-approach, specifically, a highly tunable conductive biodegradable flexible polyurethane by polycondensation of poly(glycerol sebacate) and aniline pentamer, to significantly enhance SCs' myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. SCs are cultured on these conductive polymer films, and the biocompatibility of these films and their ability to enhance myelin gene expressions and sustained neurotrophin secretion are successfully demonstrated. The mechanism of SCs' neurotrophin secretion on conductive films is demonstrated by investigating the relationship between intracellular Ca(2+) level and SCs' myelination. Furthermore, the neurite growth and elongation of PC12 cells are induced by adding the neurotrophin medium suspension produced from SCs-laden conductive films. These data suggest that these conductive degradable polyurethanes that enhance SCs' myelin gene expressions and sustained neurotrophin secretion perform great potential for nerve regeneration applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Science.gov (United States)

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  9. Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans

    Science.gov (United States)

    We expressed a glucansucrase, DsrI, from Leuconostoc mesenteroides that catalyzes formation of water-insoluble glucans from sucrose in Lactococcus lactis using a nisin-controlled gene expression system. Production of DsrI was optimized using several different background vectors, signal peptides, str...

  10. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background.

    Science.gov (United States)

    Zhang, Hui; Wang, Shuang; Zhang, Xiang Xiang; Ji, Wei; Song, Fuping; Zhao, Yue; Li, Jie

    2016-04-28

    The filamentous fungus Aspergillus niger is widely exploited as an important expression host for industrial production. The glucoamylase high-producing strain A. niger CICC2462 has been used as a host strain for the establishment of a secretion expression system. It expresses recombinant xylanase, mannase and asparaginase at a high level, but some high secretory background proteins in these recombinant strains still remain, such as alpha-amylase and alpha-glucosidase; lead to a low-purity of fermentation products. The aim was to construct an A. niger host strain with a low background of protein secretion. The transcription factor amyR was deleted in A. niger CICC2462, and the results from enzyme activity assays and SDS-PAGE analysis showed that the glucoamylase and amylase activities of the ∆amyR strains were significantly lower than those of the wild-type strain. High-throughput RNA-sequencing and shotgun LC-MS/MS proteomic technology analysis demonstrated that the expression of amylolytic enzymes was decreased at both the transcriptional and translational levels in the ∆amyR strain. Interestingly, the ∆amyR strain growth rate better than the wild-type strain. Our findings clearly indicated that the ∆amyR strain of A. niger CICC2462 can be used as a host strain with a low background of protein secretion.

  11. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos.

    Science.gov (United States)

    Lin, Chung-Tien; Lin, Yu-Ting; Kuo, Tzong-Fu

    2007-08-01

    The roles of secreted frizzled-related protein 2 (sFRP2) in organ development of vertebrate animals are not well understood. We investigated expression of sFRP2 during embryogenesis of Arbor Acre broiler chicken eggs. Expression of sFRP2 was detected in the folds and lateral layer of developing brains. The sFRP2 signals in the developing eye were marked as a circle along the orbit. In younger embryos on days 3-6, the sFRP2 signals were consistent with growth of the sclerotome, suggesting that sFRP2 may be associated with somite development. Furthermore, with the exception of bones, sFRP2 mRNA was detectable in the interdigital tissue of embryos older than eight days as the limbs matured. This revealed that sFRP2 might play a role in myogenesis. In situ hybridization was also used to analyze the expression of sFRP2 in day 3-10 chick embryos. Signals were expressed in the gray matter of the developing brain coelom, including the optic lobe, metencephalon, myelencephalon, mesencephalon and diencephalon. The developing eyes contained an intercellular distribution of sFRP2 in the pigmented layer of the retina and photoreceptors. Furthermore, sFRP2 was expressed in the mantle layer of the neural tube and notochord. Based on these findings, it seems reasonable to suggest that sFRP2 may play an active role in embryogenesis, especially in development of the neural system, eyes, muscles and limbs.

  12. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contributing to human insulin secretion

    Directory of Open Access Journals (Sweden)

    Fatou K. Ndiaye

    2017-06-01

    Full Text Available Objectives: Genome-wide association studies (GWAS have identified >100 loci independently contributing to type 2 diabetes (T2D risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. Methods: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-βH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-βH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. Results: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-βH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19 with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6 with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-βH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the

  13. Stimulation of chymosin secretion by simultaneous expression with chymosin-binding llama single-domain antibody fragments in yeast

    NARCIS (Netherlands)

    Harmsen, M.M.; Smits, C.B.; Geus, de B.

    2002-01-01

    We studied the effect of coexpression of chymosin and chymosin-binding llama single-domain antibody fragments (VHHs) on the secretion of chymosin by Saccharomyces cerevisiae cells. A VHH expression library containing chymosin-specific VHHs was obtained by immunization of a llama and coexpressed with

  14. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113.

    Science.gov (United States)

    Barret, Matthieu; Egan, Frank; Moynihan, Jennifer; Morrissey, John P; Lesouhaitier, Olivier; O'Gara, Fergal

    2013-06-01

    Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar beet rhizosphere. The recent annotation of the F113 genome sequence has revealed that this strain encodes a wide array of secretion systems, including two complete type three secretion systems (T3SSs) belonging to the Hrp1 and SPI-1 families. While Hrp1 T3SSs are frequently encoded in other P. fluorescens strains, the presence of a SPI-1 T3SS in a plant-beneficial bacterial strain was unexpected. In this work, the genetic organization and expression of these two T3SS loci have been analysed by a combination of transcriptional reporter fusions and transcriptome analyses. Overexpression of two transcriptional activators has shown a number of genes encoding putative T3 effectors. In addition, the influence of these two T3SSs during the interaction of P. fluorescens F113 with some bacterial predators was also assessed. Our data revealed that the transcriptional activator hilA is induced by amoeba and that the SPI-1 T3SS could potentially be involved in resistance to amoeboid grazing. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria

    KAUST Repository

    Ates, Louis S.

    2015-05-04

    Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow

  16. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria.

    Directory of Open Access Journals (Sweden)

    Louis S Ates

    2015-05-01

    Full Text Available Mycobacteria possess different type VII secretion (T7S systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of Msp

  17. Essential Role of the ESX-5 Secretion System in Outer Membrane Permeability of Pathogenic Mycobacteria

    KAUST Repository

    Ates, Louis S.; Ummels, Roy; Commandeur, Susanna; van der Weerd, Robert; Sparrius, Marion; Weerdenburg, Eveline; Alber, Marina; Kalscheuer, Rainer; Piersma, Sander R.; Abdallah, Abdallah; Abd El Ghany, Moataz; Abdel-Haleem, Alyaa M.; Pain, Arnab; Jimé nez, Connie R.; Bitter, Wilbert; Houben, Edith N.G.

    2015-01-01

    Mycobacteria possess different type VII secretion (T7S) systems to secrete proteins across their unusual cell envelope. One of these systems, ESX-5, is only present in slow-growing mycobacteria and responsible for the secretion of multiple substrates. However, the role of ESX-5 substrates in growth and/or virulence is largely unknown. In this study, we show that esx-5 is essential for growth of both Mycobacterium marinum and Mycobacterium bovis. Remarkably, this essentiality can be rescued by increasing the permeability of the outer membrane, either by altering its lipid composition or by the introduction of the heterologous porin MspA. Mutagenesis of the first nucleotide-binding domain of the membrane ATPase EccC5 prevented both ESX-5-dependent secretion and bacterial growth, but did not affect ESX-5 complex assembly. This suggests that the rescuing effect is not due to pores formed by the ESX-5 membrane complex, but caused by ESX-5 activity. Subsequent proteomic analysis to identify crucial ESX-5 substrates confirmed that all detectable PE and PPE proteins in the cell surface and cell envelope fractions were routed through ESX-5. Additionally, saturated transposon-directed insertion-site sequencing (TraDIS) was applied to both wild-type M. marinum cells and cells expressing mspA to identify genes that are not essential anymore in the presence of MspA. This analysis confirmed the importance of esx-5, but we could not identify essential ESX-5 substrates, indicating that multiple of these substrates are together responsible for the essentiality. Finally, examination of phenotypes on defined carbon sources revealed that an esx-5 mutant is strongly impaired in the uptake and utilization of hydrophobic carbon sources. Based on these data, we propose a model in which the ESX-5 system is responsible for the transport of cell envelope proteins that are required for nutrient uptake. These proteins might in this way compensate for the lack of MspA-like porins in slow

  18. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.; (USMC); (UTSMC)

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  19. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages.

    Science.gov (United States)

    Fu, Xiangdong; Zeng, Lihong; Liu, Zhi; Ke, Xue; Lei, Lin; Li, Guobao

    2016-08-19

    Tuberculosis (TB) is a serious disease that is characterized by Mycobacterium tuberculosis (M.tb)-triggered immune system impairment and lung tissue damage shows limited treatment options. MicroRNAs (miRNAs) are regulators of gene expression that play critical roles in many human diseases, and can be up- or downregulated by M.tb infection in macrophage. Recently, tissue inhibitor of matrix metalloproteinase (TIMP) 3 has been found to play roles in regulating macrophage inflammation. Here, we found that TIMP3 expression was regulated by miR-206 in M.tb-infected THP-1 human macrophages. In THP-1 cells infected with M.tb, the miR-206 level was significantly upregulated and the expression of TIMP3 was markedly decreased when the secretion of inflammatory cytokines was increased. Inhibition of miR-206 markedly suppressed inflammatory cytokine secretion and upregulated the expression of TIMP3. In contrast, the upregulation of miR-206 promoted the matrix metalloproteinase (MMP) 9 levels and inhibited TIMP3 levels. Using a dual-luciferase reporter assay, a direct interaction between miR-206 and the 3'-untranslated region (UTR) of TIMP3 was confirmed. SiTIMP3, the small interfering RNA (siRNA) specific for TIMP3, significantly attenuated the suppressive effects of miR-206-inhibitor on inflammatory cytokine secretion and MMP9 expression. Our data suggest that miR-206 may function as an inflammatory regulator and drive the expression of MMP9 in M.tb-infected THP-1 cells by targeting TIMP3, indicating that miR-206 is a potential therapeutic target for patients with TB. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    Directory of Open Access Journals (Sweden)

    Singsuksawat Ekapot

    2010-06-01

    Full Text Available Abstract Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS. Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR. Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.

  1. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC.

    Science.gov (United States)

    Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi

    2011-11-01

    The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Heat Shock Protein HSP27 Secretion by Ovarian Cancer Cells Is Linked to Intracellular Expression Levels, Occurs Independently of the Endoplasmic Reticulum Pathway and HSP27’s Phosphorylation Status, and Is Mediated by Exosome Liberation

    Directory of Open Access Journals (Sweden)

    Matthias B. Stope

    2017-01-01

    Full Text Available The heat shock protein HSP27 has been correlated in ovarian cancer (OC patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker.

  3. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  4. The voltage-gated proton channel Hv1 is expressed in pancreatic islet β-cells and regulates insulin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qing [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Che, Yongzhe [School of Medicine, Nankai University, Tianjin 300071 (China); Li, Qiang; Zhang, Shangrong [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Gao, Ying-Tang [Key Laboratory of Artificial Cell, Third Central Clinical College of Tianjin Medical University, Tianjin 300170 (China); Wang, Yifan; Wang, Xudong; Xi, Wang; Zuo, Weiyan [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China); Li, Shu Jie, E-mail: shujieli@nankai.edu.cn [Department of Biophysics, School of Physics Science, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2015-12-25

    The voltage-gated proton channel Hv1 is a potent acid extruder that participates in the extrusion of the intracellular acid. Here, we showed for the first time, Hv1 is highly expressed in mouse and human pancreatic islet β-cells, as well as β-cell lines. Imaging studies demonstrated that Hv1 resides in insulin-containing granules in β-cells. Knockdown of Hv1 with RNA interference significantly reduces glucose- and K{sup +}-induced insulin secretion in isolated islets and INS-1 (832/13) β-cells and has an impairment on glucose- and K{sup +}-induced intracellular Ca{sup 2+} homeostasis. Our data demonstrated that the expression of Hv1 in pancreatic islet β-cells regulates insulin secretion through regulating Ca{sup 2+} homeostasis.

  5. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation.

    Science.gov (United States)

    Roehrich, A Dorothea; Guillossou, Enora; Blocker, Ariel J; Martinez-Argudo, Isabel

    2013-02-01

    Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram-negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C-terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation. © 2013 Blackwell Publishing Ltd.

  6. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.

    Directory of Open Access Journals (Sweden)

    Kris E Spaeth

    2009-09-01

    Full Text Available In Gram-negative bacterial pathogens, specialized chaperones bind to secreted effector proteins and maintain them in a partially unfolded form competent for translocation by type III secretion systems/injectisomes. How diverse sets of effector-chaperone complexes are recognized by injectisomes is unclear. Here we describe a new mechanism of effector-chaperone recognition by the Chlamydia injectisome, a unique and ancestral line of these evolutionarily conserved secretion systems. By yeast two-hybrid analysis we identified networks of Chlamydia-specific proteins that interacted with the basal structure of the injectisome, including two hubs of protein-protein interactions that linked known secreted effector proteins to CdsQ, the putative cytoplasmic C-ring component of the secretion apparatus. One of these protein-interaction hubs is defined by Ct260/Mcsc (Multiple cargo secretion chaperone. Mcsc binds to and stabilizes at least two secreted hydrophobic proteins, Cap1 and Ct618, that localize to the membrane of the pathogenic vacuole ("inclusion". The resulting complexes bind to CdsQ, suggesting that in Chlamydia, the C-ring of the injectisome mediates the recognition of a subset of inclusion membrane proteins in complex with their chaperone. The selective recognition of inclusion membrane proteins by chaperones may provide a mechanism to co-ordinate the translocation of subsets of inclusion membrane proteins at different stages in infection.

  7. A novel expression vector for the secretion of abaecin in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available ABSTRACT This study aimed to describe a Bacillus subtilis expression system based on genetically modified B. subtilis. Abaecin, an antimicrobial peptide obtained from Apis mellifera, can enhance the effect of pore-forming peptides from other species on the inhibition of bacterial growth. For the exogenous expression, the abaecin gene was fused with a tobacco etch virus protease cleavage site, a promoter Pglv, and a mature beta-glucanase signal peptide. Also, a B. subtilis expression system was constructed. The recombinant abaecin gene was expressed and purified as a recombinant protein in the culture supernatant. The purified abaecin did not inhibit the growth of Escherichia coli strain K88. Cecropin A and hymenoptaecin exhibited potent bactericidal activities at concentrations of 1 and 1.5 µM. Combinatorial assays revealed that cecropin A and hymenoptaecin had sublethal concentrations of 0.3 and 0.5 µM. This potentiating functional interaction represents a promising therapeutic strategy. It provides an opportunity to address the rising threat of multidrug-resistant pathogens that are recalcitrant to conventional antibiotics.

  8. A novel expression vector for the secretion of abaecin in Bacillus subtilis.

    Science.gov (United States)

    Li, Li; Mu, Lan; Wang, Xiaojuan; Yu, Jingfeng; Hu, Ruiping; Li, Zhen

    This study aimed to describe a Bacillus subtilis expression system based on genetically modified B. subtilis. Abaecin, an antimicrobial peptide obtained from Apis mellifera, can enhance the effect of pore-forming peptides from other species on the inhibition of bacterial growth. For the exogenous expression, the abaecin gene was fused with a tobacco etch virus protease cleavage site, a promoter Pglv, and a mature beta-glucanase signal peptide. Also, a B. subtilis expression system was constructed. The recombinant abaecin gene was expressed and purified as a recombinant protein in the culture supernatant. The purified abaecin did not inhibit the growth of Escherichia coli strain K88. Cecropin A and hymenoptaecin exhibited potent bactericidal activities at concentrations of 1 and 1.5μM. Combinatorial assays revealed that cecropin A and hymenoptaecin had sublethal concentrations of 0.3 and 0.5μM. This potentiating functional interaction represents a promising therapeutic strategy. It provides an opportunity to address the rising threat of multidrug-resistant pathogens that are recalcitrant to conventional antibiotics. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Type IV Secretion System of Brucella spp. and its Effectors

    Directory of Open Access Journals (Sweden)

    Yuehua eKe

    2015-10-01

    Full Text Available Brucella spp. cause brucellosis in domestic and wild animals. They are intracellular bacterial pathogens and used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we will discuss roles of Brucella VirB T4SS and in more detail of all 15 identified effectors, which may be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells, suggesting that it plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. So, we listed some key molecular events in the intracellular life cycle of Brucella potentially targeted by the VirB T4SS effectors. Elucidating functions of the effectors secreted will be crucial to clarifying mechanism of T4SS during infection. Studying the effectors secreted by Brucella spp. might provide insights into the mechanisms by which the bacteria hijack the host signaling pathways, which help us to develop better vaccines and therapies against brucellosis.

  10. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  11. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    Science.gov (United States)

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oral delivery of the Sj23LHD-GST antigen by Salmonella typhimurium type III secretion system protects against Schistosoma japonicum infection in mice.

    Directory of Open Access Journals (Sweden)

    Guo Chen

    2011-09-01

    Full Text Available BACKGROUND: Schistosomiasis japonica is a zoonotic parasitic disease and oral vaccine delivery system would be benefit for prevention of this disease. Although attenuated salmonella has been used as an antigen expression vector for oral vaccine development, the membrane-bound vacuoles in which bacteria reside hinders the presentation of expressed heterologous antigens to the major histocompatibility complex (MHC molecules. The present work used an attenuated Salmonella typhimurium strain VNP20009 to secretory expression of Sj23LHDGST bivalent antigen from Schistosoma japonicum and tested the protective efficacy against S. japonicum infection in orally immunized mice. METHODOLOGY/PRINCIPAL FINDINGS: Promoters (nirB or pagC were used to express the antigen (Sj23LHDGST and the Salmonella type III or α-hemolysin secretion system was employed to secrete it. The immunoblotting analysis and fluorescent microscopy revealed that the antigen was effectively expressed and delivered to the cytosol of macrophages in vitro. Among recombinant vaccine strains, an engineered VNP20009 which expressed the antigen by nirB promoter and secreted it through type III secretion system (nirB-sopE(1-104-Sj23LHD-GST efficiently protected against S. japonicum infection in a mouse model. This strain elicited a predominantly IgG(2a antibody response and a markedly increase in the production of IL-12 and IFN-γ. The flow cytometric analysis demonstrated that this strain caused T cell activation as evidenced by significantly increased expression of CD44 and CD69. CONCLUSION/SIGNIFICANCE: Oral delivery of antigen by nirB-driven Salmonella typhimurium type III secretion system is a novel, safe, inexpensive, efficient and convenient approach for schistosome vaccine development.

  13. Inactivation of genes encoding extracellular proteases in bacillus halodurans BhFC01 and the impact on its modified flagellin type III secretion pathway towards improving peptide expression

    CSIR Research Space (South Africa)

    Berger, E

    2009-01-01

    Full Text Available The flagellin type III secretion pathway of Bacillus halodurans BhFC01 (-hag) was modified by the inactivation of fliD. An in-frame flagellin gene fusion polypeptide construct was expressed, and the heterologous peptides were secreted as flagellin...

  14. Burkholderia mallei tssM encodes a putative deubiquitinase that is secreted and expressed inside infected RAW 264.7 murine macrophages.

    Science.gov (United States)

    Shanks, John; Burtnick, Mary N; Brett, Paul J; Waag, David M; Spurgers, Kevin B; Ribot, Wilson J; Schell, Mark A; Panchal, Rekha G; Gherardini, Frank C; Wilkinson, Keith D; Deshazer, David

    2009-04-01

    Burkholderia mallei, a category B biothreat agent, is a facultative intracellular pathogen that causes the zoonotic disease glanders. The B. mallei VirAG two-component regulatory system activates the transcription of approximately 60 genes, including a large virulence gene cluster encoding a type VI secretion system (T6SS). The B. mallei tssM gene encodes a putative ubiquitin-specific protease that is physically linked to, and transcriptionally coregulated with, the T6SS gene cluster. Mass spectrometry and immunoblot analysis demonstrated that TssM was secreted in a virAG-dependent manner in vitro. Surprisingly, the T6SS was found to be dispensable for the secretion of TssM. The C-terminal half of TssM, which contains Cys and His box motifs conserved in eukaryotic deubiquitinases, was purified and biochemically characterized. Recombinant TssM hydrolyzed multiple ubiquitinated substrates and the cysteine at position 102 was critical for enzymatic activity. The tssM gene was expressed within 1 h after uptake of B. mallei into RAW 264.7 murine macrophages, suggesting that the TssM deubiquitinase is produced in this intracellular niche. Although the physiological substrate(s) is currently unknown, the TssM deubiquitinase may provide B. mallei a selective advantage in the intracellular environment during infection.

  15. Burkholderia mallei tssM Encodes a Putative Deubiquitinase That Is Secreted and Expressed inside Infected RAW 264.7 Murine Macrophages▿ †

    Science.gov (United States)

    Shanks, John; Burtnick, Mary N.; Brett, Paul J.; Waag, David M.; Spurgers, Kevin B.; Ribot, Wilson J.; Schell, Mark A.; Panchal, Rekha G.; Gherardini, Frank C.; Wilkinson, Keith D.; DeShazer, David

    2009-01-01

    Burkholderia mallei, a category B biothreat agent, is a facultative intracellular pathogen that causes the zoonotic disease glanders. The B. mallei VirAG two-component regulatory system activates the transcription of ∼60 genes, including a large virulence gene cluster encoding a type VI secretion system (T6SS). The B. mallei tssM gene encodes a putative ubiquitin-specific protease that is physically linked to, and transcriptionally coregulated with, the T6SS gene cluster. Mass spectrometry and immunoblot analysis demonstrated that TssM was secreted in a virAG-dependent manner in vitro. Surprisingly, the T6SS was found to be dispensable for the secretion of TssM. The C-terminal half of TssM, which contains Cys and His box motifs conserved in eukaryotic deubiquitinases, was purified and biochemically characterized. Recombinant TssM hydrolyzed multiple ubiquitinated substrates and the cysteine at position 102 was critical for enzymatic activity. The tssM gene was expressed within 1 h after uptake of B. mallei into RAW 264.7 murine macrophages, suggesting that the TssM deubiquitinase is produced in this intracellular niche. Although the physiological substrate(s) is currently unknown, the TssM deubiquitinase may provide B. mallei a selective advantage in the intracellular environment during infection. PMID:19168747

  16. Optimizing ultrasound molecular imaging of secreted frizzled related protein 2 expression in angiosarcoma.

    Directory of Open Access Journals (Sweden)

    James K Tsuruta

    Full Text Available Secreted frizzled related protein 2 (SFRP2 is a tumor endothelial marker expressed in angiosarcoma. Previously, we showed ultrasound molecular imaging with SFRP2-targeted contrast increased average video pixel intensity (VI of angiosarcoma vessels by 2.2 ± 0.6 VI versus streptavidin contrast. We hypothesized that redesigning our contrast agents would increase imaging performance. Improved molecular imaging reagents were created by combining NeutrAvidin™-functionalized microbubbles with biotinylated SFRP2 or IgY control antibodies. When angiosarcoma tumors in nude mice reached 8 mm, time-intensity, antibody loading, and microbubble dose experiments optimized molecular imaging. 10 minutes after injection, the control-subtracted time-intensity curve (TIC for SFRP2-targeted contrast reached a maximum, after subtracting the contribution of free-flowing contrast. SFRP2 antibody-targeted VI was greater when contrast was formulated with 10-fold molar excess of maleimide-activated NeutrAvidin™ versus 3-fold (4.5 ± 0.18 vs. 0.32 ± 0.15, VI ± SEM, 5 x 106 dose, p < 0.001. Tumor vasculature returned greater average video pixel intensity using 5 x 107 versus 5 x 106 microbubbles (21.2 ± 2.5 vs. 4.5 ± 0.18, p = 0.0011. Specificity for tumor vasculature was confirmed by low VI for SFRP2-targeted, and control contrast in peri-tumoral vasculature (3.2 ± 0.52 vs. 1.6 ± 0.71, p = 0.92. After optimization, average video pixel intensity of tumor vasculature was 14.2 ± 3.0 VI units higher with SFRP2-targeted contrast versus IgY-targeted control (22.1 ± 2.5 vs. 7.9 ± 1.6, p < 0.001. After log decompression, 14.2 ΔVI was equal to ~70% higher signal, in arbitray acoustic units (AU, for SFRP2 versus IgY. This provided ~18- fold higher acoustic signal enhancement than provided previously by 2.2 ΔVI. Basing our targeted contrast on NeutrAvidin™-functionalized microbubbles, using IgY antibodies for our control contrast, and optimizing our imaging protocol

  17. Male infertility workup needs additional testing of expressed prostatic secretion and/or post-massage urine.

    Directory of Open Access Journals (Sweden)

    Margus Punab

    Full Text Available The male factor accounts for almost 50% of infertility cases. Inflammation may reduce semen quality via several pathways, including oxidative stress (OxS. As male infertility routinely is assessed using semen analysis only, the possible presence of non-leukocytospermic asymptomatic inflammatory prostatitis may be overlooked. We compared local and systemic OxS levels in male partners of infertile couples with different inflammation patterns in their genital tract and/or oligospermia. Subjects (n=143 were grouped according to inflammation in their semen, expressed prostatic secretion (EPS, and/or post-massage urine (post-M. Systemic (8-isoprostanes in urine and local (diene conjugates and total antioxidant capacity in seminal plasma OxS was measured The levels of OxS markers were significantly elevated in both severe inflammation groups--leukocytospermic men and subjects whose inflammation was limited only to EPS and/or post-M. Comparison between oligospermic and non-oligospermic men with genital tract inflammation, and oligozoospermic men with or without inflammation in the genital tract indicated that inflammation but not oligospermia status had significant impact on the measured OxS markers. Hence, a high leukocyte count in prostate-specific materials (EPS, post-M, even in absence of clear leukocytopsermia, is an important source of local and systemic OxS that may be associated with male infertility and affect general health. We suggest including the tests for detection of inflammation of the prostate into the workup of infertile men as was suggested in the WHO 1993 recommendation.

  18. Moderate expression of SEC16 increases protein secretion by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Bao, Jichen; Huang, Mingtao; Petranovic, Dina

    2017-01-01

    in yeast, by moderately overexpressing SEC16, which is involved in protein translocation from the endoplasmic reticulum to the Golgi apparatus. The moderate overexpression of SEC16 increased α-amylase secretion by generating more endoplasmic reticulum exit sites. The production of reactive oxygen species...... were observed. Finally, the moderate overexpression of SEC16 was shown to improve the secretion of two other recombinant proteins, Trichoderma reesei endoglucanase I and Rhizopus oryzae glucan-1,4-α-glucosidase, indicating that this mechanism is of general relevance....

  19. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Jiazhang Qiu

    Full Text Available BACKGROUND: The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L. Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (TSST-1 in both methicillin-sensitive S. aureus (MSSA and methicillin-resistant S. aureus (MRSA. CONCLUSIONS/SIGNIFICANCE: The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.

  20. IFN-ε is constitutively expressed by cells of the reproductive tract and is inefficiently secreted by fibroblasts and cell lines.

    Directory of Open Access Journals (Sweden)

    Pascale Hermant

    Full Text Available Type-I interferons (IFNs form a large family of cytokines that primarily act to control the early development of viral infections. Typical type-I IFN genes, such as those encoding IFN-α or IFN-β are upregulated by viral infection in many cell types. In contrast, the gene encoding IFN-ε was reported to be constitutively expressed by cells of the female reproductive tract and to contribute to the protection against vaginal infections with herpes simplex virus 2 and Chlamydia muridarum. Our data confirm the lack of induction of IFN-ε expression after viral infection and the constitutive expression of IFN-ε by cells of the female but also of the male reproductive organs. Interestingly, when expressed from transfected expression plasmids in 293T, HeLa or Neuro2A cells, the mouse and human IFN-ε precursors were inefficiently processed and secretion of IFN-ε was minimal. Analysis of chimeric constructs produced between IFN-ε and limitin (IFN-ζ showed that both the signal peptide and the mature moiety of IFN-ε contribute to poor processing of the precursor. Immunofluorescent detection of FLAG-tagged IFN-ε in transfected cells suggested that IFN-ε and chimeric proteins were defective for progression through the secretory pathway. IFN-ε did not, however, act intracellularly and impart an antiviral state to producing cells. Given the constitutive expression of IFN-ε in specialized cells and the poor processing of IFN-ε precursor in fibroblasts and cell lines, we hypothesize that IFN-ε secretion may require a co-factor specifically expressed in cells of the reproductive organs, that might secure the system against aberrant release of this IFN.

  1. Osteopontin and MMP9: Associations with VEGF Expression/Secretion and Angiogenesis in PC3 Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Aditi; Zhou, Cindy Q.; Chellaiah, Meenakshi A., E-mail: mchellaiah@umaryland.edu [Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland, Baltimore, MD 21201 (United States)

    2013-05-27

    Osteopontin and MMP9 are implicated in angiogenesis and cancer progression. The objective of this study is to gain insight into the molecular mechanisms underlying angiogenesis, and to elucidate the role of osteopontin in this process. We report here that osteopontin/αvβ3 signaling pathway which involves ERK1/2 phosphorylation regulates the expression of VEGF. An inhibitor to MEK or curcumin significantly suppressed the phosphorylation of ERK1/2 and expression of VEGF. MMP9 knockdown reduces the secretion but not the expression of VEGF. Moreover, MMP9 knockdown increases the release of angiostatin, a key protein that suppresses angiogenesis. Conditioned media from PC3 cells treated with curcumin or MEK inhibitor inhibited tube formation in vitro in human microvascular endothelial cells. Similar inhibitory effect on tube formation was found with conditioned media collected from PC3 cells expressing mutant-osteopontin at integrin-binding site and knockdown of osteopontin or MMP9. We conclude that MMP9 activation is associated with angiogenesis via regulation of secretion of VEGF and angiostatin in PC3 cells. Curcumin is thus a potential drug for cancer treatment because it demonstrated anti-angiogenic and anti-invasive properties.

  2. Induction of TLR-2 and TLR-5 expression by Helicobacter pylori switches cagPAI-dependent signalling leading to the secretion of IL-8 and TNF-α.

    Directory of Open Access Journals (Sweden)

    Suneesh Kumar Pachathundikandi

    2011-05-01

    Full Text Available Helicobacter pylori is the causative agent for developing gastritis, gastric ulcer, and even gastric cancer. Virulent strains carry the cag pathogenicity island (cagPAI encoding a type-IV secretion system (T4SS for injecting the CagA protein. However, mechanisms of sensing this pathogen through Toll-like receptors (TLRs and downstream signalling pathways in the development of different pathologies are widely unclear. Here, we explored the involvement of TLR-2 and TLR-5 in THP-1 cells and HEK293 cell lines (stably transfected with TLR-2 or TLR-5 during infection with wild-type H. pylori and isogenic cagPAI mutants. H. pylori triggered enhanced TLR-2 and TLR-5 expression in THP-1, HEK293-TLR2 and HEK293-TLR5 cells, but not in the HEK293 control. In addition, IL-8 and TNF-α cytokine secretion in THP-1 cells was induced in a cagPAI-dependent manner. Furthermore, we show that HEK293 cells are not competent for the uptake of T4SS-delivered CagA, and are therefore ideally suited for studying TLR signalling in the absence of T4SS functions. HEK293 control cells, which do not induce TLR-2 and TLR-5 expression during infection, only secreted cytokines in small amounts, in agreement with T4SS functions being absent. In contrast, HEK293-TLR2 and HEK293-TLR5 cells were highly competent for inducing the secretion of IL-8 and TNF-α cytokines in a cagPAI-independent manner, suggesting that the expression of TLR-2 or TLR-5 has profoundly changed the capability to trigger pro-inflammatory signalling upon infection. Using phospho-specific antibodies and luciferase reporter assays, we further demonstrate that H. pylori induces IRAK-1 and IκB phosphorylation in a TLR-dependent manner, and this was required for activation of transcription factor NF-κB. Finally, NF-κB activation in HEK293-TLR2 and HEK293-TLR5 cells was confirmed by expressing p65-GFP which was translocated from the cytoplasm into the nucleus. These data indicate that H. pylori-induced expression

  3. Proteomes of the barley aleurone layer: A model system for plant signalling and protein secretion

    DEFF Research Database (Denmark)

    Finnie, Christine; Andersen, Birgit; Shahpiri, Azar

    2011-01-01

    molecules in an isolated system. These properties have led to its use as a model system for the study of plant signalling and germination. More recently, proteome analysis of the aleurone layer has provided new insight into this unique tissue including identification of plasma membrane proteins and targeted...... analysis of germination-related changes and the thioredoxin system. Here, analysis of intracellular and secreted proteomes reveals features of the aleurone layer system that makes it promising for investigations of plant protein secretion mechanisms....... to gibberellic acid produced by the embryo, the aleurone layer synthesises hydrolases that are secreted to the endosperm for the degradation of storage products. The barley aleurone layer can be separated from the other seed tissues and maintained in culture, allowing the study of the effect of added signalling...

  4. Type IV secretion system of Brucella spp. and its effectors.

    Science.gov (United States)

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  5. Impact of Secreted Protein Acidic and Rich in Cysteine (SPARC) Expression on Prognosis After Surgical Resection for Biliary Carcinoma.

    Science.gov (United States)

    Toyota, Kazuhiro; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Nakagawa, Naoya; Takahashi, Shinya; Sueda, Taijiro

    2017-06-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that influences chemotherapy effectiveness and prognosis. The aim of this study was to investigate whether SPARC expression correlates with the postoperative survival of patients treated with surgical resection for biliary carcinoma. SPARC expression in resected biliary carcinoma specimens was investigated immunohistochemically in 175 patients. The relationship between SPARC expression and prognosis after surgery was evaluated using univariate and multivariate analyses. High SPARC expression in peritumoral stroma was found in 61 (35%) patients. In all patients, stromal SPARC expression was significantly associated with overall survival (OS) (P = 0.006). Multivariate analysis revealed that high stromal SPARC expression was an independent risk factor for poor OS (HR 1.81, P = 0.006). Moreover, high stromal SPARC expression was independently associated with poor prognosis in a subset of 118 patients treated with gemcitabine-based adjuvant chemotherapy (HR 2.04, P = 0.010) but not in the 57 patients who did not receive adjuvant chemotherapy (P = 0.21). Stromal SPARC expression correlated with the prognosis of patients with resectable biliary carcinoma, and its significance was enhanced in patients treated with adjuvant gemcitabine-based chemotherapy.

  6. Expression in E. coli systems

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Kristiansen, Karsten; Nøhr, Jane

    2003-01-01

    intracellularly in soluble form. In E. coli, proteins containing disulfide bonds are best produced by secretion because the disulfide forming foldases reside in the periplasm. Likewise, a correct N-terminus is more likely to be obtained upon secretion. Moreover, potentially toxic proteins are more likely...

  7. Type IX secretion system PorM and gliding machinery GldM form arches spanning the periplasmic space

    OpenAIRE

    Leone, Philippe; Roche, Jennifer; Vincent, Maxence S.; Tran, Quang Hieu; Desmyter, Aline; Cascales, Eric; Kellenberger, Christine; Cambillau, Christian; Roussel, Alain

    2018-01-01

    Type IX secretion system (T9SS), exclusively present in the Bacteroidetes phylum, has been studied mainly in Flavobacterium johnsoniae and Porphyromonas gingivalis. Among the 18 genes, essential for T9SS function, a group of four, porK-N (P. gingivalis) or gldK-N (F. johnsoniae) belongs to a co-transcribed operon that expresses the T9SS core membrane complex. The central component of this complex, PorM (or GldM), is anchored in the inner membrane by a trans-membrane helix and interacts throug...

  8. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    Science.gov (United States)

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  9. EseE of Edwardsiella tarda Augments Secretion of Translocon Protein EseC and Expression of the escC-eseE Operon.

    Science.gov (United States)

    Yi, Jia; Xiao, Shui Bing; Zeng, Zhi Xiong; Lu, Jin Fang; Liu, Lu Yi; Laghari, Zubair Ahmed; Nie, Pin; Yu, Hong Bing; Xie, Hai Xia

    2016-08-01

    Edwardsiella tarda is an important Gram-negative pathogen that employs a type III secretion system (T3SS) to deliver effectors into host cells to facilitate bacterial survival and replication. These effectors are translocated into host cells through a translocon complex composed of three secreted proteins, namely, EseB, EseC, and EseD. The secretion of EseB and EseD requires a chaperone protein called EscC, whereas the secretion of EseC requires the chaperone EscA. In this study, we identified a novel protein (EseE) that also regulates the secretion of EseC. An eseE deletion mutant secreted much less EseC into supernatants, accompanied by increased EseC levels within bacterial cells. We also demonstrated that EseE interacted directly with EseC in a pulldown assay. Interestingly, EseC, EseE, and EscA were able to form a ternary complex, as revealed by pulldown and gel filtration assays. Of particular importance, the deletion of eseE resulted in decreased levels of EseB and EseD proteins in both the bacterial pellet and supernatant fraction. Furthermore, real-time PCR assays showed that EseE positively regulated the transcription of the translocon operon escC-eseE, comprising escC, eseB, escA, eseC, eseD, and eseE These effects of EseE on the translocon components/operon appeared to have a functional consequence, since the ΔeseE strain was outcompeted by wild-type E. tarda in a mixed infection in blue gourami fish. Collectively, our results demonstrate that EseE not only functions as a chaperone for EseC but also acts as a positive regulator controlling the expression of the translocon operon escC-eseE, thus contributing to the pathogenesis of E. tarda in fish. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Li, M.L.; Aggeler, J.; Farson, D.A.; Hatier, C.; Hassell, J.; Bissell, M.J.

    1987-01-01

    When primary mouse mammary epithelial cells are cultured on plastic, they rapidly lose their ability to synthesize and secrete most milk proteins even in the presence of lactogenic hormones, whereas cells cultured on release type I collagen gels show greatly enhanced mRNA levels and secretion rates of β-casein and of some other milk proteins. The authors show here that culture on a reconstituted basement membrane from Engelbreth-Holm-Swarm tumor (EHS) allows > 90% of cells to produce high levels of β-casein. By comparison, 30-40% of cells on released type 1 gels and only 2-10% of cells on plastic express β-casein after 6 days in culture. Because only 40% of cells from late pregnant gland produced β-casein before culture, the EHS matrix can both induce and maintain an increased level of casein gene expression. Individual basal lamina components were also evaluated. Type IV collagen and fibronectin had little effect on morphology and β-casein mRNA levels. In contrast, both laminin and heparan sulfate proteoglycan increased β-casein mRNA levels. Profound morphological differences were evident between cells cultured on plastic and on EHS matrix, the latter cells forming ducts, ductules, and lumina and resembling secretory alveoli. These results emphasize the vital role of the extracellular matrix in receiving and integrating structural and functional signals that can direct specific gene expression in differentiated tissues

  11. 9-cis-retinoic acid increases apolipoprotein AI secretion and mRNA expression in HepG2 cells.

    Science.gov (United States)

    Haghpassand, M; Moberly, J B

    1995-10-01

    HepG2 cells were studied as a model for regulation of hepatic apolipoprotein AI (apo AI) secretion and gene expression by 9-cis-retinoic acid. HepG2 cells cultured on plastic dishes were exposed to 9-cis-retinoic acid (9-cis-RA) for 48 h with a complete media change at 24 h. Apo AI mass in cultured media was determined by ELISA, by quantitative immunoblotting and by steady-state 35S-methionine labeling. Messenger RNA levels were determined by RNase protection using probes for apo AI and the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (G3PDH). 9-cis-RA increased secretion of apo AI by 52% at doses of 10 and 1 microM (6.3 +/- 0.6 vs. 4.2 +/- 0.3; P G3PDH mRNA was slightly decreased (14%, P < 0.05). Thus, 9-cis-RA stimulates apo AI expression in HepG2 cells, suggesting a role for retinoids in activating endogenous apo AI gene expression.

  12. Isthmin 1 is a secreted protein expressed in skin, mucosal tissues, and NK, NKT, and th17 cells.

    Science.gov (United States)

    Valle-Rios, Ricardo; Maravillas-Montero, José L; Burkhardt, Amanda M; Martinez, Cynthia; Buhren, Bettina Alexandra; Homey, Bernhard; Gerber, Peter Arne; Robinson, Octavio; Hevezi, Peter; Zlotnik, Albert

    2014-10-01

    Using a comprehensive microarray database of human gene expression, we identified that in mammals, a secreted protein known as isthmin 1 (ISM1) is expressed in skin, mucosal tissues, and selected lymphocyte populations. ISM1 was originally identified in Xenopus brain during development, and it encodes a predicted ∼50-kDa protein containing a signal peptide, a thrombospondin domain, and an adhesion-associated domain. We confirmed the pattern of expression of ISM1 in both human and mouse tissues. ISM1 is expressed by DX5(+) lung lymphocytes that include NK and NKT-like cells, and is also expressed by some CD4(+) T cells upon activation but its expression increases significantly when CD4(+) T cells were polarized to the Th17 lineage in vitro. The presence of IFN-γ during CD4(+) T cell polarization inhibits ISM1 expression. Given that ISM1 has been reported to have anti-angiogenic properties, these observations suggest that ISM1 is a mediator of lymphocyte effector functions and may participate in both innate and acquired immune responses.

  13. Identification and characterization of a type III secretion-associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus.

    Science.gov (United States)

    Akeda, Yukihiro; Okayama, Kanna; Kimura, Tomomi; Dryselius, Rikard; Kodama, Toshio; Oishi, Kazunori; Iida, Tetsuya; Honda, Takeshi

    2009-07-01

    Vibrio parahaemolyticus causes human gastroenteritis. Genomic sequencing of this organism has revealed that it has two sets of type III secretion systems, T3SS1 and T3SS2, both of which are important for its pathogenicity. However, the mechanism of protein secretion via T3SSs is unknown. A characteristic of many effectors is that they require specific chaperones for efficient delivery via T3SSs; however, no chaperone has been experimentally identified in the T3SSs of V. parahaemolyticus. In this study, we identified candidate T3SS1-associated chaperones from genomic sequence data and examined their roles in effector secretion/translocation and binding to their cognate substrates. From these experiments, we concluded that there is a T3S-associated chaperone, VecA, for a cytotoxic T3SS1-dependent effector, VepA. Further analysis using pulldown and secretion assays characterized the chaperone-binding domain encompassing the first 30-100 amino acids and an amino terminal secretion signal encompassing the first 5-20 amino acids on VepA. These findings will provide a strategy to clarify how the T3SS1 of V. parahaemolyticus secretes its specific effectors.

  14. The dipeptide Pro-Asp promotes IGF-1 secretion and expression in hepatocytes by enhancing JAK2/STAT5 signaling pathway.

    Science.gov (United States)

    Wang, Songbo; Wang, Guoqing; Zhang, Mengyuan; Zhuang, Lu; Wan, Xiaojuan; Xu, Jingren; Wang, Lina; Zhu, Xiaotong; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-11-15

    It has been implicated that IGF-1 secretion can be regulated by dietary protein. However, whether the dipeptides, one of digested products of dietary protein, have influence on IGF-1 secretion remain largely unknown. Our study aimed to investigate the effects of the dipeptide Pro-Asp on IGF-1 secretion and expression in hepatocytes and to explore the possible underlying mechanisms. Our findings demonstrated that Pro-Asp promoted the secretion and gene expression of IGF-1 in HepG2 cells and primary porcine hepatocytes. Meanwhile, Pro-Asp activated the ERK and Akt signaling pathways, downstream of IGF-1. In addition, Pro-Asp enhanced GH-mediated JAK2/STAT5 signaling pathway, while inhibition of JAK2/STAT5 blocked the promotive effect of Pro-Asp on IGF-1 secretion and expression. Moreover, acute injection of Pro-Asp stimulated IGF-1 expression and activated JAK2/STAT5 signaling pathway in mice liver. Together, these results suggested that the dipeptide Pro-Asp promoted IGF-1 secretion and expression in hepatocytes by enhancing GH-mediated JAK2/STAT5 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  15. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  16. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Liu, Lifang; Feizi, Amir; Osterlund, Tobias

    2014-01-01

    related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three a-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER......Background: The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due...... to the poorly annotated proteome. Results: Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely...

  17. Molecular model of a type III secretion system needle: Implications for host-cell sensing.

    Science.gov (United States)

    Deane, Janet E; Roversi, Pietro; Cordes, Frank S; Johnson, Steven; Kenjale, Roma; Daniell, Sarah; Booy, Frank; Picking, William D; Picking, Wendy L; Blocker, Ariel J; Lea, Susan M

    2006-08-15

    Type III secretion systems are essential virulence determinants for many Gram-negative bacterial pathogens. The type III secretion system consists of cytoplasmic, transmembrane, and extracellular domains. The extracellular domain is a hollow needle protruding above the bacterial surface and is held within a basal body that traverses both bacterial membranes. Effector proteins are translocated, via this external needle, directly into host cells, where they subvert normal cell functions to aid infection. Physical contact with host cells initiates secretion and leads to formation of a pore, thought to be contiguous with the needle channel, in the host-cell membrane. Here, we report the crystal structure of the Shigella flexneri needle subunit MxiH and a complete model for the needle assembly built into our three-dimensional EM reconstruction. The model, combined with mutagenesis data, reveals that signaling of host-cell contact is relayed through the needle via intersubunit contacts and suggests a mode of binding for a tip complex.

  18. Identification of a secreted casein kinase 1 in Leishmania donovani: effect of protein over expression on parasite growth and virulence.

    Directory of Open Access Journals (Sweden)

    Mary Dan-Goor

    Full Text Available Casein kinase 1 (CK1 plays an important role in eukaryotic signaling pathways, and their substrates include key regulatory proteins involved in cell differentiation, proliferation and chromosome segregation. The Leishmania genome encodes six potential CK1 isoforms, of which five have orthologs in other trypanosomatidae. Leishmania donovani CK1 isoform 4 (Ldck1.4, orthologous to LmjF27.1780 is unique to Leishmania and contains a putative secretion signal peptide. The full-length gene and three shorter constructs were cloned and expressed in E. coli as His-tag proteins. Only the full-length 62.3 kDa protein showed protein kinase activity indicating that the N-terminal and C-terminal domains are essential for protein activity. LdCK1.4-FLAG was stably over expressed in L. donovani, and shown by immunofluorescence to be localized primarily in the cytosol. Western blotting using anti-FLAG and anti-CK1.4 antibodies showed that this CK1 isoform is expressed and secreted by promastigotes. Over expression of LdCK1.4 had a significant effect on promastigote growth in culture with these parasites growing to higher cell densities than the control parasites (wild-type or Ld:luciferase, P<0.001. Analysis by flow cytometry showed a higher percentage, ∼4-5-fold, of virulent metacyclic promastigotes on day 3 among the LdCK1.4 parasites. Finally, parasites over expressing LdCK1.4 gave significantly higher infections of mouse peritoneal macrophages compared to wild-type parasites, 28.6% versus 6.3%, respectively (p = 0.0005. These results suggest that LdCK1.4 plays an important role in parasite survival and virulence. Further studies are needed to validate CK1.4 as a therapeutic target in Leishmania.

  19. Identification of small secreted peptides (SSPs) in maize and expression analysis of partial SSP genes in reproductive tissues.

    Science.gov (United States)

    Li, Ye Long; Dai, Xin Ren; Yue, Xun; Gao, Xin-Qi; Zhang, Xian Sheng

    2014-10-01

    Maize 1,491 small secreted peptides were identified, which were classified according to the character of peptide sequences. Partial SSP gene expressions in reproductive tissues were determined by qRT-PCR. Small secreted peptides (SSPs) are important cell-cell communication messengers in plants. Most information on plant SSPs come from Arabidopsis thaliana and Oryza sativa, while little is known about the SSPs of other grass species such as maize (Zea mays). In this study, we identified 1,491 SSP genes from maize genomic sequences. These putative SSP genes were distributed throughout the ten maize chromosomes. Among them, 611 SSPs were classified into 198 superfamilies according to their conserved domains, and 725 SSPs with four or more cysteines at their C-termini shared similar cysteine arrangements with their counterparts in other plant species. Moreover, the SSPs requiring post-translational modification, as well as defensin-like (DEFL) proteins, were identified. Further, the expression levels of 110 SSP genes were analyzed in reproductive tissues, including male flower, pollen, silk, and ovary. Most of the genes encoding basal-layer antifungal peptide-like, small coat proteins-like, thioredoxin-like proteins, γ-thionins-like, and DEFL proteins showed high expression levels in the ovary and male flower compared with their levels in silk and mature pollen. The rapid alkalinization factor-like genes were highly expressed only in the mature ovary and mature pollen, and pollen Ole e 1-like genes showed low expression in silk. The results of this study provide basic information for further analysis of SSP functions in the reproductive process of maize.

  20. Interferon-γ inhibits ghrelin expression and secretion via a somatostatin-mediated mechanism

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Døssing, Kristina B V; Aabakke, Anna JM

    2011-01-01

    To investigate if and how the proinflammatory cytokine interferon ¿ (IFN¿) affects ghrelin expression in mice.......To investigate if and how the proinflammatory cytokine interferon ¿ (IFN¿) affects ghrelin expression in mice....

  1. Interferon-γ inhibits ghrelin expression and secretion via a somatostatin-mediated mechanism

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A B; Døssing, Kristina B V; Aabakke, Anna JM

    2011-01-01

    To investigate if and how the proinflammatory cytokine interferon γ (IFNγ) affects ghrelin expression in mice.......To investigate if and how the proinflammatory cytokine interferon γ (IFNγ) affects ghrelin expression in mice....

  2. MPL W515L expression induces TGFβ secretion and leads to an increase in chemokinesis via phosphorylation of THOC5.

    Science.gov (United States)

    Whetton, Anthony D; Azmi, Norhaida Che; Pearson, Stella; Jaworska, Ewa; Zhang, Liqun; Blance, Rognvald; Kendall, Alexandra C; Nicolaou, Anna; Taylor, Samuel; Williamson, Andrew J K; Pierce, Andrew

    2016-03-08

    The thrombopoietin receptor (MPL) has been shown to be mutated (MPL W515L) in myelofibrosis and thrombocytosis yet new approaches to treat this disorder are still required. We have previously shown that transcriptome and proteomic effects do not correlate well in oncogene-mediated leukemogenesis. We therefore investigated the effects of MPL W515L using proteomics. The consequences of MPL W515L expression on over 3300 nuclear and 3500 cytoplasmic proteins were assessed using relative quantification mass spectrometry. We demonstrate that MPL W515L expression markedly modulates the CXCL12/CXCR4/CD45 pathway associated with stem and progenitor cell chemotactic movement. We also demonstrated that MPL W515L expressing cells displayed increased chemokinesis which required the MPL W515L-mediated dysregulation of MYC expression via phosphorylation of the RNA transport protein THOC5 on tyrosine 225. In addition MPL W515L expression induced TGFβ secretion which is linked to sphingosine 1-phosphate production and the increased chemokinesis. These studies identify several pathways which offer potential targets for therapeutic intervention in the treatment of MPL W515L-driven malignancy. We validate our approach by showing that CD34+ cells from MPL W515L positive patients display increased chemokinesis and that treatment with a combination of MYC and sphingosine kinase inhibitors leads to the preferential killing of MPL W515L expressing cells.

  3. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri.

    Science.gov (United States)

    Burgess, Jamie L; Jones, Heather B; Kumar, Prashant; Toth, Ronald T; Middaugh, C Russell; Antony, Edwin; Dickenson, Nicholas E

    2016-05-01

    Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents. © 2016 The Protein Society.

  4. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    Full Text Available Vibrio parahaemolyticus is a marine bacterium that thrives in warm climates. It is a leading cause of gastroenteritis resulting from consumption of contaminated uncooked shellfish. This bacterium harbors two putative type VI secretion systems (T6SS. T6SSs are widespread protein secretion systems found in many Gram-negative bacteria, and are often tightly regulated. For many T6SSs studied to date, the conditions and cues, as well as the regulatory mechanisms that control T6SS activity are unknown. In this study, we characterized the environmental conditions and cues that activate both V. parahaemolyticus T6SSs, and identified regulatory mechanisms that control T6SS gene expression and activity. We monitored the expression and secretion of the signature T6SS secreted proteins Hcp1 and Hcp2, and found that both T6SSs are differentially regulated by quorum sensing and surface sensing. We also showed that T6SS1 and T6SS2 require different temperature and salinity conditions to be active. Interestingly, T6SS1, which is found predominantly in clinical isolates, was most active under warm marine-like conditions. Moreover, we found that T6SS1 has anti-bacterial activity under these conditions. In addition, we identified two transcription regulators in the T6SS1 gene cluster that regulate Hcp1 expression, but are not required for immunity against self-intoxication. Further examination of environmental isolates revealed a correlation between the presence of T6SS1 and virulence of V. parahaemolyticus against other bacteria, and we also showed that different V. parahaemolyticus isolates can outcompete each other. We propose that T6SS1 and T6SS2 play different roles in the V. parahaemolyticus lifestyles, and suggest a role for T6SS1 in enhancing environmental fitness of V. parahaemolyticus in marine environments when competing for a niche in the presence of other bacterial populations.

  5. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  6. Understanding the Inguinal Sinus in Sheep (Ovis aries—Morphology, Secretion, and Expression of Progesterone, Estrogens, and Prolactin Receptors

    Directory of Open Access Journals (Sweden)

    Graça Alexandre-Pires

    2017-07-01

    Full Text Available Post-parturient behavior of mammalian females is essential for early parent–offspring contact. After delivery, lambs need to ingest colostrum for obtaining the related immunological protection, and early interactions between the mother and the lamb are crucial. Despite visual and auditory cues, olfactory cues are decisive in lamb orientation to the mammary gland. In sheep, the inguinal sinus is located bilaterally near the mammary gland as a skin pouch (IGS that presents a gland that secretes a strong-smelling wax. Sheep IGS gland functions have many aspects under evaluation. The objective of the present study was to evaluate sheep IGS gland functional aspects and mRNA transcription and the protein expression of several hormone receptors, such as progesterone receptor (PGR, estrogen receptor 1 (ESR1, and 2 (ESR2 and prolactin receptor (PRLR present. In addition, another aim was to achieve information about IGS ultrastructure and chemical compounds produced in this gland. All hormone receptors evaluated show expression in IGS during the estrous cycle (follicular/luteal phases, pregnancy, and the post-partum period. IGS secretion is rich in triterpenoids that totally differ from the surrounding skin. They might be essential substances for the development of an olfactory preference of newborns to their mothers.

  7. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function

    Science.gov (United States)

    Tomalka, Amanda G.; Stopford, Charles M.; Lee, Pei-Chung; Rietsch, Arne

    2012-01-01

    Summary Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the P. aeruginosa translocator protein PopD as a model to identify its export signals. The amino-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone-binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells. PMID:23121689

  8. Structural and Functional Insights into the Pilotin-Secretin Complex of the Type II Secretion System

    OpenAIRE

    Gu, Shuang; Rehman, Saima; Wang, Xiaohui; Shevchik, Vladimir E.; Pickersgill, Richard W.

    2012-01-01

    Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this pr...

  9. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  10. Two Classes of Secreted Synaptic Organizers in the Central Nervous System.

    Science.gov (United States)

    Yuzaki, Michisuke

    2018-02-10

    Research in the last two decades has identified many synaptic organizers in the central nervous system that directly regulate the assembly of pre- and/or postsynaptic molecules, such as synaptic vesicles, active zone proteins, and neurotransmitter receptors. They are classified into secreted factors and cell adhesion molecules, such as neurexins and neuroligins. Certain secreted factors are termed extracellular scaffolding proteins (ESPs) because they are components of the synaptic extracellular matrix and serve as a scaffold at the synaptic cleft. These include Lgi1, Cbln1, neuronal pentraxins, Hevin, thrombospondins, and glypicans. Diffusible secreted factors, such as Wnts, fibroblast growth factors, and semaphorins, tend to act from a distance. In contrast, ESPs remain at the synaptic cleft and often help synaptic adhesion and/or accumulation of postsynaptic receptors. Many fundamental questions remain about when, how, and why various synaptic organizers establish and modify the vast numbers of connections during development and throughout life.

  11. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity

    NARCIS (Netherlands)

    Bleumink-Pluym, Nancy M C; van Alphen, Lieke B; Bouwman, Lieneke I; Wösten, MM; van Putten, Jos P M

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to

  12. Interactions between the Central Nervous System and Pancreatic Islet Secretions: A Historical Perspective

    Science.gov (United States)

    Begg, Denovan P.; Woods, Stephen C.

    2013-01-01

    The endocrine pancreas is richly innervated with sympathetic and parasympathetic projections from the brain. In the mid-20th century, it was established that alpha-adrenergic activation inhibits, whereas cholinergic stimulation promotes, insulin secretion; this demonstrated the importance of the sympathetic and parasympathetic systems in…

  13. Secret-key and identification rates for biometric identification systems with protected templates

    NARCIS (Netherlands)

    Ignatenko, T.; Willems, F.M.J.

    2010-01-01

    In this paper we consider secret generation in biometric identification systems with protected templates. This problem is closely related to the study of the bio metric identification capacity [Willems et al., 2003] and [O’Sullivan and Sclmmid, 2002] and the common randomness generation scheme

  14. Best kept secrets ... First Coast Systems, Inc. (FCS).

    Science.gov (United States)

    Andrew, W F

    1991-04-01

    The FCS/APaCS system is a viable option for small-to medium-size hospitals (up to 400 beds). The table-driven system takes full advantage of IBM AS/400 computer architecture. A comprehensive application set, provided in an integrated database environment, is adaptable to multi-facility environments. Price/performance appears to be competitive. Commitment to IBM AS/400 environment assures cost-effective hardware platforms backed by IBM support and resources. As an IBM Health Industry Business Partner, FCS (and its clients) benefits from IBM's well-known commitment to quality and service. Corporate emphasis on user involvement and satisfaction, along with a commitment to quality and service for the APaCS systems, assures clients of "leading edge" capabilities in this evolutionary healthcare delivery environment. FCS/APaCS will be a strong contender in selected marketing environments.

  15. Best kept secrets ... Source Data Systems, Inc. (SDS).

    Science.gov (United States)

    Andrew, W F

    1991-03-01

    The SDS/MEDNET system is a cost-effective option for small- to medium-size hospitals (up to 400 beds). The parameter-driven system lets users control operations with only occasional SDS assistance. A full application set, available for modular selection to reduce upfront costs while facilitating steady growth and protecting client investment, is adaptable to multi-facility environments. The industry-standard, Intel-based multi-user processors, network communications and protocols assure high efficiency, low-cost solutions independent of any one hardware vendor. Sustained growth in both client base and product offerings point to a high level of responsiveness and healthcare industry commitment. Corporate emphasis on user involvement and open systems integration assures clients of leading-edge capabilities. SDS/MEDNET will be a strong contender in selected marketing environments.

  16. Internalization of interleukin 1 (IL 1) correlates with IL 1-induced IL 2 receptor expression and IL 2 secretion of EL4 thymoma cells

    OpenAIRE

    Von Hoegen, I.; Falk, Werner; Kojouharoff, G.; Krammer, P. H.

    1989-01-01

    The cytokine interleukin 1 (IL 1) plays an important role in the induction of IL 2 secretion and high-affinity IL 2 receptor (IL 2R) expression by T cells. The events that follow binding of IL 1 to IL 1R, however, are still unknown. In this study we describe two variants of the murine thymoma EL4 (5D3 and D6/76) that express comparable numbers of cell surface IL 1 receptors and bind IL 1 with the same affinity, but show distinct IL 1-dependent IL 2 secretion and IL 2R expression. In the prese...

  17. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae.

    Science.gov (United States)

    Liu, Lifang; Feizi, Amir; Österlund, Tobias; Hjort, Carsten; Nielsen, Jens

    2014-06-24

    The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus.

  18. SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?

    Science.gov (United States)

    Rührmair, Ulrich

    This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.

  19. Comparison of the in vitro effects of TCDD, PCB 126 and PCB 153 on thyroid-restricted gene expression and thyroid hormone secretion by the chicken thyroid gland.

    Science.gov (United States)

    Katarzyńska, Dorota; Hrabia, Anna; Kowalik, Kinga; Sechman, Andrzej

    2015-03-01

    The aim of this study was to compare the in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB153; non-coplanar PCB) on mRNA expression of thyroid-restricted genes, i.e. sodium iodide symporter (NIS), thyroid peroxidase (TPO) and thyroglobulin (TG), and thyroid hormone secretion from the thyroid gland of the laying chicken. Relative expression levels of NIS, TG and TPO genes and thyroxine (T4) and triiodothyronine (T3) secretion from the thyroidal explants were quantified by the real-time qPCR and RIA methods, respectively. In comparison with the control group, TCDD and PCB 126 significantly increased mRNA expression of TPO and TG genes. TCDD did not affect NIS mRNA levels, but PCB 126 decreased its expression. No effect of PCB 153 on the expression of these genes was observed. TCDD and PCB 126 significantly decreased T4 and T3 secretion. There was no significant effect of PCB 153 on these hormone secretions. In conclusion, the results obtained show that in comparison with non-coplanar PCB 153, TCDD and coplanar PCB 126 can directly affect thyroid hormone synthesis and secretion, and in consequence, they may disrupt the endocrine function of the thyroid gland of the laying chicken. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Conservation of the Type IV secretion system throughout Wolbachia evolution

    DEFF Research Database (Denmark)

    Pichon, Samuel; Bouchon, Didier; Cordaux, Richard

    2009-01-01

    , encoding a T4SS were previously identified and characterized at two separate genomic loci. Using the largest data set of Wolbachia strains studied so far, we show that vir gene sequence and organization are strictly conserved among 37 Wolbachia strains inducing various phenotypes such as cytoplasmic...... incompatibility, feminization, or oogenesis in their arthropod hosts. In sharp contrast, extensive variation of genomic sequences flanking the virB8-D4 operon suggested its distinct location among Wolbachia genomes. Long term conservation of the T4SS may imply maintenance of a functional effector translocation...... system in Wolbachia, thereby suggesting the importance for the T4SS in Wolbachia biology and survival inside host cells....

  1. Sexually Dimorphic Expression of Secreted Frizzled-Related (SFRP) Genes in the Developing Mouse Müllerian Duct

    Science.gov (United States)

    COX, SAM; SMITH, LEE; BOGANI, DEBORA; CHEESEMAN, MICHAEL; SIGGERS, PAM; GREENFIELD, ANDY

    2007-01-01

    In developing male embryos, the female reproductive tract primordia (Müllerian ducts) regress due to the production of testicular anti-Müllerian hormone (AMH). Because of the association between secreted frizzled-related proteins (SFRPs) and apoptosis, their reported developmental expression patterns and the role of WNT signaling in female reproductive tract development, we examined expression of Sfrp2 and Sfrp5 during development of the Müllerian duct in male (XY) and female (XX) mouse embryos. We show that expression of both Sfrp2 and Sfrp5 is dynamic and sexually dimorphic. In addition, the male-specific expression observed for both genes prior to the onset of regression is absent in mutant male embryos that fail to undergo Müllerian duct regression. We identified ENU-induced point mutations in Sfrp5 and Sfrp2 that are predicted to severely disrupt the function of these genes. Male embryos and adults homozygous for these mutations, both individually and in combination, are viable and apparently fertile with no overt abnormalities of reproductive tract development. PMID:16700072

  2. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis.

    Science.gov (United States)

    Si, Meiru; Zhao, Chao; Burkinshaw, Brianne; Zhang, Bing; Wei, Dawei; Wang, Yao; Dong, Tao G; Shen, Xihui

    2017-03-14

    Type VI secretion system (T6SS) is a versatile protein export machinery widely distributed in Gram-negative bacteria. Known to translocate protein substrates to eukaryotic and prokaryotic target cells to cause cellular damage, the T6SS has been primarily recognized as a contact-dependent bacterial weapon for microbe-host and microbial interspecies competition. Here we report contact-independent functions of the T6SS for metal acquisition, bacteria competition, and resistance to oxidative stress. We demonstrate that the T6SS-4 in Burkholderia thailandensis is critical for survival under oxidative stress and is regulated by OxyR, a conserved oxidative stress regulator. The T6SS-4 is important for intracellular accumulation of manganese (Mn 2+ ) under oxidative stress. Next, we identified a T6SS-4-dependent Mn 2+ -binding effector TseM, and its interacting partner MnoT, a Mn 2+ -specific TonB-dependent outer membrane transporter. Similar to the T6SS-4 genes, expression of mnoT is regulated by OxyR and is induced under oxidative stress and low Mn 2+ conditions. Both TseM and MnoT are required for efficient uptake of Mn 2+ across the outer membrane under Mn 2+ -limited and -oxidative stress conditions. The TseM-MnoT-mediated active Mn 2+ transport system is also involved in contact-independent bacteria-bacteria competition and bacterial virulence. This finding provides a perspective for understanding the mechanisms of metal ion uptake and the roles of T6SS in bacteria-bacteria competition.

  3. Carbon monoxide may enhance bile secretion by increasing glutathione excretion and Mrp2 expression in rats

    Directory of Open Access Journals (Sweden)

    Chiung-Yu Chen

    2013-05-01

    Conclusion: The present study demonstrated that CO enhanced biliary output in conjunction with NO by increasing the biliary excretion of glutathione. The increment in biliary glutathione was associated with an increased expression of hepatic Mrp2.

  4. Antibody-dependent cellular cytotoxicity and cytokine/chemokine secretion by KHYG-1 cells stably expressing FcγRIIIA.

    Science.gov (United States)

    Kobayashi, Eiji; Motoi, Sotaro; Sugiura, Masahito; Kajikawa, Masunori; Kojima, Shuji; Kohroki, Junya; Masuho, Yasuhiko

    2014-09-01

    Antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells is a major mechanism of tumor therapy with antibodies. NK cells not only manifest cytotoxicity but also secrete a variety of cytokines/chemokines that regulate immune responses. Using a retroviral vector, in this study we established a KHYG-1 cell line that stably expresses FcγRIIIA (CD16A). The KHYG-1/FcγRIIIA cells exerted potent antibody concentration-dependent ADCC, whereas parental KHYG-1 cells did not. In contrast, without antibody, the natural killer activity of KHYG-1/FcγRIIIA cells was less potent than that of parental KHYG-1 cells. During the course of ADCC, KHYG-1/FcγRIIIA cells secreted IFN-γ and MIP-1α dependent upon antibody concentration, but parental KHYG-1 cells did not. These results suggest that KHYG-1/FcγRIIIA cells would be useful in studies to elucidate the function of NK cells and the mechanism of ADCC. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria

    Science.gov (United States)

    2012-01-01

    Summary: Flagellar and translocation-associated type III secretion (T3S) systems are present in most Gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria. PMID:22688814

  6. A yeast-based model system for cloning secreted and membrane proteins

    Directory of Open Access Journals (Sweden)

    MARCELO J. SURPILI

    2002-12-01

    Full Text Available The targeting of proteins to cell organelles and membranes, or of proteins destined to secretion, is coordinated by signal sequences located at the 5´-end of their respective genes. A signal sequence trap system was envisaged in which a truncated version of the yeast acid phosphatase pho5 gene lacking the start codon and signal sequence could serve as a reporter gene. A fraction enriched in 5´-end fragments obtained by PCR from a potato guard-cell cDNA library was cloned in frame to the acid phosphatase gene and the acid phosphatase activity was assayed directly in yeast colonies grown on selective medium. Putative signal sequences targeting the acid phosphatase to the membrane or to the outside of the cell were used to screen the cDNA bank in order to recover the original full-size sequence which gave rise to the signal sequence. Two unknown sequences displaying marked tissue-specific expression were retrieved, one of them (YE139 with a higher expression level in green buds and stem cells, and the other one (YE290 with a higher expression level in androceum, gyneceum, and roots. The limitations of the system are further analyzed using other sequences as control.O direcionamento de proteínas a organelas e à membrana celular, ou de proteínas a serem secretadas, é coordenado por seqüências sinalizadoras localizadas na extremidade 5´ de seus respectivos genes que codificam peptídeos-sinal. Este trabalho analisa um sistema para seleção de seqüências sinalizadoras utilizando uma fosfatase ácida de levedura, enzima reconhecidamente secretada por estes organismos, desprovida de seu códon de iniciação e de sua seqüência sinalizadora, como gene repórter. Uma fração enriquecida em fragmentos provenientes da região 5´ de uma biblioteca de cDNA de células-guarda de batata foi inserida in frame ao gene truncado da fosfatase ácida em vetores apropriados. Após a transformação em leveduras, a atividade da fosfatase ácida foi

  7. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Directory of Open Access Journals (Sweden)

    Lia R. Valeeva

    2018-02-01

    Full Text Available Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate, which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases and 168phyA (BPP family under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate

  8. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate.

    Science.gov (United States)

    Valeeva, Lia R; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R; Shakirov, Eugene V

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo -inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2 . The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future

  9. Heterologous Expression of Secreted Bacterial BPP and HAP Phytases in Plants Stimulates Arabidopsis thaliana Growth on Phytate

    Science.gov (United States)

    Valeeva, Lia R.; Nyamsuren, Chuluuntsetseg; Sharipova, Margarita R.; Shakirov, Eugene V.

    2018-01-01

    Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family of phytases) and 168phyA (BPP family) under the control of root-specific inducible promoter Pht1;2. The effects of each phytase expression on growth, morphology and inorganic phosphorus accumulation in plants grown on phytate hydroponically or in perlite as the only source of phosphorus were investigated. The most enzymatic activity for both phytases was detected in cell wall-bound fractions of roots, indicating that these enzymes were efficiently secreted. Expression of both bacterial phytases in roots improved plant growth on phytate and resulted in larger rosette leaf area and diameter, higher phosphorus content and increased shoot dry weight, implying that these plants were indeed capable of utilizing phytate as the source of phosphorus for growth and development. When grown on phytate the HAP-type phytase outperformed its BPP-type counterpart for plant biomass production, though this effect was only observed in hydroponic conditions and not in perlite. Furthermore, we found no evidence of adverse side effects of microbial phytase expression in A. thaliana on plant physiology and seed germination. Our data highlight important functional differences between these members of bacterial phytase families and indicate that future crop

  10. Diversification of Type VI Secretion System Toxins Reveals Ancient Antagonism among Bee Gut Microbes

    Directory of Open Access Journals (Sweden)

    Margaret I. Steele

    2017-12-01

    Full Text Available Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota.

  11. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes.

    Directory of Open Access Journals (Sweden)

    Muriel Vayssier-Taussat

    2010-06-01

    Full Text Available Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage

  12. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae.

    Directory of Open Access Journals (Sweden)

    Astrid C Engel

    Full Text Available Chlamydia pneumoniae is an intracellular Gram-negative bacterium that possesses a type III secretion system (T3SS, which enables the pathogen to deliver, in a single step, effector proteins for modulation of host-cell functions into the human host cell cytosol to establish a unique intracellular niche for replication. The translocon proteins located at the top of the T3SS needle filament are essential for its function, as they form pores in the host-cell membrane. Interestingly, unlike other Gram-negative bacteria, C. pneumoniae has two putative translocon operons, named LcrH_1 and LcrH_2. However, little is known about chlamydial translocon proteins. In this study, we analyzed CPn0809, one of the putative hydrophobic translocators encoded by the LcrH_1 operon, and identified an 'SseC-like family' domain characteristic of T3S translocators. Using bright-field and confocal microscopy, we found that CPn0809 is associated with EBs during early and very late phases of a C. pneumoniae infection. Furthermore, CPn0809 forms oligomers, and interacts with the T3SS chaperone LcrH_1, via its N-terminal segment. Moreover, expression of full-length CPn0809 in the heterologous host Escherichia coli causes a grave cytotoxic effect that leads to cell death. Taken together, our data indicate that CPn0809 likely represents one of the translocon proteins of the C. pneumoniae T3SS, and possibly plays a role in the translocation of effector proteins in the early stages of infection.

  13. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells.

    Science.gov (United States)

    Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu

    2018-05-22

    In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.

  14. Cyclophilin A secreted from fibroblast-like synoviocytes is involved in the induction of CD147 expression in macrophages of mice with collagen-induced arthritis

    Directory of Open Access Journals (Sweden)

    Nishioku Tsuyoshi

    2012-11-01

    Full Text Available Abstract Background Cyclophilin A (CypA, a member of the immunophilin family, is a ubiquitously distributed intracellular protein. Recent studies have shown that CypA is secreted by cells in response to inflammatory stimuli. Elevated levels of extracellular CypA and its receptor, CD147 have been detected in the synovium of patients with RA. However, the precise process of interaction between CypA and CD147 in the development of RA remains unclear. This study aimed to investigate CypA secretion from fibroblast-like synoviocytes (FLS isolated from mice with collagen-induced arthritis (CIA and CypA-induced CD147 expression in mouse macrophages. Findings CIA was induced by immunization with type II collagen in mice. The expression and localization of CypA and CD147 was investigated by immunoblotting and immunostaining. Both CypA and CD147 were highly expressed in the joints of CIA mice. CD147 was expressed in the infiltrated macrophages in the synovium of CIA mice. In vitro, spontaneous CypA secretion from FLS was detected and this secretion was increased by stimulation with lipopolysaccharide. CypA markedly increased CD147 levels in macrophages. Conclusions These findings suggest that an interaction in the synovial joints between extracellular CypA and CD147 expressed by macrophages may be involved in the mechanisms underlying the development of arthritis.

  15. Delivery of an anti-TTR Nanobody to the brain through intranasal administration reveals TTR expression and secretion by Motor Neurons.

    Science.gov (United States)

    Gomes, João R; Cabrito, Inês; Soares, Hugo R; Costelha, Susete; Teixeira, Anabela; Wittelsberger, Angela; Stortelers, Catelijne; Vanlandschoot, Peter; Saraiva, Maria J

    2018-03-12

    Transthyretin (TTR) is a transport protein of retinol and thyroxine in serum and cerebrospinal fluid (CSF), which is mainly secreted in liver and choroid plexus, and in smaller amounts in other cells throughout the body. The exact role of TTR and its specific expression in Central Nervous System (CNS) remains understudied. We investigated TTR expression and metabolism in CNS, through the intranasal and intracerebroventricular delivery of a specific anti-TTR Nanobody to the brain, unveiling Nanobody pharmacokinetics to the CNS. In TTR deficient mice, we observed that anti-TTR Nanobody was successfully distributed throughout all brain areas, and also reaching the spinal cord. In wild type (WT) mice, a similar distribution pattern was observed. However, in areas known to be rich in TTR, reduced levels of Nanobody were found, suggesting potential target-mediated effects. Indeed, in WT mice, the anti-TTR Nanobody was specifically internalized in a receptor-mediated process, by neuronal-like cells, which were identified as motor neurons. Whereas in KO TTR mice Nanobody was internalized by all cells, for late lysosomal degradation. Moreover, we demonstrate that in-vivo motor neurons also actively synthesize TTR. Finally, in-vitro cultured primary motor neurons were also found to synthesize and secrete TTR into culture media. Thus, through a novel intranasal CNS distribution study with an anti-TTR Nanobody, we disclose a new cell type capable of synthesizing TTR, which might be important for the understanding of the physiological role of TTR, as well as in pathological conditions where TTR levels are altered in CSF, such as amyotrophic lateral sclerosis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Epigenetic modification of gene expression in honey bees by heterospecific gland secretions.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan Shi

    Full Text Available In the honey bee (Apis mellifera, queen and workers have different behavior and reproductive capacity despite possessing the same genome. The primary substance that leads to this differentiation is royal jelly (RJ, which contains a range of proteins, amino acids, vitamins and nucleic acids. MicroRNA (miRNA has been found to play an important role in regulating the expression of protein-coding genes and cell biology. In this study, we characterized the miRNAs in RJ from two honey bee sister species and determined their possible effect on transcriptome in one species.We sequenced the miRNAs in RJ either from A. mellifera (RJM or A. cerana (RJC. We then determined the global transcriptomes of adult A. mellifera developed from larvae fed either with RJM (mRJM or RJC (mRJC. Finally we analyzed the target genes of those miRNA that are species specific or differentially expressed in the two honey bee species. We show that there were differences in miRNA between RJM and RJC, and that transcriptomes of adult A. mellifera were affected by the two types of RJ. A high proportion (23.3% of the affected genes were target genes of differential miRNAs.We show for the first time that there are differences in miRNAs in RJ between A. mellifera and A. cerana. Further, the differences in transcriptomes of bees reared from these two RJs might be related to miRNA differences of the two species. This study provides the first evidence that heterospecific royal jelly can modify gene expression in honey bees through an epigenetic mechanism.

  17. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  18. Construction and expression of secreting type human TRAIL gene vector mediated by hypoxia/radiation double sensitive promoter

    International Nuclear Information System (INIS)

    Yang Yanming; Jia Xiaojing; Qu Yaqin; Li Yanbo

    2009-01-01

    Objective: To construct secreting type human TRAIL (shTRAIL) gene vector pcDNA3.1-HRE/Egr1-shTRAIL mediated by hypoxia/radiation double sensitive promoter, and observe the effect of hypoxia and radiation on shTRAIL. Methods: HRE upper and lower strands were gotten by chemical synthesis, double strands HRE was gotten by PCR; pMD19T-Egr1 was digested by Sac I and Hind III, then Egr1 was obtained, pshuttle-shTRAIL was digested by Kpn I and BamH I, then shTRAIL was obtained; HRE/Egr1 double sensitive promoter mediated shTRAIL expression vector pcDNA3.1-HRE/Egr1-shTRAIL was constructed by gene recombination technique, it was identified correctly by enzyme digestion, PCR and sequencing. A549 cells were divided into normal, hypoxia (0.1%), irradiation (6 Gy) and hypoxia + irradiation groups. Results: After enzyme digestion by BamH I and Sma I, the fragments which lengths were 1284 bp and 4 998 bp, 2 292 bp and 3 990 bp were obtained; the vector was amplified by PCR with Egr1 and shTRAIL primer, the products which lengthens were 469 bp and 820 bp were obtained; pcDNA3.1-HRE/Egr1-shTRAIL was sequenced, the result was same to designed, this demonstrated that the construction was right. The vectors were transfected into A549 cells of adenocarcinoma of lung, the expression levels of shTRAIL mRNA and protein were increased after treated with hypoxia and radiation, it had statistically significant differences compared with normal group (P<0.05), and when they were combinated, the effect was more obvious. Conclusion: Secreting type human TRAIL gene vector pcDNA3.1-HRE/Egr1-shTRAIL mediated by hypoxia/radiation double sensitive promoter is constructed successfully, and hypoxia and radiation could increase the expression of TRAIL, and they have synergetic effect. (authors)

  19. Effect of low dose radiation on expression of hematopoietic growth factors secreted by human mesenchymal stem cells from bone marrow

    International Nuclear Information System (INIS)

    Yang Yan; Wang Guanjun; Zhu Jingyan; Wang Juan

    2008-01-01

    Objective: To study the changes of hematopoietic growth factors secreted by human mesenchymal stem cells from bone marrow (BM-MSC) pretreated with low dose radiation (LDR). Methods: The cultured P4 and P5 BM-MSCs were exposed to X rays at the doses of 50, 75 and 100 mGy (dose rate 12.5 mGy·min -1 ). The changes of levels of stem cell factor (SCF), IL-6, macrophage colony-stimulating factor (M-CSF) secreted by BM- MSCs pretreated with LDR were determined by ELISA method. Results: As compared with control group at the same time, the levels of SCF in experimental group had a tendency of increasing after 24 h and 48 h radiation, but only in 75 mGy group the SCF level was obviously increased (P<0.05). The levels of IL-6 in 50 and 75 mGy groups at 24 h and 48 h, in 100 mGy group at 24 h were obviously increased compared with control group (P< 0.05). The levels of M-CSF in all the groups at 24 h, 48 h and 72 h except for the 50 mGy dose at 72 h were also increased (P<0.05), it increased markedly in 75 mGy dose group at 72 h. Conclusion: LDR has hormesis effect on BM-MSCs. After LDR, the BM-MSCs grow faster and in a certain phase the expression levels of hematopoietic growth factors are increased. (authors)

  20. A Transcriptional Regulatory Mechanism Finely Tunes the Firing of Type VI Secretion System in Response to Bacterial Enemies.

    Science.gov (United States)

    Lazzaro, Martina; Feldman, Mario F; García Véscovi, Eleonora

    2017-08-22

    The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens , it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter , which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia 's RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. IMPORTANCE Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was

  1. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum.

    Science.gov (United States)

    VieBrock, Lauren; Evans, Sean M; Beyer, Andrea R; Larson, Charles L; Beare, Paul A; Ge, Hong; Singh, Smita; Rodino, Kyle G; Heinzen, Robert A; Richards, Allen L; Carlyon, Jason A

    2014-01-01

    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway.

  2. CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL.

    Directory of Open Access Journals (Sweden)

    Kieu Thuy Pham

    Full Text Available Helicobacter pylori, the causative agent of type B gastritis, peptic ulcers, gastric adenocarcinoma and MALT lymphoma, uses the Cag type IV secretion system to induce a strong proinflammatory response in the gastric mucosa and to inject its effector protein CagA into gastric cells. CagA translocation results in altered host cell gene expression profiles and cytoskeletal rearrangements, and it is considered as a major bacterial virulence trait. Recently, it has been shown that binding of the type IV secretion apparatus to integrin receptors on target cells is a crucial step in the translocation process. Several bacterial proteins, including the Cag-specific components CagL and CagI, have been involved in this interaction. Here, we have examined the localization and interactions of CagI in the bacterial cell. Since the cagI gene overlaps and is co-transcribed with the cagL gene, the role of CagI for type IV secretion system function has been difficult to assess, and conflicting results have been reported regarding its involvement in the proinflammatory response. Using a marker-free gene deletion approach and genetic complementation, we show now that CagI is an essential component of the Cag type IV secretion apparatus for both CagA translocation and interleukin-8 induction. CagI is distributed over soluble and membrane-associated pools and seems to be partly surface-exposed. Deletion of several genes encoding essential Cag components has an impact on protein levels of CagI and CagL, suggesting that both proteins require partial assembly of the secretion apparatus. Finally, we show by co-immunoprecipitation that CagI and CagL interact with each other. Taken together, our results indicate that CagI and CagL form a functional complex which is formed at a late stage of secretion apparatus assembly.

  3. Bone morphogenetic protein 4 inhibits insulin secretion from rodent beta cells through regulation of calbindin1 expression and reduced voltage-dependent calcium currents

    DEFF Research Database (Denmark)

    Christensen, Gitte L.; Jacobsen, Maria L. B.; Wendt, Anna

    2015-01-01

    AIMS/HYPOTHESIS: Type 2 diabetes is characterised by progressive loss of pancreatic beta cell mass and function. Therefore, it is of therapeutic interest to identify factors with the potential to improve beta cell proliferation and insulin secretion. Bone morphogenetic protein 4 (BMP4) expression...

  4. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Catarina Baptista

    Full Text Available The recently discovered Type VII/Esat-6 secretion systems seem to be widespread among bacteria of the phyla Actinobacteria and Firmicutes. In some species they play an important role in pathogenic interactions with eukaryotic hosts. Several studies have predicted that the locus yukEDCByueBC of the non-pathogenic, Gram-positive bacterium Bacillus subtilis would encode an Esat-6-like secretion system (Ess. We provide here for the first time evidences for the functioning of this secretion pathway in an undomesticated B. subtilis strain. We show that YukE, a small protein with the typical features of the secretion substrates from the WXG100 superfamily is actively secreted to culture media. YukE secretion depends on intact yukDCByueBC genes, whose products share sequence or structural homology with known components of the S. aureus Ess. Biochemical characterization of YukE indicates that it exists as a dimer both in vitro and in vivo. We also show that the B. subtilis Ess essentially operates in late stationary growth phase in absolute dependence of phosphorylated DegU, the response regulator of the two-component system DegS-DegU. We present possible reasons that eventually have precluded the study of this secretion system in the B. subtilis laboratory strain 168.

  5. Expression by Streptomyces lividans of the Rat α Integrin CD11b A-Domain as a Secreted and Soluble Recombinant Protein

    Directory of Open Access Journals (Sweden)

    Dorra Zouari Ayadi

    2007-01-01

    Full Text Available We already reported the use of a long synthetic signal peptide (LSSP to secrete the Streptomyces sp. TO1 amylase by Streptomyces lividans strain. We herein report the expression and secretion of the rat CD11b A-domain using the same LSSP and S. lividans as host strain. We have used the Escherichia coli/Streptomyces shuttle vector pIJ699 for the cloning of the A-domain DNA sequence downstream of LSSP and under the control of the constitutive ermE-up promoter of Streptomyces erythraeus. Using this construct and S. lividans as a host strain, we achieved the expression of 8 mg/L of soluble secreted recombinant form of the A-domain of the rat leukocyte β2 integrin CD11/CD18 alpha M subunit (CD11b. This secreted recombinant CD11b A-domain reacted with a function blocking antibody showing that this protein is properly folded and probably functional. These data support the capability of Streptomyces to produce heterologous recombinant proteins as soluble secreted form using the “LSSP” synthetic signal peptide.

  6. STUDIES IN DYNAMICS OF APOPTOSIS-RELATED SURFACE ANTIGEN (CD95 EXPRESSION ON NEUTROPHILS FROM CERVICAL AND VAGINAL SECRETIONS IN WOMEN WITH CHLAMIDIA INFECTION

    Directory of Open Access Journals (Sweden)

    O. A. Giesinger

    2010-01-01

    Full Text Available CD95 (Fas/APO-1 antigen expression was studied on the surface of neutrophil granulocytes from cervical secretions. Sixty-five female patients with established Chlamydia infection were found to have an increased CD95+ antigen expression following basic therapy. CD95+ receptors on neutrophils in the patients with Chlamydia infection have been shown to return to normal levels following a combined magnetic laser treatment.

  7. Gene expression and protein secretion of apolipoprotein B100 (ApoB100 in transition dairy cows under hot or thermoneutral environments

    Directory of Open Access Journals (Sweden)

    Alessandro Nardone

    2010-01-01

    Full Text Available The aim of the study was to investigate the effects of hot season on gene expression and protein secretion of ApoB100 in transition dairy cows. Hot season strongly down-regulated ApoB100 gene and protein expression. This condition and the higher circulating NEFA were responsible for the higher lipid accumulation in liver of heat-stressed transition cows.

  8. Role of the Enteric Nervous System in the Fluid and Electrolyte Secretion of Rotavirus Diarrhea

    Science.gov (United States)

    Lundgren, Ove; Peregrin, Attila Timar; Persson, Kjell; Kordasti, Shirin; Uhnoo, Ingrid; Svensson, Lennart

    2000-01-01

    The mechanism underlying the intestinal fluid loss in rotavirus diarrhea, which often afflicts children in developing countries, is not known. One hypothesis is that the rotavirus evokes intestinal fluid and electrolyte secretion by activation of the nervous system in the intestinal wall, the enteric nervous system (ENS). Four different drugs that inhibit ENS functions were used to obtain experimental evidence for this hypothesis in mice in vitro and in vivo. The involvement of the ENS in rotavirus diarrhea indicates potential sites of action for drugs in the treatment of the disease.

  9. Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.

    Directory of Open Access Journals (Sweden)

    Selina R Church

    Full Text Available Vibrio vulnificus is a bacterium responsible for severe gastroenteritis, sepsis and wound infections. Gastroenteritis and sepsis are commonly associated with the consumption of raw oysters, whereas wound infection is often associated with the handling of contaminated fish. Although classical virulence factors of this emerging pathogen are well characterised, there remains a paucity of knowledge regarding the general biology of this species. To investigate the presence of previously unreported virulence factors, we applied whole genome sequencing to a panel of ten V. vulnificus strains with varying virulence potentials. This identified two novel type 6 secretion systems (T6SSs, systems that are known to have a role in bacterial virulence and population dynamics. By utilising a range of molecular techniques and assays we have demonstrated the functionality of one of these T6SSs. Furthermore, we have shown that this system is subject to thermoregulation and is negatively regulated by increasing salinity concentrations. This secretion system was also shown to be involved in the killing of V. vulnificus strains that did not possess this system and a model is proposed as to how this interaction may contribute to population dynamics within V. vulnificus strains. In addition to this intra-species killing, this system also contributes to the killing of inter bacterial species and may have a role in the general composition of Vibrio species in the environment.

  10. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization.

    Science.gov (United States)

    Lertpiriyapong, Kvin; Gamazon, Eric R; Feng, Yan; Park, Danny S; Pang, Jassia; Botka, Georgina; Graffam, Michelle E; Ge, Zhongming; Fox, James G

    2012-01-01

    The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn) mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA

  11. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization.

    Directory of Open Access Journals (Sweden)

    Kvin Lertpiriyapong

    Full Text Available The recently identified type VI secretion system (T6SS of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA, and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2% was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge

  12. The global regulator Crc plays a multifaceted role in modulation of type III secretion system in Pseudomonas aeruginosa.

    Science.gov (United States)

    Dong, Yi-Hu; Zhang, Xi-Fen; Zhang, Lian-Hui

    2013-02-01

    The opportunistic pathogen Pseudomonas aeruginosa utilizes type III secretion system (T3SS) to translocate effector proteins into eukaryotic host cells that subvert normal host cell functions to the benefit of the pathogen, and results in serious infections. T3SS in P. aeruginosa is controlled by a complex system of regulatory mechanisms and signaling pathways. In this study, we described that Crc, an RNA-binding protein, exerts a positive impact on T3SS in P. aeruginosa, as evidenced by promoter activity assays of several key T3SS genes, transcriptomics, RT-PCR, and immunoblotting in crc mutant. We further demonstrated that the regulatory function of Crc on the T3SS was mediated through the T3SS master regulator ExsA and linked to the Cbr/Crc signaling system. Expression profiling of the crc mutant revealed a downregulation of flagship T3SS genes as well as 16 other genes known to regulate T3SS gene expression in P. aeruginosa. On the basis of these data, we proposed that Crc may exert multifaceted control on the T3SS through various pathways, which may serve to fine-tune this virulence mechanism in response to environmental changes and nutrient sources. © 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  13. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice.

    Science.gov (United States)

    Song 宋志林, Zhilin; Roncal-Jimenez, Carlos A; Lanaspa-Garcia, Miguel A; Oppelt, Sarah A; Kuwabara, Masanari; Jensen, Thomas; Milagres, Tamara; Andres-Hernando, Ana; Ishimoto, Takuji; Garcia, Gabriela E; Johnson, Ginger; MacLean, Paul S; Sanchez-Lozada, Laura-Gabriela; Tolan, Dean R; Johnson, Richard J

    2017-02-01

    mechanisms leading to vasopressin release under conditions of water restriction (acute dehydration). Specifically, these studies suggest that the aldose reductase-fructokinase pathways may be involved in vasopressin synthesis in the hypothalamus and secretion by the pituitary in response to acute dehydration. Nevertheless, mice undergoing water restriction remain capable of maintaining sufficient vasopressin (copeptin) levels to allow normal urinary concentration. Further studies of the aldose reductase-fructokinase system in vasopressin regulation appear indicated. Copyright © 2017 the American Physiological Society.

  14. An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco.

    Science.gov (United States)

    Kis, Mihaly; Burbridge, Emma; Brock, Ian W; Heggie, Laura; Dix, Philip J; Kavanagh, Tony A

    2004-03-01

    Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N-terminal and C-terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N-terminal or the C-terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV-35S) or the tobacco RUBISCO-SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium-mediated transformation. To study the effects of the N- and C-terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. Transgenic tobacco plants can exhibit a ten-fold increase in peroxidase activity compared with wild-type tobacco levels, and the majority of this activity is located in the symplast. The N-terminal extension is essential for the production of high levels of recombinant protein, while the C-terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N-terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic

  15. [Reduced zinc concentration in expressed prostatic secretion relates to the pain symptoms of types Ⅲ and Ⅳ prostatitis].

    Science.gov (United States)

    Mo, Lin-Jian; Chen, Xi; Wang, Xiao-Ming; Li, Guang-Yu; Zhang, Xun; Huang, Shan; Xie, Zhi-Bin; Mo, Zeng-Nan

    2016-06-01

    To determine the zinc levels in the expressed prostatic secretion (EPS) of the patients with different types of chronic nonbacterial prostatitis, and explore the reference value of zinc concentration in EPS in the diagnosis and treatment of prostatitis. We collected EPS samples from 35 healthy men and 173 patients with chronic nonbacterial prostatitis, including 65 cases of type ⅢA, 69 cases of type ⅢB, and 39 cases of type Ⅳ, according to the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI). We compared the zinc levels in the EPS samples among different groups and analyzed the correlations of zinc concentration with the NIH-CPSI scores, WBC count, pH value, and age of the subjects. The participants were aged 17-65 (32.5±8.5) years. The zinc concentrations in the EPS were significantly lower in the ⅢA ([162.2±10.8] μg/ml) and ⅢB ([171.2±12.0] μg/ml) than in the Ⅳ ([234.6±17.9] μg/ml) (Pprostatitis may be associated with the pain symptoms of the disease, which suggests the potential reference value of measuring the zinc concentration in EPS in the diagnosis and treatment of prostatitis.

  16. Alterations in expressed prostate secretion-urine PSA N-glycosylation discriminate prostate cancer from benign prostate hyperplasia.

    Science.gov (United States)

    Jia, Gaozhen; Dong, Zhenyang; Sun, Chenxia; Wen, Fuping; Wang, Haifeng; Guo, Huaizu; Gao, Xu; Xu, Chuanliang; Xu, Chuanliang; Yang, Chenghua; Sun, Yinghao

    2017-09-29

    The prostate specific antigen (PSA) test is widely used for early diagnosis of prostate cancer (PCa). However, its limited sensitivity has led to over-diagnosis and over-treatment of PCa. Glycosylation alteration is a common phenomenon in cancer development. Different PSA glycan subforms have been proposed as diagnostic markers to better differentiate PCa from benign prostate hyperplasia (BPH). In this study, we purified PSA from expressed prostate secretions (EPS)-urine samples from 32 BPH and 30 PCa patients and provided detailed PSA glycan profiles in Chinese population. We found that most of the PSA glycans from EPS-urine were complex type biantennary glycans. We observed two major patterns in PSA glycan profiles. Overall there was no distinct separation of PSA glycan profiles between BPH and PCa patients. However, we detected a significant increase of glycan FA2 and FM5A2G2S1 in PCa when compared with BPH patients. Furthermore, we observed that the composition of FA2 glycan increased significantly in advanced PCa with Gleason score ≥8, which potentially could be translated to clinic as a marker for aggressive PCa.

  17. [Pathogens in expressed prostatic secretion and their correlation with serum prostate specific antigen: analysis of 320 cases].

    Science.gov (United States)

    Wang, Shu-Xia; Zhang, Jia-Ming; Wu, Kai; Chen, Juan; Shi, Jian-Feng

    2014-08-01

    To investigate the pathogenic infection and its drug resistance in expressed prostatic secretion (EPS) and its correlation with serum PSA, and provide some evidence for the systematic and normalized diagnosis and treatment of prostatitis. Three EPS swabs were collected from each of the 320 prostatis patients following measurement of the serum PSA level, 1 for bacterial culture and identification, 1 for detection of Mycoplasma and drug sensitivity, and the other for examination of Chlamydia trachomatis antigen by colloidal gold immunoblot. Totally 244 strains were isolated from the 320 EPS samples, including 188 bacterial strains (dominated by Staphylococcus and sensitive to vancomycin or linezolid) and 44 Mycoplasma and Chlamydia strains (mainly Ureaplasma urealyticum and susceptible to josamycin or doxycycline). The serum PSA level was significantly higher in the pathogen-positive than in the pathogen-negative group ([6.98 +/- 0.56] microg/L vs [2.32 +/- 0.12] microg/L, P Prostatitis may lead to the elevation of the serum PSA level and the pathogens involved vary in their resistance to different antibacterial spectrums. Therefore, appropriate and individualized antibiotic therapy should be selected according to etiological diagnosis and the results of drug sensitivity test.

  18. Always one step ahead: How pathogenic bacteria use the type III secretion system to manipulate the intestinal mucosal immune system

    Directory of Open Access Journals (Sweden)

    Marchès Olivier

    2011-05-01

    Full Text Available Abstract The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways. This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal immune response, with a special focus on pathogenic E. coli.

  19. A Novel ESAT-6 Secretion System-Secreted Protein EsxX of Community-Associated Staphylococcus aureus Lineage ST398 Contributes to Immune Evasion and Virulence

    Directory of Open Access Journals (Sweden)

    Yingxin Dai

    2017-05-01

    Full Text Available The ESAT-6 secretion system (ESS has been reported to contribute to the virulence and pathogenicity of several Staphylococcus aureus strains such as USA300 and Newman. However, the role of the ESS in community-associated S. aureus (CA-SA lineage ST398 in China is not well understood. By comparing the ess locus of ST398 with the published S. aureus sequence in the NCBI database, we found one gene in the ess locus encoding a novel WXG superfamily protein that is highly conserved only in ST398. LC-MS/MS and Western blot analysis revealed that this protein is a novel secreted protein controlled by the ST398 ESS, and we named the protein EsxX. Although EsxX was not under the control of the accessory gene regulator like many other virulence factors and had no influence on several phenotypes of ST398, such as growth, hemolysis, and biofilm formation, it showed important impacts on immune evasion and virulence in ST398. An esxX deletion mutant led to significantly reduced resistance to neutrophil killing and decreased virulence in murine skin and blood infection models, indicating its essential contribution to the evasion of innate host defense and virulence to support the pathogenesis of ST398 infections. The function of this novel secreted protein EsxX might help us better understand the role of the ESS in the virulence and epidemic success of the CA-SA lineage ST398.

  20. A Novel ESAT-6 Secretion System-Secreted Protein EsxX of Community-Associated Staphylococcus aureus Lineage ST398 Contributes to Immune Evasion and Virulence.

    Science.gov (United States)

    Dai, Yingxin; Wang, Yanan; Liu, Qian; Gao, Qianqian; Lu, Huiying; Meng, Hongwei; Qin, Juanxiu; Hu, Mo; Li, Min

    2017-01-01

    The ESAT-6 secretion system (ESS) has been reported to contribute to the virulence and pathogenicity of several Staphylococcus aureus strains such as USA300 and Newman. However, the role of the ESS in community-associated S. aureus (CA-SA) lineage ST398 in China is not well understood. By comparing the ess locus of ST398 with the published S. aureus sequence in the NCBI database, we found one gene in the ess locus encoding a novel WXG superfamily protein that is highly conserved only in ST398. LC-MS/MS and Western blot analysis revealed that this protein is a novel secreted protein controlled by the ST398 ESS, and we named the protein EsxX. Although EsxX was not under the control of the accessory gene regulator like many other virulence factors and had no influence on several phenotypes of ST398, such as growth, hemolysis, and biofilm formation, it showed important impacts on immune evasion and virulence in ST398. An esxX deletion mutant led to significantly reduced resistance to neutrophil killing and decreased virulence in murine skin and blood infection models, indicating its essential contribution to the evasion of innate host defense and virulence to support the pathogenesis of ST398 infections. The function of this novel secreted protein EsxX might help us better understand the role of the ESS in the virulence and epidemic success of the CA-SA lineage ST398.

  1. Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide.

    Directory of Open Access Journals (Sweden)

    Beth A Rasala

    Full Text Available Microalgae have recently received attention as a potential low-cost host for the production of recombinant proteins and novel metabolites. However, a major obstacle to the development of algae as an industrial platform has been the poor expression of heterologous genes from the nuclear genome. Here we describe a nuclear expression strategy using the foot-and-mouth-disease-virus 2A self-cleavage peptide to transcriptionally fuse heterologous gene expression to antibiotic resistance in Chlamydomonas reinhardtii. We demonstrate that strains transformed with ble-2A-GFP are zeocin-resistant and accumulate high levels of GFP that is properly 'cleaved' at the FMDV 2A peptide resulting in monomeric, cytosolic GFP that is easily detectable by in-gel fluorescence analysis or fluorescent microscopy. Furthermore, we used our ble2A nuclear expression vector to engineer the heterologous expression of the industrial enzyme, xylanase. We demonstrate that linking xyn1 expression to ble2A expression on the same open reading frame led to a dramatic (~100-fold increase in xylanase activity in cells lysates compared to the unlinked construct. Finally, by inserting an endogenous secretion signal between the ble2A and xyn1 coding regions, we were able to target monomeric xylanase for secretion. The novel microalgae nuclear expression strategy described here enables the selection of transgenic lines that are efficiently expressing the heterologous gene-of-interest and should prove valuable for basic research as well as algal biotechnology.

  2. Construction of Lactococcus lactis expressing secreted and anchored Eimeria tenella 3-1E protein and comparison of protective immunity against homologous challenge.

    Science.gov (United States)

    Ma, Chunli; Zhang, Lili; Gao, Mingyang; Ma, Dexing

    2017-07-01

    Two novel plasmids pTX8048-SP-Δ3-1E and pTX8048-SP-NAΔ3-1E-CWA were constructed. The plasmids were respectively electrotransformed into L. lactis NZ9000 to generate strain of L. lactis/pTX8048-SP-Δ3-1E in which 3-1E protein was expressed in secretion, and L. lactis/pTX8048-SP-NAΔ3-1E-CWA on which 3-1E protein was covalently anchored to the surface of bacteria cells. The expression of target proteins were examined by Western blot. The live lactococci expressing secreted 3-1E protein, anchored 3-1E protein, and cytoplasmic 3-1E protein was administered orally to chickens respectively, and the protective immunity and efficacy were compared by animal experiment. The results showed oral immunization to chickens with recombinant lactococci expressing anchored 3-1E protein elicited high 3-1E-specific serum IgG, increased high proportion of CD4 + and CD8α + cells in spleen, alleviated average lesion score in cecum, decreased the oocyst output per chicken compared to lactococci expressing cytoplasmic or secreted 3-1E protein. Taken together, these findings indicated the surface anchored Eimeria protein displayed by L. lacits can induce protective immunity and partial protection against homologous infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Phenolic Compounds from Fermented Berry Beverages Modulated Gene and Protein Expression To Increase Insulin Secretion from Pancreatic β-Cells in Vitro.

    Science.gov (United States)

    Johnson, Michelle H; de Mejia, Elvira Gonzalez

    2016-03-30

    Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.

  4. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Reuther, Sebastian; Metzke, Elisabeth [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Bonin, Michael [Department of Medical Genetics, University of Tuebingen (Germany); Petersen, Cordula [Clinic of Radiotherapy and Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Dikomey, Ekkehard, E-mail: dikomey@uke.de [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany); Raabe, Annette [Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Hamburg-Eppendorf, Hamburg (Germany)

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  5. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Nancy M C Bleumink-Pluym

    Full Text Available The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS.

  6. Identification of a functional type VI secretion system in Campylobacter jejuni conferring capsule polysaccharide sensitive cytotoxicity.

    Science.gov (United States)

    Bleumink-Pluym, Nancy M C; van Alphen, Lieke B; Bouwman, Lieneke I; Wösten, Marc M S M; van Putten, Jos P M

    2013-01-01

    The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS.

  7. Reassessing the role of DotF in the Legionella pneumophila type IV secretion system.

    Directory of Open Access Journals (Sweden)

    Molly C Sutherland

    Full Text Available Legionella pneumophila, the causative agent of a severe pneumonia termed Legionnaires' Disease, survives and replicates within both protozoan hosts and human alveolar macrophages. Intracellular survival is dependent upon secretion of a plethora of protein effectors that function to form a replicative vacuole, evade the endocytic pathway and subvert host immune defenses. Export of these factors requires a type IV secretion system (T4SS called Dot/Icm that is composed of twenty-seven proteins. This report focuses on the DotF protein, which was previously postulated to have several different functions, one of which centered on binding Dot/Icm substrates. In this report, we examined if DotF functions as the T4SS inner membrane receptor for Dot/Icm substrates. Although we were able to recapitulate the previously published bacterial two-hybrid interaction between DotF and several substrates, the interaction was not dependent on the Dot/Icm substrates' signal sequences as predicted for a substrate:receptor interaction. In addition, binding did not require the cytoplasmic domain of DotF, which was anticipated to be involved in recognizing substrates in the cytoplasm. Finally, inactivation of dotF did not abolish intracellular growth of L. pneumophila or translocation of substrates, two phenotypes dependent on the T4SS receptor. These data strongly suggest that DotF does not act as the major receptor for Dot/Icm substrates and therefore likely performs an accessory function within the core-transmembrane subcomplex of the L. pneumophila Dot/Icm type IV secretion system.

  8. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  9. AtlasT4SS: a curated database for type IV secretion systems.

    Science.gov (United States)

    Souza, Rangel C; del Rosario Quispe Saji, Guadalupe; Costa, Maiana O C; Netto, Diogo S; Lima, Nicholas C B; Klein, Cecília C; Vasconcelos, Ana Tereza R; Nicolás, Marisa F

    2012-08-09

    The type IV secretion system (T4SS) can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC) design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive), one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH) relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and evolutionary relationships: (i) F-T4SS, (ii) P-T4SS, (iii

  10. Peroxisome proliferator-activated receptor δ modulates MMP-2 secretion and elastin expression in human dermal fibroblasts exposed to ultraviolet B radiation.

    Science.gov (United States)

    Ham, Sun Ah; Yoo, Taesik; Hwang, Jung Seok; Kang, Eun Sil; Paek, Kyung Shin; Park, Chankyu; Kim, Jin-Hoi; Do, Jeong Tae; Seo, Han Geuk

    2014-10-01

    Changes in skin connective tissues mediated by ultraviolet (UV) radiation have been suggested to cause the skin wrinkling normally associated with premature aging of the skin. Recent investigations have shown that peroxisome proliferator-activated receptor (PPAR) δ plays multiple biological roles in skin homeostasis. We attempted to investigate whether PPARδ modulates elastin protein levels and secretion of matrix metalloproteinase (MMP)-2 in UVB-irradiated human dermal fibroblasts (HDFs) and mouse skin. These studies were undertaken in primary HDFs or HR-1 hairless mice using Western blot analyses, small interfering (si)RNA-mediated gene silencing, and Fluorescence microscopy. In HDFs, UVB irradiation induced increased secretion of MMP-2 and reduced levels of elastin. Activation of PPARδ by GW501516, a ligand specific for PPARδ, markedly attenuated UVB-induced MMP-2 secretion with a concomitant increase in the level of elastin. These effects were reduced by the presence of siRNAs against PPARδ or treatment with GSK0660, a specific inhibitor of PPARδ. Furthermore, GW501516 elicited a dose- and time-dependent increase in the expression of elastin. Modulation of MMP-2 secretion and elastin levels by GW501516 was associated with a reduction in reactive oxygen species (ROS) production in HDFs exposed to UVB. Finally, in HR-1 hairless mice, administration of GW501516 significantly reduced UVB-induced MMP-2 expression with a concomitant increase in elastin levels, and these effects were significantly reduced by the presence of GSK0660. Our results suggest that PPARδ-mediated modulation of MMP-2 secretion and elastin expression may contribute to the maintenance of skin integrity by inhibiting ROS generation. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Influence of age-related changes in nitric oxide synthase-expressing neurons in the rat supraoptic nucleus on inhibition of salivary secretion.

    Science.gov (United States)

    Tanaka, Takehiko; Tamada, Yoshitaka; Suwa, Fumihiko

    2008-02-01

    Age-related inhibition of salivary secretion has been demonstrated in rats, and the nitric oxide (NO) present in the supraoptic nucleus (SON) and the medial septal area has been reported to play an inhibitory role in the regulation of salivary secretion. In the present study, we investigated the age-related changes occurring in the NO synthase (NOS)-expressing neurons in the SON, which is related to the production of NO, and discussed the interrelation between the age-related changes in the NOS-expressing neurons and the age-related inhibition of salivary secretion. Nissl staining and reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry were performed for young adult and aged rats. Quantitative analysis was also performed using the Nissl-stained and NADPH-d-positive neurons. Although the numbers of the Nissl-stained neurons did not change, significant age-related increases were detected in cell number, cell size and reactive density of the NADPH-d-positive neurons. Therefore, the production of NO in the SON neurons increased with age. We concluded that the age-related increase in the NO in the SON might be a factor that contributes to the age-related inhibition of salivary secretion.

  12. A Lactococcus lactis expression vector set with multiple affinity tags to facilitate isolation and direct labeling of heterologous secreted proteins

    NARCIS (Netherlands)

    Pastrana, Francisco Romero; Neef, Jolanda; van Dijl, Jan Maarten; Buist, Girbe

    The gram-positive bacterium Lactococcus lactis is a useful host for extracellular protein production. A main advantage of L. lactis over other bacterial expression systems is that lactococcal cells display low levels of autolysis and proteolysis. Previously, we developed a set of vectors for

  13. Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System.

    Directory of Open Access Journals (Sweden)

    Federico M Ruiz

    Full Text Available The type VI secretion system (T6SS is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp, which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen.

  14. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Benjamin Mielich-Süss

    2017-11-01

    Full Text Available Scaffold proteins are ubiquitous chaperones that promote efficient interactions between partners of multi-enzymatic protein complexes; although they are well studied in eukaryotes, their role in prokaryotic systems is poorly understood. Bacterial membranes have functional membrane microdomains (FMM, a structure homologous to eukaryotic lipid rafts. Similar to their eukaryotic counterparts, bacterial FMM harbor a scaffold protein termed flotillin that is thought to promote interactions between proteins spatially confined to the FMM. Here we used biochemical approaches to define the scaffold activity of the flotillin homolog FloA of the human pathogen Staphylococcus aureus, using assembly of interacting protein partners of the type VII secretion system (T7SS as a case study. Staphylococcus aureus cells that lacked FloA showed reduced T7SS function, and thus reduced secretion of T7SS-related effectors, probably due to the supporting scaffold activity of flotillin. We found that the presence of flotillin mediates intermolecular interactions of T7SS proteins. We tested several small molecules that interfere with flotillin scaffold activity, which perturbed T7SS activity in vitro and in vivo. Our results suggest that flotillin assists in the assembly of S. aureus membrane components that participate in infection and influences the infective potential of this pathogen.

  15. In silico dissection of Type VII Secretion System components across bacteria: New directions towards functional characterization.

    Science.gov (United States)

    Das, Chandrani; Ghosh, Tarini Shankar; Mande, Sharmila S

    2016-03-01

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacterium tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information is required to obtain a global view of diverse characteristics and pathogenicity-related aspects of this machinery. The present study suggests that differences in structural components (of T7SS) between Actinobacteria and Firmicutes, observed earlier in a few organisms, is indeed a global trend. A few hitherto uncharacterized T7SS-like clusters have been identified in the pathogenic bacteria Enterococcus faecalis, Saccharomonospora viridis, Streptococcus equi, Streptococcus gordonii and Streptococcus sanguinis. Experimental verification of these clusters can shed lights on their role in bacterial pathogenesis. Similarly, verification of the identified variants of T7SS clusters consisting additional membrane components may help in unraveling new mechanism of protein translocation through T7SS. A database of various components of T7SS has been developed to facilitate easy access and interpretation of T7SS related data.

  16. Meningococcal Two-Partner Secretion Systems and Their Association with Outcome in Patients with Meningitis

    Science.gov (United States)

    Piet, Jurgen R.; van Ulsen, Peter; ur Rahman, Sadeeq; Bovenkerk, Sandra; Bentley, Stephen D.

    2016-01-01

    Two-partner secretion (TPS) systems export large TpsA proteins to the surface and extracellular milieu. In meningococci, three different TPS systems exist, and of these, TPS system 2 (TPS2) and TPS3 can be detected by the host's immune system. We evaluated the distribution of TPS systems among clinical isolates from two prospective cohort studies comprising 373 patients with meningococcal meningitis. TPS system 1 was present in 91% of isolates, and system 2 and/or 3 was present in 67%. The TPS system distribution was related to clonal complexes. Infection with strains with TPS2 and/or TPS3 resulted in less severe disease and better outcomes than infection with strains without these systems. Using whole-blood stimulation experiments, we found no differences in the host cytokine response between patients infected with TPS system 2 and 3 knockout strains and patients infected with a wild-type strain. In conclusion, meningococcal TPS system 2 and/or 3 is associated with disease severity and outcome in patients with meningitis. PMID:27324486

  17. A rapid screening method to monitor expression of various recombinant proteins from prokaryotic and eukaryotic expression systems using MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Jebanathirajah, J.A.; Andersen, S.; Blagoev, B.

    2002-01-01

    Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive...

  18. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Sachith D. Gunasinghe

    2017-05-01

    Full Text Available Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.

  19. Open Secrets

    OpenAIRE

    Madison, Michael

    2017-01-01

    The law of trade secrets is often conceptualized in bilateral terms, as creating and enforcing rights between trade secret owners, on the one hand, and misappropriators on the other hand. This paper, a chapter in a forthcoming collection on the law of trade secrets, argues that trade secrets and the law that guards them can serve structural and insitutional roles as well. Somewhat surprisingly, given the law’s focus on secrecy, among the institutional products of trade secrets law are commons...

  20. Secretion of N-ERC/mesothelin and expression of C-ERC/mesothelin in human pancreatic ductal carcinoma.

    Science.gov (United States)

    Inami, Koichi; Kajino, Kazunori; Abe, Masaaki; Hagiwara, Yoshiaki; Maeda, Masahiro; Suyama, Masafumi; Watanabe, Sumio; Hino, Okio

    2008-12-01

    ERC/mesothelin gene (MSLN) encodes a precursor protein, which is cleaved by proteases to generate N-ERC/mesothelin and C-ERC/mesothelin. N-ERC/mesothelin is a soluble protein, also known as megakaryocyte-potentiating factor, which is released into extracellular space. N-ERC/mesothelin is known to be a serum marker of mesothelioma. We have previously developed an enzyme-linked immunosorbent assay system for N-ERC/mesothelin, which can detect mesothelioma. C-ERC/mesothelin is expressed in normal mesothelial cell, pancreatic cancers, ovarian cancers, mesotheliomas and some other cancers. Pancreatic ductal carcinoma remains a fatal disease because its diagnosis often occurs very late. In this study, we examined ERC/mesothelin expression in human pancreatic cancer cell lines (MIA-PaCa2, PK-1, KP-3, TCC-PAN2, PK-59 and PK-45H) by reverse transcription-polymerase chain reaction and immunoblotting and N-ERC/mesothelin concentration in the supernatant of cultured cancer cells by the ELISA system. We also investigated C-ERC/mesothlein expression in human pancreatic ductal carcinoma tissues by immunostaining using 5B2 anti-mesothelin monoclonal antibody and N-ERC/mesothelin concentration in sera obtained from patients with pancreatic ductal carcinoma via ELISA. In vitro, N-ERC/mesothelin concentration in cell culture medium nearly correlated with the expression level of C-ERC/mesothelin. Although C-ERC/mesothelin was frequently expressed in human pancreatic ductal carcinoma, serum N-ERC/mesothelin concentration of cancer patients was equivalent to healthy controls. N-ERC/mesothelin was not useful as a serum marker of pancreatic ductal carcinoma, but because of frequent expression, C-ERC/mesothelin might be useful as a target of molecular imaging and immunotherapy.

  1. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells.

    Science.gov (United States)

    Nyman, Tuula A; Lorey, Martina B; Cypryk, Wojciech; Matikainen, Sampsa

    2017-05-01

    The immune system is our defense system against microbial infections and tissue injury, and understanding how it works in detail is essential for developing drugs for different diseases. Mass spectrometry-based proteomics can provide in-depth information on the molecular mechanisms involved in immune responses. Areas covered: Summarized are the key immunology findings obtained with MS-based proteomics in the past five years, with a focus on inflammasome activation, global protein secretion, mucosal immunology, immunopeptidome and T cells. Special focus is on extracellular vesicle-mediated protein secretion and its role in immune responses. Expert commentary: Proteomics is an essential part of modern omics-scale immunology research. To date, MS-based proteomics has been used in immunology to study protein expression levels, their subcellular localization, secretion, post-translational modifications, and interactions in immune cells upon activation by different stimuli. These studies have made major contributions to understanding the molecular mechanisms involved in innate and adaptive immune responses. New developments in proteomics offer constantly novel possibilities for exploring the immune system. Examples of these techniques include mass cytometry and different MS-based imaging approaches which can be widely used in immunology.

  2. The SPI-1-like Type III secretion system: more roles than you think

    Science.gov (United States)

    Egan, Frank; Barret, Matthieu; O’Gara, Fergal

    2014-01-01

    The type III secretion system (T3SS) is a protein delivery system which is involved in a wide spectrum of interactions, from mutualism to pathogenesis, between Gram negative bacteria and various eukaryotes, including plants, fungi, protozoa and mammals. Various phylogenetic families of the T3SS have been described, including the Salmonella Pathogenicity Island 1 family (SPI-1). The SPI-1 T3SS was initially associated with the virulence of enteric pathogens, but is actually found in a diverse array of bacterial species, where it can play roles in processes as different as symbiotic interactions with insects and colonization of plants. We review the multiple roles of the SPI-1 T3SS and discuss both how these discoveries are changing our perception of the SPI-1 family and what impacts this has on our understanding of the specialization of the T3SS in general. PMID:24575107

  3. The SPI-1-like Type III secretion system: more roles than you think.

    Science.gov (United States)

    Egan, Frank; Barret, Matthieu; O'Gara, Fergal

    2014-01-01

    The type III secretion system (T3SS) is a protein delivery system which is involved in a wide spectrum of interactions, from mutualism to pathogenesis, between Gram negative bacteria and various eukaryotes, including plants, fungi, protozoa and mammals. Various phylogenetic families of the T3SS have been described, including the Salmonella Pathogenicity Island 1 family (SPI-1). The SPI-1 T3SS was initially associated with the virulence of enteric pathogens, but is actually found in a diverse array of bacterial species, where it can play roles in processes as different as symbiotic interactions with insects and colonization of plants. We review the multiple roles of the SPI-1 T3SS and discuss both how these discoveries are changing our perception of the SPI-1 family and what impacts this has on our understanding of the specialization of the T3SS in general.

  4. Expression of the antiapoptotic gene seladin-1 and octreotide-induced apoptosis in growth hormone-secreting and nonfunctioning pituitary adenomas.

    Science.gov (United States)

    Luciani, Paola; Gelmini, Stefania; Ferrante, Emanuele; Lania, Andrea; Benvenuti, Susanna; Baglioni, Silvana; Mantovani, Giovanna; Cellai, Ilaria; Ammannati, Franco; Spada, Anna; Serio, Mario; Peri, Alessandro

    2005-11-01

    Seladin-1 (from selective Alzheimer's disease indicator-1) is a recently discovered gene that has been found to be down-regulated in brain regions affected by Alzheimer's disease. Seladin-1 effectively protects neurons against beta-amyloid-mediated toxicity and prevents apoptosis via inhibition of the activation of caspase-3, a key mediator of the apoptotic cascade. Although seladin-1 is expressed in the pituitary gland, no study addressed the expression or the function of this gene in pituitary adenomas. The aim of the present study was to determine the expression level of the seladin-1 gene in pituitary tumors, i.e. GH-secreting and nonfunctioning pituitary adenomas (NFPA), and to determine whether differential expression might be associated with different somatostatin (sst)-induced apoptosis. We found by quantitative real-time RT-PCR that the expression level of seladin-1 was significantly higher in NFPA (n = 21) than in GH-secreting adenomas (n = 30; mean +/- se, 25.69 +/- 6.39 vs. 8.02 +/- 2.68 pg/microg total RNA; P = 0.006). Although the amount of activated caspase-3 did not differ between the two groups of tumors, in primary cell cultures, octreotide was able to increase apoptosis, evaluated by the level of cleaved cytokeratin 18 and the presence of apoptotic nuclei, in GH-secreting adenomas, but not in NFPA. This different response was not attributable to differences in the amount of transcript of sst receptors 2 and 5, which was similar in the two groups of tumors. Our results suggest that differential seladin-1 expression in pituitary adenomas may be associated with a different apoptotic response to sst analogs.

  5. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation

    KAUST Repository

    Abdallah, Abdallah

    2011-09-28

    During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5 - two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators - during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1b activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread. Copyright © 2011 by The American Association of Immunologists, Inc.

  6. Characterization of the ectodomain of the envelope protein of dengue virus type 4: expression, membrane association, secretion and particle formation in the absence of precursor membrane protein.

    Directory of Open Access Journals (Sweden)

    Szu-Chia Hsieh

    Full Text Available The envelope (E of dengue virus (DENV is the major target of neutralizing antibodies and vaccine development. After biosynthesis E protein forms a heterodimer with precursor membrane (prM protein. Recent reports of infection enhancement by anti-prM monoclonal antibodies (mAbs suggest anti-prM responses could be potentially harmful. Previously, we studied a series of C-terminal truncation constructs expressing DENV type 4 prM/E or E proteins and found the ectodomain of E protein alone could be recognized by all 12 mAbs tested, suggesting E protein ectodomain as a potential subunit immunogen without inducing anti-prM response. The characteristics of DENV E protein ectodomain in the absence of prM protein remains largely unknown.In this study, we investigated the expression, membrane association, glycosylation pattern, secretion and particle formation of E protein ectodomain of DENV4 in the presence or absence of prM protein. E protein ectodomain associated with membrane in or beyond trans-Golgi and contained primarily complex glycans, whereas full-length E protein associated with ER membrane and contained high mannose glycans. In the absence of prM protein, E protein ectodomain can secrete as well as form particles of approximately 49 nm in diameter, as revealed by sucrose gradient ultracentrifugation with or without detergent and electron microscopy. Mutational analysis revealed that the secretion of E protein ectodomain was affected by N-linked glycosylation and could be restored by treatment with ammonia chloride.Considering the enhancement of DENV infectivity by anti-prM antibodies, our findings provide new insights into the expression and secretion of E protein ectodomain in the absence of prM protein and contribute to future subunit vaccine design.

  7. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    Science.gov (United States)

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  8. Mining microarray datasets in nutrition: expression of the GPR120 (n-3 fatty acid receptor/sensor) gene is down-regulated in human adipocytes by macrophage secretions.

    Science.gov (United States)

    Trayhurn, Paul; Denyer, Gareth

    2012-01-01

    Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity.

  9. Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2017-06-01

    Full Text Available Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs technology to interrupt type IV secretion system (T4SS effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1, which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.

  10. DNA Delivery and Genomic Integration into Mammalian Target Cells through Type IV A and B Secretion Systems of Human Pathogens

    Directory of Open Access Journals (Sweden)

    Dolores L. Guzmán-Herrador

    2017-08-01

    Full Text Available We explore the potential of bacterial secretion systems as tools for genomic modification of human cells. We previously showed that foreign DNA can be introduced into human cells through the Type IV A secretion system of the human pathogen Bartonella henselae. Moreover, the DNA is delivered covalently attached to the conjugative relaxase TrwC, which promotes its integration into the recipient genome. In this work, we report that this tool can be adapted to other target cells by using different relaxases and secretion systems. The promiscuous relaxase MobA from plasmid RSF1010 can be used to deliver DNA into human cells with higher efficiency than TrwC. MobA also promotes DNA integration, albeit at lower rates than TrwC. Notably, we report that DNA transfer to human cells can also take place through the Type IV secretion system of two intracellular human pathogens, Legionella pneumophila and Coxiella burnetii, which code for a distantly related Dot/Icm Type IV B secretion system. This suggests that DNA transfer could be an intrinsic ability of this family of secretion systems, expanding the range of target human cells. Further analysis of the DNA transfer process showed that recruitment of MobA by Dot/Icm was dependent on the IcmSW chaperone, which may explain the higher DNA transfer rates obtained. Finally, we observed that the presence of MobA negatively affected the intracellular replication of C. burnetii, suggesting an interference with Dot/Icm translocation of virulence factors.

  11. Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC.

    Science.gov (United States)

    Bernard, Abram R; Duarte, Shari M; Kumar, Prashant; Dickenson, Nicholas E

    2016-07-01

    Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. An N‐terminal Peptide Extension Results in Efficient Expression, but not Secretion, of a Synthetic Horseradish Peroxidase Gene in Transgenic Tobacco

    Science.gov (United States)

    KIS, MIHALY; BURBRIDGE, EMMA; BROCK, IAN W.; HEGGIE, LAURA; DIX, PHILIP J.; KAVANAGH, TONY A.

    2004-01-01

    • Background and Aims Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N‐terminal and C‐terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. • Methods Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N‐terminal or the C‐terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV‐35S) or the tobacco RUBISCO‐SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium‐mediated transformation. To study the effects of the N‐ and C‐terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. • Key Results Transgenic tobacco plants can exhibit a ten‐fold increase in peroxidase activity compared with wild‐type tobacco levels, and the majority of this activity is located in the symplast. The N‐terminal extension is essential for the production of high levels of recombinant protein, while the C‐terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. • Conclusions There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N‐terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been

  13. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system.

    Science.gov (United States)

    Gu, Shuang; Shevchik, Vladimir E; Shaw, Rosie; Pickersgill, Richard W; Garnett, James A

    2017-10-01

    Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Subinhibitory concentration of kanamycin induces the Pseudomonas aeruginosa type VI secretion system.

    Directory of Open Access Journals (Sweden)

    Cerith Jones

    Full Text Available Pseudomonas aeruginosa is a Gram-negative bacterium found in natural environments including plants, soils and warm moist surfaces. This organism is also in the top ten of nosocomial pathogens, and prevalent in cystic fibrosis (CF lung infections. The ability of P. aeruginosa to colonize a wide variety of environments in a lasting manner is associated with the formation of a resistant biofilm and the capacity to efficiently outcompete other microorganisms. Here we demonstrate that sub-inhibitory concentration of kanamycin not only induces biofilm formation but also induces expression of the type VI secretion genes in the H1-T6SS cluster. The H1-T6SS is known for its role in toxin production and bacterial competition. We show that the antibiotic induction of the H1-T6SS only occurs when a functional Gac/Rsm pathway is present. These observations may contribute to understand how P. aeruginosa responds to antibiotic producing competitors. It also suggests that improper antibiotic therapy may enhance P. aeruginosa colonization, including in the airways of CF patients.

  15. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    Science.gov (United States)

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  16. Inhibition of a type III secretion system by the deletion of a short loop in one of its membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheryakov, Vladimir A. [Okinawa Instiute of Science and Technology, Okinawa 904-0495 (Japan); Kitao, Akio [University of Tokyo, Tokyo 113-0032 (Japan); Core Research for Evolutionary Science and Technology, Tokyo 113-0032 (Japan); Matsunami, Hideyuki; Samatey, Fadel A., E-mail: f.a.samatey@oist.jp [Okinawa Instiute of Science and Technology, Okinawa 904-0495 (Japan)

    2013-05-01

    Crystal structures of the cytoplasmic domain of FlhB from S. typhimurium and A. aeolicus were solved at 2.45 and 2.55 Å resolution, respectively. The deletion of a short loop in the cytoplasmic domain of Salmonella FlhB completely abolishes secretion by the type III secretion system. A molecular-dynamics simulation shows that the deletion of the loop affects the flexibility of a linker between the transmembrane and cytoplasmic domains of FlhB. The membrane protein FlhB is a highly conserved component of the flagellar secretion system. It is composed of an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhB{sub C}). Here, the crystal structures of FlhB{sub C} from Salmonella typhimurium and Aquifex aeolicus are described at 2.45 and 2.55 Å resolution, respectively. These flagellar FlhB{sub C} structures are similar to those of paralogues from the needle type III secretion system, with the major difference being in a linker that connects the transmembrane and cytoplasmic domains of FlhB. It was found that deletion of a short flexible loop in a globular part of Salmonella FlhB{sub C} leads to complete inhibition of secretion by the flagellar secretion system. Molecular-dynamics calculations demonstrate that the linker region is the most flexible part of FlhB{sub C} and that the deletion of the loop reduces this flexibility. These results are in good agreement with previous studies showing the importance of the linker in the function of FlhB and provide new insight into the relationship between the different parts of the FlhB{sub C} molecule.

  17. Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Sung Hwan Kim

    2016-12-01

    Full Text Available Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF, secreted by the retinal pigment epithelium (RPE, in pathological angiogenesis and the development of choroidal neovascularization (CNV in age-related macular degeneration (AMD. RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular neovascular disease. Inhibiting this signaling pathway with a therapeutic molecule is a promising anti-angiogenic strategy to treat this disease with potentially fewer side effects. Oxalomalate (OMA is a competitive inhibitor of NADP+-dependent isocitrate dehydrogenase (IDH, which plays an important role in cellular signaling pathways regulated by reactive oxygen species (ROS. Here, we have investigated the inhibitory effect of OMA on the expression of VEGF, and the associated underlying mechanism of action, using in vitro and in vivo RPE cell models of AMD. We found that OMA reduced the expression and secretion of VEGF in RPE cells, and consequently inhibited CNV formation. This function of OMA was linked to its capacity to activate the pVHL-mediated HIF-1α degradation in these cells, partly via a ROS-dependent ATM signaling axis, through inhibition of IDH enzymes. These findings reveal a novel role for OMA in inhibiting RPE-derived VEGF expression and angiogenesis, and suggest unique therapeutic strategies for treating pathological angiogenesis and AMD development.

  18. Effects of agmatine on secretion of interferon tau and catecholamines and expression of genes related to production of polyamines by ovine trophectoderm cells.

    Science.gov (United States)

    Lenis, Yasser Y; Wang, Xiaoqiu; Tang, Wanjin; Wu, Guoyao; Bazer, Fuller W

    2016-10-01

    Embryonic survival requires histotrophic nutrition, including molecules secreted or transported into the uterine lumen by uterine epithelia. L-Arginine (Arg) is a common substrate for synthesis of nitric oxide, ornithine, proline, glutamate, creatinine, urea, polyamines and agmatine. Agmatine (Agm) is a product of arginine decarboxylation and it is a substrate for agmatinase for synthesis of putrescine and other polyamines in the ovine conceptus. Polyamines are essential for conceptus development. Therefore, this study compared effects of Arg and Agm on the behavior of ovine trophectoderm (oTr1) cells cultured in vitro. Arg, but not Agm, increased proliferation and migration of oTr1 cells, but neither Arg nor Agm affected cell adhesion. The total amount of IFNT in culture medium of oTr1 cells was increased by Arg, but Agm increased the IFNT production per oTr1 cell. Arg and Agm plus Arg decreased secretion of dopamine and norepinephrine by oTr1 cells. Agm upregulates expression of mRNAs SLC7A1, agmatinase and OAZ2 while the combination of Arg and Agm decreased expression of mRNAs for ODC1, SLC7A1, OAZ1 and OAZ3 by oTr1 cells. Although Agm does not stimulate proliferation, migration or adhesion of oTr1 cells or their secretion of catecholamines, Agm did increase transcription of SLC7A1, agmatinase and OAZ2 genes which would increase the capacity of oTr1 cells to produce polyamines. Collectively, our findings suggest a role for Arg and Agm in the regulation of transport of basic amino acids (including Arg), polyamine synthesis, and secretion of catecholamines by oTr1 cells.

  19. Impaired CD23 and CD62L expression and tissue inhibitors of metalloproteinases secretion by eosinophils in adults with atopic dermatitis.

    Science.gov (United States)

    de Oliveira Titz, T; Orfali, R L; de Lollo, C; Dos Santos, V G; da Silva Duarte, A J; Sato, M N; Aoki, V

    2016-12-01

    Eosinophils are multifunctional, polymorphonuclear leucocytes that secrete proteins within cytoplasmic granules, such as cytokines, chemokines, metalloproteinases (MMPs) and metalloproteinases tissue inhibitors (TIMPs). Although eosinophilia is a hallmark of atopic dermatitis (AD), several functional aspects of eosinophils remain unknown. We aimed to evaluate the phenotype and functional response of eosinophils under staphylococcal enterotoxin B (SEB) and Toll-like receptor (TLR)-2/6 (FSL-1) stimulation in the secretion of CCL5, MMPs and TIMPs in adults with AD. Forty-one adult patients with AD and 45 healthy controls enrolled for the study. Phenotype of eosinophils from granulocytes of peripheral blood was analysed by flow cytometry. We performed evaluation of CCL5 (cytometric bead array), MMP and TIMP (ELISA) secretion, in culture supernatants of purified eosinophils stimulated with SEB or TLR2/6 agonist (FSL-1). We found a higher frequency of LIN1 - CCR3 + eosinophils, and decreased expression of CD23 and CD62L receptors in eosinophils of AD patients. There was no difference in MMP and TIMP serum levels between the evaluated groups. However, we detected decreased basal levels of TIMP-1, TIMP-2 and CCL5 in culture supernatants from purified, unstimulated eosinophils from AD patients. In adults with AD, phenotypical features of eosinophils reveal decreased expression of early activation and L-selectin receptors. Regarding the functional profile of purified eosinophils related to tissue remodelling in atopic dermatitis, innate immune stimulation (TLR2/6 agonist and SEB) did not affect the ratio of MMP/TIMPs secretion in AD. Our findings reinforce the potential breakdown in tissue remodelling process mediated by eosinophils in AD. © 2016 European Academy of Dermatology and Venereology.

  20. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    Science.gov (United States)

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  1. Type IX secretion system PorM and gliding machinery GldM form arches spanning the periplasmic space.

    Science.gov (United States)

    Leone, Philippe; Roche, Jennifer; Vincent, Maxence S; Tran, Quang Hieu; Desmyter, Aline; Cascales, Eric; Kellenberger, Christine; Cambillau, Christian; Roussel, Alain

    2018-01-30

    Type IX secretion system (T9SS), exclusively present in the Bacteroidetes phylum, has been studied mainly in Flavobacterium johnsoniae and Porphyromonas gingivalis. Among the 18 genes, essential for T9SS function, a group of four, porK-N (P. gingivalis) or gldK-N (F. johnsoniae) belongs to a co-transcribed operon that expresses the T9SS core membrane complex. The central component of this complex, PorM (or GldM), is anchored in the inner membrane by a trans-membrane helix and interacts through the outer membrane PorK-N complex. There is a complete lack of available atomic structures for any component of T9SS, including the PorKLMN complex. Here we report the crystal structure of the GldM and PorM periplasmic domains. Dimeric GldM and PorM, each contain four domains of ~180-Å length that span most of the periplasmic space. These and previously reported results allow us to propose a model of the T9SS core membrane complex as well as its functional behavior.

  2. The role of type III secretion system and lens material on adhesion of Pseudomonas aeruginosa to contact lenses.

    Science.gov (United States)

    Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong

    2012-09-21

    To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.

  3. A reduced, yet functional, nectary disk integrates a complex system of floral nectar secretion in the genus Zeyheria (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Silvia Rodrigues Machado

    Full Text Available ABSTRACT The genus Zeyheria (Bignoniaceae comprises only two species, both of which have been described as possessing a reduced and non-functional nectary disk. Despite the importance of this evolutionary change in the floral nectary, these functional assumptions have been based on disk size and on the distribution, abundance and histochemistry of corolla-borne trichomes. By combining methods on light and electron microscopy, here we investigated the functionality of the reduced nectary disk and describe all of the tissues and structures of the nectar chamber in order to determine the sites of floral nectar secretion in both Zeyheria species. . Our data find the floral nectary traits of both species to be very similar, although differing in their cellular contents. Subcellular evidence in both species indicated that disk, stipe and petal axils were, predominantly, involved in hydrophilic secretion, while capitate glandular trichomes produced lipophilic secretion and papillae produced mixed secretion. Our study shows that in spite of its reduced size, the reduced disk functions in nectar secretion in both species of Zeyheria. This kind of nectary system is a novelty for Bignoniaceae, since it comprises several tissues and structures functioning in an integrated fashion.

  4. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism.

    Science.gov (United States)

    Solomonson, Matthew; Setiaputra, Dheva; Makepeace, Karl A T; Lameignere, Emilie; Petrotchenko, Evgeniy V; Conrady, Deborah G; Bergeron, Julien R; Vuckovic, Marija; DiMaio, Frank; Borchers, Christoph H; Yip, Calvin K; Strynadka, Natalie C J

    2015-03-03

    Mycobacterium tuberculosis (Mtb) uses the ESX-1 type VII secretion system to export virulence proteins across its lipid-rich cell wall, which helps permeabilize the host's macrophage phagosomal membrane, facilitating the escape and cell-to-cell spread of Mtb. ESX-1 membranolytic activity depends on a set of specialized secreted Esp proteins, the structure and specific roles of which are not currently understood. Here, we report the X-ray and electron microscopic structures of the ESX-1-secreted EspB. We demonstrate that EspB adopts a PE/PPE-like fold that mediates oligomerization with apparent heptameric symmetry, generating a barrel-shaped structure with a central pore that we propose contributes to the macrophage killing functions of EspB. Our structural data also reveal unexpected direct interactions between the EspB bipartite secretion signal sequence elements that form a unified aromatic surface. These findings provide insight into how specialized proteins encoded within the ESX-1 locus are targeted for secretion, and for the first time indicate an oligomerization-dependent role for Esp virulence factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cutaneous expression of systemic candidiasis.

    Science.gov (United States)

    Pedraz, J; Delgado-Jiménez, Y; Pérez-Gala, S; Nam-Cha, S; Fernández-Herrera, J; García-Diez, A

    2009-01-01

    Skin lesions associated with Candida septicaemia occur only in a minority of patients, who are usually immunocompromised, but they can help to establish a diagnosis rapidly. The lesions form a characteristic maculopapular or nodular rash at the onset of the infection. We report three cases of systemic candidiasis (SC) with cutaneous manifestations in immunocompromised patients. In these patients, the lesions started as asymptomatic or slightly pruriginous macules, papules or nodules localized on the trunk and extremities. The patients' general condition was very poor and they presented a high fever at the onset of the illness. Candida spp. were isolated from blood in all cases, and histology showed yeasts in two of them. Most of the lesions resolved with antifungal treatment. The diagnosis of SC is often delayed or missed because of the absence of useful diagnostic tools, the varying clinical manifestations and the frequent negativity (50-75%) of blood cultures for Candida. Fluconazole is the treatment of choice for Candida albicans, but treatment response is unknown for other Candida spp., which may require treatment with amphotericin B.

  6. A Protein Disulfide Isomerase Gene Fusion Expression System That Increases the Extracellular Productivity of Bacillus brevis

    Science.gov (United States)

    Kajino, Tsutomu; Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Udaka, Shigezo; Yamada, Yukio; Takahashi, Haruo

    2000-01-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system. PMID:10653729

  7. System of matrix metalloproteinases and cytokine secretion in type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension.

    Science.gov (United States)

    Kologrivova, I V; Suslova, T E; Koshel'skaya, O A; Vinnitskaya, I V; Trubacheva, O A

    2014-03-01

    The study included patients with type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension, patients with arterial hypertension, and healthy volunteers. We evaluated the levels of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase type 1 (TIMP-1), glucose, insulin, C-peptide, glycated hemoglobin, and spontaneous and mitogen-activated cytokine secretion (IL-2, IL4, IL-6, IL-10, IL-17, TNF-α, and IFN-γ). Patients with type 2 diabetes mellitus in combination with arterial hypertension exhibited maximum TIMP-1 levels and TIMP-1/MMP-2, TIMP-1/ MMP-9 ratios as well as enhanced secretion of TNF-α, IL-6, IL-17 and reduced secretion of IL-10 in comparison with healthy individuals. The observed shifts are probably determined the development of systemic hyperinsulinemia in patients suffering from type 2 diabetes mellitus coupled with arterial hypertension.

  8. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  9. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  10. Near-atomic resolution analysis of BipD, a component of the type III secretion system of Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Pal, M.; Erskine, P. T.; Gill, R. S.; Wood, S. P.; Cooper, J. B.

    2010-01-01

    The type III secretion system needle-tip protein BipD has been crystallized in a form that diffracts X-rays to 1.5 Å resolution and the structure has been refined to an R factor of 16.1% and an R free of 19.8% at this resolution. The putative antiparallel dimer interface that was observed in earlier structures is conserved. Burkholderia pseudomallei, the causative agent of melioidosis, possesses a type III protein secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to inject virulence-associated proteins into target cells of the host organism. The bipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and is most likely to be functionally analogous to IpaD from Shigella and SipD from Salmonella. Proteins in this family are thought to act as extracellular chaperones at the tip of the secretion needle to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and may also link the translocon pore with the secretion needle. BipD has been crystallized in a monoclinic crystal form that diffracted X-rays to 1.5 Å resolution and the structure was refined to an R factor of 16.1% and an R free of 19.8% at this resolution. The putative dimer interface that was observed in previous crystal structures was retained and a larger surface area was buried in the new crystal form

  11. Authentication Without Secrets

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Lyndon G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    This work examines a new approach to authentication, which is the most fundamental security primitive that underpins all cyber security protections. Current Internet authentication techniques require the protection of one or more secret keys along with the integrity protection of the algorithms/computations designed to prove possession of the secret without actually revealing it. Protecting a secret requires physical barriers or encryption with yet another secret key. The reason to strive for "Authentication without Secret Keys" is that protecting secrets (even small ones only kept in a small corner of a component or device) is much harder than protecting the integrity of information that is not secret. Promising methods are examined for authentication of components, data, programs, network transactions, and/or individuals. The successful development of authentication without secret keys will enable far more tractable system security engineering for high exposure, high consequence systems by eliminating the need for brittle protection mechanisms to protect secret keys (such as are now protected in smart cards, etc.). This paper is a re-release of SAND2009-7032 with new figures numerous edits.

  12. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities.

    Science.gov (United States)

    Ray, Ann; Schwartz, Nika; de Souza Santos, Marcela; Zhang, Junmei; Orth, Kim; Salomon, Dor

    2017-11-01

    Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Vibrio tapetis Displays an Original Type IV Secretion System in Strains Pathogenic for Bivalve Molluscs

    Directory of Open Access Journals (Sweden)

    Graciela M. Dias

    2018-02-01

    Full Text Available The Brown Ring Disease (BRD caused high mortality rates since 1986 in the Manila clam Venerupis philippinarum introduced and cultured in Western Europe from the 1970s. The causative agent of BRD is a Gram-Negative bacterium, Vibrio tapetis, which is also pathogenic to fish. Here we report the first assembly of the complete genome of V. tapetis CECT4600T, together with the genome sequences of 16 additional strains isolated across a broad host and geographic range. Our extensive genome dataset allowed us to describe the pathogen pan- and core genomes and to identify putative virulence factors. The V. tapetis core genome consists of 3,352 genes, including multiple potential virulence factors represented by haemolysins, transcriptional regulators, Type I restriction modification system, GGDEF domain proteins, several conjugative plasmids, and a Type IV secretion system. Future research on the coevolutionary arms race between V. tapetis virulence factors and host resistance mechanisms will improve our understanding of how pathogenicity develops in this emerging pathogen.

  14. A Cryptographic SoC for Robust Protection of Secret Keys in IPTV DRM Systems

    Science.gov (United States)

    Lee, Sanghan; Yang, Hae-Yong; Yeom, Yongjin; Park, Jongsik

    The security level of an internet protocol television (IPTV) digital right management (DRM) system ultimately relies on protection of secret keys. Well known devices for the key protection include smartcards and battery backup SRAMs (BB-SRAMs); however, these devices could be vulnerable to various physical attacks. In this paper, we propose a secure and cost-effective design of a cryptographic system on chip (SoC) that integrates the BB-SRAM with a cell-based design technique. The proposed SoC provides robust safeguard against the physical attacks, and satisfies high-speed and low-price requirements of IPTV set-top boxes. Our implementation results show that the maximum encryption rate of the SoC is 633Mb/s. In order to verify the data retention capabilities, we made a prototype chip using 0.18µm standard cell technology. The experimental results show that the integrated BB-SRAM can reliably retain data with a 1.4µA leakage current.

  15. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    Science.gov (United States)

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  16. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion.

    Science.gov (United States)

    Branco, Renato Chaves Souto; Camargo, Rafael Ludemann; Batista, Thiago Martins; Vettorazzi, Jean Franciesco; Borck, Patrícia Cristine; Dos Santos-Silva, Junia Carolina Rebelo; Boschero, Antonio Carlos; Zoppi, Cláudio Cesar; Carneiro, Everardo Magalhães

    2017-09-01

    Taurine (Tau) restores β-cell function in obesity; however, its action is lost in malnourished obese rodents. Here, we investigated the mechanisms involved in the lack of effects of Tau in this model. C57BL/6 mice were fed a control diet (CD) (14% protein) or a protein-restricted diet (RD) (6% protein) for 6 wk. Afterward, mice received a high-fat diet (HFD) for 8 wk [CD + HFD (CH) and RD + HFD (RH)] with or without 5% Tau supplementation after weaning on their drinking water [CH + Tau (CHT) and RH + Tau (RHT)]. The HFD increased insulin secretion through mitochondrial metabolism in CH and RH. Tau prevented all those alterations in CHT only. The expression of the taurine transporter (Tau-T), as well as Tau content in pancreatic islets, was increased in CH but had no effect on RH. Protein malnutrition programs β cells and impairs Tau-induced restoration of mitochondrial metabolism and biogenesis. This may be associated with modulation of the expression of Tau-T in pancreatic islets, which may be responsible for the absence of effect of Tau in protein-malnourished obese mice.-Branco, R. C. S., Camargo, R. L., Batista, T. M., Vettorazzi, J. F., Borck, P. C., dos Santos-Silva, J. C. R., Boschero, A. C., Zoppi, C. C., Carneiro, E. M. Protein malnutrition blunts the increment of taurine transporter expression by a high-fat diet and impairs taurine reestablishment of insulin secretion. © FASEB.

  17. Genome-wide analysis of gene expression and protein secretion of Babesia canis during virulent infection identifies potential pathogenicity factors.

    Science.gov (United States)

    Eichenberger, Ramon M; Ramakrishnan, Chandra; Russo, Giancarlo; Deplazes, Peter; Hehl, Adrian B

    2017-06-13

    Infections of dogs with virulent strains of Babesia canis are characterized by rapid onset and high mortality, comparable to complicated human malaria. As in other apicomplexan parasites, most Babesia virulence factors responsible for survival and pathogenicity are secreted to the host cell surface and beyond where they remodel and biochemically modify the infected cell interacting with host proteins in a very specific manner. Here, we investigated factors secreted by B. canis during acute infections in dogs and report on in silico predictions and experimental analysis of the parasite's exportome. As a backdrop, we generated a fully annotated B. canis genome sequence of a virulent Hungarian field isolate (strain BcH-CHIPZ) underpinned by extensive genome-wide RNA-seq analysis. We find evidence for conserved factors in apicomplexan hemoparasites involved in immune-evasion (e.g. VESA-protein family), proteins secreted across the iRBC membrane into the host bloodstream (e.g. SA- and Bc28 protein families), potential moonlighting proteins (e.g. profilin and histones), and uncharacterized antigens present during acute crisis in dogs. The combined data provides a first predicted and partially validated set of potential virulence factors exported during fatal infections, which can be exploited for urgently needed innovative intervention strategies aimed at facilitating diagnosis and management of canine babesiosis.

  18. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.

    Science.gov (United States)

    Linares, Denis; Jean, Natacha; Van Overtvelt, Perrine; Ouidir, Tassadit; Hardouin, Julie; Blache, Yves; Molmeret, Maëlle

    2016-02-01

    Shewanella sp. are facultative anaerobic Gram-negative bacteria, extensively studied for their electron transfer ability. Shewanella frigidimarina has been detected and isolated from marine environments, and in particular, from biofilms. However, its ability to adhere to surfaces and form a biofilm is poorly understood. In this study, we show that the ability to adhere and to form a biofilm of S. frigidimarina NCIMB400 is significantly higher than that of Shewanella oneidensis in our conditions. We also show that this strain forms a biofilm in artificial seawater, whereas in Luria-Bertani, this capacity is reduced. To identify proteins involved in early biofilm formation, a proteomic analysis of sessile versus planktonic membrane-enriched fractions allowed the identification of several components of the same type VI secretion system gene cluster: putative Hcp1 and ImpB proteins as well as a forkhead-associated domain-containing protein. The upregulation of Hcp1 a marker of active translocation has been confirmed using quantitative reverse transcription polymerase chain reaction. Our data demonstrated the presence of a single and complete type VI secretion system in S. frigidimarina NCIMB400 genome, upregulated in sessile compared with planktonic conditions. The fact that three proteins including the secreted protein Hcp1 have been identified may suggest that this type VI secretion system is functional. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Analysis of secreted proteins from Aspergillus flavus.

    Science.gov (United States)

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  20. Effective cancer vaccine platform based on attenuated salmonella and a type III secretion system.

    Science.gov (United States)

    Xu, Xin; Hegazy, Wael A H; Guo, Linjie; Gao, Xiuhua; Courtney, Amy N; Kurbanov, Suhrab; Liu, Daofeng; Tian, Gengwen; Manuel, Edwin R; Diamond, Don J; Hensel, Michael; Metelitsa, Leonid S

    2014-11-01

    Vaccines explored for cancer therapy have been based generally on injectable vector systems used to control foreign infectious pathogens, to which the immune system evolved to respond naturally. However, these vectors may not be effective at presenting tumor-associated antigens (TAA) to the immune system in a manner that is sufficient to engender antitumor responses. We addressed this issue with a novel orally administered Salmonella-based vector that exploits a type III secretion system to deliver selected TAA in the cytosol of professional antigen-presenting cells in situ. A systematic comparison of candidate genes from the Salmonella Pathogenicity Island 2 (SPI2) locus was conducted in the vaccine design, using model antigens and a codon-optimized form of the human TAA survivin (coSVN), an oncoprotein that is overexpressed in most human cancers. In a screen of 20 SPI2 promoter:effector combinations, a PsifB::sseJ combination exhibited maximal potency for antigen translocation into the APC cytosol, presentation to CD8 T cells, and murine immunogenicity. In the CT26 mouse model of colon carcinoma, therapeutic vaccination with a lead PsifB::sseJ-coSVN construct (p8032) produced CXCR3-dependent infiltration of tumors by CD8 T cells, reversed the CD8:Treg ratio at the tumor site, and triggered potent antitumor activity. Vaccine immunogenicity and antitumor potency were enhanced by coadministration of the natural killer T-cell ligand 7DW8-5, which heightened the production of IL12 and IFNγ. Furthermore, combined treatment with p8032 and 7DW8-5 resulted in complete tumor regression in A20 lymphoma-bearing mice, where protective memory was demonstrated. Taken together, our results demonstrate how antigen delivery using an oral Salmonella vector can provide an effective platform for the development of cancer vaccines. ©2014 American Association for Cancer Research.

  1. Systematic high-yield production of human secreted proteins in Escherichia coli

    International Nuclear Information System (INIS)

    Dai Xueyu; Chen Qiang; Lian Min; Zhou Yanfeng; Zhou Mo; Lu Shanyun; Chen Yunjia; Luo Jingchu; Gu Xiaocheng; Jiang Ying; Luo Ming; Zheng Xiaofeng

    2005-01-01

    Human secreted proteins play a very important role in signal transduction. In order to study all potential secreted proteins identified from the human genome sequence, systematic production of large amounts of biologically active secreted proteins is a prerequisite. We selected 25 novel genes as a trial case for establishing a reliable expression system to produce active human secreted proteins in Escherichia coli. Expression of proteins with or without signal peptides was examined and compared in E. coli strains. The results indicated that deletion of signal peptides, to a certain extent, can improve the expression of these proteins and their solubilities. More importantly, under expression conditions such as induction temperature, N-terminus fusion peptides need to be optimized in order to express adequate amounts of soluble proteins. These recombinant proteins were characterized as well-folded proteins. This system enables us to rapidly obtain soluble and highly purified human secreted proteins for further functional studies

  2. Nasal secretions from patients with polyps and healthy individuals, collected with a new aspiration system: evaluation of total protein and immunoglobulin concentrations

    NARCIS (Netherlands)

    Biewenga, J.; Stoop, A. E.; Baker, H. E.; Swart, S. J.; Nauta, J. J.; van Kamp, G. J.; van der Baan, S.

    1991-01-01

    This study was designed, first, to test a new system for aspiration of human nasal secretions and, secondly, to evaluate protein and immunoglobulin concentrations in these secretions at different levels of secretory activity. The direct aspiration system combines the advantages of minimal irritation

  3. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    Science.gov (United States)

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  4. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    Directory of Open Access Journals (Sweden)

    Dhana G Gorasia

    2016-08-01

    Full Text Available The type IX secretion system (T9SS has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  5. Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum

    Directory of Open Access Journals (Sweden)

    Al-Khedery Basima

    2012-11-01

    Full Text Available Abstract Background Anaplasma phagocytophilum is an intracellular organism in the Order Rickettsiales that infects diverse animal species and is causing an emerging disease in humans, dogs and horses. Different strains have very different cell tropisms and virulence. For example, in the U.S., strains have been described that infect ruminants but not dogs or rodents. An intriguing question is how the strains of A. phagocytophilum differ and what different genome loci are involved in cell tropisms and/or virulence. Type IV secretion systems (T4SS are responsible for translocation of substrates across the cell membrane by mechanisms that require contact with the recipient cell. They are especially important in organisms such as the Rickettsiales which require T4SS to aid colonization and survival within both mammalian and tick vector cells. We determined the structure of the T4SS in 7 strains from the U.S. and Europe and revised the sequence of the repetitive virB6 locus of the human HZ strain. Results Although in all strains the T4SS conforms to the previously described split loci for vir genes, there is great diversity within these loci among strains. This is particularly evident in the virB2 and virB6 which are postulated to encode the secretion channel and proteins exposed on the bacterial surface. VirB6-4 has an unusual highly repetitive structure and can have a molecular weight greater than 500,000. For many of the virs, phylogenetic trees position A. phagocytophilum strains infecting ruminants in the U.S. and Europe distant from strains infecting humans and dogs in the U.S. Conclusions Our study reveals evidence of gene duplication and considerable diversity of T4SS components in strains infecting different animals. The diversity in virB2 is in both the total number of copies, which varied from 8 to 15 in the herein characterized strains, and in the sequence of each copy. The diversity in virB6 is in the sequence of each of the 4 copies in

  6. Bile salt receptor complex activates a pathogenic type III secretion system

    Science.gov (United States)

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N; Salomon, Dor; Tomchick, Diana R; Grishin, Nick V; Orth, Kim

    2016-01-01

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment. DOI: http://dx.doi.org/10.7554/eLife.15718.001 PMID:27377244

  7. Bile salt receptor complex activates a pathogenic type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; Salomon, Dor; Tomchick, Diana R.; Grishin, Nick V.; Orth, Kim

    2016-07-05

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered thatVibrio parahaemolyticusVtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.

  8. The type VI secretion system impacts bacterial invasion and population dynamics in a model intestinal microbiota

    Science.gov (United States)

    Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer

    Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.

  9. Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly

    Directory of Open Access Journals (Sweden)

    Amy J. Gerc

    2015-09-01

    Full Text Available The Type VI secretion system (T6SS is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches.

  10. Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly

    Science.gov (United States)

    Gerc, Amy J.; Diepold, Andreas; Trunk, Katharina; Porter, Michael; Rickman, Colin; Armitage, Judith P.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.

    2015-01-01

    Summary The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches. PMID:26387948

  11. Secreted autoantibody repertoires in Sjögren's syndrome and systemic lupus erythematosus: A proteomic approach.

    Science.gov (United States)

    Al Kindi, Mahmood A; Colella, Alex D; Chataway, Tim K; Jackson, Michael W; Wang, Jing J; Gordon, Tom P

    2016-04-01

    The structures of epitopes bound by autoantibodies against RNA-protein complexes have been well-defined over several decades, but little is known of the clonality, immunoglobulin (Ig) variable (V) gene usage and mutational status of the autoantibodies themselves at the level of the secreted (serum) proteome. A novel proteomic workflow is presented based on affinity purification of specific Igs from serum, high-resolution two-dimensional gel electrophoresis, and de novo and database-driven sequencing of V-region proteins by mass spectrometry. Analysis of anti-Ro52/Ro60/La proteomes in primary Sjögren's syndrome (SS) and anti-Sm and anti-ribosomal P proteomes in systemic lupus erythematosus (SLE) has revealed that these antibody responses are dominated by restricted sets of public (shared) clonotypes, consistent with common pathways of production across unrelated individuals. The discovery of shared sets of specific V-region peptides can be exploited for diagnostic biomarkers in targeted mass spectrometry platforms and for tracking and removal of pathogenic clones. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility

    Science.gov (United States)

    Nakayama, K

    2015-01-01

    Porphyromonas gingivalis is a gram-negative, non-motile, anaerobic bacterium implicated as a major pathogen in periodontal disease. P. gingivalis grows as black-pigmented colonies on blood agar, and many bacteriologists have shown interest in this property. Studies of colonial pigmentation have revealed a number of important findings, including an association with the highly active extracellular and surface proteinases called gingipains that are found in P. gingivalis. The Por secretion system, a novel type IX secretion system (T9SS), has been implicated in gingipain secretion in studies using non-pigmented mutants. In addition, many potent virulence proteins, including the metallocarboxypeptidase CPG70, 35 kDa hemin-binding protein HBP35, peptidylarginine deiminase PAD and Lys-specific serine endopeptidase PepK, are secreted through the T9SS. These findings have not been limited to P. gingivalis but have been extended to other bacteria belonging to the phylum Bacteroidetes. Many Bacteroidetes species possess the T9SS, which is associated with gliding motility for some of these bacteria. PMID:25546073

  13. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages.

    Science.gov (United States)

    Palacz-Wrobel, Marta; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Fila-Danilow, Anna; Suchanek-Raif, Renata; Kowalski, Jan

    2017-09-01

    Polyphenols such as apigenin, kaempferol or resveratrol are typically found in plants, including fruits, vegetables, herbs and spices, which have a wide range of biological functions such as antioxidative, anti-inflammatory, vasodilative, anticoagulative and proapoptotic. Discovering such multifunctional compounds in widely consumed plant-based products - ones that both inhibit the release of TNF-α from tissue macrophages and at the same time enhance the secretion of IL-10 - would be an important signpost in the quest for effective pharmacological treatment of numerous diseases that have an inflammatory etiology. The aim of the study is to investigate the impact of biologically active polyphenols such as apigenin, resveratrol and kaempferol on gene expression and protein secretion of IL-10 and TNF-α in line RAW-264.7. Cells were cultured under standard conditions. IL-10 and TNF-α genes expression were examined using QRT-PCR and to assess cytokines concentration ELISA have been used. Apigenin, kaempferol and resveratrol at a dose 30μM significantly decrease the TNF-α expression and secretion. Apigenin decrease the IL-10 expression and secretion. Furthermore, increase in IL-10 secretion after administration of kaempferol and resveratrol were observed. In the process of administration of tested compounds before LPS, which activate macrophages, decrease of TNF-α secretion after apigenin and kaempferol and increase of IL-10 secretion after resveratrol were observed. The results of present work indicate that 1) apigenin, resveratrol and kaempferol may reduce the intensity of inflammatory processes by inhibiting the secretion of proinflammatory cytokine TNF-α, and resveratrol and kaempferol additionally by increasing the secretion of anti-inflammatory cytokine IL-10 2) the studies indicate the potentially beneficial - anti-inflammatory - impact of diet rich in products including apigenin, resveratrol and kaempferol. Copyright © 2017 Elsevier Masson SAS. All rights

  14. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells.

    Science.gov (United States)

    Kwon, Kwang-Chul; Nityanandam, Ramya; New, James S; Daniell, Henry

    2013-01-01

    Glucagon-like peptide (GLP-1) increases insulin secretion but is rapidly degraded (half-life: 2 min in circulation). GLP-1 analogue, exenatide (Byetta) has a longer half-life (3.3-4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life. Because patients with diabetes take >60 000 injections in their life time, alternative delivery methods are highly desired. Exenatide is ideal for oral delivery because insulinotropism is glucose dependent, with reduced risk of hypoglycaemia even at higher doses. Therefore, exendin-4 (EX4) was expressed as a cholera toxin B subunit (CTB)-fusion protein in tobacco chloroplasts to facilitate bioencapsulation within plant cells and transmucosal delivery in the gut via GM1 receptors present in the intestinal epithelium. The transgene integration was confirmed by PCR and Southern blot analysis. Expression level of CTB-EX4 reached up to 14.3% of total leaf protein (TLP). Lyophilization of leaf material increased therapeutic protein concentration by 12- to 24-fold, extended their shelf life up to 15 months when stored at room temperature and eliminated microbes present in fresh leaves. The pentameric structure, disulphide bonds and functionality of CTB-EX4 were well preserved in lyophilized materials. Chloroplast-derived CTB-EX4 showed increased insulin secretion similar to the commercial EX4 in beta-TC6, a mouse pancreatic cell line. Even when 5000-fold excess dose of CTB-EX4 was orally delivered, it stimulated insulin secretion similar to the intraperitoneal injection of commercial EX4 but did not cause hypoglycaemia in mice. Oral delivery of the bioencapsulated EX4 should eliminate injections, increase patient compliance/convenience and significantly lower their cost. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    Science.gov (United States)

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  16. Discovery of plant phenolic compounds that act as type III secretion system inhibitors or inducers of the fire blight pathogen, Erwinia amylovora.

    Science.gov (United States)

    Khokhani, Devanshi; Zhang, Chengfang; Li, Yan; Wang, Qi; Zeng, Quan; Yamazaki, Akihiro; Hutchins, William; Zhou, Shan-Shan; Chen, Xin; Yang, Ching-Hong

    2013-09-01

    Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.

  17. Evidence of the presence of a functional Dot/Icm type IV-B secretion system in the fish bacterial pathogen Piscirickettsia salmonis.

    Directory of Open Access Journals (Sweden)

    Fernando A Gómez

    Full Text Available Piscirickettsia salmonis is a fish bacterial pathogen that has severely challenged the sustainability of the Chilean salmon industry since its appearance in 1989. As this Gram-negative bacterium has been poorly characterized, relevant aspects of its life cycle, virulence and pathogenesis must be identified in order to properly design prophylactic procedures. This report provides evidence of the functional presence in P. salmonis of four genes homologous to those described for Dot/Icm Type IV Secretion Systems. The Dot/Icm System, the major virulence mechanism of phylogenetically related pathogens Legionella pneumophila and Coxiella burnetii, is responsible for their intracellular survival and multiplication, conditions that may also apply to P. salmonis. Our results demonstrate that the four P. salmonis dot/icm homologues (dotB, dotA, icmK and icmE are expressed both during in vitro tissue culture cells infection and growing in cell-free media, suggestive of their putative constitutive expression. Additionally, as it happens in other referential bacterial systems, temporal acidification of cell-free media results in over expression of all four P. salmonis genes, a well-known strategy by which SSTIV-containing bacteria inhibit phagosome-lysosome fusion to survive. These findings are very important to understand the virulence mechanisms of P. salmonis in order to design new prophylactic alternatives to control the disease.

  18. Topology of a type I secretion system for bacteriocins of Lactococcus lactis

    NARCIS (Netherlands)

    Franke, Christian Marc

    1998-01-01

    This thesis describes the analysis of a number of aspects of the secretion and muturation machinery of the bacteriocin lactococcin A (LcnA) from Lactococcus lactis, whick is initially synthesized as a precursor protein (preLcnA), containing an N-terminal extension of 20 amino acids (the leader)....

  19. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host.

    Science.gov (United States)

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-01-01

    Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.

  20. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells.

    Science.gov (United States)

    Feng, Pu; Zhao, Hang; Chai, Jinghua; Huang, Liquan; Wang, Hong

    2012-01-01

    Taste buds are chemosensory structures widely distributed on the surface of the oral cavity and larynx. Taste cells, exposed to the oral environment, face great challenges in defense against potential pathogens. While immune cells, such as T-cells and macrophages, are rarely found in taste buds, high levels of expression of some immune-response-associated molecules are observed in taste buds. Yet, the cellular origins of these immune molecules such as cytokines in taste buds remain to be determined. Here, we show that a specific subset of taste cells selectively expresses high levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Based on immuno-colocalization experiments using taste-cell-type markers, the TNF-α-producing cells are predominantly type II taste cells expressing the taste receptor T1R3. These cells can rapidly increase TNF-α production and secretion upon inflammatory challenges, both in vivo and in vitro. The lipopolysaccharide (LPS)-induced TNF-α expression in taste cells was completely eliminated in TLR2(-/-)/TLR4(-/-) double-gene-knockout mice, which confirms that the induction of TNF-α in taste buds by LPS is mediated through TLR signaling pathways. The taste-cell-produced TNF-α may contribute to local immune surveillance, as well as regulate taste sensation under normal and pathological conditions.

  1. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may

  2. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system.

    Science.gov (United States)

    Mizukami, Makoto; Onishi, Hiromasa; Hanagata, Hiroshi; Miyauchi, Akira; Ito, Yuji; Tokunaga, Hiroko; Ishibashi, Matsujiro; Arakawa, Tsutomu; Tokunaga, Masao

    2018-10-01

    The Brevibacillus expression system has been successfully employed for the efficient productions of a variety of recombinant proteins, including enzymes, cytokines, antigens and antibody fragments. Here, we succeeded in secretory expression of Trastuzumab Fab antibody fragments using B. choshinensis/BIC (Brevibacillus in vivocloning) expression system. In the fed-batch high-density cell culture, recombinant Trastuzumab Fab with amino-terminal His-tag (His-BcFab) was secreted at high level, 1.25 g/liter, and Fab without His-tag (BcFab) at ∼145 mg/L of culture supernatant. His-BcFab and BcFab were purified to homogeneity using combination of conventional column chromatographies with a yield of 10-13%. This BcFab preparation exhibited native structure and functions evaluated by enzyme-linked immunosorbent assay, surface plasmon resonance, circular dichroism measurements and size exclusion chromatography. To our knowledge, this is the highest production of Fab antibody fragments in gram-positive bacterial expression/secretion systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    Science.gov (United States)

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  4. The GlaA signal peptide substantially increases the expression and secretion of α-galactosidase in Aspergillus niger.

    Science.gov (United States)

    Xu, Yue; Wang, Yan-Hui; Liu, Tian-Qi; Zhang, Hui; Zhang, He; Li, Jie

    2018-03-31

    α-Galactosidases are widely used in many fields. It is necessary to improve the production of enzymes through microbiological processes. The aim of this study was to construct recombinant Aspergillus niger strains with high α-galactosidase production. Two recombinant A. niger strains were constructed: AB and AGB. The recombinant AB strain contained the α-galactosidase aglB gene from A. niger with its native AglB signal peptide regulated by the glucoamylase promoter. In the AGB recombinant strain, the AglB signal peptide was replaced with the glucoamylase (GlaA) signal peptide. The extracellular maximum α-galactosidase activity of the AGB strain was 215.7 U/ml and that of the AB strain was 9.8 U/mL. The optimal conditions for α-galactosidase were pH 3.5 and 35 °C. The GlaA signal peptide substantially increased the yield of secreted α-galactosidase in A. niger. This recombinant strain holds great potential for industrial applications.

  5. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts.

    Science.gov (United States)

    Freimoser, Florian M; Screen, Steven; Bagga, Savita; Hu, Gang; St Leger, Raymond J

    2003-01-01

    Expressed sequence tag (EST) libraries for Metarhizium anisopliae, the causative agent of green muscardine disease, were developed from the broad host-range pathogen Metarhizium anisopliae sf. anisopliae and the specific grasshopper pathogen, M. anisopliae sf. acridum. Approximately 1,700 5' end sequences from each subspecies were generated from cDNA libraries representing fungi grown under conditions that maximize secretion of cuticle-degrading enzymes. Both subspecies had ESTs for virtually all pathogenicity-related genes cloned to date from M. anisopliae, but many novel genes encoding potential virulence factors were also tagged. Enzymes with potential targets in the insect host included proteases, chitinases, phospholipases, lipases, esterases, phosphatases and enzymes producing toxic secondary metabolites. A diverse array of proteases composed 36 % of all M. anisopliae sf. anisopliae ESTs. Eighty percent of the ESTs that could be clustered into functional groups had significant matches (Ehistory of this clade.

  6. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    Science.gov (United States)

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  7. Analysis of Erwinia chrysanthemi EC16 pelE::uidA, pelL::uidA, and hrpN::uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system.

    Science.gov (United States)

    Ham, Jong Hyun; Cui, Yaya; Alfano, James R; Rodríguez-Palenzuela, Pablo; Rojas, Clemencia M; Chatterjee, Arun K; Collmer, Alan

    2004-02-01

    The plant pathogen Erwinia chrysanthemi produces a variety of factors that have been implicated in its ability to cause soft-rot diseases in various hosts. These include HrpN, a harpin secreted by the Hrp type III secretion system; PelE, one of several major pectate lyase isozymes secreted by the type II system; and PelL, one of several secondary Pels secreted by the type II system. We investigated these factors in E. chrysanthemi EC16 with respect to the effects of medium composition and growth phase on gene expression (as determined with uidA fusions and Northern analyses) and effects on virulence. pelE was induced by polygalacturonic acid, but pelL was not, and hrpN was expressed unexpectedly in nutrient-rich King's medium B and in minimal salts medium at neutral pH. In contrast, the effect of medium composition on hrp expression in E. chrysanthemi CUCPB1237 and 3937 was like that of many other phytopathogenic bacteria in being repressed in complex media and induced in acidic pH minimal medium. Northern blot analysis of hrpN and hrpL expression by the wild-type and hrpL::omegaCmr and hrpS::omegaCmr mutants revealed that hrpN expression was dependent on the HrpL alternative sigma factor, whose expression, in turn, was dependent on the HrpS putative sigma54 enhancer binding protein. The expression of pelE and hrpN increased strongly in late logarithmic growth phase. To test the possible role of quorum sensing in this expression pattern, the expI/expR locus was cloned in Escherichia coli on the basis of its ability to direct production of acyl-homoserine lactone and then used to construct expI mutations in pelE::uidA, pelL::uidA, and hrpN::uidA Erwinia chrysanthemi strains. Mutation of expI had no apparent effect on the growth-phase-dependent expression of hrpN and pelE, or on the virulence of E. chrysanthemi in witloof chicory leaves. Overexpression of hrpN in E. chrysanthemi resulted in approximately 50% reduction of lesion size on chicory leaves without an

  8. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  9. The type III secretion system is involved in the invasion and intracellular survival of Escherichia coli K1 in human brain microvascular endothelial cells

    OpenAIRE

    Yao, Yufeng; Xie, Yi; Perace, Donna; Zhong, Yi; Lu, Jie; Tao, Jing; Guo, Xiaokui; Kim, Kwang Sik

    2009-01-01

    Type III secretion systems have been documented in many Gram-negative bacteria, including enterohemorrhagic Escherichia coli. We have previously shown the existence of a putative type III secretion system in meningitis-causing E. coli K1 strains, referred to as E. coli type III secretion 2 (ETT2). The sequence of ETT2 in meningitis-causing E. coli K1 strain EC10 (O7:K1) revealed that ETT2 comprises the epr, epa and eiv genes, but bears mutations, deletions and insertions. We constructed the E...

  10. Interleukin-1beta induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: implications for Alzheimer's disease

    NARCIS (Netherlands)

    Hoozemans, J. J.; Veerhuis, R.; Janssen, I.; Rozemuller, A. J.; Eikelenboom, P.

    2001-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) may decrease the risk of developing Alzheimer's disease (AD). Cyclooxygenase 2 (COX-2), one of the targets of NSAIDs, is increasingly expressed in neuronal cells in AD brain. In this study, of the cytokines that are found at increased levels in AD brain

  11. CXCL12 chemokine expression and secretion regulates colorectal carcinoma cell anoikis through Bim-mediated intrinsic apoptosis.

    Directory of Open Access Journals (Sweden)

    Luke J Drury

    Full Text Available BACKGROUND: Resistance to anoikis, apoptosis triggered by a loss of cellular adhesion to the underlying extracellular matrix, is a hallmark of metastatic cancer. Previously we have shown re-establishment of CXCL12 expression in colorectal carcinoma cells inhibits metastasis by enhancing anoikis sensitivity. The objective of these studies was to define the signaling mechanisms regulating CXCL12-mediated anoikis. METHODOLOGY/PRINCIPAL FINDINGS: Adhesion, examined by crystal violet staining, immunofluorescence microscopy, and immunoblot analysis indicated decreased focal adhesion signaling corresponding with loss of adhesion in cells constitutively simulated by CXCL12. Loss of adhesion was inhibited by pertussis toxin treatment, indicating CXCL12 regulating anoikis through G(αi-protein coupled receptors. Non-adherent HCT116 and HT29 colorectal carcinoma cells expressing CXCL12 exhibited enhanced anoikis sensitivity by propidium iodide staining, caspase activity assays, and immunoblot compared to GFP control cells. CXCL12 producing carcinomas cultured on poly-HEMA displayed heightened Bim and loss of Mcl-1 and Bcl-2 preceding cytochrome c release, and caspase-9 activation. RNAi knockdown of Bim reversed anoikis sensitivity of CXCL12-expressing cells and fostered increased soft-agar foci formation and hepatic tumors in an orthotopic mouse model of metastasis. CONCLUSIONS/SIGNIFICANCE: These data indicate CXCL12 provides a barrier to metastasis by increasing anoikis via activation of a Bim-mediated intrinsic apoptotic pathway. These results underscore the importance of retaining CXCL12 expression to sensitize colorectal carcinomas to anoikis and minimize tumor progression.

  12. Orbital Express fluid transfer demonstration system

    Science.gov (United States)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  13. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme.

    Science.gov (United States)

    Risser, Douglas D; Meeks, John C

    2013-02-01

    Many filamentous cyanobacteria are capable of gliding motility by an undefined mechanism. Within the heterocyst-forming clades, some strains, such as the Nostoc spp. and Fisherella spp., are motile only as specialized filaments termed hormogonia. Here we report on the phenotype of inactivation of a methyl-accepting chemotaxis-like protein in Nostoc punctiforme, designated HmpD. The gene hmpD was found to be essential for hormogonium development, motility and polysaccharide secretion. Comparative global transcriptional profiling of the ΔhmpD strain demonstrated that HmpD has a profound effect on the transcriptional programme of hormogonium development, influencing approximately half of the genes differentially transcribed during differentiation. Utilizing this transcriptomic data, we identified a gene locus, designated here as hps, that appears to encode for a novel polysaccharide secretion system. Transcripts for the genes in the hps locus are upregulated in two steps, with the second step dependent on HmpD. Deletion of hpsA, hpsBCD or hpsEFG resulted in the complete loss of motility and polysaccharide secretion, similar to deletion of hmpD. Genes in the hps locus are highly conserved in the filamentous cyanobacteria, but generally absent in unicellular strains, implying a common mechanism of motility unique to the filamentous cyanobacteria. © 2012 Blackwell Publishing Ltd.

  14. [Do lactoferrin, lysozyme and the lactoperoxidase-thiocyanate-hydrogen peroxide-system cause negative microbiological results in mastitis secretions?].

    Science.gov (United States)

    Schmedt Auf Der Günne, H; Tenhagen, B A; Kutzer, P; Forderung, D; Heuwieser, W

    2002-07-01

    Lactoferrin, lysozyme and the lactoperoxidase-thiocyanate-peroxide-system are naturally occurring antimicrobial components of milk. The objective of this study was to examine, whether these components were responsible for negative results, when mastitis milk is cultured microbiologically. Quarter milk samples from 75 cows with clinical mastitis on a dairy farm in Brandenburg were submitted for microbiological culture and analysed for the content and the activities of the three components. Animals from all stages of lactation with clinical mastitis were included in the study. Animals were examined clinically and milk samples were collected prior to first treatment. Secretions from quarters with clinical mastitis were compared to those of neighbouring quarters without clinical mastitis. Secretions with positive cultural results were compared to those with negative results. The concentrations or activities of the three factors were significantly higher in the diseased quarters than in the quarters without clinical signs of mastitis. The concentration of lysozyme increased with severity of the clinical signs (local swelling and changes in secretion). The concentration of lactoferrin was significantly higher in quarters with slight alterations of glandular tissue than in quarters with medium or severe alterations (P mastitis with positive and negative culture results. The concentration of lysozyme was even higher in culturally positive samples than in negative samples (P culture of milk samples from quarters with clinical mastitis.

  15. Dynamic secrets in communication security

    CERN Document Server

    Xiao, Sheng; Towsley, Donald

    2013-01-01

    Dynamic secrets are constantly generated and updated from messages exchanged between two communication users. When dynamic secrets are used as a complement to existing secure communication systems, a stolen key or password can be quickly and automatically reverted to its secret status without disrupting communication. 'Dynamic Secrets in Communication Security' presents unique security properties and application studies for this technology. Password theft and key theft no longer pose serious security threats when parties frequently use dynamic secrets. This book also illustrates that a dynamic

  16. Uncovering the molecular secrets of inflammatory breast cancer biology: an integrated analysis of three distinct affymetrix gene expression datasets.

    Science.gov (United States)

    Van Laere, Steven J; Ueno, Naoto T; Finetti, Pascal; Vermeulen, Peter; Lucci, Anthony; Robertson, Fredika M; Marsan, Melike; Iwamoto, Takayuki; Krishnamurthy, Savitri; Masuda, Hiroko; van Dam, Peter; Woodward, Wendy A; Viens, Patrice; Cristofanilli, Massimo; Birnbaum, Daniel; Dirix, Luc; Reuben, James M; Bertucci, François

    2013-09-01

    Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (Pmolecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. ©2013 AACR.

  17. Identification of small-molecule inhibitors of Yersinia pestis Type III secretion system YscN ATPase.

    Directory of Open Access Journals (Sweden)

    Wieslaw Swietnicki

    Full Text Available Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC(50 values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.

  18. Identification of small-molecule inhibitors of Yersinia pestis Type III secretion system YscN ATPase.

    Science.gov (United States)

    Swietnicki, Wieslaw; Carmany, Daniel; Retford, Michael; Guelta, Mark; Dorsey, Russell; Bozue, Joel; Lee, Michael S; Olson, Mark A

    2011-01-01

    Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC(50) values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.

  19. Microbiological features and clinical impact of the type VI secretion system (T6SS) in Acinetobacter baumannii isolates causing bacteremia.

    Science.gov (United States)

    Kim, Jungok; Lee, Ji-Young; Lee, Haejeong; Choi, Ji Young; Kim, Dae Hun; Wi, Yu Mi; Peck, Kyong Ran; Ko, Kwan Soo

    2017-10-03

    We investigated the genetic background and microbiological features of T6SS-positive Acinetobacter baumannii isolates and clinical impact of the T6SS in patients with A. baumannii bacteremia. One hundred and 62 A. baumannii isolates from patients with bacteremia in 2 tertiary-care hospitals in Korea were included in this study. Approximately one-third (51/162, 31.5%) of the A. baumannii clinical isolates possessed the hcp gene, and the hcp-positive isolates were found in several genotypes in multilocus sequence typing. The expression and secretion of Hcp protein varied among the clinical isolates. A. baumannii isolates with detectable Hcp secretion (T6SS+) could better outcompete Escherichia coli compared with T6SS- isolates, including hcp-negative and inactivated hcp-positive isolates. In addition, T6SS+ isolates showed higher biofilm-forming activity and better survival in the presence of normal human serum than the T6SS- isolates. T6SS+ isolates were more frequently detected in patients with catheter-related bloodstream infection, haematopoietic stem cell transplant recipients, and patients receiving immunosuppressive agents. However, T6SS was not a prognostic factor for mortality. Our results suggest that the T6SS of A. baumannii is associated with virulence and contributes to infections in immunocompromised patients and those with implanted medical devices.

  20. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    Science.gov (United States)

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright

  1. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant; Coulthurst, Sarah J.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk [College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom)

    2011-12-01

    The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide. The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners.

  2. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system

    International Nuclear Information System (INIS)

    Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant; Coulthurst, Sarah J.; Hunter, William N.

    2011-01-01

    The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide. The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners

  3. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  4. The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function

    Science.gov (United States)

    Lasica, Anna M.; Ksiazek, Miroslaw; Madej, Mariusz; Potempa, Jan

    2017-01-01

    Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS), a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility) for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM). Proteins destined for secretion bear a conserved C-terminal domain (CTD) that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo proteins is

  5. The Type IX Secretion System (T9SS: Highlights and Recent Insights into Its Structure and Function

    Directory of Open Access Journals (Sweden)

    Anna M. Lasica

    2017-05-01

    Full Text Available Protein secretion systems are vital for prokaryotic life, as they enable bacteria to acquire nutrients, communicate with other species, defend against biological and chemical agents, and facilitate disease through the delivery of virulence factors. In this review, we will focus on the recently discovered type IX secretion system (T9SS, a complex translocon found only in some species of the Bacteroidetes phylum. T9SS plays two roles, depending on the lifestyle of the bacteria. It provides either a means of movement (called gliding motility for peace-loving environmental bacteria or a weapon for pathogens. The best-studied members of these two groups are Flavobacterium johnsoniae, a commensal microorganism often found in water and soil, and Porphyromonas gingivalis, a human oral pathogen that is a major causative agent of periodontitis. In P. gingivalis and some other periodontopathogens, T9SS translocates proteins, especially virulence factors, across the outer membrane (OM. Proteins destined for secretion bear a conserved C-terminal domain (CTD that directs the cargo to the OM translocon. At least 18 proteins are involved in this still enigmatic process, with some engaged in the post-translational modification of T9SS cargo proteins. Upon translocation across the OM, the CTD is removed by a protease with sortase-like activity and an anionic LPS is attached to the newly formed C-terminus. As a result, a cargo protein could be secreted into the extracellular milieu or covalently attached to the bacterial surface. T9SS is regulated by a two-component system; however, the precise environmental signal that triggers it has not been identified. Exploring unknown systems contributing to bacterial virulence is exciting, as it may eventually lead to new therapeutic strategies. During the past decade, the major components of T9SS were identified, as well as hints suggesting the possible mechanism of action. In addition, the list of characterized cargo

  6. Gradual Increase of FcγRIIIa/CD16a Expression and Shift toward IFN-γ Secretion during Differentiation of CD56dim Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Laurie Lajoie

    2017-11-01

    Full Text Available Natural killer (NK cell effector functions include cytotoxicity and secretion of cytokines such as interferon-γ (IFN-γ. The immature CD56bright subset of human NK cells lacks expression of FcγRIIIa/CD16a, one of the low-affinity immunoglobulin G receptors, or exhibits low-density expression (CD56brightCD16−/dim and produces IFN-γ in response to cytokine stimulation, whereas the mature CD56dimCD16+ subset is the most cytotoxic one. A further differentiation/maturation of the latter subset according to the gradual loss of NKG2A and/or gain of KIR2DL (CD158a and CD158b has been demonstrated and the ability to produce IFN-γ in response to activating receptor (AR co-engagement is gradually acquired during terminal differentiation. In the course of flow cytometry analysis of CD56dim NK cells, we noted a substantial intraindividual heterogeneity of expression of FcγRIIIa. FcγRIIIa is unique among ARs: it does not require the co-engagement of other ARs to induce substantial cytotoxicity or cytokine synthesis in CD56dim cells. We, therefore, investigated whether individual differentiation/maturation of polyclonal CD56dim NK cells defined by expression of NKG2A/KIR2DL is related to FcγRIIIa expression and to the heterogeneity of NK cell responses upon FcγRIIIa engagement. When we analyzed unstimulated CD56dim cells by increasing level of FcγRIIIa expression, we found that the proportion of the more differentiated CD158a,h+ and/or CD158b,j+ cells and that of the less differentiated NKG2A+ cells gradually increased and decreased, respectively. FcγRIIIa engagement by using plate-bound murine anti-CD16 monoclonal antibody (mAb or rituximab or trastuzumab (two therapeutic mAbs, resulted in donor-dependent partial segregation of IFN-γ-producing and/or degranulating CD56dim cells. Importantly, the proportion of CD158a,h/b,j+ cells and that of NKG2A+ cells was increased and decreased, respectively, IFN-γ-producing cells, whereas these proportions

  7. Production of full length and splicing form of chymosin using pETexpression system in E-coli and investigation its enzyme activity and preplasmic secretion

    Directory of Open Access Journals (Sweden)

    M. Ahmadi Zeydabadi

    2008-05-01

    Full Text Available Introduction: Chymosin (Rennin EC 3.4.23.4 is an aspartyl proteinas (the major proteolyticenzyme in the fourth stomach of the unweaned calf that is formed by proteolytic activation fromzymogene prochymosin. The aim of his study was to produce the full length and splicing form ofchymosin using pETexpression system in E-coli and to assay the activity of expressed enzyme andpreplasmic secretion.Materials and Methods: The sense primer F-prochy(+ (5´-ggggccatgGCTGAGATCACCAGGAincluding NCOI restriction site. The anti sense R-prochy(- (5´-gggcggccgcGATGGCTTTGGCCAGC -3´ hybridizing to the C-terminal end of calf preprocymosincDNA and contains an additional NotI restriction site at its 5´-end . The cells were disrupted bysonication and proteins were purified by using Ni-NTA beads from Qiagen under native conditional.The preprochymosin and AS6 preprochymosin were activated at pH 4.7. The enzyme solutions werediluted 20-fold with 50 mM phosphate buffer .Results: Sequencing data analysis showed that the exon six has been spliced out and, therefore thegene product is 114 bp shorter in length, both chymosin forms were expressed together in E.coli.Under the same expression conditions, at least AS6 preprochymosin was produced 7-fold highexpression in comparison to a full-length recombinant chymosin. Following acid activation andneutralization, the purified fractions were tested in a qualitative milk clotting assay. The clottingactivity of preprochymosin and exon6-less preprochymosin were comparable.Conclusion: High expression of this alternatively expressed transcript in bacteria, and properfolding of the AS6 chymosin protein molecule in the absence of exon six are the two most importantaspects distinguished in this research.

  8. Secret Places.

    Science.gov (United States)

    Ridolfi, Kerry

    1997-01-01

    Argues that children are as deep as the ocean, with secret places inside of them waiting to be opened. Notes that it is powerful for students to learn they can make sense of the world through words, and describes inviting them into poetry as they read poetry, create poetry packets, and write and revise poems. (SR)

  9. Water deprivation affects serotoninergic system and glycoprotein secretion in the sub-commissural organ of a desert rodent Meriones shawi.

    Science.gov (United States)

    Elgot, Abdeljalil; Ahboucha, Samir; Bouyatas, My Mustapha; Fèvre-Montange, Michèlle; Gamrani, Halima

    2009-11-27

    Water deprivation is a stress that has been associated with activation of several endocrine systems, including circumventricular organs of the central nervous system. The sub-comissural organ (SCO), characterized by its glycoprotein secretion called Reissner's fiber has been suggested to play a role in the regulation of body water balance. Meriones shawi, a semi-desertic rodent characterized by its resistance to long periods of thirst was subjected to water deprivation for 1 and 3 months. Effect of water deprivation was evaluated immunohistochemically on 5-hydroxytryptamine (5-HT; serotonin) system and glycoprotein secretion of the SCO. Our findings demonstrate significant reduction of anti-Reissner's fiber immunoreactive materials within basal and apical parts of the SCO ependymocytes. These changes seem to be the consequence of reduced control by 5-HT fibers reaching the SCO as a concomitant and significant reduction of anti-5-HT immunoreactive fibers are also observed following water deprivation. 5-HT immunoreactive reduction is seen in several regions in the brain including the neurons of origin within the dorsal raphe nucleus and the projecting supra and sub-ependymal fibers reaching the classical ependyma of the third ventricle. The extent of Reissner's fiber and 5-HT immunoreactive changes significantly correlates with the severity of water restriction. We suggest that water deprivation causes changes of the classical ependyma and the specialized ependyma that differentiates into the SCO as well as other cirumventricular organs such as the subfornical organ and the organum vasculosum laminae terminalis known to control drinking behaviors.

  10. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    Science.gov (United States)

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. The Coxiella Burnetii type IVB secretion system (T4BSS) component DotA is released/secreted during infection of host cells and during in vitro growth in a T4BSS-dependent manner.

    Science.gov (United States)

    Luedtke, Brandon E; Mahapatra, Saugata; Lutter, Erika I; Shaw, Edward I

    2017-06-01

    Coxiella burnetii is a Gram-negative intracellular pathogen and is the causative agent of the zoonotic disease Q fever. To cause disease, C. burnetii requires a functional type IVB secretion system (T4BSS) to transfer effector proteins required for the establishment and maintenance of a membrane-bound parasitophorous vacuole (PV) and further modulation of host cell process. However, it is not clear how the T4BSS interacts with the PV membrane since neither a secretion pilus nor an extracellular pore forming apparatus has not been described. To address this, we used the acidified citrate cysteine medium (ACCM) along with cell culture infection and immunological techniques to identify the cellular and extracellular localization of T4BSS components. Interestingly, we found that DotA and IcmX were secreted/released in a T4BSS-dependent manner into the ACCM. Analysis of C. burnetii-infected cell lines revealed that DotA colocalized with the host cell marker CD63 (LAMP3) at the PV membrane. In the absence of bacterial protein synthesis, DotA also became depleted from the PV membrane. These data are the first to identify the release/secretion of C. burnetii T4BSS components during axenic growth and the interaction of a T4BSS component with the PV membrane during infection of host cells. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Orbital express capture system: concept to reality

    Science.gov (United States)

    Stamm, Shane; Motaghedi, Pejmun

    2004-08-01

    The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the

  13. 5 CFR 2421.15 - Secret ballot.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Secret ballot. 2421.15 Section 2421.15... FEDERAL LABOR RELATIONS AUTHORITY MEANING OF TERMS AS USED IN THIS SUBCHAPTER § 2421.15 Secret ballot. Secret ballot means the expression by ballot, voting machine or otherwise, but in no event by proxy, of a...

  14. 29 CFR 401.11 - Secret ballot.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Secret ballot. 401.11 Section 401.11 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT STANDARDS MEANING OF TERMS USED IN THIS SUBCHAPTER § 401.11 Secret ballot. Secret ballot means the expression by...

  15. 22 CFR 1421.15 - Secret ballot.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Secret ballot. 1421.15 Section 1421.15 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL COUNSEL OF THE... THIS SUBCHAPTER § 1421.15 Secret ballot. Secret ballot means the expression by ballot, voting machine...

  16. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles

    Directory of Open Access Journals (Sweden)

    Ofir Bahar

    2014-01-01

    Full Text Available Pattern recognition receptors (PRRs play an important role in detecting invading pathogens and mounting a robust defense response to restrict infection. In rice, one of the best characterized PRRs is XA21, a leucine rich repeat receptor-like kinase that confers broad-spectrum resistance to multiple strains of the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo. In 2009 we reported that an Xoo protein, called Ax21, is secreted by a type I-secretion system and that it serves to activate XA21-mediated immunity. This report has recently been retracted. Here we present data that corrects our previous model. We first show that Ax21 secretion does not depend on the predicted type I secretion system and that it is processed by the general secretion (Sec system. We further show that Ax21 is an outer membrane protein, secreted in association with outer membrane vesicles. Finally, we provide data showing that ax21 knockout strains do not overcome XA21-mediated immunity.

  17. Hijacking of the pleiotropic cytokine interferon-γ by the type III secretion system of Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Claire Gendrin

    Full Text Available Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague.

  18. [Participation of parasympathetic part of nervous system in realization of bioflavonoids action on gastric secretion in rats].

    Science.gov (United States)

    Vovkun, T V; Yanchuk, P I; Shtanova, L Y; Veselskyy, S P; Shalamay, A S

    2015-01-01

    In this study we investigated the effects of corvitin--modified form of flavonoid quercetin on the stomach secretory function and physiological mechanisms involved in the maintenance of such effects in rat's pylorus-ligated model. In animals which corvitin was injected at a dose of 5 mg/kg, regardless of the route of administration--in the stomach or duodenum, did not observe any changes in the volume of gastric juice or general production of hydrochloric acid, compared with the control data. Dose of 40 mg/kg caused an increase in the volume of gastric juice and hydrochloric acid output as when administered in the stomach and in the duodenum. We also found that after the application of a large dose of corvitin (intragastrically) in the blood of experimental animals showed reduction in glucose levels, which was not detected when using the drug in a dose of 5 mg/kg. Nonspecific antagonist of M-cholinergic receptors--atropine almost completely blocked the enhancement of gastric secretion, which was caused by the introduction into the stomach of corvitin in large dose. From the present data, it is reasonable to conclude that intragastric administration of a large dose of corvitin to pylorus-ligated rats induces hypoglycemic reaction of blood, which may causes an increase in vagus nerve activity with subsequent stimulation of gastric secretion. The increase in gastric juice volume and gastric acid output induced by corvitin was completely inhibited by atropine. These results suggested that the increase in gastric secretion induced by intragastrically administered corvitin could be mediated by the parasympathetic nervous system.

  19. MxiN Differentially Regulates Monomeric and Oligomeric Species of the Shigella Type Three Secretion System ATPase Spa47.

    Science.gov (United States)

    Case, Heather B; Dickenson, Nicholas E

    2018-04-17

    Shigella rely entirely on the action of a single type three secretion system (T3SS) to support cellular invasion of colonic epithelial cells and to circumvent host immune responses. The ATPase Spa47 resides at the base of the Shigella needle-like type three secretion apparatus (T3SA), supporting protein secretion through the apparatus and providing a likely means for native virulence regulation by Shigella and a much needed target for non-antibiotic therapeutics to treat Shigella infections. Here, we show that MxiN is a differential regulator of Spa47 and that its regulatory impact is determined by the oligomeric state of the Spa47 ATPase, with which it interacts. In vitro and in vivo characterization shows that interaction of MxiN with Spa47 requires the six N-terminal residues of Spa47 that are also necessary for stable Spa47 oligomer formation and activation. This interaction with MxiN negatively influences the activity of Spa47 oligomers while upregulating the ATPase activity of monomeric Spa47. Detailed kinetic analyses of monomeric and oligomeric Spa47 in the presence and absence of MxiN uncover additional mechanistic insights into the regulation of Spa47 by MxiN, suggesting that the MxiN/Spa47 species resulting from interaction with monomeric and oligomeric Spa47 are functionally distinct and that both could be involved in Shigella T3SS regulation. Uncovering regulation of Spa47 by MxiN addresses an important gap in the current understanding of how Shigella controls T3SA activity and provides the first description of differential T3SS ATPase regulation by a native T3SS protein.

  20. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  1. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  2. RSA-Based Secret Handshakes

    OpenAIRE

    Vergnaud , Damien

    2006-01-01

    A secret handshake mechanism allows two entities, members of a same group, to authenticate each other secretly. This primitive was introduced recently by Balfanz, Durfee, Shankar, Smetters, Staddon and Wong and, so far, all the schemes proposed are based on discrete log systems. This paper proposes three new secret handshake protocols secure against active impersonator and detector adversaries. Inspired by two RSA-based key agreement protocols introduced by Okamoto and Tanaka in 1989 and Gira...

  3. Characterisation of the bacterial community in expressed prostatic secretions from patients with chronic prostatitis/chronic pelvic pain syndrome and infertile men: a preliminary investigation

    Science.gov (United States)

    Hou, Dong-Sheng; Long, Wen-Min; Shen, Jian; Zhao, Li-Ping; Pang, Xiao-Yan; Xu, Chen

    2012-01-01

    The expressed prostatic secretions (EPSs) of men with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), infertile men and normal men were subjected to microbiological study. EPSs were collected from the subjects, which included 26 normal men, 11 infertile patients and 51 CP/CPPS patients. DNA was extracted from each specimen, and the V3 regions of the 16S rRNA genes were amplified using universal bacterial primers. The results showed that the EPS 16S rRNA gene-positive rate in the CP/CPPS and infertile patients was much higher than in the normal men, but without any difference among the three patient groups. The denaturing gradient gel electrophoresis (DGGE) method was used to characterize the EPS bacterial community structure of the prostate fluid from patients with CP/CPPS or infertility issues. Principal component analysis (PCA) and partial least squares (PLS) analyses of PCR-DGGE profiles revealed that the EPS bacterial community structure differed among the three groups. Three bands were identified as the key factors responsible for the discrepancy between CP/CPPS patients and infertile patients (Pprostatitis patients (Pprostate and low urethra tract, when considered as a microenvironment, might play an important role in the maintenance of a healthy male reproductive tract. PMID:22635162

  4. The expression of Helicobacter pylori tfs plasticity zone cluster is regulated by pH and adherence, and its composition is associated with differential gastric IL-8 secretion.

    Science.gov (United States)

    Silva, Bruno; Nunes, Alexandra; Vale, Filipa F; Rocha, Raquel; Gomes, João Paulo; Dias, Ricardo; Oleastro, Mónica

    2017-08-01

    Helicobacter pylori virulence is associated with different clinical outcomes. The existence of an intact dupA gene from tfs4b cluster has been suggested as a predictor for duodenal ulcer development. However, the role of tfs plasticity zone clusters in the development of ulcers remains unclear. We studied several H. pylori strains to characterize the gene arrangement of tfs3 and tfs4 clusters and their impact in the inflammatory response by infected gastric cells. The genome of 14 H. pylori strains isolated from Western patients, pediatric (n=10) and adult (n=4), was fully sequenced using the Illumina platform MiSeq, in addition to eight pediatric strains previously sequenced. These strains were used to infect human gastric cells, and the secreted interleukin-8 (IL-8) was quantified by ELISA. The expression of virB2, dupA, virB8, virB10, and virB6 was assessed by quantitative PCR in adherent and nonadherent fractions of H. pylori during in vitro co-infection, at different pH values. We have found that cagA-positive H. pylori strains harboring a complete tfs plasticity zone cluster significantly induce increased production of IL-8 from gastric cells. We have also found that the region spanning from virB2 to virB10 genes constitutes an operon, whose expression is increased in the adherent fraction of bacteria during infection, as well as in both adherent and nonadherent fractions at acidic conditions. A complete tfs plasticity zone cluster is a virulence factor that may be important for the colonization of H. pylori and to the development of severe outcomes of the infection with cagA-positive strains. © 2017 John Wiley & Sons Ltd.

  5. Creation of a Human Secretome: A Novel Composite Library of Human Secreted Proteins: Validation Using Ovarian Cancer Gene Expression Data and a Virtual Secretome Array.

    Science.gov (United States)

    Vathipadiekal, Vinod; Wang, Victoria; Wei, Wei; Waldron, Levi; Drapkin, Ronny; Gillette, Michael; Skates, Steven; Birrer, Michael

    2015-11-01

    To generate a comprehensive "Secretome" of proteins potentially found in the blood and derive a virtual Affymetrix array. To validate the utility of this database for the discovery of novel serum-based biomarkers using ovarian cancer transcriptomic data. The secretome was constructed by aggregating the data from databases of known secreted proteins, transmembrane or membrane proteins, signal peptides, G-protein coupled receptors, or proteins existing in the extracellular region, and the virtual array was generated by mapping them to Affymetrix probeset identifiers. Whole-genome microarray data from ovarian cancer, normal ovarian surface epithelium, and fallopian tube epithelium were used to identify transcripts upregulated in ovarian cancer. We established the secretome from eight public databases and a virtual array consisting of 16,521 Affymetrix U133 Plus 2.0 probesets. Using ovarian cancer transcriptomic data, we identified candidate blood-based biomarkers for ovarian cancer and performed bioinformatic validation by demonstrating rediscovery of known biomarkers including CA125 and HE4. Two novel top biomarkers (FGF18 and GPR172A) were validated in serum samples from an independent patient cohort. We present the secretome, comprising the most comprehensive resource available for protein products that are potentially found in the blood. The associated virtual array can be used to translate gene-expression data into cancer biomarker discovery. A list of blood-based biomarkers for ovarian cancer detection is reported and includes CA125 and HE4. FGF18 and GPR172A were identified and validated by ELISA as being differentially expressed in the serum of ovarian cancer patients compared with controls. ©2015 American Association for Cancer Research.

  6. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo.

    Science.gov (United States)

    Rezania, Alireza; Bruin, Jennifer E; Xu, Jean; Narayan, Kavitha; Fox, Jessica K; O'Neil, John J; Kieffer, Timothy J

    2013-11-01

    Human embryonic stem cells (hESCs) are considered a potential alternative to cadaveric islets as a source of transplantable cells for treating patients with diabetes. We previously described a differentiation protocol to generate pancreatic progenitor cells from hESCs, composed of mainly pancreatic endoderm (PDX1/NKX6.1-positive), endocrine precursors (NKX2.2/synaptophysin-positive, hormone/NKX6.1-negative), and polyhormonal cells (insulin/glucagon-positive, NKX6.1-negative). However, the relative contributions of NKX6.1-negative versus NKX6.1-positive cell fractions to the maturation of functional β-cells remained unclear. To address this question, we generated two distinct pancreatic progenitor cell populations using modified differentiation protocols. Prior to transplant, both populations contained a high proportion of PDX1-expressing cells (~85%-90%) but were distinguished by their relatively high (~80%) or low (~25%) expression of NKX6.1. NKX6.1-high and NKX6.1-low progenitor populations were transplanted subcutaneously within macroencapsulation devices into diabetic mice. Mice transplanted with NKX6.1-low cells remained hyperglycemic throughout the 5-month post-transplant period whereas diabetes was reversed in NKX6.1-high recipients within 3 months. Fasting human C-peptide levels were similar between groups throughout the study, but only NKX6.1-high grafts displayed robust meal-, glucose- and arginine-responsive insulin secretion as early as 3 months post-transplant. NKX6.1-low recipients displayed elevated fasting glucagon levels. Theracyte devices from both groups contained almost exclusively pancreatic endocrine tissue, but NKX6.1-high grafts contained a greater proportion of insulin-positive and somatostatin-positive cells, whereas NKX6.1-low grafts contained mainly glucagon-expressing cells. Insulin-positive cells in NKX6.1-high, but not NKX6.1-low grafts expressed nuclear MAFA. Collectively, this study demonstrates that a pancreatic endoderm

  7. Production of lysosomal enzymes in plant-based expression systems

    OpenAIRE

    1996-01-01

    The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which ...

  8. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  9. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2011-02-01

    Full Text Available Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS, and thereby translocated Bartonella effector proteins (Beps, evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial

  10. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  11. Salmonella-secreted Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin; Kidwai, Afshan S.; Brown, Roslyn N.; McDermott, Jason E.; Smith, Richard D.; Adkins, Joshua N.

    2011-05-01

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellent reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.

  12. Expression of Na,K-ATPase and H,K-ATPase Isoforms with the Baculovirus Expression System

    NARCIS (Netherlands)

    Koenderink, J.B.; Swarts, H.G.

    2016-01-01

    P-type ATPases can be expressed in several cell systems. The baculovirus expressions system uses an insect virus to enter and express proteins in Sf9 insect cells. This expression system is a lytic system in which the cells will die a few days after viral infection. Subsequently, the expressed

  13. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague–Dawley rats

    Science.gov (United States)

    Heden, Timothy D.; Morris, E. Matthew; Kearney, Monica L.; Liu, Tzu-Wen; Park, Young-min; Kanaley, Jill A.; Thyfault, John P.

    2015-01-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague–Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ~27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ~39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h−1) than in LF- (7.60 ± 0.57 mmol·h−1) fed animals. Hepatic TAG content was ~2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g−1 tissue) than in LF- (0.50 ± 0.16 nmol·g−1 tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression. PMID:24669989

  14. Differential effects of low-fat and high-fat diets on fed-state hepatic triacylglycerol secretion, hepatic fatty acid profiles, and DGAT-1 protein expression in obese-prone Sprague-Dawley rats.

    Science.gov (United States)

    Heden, Timothy D; Morris, E Matthew; Kearney, Monica L; Liu, Tzu-Wen; Park, Young-Min; Kanaley, Jill A; Thyfault, John P

    2014-04-01

    The purpose of this study was to compare the effects of short-term low-fat (LF) and high-fat (HF) diets on fed-state hepatic triacylglycerol (TAG) secretion, the content of proteins involved in TAG assembly and secretion, fatty acid oxidation (FAO), and the fatty acid profile of stored TAG. Using selectively bred obese-prone Sprague-Dawley rats, we directly measured fed-state hepatic TAG secretion, using Tyloxapol (a lipoprotein lipase inhibitor) and a standardized oral mixed meal (45% carbohydrate, 40% fat, 15% protein) bolus in animals fed a HF or LF diet for 2 weeks, after which the rats were maintained on their respective diet for 1 week (washout) prior to the liver being excised to measure protein content, FAO, and TAG fatty acid profiles. Hepatic DGAT-1 protein expression was ∼27% lower in HF- than in LF-fed animals (p < 0.05); the protein expression of all other molecules was similar in the 2 diets. The fed-state hepatic TAG secretion rate was ∼39% lower (p < 0.05) in HF- (4.62 ± 0.18 mmol·h(-1)) than in LF- (7.60 ± 0.57 mmol·h(-1)) fed animals. Hepatic TAG content was ∼2-fold higher (p < 0.05) in HF- (1.07 ± 0.15 nmol·g(-1) tissue) than in LF- (0.50 ± 0.16 nmol·g(-1) tissue) fed animals. In addition, the fatty acid profile of liver TAG in HF-fed animals closely resembled the diet, whereas in LF-fed animals, the fatty acid profile consisted of mostly de novo synthesized fatty acids. FAO was not altered by diet. LF and HF diets differentially alter fed-state hepatic TAG secretion, hepatic fatty acid profiles, and DGAT-1 protein expression.

  15. Engineering 1-Alkene Biosynthesis and Secretion by Dynamic Regulation in Yeast

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Hu, Yating; Zhu, Zhiwei

    2018-01-01

    strategy to control the expression of membrane enzyme and 1-alkene production and cell growth by relieving the possible toxicity of overexpressed membrane proteins. With these efforts, the engineered yeast cell factory produced 35.3 mg/L 1-alkenes with more than 80% being secreted. This represents a 10...... product secretion. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce and secrete 1-alkenes by manipulation of the fatty acid metabolism, enzyme selection, engineering the electron transfer system and expressing a transporter. Furthermore, we implemented a dynamic regulation...

  16. Iron Starvation Conditions Upregulate Ehrlichia ruminantium Type IV Secretion System, tr1 Transcription Factor and map1 Genes Family through the Master Regulatory Protein ErxR

    Directory of Open Access Journals (Sweden)

    Amal Moumène

    2018-01-01

    Full Text Available Ehrlichia ruminantium is an obligatory intracellular bacterium that causes heartwater, a fatal disease in ruminants. Due to its intracellular nature, E. ruminantium requires a set of specific virulence factors, such as the type IV secretion system (T4SS, and outer membrane proteins (Map proteins in order to avoid and subvert the host's immune response. Several studies have been conducted to understand the regulation of the T4SS or outer membrane proteins, in Ehrlichia, but no integrated approach has been used to understand the regulation of Ehrlichia pathogenicity determinants in response to environmental cues. Iron is known to be a key nutrient for bacterial growth both in the environment and within hosts. In this study, we experimentally demonstrated the regulation of virB, map1, and tr1 genes by the newly identified master regulator ErxR (for Ehrlichia ruminantium expression regulator. We also analyzed the effect of iron depletion on the expression of erxR gene, tr1 transcription factor, T4SS and map1 genes clusters in E. ruminantium. We show that exposure of E. ruminantium to iron starvation induces erxR and subsequently tr1, virB, and map1 genes. Our results reveal tight co-regulation of T4SS and map1 genes via the ErxR regulatory protein at the transcriptional level, and, for the first time link map genes to the virulence function sensu stricto, thereby advancing our understanding of Ehrlichia's infection process. These results suggest that Ehrlichia is able to sense changes in iron concentrations in the environment and to regulate the expression of virulence factors accordingly.

  17. The PorX response regulator of the Porphyromonas gingivalis PorXY two-component system does not directly regulate the Type IX secretion genes but binds the PorL subunit.

    Directory of Open Access Journals (Sweden)

    Maxence S Vincent

    2016-08-01

    Full Text Available The Type IX secretion system (T9SS is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion of surface attachment of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY and PorX encode typical two-component system (TCS sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of the porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we showed that PorX does not bind and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  18. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    Science.gov (United States)

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  19. SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4+ T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Markus D. Lacher

    2018-05-01

    Full Text Available Targeted cancer immunotherapy with irradiated, granulocyte–macrophage colony-stimulating factor (GM-CSF-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study (ClinicalTrials.gov NCT00095862, a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC class II genes (HLA-DRA, HLA-DRB3, HLA-DMA, HLA-DMB, in addition to several other factors known to play immunostimulatory roles. These factors include MHC class I components (B2M, HLA-A, HLA-B, ADA (encoding adenosine deaminase, ADGRE5 (CD97, CD58 (LFA3, CD74 (encoding invariant chain and CLIP, CD83, CXCL8 (IL8, CXCL16, HLA-F, IL6, IL18, and KITLG. Moreover, both SV-BR-1-GM cells and the responding study subject carried an HLA-DRB3*02:02 allele, raising the question of whether SV-BR-1-GM cells can directly present endogenous antigens to T cells, thereby inducing a tumor-directed immune response. In support of this, SV-BR-1-GM cells (which also carry the HLA-DRB3*01:01 allele treated with

  20. Characterisation of the bacterial community in expressed prostatic secretions from patients with chronic prostatitis/chronic pelvic pain syndrome and infertile men: a preliminary investigation

    Institute of Scientific and Technical Information of China (English)

    Dong-Sheng Hou; Wen-Min Long; Jian Shen; Li-Ping Zhao; Xiao-Yan Pang; Chen XU

    2012-01-01

    The expressed prostatic secretions (EPSs) of men with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS),infertile men and normal men were subjected to microbiological study.EPSs were collected from the subjects,which included 26 normal men,11 infertile patients and 51 CP/CPPS patients.DNA was extracted from each specimen,and the V3 regions of the 16S rRNA genes were amplified using universal bacterial primers.The results showed that the EPS 16S rRNA gene-positive rate in the CP/CPPS and infertile patients was much higher than in the normal men,but without any difference among the three patient groups.The denaturing gradient gel electrophoresis (DGGE) method was used to characterize the EPS bacterial community structure of the prostate fluid from patients with CP/CPPS or infertility issues.Principal component analysis (PCA) and partial least squares (PLS) analyses of PCR-DGGE profiles revealed that the EPS bacterial community structure differed among the three groups.Three bands were identified as the key factors responsible for the discrepancy between CP/CPPS patients and infertile patients (P<0.05).Two bands were identified as priority factors in the discrepancy of category ⅢA and category ⅢB prostatitis patients (P<0.05).According to this research,the ecological balance of the prostate and low urethra tract,when considered as a microenvironment,might play an important role in the maintenance of a healthy male reproductive tract.

  1. Molecular cloning, occurrence, and expression of a novel partially secreted protein "psoriasin" that is highly up-regulated in psoriatic skin

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Leffers, H

    1991-01-01

    the vaccinia virus expression system. Analysis of the predicted sequence revealed a potential calcium-binding sequence of the EF-hand type, as well as the absence of a signal sequence at its amino terminal. Psoriasin is not related to other proteins that migrate closely in 2D gels (MRP 14, also known...... as calgranulin B, L1 and calprotectin; MRP 8, or calgranulin A and cystatin A or stefin A), and bears no significant sequence homology with any other protein of known primary structure. Increased expression of psoriasin mRNA in psoriatic keratinocytes was confirmed by Northern blotting and in situ hybridization...

  2. The Ca2+ induced two-component system, CvsSR regulates the Type III secretion system and the extracytoplasmic function sigma-factor AlgU in Pseudomonas syringae pv. tomato DC3000.

    Science.gov (United States)

    Fishman, Maxwell R; Zhang, Johnson; Bronstein, Philip A; Stodghill, Paul; Filiatrault, Melanie J

    2017-12-20

    Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle including pathogenesis. Most TCSs remain uncharacterized with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 ( Pto ) composed of the histidine kinase, CvsS, and the response regulator, CvsR. CvsSR is necessary for virulence of Pto , since ΔcvsS and ΔcvsR strains produced fewer symptoms and demonstrated reduced growth on multiple hosts as compared to WT. We discovered that expression of cvsSR is induced by Ca 2+ concentrations found in leaf apoplastic fluid. Thus, Ca 2+ can be added to the list of signals that promote pathogenesis of Pto during host colonization. Through chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq) we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS , that regulates Pto virulence in a type III secretion system dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca 2+ -dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants. Importance Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant

  3. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.

    Science.gov (United States)

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-05-15

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and

  4. Progestogen treatments for cycle management in a sheep model of assisted conception affect the growth patterns, the expression of luteinizing hormone receptors, and the progesterone secretion of induced corpora lutea.

    Science.gov (United States)

    Letelier, Claudia; García-Fernández, Rosa Ana; Contreras-Solis, Ignacio; Sanchez, María Angeles; Garcia-Palencia, Pilar; Sanchez, Belen; Gonzalez-Bulnes, Antonio; Flores, Juana María

    2010-03-01

    To determine, in a sheep model, the effect of a short-term progestative treatment on growth dynamics and functionality of induced corpora lutea. Observational, model study. Public university. Sixty adult female sheep. Synchronization and induction of ovulation with progestogens and prostaglandin analogues; ovarian ultrasonography, blood sampling, and ovariectomy. Determination of pituitary function and morphologic characteristics, expression of luteinizing hormone (LH) receptors, and progesterone secretion of corpora lutea. The use of progestative pretreatments for assisted conception affect the growth patterns, the expression of LH receptors, and the progesterone secretion of induced corpora lutea. The current study indicates, in a sheep model, the existence of deleterious effects from progestogens on functionality of induced corpora lutea. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. DotU and VgrG, core components of type VI secretion systems, are essential for Francisella LVS pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jeanette E Bröms

    Full Text Available The Gram-negative bacterium Francisella tularensis causes tularemia, a disease which requires bacterial escape from phagosomes of infected macrophages. Once in the cytosol, the bacterium rapidly multiplies, inhibits activation of the inflammasome and ultimately causes death of the host cell. Of importance for these processes is a 33-kb gene cluster, the Francisella pathogenicity island (FPI, which is believed to encode a type VI secretion system (T6SS. In this study, we analyzed the role of the FPI-encoded proteins VgrG and DotU, which are conserved components of type VI secretion (T6S clusters. We demonstrate that in F. tularensis LVS, VgrG was shown to form multimers, consistent with its suggested role as a trimeric membrane puncturing device in T6SSs, while the inner membrane protein DotU was shown to stabilize PdpB/IcmF, another T6SS core component. Upon infection of J774 cells, both ΔvgrG and ΔdotU mutants did not escape from phagosomes, and subsequently, did not multiply or cause cytopathogenicity. They also showed impaired activation of the inflammasome and marked attenuation in the mouse model. Moreover, all of the DotU-dependent functions investigated here required the presence of three residues that are essentially conserved among all DotU homologues. Thus, in agreement with a core function in T6S clusters, VgrG and DotU play key roles for modulation of the intracellular host response as well as for the virulence of F. tularensis.

  6. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Genome analyses of marine microbial communities have revealed the widespread occurrence of genomic islands (GIs, many of which encode for protein secretion machineries described in the context of bacteria-eukaryote interactions. Yet experimental support for the specific roles of such GIs in aquatic community interactions remains scarce. Here, we test for the contribution of type III secretion systems (T3SS to the environmental fitness of epidemic Vibrio parahaemolyticus. Comparisons of V. parahaemolyticus wild types and T3SS-defective mutants demonstrate that the T3SS encoded on genome island VPaI-7 (T3SS-2 promotes survival of V. parahaemolyticus in the interaction with diverse protist taxa. Enhanced persistence was found to be due to T3SS-2 mediated cytotoxicity and facultative parasitism of V. parahaemolyticus on coexisting protists. Growth in the presence of bacterivorous protists and the T3SS-2 genotype showed a strong correlation across environmental and clinical isolates of V. parahaemolyticus. Short-term microcosm experiments provide evidence that protistan hosts facilitate the invasion of T3SS-2 positive V. parahaemolyticus into a coastal plankton community, and that water temperature and productivity further promote enhanced survival of T3SS-2 positive V. parahaemolyticus. This study is the first to describe the fitness advantage of GI-encoded functions in a microbial food web, which may provide a mechanistic explanation for the global spread and the seasonal dynamics of V. parahaemolyticus pathotypes, including the pandemic serotype cluster O3:K6, in aquatic environments.

  7. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a during murine estrus: association with oviductal exosomes and uptake in sperm.

    Directory of Open Access Journals (Sweden)

    Amal A Al-Dossary

    Full Text Available PMCA4, a membrane protein, is the major Ca(2+ efflux pump in murine sperm where its deletion leads to a severe loss of hyperactivated motility and to male infertility. We have previously shown that the PMCA4b splice variant interacts with CASK (Ca(2+/CaM-dependent serine kinase in regulating sperm Ca(2+. More recently we detected that PMCA4a isoform, in addition to its presence in testis, is secreted in the epididymal luminal fluid and transferred to sperm. Here we show that Pmca4 mRNA is expressed in both the 4a and 4b variants in the vagina, uterus, and oviduct. Immunofluorescence reveals that PMCA4a is similarly expressed and is elevated during estrus, appearing in the glandular and luminal epithelia. Western analysis detected PMCA4a in all tissues and in the luminal fluids (LF of the vagina (VLF, uterus (ULF, and the oviduct (OLF collected during estrus. It was ~9- and 4-fold higher in OLF than in VLF and ULF, and only marginally present in LF collected at metestrus/diestrus. Fractionation of the LF collected at estrus, via ultracentrifugation, revealed that 100% of the PMCA4a resides in the vesicular fraction of the ULF and OLF. Transmission electron microscopy (TEM revealed that OLF vesicles have an exosomal orientation (with the cytoplasmic-side inward, a size range of 25-100 nm, with the characteristic CD9 biomarker. Thus, we dubbed these vesicles "oviductosomes", to which PMCA4a was immunolocalized. Incubation of caudal sperm in the combined LF or exosomes resulted in up to a ~3-fold increase of sperm PMCA4a, as detected by flow cytometry, indicating in vitro uptake. Our results are consistent with the increased requirement of Ca(2+ efflux in the oviduct. They show for the first time the presence of oviductal exosomes and highlight their role, along with uterosomes and vaginal exosomes, in post-testicular sperm acquisition of PMCA4a which is essential for hyperactivated motility and fertility.

  8. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm.

    Science.gov (United States)

    Al-Dossary, Amal A; Strehler, Emanuel E; Martin-Deleon, Patricia A

    2013-01-01

    PMCA4, a membrane protein, is the major Ca(2+) efflux pump in murine sperm where its deletion leads to a severe loss of hyperactivated motility and to male infertility. We have previously shown that the PMCA4b splice variant interacts with CASK (Ca(2+/)CaM-dependent serine kinase) in regulating sperm Ca(2+). More recently we detected that PMCA4a isoform, in addition to its presence in testis, is secreted in the epididymal luminal fluid and transferred to sperm. Here we show that Pmca4 mRNA is expressed in both the 4a and 4b variants in the vagina, uterus, and oviduct. Immunofluorescence reveals that PMCA4a is similarly expressed and is elevated during estrus, appearing in the glandular and luminal epithelia. Western analysis detected PMCA4a in all tissues and in the luminal fluids (LF) of the vagina (VLF), uterus (ULF), and the oviduct (OLF) collected during estrus. It was ~9- and 4-fold higher in OLF than in VLF and ULF, and only marginally present in LF collected at metestrus/diestrus. Fractionation of the LF collected at estrus, via ultracentrifugation, revealed that 100% of the PMCA4a resides in the vesicular fraction of the ULF and OLF. Transmission electron microscopy (TEM) revealed that OLF vesicles have an exosomal orientation (with the cytoplasmic-side inward), a size range of 25-100 nm, with the characteristic CD9 biomarker. Thus, we dubbed these vesicles "oviductosomes", to which PMCA4a was immunolocalized. Incubation of caudal sperm in the combined LF or exosomes resulted in up to a ~3-fold increase of sperm PMCA4a, as detected by flow cytometry, indicating in vitro uptake. Our results are consistent with the increased requirement of Ca(2+) efflux in the oviduct. They show for the first time the presence of oviductal exosomes and highlight their role, along with uterosomes and vaginal exosomes, in post-testicular sperm acquisition of PMCA4a which is essential for hyperactivated motility and fertility.

  9. The central nervous system of sea cucumbers (Echinodermata: Holothuroidea shows positive immunostaining for a chordate glial secretion

    Directory of Open Access Journals (Sweden)

    Grondona Jesus M

    2009-06-01

    Full Text Available Abstract Background Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS, a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. Results In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. Conclusion Our results show that: a the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common

  10. Exposure to di(n-butyl)phthalate and benzo(a)pyrene alters IL-1β secretion and subset expression of testicular macrophages, resulting in decreased testosterone production in rats

    International Nuclear Information System (INIS)

    Zheng Shanjun; Tian Huaijun; Cao Jia; Gao Yuqi

    2010-01-01

    Di(n-butyl)phthalate (DBP) and benzo(a)pyrene (BaP) are environmental endocrine disruptors that are potentially hazardous to humans. These chemicals affect testicular macrophage immuno-endocrine function and testosterone production. However, the underlying mechanisms for these effects are not fully understood. It is well known that interleukin-1 beta (IL-1β), which is secreted by testicular macrophages, plays a trigger role in regulating Leydig cell steroidogenesis. The purpose of this study was to reveal the effects of co-exposure to DBP and BaP on testicular macrophage subset expression, IL-1β secretion and testosterone production. Adult male Sprague-Dawley rats were randomly divided into seven groups; two groups received DBP plus BaP (DBP + BaP: 50 + 1 or 250 + 5 mg/kg/day) four groups received DBP or BaP alone (DBP: 50 or 250 mg/kg/day; BaP: 1 or 5 mg/kg/day), and one group received vehicle alone (control). After co-exposure for 90 days, the relative expression of macrophage subsets and their functions changed. ED2 + testicular macrophages (reactive with a differentiation-related antigen present on the resident macrophages) were activated and IL-1β secretion was enhanced. DBP and BaP acted additively, as demonstrated by greater IL-1β secretion relative to each compound alone. These observations suggest that exposure to DBP plus BaP exerted greater suppression on testosterone production compared with each compound alone. The altered balance in the subsets of testicular macrophages and the enhanced ability of resident testicular macrophages to secrete IL-1β, resulted in enhanced production of IL-1β as a potent steroidogenesis repressor. This may represent an important mechanism by which DBP and BaP repress steroidogenesis.

  11. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system.

    Science.gov (United States)

    Majlessi, Laleh; Brodin, Priscille; Brosch, Roland; Rojas, Marie-Jésus; Khun, Huot; Huerre, Michel; Cole, Stewart T; Leclerc, Claude

    2005-03-15

    The chromosomal locus encoding the early secreted antigenic target, 6 kDa (ESAT-6) secretion system 1 of Mycobacterium tuberculosis, also referred to as "region of difference 1 (RD1)," is absent from Mycobacterium bovis bacillus Calmette-Guerin (BCG). In this study, using low-dose aerosol infection in mice, we demonstrate that BCG complemented with RD1 (BCG::RD1) displays markedly increased virulence which albeit does not attain that of M. tuberculosis H37Rv. Nevertheless, phenotypic and functional analyses of immune cells at the site of infection show that the capacity of BCG::RD1 to initiate recruitment/activation of immune cells is comparable to that of fully virulent H37Rv. Indeed, in contrast to the parental BCG, BCG::RD1 mimics H37Rv and induces substantial influx of activated (CD44highCD45RB(-)CD62L(-)) or effector (CD45RB(-)CD27(-)) T cells and of activated CD11c(+)CD11bhigh cells to the lungs of aerosol-infected mice. For the first time, using in vivo analysis of transcriptome of inflammatory cytokines and chemokines of lung interstitial CD11c+ cells, we show that in a low-dose aerosol infection model, BCG::RD1 triggered an activation/inflammation program comparable to that induced by H37Rv while parental BCG, due to its overattenuation, did not initiate the activation program in lung interstitial CD11c+ cells. Thus, products encoded by the ESAT-6 secretion system 1 of M. tuberculosis profoundly modify the interaction between mycobacteria and the host innate and adaptive immune system. These modifications can explain the previously described improved protective capacity of BCG::RD1 vaccine candidate against M. tuberculosis challenge.

  12. Level-2 Milestone 6007: Sierra Early Delivery System Deployed to Secret Restricted Network

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, A. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-06

    This report documents the delivery and installation of Shark, a CORAL Sierra early delivery system deployed on the LLNL SRD network. Early ASC program users have run codes on the machine in support of application porting for the final Sierra system which will be deployed at LLNL in CY2018. In addition to the SRD resource, Shark, unclassified resources, Rzmanta and Ray, have been deployed on the LLNL Restricted Zone and Collaboration Zone networks in support of application readiness for the Sierra platform.

  13. Protein secretion and membrane insertion systems in gram-negative bacteria.

    Science.gov (United States)

    Saier, Milton H

    2006-01-01

    In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

  14. Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein.

    Science.gov (United States)

    Folders, J; Algra, J; Roelofs, M S; van Loon, L C; Tommassen, J; Bitter, W

    2001-12-01

    The gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into its extracellular environment via the type I, II, and III secretion systems. In this study, a gene, chiC, coding for an extracellular chitinolytic enzyme, was identified. The chiC gene encodes a polypeptide of 483 amino acid residues, without a typical N-terminal signal sequence. Nevertheless, an N-terminal segment of 11 residues was found to be cleaved off in the secreted protein. The protein shows sequence similarity to the secreted chitinases ChiC of Serratia marcescens, ChiA of Vibrio harveyi, and ChiD of Bacillus circulans and consists of an activity domain and a chitin-binding domain, which are separated by a fibronectin type III domain. ChiC was able to bind and degrade colloidal chitin and was active on the artificial substrates carboxymethyl-chitin-Remazol Brilliant Violet and p-nitrophenyl-beta-D-N,N',N"-triacetylchitotriose, but not on p-nitrophenyl-beta-D-N-acetylglucosamine, indicating that it is an endochitinase. Expression of the chiC gene appears to be regulated by the quorum-sensing system of P. aeruginosa, since this gene was not expressed in a lasIR vsmI mutant. After overnight growth, the majority of the ChiC produced was found intracellularly, whereas only small amounts were detected in the culture medium. However, after several days, the cellular pool of ChiC was largely depleted, and the protein was found in the culture medium. This release could not be ascribed to cell lysis. Since ChiC did not appear to be secreted via any of the known secretion systems, a novel secretion pathway seems to be involved.

  15. Gene expression programming for power system static security ...

    African Journals Online (AJOL)

    user

    Keywords: static security, gene expression programming, probabilistic neural network ... Hence digital computers are usually installed in operations control centers to gather ...... power system protection, and applications of AI in power systems.

  16. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model

    DEFF Research Database (Denmark)

    Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine

    2010-01-01

    The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions......, and systemic enteric hormones on intestinal adaptation in short bowel syndrome....

  17. In vitro expansion and differentiation of rat pancreatic duct-derived stem cells into insulin secreting cells using a dynamicthree-dimensional cell culture system.

    Science.gov (United States)

    Chen, X C; Liu, H; Li, H; Cheng, Y; Yang, L; Liu, Y F

    2016-06-27

    In this study, a dynamic three-dimensional cell culture technology was used to expand and differentiate rat pancreatic duct-derived stem cells (PDSCs) into islet-like cell clusters that can secrete insulin. PDSCs were isolated from rat pancreatic tissues by in situ collagenase digestion and density gradient centrifugation. Using a dynamic three-dimensional culture technique, the cells were expanded and differentiated into functional islet-like cell clusters, which were characterized by morphological and phenotype analyses. After maintaining 1 x 108 isolated rat PDSCs in a dynamic three-dimensional cell culture for 7 days, 1.5 x 109 cells could be harvested. Passaged PDSCs expressed markers of pancreatic endocrine progenitors, including CD29 (86.17%), CD73 (90.73%), CD90 (84.13%), CD105 (78.28%), and Pdx-1. Following 14 additional days of culture in serum-free medium with nicotinamide, keratinocyte growth factor (KGF), and b fibroblast growth factor (FGF), the cells were differentiated into islet-like cell clusters (ICCs). The ICC morphology reflected that of fused cell clusters. During the late stage of differentiation, representative clusters were non-adherent and expressed insulin indicated by dithizone (DTZ)-positive staining. Insulin was detected in the extracellular fluid and cytoplasm of ICCs after 14 days of differentiation. Additionally, insulin levels were significantly higher at this time compared with the levels exhibited by PDSCs before differentiation (P cell culture system, PDSCs can be expanded in vitro and can differentiate into functional islet-like cell clusters.

  18. New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells.

    Science.gov (United States)

    Almássy, János; Siguenza, Elias; Skaliczki, Marianna; Matesz, Klara; Sneyd, James; Yule, David I; Nánási, Péter P

    2018-04-01

    The plasma membrane of parotid acinar cells is functionally divided into apical and basolateral regions. According to the current model, fluid secretion is driven by transepithelial ion gradient, which facilitates water movement by osmosis into the acinar lumen from the interstitium. The osmotic gradient is created by the apical Cl - efflux and the subsequent paracellular Na + transport. In this model, the Na + -K + pump is located exclusively in the basolateral membrane and has essential role in salivary secretion, since the driving force for Cl - transport via basolateral Na + -K + -2Cl - cotransport is generated by the Na + -K + pump. In addition, the continuous electrochemical gradient for Cl - flow during acinar cell stimulation is maintained by the basolateral K + efflux. However, using a combination of single-cell electrophysiology and Ca 2+ -imaging, we demonstrate that photolysis of Ca 2+ close to the apical membrane of parotid acinar cells triggered significant K + current, indicating that a substantial amount of K + is secreted into the lumen during stimulation. Nevertheless, the K + content of the primary saliva is relatively low, suggesting that K + might be reabsorbed through the apical membrane. Therefore, we investigated the localization of Na + -K + pumps in acinar cells. We show that the pumps appear evenly distributed throughout the whole plasma membrane, including the apical pole of the cell. Based on these results, a new mathematical model of salivary fluid secretion is presented, where the pump reabsorbs K + from and secretes Na + to the lumen, which can partially supplement the paracellular Na + pathway.

  19. Thrombomodulin Expression in Tissues From Dogs With Systemic Inflammatory Disease.

    Science.gov (United States)

    Kim, S D; Baker, P; DeLay, J; Wood, R D

    2016-07-01

    Thrombomodulin (TM) is a membrane glycoprotein expressed on endothelial cells, which plays a major role in the protein C anticoagulation pathway. In people with inflammation, TM expression can be down-regulated on endothelial cells and a soluble form released into circulation, resulting in increased risk of thrombosis and disseminated intravascular coagulation. TM is present in dogs; however, there has been minimal investigation of its expression in canine tissues, and the effects of inflammation on TM expression in canine tissues have not been investigated. The objective of this study was to evaluate endothelial TM expression in tissues from dogs with systemic inflammatory diseases. A retrospective evaluation of tissue samples of lung, spleen, and liver from dogs with and without systemic inflammatory diseases was performed using immunohistochemistry (IHC) and a modified manual IHC scoring system. TM expression was significantly reduced in all examined tissues in dogs diagnosed with septic peritonitis or acute pancreatitis. © The Author(s) 2016.

  20. Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires.

    Science.gov (United States)

    Li, Peng; Kinch, Lisa N; Ray, Ann; Dalia, Ankur B; Cong, Qian; Nunan, Linda M; Camilli, Andrew; Grishin, Nick V; Salomon, Dor; Orth, Kim

    2017-07-01

    Acute hepatopancreatic necrosis disease (AHPND) is a newly emerging shrimp disease that has severely damaged the global shrimp industry. AHPND is caused by toxic strains of Vibrio parahaemolyticus that have acquired a "selfish plasmid" encoding the deadly binary toxins PirA vp /PirB vp To better understand the repertoire of virulence factors in AHPND-causing V. parahaemolyticus , we conducted a comparative analysis using the genome sequences of the clinical strain RIMD2210633 and of environmental non-AHPND and toxic AHPND isolates of V. parahaemolyticus Interestingly, we found that all of the AHPND strains, but none of the non-AHPND strains, harbor the antibacterial type VI secretion system 1 (T6SS1), which we previously identified and characterized in the clinical isolate RIMD2210633. This finding suggests that the acquisition of this T6SS might confer to AHPND-causing V. parahaemolyticus a fitness advantage over competing bacteria and facilitate shrimp infection. Additionally, we found highly dynamic effector loci in the T6SS1 of AHPND-causing strains, leading to diverse effector repertoires. Our discovery provides novel insights into AHPND-causing pathogens and reveals a potential target for disease control. IMPORTANCE Acute hepatopancreatic necrosis disease (AHPND) is a serious disease that has caused severe damage and significant financial losses to the global shrimp industry. To better understand and prevent this shrimp disease, it is essential to thoroughly characterize its causative agent, Vibrio parahaemolyticus Although the plasmid-encoded binary toxins PirA vp /PirB vp have been shown to be the primary cause of AHPND, it remains unknown whether other virulent factors are commonly present in V. parahaemolyticus and might play important roles during shrimp infection. Here, we analyzed the genome sequences of clinical, non-AHPND, and AHPND strains to characterize their repertoires of key virulence determinants. Our studies reveal that an antibacterial type

  1. Effects of oral stimulation with capsaicin on salivary secretion and neural activities in the autonomic system and the brain

    Directory of Open Access Journals (Sweden)

    Yoko Kono

    2018-06-01

    Conclusion: These results suggest that oral stimulation with capsaicin may be effective in improving oral conditions by increasing salivary flow and SIgA secretion, and in enhancing physical and mental conditions as indicated by sympathetic nerve and EEG changes.

  2. Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis.

    Science.gov (United States)

    Linares, Daniel M; Alvarez-Sieiro, Patricia; del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Martin, Ma Cruz; Fernandez, Maria; Alvarez, Miguel A

    2015-12-30

    Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.

  3. Characterization of Small Molecule Scaffolds that Bind to the Shigella Type III Secretion System Protein IpaD

    Science.gov (United States)

    Dey, Supratim; Anbanandam, Asokan; Mumford, Ben E.; De Guzman, Roberto N.

    2017-01-01

    Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salts sterols. Here, we identified four new small molecule scaffolds that bind to IpaD based on the methylquinoline, pyrrolidin-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small molecule inhibitors of IpaD that could lead to new anti-infectives. PMID:28750143

  4. Characterization of Small-Molecule Scaffolds That Bind to the Shigella Type III Secretion System Protein IpaD.

    Science.gov (United States)

    Dey, Supratim; Anbanandam, Asokan; Mumford, Ben E; De Guzman, Roberto N

    2017-09-21

    Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salt sterols. In this study we identified four new small-molecule scaffolds that bind to IpaD, based on the methylquinoline, pyrrolidine-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small-molecule inhibitors of IpaD that could lead to new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems.

    Directory of Open Access Journals (Sweden)

    Duccio Medini

    2006-12-01

    Full Text Available From the analysis of 251 prokaryotic genomes stored in public databases, the 761,260 deduced proteins were used to reconstruct a complete set of bacterial proteic families. Using the new Overlap algorithm, we have partitioned the Protein Homology Network (PHN, where the proteins are the nodes and the links represent homology relationships. The algorithm identifies the densely connected regions of the PHN that define the families of homologous proteins, here called PHN-Families, recognizing the phylogenetic relationships embedded in the network. By direct comparison with a manually curated dataset, we assessed that this classification algorithm generates data of quality similar to a human expert. Then, we explored the network to identify families involved in the assembly of Type III and Type IV secretion systems (T3SS and T4SS. We noticed that, beside a core of conserved functions (eight proteins for T3SS, seven for T4SS, a variable set of accessory components is always present (one to nine for T3SS, one to five for T4SS. Each member of the core corresponds to a single PHN-Family, while accessory proteins are distributed among different pure families. The PHN-Family classification suggests that T3SS and T4SS have been assembled through a step-wise, discontinuous process, by complementing the conserved core with subgroups of nonconserved proteins. Such genetic modules, independently recruited and probably tuned on specific effectors, contribute to the functional specialization of these organelles to different microenvironments.

  6. Canada's deadly secret : Saskatchewan uranium and the global nuclear system

    Energy Technology Data Exchange (ETDEWEB)

    Harding, J.

    2007-07-01

    Although Canada has a reputation for its support of multilateralism and international peacekeeping, it has provided fuel for American and British nuclear weapons, and continues to provide uranium fuel for nuclear reactors and power plants throughout the world. This book provided a detailed outline of Canada's involvement in uranium mining in Saskatchewan, the largest uranium-producing region in the world. The ways in which Canada has been complicit in the expansion of the global nuclear system were examined. A history of the province's role in the first nuclear arms race between the Soviet Union and the United States was provided, and details of provincial public inquiries conducted to legitimize the expansion of uranium mining were revealed. Issues related to the exploitation of ancestral lands belonging to Aboriginal peoples were discussed along with the impact of uranium mining on communities in the province. It was concluded that the province is now being targeted as a storage site for nuclear waste. refs.

  7. The alpha cell expresses glucagon-like peptide-2 receptors and glucagon-like peptide-2 stimulates glucagon secretion from the rat pancreas

    DEFF Research Database (Denmark)

    de Heer, J; Pedersen, J; Orskov, C

    2007-01-01

    AIMS/HYPOTHESIS: Glucagon-like peptide-2 (GLP-2) is a gut hormone regulating intestinal growth and nutrient absorption. Recently, GLP-2 has been reported to stimulate glucagon secretion in healthy humans. We sought to clarify the mechanism and physiological significance of this endocrine effect. ...... of the glucagonotropic action of GLP-2 in humans....

  8. Construction of an expression system for bioactive IL-18 and generation of recombinant canine distemper virus expressing IL-18.

    Science.gov (United States)

    Liu, Yuxiu; Sato, Hiroki; Hamana, Masahiro; Moonan, Navita Anisia; Yoneda, Misako; Xia, Xianzhu; Kai, Chieko

    2014-09-01

    Interleukin 18 (IL-18) plays an important role in the T-helper-cell type 1 immune response against intracellular parasites, bacteria and viral infections. It has been widely used as an adjuvant for vaccines and as an anticancer agent. However, IL-18 protein lacks a typical signal sequence and requires cleavage into its mature active form by caspase 1. In this study, we constructed mammalian expression vectors carrying cDNA encoding mature canine IL-18 (cIL-18) or mouse IL-18 (mIL-18) fused to the human IL-2 (hIL-2) signal sequence. The expressed proIL-18 proteins were processed to their mature forms in the cells. The supernatants of cells transfected with these plasmids induced high interferon-γ production in canine peripheral blood mononuclear cells or mouse splenocytes, respectively, indicating the secretion of bioactive IL-18. Using reverse genetics, we also generated a recombinant canine distemper virus that expresses cIL-18 or mIL-18 fused to the hIL-2 signal sequence. As expected, both recombinant viruses produced mature IL-18 in the infected cells, which secreted bioactive IL-18. These results indicate that the signal sequence from hIL-2 is suitable for the secretion of mature IL-18. These recombinant viruses can also potentially be used as immunoadjuvants and agents for anticancer therapies in vivo.

  9. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    Science.gov (United States)

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  10. Myeloma cells suppress osteoblasts through sclerostin secretion

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, S; Brunetti, G; Oranger, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Mori, G [Department of Biomedical Science, University of Foggia, Foggia (Italy); Sardone, F [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Specchia, G; Rinaldi, E; Curci, P; Liso, V [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Passeri, G [Department of Internal Medicine and Biomedical Sciences, Center for Metabolic Bone Diseases, University of Parma, Parma (Italy); Zallone, A [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy); Rizzi, R [Department of Emergency and Organ Transplantation, Hematology Section, Bari University Medical School, Bari (Italy); Grano, M [Department of Human Anatomy and Histology, University of Bari Medical School, Bari (Italy)

    2011-06-01

    Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM.

  11. Type III secretion system and virulence markers highlight similarities and differences between human- and plant-associated Pseudomonads related to Pseudomonas fluorescens and P-putida

    OpenAIRE

    Mazurier, Sylvie; Merieau, Annabelle; Bergeau, Dorian; Decoin, Victorien; Sperandio, Daniel; Crepin, Alexandre; Barbey, Corinne; Jeannot, Katy; Vicre-Gibouin, Maité; Plesiat, Patrick; Lemanceau, Philippe; Latour, Xavier

    2015-01-01

    Pseudomonas fluorescens is commonly considered a saprophytic rhizobacterium devoid of pathogenic potential. Nevertheless, the recurrent isolation of strains from clinical human cases could indicate the emergence of novel strains originating from the rhizosphere reservoir, which could be particularly resistant to the immune system and clinical treatment. The importance of type three secretion systems (T3SSs) in the related Pseudomonas aeruginosa nosocomial species and the occurrence of this se...

  12. Baculovirus expression vector system: An efficient tool for the ...

    African Journals Online (AJOL)

    Baculovirus expression vector system is considered one of the most successful and widely acceptable means for the production of recombinant proteins in extremely large quantities. Proper posttranslational modifications of the expressed proteins in insect cells, the usual host of baculoviruses, get them soluble, correctly ...

  13. Generation of Dipeptidyl Peptidase-IV-Inhibiting Peptides from β-Lactoglobulin Secreted by Lactococcus lactis

    Directory of Open Access Journals (Sweden)

    Suguru Shigemori

    2014-01-01

    Full Text Available Previous studies showed that hydrolysates of β-lactoglobulin (BLG prepared using gastrointestinal proteases strongly inhibit dipeptidyl peptidase-IV (DPP-IV activity in vitro. In this study, we developed a BLG-secreting Lactococcus lactis strain as a delivery vehicle and in situ expression system. Interestingly, trypsin-digested recombinant BLG from L. lactis inhibited DPP-IV activity, suggesting that BLG-secreting L. lactis may be useful in the treatment of type 2 diabetes mellitus.

  14. Application of native signal sequences for recombinant proteins secretion in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Do, Duy Duc; Eriksen, Jens C.

    Background Methylotrophic yeast Pichia pastoris is widely used for recombinant protein production, largely due to its ability to secrete correctly folded heterologous proteins to the fermentation medium. Secretion is usually achieved by cloning the recombinant gene after a leader sequence, where...... alpha‐mating factor (MF) prepropeptide from Saccharomyces cerevisiae is most commonly used. Our aim was to test whether signal peptides from P. pastoris native secreted proteins could be used to direct secretion of recombinant proteins. Results Eleven native signal peptides from P. pastoris were tested...... by optimization of expression of three different proteins in P. pastoris. Conclusions Native signal peptides from P. pastoris can be used to direct secretion of recombinant proteins. A novel USER‐based P. pastoris system allows easy cloning of protein‐coding gene with the promoter and leader sequence of choice....

  15. How to express tumours using membrane systems

    Institute of Scientific and Technical Information of China (English)

    Miguel A. Gutiérrez-Naranjo; Mario J. Pérez-Jiménez; Agustín Riscos-Nú(n)ez; Francisco J. Romero-Campero

    2007-01-01

    In this paper we discuss the potential usefulness of membrane systems as tools for modelling tumours. The approach is followed both from a macroscopic and a microscopic point of view. In the first case, one considers the tumour as a growing mass of cells,focusing on its external shape. In the second case, one descends to the microscopic level, studying molecular signalling pathways that are crucial to determine if a cell is cancerous or not. In each of these approaches we work with appropriate variants of membrane systems.

  16. Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner.

    Science.gov (United States)

    Benson, Meredith A; Lilo, Sarit; Wasserman, Gregory A; Thoendel, Matthew; Smith, Amanda; Horswill, Alexander R; Fraser, John; Novick, Richard P; Shopsin, Bo; Torres, Victor J

    2011-08-01

    Staphylococcus aureus overproduces a subset of immunomodulatory proteins known as the staphylococcal superantigen-like proteins (Ssls) under conditions of pore-mediated membrane stress. In this study we demonstrate that overproduction of Ssls during membrane stress is due to the impaired activation of the two-component module of the quorum-sensing accessory gene regulator (Agr) system. Agr-dependent repression of ssl expression is indirect and mediated by the transcription factor repressor of toxins (Rot). Surprisingly, we observed that Rot directly interacts with and activates the ssl promoters. The role of Agr and Rot as regulators of ssl expression was observed across several clinically relevant strains, suggesting that overproduction of immunomodulatory proteins benefits agr-defective strains. In support of this notion, we demonstrate that Ssls contribute to the residual virulence of S. aureus lacking agr in a murine model of systemic infection. Altogether, these results suggest that S. aureus compensates for the inactivation of Agr by producing immunomodulatory exoproteins that could protect the bacterium from host-mediated clearance. © 2011 Blackwell Publishing Ltd.

  17. Recombinant expression systems: the obstacle to helminth vaccines?

    Science.gov (United States)

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  18. Timing of gene expression from different genetic systems in shaping ...

    Indian Academy of Sciences (India)

    2011-12-16

    Dec 16, 2011 ... different genetic systems, nutrition quality traits were mainly controlled by the accumulative or net ... pable of providing valuable information on the expression of ...... protein, carbohydrates, and dietary fiber components.

  19. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep.

    Science.gov (United States)

    Kamke, Janine; Soni, Priya; Li, Yang; Ganesh, Siva; Kelly, William J; Leahy, Sinead C; Shi, Weibing; Froula, Jeff; Rubin, Edward M; Attwood, Graeme T

    2017-08-08

    Ruminants are important contributors to global methane emissions via microbial fermentation in their reticulo-rumens. This study is part of a larger program, characterising the rumen microbiomes of sheep which vary naturally in methane yield (g CH 4 /kg DM/day) and aims to define differences in microbial communities, and in gene and transcript abundances that can explain the animal methane phenotype. Rumen microbiome metagenomic and metatranscriptomic data were analysed by Gene Set Enrichment, sparse partial least squares regression and the Wilcoxon Rank Sum test to estimate correlations between specific KEGG bacterial pathways/genes and high methane yield in sheep. KEGG genes enriched in high methane yield sheep were reassembled from raw reads and existing contigs and analysed by MEGAN to predict their phylogenetic origin. Protein coding sequences from Succinivibrio dextrinosolvens strains were analysed using Effective DB to predict bacterial type III secreted proteins. The effect of S. dextrinosolvens strain H5 growth on methane formation by rumen methanogens was explored using co-cultures. Detailed analysis of the rumen microbiomes of high methane yield sheep shows that gene and transcript abundances of bacterial type III secretion system genes are positively correlated with methane yield in sheep. Most of the bacterial type III secretion system genes could not be assigned to a particular bacterial group, but several genes were affiliated with the genus Succinivibrio, and searches of bacterial genome sequences found that strains of S. dextrinosolvens were part of a small group of rumen bacteria that encode this type of secretion system. In co-culture experiments, S. dextrinosolvens strain H5 showed a growth-enhancing effect on a methanogen belonging to the order Methanomassiliicoccales, and inhibition of a representative of the Methanobrevibacter gottschalkii clade. This is the first report of bacterial type III secretion system genes being associated with high

  20. Efficient heterologous expression and secretion in Aspergillus oryzae of a llama variable heavy-chain antibody fragment V(HH) against EGFR.

    Science.gov (United States)

    Okazaki, Fumiyoshi; Aoki, Jun-ichi; Tabuchi, Soichiro; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2012-10-01

    We have constructed a filamentous fungus Aspergillus oryzae that secretes a llama variable heavy-chain antibody fragment (V(HH)) that binds specifically to epidermal growth factor receptor (EGFR) in a culture medium. A major improvement in yield was achieved by fusing the V(HH) with a Taka-amylase A signal sequence (sTAA) and a segment of 28 amino acids from the N-terminal region of Rhizopus oryzae lipase (N28). The yields of secreted, immunologically active anti-EGFR V(HH) reached 73.8 mg/1 in a Sakaguchi flask. The V(HH) fragments were released from the sTAA or N28 proteins by an indigenous A. oryzae protease during cultivation. The purified recombinant V(HH) fragment was specifically recognized and could bind to the EGFR with a high affinity.

  1. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  2. Prolongation of the survival of breast cancer-bearing mice immunized with GM-CSF-secreting syngeneic/allogeneic fibroblasts transfected with a cDNA expression library from breast cancer cells.

    Science.gov (United States)

    Kim, Tae S; Jung, Mi Y; Cho, Daeho; Cohen, Edward P

    2006-10-30

    Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.

  3. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    Science.gov (United States)

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  4. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system

    NARCIS (Netherlands)

    de Jong, Maarten F.; Sun, Yao-Hui; den Hartigh, Andreas B.; van Dijl, Jan Maarten; Tsolis, Renee M.

    2008-01-01

    Survival and replication inside host cells by Brucella spp. requires a type IV secretion system (T4SS), encoded by the virB locus. However, the identity of the molecules secreted by the T4SS has remained elusive. We hypothesized that proteins translocated by the T4SS would be co-regulated with the

  5. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  6. Facial expression system on video using widrow hoff

    Science.gov (United States)

    Jannah, M.; Zarlis, M.; Mawengkang, H.

    2018-03-01

    Facial expressions recognition is one of interesting research. This research contains human feeling to computer application Such as the interaction between human and computer, data compression, facial animation and facial detection from the video. The purpose of this research is to create facial expression system that captures image from the video camera. The system in this research uses Widrow-Hoff learning method in training and testing image with Adaptive Linear Neuron (ADALINE) approach. The system performance is evaluated by two parameters, detection rate and false positive rate. The system accuracy depends on good technique and face position that trained and tested.

  7. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane.

    Science.gov (United States)

    Ji, Hongtao; Dong, Hansong

    2015-09-01

    Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  8. Expression of Recombinant Human Coagulation Factor VII by the Lizard Leishmania Expression System

    Directory of Open Access Journals (Sweden)

    Sina Mirzaahmadi

    2011-01-01

    Full Text Available The variety of recombinant protein expression systems have been developed as a resource of FVII gene expression. In the current study, the authors used a novel protein expression system based on the Iranian Lizard Leishmania, a trypanosomatid protozoan as a host for expression of FVII. Plasmid containing cDNA encoding full-length human FVII was introduced into Lizard Leishmania and positive transfectants were analyzed by SDS-PAGE and Western blot analysis. Furthermore, biological activity of purified protein was detected by PT assay. The recombinant strain harboring a construct was analyzed for expression of FVII at the mRNA and protein level. Purified rFVII was obtained and in order to confirm the purified compound was in fact rFVII. Western blot analysis was carried out. Clotting time in PT assay was reduced about 30 seconds with the purified rFVII. In Conclusion, this study has demonstrated, for the first time, that Leishmania cells can be used as an expression system for producing recombinant FVII.

  9. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  10. Catechin secretion and phytotoxicity

    Science.gov (United States)

    Kaushik, Shail

    2010-01-01

    Research indicates that the invasiveness of Centaurea stoebe is attributed to the stronger allelopathic effects on the native North American species than on the related European species, which is one of the unquestionable aspects of the “novel weapons hypothesis (NWH).” Studies originating from controlled to field conditions have shown that C. stoebe utilizes its biochemical potential to exert its invasiveness. The roots of C. stoebe secrete a potent phytotoxin, catechin, which has a detrimental effect on the surrounding plant species. Although, studies on catechin secretion and phytotoxicity represent one of the most well studied systems describing negative plant-plant interactions, it has also sparked controversies lately due to its phytotoxicity dosages and secretion effluxes. Previous reports negate the phytotoxic and pro-oxidant nature of catechin.1–3 In our recent study we have shown that catechin is highly phytotoxic against Arabidopsis thaliana and Festuca idahoensis. We also show that (±) catechin applied to roots of A. thaliana induces reactive oxygen species (ROS) confirming the pro-oxidant nature of catechin. In addition, activation of signature cell death genes such as acd2 and cad1 post catechin treatment in A. thaliana ascertains the phytotoxic nature of catechin. PMID:21057643

  11. Expression of recombinant antibacterial lactoferricin-related peptides from Pichia pastoris expression system.

    Science.gov (United States)

    Chen, Gen-Hung; Chen, Wei-Ming; Huang, Guo-Ting; Chen, Yu-Wen; Jiang, Shann-Tzong

    2009-10-28

    Four recombinant antimicrobial peptide (rAMP) cDNAs, constructed from two goat lactoferricin-related peptide cDNAs (GLFcin and GLFcin II) with/without (His)(6)-Tag, were cloned into pPICZalphaC and transformed into Pichia pastoris SMD1168H. After methanol induction, these rAMPs were expressed and secreted into broth. They were purified after CM-Sepharose (without His-tg), HisTrap (with His-tg) and Sephadex G-25 chromatographies. The yield of purified rAMP was 0.15 mg/mL of broth. These 4 rAMPs were thermal-stable and with high antibacterial activity against Escherichia coli BCRC 11549, Pseudomonas aeruginosa BCRC 12450, Bacillus cereus BCRC 10603, Staphylococcus aureus BCRC 25923, Propioni bacterium acnes BCRC 10723, and Listera monocytogenes BCRC 14845. The minimum inhibitory concentration (MIC) of rAMPs against these indicators ranged from 4.07 to 16.00 mg/mL.

  12. Bile Formation and Secretion

    Science.gov (United States)

    Boyer, James L.

    2014-01-01

    Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (~1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions. PMID:23897680

  13. N-glycan sialylation in a silkworm-baculovirus expression system.

    Science.gov (United States)

    Suganuma, Masatoshi; Nomura, Tsuyoshi; Higa, Yukiko; Kataoka, Yukiko; Funaguma, Shunsuke; Okazaki, Hironobu; Suzuki, Takeo; Fujiyama, Kazuhito; Sezutsu, Hideki; Tatematsu, Ken-Ichiro; Tamura, Toshiki

    2018-02-09

    A silkworm-baculovirus system is particularly effective for producing recombinant proteins, including glycoproteins. However, N-glycan structures in silkworm differ from those in mammals. Glycoproteins in silkworm are secreted as pauci-mannose type N-glycans without sialic acid or galactose residues. Sialic acid on N-glycans plays important roles in protein functions. Therefore, we developed pathways for galactosylation and sialylation in silkworm. Sialylated N-glycans on proteins were successfully produced in silkworm by co-expressing galactosyltransferase and sialyltransferase and providing an external supply of a sialylation-related substrate. α2,3/α2,6 Sialylation to N-glycans was controlled by changing the type of sialyltransferase expressed in silkworm. Furthermore, the co-expression of N-acetylglucosaminyltransferase II facilitated the formation of additional di-sialylated N-glycan structures. Our results provide new information on the control of N-glycosylation in silkworm. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken.

    Directory of Open Access Journals (Sweden)

    David Pezoa

    Full Text Available The role of the Salmonella Pathogenicity Islands (SPIs in pathogenesis of Salmonella enterica Typhimurium infection in the chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS encoded in SPI-6 (T6SSSPI-6, which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19 that is required for colonization of chicks. In this work, we investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed that a ΔT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain. Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results showed that transfer of T6SSSPI-19 from S. Gallinarum to the ΔT6SSSPI-6 mutant of S. Typhimurium not only complemented the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days 1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6 and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.

  15. Uncovering methods for the prevention of protein aggregation and improvement of product quality in a transient expression system.

    Science.gov (United States)

    Estes, Bram; Hsu, Yueh-Rong; Tam, Lei-Ting; Sheng, Jackie; Stevens, Jennitte; Haldankar, Raj

    2015-01-01

    Mammalian expression systems are used routinely for the production of recombinant proteins as therapeutic molecules as well as research tools. Transient expression has become increasingly popular in recent years due to its rapid timeline and improvements in expression level. While improvements to transient expression systems have focused mainly on the level of protein expression, the aspect of protein quality has received little attention. The removal of undesirable products, such as aggregation, depends primarily on purification, requiring additional cumbersome steps, which can lead to a lower product yield and longer timelines. In this study, we show that reducing the level of transcription by transfecting at a lower gene dose improves the quality of secreted molecules prone to aggregation. For gene dosing to have this effect, it is critical for the carrier DNA to be an empty vector containing the same elements as the gene containing plasmid. This approach can be used in combination with a temperature shift to hypothermic conditions during production to enhance the effect. The observed improvements not only minimized aggregation levels, but also generated products with overall superior quality, including more homogeneous signal peptide cleavage and N-linked glycosylation profiles. These techniques have produced a similar improvement in product quality with a variety of other molecules, suggesting that this may be a general approach to enhance product quality from transient expression systems. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  16. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes

    Directory of Open Access Journals (Sweden)

    Santiviago Carlos A

    2009-08-01

    Full Text Available Abstract Background The recently described Type VI Secretion System (T6SS represents a new paradigm of protein secretion in bacteria. A number of bioinformatic studies have been conducted to identify T6SS gene clusters in the available bacterial genome sequences. According to these studies, Salmonella harbors a unique T6SS encoded in the Salmonella Pathogenicity Island 6 (SPI-6. Since these studies only considered few Salmonella genomes, the present work aimed to identify novel T6SS loci by in silico analysis of every genome sequence of Salmonella available. Results The analysis of sequencing data from 44 completed or in progress Salmonella genome projects allowed the identification of 3 novel T6SS loci. These clusters are located in differentially-distributed genomic islands we designated SPI-19, SPI-20 and SPI-21, respectively. SPI-19 was identified in a subset of S. enterica serotypes including Dublin, Weltevreden, Agona, Gallinarum and Enteritidis. In the later, an internal deletion eliminated most of the island. On the other hand, SPI-20 and SPI-21 were restricted to S. enterica subspecies arizonae (IIIa serotype 62:z4,z23:-. Remarkably, SPI-21 encodes a VgrG protein containing a C-terminal extension similar to S-type pyocins of Pseudomonas aeruginosa. This is not only the first evolved VgrG described in Salmonella, but also the first evolved VgrG including a pyocin domain described so far in the literature. In addition, the data indicate that SPI-6 T6SS is widely distributed in S. enterica and absent in serotypes Enteritidis, Gallinarum, Agona, Javiana, Paratyphi B, Virchow, IIIa 62:z4,z23:- and IIIb 61:1,v:1,5,(7. Interestingly, while some serotypes harbor multiple T6SS (Dublin, Weltvreden and IIIa 62:z4,z23:- others do not encode for any (Enteritidis, Paratyphi B, Javiana, Virchow and IIIb 61:1,v:1,5,(7. Comparative and phylogenetic analyses indicate that the 4 T6SS loci in Salmonella have a distinct evolutionary history. Finally, we

  17. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  18. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Lionel Guy

    2013-03-01

    Full Text Available Gene transfer agents (GTAs randomly transfer short fragments of a bacterial genome. A novel putative GTA was recently discovered in the mouse-infecting bacterium Bartonella grahamii. Although GTAs are widespread in phylogenetically diverse bacteria, their role in evolution is largely unknown. Here, we present a comparative analysis of 16 Bartonella genomes ranging from 1.4 to 2.6 Mb in size, including six novel genomes from Bartonella isolated from a cow, two moose, two dogs, and a kangaroo. A phylogenetic tree inferred from 428 orthologous core genes indicates that the deadly human pathogen B. bacilliformis is related to the ruminant-adapted clade, rather than being the earliest diverging species in the genus as previously thought. A gene flux analysis identified 12 genes for a GTA and a phage-derived origin of replication as the most conserved innovations. These are located in a region of a few hundred kb that also contains 8 insertions of gene clusters for type III, IV, and V secretion systems, and genes for putatively secreted molecules such as cholera-like toxins. The phylogenies indicate a recent transfer of seven genes in the virB gene cluster for a type IV secretion system from a cat-adapted B. henselae to a dog-adapted B. vinsonii strain. We show that the B. henselae GTA is functional and can transfer genes in vitro. We suggest that the maintenance of the GTA is driven by selection to increase the likelihood of horizontal gene transfer and argue that this process is beneficial at the population level, by facilitating adaptive evolution of the host-adaptation systems and thereby expansion of the host range size. The process counters gene loss and forces all cells to contribute to the production of the GTA and the secreted molecules. The results advance our understanding of the role that GTAs play for the evolution of bacterial genomes.

  19. Andrographolide inhibits hypoxia-induced HIF-1α-driven endothelin 1 secretion by activating Nrf2/HO-1 and promoting the expression of prolyl hydroxylases 2/3 in human endothelial cells.

    Science.gov (United States)

    Lin, Hung-Chih; Su, Shih-Li; Lu, Chia-Yang; Lin, Ai-Hsuan; Lin, Wan-Chun; Liu, Chin-San; Yang, Ya-Chen; Wang, Hsiu-Miao; Lii, Chong-Kuei; Chen, Haw-Wen

    2017-03-01

    Andrographolide, the main bioactive component of the medicinal plant Andrographis paniculata, has been shown to possess potent anti-inflammatory activity. Endothelin 1 (ET-1), a potent vasoconstrictor peptide produced by vascular endothelial cells, displays proinflammatory property. Hypoxia-inducible factor 1α (HIF-1α), the regulatory member of the transcription factor heterodimer HIF-1α/β, is one of the most important molecules that responds to hypoxia. Changes in cellular HIF-1α protein level are the result of altered gene transcription and protein stability, with the latter being dependent on prolyl hydroxylases (PHDs). In this study, inhibition of pro-inflammatory ET-1 expression and changes of HIF-1α gene transcription and protein stability under hypoxia by andrographolide in EA.hy926 endothelial-like cells were investigated. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl 2. We found that hypoxia stimulated the production of reactive oxygen species (ROS), the expression of HIF-1α mRNA and protein, and the expression and secretion of ET-1. These effects, however, were attenuated by co-exposure to andrographolide, bilirubin, and RuCO. Silencing Nrf2 and heme oxygenase 1 (HO-1) reversed the inhibitory effects of andrographolide on hypxoia-induced HIF-1α mRNA and protein expression. Moreover, andrographolide increased the expression of prolyl hydroxylases (PHD) 2/3, which hydroxylate HIF-1α and promotes HIF-1α proteasome degradation, with an increase in HIF-1α hydroxylation was noted under hypoxia. Inhibition of p38 MAPK abrogated the hypoxia-induced increases in HIF-1α mRNA and protein expression as well as ET-1 mRNA expression and secretion. Taken together, these results suggest that andrographolide suppresses hypoxia-induced pro-inflammatory ET-1 expression by activating Nrf2/HO-1, inhibiting p38 MAPK signaling, and promoting PHD2/3 expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 918-930, 2017. © 2016 Wiley

  20. Histaminergic regulation of prolactin secretion

    DEFF Research Database (Denmark)

    Knigge, U P

    1990-01-01

    Histamine (HA), which acts as a neurotransmitter in the central nervous system, participates in the neuroendocrine regulation of prolactin (PRL) secretion. HA has a predominant stimulatory effect which is mediated via H2-receptors following central administration and via H1-receptors following...... systemic infusion of the amine. In addition, HA seems to exert a minor inhibitory effect on PRL secretion, an effect unmasked only during blockade of the receptor mediating the stimulatory effect. Following central administration the inhibitory effect is mediated via H1-receptors, while following systemic...... administration this effect is mediated via H2-receptors. In accordance with these findings, the H2-receptor antagonist cimetidine (CIM) has an inhibitory (following central administration) or stimulatory (following systemic administration) effect on PRL secretion. However, high doses of CIM possess an additional...

  1. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein.

    Science.gov (United States)

    Kessler, P D; Podsakoff, G M; Chen, X; McQuiston, S A; Colosi, P C; Matelis, L A; Kurtzman, G J; Byrne, B J

    1996-11-26

    Somatic gene therapy has been proposed as a means to achieve systemic delivery of therapeutic proteins. However, there is limited evidence that current methods of gene delivery can practically achieve this goal. In this study, we demonstrate that, following a single intramuscular administration of a recombinant adeno-associated virus (rAAV) vector containing the beta-galactosidase (AAV-lacZ) gene into adult BALB/c mice, protein expression was detected in myofibers for at least 32 weeks. A single intramuscular administration of an AAV vector containing a gene for human erythropoietin (AAV-Epo) into mice resulted in dose-dependent secretion of erythropoietin and corresponding increases in red blood cell production that persisted for up to 40 weeks. Primary human myotubes transduced in vitro with the AAV-Epo vector also showed dose-dependent production of Epo. These results demonstrate that rAAV vectors are able to transduce skeletal muscle and are capable of achieving sustained expression and systemic delivery of a therapeutic protein following a single intramuscular administration. Gene therapy using AAV vectors may provide a practical strategy for the treatment of inherited and acquired protein deficiencies.

  2. Membrane fusion proteins of type I secretion system and tripartite efflux pumps share a binding motif for TolC in gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Minho Lee

    Full Text Available The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA. In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.

  3. Escherichia coli type III secretion system 2 (ETT2) is widely distributed in avian pathogenic Escherichia coli isolates from Eastern China.

    Science.gov (United States)

    Wang, S; Liu, X; Xu, X; Zhao, Y; Yang, D; Han, X; Tian, M; Ding, C; Peng, D; Yu, S

    2016-10-01

    Pathogens utilize type III secretion systems to deliver effector proteins, which facilitate bacterial infections. The Escherichia coli type III secretion system 2 (ETT2) which plays a crucial role in bacterial virulence, is present in the majority of E. coli strains, although ETT2 has undergone widespread mutational attrition. We investigated the distribution and characteristics of ETT2 in avian pathogenic E. coli (APEC) isolates and identified five different ETT2 isoforms, including intact ETT2, in 57·6% (141/245) of the isolates. The ETT2 locus was present in the predominant APEC serotypes O78, O2 and O1. All of the ETT2 loci in the serotype O78 isolates were degenerate, whereas an intact ETT2 locus was mostly present in O1 and O2 serotype strains, which belong to phylogenetic groups B2 and D, respectively. Interestingly, a putative second type III secretion-associated locus (eip locus) was present only in the isolates with an intact ETT2. Moreover, ETT2 was more widely distributed in APEC isolates and exhibited more isoforms compared to ETT2 in human extraintestinal pathogenic E. coli, suggesting that APEC might be a potential risk to human health. However, there was no distinct correlation between ETT2 and other virulence factors in APEC.

  4. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-01-01

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  5. Windows 8 secrets

    CERN Document Server

    Thurrott, Paul

    2012-01-01

    Tips, tricks, treats, and secrets revealed on Windows 8 Microsoft is introducing a major new release of its Windows operating system, Windows 8, and what better way to learn all its ins and outs than from two internationally recognized Windows experts and Microsoft insiders, authors Paul Thurrott and Rafael Rivera? They cut through the hype to get at useful information you'll not find anywhere else, including what role this new OS plays in a mobile and tablet world. Regardless of your level of knowledge, you'll discover little-known facts about how things work, what's new and different, and h

  6. Comparative Genomics Identifies a Novel Conserved Protein, HpaT, in Proteobacterial Type III Secretion Systems that Do Not Possess the Putative Translocon Protein HrpF

    Directory of Open Access Journals (Sweden)

    Céline Pesce

    2017-06-01

    Full Text Available Xanthomonas translucens is the causal agent of bacterial leaf streak, the most common bacterial disease of wheat and barley. To cause disease, most xanthomonads depend on a highly conserved type III secretion system, which translocates type III effectors into host plant cells. Mutagenesis of the conserved type III secretion gene hrcT confirmed that the X. translucens type III secretion system is required to cause disease on the host plant barley and to trigger a non-host hypersensitive response (HR in pepper leaves. Type III effectors are delivered to the host cell by a surface appendage, the Hrp pilus, and a translocon protein complex that inserts into the plant cell plasma membrane. Homologs of the Xanthomonas HrpF protein, including PopF from Ralstonia solanacearum and NolX from rhizobia, are thought to act as a translocon protein. Comparative genomics revealed that X. translucens strains harbor a noncanonical hrp gene cluster, which rather shares features with type III secretion systems from Ralstonia solanacearum, Paraburkholderia andropogonis, Collimonas fungivorans, and Uliginosibacterium gangwonense than other Xanthomonas spp. Surprisingly, none of these bacteria, except R. solanacearum, encode a homolog of the HrpF translocon. Here, we aimed at identifying a candidate translocon from X. translucens. Notably, genomes from strains that lacked hrpF/popF/nolX instead encode another gene, called hpaT, adjacent to and co-regulated with the type III secretion system gene cluster. An insertional mutant in the X. translucens hpaT gene, which is the first gene of a two-gene operon, hpaT-hpaH, was non-pathogenic on barley and did not cause the HR or programmed cell death in non-host pepper similar to the hrcT mutant. The hpaT mutant phenotypes were partially complemented by either hpaT or the downstream gene, hpaH, which has been described as a facilitator of translocation in Xanthomonas oryzae. Interestingly, the hpaT mutant was also complemented

  7. Facilitated saliva secretion and reduced oral inflammation by a novel artificial saliva system in the treatment of salivary hypofunction

    Directory of Open Access Journals (Sweden)

    Kang M

    2017-01-01

    Full Text Available Minkyung Kang,1 Hyounggeun Park,1 Joon-Ho Jun,1 Miwon Son,1 Myung Joo Kang2 1Pharmaceutical Product Research Laboratories, Dong-A ST Research Institute, Gyeonggi, 2Division of Pharmaceutical Sciences, College of Pharmacy, Dankook University, Cheonan, Chungnam, Korea Abstract: Saliva substitutes and/or lubricants are commonly employed to lessen dry mouth symptoms by stimulating and/or substituting for the secretion of saliva. In this study, a novel artificial saliva containing inorganic salts, including sodium chloride and potassium chloride, and bactericidal agents, including potassium thiocyanate and lactoperoxidase, was formulated in the form of a solution (DM-sol or gel (DM-gel. Those in vivo therapeutic efficacies were assessed in terms of saliva secretion and anti-inflammatory activity in rats and mice, respectively. Salivary secretion was promoted by mucosal application of DM-formulations in normal rats. In particular, DM-gel resulted in 2.5- and 1.9-fold greater salivary flow rates compared to normal saline and DM-sol, respectively. In an in vivo efficacy evaluation in diabetic mice with salivary hypofunction, repeated application of DM-formulations alleviated histopathological changes in the buccal mucosa in terms of atrophy and thinning of the epithelium, compared to vehicle, after 4 weeks. Moreover, the DM-sol and DM-gel were comparably effective for relieving periodontal gingivitis, reducing infiltration of inflammatory cells, and normalizing the neutrophil level in the gingival gingiva, after 4 weeks. Therefore, the novel artificial saliva is expected to facilitate salivary secretion and restore physiological conditions in the mouth of patients with salivary hypofunction. Keywords: saliva substitute, carbopol gel, hypothiocyanite–hydrogen peroxide mixture, antimicrobial activity, diabetic rats

  8. Efficient multiparty quantum-secret-sharing schemes

    International Nuclear Information System (INIS)

    Xiao Li; Deng Fuguo; Long Guilu; Pan Jianwei

    2004-01-01

    In this work, we generalize the quantum-secret-sharing scheme of Hillery, Buzek, and Berthiaume [Phys. Rev. A 59, 1829 (1999)] into arbitrary multiparties. Explicit expressions for the shared secret bit is given. It is shown that in the Hillery-Buzek-Berthiaume quantum-secret-sharing scheme the secret information is shared in the parity of binary strings formed by the measured outcomes of the participants. In addition, we have increased the efficiency of the quantum-secret-sharing scheme by generalizing two techniques from quantum key distribution. The favored-measuring-basis quantum-secret-sharing scheme is developed from the Lo-Chau-Ardehali technique [H. K. Lo, H. F. Chau, and M. Ardehali, e-print quant-ph/0011056] where all the participants choose their measuring-basis asymmetrically, and the measuring-basis-encrypted quantum-secret-sharing scheme is developed from the Hwang-Koh-Han technique [W. Y. Hwang, I. G. Koh, and Y. D. Han, Phys. Lett. A 244, 489 (1998)] where all participants choose their measuring basis according to a control key. Both schemes are asymptotically 100% in efficiency, hence nearly all the Greenberger-Horne-Zeilinger states in a quantum-secret-sharing process are used to generate shared secret information

  9. Assembly of the Type II Secretion System such as Found in Vibrio cholerae Depends on the Novel Pilotin AspS

    Science.gov (United States)

    Dunstan, Rhys A.; Heinz, Eva; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Purcell, Anthony W.; Evans, Timothy J.; Praszkier, Judyta; Robins-Browne, Roy M.; Strugnell, Richard A.; Korotkov, Konstantin V.; Lithgow, Trevor

    2013-01-01

    The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS. PMID:23326233

  10. Effects of prebiotics on immune system and cytokine expression.

    Science.gov (United States)

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  11. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  12. Role of adipose secreted factors and kisspeptin in the metabolic control of gonadotropin secretion and puberty

    Science.gov (United States)

    Factors secreted by adipose tissue continue to be discovered. Evidence indicates a strong link between neural influences and adipocyte expression and secretion of a wide array of cytokines, neurotrophic factors, growth factors, binding proteins, and neuropeptides. These “adipokines” are linked to im...

  13. Immunoglobins in mammary secretions

    DEFF Research Database (Denmark)

    Hurley, W L; Theil, Peter Kappel

    2013-01-01

    Immunoglobulins secreted in colostrum and milk by the lactating mammal are major factors providing immune protection to the newborn. Immunoglobulins in mammary secretions represent the cumulative immune response of the lactating animal to exposure to antigenic stimulation that occurs through...... the immunoglobulins found in mammary secretions in the context of their diversity of structure, origin, mechanisms of transfer, and function....

  14. The heterologous expression strategies of antimicrobial peptides in microbial systems.

    Science.gov (United States)

    Deng, Ting; Ge, Haoran; He, Huahua; Liu, Yao; Zhai, Chao; Feng, Liang; Yi, Li

    2017-12-01

    Antimicrobial peptides (AMPs) consist of molecules acting on the defense systems of numerous organisms toward tumor and multiple pathogens, such as bacteria, fungi, viruses, and parasites. Compared to traditional antibiotics, AMPs are more stable and have lower propensity for developing resistance through functioning in the innate immune system, thus having important applications in the fields of medicine, food and so on. However, despite of their high economic values, the low yield and the cumbersome extraction process in AMPs production are problems that limit their industrial application and scientific research. To conquer these obstacles, optimized heterologous expression technologies were developed that could provide effective ways to increase the yield of AMPs. In this review, the research progress on heterologous expression of AMPs using Escherichia coli, Bacillus subtilis, Pichia pastoris and Saccharomyces cerevisiae as host cells was mainly summarized, which might guide the expression strategies of AMPs in these cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems.

    Directory of Open Access Journals (Sweden)

    Sophie S Abby

    2012-09-01

    Full Text Available Type 3 secretion systems (T3SSs are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS, which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.

  16. pMPES: A Modular Peptide Expression System for the Delivery of Antimicrobial Peptides to the Site of Gastrointestinal Infections Using Probiotics

    Directory of Open Access Journals (Sweden)

    Kathryn Geldart

    2016-10-01

    Full Text Available Antimicrobial peptides are a promising alternative to traditional antibiotics, but their utility is limited by high production costs and poor bioavailability profiles. Bacterial production and delivery of antimicrobial peptides (AMPs directly at the site of infection may offer a path for effective therapeutic application. In this study, we have developed a vector that can be used for the production and secretion of seven antimicrobial peptides from both Escherichia coli MC1061 F’ and probiotic E.coli Nissle 1917. The vector pMPES (Modular Peptide Expression System employs the Microcin V (MccV secretion system and a powerful synthetic promoter to drive AMP production. Herein, we demonstrate the capacity of pMPES to produce inhibitory levels of MccV, Microcin L (MccL, Microcin N (McnN, Enterocin A (EntA, Enterocin P (EntP, Hiracin JM79 (HirJM79 and Enterocin B (EntB. To our knowledge, this is the first demonstration of such a broadly-applicable secretion system for AMP production. This type of modular expression system could expedite the development of sorely needed antimicrobial technologies

  17. Tetracycline-inducible gene expression system in Leishmania mexicana

    Czech Academy of Sciences Publication Activity Database

    Kraeva, N.; Ishemgulova, A.; Lukeš, Julius; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 198, č. 1 (2014), s. 11-13 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Leishmania mexicana * Gene expression * Tet-inducible system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  18. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    Directory of Open Access Journals (Sweden)

    Muhammad Hameed Siddiqi

    2013-12-01

    Full Text Available Over the last decade, human facial expressions recognition (FER has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER.

  19. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    Science.gov (United States)

    Siddiqi, Muhammad Hameed; Lee, Sungyoung; Lee, Young-Koo; Khan, Adil Mehmood; Truc, Phan Tran Ho

    2013-01-01

    Over the last decade, human facial expressions recognition (FER) has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER) system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER. PMID:24316568

  20. The pituitary gland of the European eel reveals massive expression of genes involved in the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Eirill Ager-Wick

    Full Text Available Hormones secreted from the pituitary gland regulate important processes such as development, growth and metabolism, reproduction, water balance, and body pigmentation. Synthesis and secretion of pituitary hormones are regulated by different factors from the hypothalamus, but also through feedback mechanisms from peripheral organs, and from the pituitary itself. In the European eel extensive attention has been directed towards understanding the different components of the brain-pituitary-gonad axis, but little is known about the regulation of upstream processes in the pituitary gland. In order to gain a broader mechanistic understanding of the eel pituitary gland, we have performed RNA-seq transcriptome profiling of the pituitary of prepubertal female silver eels. RNA-seq reads generated on the Illumina platform were mapped to the recently assembled European eel genome. The most abundant transcript in the eel pituitary codes for pro-opiomelanocortin, the precursor for hormones of the melanocortin system. Several genes putatively involved in downstream processing of pro-opiomelanocortin were manually annotated, and were found to be highly expressed, both by RNA-seq and by qPCR. The melanocortin system, which affects skin color, energy homeostasis and in other teleosts interacts with the reproductive system, has so far received limited attention in eels. However, since up to one third of the silver eel pituitary's mRNA pool encodes pro-opiomelanocortin, our results indicate that control of the melanocortin system is a major function of the eel pituitary.

  1. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Je Min, E-mail: jemin@knu.ac.kr [Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul (Korea, Republic of); Department of Horticultural Science, Kyungpook National University, Daegu (Korea, Republic of); Lee, Sang-Jik [Biotechnology Institute, Nongwoo Bio Co, Ltd, Yeoju (Korea, Republic of); Department of Plant Biology, Cornell University, Ithaca, NY (United States); Rose, Jocelyn K.C. [Department of Plant Biology, Cornell University, Ithaca, NY (United States); Yeam, Inhwa [Department of Horticulture and Breeding, Andong National University, Andong (Korea, Republic of); Kim, Byung-Dong [Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul (Korea, Republic of)

    2014-04-18

    Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.

  2. Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST)

    International Nuclear Information System (INIS)

    Lee, Je Min; Lee, Sang-Jik; Rose, Jocelyn K.C.; Yeam, Inhwa; Kim, Byung-Dong

    2014-01-01

    Highlights: • Yeast secretion trap (YST) is a valuable tool for mining secretome. • A total of 80 secreted proteins are newly identified via YST in pepper fruits. • The secreted proteins are differentially regulated during pepper development and ripening. • Transient GFP-fusion assay and in planta secretion trap can effectively validate the secretion of proteins. - Abstract: Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening

  3. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue.

    Science.gov (United States)

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Thaller, Seth; Blomberg, Bonnie B

    2018-01-01

    The adipose tissue (AT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses and secretion of autoimmune antibodies. In this study we show that adipocytes in the human obese subcutaneous AT (SAT) secrete several pro-inflammatory cytokines and chemokines, which contribute to the establishment and maintenance of local and systemic inflammation, and consequent suboptimal immune responses in obese individuals, as we have previously shown. We also show that pro-inflammatory chemokines recruit immune cells expressing the corresponding receptors to the SAT, where they also contribute to local and systemic inflammation, secreting additional pro-inflammatory mediators. Moreover, we show that the SAT generates autoimmune antibodies. During the development of obesity, reduced oxygen and consequent hypoxia and cell death lead to further release of pro-inflammatory cytokines, "self" protein antigens, cell-free DNA and lipids. All these stimulate class switch and the production of autoimmune IgG antibodies which have been described to be pathogenic. In addition to hypoxia, we have measured cell cytotoxicity and DNA damage mechanisms, which may also contribute to the release of "self" antigens in the SAT. All these processes are significantly elevated in the SAT as compared to the blood. We definitively found that fat-specific IgG antibodies are secreted by B cells in the SAT and that B cells express mRNA for the transcription factor T-bet and the membrane marker CD11c, both involved in the production of autoimmune IgG antibodies. Finally, the SAT also expresses RNA for cytokines known to promote Germinal Center formation, isotype class switch, and plasma cell differentiation. Our results show novel mechanisms for the generation of autoimmune antibody responses in the human SAT and allow the identification of new pathways to possibly manipulate in order to reduce systemic inflammation and autoantibody production in obese individuals.

  4. Structural Characterization and Oligomerization of the TssL Protein, a Component Shared by Bacterial Type VI and Type IVb Secretion Systems*

    Science.gov (United States)

    Durand, Eric; Zoued, Abdelrahim; Spinelli, Silvia; Watson, Paul J. H.; Aschtgen, Marie-Stéphanie; Journet, Laure; Cambillau, Christian; Cascales, Eric

    2012-01-01

    The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families. PMID:22371492

  5. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation

    Science.gov (United States)

    Rojas, Jennifer M.; Bruinstroop, Eveline; Printz, Richard L.; Alijagic-Boers, Aldijana; Foppen, Ewout; Turney, Maxine K.; George, Leena; Beck-Sickinger, Annette G.; Kalsbeek, Andries; Niswender, Kevin D.

    2015-01-01

    Objective Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous system (CNS) neuropeptide Y (NPY); in fact, a single intracerebroventricular (icv) administration of NPY in lean fasted rats elevates hepatic VLDL-TG secretion and does so, in large part, via signaling through the CNS NPY Y1 receptor. Thus, our overarching hypothesis is that elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate liver lipid metabolism. Methods Chow-fed Zucker fatty (ZF) rats were pair-fed by matching their caloric intake to that of lean controls and effects on body weight, plasma TG, and liver content of TG and phospholipid (PL) were compared to ad-libitum (ad-lib) fed ZF rats. Additionally, lean 4-h fasted rats with intact or disrupted hepatic sympathetic innervation were treated with icv NPY or NPY Y1 receptor agonist to identify novel hepatic mechanisms by which NPY promotes VLDL particle maturation and secretion. Results Manipulation of plasma TG levels in obese ZF rats, through pair-feeding had no effect on liver TG content; however, hepatic PL content was substantially reduced and was tightly correlated with plasma TG levels. Treatment with icv NPY or a selective NPY Y1 receptor agonist in lean fasted rats robustly activated key hepatic regulatory proteins, stearoyl-CoA desaturase-1 (SCD-1), ADP-ribosylation factor-1 (ARF-1), and lipin-1, known to be involved in remodeling liver PL into TG for VLDL maturation and secretion. Lastly, we show that the effects of CNS NPY on key liporegulatory proteins are attenuated by hepatic sympathetic denervation. Conclusions These data support a model in which CNS NPY modulates mediators of hepatic PL remodeling and VLDL maturation to stimulate VLDL-TG secretion that is

  6. Facial Expression Emotion Detection for Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Saeed Turabzadeh

    2018-01-01

    Full Text Available Recently, real-time facial expression recognition has attracted more and more research. In this study, an automatic facial expression real-time system was built and tested. Firstly, the system and model were designed and tested on a MATLAB environment followed by a MATLAB Simulink environment that is capable of recognizing continuous facial expressions in real-time with a rate of 1 frame per second and that is implemented on a desktop PC. They have been evaluated in a public dataset, and the experimental results were promising. The dataset and labels used in this study were made from videos, which were recorded twice from five participants while watching a video. Secondly, in order to implement in real-time at a faster frame rate, the facial expression recognition system was built on the field-programmable gate array (FPGA. The camera sensor used in this work was a Digilent VmodCAM — stereo camera module. The model was built on the Atlys™ Spartan-6 FPGA development board. It can continuously perform emotional state recognition in real-time at a frame rate of 30. A graphical user interface was designed to display the participant’s video in real-time and two-dimensional predict labels of the emotion at the same time.

  7. Crystallization and preliminary X-ray analysis of the C-terminal fragment of PorM, a subunit of the Porphyromonas gingivalis type IX secretion system.

    Science.gov (United States)

    Stathopulos, Julien; Cambillau, Christian; Cascales, Eric; Roussel, Alain; Leone, Philippe

    2015-01-01

    PorM is a membrane protein involved in the assembly of the type IX secretion system (T9SS) from Porphyromonas gingivalis, a major bacterial pathogen responsible for periodontal disease in humans. The periplasmic domain of PorM was overexpressed in Escherichia coli and purified. A fragment of the purified protein was obtained by limited proteolysis. Crystals of this fragment belonged to the tetragonal space group P4(3)2(1)2. Native and MAD data sets were recorded to 2.85 and 3.1 Å resolution, respectively, using synchrotron radiation.

  8. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    Science.gov (United States)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  9. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  10. Proton pump inhibitors inhibit pancreatic secretion

    DEFF Research Database (Denmark)

    Wang, Jing; Barbuskaite, Dagne; Tozzi, Marco

    2015-01-01

    +/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar...... of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition...

  11. Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Mikkelsen, H; Bond, N J; Skindersoe, M E

    2009-01-01

    in exponential phase than to those in stationary phase. In the current study, we investigated how these conditions influence the production of virulence factors using a transcriptomic approach. Our results show that biofilms express the type III secretion system, whereas planktonic cells do not...

  12. Development of a quantitative assay amenable for high-throughput screening to target the type II secretion system for new treatments against plant-pathogenic bacteria.

    Science.gov (United States)

    Tran, Nini; Zielke, Ryszard A; Vining, Oliver B; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; McPhail, Kerry L; Sikora, Aleksandra E

    2013-09-01

    Plant-pathogenic bacteria are the causative agents of diseases in important agricultural crops and ornamental plants. The severe economic burden of these diseases requires seeking new approaches for their control, particularly because phytopathogenic bacteria are often resistant to available treatments. The type II secretion (T2S) system is a key virulence factor used by major groups of phytopathogenic bacteria. The T2S machinery transports many hydrolytic enzymes responsible for degradation of the plant cell wall, thus enabling successful colonization and dissemination of the bacteria in the plant host. The genetic inactivation of the T2S system leads to loss of virulence, which strongly suggests that targeting the T2S could enable new treatments against plant-pathogenic bacteria. Accordingly, we have designed and optimized an assay to identify small-molecule inhibitors of the T2S system. This assay uses a double parametric output: measurement of bacterial growth and the enzymatic activity of cellulase, which is secreted via the T2S pathway in our model organism Dickeya dadantii. The assay was evaluated by screening natural extracts, culture filtrates isolated from rhizosphere bacteria, and a collection of pharmaceutically active compounds in LOPAC(1280). The calculated Z' values of 0.63, 0.63, and 0.58, respectively, strongly suggest that the assay is applicable for a high-throughput screening platform.

  13. Biphasic voltage-dependent inactivation of human NaV 1.3, 1.6 and 1.7 Na+ channels expressed in rodent insulin-secreting cells.

    Science.gov (United States)

    Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik

    2018-05-01

    Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely

  14. Poly(I:C) reduces expression of JAM-A and induces secretion of IL-8 and TNF-α via distinct NF-κB pathways in human nasal epithelial cells

    International Nuclear Information System (INIS)

    Ohkuni, Tsuyoshi; Kojima, Takashi; Ogasawara, Noriko; Masaki, Tomoyuki; Fuchimoto, Jun; Kamekura, Ryuta; Koizumi, Jun-ichi; Ichimiya, Shingo; Murata, Masaki; Tanaka, Satoshi; Himi, Tetsuo; Sawada, Norimasa

    2011-01-01

    Human nasal epithelium is an important physical barrier and innate immune defense protecting against inhaled substances and pathogens. Toll-like receptor (TLR) signaling, which plays a key role in the innate immune response, has not been well characterized in human nasal epithelial cells (HNECs), including the epithelial tight junctional barrier. In the present study, mRNAs of TLR1-10 were detected in hTERT-transfected HNECs, which can be used as an indispensable and stable model of normal HNECs, similar to primary cultured HNECs. To investigate the changes of tight junction proteins and the signal transduction pathways via TLRs in HNECs in vitro, hTERT-transfected HNECs were treated with TLR2 ligand P 3 CSK 4 , TLR3 ligand poly(I:C), TLR4 ligand LPS, TLR7/8 ligand CL097, TLR8 ligand ssRNA40/LyoVec, and TLR9 ligand ODN2006. In hTERT-transfected HNECs, treatment with poly(I:C) significantly reduced expression of the tight junction protein JAM-A and induced secretion of proinflammatory cytokines IL-8 and TNF-α. Both the reduction of JAM-A expression and the induction of secretion of IL-8 and TNF-α after treatment with poly(I:C) were modulated by distinct signal transduction pathways via EGFR, PI3K, and p38 MAPK and finally regulated by a TLR3-mediated NF-κB pathway. The control of TLR3-mediated signaling pathways in HNECs may be important not only in infection by viral dsRNA but also in autoimmune diseases caused by endogenous dsRNA released from necrotic cells.

  15. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    Science.gov (United States)

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  16. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Directory of Open Access Journals (Sweden)

    Bernardo Bañuelos-Hernández

    2017-06-01

    Full Text Available The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin, which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture, which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  17. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Science.gov (United States)

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass