WorldWideScience

Sample records for secondary structure determination

  1. Instruction in text-structure as a determinant of senior secondary ...

    African Journals Online (AJOL)

    The study determined the effectiveness of instruction in text-structure on achievement of students in English narrative text. The pretest-posttest control group quasi experimental design was adopted for the study. The participants were 120 students in intact classes from four purposively selected senior secondary schools in ...

  2. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  3. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  4. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  5. A semi-supervised learning approach for RNA secondary structure prediction.

    Science.gov (United States)

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  7. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    Science.gov (United States)

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  8. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  10. Free energy minimization to predict RNA secondary structures and computational RNA design.

    Science.gov (United States)

    Churkin, Alexander; Weinbrand, Lina; Barash, Danny

    2015-01-01

    Determining the RNA secondary structure from sequence data by computational predictions is a long-standing problem. Its solution has been approached in two distinctive ways. If a multiple sequence alignment of a collection of homologous sequences is available, the comparative method uses phylogeny to determine conserved base pairs that are more likely to form as a result of billions of years of evolution than by chance. In the case of single sequences, recursive algorithms that compute free energy structures by using empirically derived energy parameters have been developed. This latter approach of RNA folding prediction by energy minimization is widely used to predict RNA secondary structure from sequence. For a significant number of RNA molecules, the secondary structure of the RNA molecule is indicative of its function and its computational prediction by minimizing its free energy is important for its functional analysis. A general method for free energy minimization to predict RNA secondary structures is dynamic programming, although other optimization methods have been developed as well along with empirically derived energy parameters. In this chapter, we introduce and illustrate by examples the approach of free energy minimization to predict RNA secondary structures.

  11. RNA secondary structure prediction using soft computing.

    Science.gov (United States)

    Ray, Shubhra Sankar; Pal, Sankar K

    2013-01-01

    Prediction of RNA structure is invaluable in creating new drugs and understanding genetic diseases. Several deterministic algorithms and soft computing-based techniques have been developed for more than a decade to determine the structure from a known RNA sequence. Soft computing gained importance with the need to get approximate solutions for RNA sequences by considering the issues related with kinetic effects, cotranscriptional folding, and estimation of certain energy parameters. A brief description of some of the soft computing-based techniques, developed for RNA secondary structure prediction, is presented along with their relevance. The basic concepts of RNA and its different structural elements like helix, bulge, hairpin loop, internal loop, and multiloop are described. These are followed by different methodologies, employing genetic algorithms, artificial neural networks, and fuzzy logic. The role of various metaheuristics, like simulated annealing, particle swarm optimization, ant colony optimization, and tabu search is also discussed. A relative comparison among different techniques, in predicting 12 known RNA secondary structures, is presented, as an example. Future challenging issues are then mentioned.

  12. Amino acid code of protein secondary structure.

    Science.gov (United States)

    Shestopalov, B V

    2003-01-01

    The calculation of protein three-dimensional structure from the amino acid sequence is a fundamental problem to be solved. This paper presents principles of the code theory of protein secondary structure, and their consequence--the amino acid code of protein secondary structure. The doublet code model of protein secondary structure, developed earlier by the author (Shestopalov, 1990), is part of this theory. The theory basis are: 1) the name secondary structure is assigned to the conformation, stabilized only by the nearest (intraresidual) and middle-range (at a distance no more than that between residues i and i + 5) interactions; 2) the secondary structure consists of regular (alpha-helical and beta-structural) and irregular (coil) segments; 3) the alpha-helices, beta-strands and coil segments are encoded, respectively, by residue pairs (i, i + 4), (i, i + 2), (i, i = 1), according to the numbers of residues per period, 3.6, 2, 1; 4) all such pairs in the amino acid sequence are codons for elementary structural elements, or structurons; 5) the codons are divided into 21 types depending on their strength, i.e. their encoding capability; 6) overlappings of structurons of one and the same structure generate the longer segments of this structure; 7) overlapping of structurons of different structures is forbidden, and therefore selection of codons is required, the codon selection is hierarchic; 8) the code theory of protein secondary structure generates six variants of the amino acid code of protein secondary structure. There are two possible kinds of model construction based on the theory: the physical one using physical properties of amino acid residues, and the statistical one using results of statistical analysis of a great body of structural data. Some evident consequences of the theory are: a) the theory can be used for calculating the secondary structure from the amino acid sequence as a partial solution of the problem of calculation of protein three

  13. Density functional study of molecular interactions in secondary structures of proteins.

    Science.gov (United States)

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  14. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    Science.gov (United States)

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  15. A Comparative Taxonomy of Parallel Algorithms for RNA Secondary Structure Prediction

    Science.gov (United States)

    Al-Khatib, Ra’ed M.; Abdullah, Rosni; Rashid, Nur’Aini Abdul

    2010-01-01

    RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods. PMID:20458364

  16. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  18. A folding algorithm for extended RNA secondary structures.

    Science.gov (United States)

    Höner zu Siederdissen, Christian; Bernhart, Stephan H; Stadler, Peter F; Hofacker, Ivo L

    2011-07-01

    RNA secondary structure contains many non-canonical base pairs of different pair families. Successful prediction of these structural features leads to improved secondary structures with applications in tertiary structure prediction and simultaneous folding and alignment. We present a theoretical model capturing both RNA pair families and extended secondary structure motifs with shared nucleotides using 2-diagrams. We accompany this model with a number of programs for parameter optimization and structure prediction. All sources (optimization routines, RNA folding, RNA evaluation, extended secondary structure visualization) are published under the GPLv3 and available at www.tbi.univie.ac.at/software/rnawolf/.

  19. Improving the accuracy of protein secondary structure prediction using structural alignment

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2006-06-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3 of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences, the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25% onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at http://wishart.biology.ualberta.ca/proteus. For high throughput or batch sequence analyses, the PROTEUS programs

  20. Primary and secondary structural determinants in the receptor binding sequence β-(38-57) from human luteinizing hormone

    International Nuclear Information System (INIS)

    Keutmann, H.T.; Charlesworth, M.C.; Kitzmann, K.; Mason, K.A.; Johnson, L.; Ryan, R.J.

    1988-01-01

    The intercysteine loop sequence 38-57 in the β subunit has been shown to be a determinant for expression of biological activity in human lutropin (hLH) and choriogonadotropin (hCG). Together with other sequences, the 38-57 region may contribute to a multicomponent receptor binding domain in hLH/hCG. Because the structural features influencing activity in this important region are not easy to evaluate in the full-length subunit, the authors have used analogues of hLHβ-(38-57) prepared by solid-phase synthesis. The peptides were tested for inhibition of 125 I-labeled hCG binding to rat ovarian membrane receptors. Secondary structure was analyzed by circular dichroism (CD) and by reactivity with antibodies to the native 38-57 peptide. An analogue lacking the 38-57 disulfide linkage retained 20% receptor binding and full immunoreactivity. Far-ultraviolet CD profiles were essentially identical with those of the disulfide-intact peptide; a transition from 10% to 30% α-helix in 90% trifluoroethanol was characteristic of both. The peptide thus appears not to require the disulfide bridge to retain a looped conformation with amphipathic secondary structure. An essential positive charge at position 43 was shown by complete loss of activity upon substitution of Asp or Ala for the Arg found in all known species of LH. These results indicate that the 38-57 sequence is a relatively rigid and structurally autonomous region, not merely a series of residues constrained passively into a loop by a disulfide linkage. It includes segments of ordered structure, probably including both amphipathic helical and turn sequences. Evidence from studies of other hormones suggests that this region may be important to binding and specificity in the glycoprotein hormones as a group

  1. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  2. A Reference Database for Circular Dichroism Spectroscopy Covering Fold and Secondary Structure Space

    International Nuclear Information System (INIS)

    Lees, J.; Miles, A.; Wien, F.; Wallace, B.

    2006-01-01

    Circular Dichroism (CD) spectroscopy is a long-established technique for studying protein secondary structures in solution. Empirical analyses of CD data rely on the availability of reference datasets comprised of far-UV CD spectra of proteins whose crystal structures have been determined. This article reports on the creation of a new reference dataset which effectively covers both secondary structure and fold space, and uses the higher information content available in synchrotron radiation circular dichroism (SRCD) spectra to more accurately predict secondary structure than has been possible with existing reference datasets. It also examines the effects of wavelength range, structural redundancy and different means of categorizing secondary structures on the accuracy of the analyses. In addition, it describes a novel use of hierarchical cluster analyses to identify protein relatedness based on spectral properties alone. The databases are shown to be applicable in both conventional CD and SRCD spectroscopic analyses of proteins. Hence, by combining new bioinformatics and biophysical methods, a database has been produced that should have wide applicability as a tool for structural molecular biology

  3. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  4. Ensemble-based prediction of RNA secondary structures.

    Science.gov (United States)

    Aghaeepour, Nima; Hoos, Holger H

    2013-04-24

    Accurate structure prediction methods play an important role for the understanding of RNA function. Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile approaches, and improved methods for this task have received much attention over the past five years. Despite the impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to exploit the complementary strengths of multiple approaches. In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary structure prediction procedures. The results from this evaluation clarify the performance relationship between ten well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based method that achieves significantly higher prediction accuracies than obtained from any of its component procedures. Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based, pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA allows an intuitive and effective control of the trade-off between

  5. ncRNA consensus secondary structure derivation using grammar strings.

    Science.gov (United States)

    Achawanantakun, Rujira; Sun, Yanni; Takyar, Seyedeh Shohreh

    2011-04-01

    Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.

  6. Nucleic acid secondary structure prediction and display.

    OpenAIRE

    Stüber, K

    1986-01-01

    A set of programs has been developed for the prediction and display of nucleic acid secondary structures. Information from experimental data can be used to restrict or enforce secondary structural elements. The predictions can be displayed either on normal line printers or on graphic devices like plotters or graphic terminals.

  7. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.

    2004-01-01

    Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type...... by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions...

  8. Rapid and reliable protein structure determination via chemical shift threading.

    Science.gov (United States)

    Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S

    2018-01-01

    Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .

  9. THE PECULIARITIES OF NICKNAME STRUCTURE IN THE VICINITY OF VELIUONA: SECONDARY NICKNAMES

    Directory of Open Access Journals (Sweden)

    Ilona Mickienė

    2014-10-01

    Full Text Available The paper analyses 782 nicknames that were recorded at Veliuona vicinity during the project of the Institute of the Lithuanian Language “Modern Research of Geolinguistics in Lithuania: Optimisation of Network of Points and Interactive Spread of Dialectal Information”. The paper aims to identify the characteristic attributes of nickname structure. The analysis of the relations in derivation, i. e., tentatively distinguishing the derivation base and formant is the only way to talk about common word derivation. While researching the nicknames it is difficult to find such a universal criterion in derivation which would enable the distribution of nicknames into the primary and the secondary ones due to the fact that when a nickname and its appellative derivation motivation coincides the confusion arises. Thus, the paper invokes the structural analysis of nicknames to find universal criteria that would enable the distinction of nicknames into the primary and the secondary. The article eliminates the primary nicknames that do not differ from the motivational word, 241 secondary nickname is being researched ant structurally analysed. The structural analysis discloses a proper structure and common words being selected for nickname creation. Structurally analysing the secondary nicknames, the nicknames with suffix, inflection, mixed structure, compound, composite and phrasal nicknames were distinguished. It was determined that in vacinity of Veliuona the nicknames with suffix and inflection are mostly used.

  10. DNA secondary structures: stability and function of G-quadruplex structures

    Science.gov (United States)

    Bochman, Matthew L.; Paeschke, Katrin; Zakian, Virginia A.

    2013-01-01

    In addition to the canonical double helix, DNA can fold into various other inter- and intramolecular secondary structures. Although many such structures were long thought to be in vitro artefacts, bioinformatics demonstrates that DNA sequences capable of forming these structures are conserved throughout evolution, suggesting the existence of non-B-form DNA in vivo. In addition, genes whose products promote formation or resolution of these structures are found in diverse organisms, and a growing body of work suggests that the resolution of DNA secondary structures is critical for genome integrity. This Review focuses on emerging evidence relating to the characteristics of G-quadruplex structures and the possible influence of such structures on genomic stability and cellular processes, such as transcription. PMID:23032257

  11. RNAmutants: a web server to explore the mutational landscape of RNA secondary structures

    Science.gov (United States)

    Waldispühl, Jerome; Devadas, Srinivas; Berger, Bonnie; Clote, Peter

    2009-01-01

    The history and mechanism of molecular evolution in DNA have been greatly elucidated by contributions from genetics, probability theory and bioinformatics—indeed, mathematical developments such as Kimura's neutral theory, Kingman's coalescent theory and efficient software such as BLAST, ClustalW, Phylip, etc., provide the foundation for modern population genetics. In contrast to DNA, the function of most noncoding RNA depends on tertiary structure, experimentally known to be largely determined by secondary structure, for which dynamic programming can efficiently compute the minimum free energy secondary structure. For this reason, understanding the effect of pointwise mutations in RNA secondary structure could reveal fundamental properties of structural RNA molecules and improve our understanding of molecular evolution of RNA. The web server RNAmutants provides several efficient tools to compute the ensemble of low-energy secondary structures for all k-mutants of a given RNA sequence, where k is bounded by a user-specified upper bound. As we have previously shown, these tools can be used to predict putative deleterious mutations and to analyze regulatory sequences from the hepatitis C and human immunodeficiency genomes. Web server is available at http://bioinformatics.bc.edu/clotelab/RNAmutants/, and downloadable binaries at http://rnamutants.csail.mit.edu/. PMID:19531740

  12. Prediction of the Secondary Structure of HIV-1 gp120

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nielsen, Jens O.

    1996-01-01

    Fourier transform infrared spectroscopy. The predicted secondary structure of gp120 compared well with data from NMR analysis of synthetic peptides from the V3 loop and the C4 region. As a first step towards modeling the tertiary structure of gp120, the predicted secondary structure may guide the design......The secondary structure of HIV-1 gp120 was predicted using multiple alignment and a combination of two independent methods based on neural network and nearest-neighbor algorithms. The methods agreed on the secondary structure for 80% of the residues in BH10 gp120. Six helices were predicted in HIV...

  13. RNA secondary structure image - fRNAdb | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us fRNAdb RNA secondary structure image Data detail Data name RNA secondary structure image DOI... 10.18908/lsdba.nbdc00452-005 Description of data contents RNA secondary structure images - png.zip: RNA secondary structure image...s (PNG) - pdf.zip: RNA secondary structure images (PDF) - thumbnail.zip: Thumbnails of... RNA secondary structure images Data file File name: RNA_secondary_structure_image... File URL: ftp://ftp.biosciencedbc.jp/archive/frnadb/LATEST/RNA_secondary_structure_image File size: 9.6 GB

  14. A method for rapid similarity analysis of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Liu Na

    2006-11-01

    Full Text Available Abstract Background Owing to the rapid expansion of RNA structure databases in recent years, efficient methods for structure comparison are in demand for function prediction and evolutionary analysis. Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic programming algorithms. We present here a new method for the similarity analysis of RNA secondary structures. Results Three sets of real data have been used as input for the example applications. Set I includes the structures from 5S rRNAs. Set II includes the secondary structures from RNase P and RNase MRP. Set III includes the structures from 16S rRNAs. Reasonable phylogenetic trees are derived for these three sets of data by using our method. Moreover, our program runs faster as compared to some existing ones. Conclusion The famous Lempel-Ziv algorithm can efficiently extract the information on repeated patterns encoded in RNA secondary structures and makes our method an alternative to analyze the similarity of RNA secondary structures. This method will also be useful to researchers who are interested in evolutionary analysis.

  15. High-throughput determination of RNA structure by proximity ligation.

    Science.gov (United States)

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  16. Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

    Science.gov (United States)

    Hata, Hiroaki; Kitajima, Tetsuro

    2018-01-01

    Abstract Nucleic acid secondary structure plays an important role in nucleic acid–nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant. PMID:29220504

  17. RNAstructure: software for RNA secondary structure prediction and analysis.

    Science.gov (United States)

    Reuter, Jessica S; Mathews, David H

    2010-03-15

    To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence. RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained. The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.

  18. Capturing alternative secondary structures of RNA by decomposition of base-pairing probabilities.

    Science.gov (United States)

    Hagio, Taichi; Sakuraba, Shun; Iwakiri, Junichi; Mori, Ryota; Asai, Kiyoshi

    2018-02-19

    It is known that functional RNAs often switch their functions by forming different secondary structures. Popular tools for RNA secondary structures prediction, however, predict the single 'best' structures, and do not produce alternative structures. There are bioinformatics tools to predict suboptimal structures, but it is difficult to detect which alternative secondary structures are essential. We proposed a new computational method to detect essential alternative secondary structures from RNA sequences by decomposing the base-pairing probability matrix. The decomposition is calculated by a newly implemented software tool, RintW, which efficiently computes the base-pairing probability distributions over the Hamming distance from arbitrary reference secondary structures. The proposed approach has been demonstrated on ROSE element RNA thermometer sequence and Lysine RNA ribo-switch, showing that the proposed approach captures conformational changes in secondary structures. We have shown that alternative secondary structures are captured by decomposing base-paring probabilities over Hamming distance. Source code is available from http://www.ncRNA.org/RintW .

  19. Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Science.gov (United States)

    Spanò, M.; Lillo, F.; Miccichè, S.; Mantegna, R. N.

    2008-10-01

    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups, hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact, we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.

  20. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  1. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods

    International Nuclear Information System (INIS)

    Dousseau, F.; Pezolet, M.

    1990-01-01

    A method for estimating protein secondary structure from infrared spectra has been developed. The infrared spectra of H 2 O solutions of 13 proteins of known crystal structure have been recorded and corrected for the spectral contribution of water in the amide I and II region by using the algorithm of Dousseau et al. This calibration set of proteins has been analyzed by using either a classical least-squares (CLS) method or the partial least-squares (PLS) method. The pure-structure spectra calculated by the classical least-squares method are in good agreement with spectra of poly(L-lysine) in the α-helix, β-sheet, and undefined conformations. The results show that the best agreement between the secondary structure determined by X-ray crystal-lography and that predicted by infrared spectroscopy is obtained when both the amide I and II bands are used to generate the calibration set, when the PLS method is used, and when it is assumed that the secondary structure of proteins is composed of only four types of structure: ordered and disordered α-helices, β-sheet, and undefined conformation. Attempts to include turns in the secondary structure estimation have led to a loss of accuracy. The spectra of the calibration proteins were also recorded in 2 H 2 O solution. After correction for the contribution of the combination band of 2 H 2 O in the amide I' band region, the spectra were analyzed with PLS, but the results were not as good as for the spectra obtained in H 2 O, especially for the α-helical conformation

  2. Evolving stochastic context-free grammars for RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Anderson, James WJ; Tataru, Paula Cristina; Stains, Joe

    2012-01-01

    Background Stochastic Context-Free Grammars (SCFGs) were applied successfully to RNA secondary structure prediction in the early 90s, and used in combination with comparative methods in the late 90s. The set of SCFGs potentially useful for RNA secondary structure prediction is very large, but a few...... to structure prediction as has been previously suggested. Results These search techniques were applied to predict RNA secondary structure on a maximal data set and revealed new and interesting grammars, though none are dramatically better than classic grammars. In general, results showed that many grammars...... with quite different structure could have very similar predictive ability. Many ambiguous grammars were found which were at least as effective as the best current unambiguous grammars. Conclusions Overall the method of evolving SCFGs for RNA secondary structure prediction proved effective in finding many...

  3. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.

    Science.gov (United States)

    Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu

    2009-08-28

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.

  4. Direct electron crystallographic determination of zeolite zonal structures

    International Nuclear Information System (INIS)

    Dorset, Douglas L.; Gilmore, Christopher J.; Jorda, Jose Luis; Nicolopoulos, Stavros

    2007-01-01

    The prospect for improving the success of ab initio zeolite structure investigations with electron diffraction data is evaluated. First of all, the quality of intensities obtained by precession electron diffraction at small hollow cone illumination angles is evaluated for seven representative materials: ITQ-1, ITQ-7, ITQ-29, ZSM-5, ZSM-10, mordenite, and MCM-68. It is clear that, for most examples, an appreciable fraction of a secondary scattering perturbation is removed by precession at small angles. In one case, ZSM-10, it can also be argued that precession diffraction produces a dramatically improved 'kinematical' data set. There seems to no real support for application of a Lorentz correction to these data and there is no reason to expect for any of these samples that a two-beam dynamical scattering relationship between structure factor amplitude and observed intensity should be valid. Removal of secondary scattering by the precession mode appears to facilitate ab initio structure analysis. Most zeolite structures investigated could be solved by maximum entropy and likelihood phasing via error-correcting codes when precession data were used. Examples include the projected structure of mordenite that could not be determined from selected area data alone. One anomaly is the case of ZSM-5, where the best structure determination in projection is made from selected area diffraction data. In a control study, the zonal structure of SSZ-48 could be determined from selected area diffraction data by either maximum entropy and likelihood or traditional direct methods. While the maximum entropy and likelihood approach enjoys some advantages over traditional direct methods (non-dependence on predicted phase invariant sums), some effort must be made to improve the figures of merit used to identify potential structure solutions

  5. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    International Nuclear Information System (INIS)

    Bonwell, E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including β-sheet. Modeling of a-helix and β-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 μm thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 μm diameter or confocal 5 μm x 5 μm spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a

  6. DCJ-RNA - double cut and join for RNA secondary structures.

    Science.gov (United States)

    Badr, Ghada H; Al-Aqel, Haifa A

    2017-10-16

    Genome rearrangements are essential processes for evolution and are responsible for existing varieties of genome architectures. Many studies have been conducted to obtain an algorithm that identifies the minimum number of inversions that are necessary to transform one genome into another; this allows for genome sequence representation in polynomial time. Studies have not been conducted on the topic of rearranging a genome when it is represented as a secondary structure. Unlike sequences, the secondary structure preserves the functionality of the genome. Sequences can be different, but they all share the same structure and, therefore, the same functionality. This paper proposes a double cut and join for RNA secondary structures (DCJ-RNA) algorithm. This algorithm allows for the description of evolutionary scenarios that are based on secondary structures rather than sequences. The main aim of this paper is to suggest an efficient algorithm that can help researchers compare two ribonucleic acid (RNA) secondary structures based on rearrangement operations. The results, which are based on real datasets, show that the algorithm is able to count the minimum number of rearrangement operations, as well as to report an optimum scenario that can increase the similarity between the two structures. The algorithm calculates the distance between structures and reports a scenario based on the minimum rearrangement operations required to make the given structure similar to the other. DCJ-RNA can also be used to measure the distance between the two structures. This can help identify the common functionalities between different species.

  7. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  8. Deciphering the shape and deformation of secondary structures through local conformation analysis.

    Science.gov (United States)

    Baussand, Julie; Camproux, Anne-Claude

    2011-02-01

    Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface) reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  9. Secondary Structure of Rat and Human Amylin across Force Fields.

    Directory of Open Access Journals (Sweden)

    Kyle Quynn Hoffmann

    Full Text Available The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient

  10. Protein secondary structure: category assignment and predictability

    DEFF Research Database (Denmark)

    Andersen, Claus A.; Bohr, Henrik; Brunak, Søren

    2001-01-01

    In the last decade, the prediction of protein secondary structure has been optimized using essentially one and the same assignment scheme known as DSSP. We present here a different scheme, which is more predictable. This scheme predicts directly the hydrogen bonds, which stabilize the secondary......-forward neural network with one hidden layer on a data set identical to the one used in earlier work....

  11. Protein secondary structure and stability determined by combining exoproteolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis

    2002-09-01

    In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.

  12. Secondary structural analyses of ITS1 in Paramecium.

    Science.gov (United States)

    Hoshina, Ryo

    2010-01-01

    The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.

  13. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods

    Directory of Open Access Journals (Sweden)

    de Brevern Alexandre G

    2005-09-01

    Full Text Available Abstract Background A number of methods are now available to perform automatic assignment of periodic secondary structures from atomic coordinates, based on different characteristics of the secondary structures. In general these methods exhibit a broad consensus as to the location of most helix and strand core segments in protein structures. However the termini of the segments are often ill-defined and it is difficult to decide unambiguously which residues at the edge of the segments have to be included. In addition, there is a "twilight zone" where secondary structure segments depart significantly from the idealized models of Pauling and Corey. For these segments, one has to decide whether the observed structural variations are merely distorsions or whether they constitute a break in the secondary structure. Methods To address these problems, we have developed a method for secondary structure assignment, called KAKSI. Assignments made by KAKSI are compared with assignments given by DSSP, STRIDE, XTLSSTR, PSEA and SECSTR, as well as secondary structures found in PDB files, on 4 datasets (X-ray structures with different resolution range, NMR structures. Results A detailed comparison of KAKSI assignments with those of STRIDE and PSEA reveals that KAKSI assigns slightly longer helices and strands than STRIDE in case of one-to-one correspondence between the segments. However, KAKSI tends also to favor the assignment of several short helices when STRIDE and PSEA assign longer, kinked, helices. Helices assigned by KAKSI have geometrical characteristics close to those described in the PDB. They are more linear than helices assigned by other methods. The same tendency to split long segments is observed for strands, although less systematically. We present a number of cases of secondary structure assignments that illustrate this behavior. Conclusion Our method provides valuable assignments which favor the regularity of secondary structure segments.

  14. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Science.gov (United States)

    Shi, Jieming; Li, Xi; Dong, Min; Graham, Mitchell; Yadav, Nehul; Liang, Chun

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  15. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    Science.gov (United States)

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  16. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    Jieming Shi

    Full Text Available Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  17. Prediction of RNA secondary structure using generalized centroid estimators.

    Science.gov (United States)

    Hamada, Michiaki; Kiryu, Hisanori; Sato, Kengo; Mituyama, Toutai; Asai, Kiyoshi

    2009-02-15

    Recent studies have shown that the methods for predicting secondary structures of RNAs on the basis of posterior decoding of the base-pairing probabilities has an advantage with respect to prediction accuracy over the conventionally utilized minimum free energy methods. However, there is room for improvement in the objective functions presented in previous studies, which are maximized in the posterior decoding with respect to the accuracy measures for secondary structures. We propose novel estimators which improve the accuracy of secondary structure prediction of RNAs. The proposed estimators maximize an objective function which is the weighted sum of the expected number of the true positives and that of the true negatives of the base pairs. The proposed estimators are also improved versions of the ones used in previous works, namely CONTRAfold for secondary structure prediction from a single RNA sequence and McCaskill-MEA for common secondary structure prediction from multiple alignments of RNA sequences. We clarify the relations between the proposed estimators and the estimators presented in previous works, and theoretically show that the previous estimators include additional unnecessary terms in the evaluation measures with respect to the accuracy. Furthermore, computational experiments confirm the theoretical analysis by indicating improvement in the empirical accuracy. The proposed estimators represent extensions of the centroid estimators proposed in Ding et al. and Carvalho and Lawrence, and are applicable to a wide variety of problems in bioinformatics. Supporting information and the CentroidFold software are available online at: http://www.ncrna.org/software/centroidfold/.

  18. Structure elucidation of secondary natural products

    International Nuclear Information System (INIS)

    Seger, C.

    2001-06-01

    The presented thesis deals with the structure elucidation of secondary natural products. Most of the compounds under investigation were terpenes, especially triterpenes, alkaloids and stilbenoids. Besides characterizing a multitude of already known and also new compounds, it was possible to detect and correct wrongly assigned literature data. The methodological aspect of this thesis lies - beside in the utilization of modern 2D NMR spectroscopy - in the evaluation of computer assisted structure elucidation (CASE) techniques in the course of spectroscopy supported structure elucidation processes. (author)

  19. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    Science.gov (United States)

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Rtools: a web server for various secondary structural analyses on single RNA sequences.

    Science.gov (United States)

    Hamada, Michiaki; Ono, Yukiteru; Kiryu, Hisanori; Sato, Kengo; Kato, Yuki; Fukunaga, Tsukasa; Mori, Ryota; Asai, Kiyoshi

    2016-07-08

    The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Secondary α-deuterium isotope effects as a probe to the relationship between structure and mechanism of pyrolysis of secondary azoalkanes

    International Nuclear Information System (INIS)

    Grizzle, P.L.

    1975-01-01

    This study was carried out to investigate the mechanism of azoalkane thermolysis and the effect of molecular structure on the potential-energy hypersurface for pyrolysis utilizing secondary α-deuterium isotope effects. Since the magnitude of the α-effect for 1,1'-diphenylazoethane is of singular importance in the interpretation of those for related compounds, it has been redetermined. To investigate the effect of molecular structure on the potential-energy hypersurface for thermolysis, α-effects have been determined for 2,2,2',2'-tetramethyl-1,1'-diphenylazoethane and (2,2-dimethyl-1-phenylpropyl)azomethane; the inability to prepare these compounds by conventional methods necessitated the development of a new method for synthesis of secondary azoalkanes. A convenient synthesis of secondary azo compounds is reported. Secondary α-deuterium isotope effects were obtained for the thermal decomposition of 1,1'-diphenylazoethane (III) and 1,1'-diphenylazoethane-1,1'-d 2 (III-d 2 ). The isotope effect is entirely consistent with a simultaneous one-step thermolysis mechanism. Secondary α-deuterium isotope effects and activation parameters were obtained in the thermolysis of 2,2,2',2'-tetramethyl-1,1'-diphenylazopropane (VIII) and (2,2-dimethyl-1-phenylpropyl)azomethane (IX). The data for VIII is considered in terms of both a one- and two-step thermolysis mechanism. The α-effect and activation energy for VIII are not obviously reconcilable with a one-step mechanism. The α-effects, activation energies, and rates of thermolysis for VIII, IX, and (1-phenylethyl)azomethane are most easily rationalized by a two-step mechanism

  2. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.

    Science.gov (United States)

    Al-Khatib, Ra'ed M; Rashid, Nur'Aini Abdul; Abdullah, Rosni

    2011-08-01

    The secondary structure of RNA pseudoknots has been extensively inferred and scrutinized by computational approaches. Experimental methods for determining RNA structure are time consuming and tedious; therefore, predictive computational approaches are required. Predicting the most accurate and energy-stable pseudoknot RNA secondary structure has been proven to be an NP-hard problem. In this paper, a new RNA folding approach, termed MSeeker, is presented; it includes KnotSeeker (a heuristic method) and Mfold (a thermodynamic algorithm). The global optimization of this thermodynamic heuristic approach was further enhanced by using a case-based reasoning technique as a local optimization method. MSeeker is a proposed algorithm for predicting RNA pseudoknot structure from individual sequences, especially long ones. This research demonstrates that MSeeker improves the sensitivity and specificity of existing RNA pseudoknot structure predictions. The performance and structural results from this proposed method were evaluated against seven other state-of-the-art pseudoknot prediction methods. The MSeeker method had better sensitivity than the DotKnot, FlexStem, HotKnots, pknotsRG, ILM, NUPACK and pknotsRE methods, with 79% of the predicted pseudoknot base-pairs being correct.

  3. Approaches to link RNA secondary structures with splicing regulation

    DEFF Research Database (Denmark)

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitat...... describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3' splice site (3'ss).......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either...

  4. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases

    Directory of Open Access Journals (Sweden)

    Sudha Sharma

    2011-01-01

    Full Text Available In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.

  5. [Peculiarities of secondary structure of serum albumin of some representatives of the animal kingdom].

    Science.gov (United States)

    Pekhymenko, G V; Kuchmerovskaia, T M

    2011-01-01

    Methods of infrared (IR) spectroscopy and circular dichroism (CD) are suitable techniques for detection of proteins structural changes. These methods were used for determinating peculiarities of the secondary structure of serum albumins in some representatives of two classes of reptiles: Horsfield's tortoise (Testudo horsfieldi), water snake (Natrix tessellata) and grass snake (Natrix natrix) and birds: domestic goose (Anser anser), domestic chicken (Gallus domesticus), domestic duck (Anas platyrhyncha) and dove colored (Columba livia). An analysis of IR spectra and spectra obtained by the method of CD of serum albumins of both classes representatives revealed that beta-folding structure and alpha-helical sections that form the alpha-conformation play an important role in conformational structure formation of polypeptide chain and also disordered sites of molecules of these proteins. It was observed that certain redistribution depending on animals species exists, in the formation of secondary structure of serum albumins of the investigated representatives of reptiles and birds classes between the content of beta-folding structure, alpha-helical sections and disordered sites in molecules of these proteins.

  6. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    Science.gov (United States)

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    Science.gov (United States)

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server

  8. Computing the partition function for kinetically trapped RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    William A Lorenz

    Full Text Available An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3 time and O(n2 space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1 the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2 the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3 the (modified maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected

  9. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Science.gov (United States)

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  10. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees.

    Science.gov (United States)

    Keller, Alexander; Förster, Frank; Müller, Tobias; Dandekar, Thomas; Schultz, Jörg; Wolf, Matthias

    2010-01-15

    In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  11. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    Science.gov (United States)

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  12. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  13. Prediction of RNA secondary structures: from theory to models and real molecules

    International Nuclear Information System (INIS)

    Schuster, Peter

    2006-01-01

    empirical parameters can be determined and by principal deficiencies, for example by the lack of energy contributions resulting from tertiary interactions. In addition, native structures may be determined by folding kinetics rather than by thermodynamics. We address the first problem by considering base pair probabilities or base pairing entropies, which are derived from the partition function of conformations. A high base pair probability corresponding to a low pairing entropy is taken as an indicator of a high reliability of prediction. Pseudoknots are discussed as an example of a tertiary interaction that is highly important for RNA function. Moreover, pseudoknot formation is readily incorporated into structure prediction algorithms. Some examples of experimental data on RNA secondary structures that are readily explained using the landscape concept are presented. They deal with (i) properties of RNA molecules with random sequences, (ii) RNA molecules from restricted alphabets, (iii) existence of neutral networks, (iv) shape space covering, (v) riboswitches and (vi) evolution of non-coding RNAs as an example of evolution restricted to neutral networks

  14. An image processing approach to computing distances between RNA secondary structures dot plots

    Directory of Open Access Journals (Sweden)

    Sapiro Guillermo

    2009-02-01

    Full Text Available Abstract Background Computing the distance between two RNA secondary structures can contribute in understanding the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query RNA structure of interest in a database of structures. Several methods are available for computing distances between RNAs represented as strings or graphs, but none utilize the RNA representation with dot plots. Since dot plots are essentially digital images, there is a clear motivation to devise an algorithm for computing the distance between dot plots based on image processing methods. Results We have developed a new metric dubbed 'DoPloCompare', which compares two RNA structures. The method is based on comparing dot plot diagrams that represent the secondary structures. When analyzing two diagrams and motivated by image processing, the distance is based on a combination of histogram correlations and a geometrical distance measure. We introduce, describe, and illustrate the procedure by two applications that utilize this metric on RNA sequences. The first application is the RNA design problem, where the goal is to find the nucleotide sequence for a given secondary structure. Examples where our proposed distance measure outperforms others are given. The second application locates peculiar point mutations that induce significant structural alternations relative to the wild type predicted secondary structure. The approach reported in the past to solve this problem was tested on several RNA sequences with known secondary structures to affirm their prediction, as well as on a data set of ribosomal pieces. These pieces were computationally cut from a ribosome for which an experimentally derived secondary structure is available, and on each piece the prediction conveys similarity to the experimental result. Our newly proposed distance measure shows benefit in this problem as well when compared to standard methods used for assessing

  15. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    Data from the first inventory in secondary and old-growth forests were ... Structural changes in secondary forests are less known in West Africa, and ... temporal succession from one time spatial ..... s = number of species sampled per hectare; S = species richness of the whole forest; NF = the number of taxonomic families,.

  16. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-01-01

    Full Text Available Abstract Background In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. Open peer review Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  17. Rapid NMR screening of RNA secondary structure and binding

    International Nuclear Information System (INIS)

    Helmling, Christina; Keyhani, Sara; Sochor, Florian; Fürtig, Boris; Hengesbach, Martin; Schwalbe, Harald

    2015-01-01

    Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3′ end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA

  18. Rapid NMR screening of RNA secondary structure and binding

    Energy Technology Data Exchange (ETDEWEB)

    Helmling, Christina; Keyhani, Sara; Sochor, Florian; Fürtig, Boris; Hengesbach, Martin; Schwalbe, Harald, E-mail: schwalbe@nmr.uni-frankfurt.de [Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ) (Germany)

    2015-09-15

    Determination of RNA secondary structures by NMR spectroscopy is a useful tool e.g. to elucidate RNA folding space or functional aspects of regulatory RNA elements. However, current approaches of RNA synthesis and preparation are usually time-consuming and do not provide analysis with single nucleotide precision when applied for a large number of different RNA sequences. Here, we significantly improve the yield and 3′ end homogeneity of RNA preparation by in vitro transcription. Further, by establishing a native purification procedure with increased throughput, we provide a shortcut to study several RNA constructs simultaneously. We show that this approach yields μmol quantities of RNA with purities comparable to PAGE purification, while avoiding denaturation of the RNA.

  19. Determinants of Academic Performance in Public Day Secondary ...

    African Journals Online (AJOL)

    Determinants of Academic Performance in Public Day Secondary Schools, Manga District, Kenya. ... Journal of Technology and Education in Nigeria ... student's discipline, student's entry mark, teacher's teaching experience and level of education among others have significant impact in academic performance of a child.

  20. A Kernel for Protein Secondary Structure Prediction

    OpenAIRE

    Guermeur , Yann; Lifchitz , Alain; Vert , Régis

    2004-01-01

    http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...

  1. Nuclear fuel assembly incorporating primary and secondary structural support members

    International Nuclear Information System (INIS)

    Carlson, W.R.; Gjertsen, R.K.; Miller, J.V.

    1987-01-01

    A nuclear fuel assembly, comprising: (a) an upper end structure; (b) a lower end structure; (c) elongated primary structural members extending longitudinally between and rigidly interconnecting the upper and lower end structures, the upper and lower end structures and primary structural members together forming a rigid structural skeleton of the fuel assembly; (d) transverse grids supported on the primary structural members at axially spaced locations therealong between the upper and lower end structures; (e) fuel rods extending through and supported by the grids between the upper and lower end structures so as to extend in generally side-by-side spaced relation to one another and to the primary structural members; and (f) elongated secondary structural members extending longitudinally between but unconnected with the upper and lower end structures, the secondary structural members extending through and rigidly interconnected with the grids to extend in generally side-by-side spaced relation to one another, to the fuel rods and to the primary structural members so as to bolster the stiffness of the structural skeleton of the fuel assembly

  2. Prediction of backbone dihedral angles and protein secondary structure using support vector machines

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2009-12-01

    Full Text Available Abstract Background The prediction of the secondary structure of a protein is a critical step in the prediction of its tertiary structure and, potentially, its function. Moreover, the backbone dihedral angles, highly correlated with secondary structures, provide crucial information about the local three-dimensional structure. Results We predict independently both the secondary structure and the backbone dihedral angles and combine the results in a loop to enhance each prediction reciprocally. Support vector machines, a state-of-the-art supervised classification technique, achieve secondary structure predictive accuracy of 80% on a non-redundant set of 513 proteins, significantly higher than other methods on the same dataset. The dihedral angle space is divided into a number of regions using two unsupervised clustering techniques in order to predict the region in which a new residue belongs. The performance of our method is comparable to, and in some cases more accurate than, other multi-class dihedral prediction methods. Conclusions We have created an accurate predictor of backbone dihedral angles and secondary structure. Our method, called DISSPred, is available online at http://comp.chem.nottingham.ac.uk/disspred/.

  3. Integrating chemical footprinting data into RNA secondary structure prediction.

    Directory of Open Access Journals (Sweden)

    Kourosh Zarringhalam

    Full Text Available Chemical and enzymatic footprinting experiments, such as shape (selective 2'-hydroxyl acylation analyzed by primer extension, yield important information about RNA secondary structure. Indeed, since the [Formula: see text]-hydroxyl is reactive at flexible (loop regions, but unreactive at base-paired regions, shape yields quantitative data about which RNA nucleotides are base-paired. Recently, low error rates in secondary structure prediction have been reported for three RNAs of moderate size, by including base stacking pseudo-energy terms derived from shape data into the computation of minimum free energy secondary structure. Here, we describe a novel method, RNAsc (RNA soft constraints, which includes pseudo-energy terms for each nucleotide position, rather than only for base stacking positions. We prove that RNAsc is self-consistent, in the sense that the nucleotide-specific probabilities of being unpaired in the low energy Boltzmann ensemble always become more closely correlated with the input shape data after application of RNAsc. From this mathematical perspective, the secondary structure predicted by RNAsc should be 'correct', in as much as the shape data is 'correct'. We benchmark RNAsc against the previously mentioned method for eight RNAs, for which both shape data and native structures are known, to find the same accuracy in 7 out of 8 cases, and an improvement of 25% in one case. Furthermore, we present what appears to be the first direct comparison of shape data and in-line probing data, by comparing yeast asp-tRNA shape data from the literature with data from in-line probing experiments we have recently performed. With respect to several criteria, we find that shape data appear to be more robust than in-line probing data, at least in the case of asp-tRNA.

  4. Global Analysis of RNA Secondary Structure in Two Metazoans

    Directory of Open Access Journals (Sweden)

    Fan Li

    2012-01-01

    Full Text Available The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA] and unpaired (single-stranded RNA [ssRNA] components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.

  5. GC content around splice sites affects splicing through pre-mRNA secondary structures

    Directory of Open Access Journals (Sweden)

    Chen Liang

    2011-01-01

    Full Text Available Abstract Background Alternative splicing increases protein diversity by generating multiple transcript isoforms from a single gene through different combinations of exons or through different selections of splice sites. It has been reported that RNA secondary structures are involved in alternative splicing. Here we perform a genomic study of RNA secondary structures around splice sites in humans (Homo sapiens, mice (Mus musculus, fruit flies (Drosophila melanogaster, and nematodes (Caenorhabditis elegans to further investigate this phenomenon. Results We observe that GC content around splice sites is closely associated with the splice site usage in multiple species. RNA secondary structure is the possible explanation, because the structural stability difference among alternative splice sites, constitutive splice sites, and skipped splice sites can be explained by the GC content difference. Alternative splice sites tend to be GC-enriched and exhibit more stable RNA secondary structures in all of the considered species. In humans and mice, splice sites of first exons and long exons tend to be GC-enriched and hence form more stable structures, indicating the special role of RNA secondary structures in promoter proximal splicing events and the splicing of long exons. In addition, GC-enriched exon-intron junctions tend to be overrepresented in tissue-specific alternative splice sites, indicating the functional consequence of the GC effect. Compared with regions far from splice sites and decoy splice sites, real splice sites are GC-enriched. We also found that the GC-content effect is much stronger than the nucleotide-order effect to form stable secondary structures. Conclusion All of these results indicate that GC content is related to splice site usage and it may mediate the splicing process through RNA secondary structures.

  6. Control of Helical Chirality of Ferrocene-Dipeptide Conjugates by the Secondary Structure of Dipeptide Chains.

    Science.gov (United States)

    Moriuchi, Toshiyuki; Nishiyama, Taiki; Nobu, Masaki; Hirao, Toshikazu

    2017-09-18

    Controlling helical chirality and creating protein secondary structures in cyclic/acyclic ferrocene-dipeptide bioorganometallic conjugates were achieved by adjusting the conformational flexibility of the dipeptide chains. In systems reported to date, the helical chirality of a conjugate was determined by the absolute configuration of the adjacent amino acid reside. In contrast, it was possible to induce both M- and P-helical chirality, even when the configuration of the adjacent amino acid was the same. It is particularly interesting to note that M-helical chirality was produced in a cyclic ferrocene-dipeptide conjugate composed of the l-Ala-d-Pro-cystamine-d-Pro-l-Ala dipeptide sequence (1), in which a type II β-turn-like secondary structure was established. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CSSI-PRO: a method for secondary structure type editing, assignment and estimation in proteins using linear combination of backbone chemical shifts

    International Nuclear Information System (INIS)

    Swain, Monalisa; Atreya, Hanudatta S.

    2009-01-01

    Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone 1 H α and 13 C' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to α-helical/β-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment

  8. RNACompress: Grammar-based compression and informational complexity measurement of RNA secondary structure

    Directory of Open Access Journals (Sweden)

    Chen Chun

    2008-03-01

    Full Text Available Abstract Background With the rapid emergence of RNA databases and newly identified non-coding RNAs, an efficient compression algorithm for RNA sequence and structural information is needed for the storage and analysis of such data. Although several algorithms for compressing DNA sequences have been proposed, none of them are suitable for the compression of RNA sequences with their secondary structures simultaneously. This kind of compression not only facilitates the maintenance of RNA data, but also supplies a novel way to measure the informational complexity of RNA structural data, raising the possibility of studying the relationship between the functional activities of RNA structures and their complexities, as well as various structural properties of RNA based on compression. Results RNACompress employs an efficient grammar-based model to compress RNA sequences and their secondary structures. The main goals of this algorithm are two fold: (1 present a robust and effective way for RNA structural data compression; (2 design a suitable model to represent RNA secondary structure as well as derive the informational complexity of the structural data based on compression. Our extensive tests have shown that RNACompress achieves a universally better compression ratio compared with other sequence-specific or common text-specific compression algorithms, such as Gencompress, winrar and gzip. Moreover, a test of the activities of distinct GTP-binding RNAs (aptamers compared with their structural complexity shows that our defined informational complexity can be used to describe how complexity varies with activity. These results lead to an objective means of comparing the functional properties of heteropolymers from the information perspective. Conclusion A universal algorithm for the compression of RNA secondary structure as well as the evaluation of its informational complexity is discussed in this paper. We have developed RNACompress, as a useful tool

  9. Factors that Affect Mathematics-Science (MS) Scores in the Secondary Education Institutional Exam: An Application of Structural Equation Modeling

    Science.gov (United States)

    Yavuz, Mustafa

    2009-01-01

    Discovering what determines students' success in the Secondary Education Institutional Exam is very important to parents and it is also critical for students, teachers, directors, and researchers. Research was carried out by studying the related literature and structural equation modeling techniques. A structural model was created that consisted…

  10. Secondary Education in the European Union: Structures, Organisation and Administration.

    Science.gov (United States)

    EURYDICE European Unit, Brussels (Belgium).

    This study examines the existing secondary education structures of the European Union member nations, the organization of education, teacher training, and the way in which secondary education is managed in Europe today. The three European Free Trade Association/European Economic Area (EFTA/EEC) countries (Iceland, Liechtenstein, and Norway) also…

  11. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  12. Optimized set of two-dimensional experiments for fast sequential assignment, secondary structure determination, and backbone fold validation of 13C/15N-labelled proteins

    International Nuclear Information System (INIS)

    Bersch, Beate; Rossy, Emmanuel; Coves, Jacques; Brutscher, Bernhard

    2003-01-01

    NMR experiments are presented which allow backbone resonance assignment, secondary structure identification, and in favorable cases also molecular fold topology determination from a series of two-dimensional 1 H- 15 N HSQC-like spectra. The 1 H- 15 N correlation peaks are frequency shifted by an amount ± ω X along the 15 N dimension, where ω X is the C α , C β , or H α frequency of the same or the preceding residue. Because of the low dimensionality (2D) of the experiments, high-resolution spectra are obtained in a short overall experimental time. The whole series of seven experiments can be performed in typically less than one day. This approach significantly reduces experimental time when compared to the standard 3D-based methods. The here presented methodology is thus especially appealing in the context of high-throughput NMR studies of protein structure, dynamics or molecular interfaces

  13. Mathematical and Biological Modelling of RNA Secondary Structure and Its Effects on Gene Expression

    Directory of Open Access Journals (Sweden)

    T. A. Hughes

    2006-01-01

    Full Text Available Secondary structures within the 5′ untranslated regions of messenger RNAs can have profound effects on the efficiency of translation of their messages and thereby on gene expression. Consequently they can act as important regulatory motifs in both physiological and pathological settings. Current approaches to predicting the secondary structure of these RNA sequences find the structure with the global-minimum free energy. However, since RNA folds progressively from the 5′ end when synthesised or released from the translational machinery, this may not be the most probable structure. We discuss secondary structure prediction based on local-minimisation of free energy with thermodynamic fluctuations as nucleotides are added to the 3′ end and show that these can result in different secondary structures. We also discuss approaches for studying the extent of the translational inhibition specified by structures within the 5′ untranslated region.

  14. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    Science.gov (United States)

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses…

  15. RNA secondary structure diagrams for very large molecules: RNAfdl

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Wiegels, Tim; Torda, Andrew E.

    2013-01-01

    There are many programs that can read the secondary structure of an RNA molecule and draw a diagram, but hardly any that can cope with 10 3 bases. RNAfdl is slow but capable of producing intersection-free diagrams for ribosome-sized structures, has a graphical user interface for adjustments...

  16. A quantitative analysis of secondary RNA structure using domination based parameters on trees

    Directory of Open Access Journals (Sweden)

    Zou Yue

    2006-03-01

    Full Text Available Abstract Background It has become increasingly apparent that a comprehensive database of RNA motifs is essential in order to achieve new goals in genomic and proteomic research. Secondary RNA structures have frequently been represented by various modeling methods as graph-theoretic trees. Using graph theory as a modeling tool allows the vast resources of graphical invariants to be utilized to numerically identify secondary RNA motifs. The domination number of a graph is a graphical invariant that is sensitive to even a slight change in the structure of a tree. The invariants selected in this study are variations of the domination number of a graph. These graphical invariants are partitioned into two classes, and we define two parameters based on each of these classes. These parameters are calculated for all small order trees and a statistical analysis of the resulting data is conducted to determine if the values of these parameters can be utilized to identify which trees of orders seven and eight are RNA-like in structure. Results The statistical analysis shows that the domination based parameters correctly distinguish between the trees that represent native structures and those that are not likely candidates to represent RNA. Some of the trees previously identified as candidate structures are found to be "very" RNA like, while others are not, thereby refining the space of structures likely to be found as representing secondary RNA structure. Conclusion Search algorithms are available that mine nucleotide sequence databases. However, the number of motifs identified can be quite large, making a further search for similar motif computationally difficult. Much of the work in the bioinformatics arena is toward the development of better algorithms to address the computational problem. This work, on the other hand, uses mathematical descriptors to more clearly characterize the RNA motifs and thereby reduce the corresponding search space. These

  17. Characterization and visualization of RNA secondary structure Boltzmann ensemble via information theory.

    Science.gov (United States)

    Lin, Luan; McKerrow, Wilson H; Richards, Bryce; Phonsom, Chukiat; Lawrence, Charles E

    2018-03-05

    The nearest neighbor model and associated dynamic programming algorithms allow for the efficient estimation of the RNA secondary structure Boltzmann ensemble. However because a given RNA secondary structure only contains a fraction of the possible helices that could form from a given sequence, the Boltzmann ensemble is multimodal. Several methods exist for clustering structures and finding those modes. However less focus is given to exploring the underlying reasons for this multimodality: the presence of conflicting basepairs. Information theory, or more specifically mutual information, provides a method to identify those basepairs that are key to the secondary structure. To this end we find most informative basepairs and visualize the effect of these basepairs on the secondary structure. Knowing whether a most informative basepair is present tells us not only the status of the particular pair but also provides a large amount of information about which other pairs are present or not present. We find that a few basepairs account for a large amount of the structural uncertainty. The identification of these pairs indicates small changes to sequence or stability that will have a large effect on structure. We provide a novel algorithm that uses mutual information to identify the key basepairs that lead to a multimodal Boltzmann distribution. We then visualize the effect of these pairs on the overall Boltzmann ensemble.

  18. Irradiation effects on secondary structure of protein induced by keV ions

    International Nuclear Information System (INIS)

    Cui, F.Z.; Lin, Y.B.; Zhang, D.M.; Tian, M.B.

    2001-01-01

    Protein secondary structure changes by low-energy ion irradiation are reported for the first time. The selected system is 30 keV N + irradiation on bovine serum albumin (BSA). After irradiation at increasing fluences from 1.0x10 15 to 2.5x10 16 ion/cm 2 , Fourier transform infrared spectra analysis was conducted. It was found that the secondary structures of BSA molecules were very sensitive to ion irradiation. Secondary conformations showed different trends of change during irradiation. With the increase of ion fluence from 0 to 2.5x10 16 ion/cm 2 , the fraction of α-helix and β-turns decreased from 17 to 12%, and from 40 to 31%, respectively, while that of random coil and β-sheet structure increased from 18 to 27%, and from 25 to 30%, respectively. Possible explanations for the secondary conformational changes of protein are proposed. (author)

  19. Visualizing RNA Secondary Structure Base Pair Binding Probabilities using Nested Concave Hulls

    OpenAIRE

    Sansen , Joris; Bourqui , Romain; Thebault , Patricia; Allali , Julien; Auber , David

    2015-01-01

    International audience; The challenge 1 of the BIOVIS 2015 design contest consists in designing an intuitive visual depiction of base pairs binding probabilities for secondary structure of ncRNA. Our representation depicts the potential nucleotide pairs binding using nested concave hulls over the computed MFE ncRNA secondary structure. Thus, it allows to identify regions with a high level of uncertainty in the MFE computation and the structures which seem to match to reality.

  20. A comparative method for finding and folding RNA secondary structures within protein-coding regions

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Meyer, Irmtraud Margret; Forsberg, Roald

    2004-01-01

    that RNA-DECODER's parameters can be automatically trained to successfully fold known secondary structures within the HCV genome. We scan the genomes of HCV and polio virus for conserved secondary-structure elements, and analyze performance as a function of available evolutionary information. On known...... secondary structures, RNA-DECODER shows a sensitivity similar to the programs MFOLD, PFOLD and RNAALIFOLD. When scanning the entire genomes of HCV and polio virus for structure elements, RNA-DECODER's results indicate a markedly higher specificity than MFOLD, PFOLD and RNAALIFOLD....

  1. Bayesian Inference using Neural Net Likelihood Models for Protein Secondary Structure Prediction

    Directory of Open Access Journals (Sweden)

    Seong-Gon Kim

    2011-06-01

    Full Text Available Several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods have been used to approach the complex non-linear task of predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure in the past. This project introduces a new machine learning method by using an offline trained Multilayered Perceptrons (MLP as the likelihood models within a Bayesian Inference framework to predict secondary structures proteins. Varying window sizes are used to extract neighboring amino acid information and passed back and forth between the Neural Net models and the Bayesian Inference process until there is a convergence of the posterior secondary structure probability.

  2. Structural determinants and mechanism of HIV-1 genome packaging.

    Science.gov (United States)

    Lu, Kun; Heng, Xiao; Summers, Michael F

    2011-07-22

    Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Improved protein structure reconstruction using secondary structures, contacts at higher distance thresholds, and non-contacts.

    Science.gov (United States)

    Adhikari, Badri; Cheng, Jianlin

    2017-08-29

    Residue-residue contacts are key features for accurate de novo protein structure prediction. For the optimal utilization of these predicted contacts in folding proteins accurately, it is important to study the challenges of reconstructing protein structures using true contacts. Because contact-guided protein modeling approach is valuable for predicting the folds of proteins that do not have structural templates, it is necessary for reconstruction studies to focus on hard-to-predict protein structures. Using a data set consisting of 496 structural domains released in recent CASP experiments and a dataset of 150 representative protein structures, in this work, we discuss three techniques to improve the reconstruction accuracy using true contacts - adding secondary structures, increasing contact distance thresholds, and adding non-contacts. We find that reconstruction using secondary structures and contacts can deliver accuracy higher than using full contact maps. Similarly, we demonstrate that non-contacts can improve reconstruction accuracy not only when the used non-contacts are true but also when they are predicted. On the dataset consisting of 150 proteins, we find that by simply using low ranked predicted contacts as non-contacts and adding them as additional restraints, can increase the reconstruction accuracy by 5% when the reconstructed models are evaluated using TM-score. Our findings suggest that secondary structures are invaluable companions of contacts for accurate reconstruction. Confirming some earlier findings, we also find that larger distance thresholds are useful for folding many protein structures which cannot be folded using the standard definition of contacts. Our findings also suggest that for more accurate reconstruction using predicted contacts it is useful to predict contacts at higher distance thresholds (beyond 8 Å) and predict non-contacts.

  4. FTIR study of secondary structure of bovine serum albumin and ovalbumin

    International Nuclear Information System (INIS)

    Abrosimova, K V; Shulenina, O V; Paston, S V

    2016-01-01

    Proteins structure is the critical factor for their functioning. Fourier transform infrared spectroscopy provides a possibility to obtain information about secondary structure of proteins in different states and also in a whole biological samples. Infrared spectra of egg white from the untreated and hard-boiled hen's egg, and also of chicken ovalbumin and bovine serum albumin in lyophilic form and in aqueous solution were studied. Lyophilization of investigated globular proteins is accompanied by the decrease of a-helix structures and the increase in amount of intermolecular β-sheets. Analysis of infrared spectrum of egg white allowed to make an estimation of OVA secondary structure and to observe α-to-β structural transformation as a result of the heat denaturation. (paper)

  5. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments

    DEFF Research Database (Denmark)

    Engberg, J; Nielsen, Henrik; Lenaers, G

    1990-01-01

    We have determined the nucleotide sequence of the 26S large subunit (LSU) rRNA genes for two Tetrahymena species, T. thermophila and T. pyriformis. The inferred rRNA sequences are presented in their most probable secondary structures based on compensatory mutations, energy, and conservation crite...

  6. Secondary structures of rRNAs from all three domains of life.

    Directory of Open Access Journals (Sweden)

    Anton S Petrov

    Full Text Available Accurate secondary structures are important for understanding ribosomes, which are extremely large and highly complex. Using 3D structures of ribosomes as input, we have revised and corrected traditional secondary (2° structures of rRNAs. We identify helices by specific geometric and molecular interaction criteria, not by co-variation. The structural approach allows us to incorporate non-canonical base pairs on parity with Watson-Crick base pairs. The resulting rRNA 2° structures are up-to-date and consistent with three-dimensional structures, and are information-rich. These 2° structures are relatively simple to understand and are amenable to reproduction and modification by end-users. The 2° structures made available here broadly sample the phylogenetic tree and are mapped with a variety of data related to molecular interactions and geometry, phylogeny and evolution. We have generated 2° structures for both large subunit (LSU 23S/28S and small subunit (SSU 16S/18S rRNAs of Escherichia coli, Thermus thermophilus, Haloarcula marismortui (LSU rRNA only, Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens. We provide high-resolution editable versions of the 2° structures in several file formats. For the SSU rRNA, the 2° structures use an intuitive representation of the central pseudoknot where base triples are presented as pairs of base pairs. Both LSU and SSU secondary maps are available (http://apollo.chemistry.gatech.edu/RibosomeGallery. Mapping of data onto 2° structures was performed on the RiboVision server (http://apollo.chemistry.gatech.edu/RiboVision.

  7. Reflection of the energy structure of a tungsten monocrystal nearsurface area in the secondary electron spectrum

    International Nuclear Information System (INIS)

    Artamonov, O.M.; Smirnov, O.M.; Terekhov, A.N.

    1982-01-01

    Formation of secondary electron energy spectrum during emission from the crystal layer near the surface has been considered, at that layer energy structure can be different from volumetric energy structure. Its thickness depends on the predominant mechanism of electron scattering and is determined by corresponding phenomenological parameters. It is shown that the structure in the secondary electron spectrum appears in the case when energy structure of emitting monocrystal layer can not be described in the approximation of almost free electron gas and, as experimental investigations show, approaches energy zone structure of its volume. It is also show that in the case when the energy structure of the emitting layer is satisfactorily described with the model of almost free electron gas, the SE spectrum is characterized with traditional cascade minimum. Experimental investigation of SE energy distribution was carried out for the W monocrystalline face (110). It was established that distinct structure in the SE spectrum appears only after electrochemical polishing of the specimen surface. It is related to the appearance of ''far'' order in the monocrystal emission layer on initially disturbed tungsten surface during such treatment. Disturbance of tungsten monocrystal surface structure on its oxidation in O 2 atmosphere results in the appearance of the cascade maximum and disappearance of distinct peculiarities in the SE spectrum

  8. A combinatorial enumeration problem of RNA secondary structures

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... connection between Discrete Mathematics and Compu- tational Molecular Biology (Chen et al, 2005; Hofacker et ... in Computational Molecular Biology. An RNA molecule is described by its sequences of bases ... Here, a mathematical definition of secondary structure is given (Stein and Waterman 1978).

  9. TurboFold: Iterative probabilistic estimation of secondary structures for multiple RNA sequences

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav

    2011-04-01

    Full Text Available Abstract Background The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented. Results TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a

  10. Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide

    Directory of Open Access Journals (Sweden)

    Hajime Yamazaki

    2017-06-01

    Full Text Available Previously, we have shown that serine-16 phosphorylation in native full-length porcine amelogenin (P173 and the Leucine-Rich Amelogenin Peptide (LRAP(+P, an alternative amelogenin splice product, affects protein assembly and mineralization in vitro. Notably, P173 and LRAP(+P stabilize amorphous calcium phosphate (ACP and inhibit hydroxyapatite (HA formation, while non-phosphorylated counterparts (rP172, LRAP(−P guide the growth of ordered bundles of HA crystals. Based on these findings, we hypothesize that the phosphorylation of full-length amelogenin and LRAP induces conformational changes that critically affect its capacity to interact with forming calcium phosphate mineral phases. To test this hypothesis, we have utilized Fourier transform infrared spectroscopy (FTIR to determine the secondary structure of LRAP(−P and LRAP(+P in the absence/presence of calcium and selected mineral phases relevant to amelogenesis; i.e., hydroxyapatite (HA: an enamel crystal prototype and (ACP: an enamel crystal precursor phase. Aqueous solutions of LRAP(−P or LRAP(+P were prepared with or without 7.5 mM of CaCl2 at pH 7.4. FTIR spectra of each solution were obtained using attenuated total reflectance, and amide-I peaks were analyzed to provide secondary structure information. Secondary structures of LRAP(+P and LRAP(−P were similarly assessed following incubation with suspensions of HA and pyrophosphate-stabilized ACP. Amide I spectra of LRAP(−P and LRAP(+P were found to be distinct from each other in all cases. Spectra analyses showed that LRAP(−P is comprised mostly of random coil and β-sheet, while LRAP(+P exhibits more β-sheet and α-helix with little random coil. With added Ca, the random coil content increased in LRAP(−P, while LRAP(+P exhibited a decrease in α-helix components. Incubation of LRAP(−P with HA or ACP resulted in comparable increases in β-sheet structure. Notably, however, LRAP(+P secondary structure was more affected by

  11. Random generation of RNA secondary structures according to native distributions

    Directory of Open Access Journals (Sweden)

    Nebel Markus E

    2011-10-01

    Full Text Available Abstract Background Random biological sequences are a topic of great interest in genome analysis since, according to a powerful paradigm, they represent the background noise from which the actual biological information must differentiate. Accordingly, the generation of random sequences has been investigated for a long time. Similarly, random object of a more complicated structure like RNA molecules or proteins are of interest. Results In this article, we present a new general framework for deriving algorithms for the non-uniform random generation of combinatorial objects according to the encoding and probability distribution implied by a stochastic context-free grammar. Briefly, the framework extends on the well-known recursive method for (uniform random generation and uses the popular framework of admissible specifications of combinatorial classes, introducing weighted combinatorial classes to allow for the non-uniform generation by means of unranking. This framework is used to derive an algorithm for the generation of RNA secondary structures of a given fixed size. We address the random generation of these structures according to a realistic distribution obtained from real-life data by using a very detailed context-free grammar (that models the class of RNA secondary structures by distinguishing between all known motifs in RNA structure. Compared to well-known sampling approaches used in several structure prediction tools (such as SFold ours has two major advantages: Firstly, after a preprocessing step in time O(n2 for the computation of all weighted class sizes needed, with our approach a set of m random secondary structures of a given structure size n can be computed in worst-case time complexity Om⋅n⋅ log(n while other algorithms typically have a runtime in O(m⋅n2. Secondly, our approach works with integer arithmetic only which is faster and saves us from all the discomforting details of using floating point arithmetic with

  12. Determinants of capital structure: evidence from the Czech automotive industry

    Directory of Open Access Journals (Sweden)

    Pavlína Pinková

    2012-01-01

    Full Text Available The objective of the paper is to identify the determinants influencing the capital structure of large and medium-sized enterprises of the automotive industry in the Czech Republic. The sample consists of 100 companies belonging to NACE division 29. The data come from financial statements of selected companies and cover a period from 2006 to 2010. For the purpose of the paper quantitative research is used. The selection of appropriate dependent and independent is realized on the basis of secondary research on studies of capital structure. The analysis of variance, correlation and regression analyses have been performed to see the nature of relationship between variables. Size, tangibility, profitability and liquidity appear to be relevant determinants of capital structure. Growth is not a statistically significant determinant of leverage. It has been observed that the maturity of debt has to be considered, since the investigation of total debt only does not provide precious results. The findings do not unequivocally support either the static trade-off theory or the pecking order theory.

  13. Secondary Structure Adopted by the Gly-Gly-X Repetitive Regions of Dragline Spider Silk

    Directory of Open Access Journals (Sweden)

    Geoffrey M. Gray

    2016-12-01

    Full Text Available Solid-state NMR and molecular dynamics (MD simulations are presented to help elucidate the molecular secondary structure of poly(Gly-Gly-X, which is one of the most common structural repetitive motifs found in orb-weaving dragline spider silk proteins. The combination of NMR and computational experiments provides insight into the molecular secondary structure of poly(Gly-Gly-X segments and provides further support that these regions are disordered and primarily non-β-sheet. Furthermore, the combination of NMR and MD simulations illustrate the possibility for several secondary structural elements in the poly(Gly-Gly-X regions of dragline silks, including β-turns, 310-helicies, and coil structures with a negligible population of α-helix observed.

  14. SAAS: Short Amino Acid Sequence - A Promising Protein Secondary Structure Prediction Method of Single Sequence

    Directory of Open Access Journals (Sweden)

    Zhou Yuan Wu

    2013-07-01

    Full Text Available In statistical methods of predicting protein secondary structure, many researchers focus on single amino acid frequencies in α-helices, β-sheets, and so on, or the impact near amino acids on an amino acid forming a secondary structure. But the paper considers a short sequence of amino acids (3, 4, 5 or 6 amino acids as integer, and statistics short sequence's probability forming secondary structure. Also, many researchers select low homologous sequences as statistical database. But this paper select whole PDB database. In this paper we propose a strategy to predict protein secondary structure using simple statistical method. Numerical computation shows that, short amino acids sequence as integer to statistics, which can easy see trend of short sequence forming secondary structure, and it will work well to select large statistical database (whole PDB database without considering homologous, and Q3 accuracy is ca. 74% using this paper proposed simple statistical method, but accuracy of others statistical methods is less than 70%.

  15. A combinatorial enumeration problem of RNA secondary structures

    African Journals Online (AJOL)

    use

    2011-12-21

    Dec 21, 2011 ... interesting combinatorial questions (Chen et al., 2005;. Liu, 2006; Schmitt and Waterman 1994; Stein and. Waterman 1978). The research on the enumeration of. RNA secondary structures becomes one of the hot topics in Computational Molecular Biology. An RNA molecule is described by its sequences of.

  16. Tchebichef image moment approach to the prediction of protein secondary structures based on circular dichroism.

    Science.gov (United States)

    Li, Sha Sha; Li, Bao Qiong; Liu, Jin Jin; Lu, Shao Hua; Zhai, Hong Lin

    2018-04-20

    Circular dichroism (CD) spectroscopy is a widely used technique for the evaluation of protein secondary structures that has a significant impact for the understanding of molecular biology. However, the quantitative analysis of protein secondary structures based on CD spectra is still a hard work due to the serious overlap of the spectra corresponding to different structural motifs. Here, Tchebichef image moment (TM) approach is introduced for the first time, which can effectively extract the chemical features in CD spectra for the quantitative analysis of protein secondary structures. The proposed approach was applied to analyze reference set. and the obtained results were evaluated by the strict statistical parameters such as correlation coefficient, cross-validation correlation coefficient and root mean squared error. Compared with several specialized prediction methods, TM approach provided satisfactory results, especially for turns and unordered structures. Our study indicates that TM approach can be regarded as a feasible tool for the analysis of the secondary structures of proteins based on CD spectra. An available TMs package is provided and can be used directly for secondary structures prediction. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  17. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    Science.gov (United States)

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  18. Web-Beagle: a web server for the alignment of RNA secondary structures.

    Science.gov (United States)

    Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2015-07-01

    Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3' UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Orientation determination of interfacial beta-sheet structures in situ.

    Science.gov (United States)

    Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan

    2010-07-01

    Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.

  20. Landscape and variation of RNA secondary structure across the human transcriptome.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Zhang, Qiangfeng Cliff; Flynn, Ryan A; Manor, Ohad; Ouyang, Zhengqing; Zhang, Jiajing; Spitale, Robert C; Snyder, Michael P; Segal, Eran; Chang, Howard Y

    2014-01-30

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.

  1. General enumeration of RNA secondary structures based on new ...

    African Journals Online (AJOL)

    Crick base pairs between AU and GC. Based on the new representation, this paper also computes the number of various types of constrained secondary structures taking the minimum stack length 1 and minimum size m for each bonding loop as ...

  2. [Determination of the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato].

    Science.gov (United States)

    Benavidez Rozo, Martha Elizabeth; Patriarca, Andrea; Cabrera, Gabriela; Fernández Pinto, Virginia E

    2014-01-01

    Many Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii. To determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification. The profiles of secondary metabolites were determined by HPLC MS. The Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins. Secondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  3. [Changes in the secondary and tertiary structure of serum albumin in interactions with ligands of various structures].

    Science.gov (United States)

    Trinus, F P; Braver-Chernobul'skaia, B S; Luĭk, A I; Boldeskul, A E; Velichko, A N

    1984-01-01

    High affinity interactions between blood serum albumin and five substances of various chemical structure, exhibiting distinct physiological activity, were accompanied by alterations in the protein tertiary structure, while the albumin secondary structure was involved in conformational transformation after less effective affinity binding.

  4. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    Science.gov (United States)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  5. Evolution of primary and secondary structures in 5S and 5.8S rRNA

    International Nuclear Information System (INIS)

    Curtiss, W.C.

    1986-01-01

    The secondary structure of Bombyx mori 5S rRNA was studied using the sing-strand specific S1 nuclease and the base pair specific cobra venom ribonuclease. The RNA was end-labeled with [ 32 P] at either the 5' or 3' end and sequenced using enzymatic digestion techniques. These enzymatic data coupled with thermodynamic structure prediction were used to generate a secondary structure for 5S rRNA. A computer algorithm has been implemented to aid in the comparison of a large set of homologous RNAs. Eukaryotic 5S rRNA sequences from thirty four diverse species were compared by (1) alignment or the sequences, (2) the positions of substitutions were located with respect to the aligned sequence and secondary structure, and (3) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. Eukaryotic 5S rRNA was found to have significant sequence variation throughout much of the molecule while maintaining a relatively constant secondary structure. A detailed analysis of the sequence and structure variability in each region of the molecule is presented

  6. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  7. Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures

    Science.gov (United States)

    Sloma, Michael F.; Mathews, David H.

    2016-01-01

    RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely to be in the known structure than the set of loops predicted in the lowest free energy structures. PMID:27852924

  8. A phase transition in energy-filtered RNA secondary structures

    DEFF Research Database (Denmark)

    Han, Hillary Siwei; reidys, Christian

    2012-01-01

    In this paper we study the effect of energy parameters on minimum free energy (mfe) RNA secondary structures. Employing a simplified combinatorial energy model, that is only dependent on the diagram representation and that is not sequence specific, we prove the following dichotomy result. Mfe...... this phase transition from a discrete limit to a central limit distribution and subsequently put our result into the context of quantifying the effect of sparsification of the folding of these respective mfe-structures. We show that the sparsification of realistic mfe-structures leads to a constant time...

  9. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Science.gov (United States)

    Grigoryan, Zareh A.; Karapetian, Armen T.

    2015-01-01

    The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143

  10. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    Directory of Open Access Journals (Sweden)

    Zareh A. Grigoryan

    2015-01-01

    Full Text Available The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed.

  11. Determinants of Sexual Violence among Eastern Ethiopian Secondary School Students

    NARCIS (Netherlands)

    MA Bekele, A.B.

    2012-01-01

    The purpose of this dissertation was to investigate the determinants of sexual violence among Eastern Ethiopia secondary school students. To this end, we studied risk and protective factors for both sexual violence perpetration and victimization, and the moderating role of protective factors on the

  12. Use of secondary structural information and Cα-Cα distance ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    2007-06-21

    Jun 21, 2007 ... Model evolution; protein modelling; residue contact prediction; secondary structure prediction. Abbreviations used: ... set of sequence data (NR) and calculated conservation index of each ... evaluators (Moult et al 2003) to evaluate these model ... (Siew et al 2000), is a measure aims at identifying the largest.

  13. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  14. Quantitative DMS mapping for automated RNA secondary structure inference

    OpenAIRE

    Cordero, Pablo; Kladwang, Wipapat; VanLang, Christopher C.; Das, Rhiju

    2012-01-01

    For decades, dimethyl sulfate (DMS) mapping has informed manual modeling of RNA structure in vitro and in vivo. Here, we incorporate DMS data into automated secondary structure inference using a pseudo-energy framework developed for 2'-OH acylation (SHAPE) mapping. On six non-coding RNAs with crystallographic models, DMS- guided modeling achieves overall false negative and false discovery rates of 9.5% and 11.6%, comparable or better than SHAPE-guided modeling; and non-parametric bootstrappin...

  15. Two-dimensional dynamics of a free molecular chain with a secondary structure

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Savin, A.V.

    1996-01-01

    A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model of an anharmo......A simple two-dimensional (2D) model of an isolated (free) molecular chain with primary and secondary structures has been suggested and investigated both analytically and numerically. This model can be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model...

  16. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  17. Mechanical properties of amyloid-like fibrils defined by secondary structures

    Science.gov (United States)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology

  18. VMD-SS: A graphical user interface plug-in to calculate the protein secondary structure in VMD program.

    Science.gov (United States)

    Yahyavi, Masoumeh; Falsafi-Zadeh, Sajad; Karimi, Zahra; Kalatarian, Giti; Galehdari, Hamid

    2014-01-01

    The investigation on the types of secondary structure (SS) of a protein is important. The evolution of secondary structures during molecular dynamics simulations is a useful parameter to analyze protein structures. Therefore, it is of interest to describe VMD-SS (a software program) for the identification of secondary structure elements and its trajectories during simulation for known structures available at the Protein Data Bank (PDB). The program helps to calculate (1) percentage SS, (2) SS occurrence in each residue, (3) percentage SS during simulation, and (4) percentage residues in all SS types during simulation. The VMD-SS plug-in was designed using TCL script and stride to calculate secondary structure features. The database is available for free at http://science.scu.ac.ir/HomePage.aspx?TabID=13755.

  19. Wholeness and primary and secondary food structure effects on in vitro digestion patterns determine nutritionally distinct carbohydrate fractions in cereal foods.

    Science.gov (United States)

    Mishra, Suman; Monro, John

    2012-12-01

    Starchy foods of differing structure, including bakery products, breakfast cereals, pastas, and pulses were digested in vitro. Bakery products and processed breakfast cereals with little resilient structure yielded large amounts of rapidly available carbohydrate (RAC), less slowly digested starch (SDS) and little inaccessible digestible starch (IDS) (70:22:8%). Partially processed grains, such as rolled oats contained an increased proportion of SDS (55:38:7%). Pastas, being dense starch structures digested more gradually to completion by superficial erosion, yielding approximately equal proportions of RAC and SDS but little IDS (43:52:4%). Pulses, which retained their cellular morphology, digested more linearly yielding a lower proportion of RAC, a larger proportion of SDS and more IDS (9:69:22%). Preservation of native "primary" structure, and use of processing to create "secondary" structure, are both means by which wholeness, in the sense of intactness, can be used to influence carbohydrate digestion to make foods of lower glycaemic impact. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Structural Determinants and Children's Oral Health: A Cross-National Study.

    Science.gov (United States)

    Baker, S R; Foster Page, L; Thomson, W M; Broomhead, T; Bekes, K; Benson, P E; Aguilar-Diaz, F; Do, L; Hirsch, C; Marshman, Z; McGrath, C; Mohamed, A; Robinson, P G; Traebert, J; Turton, B; Gibson, B J

    2018-03-01

    Much research on children's oral health has focused on proximal determinants at the expense of distal (upstream) factors. Yet, such upstream factors-the so-called structural determinants of health-play a crucial role. Children's lives, and in turn their health, are shaped by politics, economic forces, and social and public policies. The aim of this study was to examine the relationship between children's clinical (number of decayed, missing, and filled teeth) and self-reported oral health (oral health-related quality of life) and 4 key structural determinants (governance, macroeconomic policy, public policy, and social policy) as outlined in the World Health Organization's Commission for Social Determinants of Health framework. Secondary data analyses were carried out using subnational epidemiological samples of 8- to 15-y-olds in 11 countries ( N = 6,648): Australia (372), New Zealand (three samples; 352, 202, 429), Brunei (423), Cambodia (423), Hong Kong (542), Malaysia (439), Thailand (261, 506), United Kingdom (88, 374), Germany (1498), Mexico (335), and Brazil (404). The results indicated that the type of political regime, amount of governance (e.g., rule of law, accountability), gross domestic product per capita, employment ratio, income inequality, type of welfare regime, human development index, government expenditure on health, and out-of-pocket (private) health expenditure by citizens were all associated with children's oral health. The structural determinants accounted for between 5% and 21% of the variance in children's oral health quality-of-life scores. These findings bring attention to the upstream or structural determinants as an understudied area but one that could reap huge rewards for public health dentistry research and the oral health inequalities policy agenda.

  1. Integrated Analysis Seismic Inversion and Rockphysics for Determining Secondary Porosity Distribution of Carbonate Reservoir at “FR” Field

    Science.gov (United States)

    Rosid, M. S.; Augusta, F. F.; Haidar, M. W.

    2018-05-01

    In general, carbonate secondary pore structure is very complex due to the significant diagenesis process. Therefore, the determination of carbonate secondary pore types is an important factor which is related to study of production. This paper mainly deals not only to figure out the secondary pores types, but also to predict the distribution of the secondary pore types of carbonate reservoir. We apply Differential Effective Medium (DEM) for analyzing pore types of carbonate rocks. The input parameter of DEM inclusion model is fraction of porosity and the output parameters are bulk moduli and shear moduli as a function of porosity, which is used as input parameter for creating Vp and Vs modelling. We also apply seismic post-stack inversion technique that is used to map the pore type distribution from 3D seismic data. Afterward, we create porosity cube which is better to use geostatistical method due to the complexity of carbonate reservoir. Thus, the results of this study might show the secondary porosity distribution of carbonate reservoir at “FR” field. In this case, North – Northwest of study area are dominated by interparticle pores and crack pores. Hence, that area has highest permeability that hydrocarbon can be more accumulated.

  2. Life prediction of simple structures subject to cyclic primary and secondary loading resulting in creep and platicity

    International Nuclear Information System (INIS)

    Otter, N.R.; Jones, R.T.

    1979-01-01

    High temperature reactors are subject to cyclic mechanical and thermal loadings resulting from start up and shut down operations. The design must therefore guard against structural failure resulting from excessive deformation and creep-fatigue damage. Before any simplified inelastic analysis techniques can be applied, their validity needs to be examined under situations representative of the reactor. For this to be carried out it is necessary to determine the behaviour of components, initially geometrically simple, subject to loadings, cyclic primary and secondary in nature, which result in creep and plasticity. Beam-like structures have been investigated on a finite element basis with the aim of determining how cyclic plasticity, creep enhancement and plastic ratchetting vary in relationship with modified shakedown criteria, magnitude of loading and hold time. (orig.)

  3. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase.

    Science.gov (United States)

    Gregersen, Jonas Lindholt; Mattle, Daniel; Fedosova, Natalya U; Nissen, Poul; Reinhard, Linda

    2016-04-01

    Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.

  4. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....

  5. Landscape and variation of RNA secondary structure across the human transcriptome.

    OpenAIRE

    Wan, Y; Qu, K; Zhang, QC; Flynn, RA; Manor, O; Ouyang, Z; Zhang, J; Spitale, RC; Snyder, MP; Segal, E; Chang, HY

    2014-01-01

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comp...

  6. Analysis of the secondary structure of ITS transcripts in peritrich ciliates (Ciliophora, Oligohymenophorea): implications for structural evolution and phylogenetic reconstruction.

    Science.gov (United States)

    Sun, Ping; Clamp, John C; Xu, Dapeng

    2010-07-01

    Despite extensive previous morphological work, little agreement has been reached about phylogenetic relationships among peritrich ciliates, making it difficult to study the evolution of the group in a phylogenetic framework. In this study, the nucleotide characteristics and secondary structures of internal transcribed spacers 1 and 2 (ITS1 and ITS2) of 26 peritrich ciliates in 12 genera were analyzed. Information from secondary structures of ITS1 and ITS2 then was used to perform the first systematic study of ITS regions in peritrich ciliates, including one species of Rhabdostyla for which no sequence has been reported previously. Lengths of ITS1 and ITS2 sequences varied relatively little among taxa studied, but their G+C content was highly variable. General secondary structure models of ITS1 and ITS2 were proposed for peritrich ciliates and their reliability was assessed by compensatory base changes. The secondary structure of ITS1 contains three major helices in peritrich ciliates and deviations from this basic structure were found in all taxa examined. The core structure of peritrich ITS2 includes four helices, with helix III as the longest and containing a motif 5'-MAC versus GUK-3' at its apex as well as a YU-UY mismatch in helix II. In addition, the structural motifs of both ITS secondary structures were identified. Phylogenetic analyses using ITS data were performed by means of Bayesian inference, maximum likelihood and neighbor joining methods. Trees had a consistent branching pattern that included the following features: (1) Rhabdostyla always clustered with members of the family Vorticellidae, instead of members of the family Epistylididae, in which it is now classified on the basis of morphology. (2) The systematically questionable genus Ophrydium closely associated with Carchesium, forming a clearly defined, monophyletic group within the Vorticellidae. This supported the hypothesis derived from previous study based on small subunit rRNA gene sequences

  7. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    Science.gov (United States)

    Ellington, Roni; Wachira, James

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968

  8. RNA secondary structure prediction by using discrete mathematics: an interdisciplinary research experience for undergraduate students.

    Science.gov (United States)

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems.

  9. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  10. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    Science.gov (United States)

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  11. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots

    DEFF Research Database (Denmark)

    Kato, Yuki; Gorodkin, Jan; Havgaard, Jakob Hull

    2017-01-01

    . Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes...... without alignment. Results: Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs....

  12. Facilitating RNA structure prediction with microarrays.

    Science.gov (United States)

    Kierzek, Elzbieta; Kierzek, Ryszard; Turner, Douglas H; Catrina, Irina E

    2006-01-17

    Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.

  13. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  14. Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application.

    Science.gov (United States)

    Ye, Shuji; Wei, Feng; Li, Hongchun; Tian, Kangzhen; Luo, Yi

    2013-01-01

    In situ and real-time characterization of molecular structures and orientation of proteins at interfaces is essential to understand the nature of interfacial protein interaction. Such work will undoubtedly provide important clues to control biointerface in a desired manner. Sum frequency generation vibrational spectroscopy (SFG-VS) has been demonstrated to be a powerful technique to study the interfacial structures and interactions at the molecular level. This paper first systematically introduced the methods for the calculation of the Raman polarizability tensor, infrared transition dipole moment, and SFG molecular hyperpolarizability tensor elements of proteins/peptides with the secondary structures of α-helix, 310-helix, antiparallel β-sheet, and parallel β-sheet, as well as the methodology to determine the orientation of interfacial protein secondary structures using SFG amide I spectra. After that, recent progresses on the determination of protein structure and orientation at different interfaces by SFG-VS were then reviewed, which provides a molecular-level understanding of the structures and interactions of interfacial proteins, specially understanding the nature of driving force behind such interactions. Although this review has focused on analysis of amide I spectra, it will be expected to offer a basic idea for the spectral analysis of amide III SFG signals and other complicated molecular systems such as RNA and DNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Protein Secondary Structures (α-helix and β-sheet) at a Cellular Level and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the α-helix and β-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of β-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution (∼10 μm). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of α-helixes and β-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of α-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the

  16. Protein Secondary Structures (alpha-helix and beta-sheet) at a Cellular Levle and Protein Fractions in Relation to Rumen Degradation Behaviours of Protein: A New Approach

    Energy Technology Data Exchange (ETDEWEB)

    Yu,P.

    2007-01-01

    Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the {alpha}-helix and {beta}-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of {beta}-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution ({approx}10 {mu}m). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of {alpha}-helixes and {beta}-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of {alpha}-helixes (from 47.1% to 36.1%: S

  17. Parallel protein secondary structure prediction based on neural networks.

    Science.gov (United States)

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  18. Molecular and crystal structure of the antibiotic enniatin B, a secondary microbial metabolite

    International Nuclear Information System (INIS)

    Zhukhlistova, N.E.; Tishchenko, G.N.; Tolstykh, I.V.; Zenkova, V.A.

    1999-01-01

    Single crystals of the secondary microbial metabolite C 33 H 57 N 3 O 9 ·1(2/3)H 2 O with the known molecular weight were studied by the method of X-ray diffraction analysis, where a=b=15.102(3) A, c=14.548(3) A, sp. gr.R3, R=0.057. In the course of the structure determination, it was established that the substance is a natural antibiotic, namely, enniatin B. The conformation of its molecule is similar to that of the known synthetic antibiotic. The main difference between the natural and synthesized forms reduces to the different numbers of water molecules and their arrangement in the cavity of the antibiotic molecule

  19. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  20. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  1. Determination of the secondary electron equilibrium using an extrapolation chamber

    International Nuclear Information System (INIS)

    Marshall, E.T.; Vaziri, K.; Krueger, F.P.; Cossairt, J.D.

    1996-09-01

    To ensure that the external personnel dosimetry program conducted by U. S. Department of Energy (DOE) contractors is of the highest quality, the DOE established the Department of Energy Laboratory Accreditation Program or DOELAP. The contractor's dosimetry program is assessed against the criteria set forth for dosimeter performance and the associated quality assurance and calibration programs. Although personnel dosimeters are not processed or calibrated by Fermilab, a proactive quality assurance program is in place to ensure accurate monitoring. This program includes quarterly blind testing of the dosimeters used by personnel. During the on-site assessment conducted of Fermilab's external dosimetry program during May 1994, an observation with regard to equipment maintenance and calibration was made: ''calibration personnel should probably review the electron secondary equilibrium needs at various irradiation distances from the 137 Cs irradiation systems'' The majority of the secondary electrons are generated through interactions of the beam with the collimator. Secondary electrons increase the low energy component of the radiation field, increasing the shallow doses measured. For dosimetric purposes, this increase needs to be defined so appropriate corrections to calculations or modifications to the facility can be made. Prompted by this observation, a study was designed to investigate the electron secondary equilibrium in the facility used for the blind testing by determining the dose equivalent as a function of depth in a tissue-equivalent medium. This presentation summarizes the methodology utilized and results of the investigation

  2. Transition-state structure in the yeast alcohol dehydrogenase reaction: the magnitude of solvent and alpha-secondary hydrogen isotope effects

    International Nuclear Information System (INIS)

    Welsh, K.M.; Creighton, D.J.; Klinman, J.P.

    1980-01-01

    Solvent and alpha-secondary isotope effects have been measured in the yeast alcohol dehydrogenase reaction, under conditions of a rate-limiting transfer of hydrogen between coenzyme and substrate. Determination of catalytic constants in H20 and D20 as a function of pH(D) has allowed the separation of solvent effects on pKa from kcat. The small effect of D20 on pKa is tentatively assigned to ionization of an active-site ZnOH 2 . The near absence of an isotope effect on kcat in the direction of alcohol oxidation rules out a mechanism involving concerted catalysis by an active-site base of hydride transfer. The near identity of kinetic and equilibrium alpha-secondary isotope effects in the direction of alcohol oxidation implicates a transition-state structure which resembles aldehyde with regard to bond hybridization properties. The result contrasts sharply with previously reported structure - reactivity correlations, which implicate a transition-state structure resembling alcohol with regard to charge properties. The significance of these findings to the mechanism of NAD(P)H-dependent redox reactions is discussed

  3. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures

    Science.gov (United States)

    2014-01-01

    Background Improving accuracy and efficiency of computational methods that predict pseudoknotted RNA secondary structures is an ongoing challenge. Existing methods based on free energy minimization tend to be very slow and are limited in the types of pseudoknots that they can predict. Incorporating known structural information can improve prediction accuracy; however, there are not many methods for prediction of pseudoknotted structures that can incorporate structural information as input. There is even less understanding of the relative robustness of these methods with respect to partial information. Results We present a new method, Iterative HFold, for pseudoknotted RNA secondary structure prediction. Iterative HFold takes as input a pseudoknot-free structure, and produces a possibly pseudoknotted structure whose energy is at least as low as that of any (density-2) pseudoknotted structure containing the input structure. Iterative HFold leverages strengths of earlier methods, namely the fast running time of HFold, a method that is based on the hierarchical folding hypothesis, and the energy parameters of HotKnots V2.0. Our experimental evaluation on a large data set shows that Iterative HFold is robust with respect to partial information, with average accuracy on pseudoknotted structures steadily increasing from roughly 54% to 79% as the user provides up to 40% of the input structure. Iterative HFold is much faster than HotKnots V2.0, while having comparable accuracy. Iterative HFold also has significantly better accuracy than IPknot on our HK-PK and IP-pk168 data sets. Conclusions Iterative HFold is a robust method for prediction of pseudoknotted RNA secondary structures, whose accuracy with more than 5% information about true pseudoknot-free structures is better than that of IPknot, and with about 35% information about true pseudoknot-free structures compares well with that of HotKnots V2.0 while being significantly faster. Iterative HFold and all data used in

  4. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  5. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian; Schlessinger, Avner; Rost, Burkhard

    2010-01-01

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  6. Changes in secondary structure of poliovirus ribonucleic acid

    International Nuclear Information System (INIS)

    Koza, J.

    1975-01-01

    Infectious single-stranded RNA isolated from mature purified poliovirus was separated into three fractions by means of chromatography on an ''evaporated'' calcium phosphate column. RNA molecules with a higher degree of secondary structure were detected in two of the fractions as a result of the chromatography. These RNA molecules (1) were resistant to hydrolysis by pancreatic ribonuclease A, (2) retained unchanged the original infectivity for actinomycin D-pretreated cells, (3) were resistant to ultraviolet-light inactivation and (4) were partially resistant to formaldehyde inactivation

  7. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    Science.gov (United States)

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  8. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei, E-mail: mhong@iastate.edu [Iowa State University, Department of Chemistry (United States)

    2013-06-15

    We introduce a Python-based program that utilizes the large database of {sup 13}C and {sup 15}N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D {sup 13}C-{sup 13}C, {sup 15}N-{sup 13}C, or 3D {sup 15}N-{sup 13}C-{sup 13}C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D {sup 13}C-{sup 13}C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the C{alpha} and C{beta} chemical shifts, the highest-ranked PLUQ assignments were 40-60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO-C{alpha}-C{beta} or N-C{alpha}-C{beta}), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  9. Secondary flow structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2017-11-01

    Secondary flow vortical structures were investigated in an elastic 180° curved pipe with and without torsion under steady and pulsatile flow using particle image velocimetry (PIV). The elastic thin-walled curved pipes were constructed using Sylgard 184, and inserted into a bath of refractive index matched fluid to perform PIV. A vortex identification method was employed to identify various vortical structures in the flow. The secondary flow structures in the planar compliant model with dilatation of 0.61%-3.23% under pulsatile flow rate were compared with the rigid vessel model results, and it was found that local vessel compliance has a negligible effect on secondary flow morphology. The secondary flow structures were found to be more sensitive to out of plane curvature (torsion) than to vessel compliance. Torsion distorts the symmetry of secondary flow and results in more complex vortical structures in both steady and pulsatile flows. In high Re number steady flow with torsion, a single dominant vortical structure can be detected at the middle of the 90° cross section. In pulsatile flow with torsion, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together. supported by GW Center for Biomimetics and Bioinspired Engineering.

  10. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patnaik, Sobhan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Williams, Christian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pattanaik, Marut [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kanakala, Raghunath [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  11. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    International Nuclear Information System (INIS)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian; Pattanaik, Marut; Kanakala, Raghunath

    2016-01-01

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.

  12. Principals' Administrative Styles and Students' Academic Performance in Taraba State Secondary Schools, Nigeria

    Science.gov (United States)

    Bello, Suleiman; Ibi, Mustapha Baba; Bukar, Ibrahim Bulama

    2016-01-01

    The study determined the relationship between principals' administrative styles and students' academic performance in Taraba State secondary schools, Nigeria. The objectives of the study were to determine the relationships between initiative structure of leadership styles, consideration structure of leadership styles, participatory structure of…

  13. Secondary Vocational Horticulture Programs--An Assessment.

    Science.gov (United States)

    Burnett, Michael F.; Smith, Charles W.

    1983-01-01

    The objectives of the study were to determine characteristics of secondary horticulture teachers, the structure of horticulture departments, funding sources, nature and scope of facilities, types of supervised occupational experience programs in which horticulture students participated, and curriculum characteristics of vocational horticulture…

  14. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin.

    Science.gov (United States)

    Salas, Remmer L; Garcia, Jan Kathryne D L; Miranda, Ana Carmela R; Rivera, Windell L; Nellas, Ricky B; Sabido, Portia Mahal G

    2018-06-01

    Anoplin (GLLKRIKTLL-NH 2 ) is of current interest due to its short sequence and specificity towards bacteria. Recent studies on anoplin have shown that truncation and acylation compromises its antimicrobial activity and specificity, respectively. In this study, truncated analogues (pal-ano-9 to pal-ano-5) of palmitoylated anoplin (pal-anoplin) were synthesized to determine the effects of C-truncation on its bioactivities. Moreover, secondary structure of each analogue using circular dichroism (CD) spectroscopy was determined to correlate with bioactivities. Interestingly, pal-anoplin, pal-ano-9 and pal-ano-6 were helical in water, unlike anoplin. In contrast, pal-ano-8, pal-ano-7 and pal-ano-5, with polar amino acid residues at the C-terminus, were random coil in water. Nevertheless, all the peptides folded into helical structures in 30% trifluoroethanol/water (TFE/H 2 O) except for the shortest analogue pal-ano-5. Hydrophobicity played a significant role in the enhancement of activity against bacteria E. coli and S. aureus as all lipopeptides including the random coil pal-ano-5 were more active than the parent anoplin. Meanwhile, the greatest improvement in activity against the fungus C. albicans was observed for pal-anoplin analogues (pal-ano-9 and pal-ano-6) that were helical in water. Although, hydrophobicity is a major factor in the secondary structure and antimicrobial activity, it appears that the nature of amino acids at the C-terminus also influence folding of lipopeptides in water and its antifungal activity. Moreover, the hemolytic activity of the analogues was found to correlate with hydrophobicity, except for the least hemolytic, pal-ano-5. Since most of the analogues are more potent and shorter than anoplin, they are promising drug candidates for further development. Copyright © 2018. Published by Elsevier Inc.

  15. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    International Nuclear Information System (INIS)

    Glenn, Autumn L.; Bulusu, Kartik V.; Shu Fangjun; Plesniak, Michael W.

    2012-01-01

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T ≈ 0.20–0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  16. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Autumn L.; Bulusu, Kartik V. [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States); Shu Fangjun [Department of Mechanical and Aerospace Engineering, New Mexico State University, MSC 3450, P.O. Box 30001, Las Cruces, NM 88003-8001 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States)

    2012-06-15

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T Almost-Equal-To 0.20-0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  17. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    Science.gov (United States)

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  18. Secondary structure classification of amino-acid sequences using state-space modeling

    OpenAIRE

    Brunnert, Marcus; Krahnke, Tillmann; Urfer, Wolfgang

    2001-01-01

    The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial...

  19. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    Science.gov (United States)

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  20. Glassy transition in a disordered model for the RNA secondary structure

    International Nuclear Information System (INIS)

    Pagnani, A.; Parisi, G.; Ricci-Tersenghi, F.

    2000-04-01

    We numerically study a disordered model for the RNA secondary structure and we find that it undergoes a phase transition, with a breaking of the replica symmetry in the low temperature region (like in spin glasses). Our results are based on the exact evaluation of the partition function. (author)

  1. RNAspa: a shortest path approach for comparative prediction of the secondary structure of ncRNA molecules

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2007-10-01

    Full Text Available Abstract Background In recent years, RNA molecules that are not translated into proteins (ncRNAs have drawn a great deal of attention, as they were shown to be involved in many cellular functions. One of the most important computational problems regarding ncRNA is to predict the secondary structure of a molecule from its sequence. In particular, we attempted to predict the secondary structure for a set of unaligned ncRNA molecules that are taken from the same family, and thus presumably have a similar structure. Results We developed the RNAspa program, which comparatively predicts the secondary structure for a set of ncRNA molecules in linear time in the number of molecules. We observed that in a list of several hundred suboptimal minimal free energy (MFE predictions, as provided by the RNAsubopt program of the Vienna package, it is likely that at least one suggested structure would be similar to the true, correct one. The suboptimal solutions of each molecule are represented as a layer of vertices in a graph. The shortest path in this graph is the basis for structural predictions for the molecule. We also show that RNA secondary structures can be compared very rapidly by a simple string Edit-Distance algorithm with a minimal loss of accuracy. We show that this approach allows us to more deeply explore the suboptimal structure space. Conclusion The algorithm was tested on three datasets which include several ncRNA families taken from the Rfam database. These datasets allowed for comparison of the algorithm with other methods. In these tests, RNAspa performed better than four other programs.

  2. Determination of secondary electron yields from low pressure breakdown

    International Nuclear Information System (INIS)

    Maric, D; Zivanov, S.; Strinic, A.; Malovic, G.; Djuric, M.; Petrovic, Z. Lj.

    2000-01-01

    In order to model accurately the secondary yields in gas breakdown and collisional plasmas both the numerous processes discussed in related experiments must be included and also proper determination of γ (E/n) must be provided. In addition to the application of the correct ionization rate it is also essential to include the nonequilibrium region where electrons gain energy and achieve hydrodynamics equilibrium. For lower values of E/n, greater values of γ than those based on the literature data for αn(E/n) have been found, possibly due to existence of the photoelectric effects

  3. Quantitation of base substitutions in eukaryotic 5S rRNA: selection for the maintenance of RNA secondary structure.

    Science.gov (United States)

    Curtiss, W C; Vournakis, J N

    1984-01-01

    Eukaryotic 5S rRNA sequences from 34 diverse species were compared by the following method: (1) The sequences were aligned; (2) the positions of substitutions were located by comparison of all possible pairs of sequences; (3) the substitution sites were mapped to an assumed general base pairing model; and (4) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. An analysis of the sequence and structure variability in each region of the molecule is presented. It was found that the degree of base substitution varies over a wide range, from absolute conservation to occurrence of over 90% of the possible observable substitutions. The substitutions are located primarily in stem regions of the 5S rRNA secondary structure. More than 88% of the substitutions in helical regions maintain base pairing. The disruptive substitutions are primarily located at the edges of helical regions, resulting in shortening of the helical regions and lengthening of the adjacent nonpaired regions. Base stacking patterns determined by the R-Y model are mapped onto the general secondary structure. Intrastrand and interstrand stacking could stabilize alternative coaxial structures and limit the conformational flexibility of nonpaired regions. Two short contiguous regions are 100% conserved in all species. This may reflect evolutionary constraints imposed at the DNA level by the requirement for binding of a 5S gene transcription initiation factor during gene expression.

  4. Exploiting the Past and the Future in Protein Secondary Structure Prediction

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Frasconi, P

    1999-01-01

    predictions based on variable ranges of dependencies. These architectures extend recurrent neural networks, introducing non-causal bidirectional dynamics to capture both upstream and downstream information. The prediction algorithm is completed by the use of mixtures of estimators that leverage evolutionary......Motivation: Predicting the secondary structure of a protein (alpha-helix, beta-sheet, coil) is an important step towards elucidating its three-dimensional structure, as well as its function. Presently, the best predictors are based on machine learning approaches, in particular neural network...

  5. Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Réblová, K.; Štěpánek, Václav

    2015-01-01

    Roč. 35, December 2015 (2015), s. 21-38 ISSN 0031-5850 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : Barbatosphaeria * molecular systematic * ITS secondary structures Subject RIV: EF - Botanics; EE - Microbiology, Virology (MBU-M) Impact factor: 5.725, year: 2015

  6. Determinants of Secondary School Teachers’ Job Satisfaction in Tanzania

    Directory of Open Access Journals (Sweden)

    Gilman Jackson Nyamubi

    2017-01-01

    Full Text Available This study examined teachers’ job satisfaction in Tanzania. It addressed one research question: what factors determine secondary school teachers’ job satisfaction? The study was conducted in eight secondary schools in two regions of Tanzania. It used focus group discussion as the data collection tool. Results show that teachers were satisfied by both monetary and nonmonetary incentives such as community support. They were pleased with fair remuneration packages that related to their labour input, opportunities for career development, a well-defined individual appraisal system, timely promotion, and requisite workplace conditions. The study also showed that teachers’ friendship and cooperation with coworkers and students as well as the respect of community members also enhanced their satisfaction in teaching. Also important to their satisfaction is their students’ success in and after school, which reveals the teachers’ sense of duty and responsibility. Teachers’ job dissatisfaction can lead to their search for other means to gain economically. It is recommended that care should be given to address teachers’ pertinent issues, especially salaries, workplace conditions, and timely promotion, to enhance teachers’ physical and mental attachment to their workplaces.

  7. Study on the Effect of Secondary Banded Structure on the Fatigue Property of Non-Quenched and Tempered Micro Alloyed Steel

    Science.gov (United States)

    Yajie, Cheng; Qingliang, Liao; Yue, Zhang

    Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.

  8. 3x2 Classroom Goal Structures, Motivational Regulations, Self-Concept, and Affectivity in Secondary School.

    Science.gov (United States)

    Méndez-Giménez, Antonio; Cecchini-Estrada, José-Antonio; Fernández-Río, Javier; Prieto Saborit, José Antonio; Méndez-Alonso, David

    2017-09-20

    The main objective was to analyze relationships and predictive patterns between 3x2 classroom goal structures (CGS), and motivational regulations, dimensions of self-concept, and affectivity in the context of secondary education. A sample of 1,347 secondary school students (56.6% young men, 43.4% young women) from 10 different provinces of Spain agreed to participate (M age = 13.43, SD = 1.05). Hierarchical regression analyses indicated the self-approach CGS was the most adaptive within the spectrum of self-determination, followed by the task-approach CGS. The other-approach CGS had an ambivalent influence on motivation. Task-approach and self-approach CGS predicted academic self-concept (p approach CGS (negatively) predicted family self-concept (p approach and other-approach CGS's (p approach-oriented CGS's (p approach (positively) and self-approach (negatively) CGS (p < .001; p < .05, respectively; R 2 = .028). These results expand the 3x2 achievement goal framework to include environmental factors, and reiterate that teachers should focus on raising levels of self- and task-based goals for students in their classes.

  9. Application of Monte Carlo method in determination of secondary characteristic X radiation in XFA

    International Nuclear Information System (INIS)

    Roubicek, P.

    1982-01-01

    Secondary characteristic radiation is excited by primary radiation from the X-ray tube and by secondary radiation of other elements so that excitations of several orders result. The Monte Carlo method was used to consider all these possibilities and the resulting flux of characteristic radiation was simulated for samples of silicate raw materials. A comparison of the results of these computations with experiments allows to determine the effect of sample preparation on the characteristic radiation flux. (M.D.)

  10. STUDYING THE SECONDARY STRUCTURE OF ACCESSION NUMBER USING CETD MATRIX

    Directory of Open Access Journals (Sweden)

    Anamika Dutta

    2016-10-01

    Full Text Available This paper, we have tried to analyze about the Secondary Structure of nucleotide sequences of rice. The data have been collected from NCBI (National Centre for Biotechnology Information using Nucleotide as data base. All the programs were developed using R programming language using “sequinr” package. Here, we have used CETD matrix method to study the prediction. The conclusions are drawn accordingly.

  11. Determination of scattering structures from spatial coherence measurements.

    Science.gov (United States)

    Zarubin, A M

    1996-03-01

    A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.

  12. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  13. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy.

    Science.gov (United States)

    He, Zhipeng; Liu, Zhao; Zhou, Xiaofeng; Huang, He

    2018-06-01

    The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time-resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β-sheet structure. Under constant pressure there is an optimum amount of D 2 O in the wet film (D 2 O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β-sheet structure. Under constant amount of D 2 O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α-helix, and β-turn were quickly transformed into β-sheet. In the second stage, random coil and β-turn were relatively slowly transformed into β-sheet and α-helix, and the content of α-helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure. © 2018 Wiley Periodicals, Inc.

  14. Single-fluorophore monitoring of DNA hybridization for investigating the effect of secondary structure on the nucleation step.

    Science.gov (United States)

    Jo, Joon-Jung; Kim, Min-Ji; Son, Jung-Tae; Kim, Jandi; Shin, Jong-Shik

    2009-07-17

    Nucleic acid hybridization is one of the essential biological processes involved in storage and transmission of genetic information. Here we quantitatively determined the effect of secondary structure on the hybridization activation energy using structurally defined oligonucleotides. It turned out that activation energy is linearly proportional to the length of a single-stranded region flanking a nucleation site, generating a 0.18 kcal/mol energy barrier per nucleotide. Based on this result, we propose that the presence of single-stranded segments available for non-productive base pairing with a nucleation counterpart extends the searching process for nucleation sites to find a perfect match. This result may provide insights into rational selection of a target mRNA site for siRNA and antisense gene silencing.

  15. Secondary Structure Preferences of Mn2+ Binding Sites in Bacterial Proteins

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Khrustaleva

    2014-01-01

    Full Text Available 3D structures of proteins with coordinated Mn2+ ions from bacteria with low, average, and high genomic GC-content have been analyzed (149 PDB files were used. Major Mn2+ binders are aspartic acid (6.82% of Asp residues, histidine (14.76% of His residues, and glutamic acid (3.51% of Glu residues. We found out that the motif of secondary structure “beta strand-major binder-random coil” is overrepresented around all the three major Mn2+ binders. That motif may be followed by either alpha helix or beta strand. Beta strands near Mn2+ binding residues should be stable because they are enriched by such beta formers as valine and isoleucine, as well as by specific combinations of hydrophobic and hydrophilic amino acid residues characteristic to beta sheet. In the group of proteins from GC-rich bacteria glutamic acid residues situated in alpha helices frequently coordinate Mn2+ ions, probably, because of the decrease of Lys usage under the influence of mutational GC-pressure. On the other hand, the percentage of Mn2+ sites with at least one amino acid in the “beta strand-major binder-random coil” motif of secondary structure (77.88% does not depend on genomic GC-content.

  16. SFESA: a web server for pairwise alignment refinement by secondary structure shifts.

    Science.gov (United States)

    Tong, Jing; Pei, Jimin; Grishin, Nick V

    2015-09-03

    Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.

  17. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  18. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of

  19. Applied Gamification: Reframing Evaluation in Post-Secondary Classrooms

    Science.gov (United States)

    Kulpa, Anastasia

    2017-01-01

    This piece reports on an early attempt at gamification (reframing post-secondary classrooms drawing on the structure of games). The attempt began in the 2011-2012 academic year and is structured to allow students substantial autonomy in determining which assignments, and how many of them, to complete over the course of the semester. Initial…

  20. RNA secondary structures of the bacteriophage phi6 packaging regions.

    Science.gov (United States)

    Pirttimaa, M J; Bamford, D H

    2000-06-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.

  1. Viral IRES prediction system - a web server for prediction of the IRES secondary structure in silico.

    Directory of Open Access Journals (Sweden)

    Jun-Jie Hong

    Full Text Available The internal ribosomal entry site (IRES functions as cap-independent translation initiation sites in eukaryotic cells. IRES elements have been applied as useful tools for bi-cistronic expression vectors. Current RNA structure prediction programs are unable to predict precisely the potential IRES element. We have designed a viral IRES prediction system (VIPS to perform the IRES secondary structure prediction. In order to obtain better results for the IRES prediction, the VIPS can evaluate and predict for all four different groups of IRESs with a higher accuracy. RNA secondary structure prediction, comparison, and pseudoknot prediction programs were implemented to form the three-stage procedure for the VIPS. The backbone of VIPS includes: the RNAL fold program, aimed to predict local RNA secondary structures by minimum free energy method; the RNA Align program, intended to compare predicted structures; and pknotsRG program, used to calculate the pseudoknot structure. VIPS was evaluated by using UTR database, IRES database and Virus database, and the accuracy rate of VIPS was assessed as 98.53%, 90.80%, 82.36% and 80.41% for IRES groups 1, 2, 3, and 4, respectively. This advance useful search approach for IRES structures will facilitate IRES related studies. The VIPS on-line website service is available at http://140.135.61.250/vips/.

  2. Imaging the 3D structure of secondary osteons in human cortical bone using phase-retrieval tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arhatari, B D; Peele, A G [Department of Physics, La Trobe University, Victoria 3086 (Australia); Cooper, D M L [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon (Canada); Thomas, C D L; Clement, J G [Melbourne Dental School, University of Melbourne, Victoria 3010 (Australia)

    2011-08-21

    By applying a phase-retrieval step before carrying out standard filtered back-projection reconstructions in tomographic imaging, we were able to resolve structures with small differences in density within a densely absorbing sample. This phase-retrieval tomography is particularly suited for the three-dimensional segmentation of secondary osteons (roughly cylindrical structures) which are superimposed upon an existing cortical bone structure through the process of turnover known as remodelling. The resulting images make possible the analysis of the secondary osteon structure and the relationship between an osteon and the surrounding tissue. Our observations have revealed many different and complex 3D structures of osteons that could not be studied using previous methods. This work was carried out using a laboratory-based x-ray source, which makes obtaining these sorts of images readily accessible.

  3. Examining the dimensional structure models of secondary traumatic stress based on DSM-5 symptoms.

    Science.gov (United States)

    Mordeno, Imelu G; Go, Geraldine P; Yangson-Serondo, April

    2017-02-01

    Latent factor structure of Secondary Traumatic Stress (STS) has been examined using Diagnostic Statistic Manual-IV (DSM-IV)'s Posttraumatic Stress Disorder (PTSD) nomenclature. With the advent of Diagnostic Statistic Manual-5 (DSM-5), there is an impending need to reexamine STS using DSM-5 symptoms in light of the most updated PTSD models in the literature. The study investigated and determined the best fitted PTSD models using DSM-5 PTSD criteria symptoms. Confirmatory factor analysis (CFA) was conducted to examine model fit using the Secondary Traumatic Stress Scale in 241 registered and practicing Filipino nurses (166 females and 75 males) who worked in the Philippines and gave direct nursing services to patients. Based on multiple fit indices, the results showed the 7-factor hybrid model, comprising of intrusion, avoidance, negative affect, anhedonia, externalizing behavior, anxious arousal, and dysphoric arousal factors has excellent fit to STS. This model asserts that: (1) hyperarousal criterion needs to be divided into anxious and dysphoric arousal factors; (2) symptoms characterizing negative and positive affect need to be separated to two separate factors, and; (3) a new factor would categorize externalized, self-initiated impulse and control-deficit behaviors. Comparison of nested and non-nested models showed Hybrid model to have superior fit over other models. The specificity of the symptom structure of STS based on DSM-5 PTSD criteria suggests having more specific interventions addressing the more elaborate symptom-groupings that would alleviate the condition of nurses exposed to STS on a daily basis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Strategies for measuring evolutionary conservation of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Hofacker Ivo L

    2008-02-01

    Full Text Available Abstract Background Evolutionary conservation of RNA secondary structure is a typical feature of many functional non-coding RNAs. Since almost all of the available methods used for prediction and annotation of non-coding RNA genes rely on this evolutionary signature, accurate measures for structural conservation are essential. Results We systematically assessed the ability of various measures to detect conserved RNA structures in multiple sequence alignments. We tested three existing and eight novel strategies that are based on metrics of folding energies, metrics of single optimal structure predictions, and metrics of structure ensembles. We find that the folding energy based SCI score used in the RNAz program and a simple base-pair distance metric are by far the most accurate. The use of more complex metrics like for example tree editing does not improve performance. A variant of the SCI performed particularly well on highly conserved alignments and is thus a viable alternative when only little evolutionary information is available. Surprisingly, ensemble based methods that, in principle, could benefit from the additional information contained in sub-optimal structures, perform particularly poorly. As a general trend, we observed that methods that include a consensus structure prediction outperformed equivalent methods that only consider pairwise comparisons. Conclusion Structural conservation can be measured accurately with relatively simple and intuitive metrics. They have the potential to form the basis of future RNA gene finders, that face new challenges like finding lineage specific structures or detecting mis-aligned sequences.

  5. Secondary flow vortical structures in a 180∘ elastic curved vessel with torsion under steady and pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2018-01-01

    Secondary flow structures in a 180∘ curved pipe model of an artery are studied using particle image velocimetry. Both steady and pulsatile inflow conditions are investigated. In planar curved pipes with steady flow, multiple (two, four, six) vortices are detected. For pulsatile flow, various pairs of vortices, i.e., Dean, deformed-Dean, Lyne-type, and split-Dean, are present in the cross section of the pipe at 90∘ into the bend. The effects of nonplanar curvature (torsion) and vessel dilatation on these vortical structures are studied. Torsion distorts the symmetric secondary flows (which exist in planar curvatures) and can result in formation of more complex vortical structures. For example, the split-Dean and Lyne-type vortices with same rotation direction originating from opposite sides of the cross section tend to merge together in pulsatile flow. The vortical structures in elastic vessels with dilatation (0.61%-3.23%) are also investigated and the results are compared with rigid model results. It was found that the secondary flow structures in rigid and elastic models are similar, and hence the local compliance of the vessel does not affect the morphology of secondary flow structures.

  6. Secondary structure and phylogeny of Staphylococcus and Micrococcus 5S rRNAs.

    Science.gov (United States)

    Dekio, S; Yamasaki, R; Jidoi, J; Hori, H; Osawa, S

    1984-01-01

    Nucleotide sequences of 5S rRNAs from four bacteria, Staphylococcus aureus Smith (diffuse), Staphylococcus epidermidis ATCC 14990, Micrococcus luteus ATCC 9341 and Micrococcus luteus ATCC 4698, were determined. The secondary structural models of S. aureus and S. epidermidis sequences showed characteristics of the gram-positive bacterial 5S rRNA (116-N type [H. Hori and S. Osawa, Proc. Natl. Acad. Sci. U.S.A. 76:381-385, 1979]). Those of M. luteus ATCC 9341 and M. luteus ATCC 4698 together with that of Streptomyces griseus (A. Simoncsits, Nucleic Acids Res. 8:4111-4124, 1980) showed intermediary characteristics between the gram-positive and gram-negative (120-N type [H. Hori and S. Osawa, 1979]) 5S rRNAs. This and previous studies revealed that there exist at least three major groups of eubacteria having distinct 5S rRNA and belonging to different stems in the 5S rRNA phylogenic tree. PMID:6735981

  7. CMD: A Database to Store the Bonding States of Cysteine Motifs with Secondary Structures

    Directory of Open Access Journals (Sweden)

    Hamed Bostan

    2012-01-01

    Full Text Available Computational approaches to the disulphide bonding state and its connectivity pattern prediction are based on various descriptors. One descriptor is the amino acid sequence motifs flanking the cysteine residue motifs. Despite the existence of disulphide bonding information in many databases and applications, there is no complete reference and motif query available at the moment. Cysteine motif database (CMD is the first online resource that stores all cysteine residues, their flanking motifs with their secondary structure, and propensity values assignment derived from the laboratory data. We extracted more than 3 million cysteine motifs from PDB and UniProt data, annotated with secondary structure assignment, propensity value assignment, and frequency of occurrence and coefficiency of their bonding status. Removal of redundancies generated 15875 unique flanking motifs that are always bonded and 41577 unique patterns that are always nonbonded. Queries are based on the protein ID, FASTA sequence, sequence motif, and secondary structure individually or in batch format using the provided APIs that allow remote users to query our database via third party software and/or high throughput screening/querying. The CMD offers extensive information about the bonded, free cysteine residues, and their motifs that allows in-depth characterization of the sequence motif composition.

  8. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  9. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  10. Algorithm for selection of optimized EPR distance restraints for de novo protein structure determination

    Science.gov (United States)

    Kazmier, Kelli; Alexander, Nathan S.; Meiler, Jens; Mchaourab, Hassane S.

    2010-01-01

    A hybrid protein structure determination approach combining sparse Electron Paramagnetic Resonance (EPR) distance restraints and Rosetta de novo protein folding has been previously demonstrated to yield high quality models (Alexander et al., 2008). However, widespread application of this methodology to proteins of unknown structures is hindered by the lack of a general strategy to place spin label pairs in the primary sequence. In this work, we report the development of an algorithm that optimally selects spin labeling positions for the purpose of distance measurements by EPR. For the α-helical subdomain of T4 lysozyme (T4L), simulated restraints that maximize sequence separation between the two spin labels while simultaneously ensuring pairwise connectivity of secondary structure elements yielded vastly improved models by Rosetta folding. 50% of all these models have the correct fold compared to only 21% and 8% correctly folded models when randomly placed restraints or no restraints are used, respectively. Moreover, the improvements in model quality require a limited number of optimized restraints, the number of which is determined by the pairwise connectivities of T4L α-helices. The predicted improvement in Rosetta model quality was verified by experimental determination of distances between spin labels pairs selected by the algorithm. Overall, our results reinforce the rationale for the combined use of sparse EPR distance restraints and de novo folding. By alleviating the experimental bottleneck associated with restraint selection, this algorithm sets the stage for extending computational structure determination to larger, traditionally elusive protein topologies of critical structural and biochemical importance. PMID:21074624

  11. Determination of B and Li in nuclear materials by secondary-ion mass spectrometry

    International Nuclear Information System (INIS)

    Eby, R.E.; Christie, W.H.

    1981-01-01

    Secondary ion mass spectrometry (SIMS) was used to perform mass and isotopic analysis for B and Li in samples that are not readily amenable to more conventional mass spectrometric techniques (e.g., surface ionization, electron impact, etc.). In this paper three specific applications of SIMS analysis to nuclear materials are discussed: first, the quantitative determination of B and its isotopic composition in borosilicate glasses; second, the determination of the isotopic composition of B and Li in irradiated nuclear-grade aluminum oxide/boron carbide composite pellets, and, lastly, the quantitative and isotopic determination of B and Li in highly radioactive solutions of unknown composition

  12. Predicting protein folding pathways at the mesoscopic level based on native interactions between secondary structure elements

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2008-07-01

    Full Text Available Abstract Background Since experimental determination of protein folding pathways remains difficult, computational techniques are often used to simulate protein folding. Most current techniques to predict protein folding pathways are computationally intensive and are suitable only for small proteins. Results By assuming that the native structure of a protein is known and representing each intermediate conformation as a collection of fully folded structures in which each of them contains a set of interacting secondary structure elements, we show that it is possible to significantly reduce the conformation space while still being able to predict the most energetically favorable folding pathway of large proteins with hundreds of residues at the mesoscopic level, including the pig muscle phosphoglycerate kinase with 416 residues. The model is detailed enough to distinguish between different folding pathways of structurally very similar proteins, including the streptococcal protein G and the peptostreptococcal protein L. The model is also able to recognize the differences between the folding pathways of protein G and its two structurally similar variants NuG1 and NuG2, which are even harder to distinguish. We show that this strategy can produce accurate predictions on many other proteins with experimentally determined intermediate folding states. Conclusion Our technique is efficient enough to predict folding pathways for both large and small proteins at the mesoscopic level. Such a strategy is often the only feasible choice for large proteins. A software program implementing this strategy (SSFold is available at http://faculty.cs.tamu.edu/shsze/ssfold.

  13. Secondary structural entropy in RNA switch (Riboswitch) identification.

    Science.gov (United States)

    Manzourolajdad, Amirhossein; Arnold, Jonathan

    2015-04-28

    RNA regulatory elements play a significant role in gene regulation. Riboswitches, a widespread group of regulatory RNAs, are vital components of many bacterial genomes. These regulatory elements generally function by forming a ligand-induced alternative fold that controls access to ribosome binding sites or other regulatory sites in RNA. Riboswitch-mediated mechanisms are ubiquitous across bacterial genomes. A typical class of riboswitch has its own unique structural and biological complexity, making de novo riboswitch identification a formidable task. Traditionally, riboswitches have been identified through comparative genomics based on sequence and structural homology. The limitations of structural-homology-based approaches, coupled with the assumption that there is a great diversity of undiscovered riboswitches, suggests the need for alternative methods for riboswitch identification, possibly based on features intrinsic to their structure. As of yet, no such reliable method has been proposed. We used structural entropy of riboswitch sequences as a measure of their secondary structural dynamics. Entropy values of a diverse set of riboswitches were compared to that of their mutants, their dinucleotide shuffles, and their reverse complement sequences under different stochastic context-free grammar folding models. Significance of our results was evaluated by comparison to other approaches, such as the base-pairing entropy and energy landscapes dynamics. Classifiers based on structural entropy optimized via sequence and structural features were devised as riboswitch identifiers and tested on Bacillus subtilis, Escherichia coli, and Synechococcus elongatus as an exploration of structural entropy based approaches. The unusually long untranslated region of the cotH in Bacillus subtilis, as well as upstream regions of certain genes, such as the sucC genes were associated with significant structural entropy values in genome-wide examinations. Various tests show that there

  14. On infrared spectroscopic analysis of transfer RNA secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, M A; Starikov, E B

    1987-07-14

    Various techniques of IR spectroscopy in the 1550-1750 cm/sup -1/ region employed to analyse the tRNA secondary structure are discussed and a novel improved method is proposed. The main novel features of this method are the approximation of tRNA helical region spectra by catalogue carbonyl absorption bands and approximation of tRNA nonhelical region spectra by those of homopolyribonucleotides. The IR spectra of tRNA/sub yeast//sup phe/ and tRNA/sub E.coli//sup fmet/ in the carbonyl vibration region are explained on the basis of calculated transition moment coupling.

  15. Variability in secondary structure of 18S ribosomal RNA as topological marker for identification of Paramecium species.

    Science.gov (United States)

    Shakoori, Farah R; Tasneem, Fareeda; Al-Ghanim, K; Mahboob, S; Al-Misned, F; Jahan, Nusrat; Shakoori, Abdul Rauf

    2014-12-01

    Besides cytological and molecular applications, Paramecium is being used in water quality assessment and for determination of saprobic levels. An unambiguous identification of these unicellular eukaryotes is not only essential, but its ecological diversity must also be explored in the local environment. 18SrRNA genes of all the strains of Paramecium species isolated from waste water were amplified, cloned and sequenced. Phylogenetic comparison of the nucleotide sequences of these strains with 23 closely related Paramecium species from GenBank Database enabled identification of Paramecium multimicronucleatum and Paramecium jenningsi. Some isolates did not show significant close association with other Paramecium species, and because of their unique position in the phylogenetic tree, they were considered new to the field. In the present report, these isolates are being designated as Paramecium caudatum pakistanicus. In this article, secondary structure of 18SrRNA has also been analyzed as an additional and perhaps more reliable topological marker for species discrimination and for determining possible phylogenetic relationship between the ciliate species. On the basis of comparison of secondary structure of 18SrRNA of various isolated Paramacium strains, and among Paramecium caudatum pakistanicus, Tetrahymena thermophila, Drosophila melanogaster, and Homo sapiens, it can be deduced that variable regions are more helpful in differentiating the species at interspecific level rather than at intraspecific level. It was concluded that V3 was the least variable region in all the organisms, V2 and V7 were the longest expansion segments of D. melanogaster and there was continuous mutational bias towards G.C base pairing in H. sapiens. © 2014 Wiley Periodicals, Inc.

  16. RNA secondary structures of the bacteriophage phi6 packaging regions.

    OpenAIRE

    Pirttimaa, M J; Bamford, D H

    2000-01-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models ...

  17. CentroidFold: a web server for RNA secondary structure prediction

    OpenAIRE

    Sato, Kengo; Hamada, Michiaki; Asai, Kiyoshi; Mituyama, Toutai

    2009-01-01

    The CentroidFold web server (http://www.ncrna.org/centroidfold/) is a web application for RNA secondary structure prediction powered by one of the most accurate prediction engine. The server accepts two kinds of sequence data: a single RNA sequence and a multiple alignment of RNA sequences. It responses with a prediction result shown as a popular base-pair notation and a graph representation. PDF version of the graph representation is also available. For a multiple alignment sequence, the ser...

  18. Interfacial ordering of thermotropic liquid crystals triggered by the secondary structures of oligopeptides.

    Science.gov (United States)

    Wang, Xiaoguang; Yang, Pei; Mondiot, Frederic; Li, Yaoxin; Miller, Daniel S; Chen, Zhan; Abbott, Nicholas L

    2015-12-07

    We report that assemblies formed by eight oligopeptides at phospholipid-decorated interfaces of thermotropic liquid crystals (LCs) trigger changes in ordering of the LCs that are dependent on the secondary structures of the oligopeptides (as characterized in situ using infrared-visible sum-frequency spectroscopy).

  19. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  20. A 'periodic table' for protein structures.

    Science.gov (United States)

    Taylor, William R

    2002-04-11

    Current structural genomics programs aim systematically to determine the structures of all proteins coded in both human and other genomes, providing a complete picture of the number and variety of protein structures that exist. In the past, estimates have been made on the basis of the incomplete sample of structures currently known. These estimates have varied greatly (between 1,000 and 10,000; see for example refs 1 and 2), partly because of limited sample size but also owing to the difficulties of distinguishing one structure from another. This distinction is usually topological, based on the fold of the protein; however, in strict topological terms (neglecting to consider intra-chain cross-links), protein chains are open strings and hence are all identical. To avoid this trivial result, topologies are determined by considering secondary links in the form of intra-chain hydrogen bonds (secondary structure) and tertiary links formed by the packing of secondary structures. However, small additions to or loss of structure can make large changes to these perceived topologies and such subjective solutions are neither robust nor amenable to automation. Here I formalize both secondary and tertiary links to allow the rigorous and automatic definition of protein topology.

  1. Applications of Qualitative Microanalysis to the Determination of Secondary Species Associated with Uranium

    International Nuclear Information System (INIS)

    Agrinier, H.

    1959-02-01

    Microanalytical techniques are described which allow rapid determinations of secondary species associated with uranium. They consist in exposing the constituent elements of the ores by means of characteristic microchemical reactions. Because of their rapidity and the small amount of apparatus needed, these techniques can be used either in the field or in the laboratory. (author) [fr

  2. Influence of Secondary Cooling Mode on Solidification Structure and Macro-segregation Behavior for High-carbon Continuous Casting Bloom

    Science.gov (United States)

    Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao

    2017-07-01

    A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.

  3. AFM observation of silk fibroin on mica substrates: morphologies reflecting the secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Kazushi; Tsuboi, Yasuyuki; Itaya, Akira

    2003-09-01

    Bombyx mori silk fibroin was fixed on mica substrates by cast of aqueous fibroin solutions, and the microscopic morphologies of the samples were revealed by means of atomic force microscopy. By adjusting the method used to prepare the solution, we succeeded in forming quasi-2-dimensional thin films in which a network of fibroin molecules developed over the substrate. The film network consisted of fibroin in a random coil structure. The morphology of the network changed after thermal or methanol treatments, which are known to convert the secondary structure of fibroin from the random coil to the {beta}-sheet type. In both of these cases, the network morphology disappeared and characteristic island-like morphologies appeared. On the other hand, temporally evolving gelation occurred in a fibroin solution due to the formation of {beta}-sheet crystals. Such islands were also observable in a specimen prepared by the cast of the gel-containing solution. Based on these results, it was concluded that the islands consist of {beta}-sheet crystals. Of particular interest is the observation that all of the islands had a common thickness value of 1.3 nm. These morphologies are discussed in terms of the secondary structure of fibroin.

  4. Secondary structure of bovine albumin as studied by polarization-sensitive multiplex CARS spectroscopy

    NARCIS (Netherlands)

    Voroshilov, A.; Voroshilov, Artemy; Otto, Cornelis; Greve, Jan

    1996-01-01

    The first application of polarization-sensitive multiplex coherent anti-Stokes Raman spectroscopy (MCARS) in the absence of resonance enhancement to the resolution of the secondary structure of a protein in solution is reported. Polarization MCARS spectra of bovine albumin in D2O were obtained in

  5. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    Science.gov (United States)

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    Science.gov (United States)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  7. Structure of catalase determined by MicroED

    Science.gov (United States)

    Nannenga, Brent L; Shi, Dan; Hattne, Johan; Reyes, Francis E; Gonen, Tamir

    2014-01-01

    MicroED is a recently developed method that uses electron diffraction for structure determination from very small three-dimensional crystals of biological material. Previously we used a series of still diffraction patterns to determine the structure of lysozyme at 2.9 Å resolution with MicroED (Shi et al., 2013). Here we present the structure of bovine liver catalase determined from a single crystal at 3.2 Å resolution by MicroED. The data were collected by continuous rotation of the sample under constant exposure and were processed and refined using standard programs for X-ray crystallography. The ability of MicroED to determine the structure of bovine liver catalase, a protein that has long resisted atomic analysis by traditional electron crystallography, demonstrates the potential of this method for structure determination. DOI: http://dx.doi.org/10.7554/eLife.03600.001 PMID:25303172

  8. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    Science.gov (United States)

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  9. Improving the submicro determination of vanadium in natural water using primary-secondary wavelength spectrophotometry

    International Nuclear Information System (INIS)

    Khongven Gao

    1999-01-01

    In acidic solution and in the presence of ammonium persulfate, the conventional reaction of vanadium(5) with gallic acid to form an orange complex has been used for the improvement of the determination of trace amounts of vanadium in water by the updated method named primary-secondary wavelength spectrophotometry. The results show that the analytical precision and accuracy were improved and gave higher determination sensitivity than ordinary spectrophotometry. The relative standard deviations were less than 5.6 % [ru

  10. Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis

    Science.gov (United States)

    Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata

    2018-04-01

    Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.

  11. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    Energy Technology Data Exchange (ETDEWEB)

    Gribok, Andrei V.; Agarwal, Vivek

    2017-06-01

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at

  12. A contribution to understanding the structure of amphivasal secondary bundles in monocotyledons

    Directory of Open Access Journals (Sweden)

    Joanna Jura-Morawiec

    2014-04-01

    Full Text Available Secondary growth of monocotyledonous plants is connected with the activity of the monocot cambium that accumulates most of the derivatives inner to the cambial cylinder. These derivatives differentiate into (a secondary bundles with the amphivasal arrangement, i.e. xylem composed of tracheids surrounds the phloem cells and (b the parenchymatous secondary conjunctive tissue in which the bundles are embedded. The amphivasal secondary bundles differ in the arrangement of xylem cells as visible on single cross sections through the secondary body of the monocots. Apart from the bundles with typical ring of tracheids also the bundles where tracheids do not quite surround the phloem are present. We aimed to elucidate the cross sectional anatomy of the amphivasal secondary bundles with the use of the serial sectioning method which allowed us to follow very precisely the bundle structure along its length. The studies were carried out with the samples of secondary tissues collected from the stem of Dracaena draco L. growing in the greenhouses of the Polish Academy of Sciences Botanical Garden – CBDC in Powsin and the Adam Mickiewicz University Botanical Garden. The material was fixed in a mixture of glycerol and ethanol (1:1; v/v, dehydrated stepwise with graded ethanol series and finally embedded in epon resin. Afterwards, the material was sectioned with microtome into continuous series of thin (3 μm sections, stained with PAS/toluidine blue and examined under the light microscope. The results, described in details in Jura‑Morawiec & Wiland-Szymańska (2014, revealed novel facts about tracheids arrangement. Each amphivasal bundle is composed of sectors where tracheids form a ring as well as of such where tracheids are separated by vascular parenchyma cells. We hypothesize that strands of vascular parenchyma cells locally separating the tracheids enable radial transport of assimilates from sieve elements of the bundle towards the sink tissues, e

  13. Considerations on scattering and leak radiation for effective determination of secondary shielding in X-rays rooms of megavoltage

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    This paper addresses the development of a algorithm capable of analyzing the thickness of the secondary shielding due to the production of secondary beams. The production of this beam requires consideration of scattering angle, as well as factors normally used for screening of medical facilities using radiographic techniques. Besides the beam emanated from scattering radiation, is is necessary to evaluate the contribution of leakage radiation, originating from equipment used for the production of the primary beam. A view of the mutual contribution of these radiation to the formation of the secondary beam has shown the need of using shieldings in adjacent walls of the room. The code was validated by comparison with an example case provided by NCRP-151 Report. In this report calculations for determining the secondary barrier for small angles are presented, that deserves greater attention for shielding and statements related to radiotherapy procedures of Modulated intensity. The results are consistent with those provided in the report, which makes the code can be used as a practical tool for the determination of effective shielding beams of megavoltage X-rays

  14. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation.

    Science.gov (United States)

    Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin

    2017-01-21

    RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA

  15. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking.

    Directory of Open Access Journals (Sweden)

    Lei Hua

    Full Text Available RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.

  16. Determination and removal of antibiotics in secondary effluent using a horizontal subsurface flow constructed wetland.

    Science.gov (United States)

    Zhang, Chunhui; Ning, Ke; Zhang, Wenwen; Guo, Yuanjie; Chen, Jun; Liang, Chen

    2013-04-01

    Increased attention is currently being directed towards the potential negative effects of antibiotics and other PPCPs discharged into the aquatic environment via municipal WWTP secondary effluents. A number of analytical methods, such as high performance liquid chromatography technologies, including a high performance liquid chromatography-fluorescence method (HPLC-FLD), high performance liquid chromatography-UV detection method (HPLC-UV) and high performance liquid chromatography-mass spectrometry method (HPLC-MS), have been suggested as determination technologies for antibiotic residues in water. In this study, we implement a HPLC-MS/MS combined method to detect and analyze antibiotics in WWTP secondary effluent and apply a horizontal subsurface flow constructed wetland (CW) as an advanced wastewater treatment for removing antibiotics in the WWTP secondary effluent. The results show that there were 2 macrolides, 2 quinolones and 5 sulfas in WWTP secondary effluent among all the 22 antibiotics considered. After the CW advanced treatment, the concentration removal efficiencies and removal loads of 9 antibiotics were 53-100% and 0.004-0.7307 μg m(-2) per day, respectively.

  17. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    Science.gov (United States)

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction

  18. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments

    Directory of Open Access Journals (Sweden)

    Kurgan Lukasz

    2008-10-01

    Full Text Available Abstract Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM values serve as an input to the support vector machine (SVM predictor. Results We show that (1 all four predicted secondary structures are useful; (2 the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3 the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an

  19. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding

    Directory of Open Access Journals (Sweden)

    Adami Christoph

    2003-02-01

    Full Text Available Background The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect has been observed. Results We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Conclusions Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  20. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding.

    Science.gov (United States)

    Wilke, Claus O; Lenski, Richard E; Adami, Christoph

    2003-02-05

    The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect) has been observed. We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  1. Determinants of Adolescents' Career Development Competencies in Junior Secondary Schools of South Korea

    Science.gov (United States)

    Park, Joo-Ho; Rojewski, Jay W.; Lee, In Heok

    2018-01-01

    More attention is needed on the career development of adolescents, specifically disadvantaged students deemed at risk of school failure. We investigated the determinants on career development competencies of 9th graders in secondary school in South Korea. The data in this study included 394 principals, 6635 students, and the students' parents. Our…

  2. Computational RNA secondary structure design: empirical complexity and improved methods

    Directory of Open Access Journals (Sweden)

    Condon Anne

    2007-01-01

    Full Text Available Abstract Background We investigate the empirical complexity of the RNA secondary structure design problem, that is, the scaling of the typical difficulty of the design task for various classes of RNA structures as the size of the target structure is increased. The purpose of this work is to understand better the factors that make RNA structures hard to design for existing, high-performance algorithms. Such understanding provides the basis for improving the performance of one of the best algorithms for this problem, RNA-SSD, and for characterising its limitations. Results To gain insights into the practical complexity of the problem, we present a scaling analysis on random and biologically motivated structures using an improved version of the RNA-SSD algorithm, and also the RNAinverse algorithm from the Vienna package. Since primary structure constraints are relevant for designing RNA structures, we also investigate the correlation between the number and the location of the primary structure constraints when designing structures and the performance of the RNA-SSD algorithm. The scaling analysis on random and biologically motivated structures supports the hypothesis that the running time of both algorithms scales polynomially with the size of the structure. We also found that the algorithms are in general faster when constraints are placed only on paired bases in the structure. Furthermore, we prove that, according to the standard thermodynamic model, for some structures that the RNA-SSD algorithm was unable to design, there exists no sequence whose minimum free energy structure is the target structure. Conclusion Our analysis helps to better understand the strengths and limitations of both the RNA-SSD and RNAinverse algorithms, and suggests ways in which the performance of these algorithms can be further improved.

  3. Structure of the spin polarization spectrum of secondary electrons emitted from nickel

    International Nuclear Information System (INIS)

    Helman, J.S.

    1985-01-01

    The main features of the structure observed in the energy resolved spin polarization of secondary electrons emitted from Ni are interpreted in terms of surface and bulk plasmon assisted emission. The model also predicts a measureable shift of the main polarization peak of about 0.3 eV to lower energies as the temperature is raised from room temperature to closely below the Curie temperature. (Author) [pt

  4. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    International Nuclear Information System (INIS)

    Peng, Sydney; Lin, Ji-Yu; Cheng, Ming-Huei; Wu, Chih-Wei; Chu, I-Ming

    2016-01-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  5. A cell-compatible PEO–PPO–PEO (Pluronic®)-based hydrogel stabilized through secondary structures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sydney; Lin, Ji-Yu [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Ming-Huei [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Wu, Chih-Wei, E-mail: drwu.jerry@gmail.com [Division of Microsurgery Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan (China); Chu, I-Ming, E-mail: chuiming456@gmail.com [Deparment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-12-01

    Pluronic F-127 (PF127) is a thermosensitive polymer that has been widely recognized as a potential candidate for various bio-applications. However, in hydrogel form, its rapid disintegration and inhospitality toward cells have significantly limited its usage. As a means to increase the integrity and cell compatibility of a PF127 hydrogel, we propose the introduction of stabilizing secondary structures to the gel network by the addition of secondary structure-forming oligo-alanine and oligo-phenylalanine. Results indicate that increasing the oligo(peptides) attached to PF127 led to a significant decrease in the gelation concentration and temperature. A selected oligo(peptide)-modified PF127 was capable of forming a stable hydrogel network at 5% and suffered only 20% weight loss after 7 days of incubation in media. Scanning electron microscopy (SEM) revealed comparably more interconnected morphology in modified hydrogels which may be attributed to the presence of secondary structures, as verified by circular dichroism (CD) and Fourier-transformed infrared (FT-IR) spectroscopy. Nuclear magnetic resonance (NMR) provided insights into the extensive interactions at the micelle core, which is the key to altered gelation behavior. Furthermore, modified hydrogels maintained structural integrity within culturing media and supported the proliferation of encapsulated chondrocytes. In addition, in vivo residence time was extended to well beyond 2 weeks after oligo(peptide) modification, thereby broadening the application scope of the PF127 hydrogel to encompass long-term drug delivery and cell culturing. - Highlights: • Modification of Pluronic-F127 with oligo(peptides) decreased gelation concentration and prolonged residence time in vitro and in vivo. • Oligo(peptide)-modified Pluronic-F127 exhibited critical gelation concentration as low as 5%. • Cells encapsulated within 5% oligo(peptide)-modified hydrogel proliferated within a period of 7 days. • Oligo

  6. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  7. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr [Department of Life Sciences, University of Ulsan, Ulsan (Korea, Republic of); Bohr, Vilhelm A. [Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, Baltimore, MD (United States)

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.

  8. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.

    2013-01-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231

  9. CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction.

    Science.gov (United States)

    Puton, Tomasz; Kozlowski, Lukasz P; Rother, Kristian M; Bujnicki, Janusz M

    2013-04-01

    We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks.

  10. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging.

    Science.gov (United States)

    Pijlman, Gorben P; Kondratieva, Natasha; Khromykh, Alexander A

    2006-11-01

    Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.

  11. An Algorithm for Template-Based Prediction of Secondary Structures of Individual RNA Sequences

    Czech Academy of Sciences Publication Activity Database

    Pánek, Josef; Modrák, Martin; Schwarz, Marek

    2017-01-01

    Roč. 8, OCT 10 (2017), s. 1-11, č. článku 147. ISSN 1664-8021 R&D Projects: GA ČR GA15-00885S; GA MŠk(CZ) LM2015047 Institutional support: RVO:61388971 Keywords : RNA * secondary structure * homology Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.789, year: 2016

  12. Capital Structure Determinants and Governance Structure Variety in Franchising

    NARCIS (Netherlands)

    T. Jiang (Tao)

    2009-01-01

    textabstractThis thesis investigates two questions: the determinants of capital structure in franchising and its subsequent impact on the franchise financing decisions; and the efficient governance structure choice in franchising. We posit that firms franchise in order to benefit from the reduced

  13. A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction.

    Science.gov (United States)

    Edvardsson, Sverker; Gardner, Paul P; Poole, Anthony M; Hendy, Michael D; Penny, David; Moulton, Vincent

    2003-05-01

    Noncoding RNA genes produce functional RNA molecules rather than coding for proteins. One such family is the H/ACA snoRNAs. Unlike the related C/D snoRNAs these have resisted automated detection to date. We develop an algorithm to screen the yeast genome for novel H/ACA snoRNAs. To achieve this, we introduce some new methods for facilitating the search for noncoding RNAs in genomic sequences which are based on properties of predicted minimum free-energy (MFE) secondary structures. The algorithm has been implemented and can be generalized to enable screening of other eukaryote genomes. We find that use of primary sequence alone is insufficient for identifying novel H/ACA snoRNAs. Only the use of secondary structure filters reduces the number of candidates to a manageable size. From genomic context, we identify three strong H/ACA snoRNA candidates. These together with a further 47 candidates obtained by our analysis are being experimentally screened.

  14. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  15. [Establishment of prescription research technology system in Chinese medicine secondary exploitation based on "component structure" theory].

    Science.gov (United States)

    Cheng, Xu-Dong; Feng, Liang; Gu, Jun-Fei; Zhang, Ming-Hua; Jia, Xiao-Bin

    2014-11-01

    Chinese medicine prescriptions are the wisdom outcomes of traditional Chinese medicine (TCM) clinical treatment determinations which based on differentiation of symptoms and signs. Chinese medicine prescriptions are also the basis of secondary exploitation of TCM. The study on prescription helps to understand the material basis of its efficacy, pharmacological mechanism, which is an important guarantee for the modernization of traditional Chinese medicine. Currently, there is not yet dissertation n the method and technology system of basic research on the prescription of Chinese medicine. This paper focuses on how to build an effective system of prescription research technology. Based on "component structure" theory, a technology system contained four-step method that "prescription analysis, the material basis screening, the material basis of analysis and optimization and verify" was proposed. The technology system analyzes the material basis of the three levels such as Chinese medicine pieces, constituents and the compounds which could respect the overall efficacy of Chinese medicine. Ideas of prescription optimization, remodeling are introduced into the system. The technology system is the combination of the existing research and associates with new techniques and methods, which used for explore the research thought suitable for material basis research and prescription remodeling. The system provides a reference for the secondary development of traditional Chinese medicine, and industrial upgrading.

  16. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    Science.gov (United States)

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  17. Problem-Based Instructional Strategy and Numerical Ability as Determinants of Senior Secondary Achievement in Mathematics

    Science.gov (United States)

    Badru, Ademola K.

    2016-01-01

    The study investigated Problem-based Instructional Strategy and Numerical ability as determinants of Senior Secondary Achievement in Mathematics. This study used 4 x 2 x 2 non-randomised control group Pretest-Posttest Quasi-experimental Factorial design. It consisted of two independent variables (treatment and Numerical ability) and one moderating…

  18. Structural profiles of human miRNA families from pairwise clustering

    DEFF Research Database (Denmark)

    Kaczkowski, Bogumil; Þórarinsson, Elfar; Reiche, Kristin

    2009-01-01

    secondary structure already predicted, little is known about the patterns of structural conservation among pre-miRNAs. We address this issue by clustering the human pre-miRNA sequences based on pairwise, sequence and secondary structure alignment using FOLDALIGN, followed by global multiple alignment...... of obtained clusters by WAR. As a result, the common secondary structure was successfully determined for four FOLDALIGN clusters: the RF00027 structural family of the Rfam database and three clusters with previously undescribed consensus structures. Availability: http://genome.ku.dk/resources/mirclust...

  19. Psychometric properties of the Questionnaire for Secondary Traumatization

    Directory of Open Access Journals (Sweden)

    Katharina Weitkamp

    2014-01-01

    Full Text Available Background: During the past several years, there has been a growing interest in the negative effects that providing therapy may have on therapists. Of special interest is a phenomenon called secondary traumatization, which can arise while working with traumatized clients. To develop a simple screening tool for secondary traumatization, a quantitative assessment instrument was constructed using a data-driven approach based on qualitative interviews with affected trauma therapists as well as experienced supervisors in trauma therapy. Objective: The aim of the current study was to analyze the psychometric properties of the newly developed Questionnaire for Secondary Traumatization (FST acute and lifetime version and to determine the most appropriate scoring procedure. Method: To this end, three independent samples of psychotherapists (n=371, trauma therapists in training (n=80, and refugee counselors (n=197 filled out an online questionnaire battery. Data structure was analyzed using factor analyses, cluster analyses, and reliability analyses. Results: Factor analyses yielded a six-factor structure for both the acute and the lifetime version with only a small number of items loading on differing factors. Cluster analyses suggested a single scale structure of the questionnaire. The FST total score showed good internal consistencies across all three samples, while internal consistency of the six extracted factors was mixed. Conclusion: With the FST, a reliable screening instrument for acute and lifetime secondary traumatization is now available which is free of charge and yields a sum score for quick evaluation. The six-factor structure needs to be verified with confirmatory factor analyses.

  20. Structural determination of organic compounds

    International Nuclear Information System (INIS)

    Kintzinger, J.P.

    1991-01-01

    This paper reports that the current methods available in high-field NMR spectroscopy are such that the tridimensional structure determination of any rigid molecule containing only carbon and hydrogen atoms may be achieved. The connectivities between carbon-carbon, carbon-hydrogen, and hydrogen-hydrogen atoms are determined by multipulse and two-dimensional (2D) experiments. These connectivity patterns or maps allow a step-by-step reconstruction of the molecular structures. From the carbon-carbon connectivity map, the carbon framework of the molecule is obtained, whereas the carbon-hydrogen pattern allows determination of the positions of the hydrogen atoms on their corresponding carbon atoms. High-field spectrometers are then necessary to remove fortuitous degeneracy and to reduce the proton spectra to a nearly first-order one, allowing an easy measurement of the chemical shifts and the coupling constants

  1. Determining Student Internet Addiction Levels in Secondary Education and the Factors that Affect It

    Directory of Open Access Journals (Sweden)

    Fezile Ozdamli

    2013-05-01

    Full Text Available The aim of this research is to determine the level of internet addiction on the part of students in secondary education in North Cyprus and the factors that affect it. In this research, a survey method which provides a general universal judgment was used to determine the level of internet addiction on the part of such students. It has been found that 59.9% of the students are at low of becoming internet addicts, 20.7% of them are in the high risk category, 13.5% face no risk of addiction, while 5.9% are internet addicts. It was determined that as students’ internet usage hours increase, the risk of addiction increases.

  2. Hydrogen determination using secondary processes of recoil proton interaction with sample material

    International Nuclear Information System (INIS)

    Muminov, V.A.; Khajdarov, R.A.; Navalikhin, L.V.; Pardaev, Eh.

    1980-01-01

    Possibilities of hydrogen content determination in different materials according to secondary processes of interaction of recoil protons(irradiation in the field of fast neutrons) with sample material resulting in the appearance of characteristic X-ray irradiation are studied. Excitated irradiation is recorded with a detector placed in the protective screen and located at a certain distance from the object analyzed and neutron source. The method is tested taking as an example analysis of bromine-containing samples (30% Br, 0.5% H) and tungsten dioxide. The determination limit of hydrogen content constitutes 0.05% at confidence coefficient of 0.9. Neutron flux constituted 10 3 neutrons/cm 2 xs, the time of measurement being 15-20 minutes, the distance from the sample to the detector being 12-15 cm [ru

  3. Tracing the social gradient in the health of Canadians: primary and secondary determinants.

    Science.gov (United States)

    Kosteniuk, Julie G; Dickinson, Harley D

    2003-07-01

    The social gradient in heath refers to the fact that inequalities in population health status are related to inequalities in social status. This study advances and tests a model of the relationships between what we term primary and secondary determinants of the social gradient in health. The primary determinants of health include socioeconomic and demographic indicators. Secondary determinants include stressors, control, self-esteem, social support, and social involvement. Health status is indicated by measures of physical health, self-reported health status, and mental distress. Data are taken from the Canadian National Population Health (NPH) Survey (1994-1995). The study sample consists of 7720 men and 9269 women 15 to over 80 years of age. Using path analysis, we found that higher household income, being retired and growing older are significantly associated with lower stressor levels. Higher stressor levels are associated with lower levels of control, self-esteem, and social support. Higher income Canadians experience greater levels of control and social support, while older Canadians experience lower rates of social support but higher rates of social involvement. Being employed and caring for one's family are positively associated with better physical and self-reported health status. Higher household income, being retired, and aging are associated with better physical health and lower mental distress when accounting for their role in lowering stressor levels and bolstering control, self-esteem, social support, and social involvement. Replicating this study with future samples of the NPH Survey should be of benefit in ascertaining whether the social gradient in Canadians' health status shows signs of declining.

  4. Monte Carlo determination of heteroepitaxial misfit structures

    DEFF Research Database (Denmark)

    Baker, J.; Lindgård, Per-Anker

    1996-01-01

    We use Monte Carlo simulations to determine the structure of KBr overlayers on a NaCl(001) substrate, a system with large (17%) heteroepitaxial misfit. The equilibrium relaxation structure is determined for films of 2-6 ML, for which extensive helium-atom scattering data exist for comparison...

  5. Interaction Of Calcium Phosphate Nanoparticles With Human Chorionic Gonadotropin Modifies Secondary And Tertiary Protein Structure

    Directory of Open Access Journals (Sweden)

    Al-Hakeim Hussein K

    2015-12-01

    Full Text Available Calcium phosphate nanoparticles (CaPNP have good biocompatibility and bioactivity inside human body. In this study, the interaction between CaPNP and human chorionic gonadotropin (hCG was analyzed to determine the changes in the protein structure in the presence of CaPNP and the quantity of protein adsorbed on the CaPNP surface. The results showed a significant adsorption of hCG on the CaPNP nanoparticle surface. The optimal fit was achieved using the Sips isotherm equation with a maximum adsorption capacity of 68.23 µg/mg. The thermodynamic parameters, including ∆H° and ∆G°, of the adsorption process are positive, whereas ∆S° is negative. The circular dichroism results of the adsorption of hCG on CaPNP showed the changes in its secondary structure; such changes include the decomposition of α-helix strand and the increase in β-pleated sheet and random coil percentages. Fluorescence study indicated minimal changes in the tertiary structure near the microenvironment of the aromatic amino acids such as tyrosine and phenyl alanine caused by the interaction forces between the CaPNP and hCG protein. The desorption process showed that the quantity of the hCG desorbed significantly increases as temperature increases, which indicates the weak forces between hCG and the surface.

  6. The secondary structure and the thermal unfolding parameters of the S-layer protein from Lactobacillus salivarius.

    Science.gov (United States)

    Lighezan, Liliana; Georgieva, Ralitsa; Neagu, Adrian

    2016-09-01

    Surface layer (S-layer) proteins have been identified in the cell envelope of many organisms, such as bacteria and archaea. They self-assemble, forming monomolecular crystalline arrays. Isolated S-layer proteins are able to recrystallize into regular lattices, which proved useful in biotechnology. Here we investigate the structure and thermal unfolding of the S-layer protein isolated from Lactobacillus salivarius 16 strain of human origin. Using circular dichroism (CD) spectroscopy, and the software CDSSTR from DICHROWEB, CONTINLL from CDPro, as well as CDNN, we assess the fractions of the protein's secondary structural elements at temperatures ranging between 10 and 90 °C, and predict the tertiary class of the protein. To study the thermal unfolding of the protein, we analyze the temperature dependence of the CD signal in the far- and near-UV domains. Fitting the experimental data by two- and three-state models of thermal unfolding, we infer the midpoint temperatures, the temperature dependence of the changes in Gibbs free energy, enthalpy, and entropy of the unfolding transitions in standard conditions, and the temperature dependence of the equilibrium constant. We also estimate the changes in heat capacity at constant pressure in standard conditions. The results indicate that the thermal unfolding of the S-layer protein from L. salivarius is highly cooperative, since changes in the secondary and tertiary structures occur simultaneously. The thermodynamic analysis predicts a "cold" transition, at about -3 °C, of both the secondary and tertiary structures. Our findings may be important for the use of S-layer proteins in biotechnology and in biomedical applications.

  7. A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis

    NARCIS (Netherlands)

    Guchte, Maarten van de; Lende, Ted van der; Kok, Jan; Venema, Gerard

    1991-01-01

    Gene expression signals derived from Lactococcus lactis were linked to lacZ-fused genes with different 5'-nucleotide sequences. Computer predictions of mRNA secondary structure were combined with lacZ expression studies to direct base-substitutions that could possibly influence gene expression.

  8. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence

    Directory of Open Access Journals (Sweden)

    Leitner Dietmar

    2005-04-01

    Full Text Available Abstract Background A reliable prediction of the Xaa-Pro peptide bond conformation would be a useful tool for many protein structure calculation methods. We have analyzed the Protein Data Bank and show that the combined use of sequential and structural information has a predictive value for the assessment of the cis versus trans peptide bond conformation of Xaa-Pro within proteins. For the analysis of the data sets different statistical methods such as the calculation of the Chou-Fasman parameters and occurrence matrices were used. Furthermore we analyzed the relationship between the relative solvent accessibility and the relative occurrence of prolines in the cis and in the trans conformation. Results One of the main results of the statistical investigations is the ranking of the secondary structure and sequence information with respect to the prediction of the Xaa-Pro peptide bond conformation. We observed a significant impact of secondary structure information on the occurrence of the Xaa-Pro peptide bond conformation, while the sequence information of amino acids neighboring proline is of little predictive value for the conformation of this bond. Conclusion In this work, we present an extensive analysis of the occurrence of the cis and trans proline conformation in proteins. Based on the data set, we derived patterns and rules for a possible prediction of the proline conformation. Upon adoption of the Chou-Fasman parameters, we are able to derive statistically relevant correlations between the secondary structure of amino acid fragments and the Xaa-Pro peptide bond conformation.

  9. Determination of Secondary Encasement Pipe Design Pressure

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  10. Rapid fold and structure determination of the archaeal translation elongation factor 1{beta} from Methanobacterium thermoautotrophicum

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, Guennadi [McGill University, Department of Biochemistry (Canada); Ekiel, Irena [National Research Council of Canada, Biomolecular NMR Group, Sector of Pharmaceutical Biotechnology, Biotechnology Research Institute (Canada); Beglova, Natalia [McGill University, Department of Biochemistry (Canada); Yee, Adelinda; Dharamsi, Akil; Engel, Asaph [University of Toronto, Department of Medical Biophysics (Canada); Siddiqui, Nadeem; Nong, Andrew; Gehring, Kalle [McGill University, Department of Biochemistry (Canada)

    2000-07-15

    The tertiary fold of the elongation factor, aEF-1{beta}, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1{beta} was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1{beta} structure revealed close similarity to its human analogue, eEF-1{beta}. In agreement with studies on EF-Ts and human EF-1{beta}, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1{alpha}. aEF-1{beta} was also found to bind calcium in the groove between helix {alpha}2 and strand {beta}4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation.

  11. Rapid fold and structure determination of the archaeal translation elongation factor 1β from Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    Kozlov, Guennadi; Ekiel, Irena; Beglova, Natalia; Yee, Adelinda; Dharamsi, Akil; Engel, Asaph; Siddiqui, Nadeem; Nong, Andrew; Gehring, Kalle

    2000-01-01

    The tertiary fold of the elongation factor, aEF-1β, from Methanobacterium thermoautotrophicum was determined in a high-throughput fashion using a minimal set of NMR experiments. NMR secondary structure prediction, deuterium exchange experiments and the analysis of chemical shift perturbations were combined to identify the protein fold as an alpha-beta sandwich typical of many RNA binding proteins including EF-G. Following resolution of the tertiary fold, a high resolution structure of aEF-1β was determined using heteronuclear and homonuclear NMR experiments and a semi-automated NOESY assignment strategy. Analysis of the aEF-1β structure revealed close similarity to its human analogue, eEF-1β. In agreement with studies on EF-Ts and human EF-1β, a functional mechanism for nucleotide exchange is proposed wherein Phe46 on an exposed loop acts as a lever to eject GDP from the associated elongation factor G-protein, aEF-1α. aEF-1β was also found to bind calcium in the groove between helix α2 and strand β4. This novel feature was not observed previously and may serve a structural function related to protein stability or may play a functional role in archaeal protein translation

  12. Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.

    Science.gov (United States)

    Kountouris, Petros; Hirst, Jonathan D

    2010-07-31

    Beta-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. We have developed a novel method that predicts beta-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of beta-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of beta-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. We have created an accurate predictor of beta-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/.

  13. Isolation and crystal structure determination of piperazine dicarbamate obtained from a direct reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jae Ung; Jo, Eun Hee; Jhon, Young Ho; Paek, Kyung Soo; Kim, Ja Heon [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of); Jang Se Gyu; Shim, Jae Goo; Jang, Kyung Ryong [Korea Future Technology Research Laboratory, Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of)

    2016-11-15

    Separation of CO{sub 2} in the flue gas emitted from coal-fired power plants is the first technological step toward reducing the CO{sub 2} concentration in atmosphere, and eventually for mitigating the global climate change. We could isolate the PZ-dicarbamate, where two CO{sub 2} molecules are bonded to each secondary amine group, through CO{sub 2} absorption by PZ in methanol, and determined its crystal structure by X-ray crystallography. The PZ-dicarbamate as a salt with piperazinium allowed further analyses such as TGA and NMR measurements, which gave information on the fate of the salt. In particular, the salt can be used as a standard sample exhibiting 100% CO{sub 2} loading in a PZ molecule.

  14. A systematic review on popularity, application and characteristics of protein secondary structure prediction tools.

    Science.gov (United States)

    Kashani-Amin, Elaheh; Tabatabaei-Malazy, Ozra; Sakhteman, Amirhossein; Larijani, Bagher; Ebrahim-Habibi, Azadeh

    2018-02-27

    Prediction of proteins' secondary structure is one of the major steps in the generation of homology models. These models provide structural information which is used to design suitable ligands for potential medicinal targets. However, selecting a proper tool between multiple secondary structure prediction (SSP) options is challenging. The current study is an insight onto currently favored methods and tools, within various contexts. A systematic review was performed for a comprehensive access to recent (2013-2016) studies which used or recommended protein SSP tools. Three databases, Web of Science, PubMed and Scopus were systematically searched and 99 out of 209 studies were finally found eligible to extract data. Four categories of applications for 59 retrieved SSP tools were: (I) prediction of structural features of a given sequence, (II) evaluation of a method, (III) providing input for a new SSP method and (IV) integrating a SSP tool as a component for a program. PSIPRED was found to be the most popular tool in all four categories. JPred and tools utilizing PHD (Profile network from HeiDelberg) method occupied second and third places of popularity in categories I and II. JPred was only found in the two first categories, while PHD was present in three fields. This study provides a comprehensive insight about the recent usage of SSP tools which could be helpful for selecting a proper tool's choice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. The characteristics of effective secondary math and science instructional facilitators and the necessary support structures as perceived by practitioners and principals

    Science.gov (United States)

    Mahagan, Vikki Lynn

    Instructional facilitators are known by a variety of titles depending on the school district in which they are employed. They are sometimes called instructional coaches, teacher leaders, lead teachers, and instructional specialist (Denton & Hasbrouck, 2009). Throughout this study, the title instructional facilitator was used and will refer to secondary math or science instructional facilitators who are housed at least one day per week on a campus. This study is a mixed-methods descriptive study which has identified character traits, specials skill, and talents possessed by effective secondary math and science instructional facilitators as perceived by practicing facilitators and principals and assistant principals who work along side instructional facilitators. Specific job training to help ensure the success of a facilitator was identified as viewed by both facilitators and principals. Additionally, this study compared the perceptions of practicing facilitators and principals to determine if significant differences exist with respect to perceptions of staff development opportunities, support structures, and resources available for instructional facilitators.

  16. Determinants of capital structure.

    Science.gov (United States)

    McCue, M J; Ozcan, Y A

    1992-01-01

    This study analyzes the determinants of hospital capital structure in a new market setting that are created by the financial pressures of prospective payment and the intense price competition among hospitals. Using California data, the study found hospital system affiliation, bed size, growth rate in revenues, operating risk, and asset structure affected both short- and long-term debt borrowings. In addition, percentage of uncompensated care, profitability, and payer mix influenced short-term borrowings while market conditions and ownership affected long-term borrowings. Most significant of all is the finding that smaller hospitals tend to borrow more, possibly because they cannot generate funds internally.

  17. New Comparative Analysis Based on the Secondary Structure of SSU-rRNA Gene Reveals the Evolutionary Trend and the Family-Genus Characters of Mobilida (Ciliophora, Peritrichia).

    Science.gov (United States)

    Zhang, Yong; Zhao, Yuan-Jun; Wang, Qin; Tang, Fa-Hui

    2015-08-01

    In order to reveal the structural evolutionary trend of Mobilida ciliates, twenty-six SSU-rRNA sequences of mobilid species, including seven ones newly sequenced in the present work, were used for comparative phylogenic analysis based on the RNA secondary structure. The research results indicate that all the secondary structures except domains Helix 10, Helix 12, and Helix 37 could be regarded as the criterions in classification between the family Trichodinidae and Urceolariida, and four regions including Helix E10-1, Helix 29, Helix 43, and Helix 45-Helix 46 could be as criterions in classification between the genus Trichodinella and Trichodina in family Trichodinidae. After the analysis of common structural feature within the Mobilida, it was found that the secondary structure of V6 could prove the family Urceolariidae primitive status. This research has further suggested that the genus Trichodina could be divergent earlier than Trichodinella in the family Trichodinidae. In addition, the relationship between the secondary structure and topology of phylogenic tree that the branching order of most clades corresponds with the secondary structure of species within each clade of phylogenetic tree was first uncovered and discussed in the present study.

  18. Validation Evidence of the Motivation for Teaching Scale in Secondary Education.

    Science.gov (United States)

    Abós, Ángel; Sevil, Javier; Martín-Albo, José; Aibar, Alberto; García-González, Luis

    2018-04-10

    Grounded in self-determination theory, the aim of this study was to develop a scale with adequate psychometric properties to assess motivation for teaching and to explain some outcomes of secondary education teachers at work. The sample comprised 584 secondary education teachers. Analyses supported the five-factor model (intrinsic motivation, identified regulation, introjected regulation, external regulation and amotivation) and indicated the presence of a continuum of self-determination. Evidence of reliability was provided by Cronbach's alpha, composite reliability and average variance extracted. Multigroup confirmatory factor analyses supported the partial invariance (configural and metric) of the scale in different sub-samples, in terms of gender and type of school. Concurrent validity was analyzed by a structural equation modeling that explained 71% of the work dedication variance and 69% of the boredom at work variance. Work dedication was positively predicted by intrinsic motivation (ß = .56, p amotivation (ß = -.49, p amotivation (ß = .68, p < .001). The Motivation for Teaching Scale in Secondary Education (Spanish acronym EME-ES, Escala de Motivación por la Enseñanza en Educación Secundaria) is discussed as a valid and reliable instrument. This is the first specific scale in the work context of secondary teachers that has integrated the five-factor structure together with their dedication and boredom at work.

  19. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  20. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  1. Non-Resident Fathers' Relationships with Their Secondary School Age Children: Determinants and Children's Mental Health Outcomes

    Science.gov (United States)

    Flouri, Eirini

    2006-01-01

    Data from 520 British secondary school age children were used to explore determinants of and mental health outcomes (measured with the Strengths and Difficulties Questionnaire) from their non-resident fathers' relationships (child-reported father's involvement and frequency of contact) with them. Frequency of contact was negatively related to time…

  2. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  3. Consequential secondary structure alterations and aggregation during prolonged casein glycation.

    Science.gov (United States)

    Jindal, Supriya; Naeem, Aabgeena

    2013-05-01

    Non-enzymatic glycosylation (glycation) of casein is a process used not just to ameliorate the quality of dairy products but also to increase the shelf life of canned foods, including baby milk supplements. Incubation of κ-casein with reducing sugars for 15 days at physiological temperature showed the formation of a molten globule state at day 9 and 12 during fructation and glucation respectively. This state exhibits substantial secondary structure and maximum ANS binding. Later on, glycation resulted in the formation of aggregates at day 12 in presence of fructose and day 15 in presence of glucose. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and FTIR. These aggregates showed altered tryptophan environment, decrease ANS binding relative to molten globule state and increase in Thioflavin T fluorescence. Aggregates were also accompanied by the accumulation of AGEs, indicative of structural damage to the protein and formation of potentially harmful species at the physiological level. Fructose was more reactive than glucose and thus caused early and significant changes in the protein. From our studies, we conclude that controlling the extent of the Maillard reaction in the food industry is essential to counter its negative effects and expand its safety spectrum.

  4. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  5. Network Properties of the Ensemble of RNA Structures

    Science.gov (United States)

    Clote, Peter; Bayegan, Amir

    2015-01-01

    We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a 1, …, a n. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors. PMID:26488894

  6. Protein 8-class secondary structure prediction using conditional neural fields.

    Science.gov (United States)

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    Science.gov (United States)

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments. Copyright 2002 Wiley-Liss, Inc.

  8. Teaching the foundations of quantum mechanics in secondary school: a proposed conceptual structure

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles Fanaro

    2009-03-01

    Full Text Available This paper is part of a doctoral thesis that investigates Basic Quantum Mechanics (QM teaching in high school. A Conceptual Structure of Reference (CSR based on the Path Integral Method of Feynman (1965 was rebuilt and a Proposed Conceptual Structure for Teaching (PCST (Otero, 2006, 2007 the basics of Quantum Mechanics at secondary school was designed, analysed and carried out. This PCST does not follow the historical route and it is complementary to the canonical formalism. The concepts: probability distribution, quantum system, x(t alternative, amplitude of probability, sum of probability amplitude, action, Planck's constant, and classic-quantum transition were rebuilt with the students. Mathematical formalism was avoided by using simulation software assistance. The Proposed Conceptual Structure for Teaching (PCST is described and some results from the test carried out by the class group are discussed. This information allows the analysis of the Conceptual Structure Effectively Reconstructed (CSER to be initiated with the students.

  9. Cryo-EM Structure Determination Using Segmented Helical Image Reconstruction.

    Science.gov (United States)

    Fromm, S A; Sachse, C

    2016-01-01

    Treating helices as single-particle-like segments followed by helical image reconstruction has become the method of choice for high-resolution structure determination of well-ordered helical viruses as well as flexible filaments. In this review, we will illustrate how the combination of latest hardware developments with optimized image processing routines have led to a series of near-atomic resolution structures of helical assemblies. Originally, the treatment of helices as a sequence of segments followed by Fourier-Bessel reconstruction revealed the potential to determine near-atomic resolution structures from helical specimens. In the meantime, real-space image processing of helices in a stack of single particles was developed and enabled the structure determination of specimens that resisted classical Fourier helical reconstruction and also facilitated high-resolution structure determination. Despite the progress in real-space analysis, the combination of Fourier and real-space processing is still commonly used to better estimate the symmetry parameters as the imposition of the correct helical symmetry is essential for high-resolution structure determination. Recent hardware advancement by the introduction of direct electron detectors has significantly enhanced the image quality and together with improved image processing procedures has made segmented helical reconstruction a very productive cryo-EM structure determination method. © 2016 Elsevier Inc. All rights reserved.

  10. Crystal structure determination of Efavirenz

    International Nuclear Information System (INIS)

    Popeneciu, Horea; Dumitru, Ristoiu; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria

    2015-01-01

    Needle-shaped single crystals of the title compound, C 14 H 9 ClF 3 NO 2 , were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring

  11. Benthic macrofaunal structure and secondary production in tropical estuaries on the Eastern Marine Ecoregion of Brazil.

    Science.gov (United States)

    Bissoli, Lorena B; Bernardino, Angelo F

    2018-01-01

    Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.

  12. Amino Acid Molecular Units: Building Primary and Secondary Protein Structures

    Directory of Open Access Journals (Sweden)

    Aparecido R. Silva

    2008-05-01

    Full Text Available In order to guarantee the learning quality and suitable knowledge  use  about structural biology, it is fundamental to  exist, since the beginning of  students’ formation, the possibility of clear visualization of biomolecule structures. Nevertheless, the didactic books can only bring  schematic  drawings; even more elaborated figures and graphic computation  do not permit the necessary interaction.  The representation of three-dimensional molecular structures with ludic models, built with representative units, have supplied to the students and teachers a successfully experience to  visualize such structures and correlate them to the real molecules.  The design and applicability of the representative units were discussed with researchers and teachers before mould implementation.  In this stage  it  will be presented the  developed  kit  containing the  representative  plastic parts of the main amino acids.  The kit can demonstrate the interaction among the amino acids  functional groups  (represented by colors, shapes,  sizes and  the peptidic bonds between them  facilitating the assembly and visuali zation of the primary and secondary protein structure.  The models were designed for  Ca,  amino,  carboxyl groups  and  hydrogen. The  lateral chains have  well defined models that represent their geometrical shape.  The completed kit set  will be presented in this meeting (patent requested.  In the last phase of the project will be realized  an effective evaluation  of the kit  as a facilitative didactic tool of the teaching/learning process in the Structural Molecular Biology area.

  13. Secondary Structure Prediction of Protein using Resilient Back Propagation Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jyotshna Dongardive

    2015-12-01

    Full Text Available The paper proposes a neural network based approach to predict secondary structure of protein. It uses Multilayer Feed Forward Network (MLFN with resilient back propagation as the learning algorithm. Point Accepted Mutation (PAM is adopted as the encoding scheme and CB396 data set is used for the training and testing of the network. Overall accuracy of the network has been experimentally calculated with different window sizes for the sliding window scheme and by varying the number of units in the hidden layer. The best results were obtained with eleven as the window size and seven as the number of units in the hidden layer.

  14. The Interplay between Adolescent Needs and Secondary School Structures: Fostering Developmentally Responsive Middle and High School Environments across the Transition

    Science.gov (United States)

    Ellerbrock, Cheryl R.; Kiefer, Sarah M.

    2013-01-01

    Understanding the developmental responsiveness of secondary school environments may be an important factor in supporting students as they make the transition from one school to the next. Students' needs may or may not be met depending on the nature of the fit between their basic and developmental needs and secondary school structures at the middle…

  15. Energy group structure determination using particle swarm optimization

    International Nuclear Information System (INIS)

    Yi, Ce; Sjoden, Glenn

    2013-01-01

    Highlights: ► Particle swarm optimization is applied to determine broad group structure. ► A graph representation of the broad group structure problem is introduced. ► The approach is tested on a fuel-pin model. - Abstract: Multi-group theory is widely applied for the energy domain discretization when solving the Linear Boltzmann Equation. To reduce the computational cost, fine group cross libraries are often down-sampled into broad group cross section libraries. Cross section data collapsing generally involves two steps: Firstly, the broad group structure has to be determined; secondly, a weighting scheme is used to evaluate the broad cross section library based on the fine group cross section data and the broad group structure. A common scheme is to average the fine group cross section weighted by the fine group flux. Cross section collapsing techniques have been intensively researched. However, most studies use a pre-determined group structure, open based on experience, to divide the neutron energy spectrum into thermal, epi-thermal, fast, etc. energy range. In this paper, a swarm intelligence algorithm, particle swarm optimization (PSO), is applied to optimize the broad group structure. A graph representation of the broad group structure determination problem is introduced. And the swarm intelligence algorithm is used to solve the graph model. The effectiveness of the approach is demonstrated using a fuel-pin model

  16. Capital Structure Determinants and Governance Structure Variety in Franchising

    OpenAIRE

    Jiang, Tao

    2009-01-01

    textabstractThis thesis investigates two questions: the determinants of capital structure in franchising and its subsequent impact on the franchise financing decisions; and the efficient governance structure choice in franchising. We posit that firms franchise in order to benefit from the reduced franchisees’ operational risks by limiting the debt level, such that the franchisor can bear more debt and gain tax-deduction benefits. Specific hypotheses are based on various theories like resource...

  17. High cycle fatigue analysis of vortex suppression plate and secondary core support structures

    International Nuclear Information System (INIS)

    Xue Guohong; Li Yuan; Zhao Feiyun; Feng Shaodong; Yu Hao

    2013-01-01

    Background: Reactor internals are important equipment s in the reactor coolant system, its structure design needs high reliability in the entire lifetime, Reactor internals have occurred breakdown and the damage event due to flow induced vibrations in the domestic and foreign nuclear power plants, which make immediate influence on reactor safe operation and economic efficiency. Purpose: In this work, the dynamic response of reactor internals-vortex suppression plate and secondary core support structure (SCSS) under the loading from pump induced vibrations and flow induced vibrations are studied. Methods: Based on the finite element model of SCSS, Spectrum analysis and the harmonious analysis are performed, in order to get the response of the structure under flow induced vibrations. Then, the high fatigue of the structure is assessed according to the ASME B and PV Code. Results: The results indicate that alternate stresses of all the components satisfy the limiting value in the correlative requirements. Conclusions: The structure of SCSS could bear the vibration induced from the flow and the pump, and the method used in this article provides the reference for other reactor internals structure analysis like this. (authors)

  18. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  19. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  20. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1997-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  1. Three-Dimensional Structure Determination of Botulinum Toxin

    National Research Council Canada - National Science Library

    Stevens, Ray

    1998-01-01

    ...) Based on the structure of the neurotoxin, understand the toxins mechanism of action. We have accomplished the first goal of determining the three-dimensional structure of the 150 kD botulinum neurotoxin serotype...

  2. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  3. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  4. Structural determination of intact proteins using mass spectrometry

    Science.gov (United States)

    Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  5. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution

    DEFF Research Database (Denmark)

    Lenaers, G; Nielsen, Henrik; Engberg, J

    1988-01-01

    The secondary structure of the large-subunit ribosomal RNA (24-26S rRNA) has been studied with emphasis on comparative analysis of the folding patterns of the divergent domains in the available protist sequences, that is Prorocentrum micans (dinoflagellate), Saccharomyces carlsbergensis (yeast......), Tetrahymena thermophila (ciliate), Physarum polycephalum and Dictyostelium discoideum (slime moulds), Crithidia fasciculata and Giardia lamblia (parasitic flagellates). The folding for the D3, D7a and D10 divergent domains has been refined and a consensus model for the protist 24-26S rRNA structure...

  6. The Structures of the Alternative Conceptions of Preservice Secondary Teachers on Seasonal Changes

    Directory of Open Access Journals (Sweden)

    Junyoung Oh

    2005-03-01

    Full Text Available This study was to understand the components that influence preservice secondary teachers' conceptions about "seasonal changes". We selected 74 university science education students among whom 23 were in the second, 23 in the third, and 28 in the fourth year. The data collected from the paper-pencil test and individual interview with students. The results of this study show that the students had considerable apparent alternative conceptions, and that the 'distance theory' had most important effects on their alternative conceptions. It can be said that preservice secondary teachers' initial models of the seasonal change have their origin in their belief sets (specific theory related to 'seasonal change', on the basis of which they can interpret their observations and cultural information with the constraints of a naive framework of physics. The structures and possible sources of their alternative conceptions for overcoming these alternative conceptions were also discussed. Implications for preservice science teacher education related to the results were discussed.

  7. Characteristics and generation of secondary jets and secondary gigantic jets

    Science.gov (United States)

    Lee, Li-Jou; Huang, Sung-Ming; Chou, Jung-Kung; Kuo, Cheng-Ling; Chen, Alfred B.; Su, Han-Tzong; Hsu, Rue-Rou; Frey, Harald U.; Takahashi, Yukihiro; Lee, Lou-Chuang

    2012-06-01

    Secondary transient luminous events (TLEs) recorded by the ISUAL-FORMOSAT2 mission can either be secondary jets or secondary gigantic jets (GJs), depending on their terminal altitudes. The secondary jets emerge from the cloud top beneath the preceding sprites and extend upward to the base of the sprites at ˜50 km. The secondary jets likely are negative electric discharges with vertically straight luminous columns, morphologically resembling the trailing jet of the type-I GJs. The number of luminous columns in a secondary jet seems to be affected by the size of the effective capacitor plate formed near the base of the preceding sprites and the charge distribution left behind by the sprite-inducing positive cloud-to-ground discharges. The secondary GJs originate from the cloud top under the shielding area of the preceding sprites, and develop upward to reach the lower ionosphere at ˜90 km. The observed morphology of the secondary GJs can either be the curvy shifted secondary GJs extending outside the region occupied by the preceding sprites or the straight pop-through secondary GJs developing through the center of the preceding circular sprites. A key factor in determining the terminal height of the secondary TLEs appears to be the local ionosphere boundary height that established by the preceding sprites. The abundance and the distribution of the negative charge in the thundercloud following the sprite-inducing positive cloud-to-ground discharges may play important role in the generation of the secondary TLEs.

  8. Structure of the secondary xylem of Aniba Aubl. species from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Cláudia Viana Urbinati

    2014-09-01

    Full Text Available The aim of this study was to characterize the wood of Aniba species from the Brazilian Amazon, on the basis of specimens in the wood collection of the Herbarium of the Museu Paraense Emílio Goeldi, in the city of Belém, Brazil. The species were found to present a homogeneous structure in the secondary xylem, as defined by the location of oil cells; the presence of tyloses and crystals; and singularities of the radial and axial parenchyma.

  9. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum

    Science.gov (United States)

    Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe

    2017-01-01

    Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1–3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the

  10. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Xiuqing Zhang

    Full Text Available Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1-3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality

  11. Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy.

    Science.gov (United States)

    Kikani, B A; Singh, S P

    2015-11-01

    An amylase of a thermophilic bacterium, Bacillus sp. TSSC-3 (GenBank Number, EU710557) isolated from the Tulsi Shyam hot spring reservoir (Gujarat, India) was purified to the homogeneity in a single step on phenyl sepharose 6FF. The molecular weight of the enzyme was 25kD, while the temperature and pH optima for the enzyme catalysis were 80°C and 7, respectively. The purified enzyme was highly thermostable with broad pH stability and displayed remarkable resistance against surfactants, chelators, urea, guanidine HCl and various solvents as well. The stability and changes in the secondary structure of the enzyme under various extreme conditions were determined by the circular dichroism (CD) spectroscopy. The stability trends and the changes in the α-helices and β-sheets were analyzed by Mean Residual Ellipticity (MRE) and K2D3. The CD data confirmed the structural stability of the enzyme under various harsh conditions, yet it indicated reduced α-helix content and increased β-sheets upon denaturation. The thermodynamic parameters; deactivation rate constant, half-life, changes in entropy, enthalpy, activation energy and Gibb's free energy indicated that the enzyme-substrate reactions were highly stable. The overall profile of the enzyme: high thermostability, alkalitolerance, calcium independent nature, dextrose equivalent values and resistance against chemical denaturants, solvents and surfactants suggest its commercial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. An experimental investigation of the interaction of primary and secondary stresses in fuel plates

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1996-01-01

    If the load is not relieved as a structure starts to yield, the induced stress is defined as primary stress. If the load relaxes, as a structure begins yield the induced stress is defined as secondary stress. In design it is not uncommon to give more weight to primary stresses than to secondary stresses. However, knowing when this is good design practice and when it is not good design practice represents a problem. In particular, the fuel plates in operating reactors contain both primary stresses and secondary stresses and to properly assess a design there is a need to assign design weights to the stresses. Tests were conducted on reactor fuel plates intended for the Advanced Neutron Source (ANS) to determine the potential of giving different design weights to the primary and secondary stresses. The results of these tests and the conclusion that the stresses should be weighted the same are given in this paper

  13. An experimental investigation on the interaction of primary and secondary stresses in fuel plates

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1997-01-01

    If the load is not relieved as a structure starts to yield, the induced stress is defined as primary stress. If the load relaxes, as a structure begins to yield the induced stress is defined as secondary stress. In design, it is not uncommon to give more weight to primary stresses than to secondary stresses. However, knowing when this is good design practice and when it is not good design practice represent a problem. In particular, the fuel plates in operating reactors contain both primary stresses and secondary stresses, and to properly assess a design there is a need to assign design weights to the stresses. Tests were conducted on reactor fuel plates intended for the advanced neutron source (ANS) to determine the potential of giving different design weights to the primary and secondary stresses. The results of these tests and the conclusion that the stresses should be weighted the same are given in this paper

  14. Does family structure matter? Comparing the life goals and aspirations of learners in secondary schools

    Directory of Open Access Journals (Sweden)

    Eugene Lee Davids

    2013-01-01

    Full Text Available The aim of this study was to compare the goals and aspirations of learners from single- and two-parent families. The study used a quantitative methodology with a cross-sectional comparative group design. The sample consisted of 853 Grade 11 learners from secondary schools in the Northern, Southern and Metro Central education districts in the Western Cape. The data were collected using the Aspirations Index and a short biographical questionnaire. The results suggest that there was a significant main effect of family structure on certain goals and aspirations of learners in secondary schools. These goals and aspirations included wealth, image, personal growth, relationships, and health. Furthermore, learners in single-parent families placed more emphasis on intrinsic goals.

  15. Recognition determinants for proteins and antibiotics within 23S rRNA

    DEFF Research Database (Denmark)

    Douthwaite, Stephen Roger; Voldborg, Bjørn Gunnar Rude; Hansen, Lykke Haastrup

    1995-01-01

    Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination of molecu......Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination......-proteins L10.(L12)4 and L11 and is inhibited by interaction with the antibiotic thiostrepton. The peptidyltransferase center within domain V is inhibited by macrolide, lincosamide, and streptogramin B antibiotics, which interact with the rRNA around nucleotide A2058. Drug resistance is conferred by mutations...

  16. Structure and formation of convection of secondary rainbands in a simulated typhoon Jangmi (2008)

    Science.gov (United States)

    Xiao, Jing; Tan, Zhe-Min; Chow, Kim-Chiu

    2018-04-01

    Secondary rainbands in tropical cyclone are relatively transient compared with the quasi-stationary principle rainbands. To have a better understanding on their convective structure, a cloud-resolving scale numerical simulation of the super typhoon Jangmi (2008) was performed. The results suggest that the convections in secondary rainbands have some distinctive features that may not be seen in other types of rainbands in tropical cyclone. First, they have a front-like structure and are triggered to form above the boundary layer by the convergence of the above-boundary outflow from the inner side (warmer) and the descending inflow (colder) from the outer side. These elevated convections can be further confirmed by the three-dimensional backward trajectory calculations. Second, due to the release in baroclinic energy, the lower portion of the mid-level inflow from outside may penetrate into the bottom of the convection tower and may help accelerate the boundary layer inflow in the inner side. Third, the local maximum tangential wind is concentrated in the updraft region, with a lower portion which is dipping inward. Tangential wind budget analysis also suggests that the maxima are mainly contributed by the updraft advection, and can be advected cyclonically downstream by the tangential advection.

  17. Advances on surface structural determination by LEED

    International Nuclear Information System (INIS)

    Soares, Edmar A; De Carvalho, Vagner E; De Castilho, Caio M C

    2011-01-01

    In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail. (topical review)

  18. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    Science.gov (United States)

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  19. FT-IR spectroscopic studies of protein secondary structures for breast cancer diagnosis

    International Nuclear Information System (INIS)

    Karamancheva, I; Simonova, D.; Milev, A.

    2013-01-01

    Full text: Roughly 14 million new cancer cases and 8 million cancer deaths have occurred worldwide in 2012. At least 30 % of all cancer cases and 40 % of the cancer deaths should be avoided by improving the early detection. Fourier transform infrared (FT-IR) spectroscopy has shown many advantages as a tool for the detection of cancer over the traditional methods such as histopathological analysis, X-ray transmission, ultrasonic and computer tomography techniques. With the aim to establish the FT-IR spectroscopy as an alternative method for the diagnosis of human cancers, we have made several studies to examine in details the spectroscopic properties of normal and carcinomatous tissues. Human breast tissues were obtained immediately after surgical breast resection with the informed patient's consent. In our studies we made extensive use of Fourier self-deconvolution, second-order derivatization, difference spectra, curve-fitting procedures and quantitative determinations according to Beer's law. Cancer is a multi-step process. Characteristic differences in both the frequencies and the intensity ratios of several bands have been revealed. Considerable differences have been found in the spectral patterns. The most important and informative region in the mid-IR for determination of protein secondary structure is the amide I and amide II region. The bands between 1730 and 1600 cm -1 are highly sensitive to conformational changes. Considerable changes were observed in the A1735/A1652 absorbance ratio, which provides a measure for the content of a- helix and P-sheet domains. Our investigations have shown that the major biomarker peaks are in the amide I and amide II regions. In the so called 'fingerprint region' many molecular constituents such as lipids, phospholipids, proteins, DNA and RNA, carbohydrates and metabolites may overlap and the quantitative interpretation is impossible. The spectrum may therefore reflect only the average biochemical composition.; key words

  20. Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis

    Czech Academy of Sciences Publication Activity Database

    Řeháková, Klára; Johansen, J. R.; Bowen, M.B.; Martin, M.P.; Sheil, C.A.

    2014-01-01

    Roč. 14, č. 2 (2014), s. 161-178 ISSN 1802-5439 Institutional support: RVO:60077344 Keywords : 16S rRNA secondary structure * cyanobacteria * phylogeny Subject RIV: EE - Microbiology, Virology Impact factor: 1.930, year: 2014

  1. Phenomenon of primary and secondary extinction in textured material

    International Nuclear Information System (INIS)

    Kryshtab, T.G.; Palacios G, J.; Mazin, M.O.

    2002-01-01

    A new X-ray diffraction method is proposed for a more exact calculation of pole figures to determine the crystallite orientation distribution function (CODF) in textured materials, by the introduction of a correction of the integrated intensity of the diffracted beam due to the phenomenon of extinction. Besides, for the case of a symmetrical Bragg reflection from an ''infinitely thick'' flat parallel plate textured sample a simple solution is developed for the problem of separation and determination of primary and secondary extinction parameters, which can be present simultaneously. The determination of these parameters gives additional information about crystallite structure and allows us to evaluate the average subgrains size and their disorientation, respectively. In this work according to the dynamic diffraction theory, it is shown that the extinction length, which is directly connected with the phenomenon of primary extinction, in the Bragg geometry for σ polarization (perpendicular) is independent on the wavelength used for a given reflection. On the other hand, the additional contribution from secondary extinction depends on X-ray wavelength due to the change of effective absorption coefficient. Considering this fact, the calculations of pole density and the parameters of primary and secondary extinction are performed using the same strong reflection for two different wavelengths and, for one of these wavelengths, a second order of reflection. For confirmation of the proposed method a partially cold rolled aluminium sample and an aluminium powder standard sample were measured. The corrected pole densities, the values of primary and secondary extinction and the average sizes of perfect coherent areas and average angle of disorientation of subgrains in the selected directions were obtained. The obtained results show that the precise X-ray diffraction characterization of textured materials requires the consideration, in general, of primary as well as secondary

  2. How does vegetation structure influence woodpeckers and secondary cavity nesting birds in African cork oak forest?

    Science.gov (United States)

    Segura, Amalia

    2017-08-01

    The Great Spotted Woodpecker provides important information about the status of a forest in terms of structure and age. As a primary cavity creator, it provides small-medium size cavities for passerines. However, despite its interest as an ecosystem engineer, studies of this species in Africa are scarce. Here, spatially explicit predictive models were used to investigate how forest structural variables are related to both the Great Spotted Woodpecker and secondary cavity nesting birds in Maamora cork oak forest (northwest Morocco). A positive association between Great Spotted Woodpecker and both dead-tree density and large mature trees (>60 cm dbh) was found. This study area, Maamora, has an old-growth forest structure incorporating a broad range of size and condition of live and dead trees, favouring Great Spotted Woodpecker by providing high availability of foraging and excavating sites. Secondary cavity nesting birds, represented by Great Tit, African Blue Tit, and Hoopoe, were predicted by Great Spotted Woodpecker detections. The findings suggest that the conservation of the Maamora cork oak forest could be key to maintaining these hole-nesting birds. However, this forest is threatened by forestry practises and livestock overgrazing and the challenge is therefore to find sustainable management strategies that ensure conservation while allowing its exploitation.

  3. Buckling of Ship Structures

    CERN Document Server

    Shama, Mohamed

    2013-01-01

    Buckling of Ship Structures presents a comprehensive analysis of the buckling problem of ship structural members. A full analysis of the various types of loadings and stresses imposed on ship plating and primary and secondary structural members is given. The main causes and consequences of the buckling mode of failure of ship structure and the methods commonly used to control buckling failure are clarified. This book contains the main equations required to determine the critical buckling stresses for both ship plating and the primary and secondary stiffening structural members. The critical buckling stresses are given for ship plating subjected to the induced various types of loadings and having the most common boundary conditions encountered in ship structures.  The text bridges the gap existing in most books covering the subject of buckling of ship structures in the classical analytical format, by putting the emphasis on the practical methods required to ensure safety against buckling of ship structur...

  4. Algorithm of athletes’ fitness structure individual features’ determination with the help of multidimensional analysis (on example of basketball

    Directory of Open Access Journals (Sweden)

    Zh.L. Kozina

    2017-10-01

    Full Text Available Purpose: to determine main laws of determination of athletes’ fitness structure’s individual characteristics with the help of multidimensional analysis (on example of basketball. Material: in the research elite basketball players (n=54 participated. Pedagogic testing included 12 tests, applied in combined teams of Ukraine and Russia. For every test three attempts were given and the best result was registered. The tests were passed during 2-3 training sessions. Results: we worked out general scheme of ways of athletes’ training individualization. For every athlete we determined the groups of leading and secondary factors in individual structure of fitness. The process of athletes’ training shall contain basic and variable components. Basic component was 70% of means in general system of athletes' training. Variable component was 30% of means and implies application of individual training means. Percentage of means in individual programs varies depending on the following: leading factors in fitness individual structure; period of individual dynamic of competition efficiency. In every micro-cycle 30% is assigned for athletes’ individual training: athletes received individual tasks; groups on the base of cluster analysis data were formed, if necessary. Conclusions: when working out individual training programs, development of leading factors in individual factorial structure of athletes’ fitness shall be accented. Application of individual programs, combined with universal individualization methods creates preconditions for rising competition activities’ efficiency.

  5. Macromolecular structure determination in the post-genome era

    International Nuclear Information System (INIS)

    Kuhn, P.; Soltis, S.M.

    2001-01-01

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system for the structure determination steps of this process, starting with the initial characterization of the frozen sample, followed by data collection, data reduction, phase determination, and model building. This paper focuses on the data collection elements of this high-throughput system

  6. Effect of Secondary Doping Using Sorbitol on Structure and Transport Properties of PEDOT-PSS Thin Films

    Science.gov (United States)

    Khasim, Syed; Pasha, Apsar; Roy, Aashish S.; Parveen, Ameena; Badi, Nacer

    2017-07-01

    Poly(3,4-ethylene dioxythiophene):poly(styrenesulphonate) (PEDOT-PSS) in the recent past has emerged as one of the most fascinating conducting polymers for many device applications. The unique feature of PEDOT-PSS is its transparency in the entire visible spectrum with excellent thermal stability. The PEDOT-PSS as prepared as an aqueous dispersion has very low conductivity, and it hinders the performance of a device. In this work we report the conductivity enhancement of PEDOT-PSS thin films through secondary doping using a polar organic solvent such as sorbitol. The mechanism of conductivity enhancement was studied through various physical and chemical characterizations. The effect of sorbitol concentration on structure and transport properties of PEDOT-PSS thin films was investigated in detail. The structural and morphological modifications in PEDOT-PSS due to the addition of sorbitol was studied through Fourier transform spectroscopy, Ultra Violet-visible spectroscopy, theromogravimetric analysis, scanning electron microscopy and atomic force microscopy. The interactions resulting from conformational changes of PEDOT chains that changes from coiled to linear structure due to the sorbitol treatment significantly improves the conductivity of PEDOT-PSS films. The secondary doping of sorbitol reduces the energy barrier that facilitates the charge carrier hopping leading to enhanced conductivity. We have observed that the conductivity of PEDOT-PSS thin films was increased by two fold due to sorbitol treatment when compared to conductivity of pure PEDOT-PSS. We have carried out detailed analysis of dielectric parameters of sorbitol-treated PEDOT-PSS films and found that sorbitol treatment has a significant effect on various dielectric attributes of PEDOT-PSS films. Hence, secondary doping using sorbitol could be a useful way to effectively tailor the conductivity and dielectric properties of PEDOT-PSS thin films that can be used as flexible electrodes in

  7. Secondary electron emission from textured surfaces

    Science.gov (United States)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  8. 1H NMR studies of plastocyanin from Scenedesmus obliquus: Complete sequence-specific assignment, secondary structure analysis, and global fold

    International Nuclear Information System (INIS)

    Moore, J.M.; Chazin, W.J.; Wright, P.E.; Powls, R.

    1988-01-01

    Two-dimensional 1 H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight β-strands, one short segment of helix, five reverse turns, and five loops. The β-strands may be arranged into two βsheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key β-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified

  9. Development of XAFS Into a Structure Determination Technique

    Science.gov (United States)

    Stern, E. A.

    After the detection of diffraction of x-rays by M. Laue in 1912, the technique was soon applied to structure determination by Bragg within a year. On the other hand, although the edge steps in X-Ray absorption were discovered even earlier by Barkla and both the near edge (XANES) and extended X-Ray fine structure (EXAFS) past the edge were detected by 1929, it still took over 40 years to realize the structure information contained in this X-Ray absorption fine structure (XAFS). To understand this delay a brief historical review of the development of the scientific ideas that transformed XAFS into the premiere technique for local structure determination is given. The development includes both advances in theoretical understanding and calculational capabilities, and in experimental facilities, especially synchrotron radiation sources. The present state of the XAFS technique and its capabilities are summarized.

  10. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex.

    Science.gov (United States)

    Jenkins, Adam M; Waterhouse, Robert M; Muskavitch, Marc A T

    2015-04-23

    Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries.

  11. A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution.

    Science.gov (United States)

    Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme

    2013-07-01

    The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.

  12. Secondary production in shallow marine environments

    International Nuclear Information System (INIS)

    Pomeroy, L.R.

    1976-01-01

    Recommendations are discussed with regard to population ecology, microbial food webs, marine ecosystems, improved instrumentation, and effects of land and sea on shallow marine systems. The control of secondary production is discussed with regard to present status of knowledge; research needs for studies on dominant secondary producers, food webs that lead to commercial species, and significant features of the trophic structure of shallow water marine communities. Secondary production at the land-water interface is discussed with regard to present status of knowledge; importance of macrophytes to secondary production; export to secondary consumers; utilization of macrophyte primary production; and correlations between secondary production and river discharge. The role of microorganisms in secondary production is also discussed

  13. The incidence angle influence on the structure of secondary-emission characteristics of single crystals

    International Nuclear Information System (INIS)

    Gasanov, E.R.; Aliyev, B.Z.

    2012-01-01

    Full text : The dependences of Wand MO single crystals in different atom planes have been studied in this work. It is revealed that maximums are added to each dependency and also minimums of first and second degree. This fact is explained by diffraction dynamic theory. It is established that electron diffraction oriented not perpendicularly to crystal surface is the reason of appearance of second order structure on studied secondary-emission characteristics. In the present work being the continuation and development of SEE investigations of high-melting metal single crystals begun earlier by authors, the structure dependence of SEE main characteristics of angle has been studied. This angle has been chosen because as it is mentioned before the bad repeatability in different experiments for it is observed

  14. Monomer-dependent secondary nucleation in amyloid formation.

    Science.gov (United States)

    Linse, Sara

    2017-08-01

    Secondary nucleation of monomers on the surface of an already existing aggregate that is formed from the same kind of monomers may lead to autocatalytic amplification of a self-assembly process. Such monomer-dependent secondary nucleation occurs during the crystallization of small molecules or proteins and self-assembled materials, as well as in protein self-assembly into fibrous structures. Indications of secondary nucleation may come from analyses of kinetic experiments starting from pure monomers or monomers supplemented with a low concentration of pre-formed aggregates (seeds). More firm evidence requires additional experiments, for example those employing isotope labels to distinguish new aggregates arising from the monomer from those resulting from fragmentation of the seed. In cases of amyloid formation, secondary nucleation leads to the formation of toxic oligomers, and inhibitors of secondary nucleation may serve as starting points for therapeutic developments. Secondary nucleation displays a high degree of structural specificity and may be enhanced by mutations or screening of electrostatic repulsion.

  15. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C' scalar couplings (3hbJNC')

    Energy Technology Data Exchange (ETDEWEB)

    Bonvin, Alexandre M.J.J.; Houben, Klaartje; Guenneugues, Marc; Kaptein, Robert; Boelens, Rolf [Utrecht University, Bijvoet Center for Biomolecular Research, NMR Spectroscopy (Netherlands)

    2001-11-15

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small {alpha}/{beta} protein chymotrypsin inhibitor 2. Dihedral angle restraints for the {phi} and {psi} angles of 32 out of 64 residues could be obtained from secondary chemical shift analysis with the TALOS program (Corneliscu et al., 1999a). This information was supplemented by 18 hydrogen-bond restraints derived from experimentally measured cross-hydrogen bond {sup 3hb}J{sub NC'} coupling constants. These experimental data were sufficient to generate structures that are as close as 1.0 A backbone rmsd from the crystal structure. The fold is, however, not uniquely defined and several solutions are generated that cannot be distinguished on the basis of violations or energetic considerations. Correct folds could be identified by combining clustering methods with knowledge-based potentials derived from structural databases.

  16. Salient design features of secondary containment structure of Narora Atomic Power Project

    International Nuclear Information System (INIS)

    Rahalkar, B.D.

    1975-01-01

    Design of the secondary containment structure for Narora Atomic Power Project is an improvement over the two earlier structures at of Rajasthan and Kalpakkam wherein Candu-type of reactors are involved. The major improvements envisaged are : to limit the leakage through the double containment envelope to 0.1% of volume of the building per day as against 0.1% per hour achieved for earlier stations; to separate heavy water atmosphere from that of light water for effective heavy water recovery; and better man-rem budgetting by limiting inner containment structure upto boiler room floor level and making boiler room area accessible during normal operation for servicing of light water system equipment. Narora Atomic Power Station is located in the Indo-Gangetic alluvial plains in seismically active zone IV. Comprehensive soil investigation, including dynamic properties of soil is required to be undertaken as the foundation level of the containment structure is 17 M below the ground level. The salient results of this investigation relevant to the foundations as well as type of foundation proposed are presented in brief. Double containment concept similar to that adopted for Kalpakkam station is provided for this station also. However, necessary changes in design to withstand large earthquake forces are required to be made. These design problems are discussed in brief. (author)

  17. De novo protein structure determination using sparse NMR data

    International Nuclear Information System (INIS)

    Bowers, Peter M.; Strauss, Charlie E.M.; Baker, David

    2000-01-01

    We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with ∼1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined

  18. Observed lesson structure during the first year of secondary education : Exploration of change and link with academic engagement

    NARCIS (Netherlands)

    Maulana, Ridwan; Opdenakker, Marie-Christine; Stroet, Kim; Bosker, Roel

    This study investigates whether lesson structure (LS) matters and which components are important for academic engagement during the first grade of secondary education. Data from videoed lessons of 10 Dutch and 12 Indonesian teachers analyzed using an observation protocol show that six LS components

  19. [Partially unfolded state of lysozyme with a developed secondary structure in dimethylsulfoxide].

    Science.gov (United States)

    Timchenko, A A; Kirkitadze, M D; Prokhorov, D A; Potekhin, S A; Serdiuk, I N

    1996-06-01

    The conformation of a chicken egg lysozyme molecule (dimensions, stoichiometry of its associates, and the degree of helicity) in DMSO was studied by small-angle neutron scattering, dynamic light scattering, and optical rotatory dispersion in the visible region of the spectrum. At high DMSO concentrations (70%), the protein was shown to exist as a dimer. The monomer molecules in the dimer adopt a partially unfolded conformation, with dimensions substantially greater than those in the native state and a high content of secondary structure (the degree of helicity is close to that of native lysozyme). This approach provides a unique possibility to assess the compactness of molecules in associates, which may be very useful in studying protein self-organization.

  20. Depression, anxiety, and suicidal ideation among Vietnamese secondary school students and proposed solutions: A cross-sectional study

    OpenAIRE

    Nguyen, Dat Tan; Dedding, Christine; Pham, Tam Thi; Wright, Pamela; Bunders-Aelen, J.G.F.

    2013-01-01

    Background: There is a rapidly growing public awareness of mental health problems among Vietnamese secondary school students. This study aims to determine the prevalence of anxiety, depression, and suicidal ideation, to identify related risk factors, and to explore students' own proposals for improving their mental health. Methods. A cross-sectional study was conducted among 1161 secondary students in Can Tho City, Vietnam during September through December, 2011. A structured questionnaire wa...

  1. In cellulo structure determination of a novel cypovirus polyhedrin

    International Nuclear Information System (INIS)

    Axford, Danny; Ji, Xiaoyun; Stuart, David I.; Sutton, Geoff

    2014-01-01

    The crystal structure of a previously unsolved type of cypovirus polyhedrin has been determined from data collected directly from frozen live insect cells. This work demonstrates that with the use of a microfocus synchrotron beam the structure of a novel viral polyhedrin could be successfully determined from microcrystals within cells, removing the preparatory step of sample isolation and maintaining a favourable biological environment. The data obtained are of high quality, comparable to that obtained from isolated crystals, and enabled a facile structure determination. A small but significant difference is observed between the unit-cell parameters and the mosaic spread of in cellulo and isolated crystals, suggesting that even these robust crystals are adversely affected by removal from the cell

  2. Transformation of Taiwan's Upper Secondary Education System

    Directory of Open Access Journals (Sweden)

    Hueih-Lirng Laih

    1998-09-01

    Full Text Available This paper explores the policy issues circling around the structural "transition" in upper secondary education implicit in the twenty-year increase in secondary and third-level school enrollment rates in Taiwan. This expansion has taken place within a secondary school system which is rigidly divided into both general, i.e., academic, and vocational tracks and into public and private sectors: the majority of students are enrolled in the private vocational sector which is only loosely articulated with the university sector. These features of the school system are analysed against the background of social and economic developments in Taiwan as well as public opinion. The analysis suggests that the present structures of school must be "reformed" in ways that will result in a more unified secondary system with both greater public funding and better articulation of all school types with the third level. The policy options that circle around the possibility of such reforms in the areas of curriculum, examination structures and second level-third level articulation are discussed and a policy framework for the reform of the Taiwan secondary education sector is outlined.

  3. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  4. Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C’ scalar couplings (3hbJNC’)

    NARCIS (Netherlands)

    Bonvin, A.M.J.J.; Houben, K.; Guenneugues, M.N.L.; Kaptein, R.; Boelens, R.

    2001-01-01

    The possibility of generating protein folds at the stage of backbone assignment using structural restraints derived from experimentally measured cross-hydrogen bond scalar couplings and secondary chemical shift information is investigated using as a test case the small alpha/beta protein

  5. Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Cobaugh Christian W

    2004-08-01

    Full Text Available Abstract Background A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1. Results The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases. Conclusion Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.

  6. Landscape perception based on personal attributes in determining the scenic beauty of in-stand natural secondary forests

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-06-01

    Full Text Available The aim of this paper was to validate factors affecting the in-stand landscape quality and how important each factor was in determining scenic beauty of natural secondary forests. The study was limited to 23 stand-level cases of natural secondary forests in Shen Zhen city in southern China. Typical samples of photographs and public estimations were applied to evaluate scenic beauty inside the natural secondary forests. The major factors were then selected by multiple linear-regression analysis and a model between scenic beauty estimation (SBE values and in-stand landscape features was established. Rise in crown density, fall in plant litter, glow in color of trunk, fall in arbor richness, and rise in visible distance increased scenic beauty values of in-stand landscape. These five factors significantly explained the differences in scenic beauty, and together accounted for 45% of total variance in SBEs. Personal factors (e.g. gender, age and education did not significantly affect the ratings of landscape photos, although variations of landscape quality were affected by some personal factors. Results of this study will assist policymakers, silviculturists and planners in landscape design and management of natural secondary forests in Shenzhen city. People can improve the scenic beauty values by pruning branches and clearing plant litter, which subsequently improve the forest health and contribute to forest recreation.

  7. Electromagnetic Fields Effects on the Secondary Structure of Lysozyme and Bioprotective Effectiveness of Trehalose

    Directory of Open Access Journals (Sweden)

    Emanuele Calabrò

    2012-01-01

    Full Text Available FTIR spectroscopy was used to investigate the effects of extremely low frequency (50 Hz electromagnetic field and of microwaves at 900 MHz on the secondary structure of a typical protein, the lysozyme, evaluating the bioprotective effectiveness of trehalose. Lysozyme in D2O solution (60 mg/ml was exposed to 50 Hz frequency electromagnetic field at 180 μT. The FTIR spectra indicated an increase of CH2 group at 1921 and 1853 cm−1 after 3 h of exposure. Such effect was not observed after the addition of trehalose (150 mg/mL at the same exposure conditions. Lysozyme dissolved in D2O at the concentration of 100 mg/mL was exposed up to 4 h to 900 MHz mobile phone microwaves at 25 mA/m. A significant increase in intensity of the amide I vibration band in the secondary structure of the protein was observed after 4 h exposure to microwaves. This effect was inhibited by the presence of trehalose at the concentration of 150 mg/mL. Fourier self-deconvolution spectral analysis of lysozyme in D2O solution after exposure to microwaves revealed an increase in intensity of the conformational components of amide I mode, particularly of β-sheet and turn that can be attributed to disorder and unfolding processes of the protein.

  8. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    OpenAIRE

    Jing Guo; Keming Fang; Hanjie Guo; Yiwa Luo; Shengchao Duan; Xiao Shi; Wensheng Yang

    2018-01-01

    The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to deter...

  9. Short Oligonucleotides Aligned in Stretched Humid Matrix: Secondary DNA Structure in Poly(vinyl alcohol) Environment

    KAUST Repository

    Hanczyc, Piotr

    2012-04-24

    We report that short, synthetic, double- as well as single-stranded DNA can be aligned in stretched humid poly(vinyl alcohol) (PVA) matrix, and the secondary structure (nucleobase orientation) can be characterized with linear dichroism (LD) spectroscopy. Oligonucleotides of lengths varying between 10 (3.4 nm) and 60 bases (20.4 nm) were investigated with respect to structural properties in the gel-like polymer environment. The DNA conformation as a function of relative humidity reveals a strong dependence of helical structure of DNA on PVA hydration level, results of relevance for nanotechnical studies of DNA-based supramolecular systems. Also, the PVA gel could provide possibilities to test models for nucleic acid interactions and distribution in cell contexts, including structural stability of genetic material in the cell and PVA-packaging for gene delivery. A method by which duplex oligonucleotides, with sequences designed to provide specific binding sites, become amenable to polarized-light spectroscopy opens up new possibilities for studying structure in DNA complexes with small adduct molecules as well as proteins. © 2012 American Chemical Society.

  10. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan [Institute of Biotechnology CAS, Videnska 1083, 142 20 Prague (Czech Republic)

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  11. An efficient method for the prediction of deleterious multiple-point mutations in the secondary structure of RNAs using suboptimal folding solutions

    Directory of Open Access Journals (Sweden)

    Barash Danny

    2008-04-01

    Full Text Available Abstract Background RNAmute is an interactive Java application which, given an RNA sequence, calculates the secondary structure of all single point mutations and organizes them into categories according to their similarity to the predicted structure of the wild type. The secondary structure predictions are performed using the Vienna RNA package. A more efficient implementation of RNAmute is needed, however, to extend from the case of single point mutations to the general case of multiple point mutations, which may often be desired for computational predictions alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires traversing all possible mutations, becomes highly expensive since the running time is O(nm for a sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method that selects only those mutations, based on stability considerations, which are likely to be conformational rearranging. The approach is best examined using the dot plot representation for RNA secondary structure. Results Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated once. Then, specific mutations are selected that are most likely to cause a conformational rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3, for example, the proposed method reduces the running time from several hours or even days to several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point mutations. Conclusion A highly efficient addition to RNAmute that is as user friendly as the original application but that facilitates the practical analysis of multiple-point mutations is presented. Such an extension can now be exploited prior to site-directed mutagenesis experiments by virologists, for example, who investigate the change of function in an RNA virus via mutations that disrupt important motifs in its secondary

  12. Probing the glycosidic linkage: secondary structures in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Simons, John P; Cristina Stanca-Kaposta, E; Cocinero, Emilio J; Liu, B [Chemistry Department, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ (United Kingdom); Davis, Benjamin G; Gamblin, David P [Chemistry Department, Chemical Research Laboratory, 12 Mansfield Road, Oxford OX1 4TA (United Kingdom); Kroemer, Romano T [Sanofi-Aventis, CRVA, 13 quai Jules Guesde, BP14, 94403 Vitry-sur-Seine (France)], E-mail: John.Simons@chem.ox.ac.uk

    2008-10-15

    The functional importance of carbohydrates in biological processes, particularly those involving specific molecular recognition, is immense. Characterizing the three-dimensional (3D) structures of carbohydrates and glycoproteins, and their interactions with other molecules, not least the ubiquitous solvent, water, is a key starting point for understanding these processes. The combination of laser-based electronic and vibrational spectroscopy of mass-selected carbohydrate molecules and their hydrated complexes, conducted under molecular beam conditions, with ab initio computation is providing a uniquely powerful means of characterizing 3D carbohydrate conformations; the structures of their hydrated complexes, the hydrogen-bonded networks they support (or which support them); and the factors that determine their conformational and structural preferences.

  13. Probing the glycosidic linkage: secondary structures in the gas phase

    International Nuclear Information System (INIS)

    Simons, John P; Cristina Stanca-Kaposta, E; Cocinero, Emilio J; Liu, B; Davis, Benjamin G; Gamblin, David P; Kroemer, Romano T

    2008-01-01

    The functional importance of carbohydrates in biological processes, particularly those involving specific molecular recognition, is immense. Characterizing the three-dimensional (3D) structures of carbohydrates and glycoproteins, and their interactions with other molecules, not least the ubiquitous solvent, water, is a key starting point for understanding these processes. The combination of laser-based electronic and vibrational spectroscopy of mass-selected carbohydrate molecules and their hydrated complexes, conducted under molecular beam conditions, with ab initio computation is providing a uniquely powerful means of characterizing 3D carbohydrate conformations; the structures of their hydrated complexes, the hydrogen-bonded networks they support (or which support them); and the factors that determine their conformational and structural preferences.

  14. Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure

    Czech Academy of Sciences Publication Activity Database

    Réblová, Martina; Untereiner, W. A.; Réblová, K.

    2013-01-01

    Roč. 8, č. 5 (2013), e63547 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/0038 Institutional support: RVO:67985939 Keywords : Cyphelophora * Phialophora * secondary structure Subject RIV: EF - Botanics Impact factor: 3.534, year: 2013

  15. Changes in Children's Autonomous Motivation toward Physical Education during Transition from Elementary to Secondary School: A Self-Determination Perspective

    Science.gov (United States)

    Rutten, Cindy; Boen, Filip; Vissers, Nathalie; Seghers, Jan

    2015-01-01

    Based on Self-Determination Theory (Deci & Ryan, 2000), this study tested whether changes in autonomous motivation toward physical education (AMPE) during the transition from elementary to secondary school can be predicted by changes in perceived need support from the physical education (PE) teacher and perceived physical school environment.…

  16. Studies on the determination of surface deuterium in AISI 1062, 4037, and 4140 steels by secondary ion mass spectrometry

    Science.gov (United States)

    Sastri, V. S.; Donepudi, V. S.; McIntyre, N. S.; Johnston, D.; Revie, R. W.

    1988-12-01

    The concentration of deuterium at the surface of cathodically charged high strength steels AISI 1062, 4037, and 4140 has been determined by secondary ion mass spectrometry (SIMS). The beneficial effects of pickling in NAP (a mixture of nitric, acetic, and phosphoric acids) to remove surfacebound deuterium have been observed.

  17. Capital Structure Determinants of Small and Medium Enterprises in Croatia

    Directory of Open Access Journals (Sweden)

    Nataša Šarlija

    2016-09-01

    Full Text Available Most of the research about capital structure is focused towards two theories: trade off theory (TOT and pecking order theory (POT. The idea is to explore which theory works better in certain conditions and identify the key determinants that affect the capital structure of the company. However, in different countries different determinants with opposite relation to the leverage are found to be significant. Besides, most of the previous researches are oriented on listed companies. The aim of this paper is to analyse the capital structure of small and medium enterprises in Croatia through the analysis of the fundamental determinants of the capital structure. The research was conducted on a data sample of 500 SMEs in Croatia in the period of 2005–2011. On the unbalanced panel data set a linear regression is applied. Influence of determinants on leverage is estimated by a static panel model with random effect and with fixed effect estimation. Four capital structure determinants are analysed: growth, size, profitability and tangible assets. The results of this research support the pecking order theory confirming that SMEs in Croatia are primarily financed frominternally generated funds that affect profitability, growth, tangible assets and enterprise size.

  18. The determinants of capital structure: evidence from Dutch panel data

    OpenAIRE

    Chen, Linda H.; Lensink, Robert; Sterken, Elmer

    1999-01-01

    This paper studies the determinants of capital structure choice of Dutch firms. Our main objective is to investigate whether and to what extent the main capital structure theories can explain capital structure choice of Dutch firms. A better understanding of the capital structure determinants in a rela-tively small yet open industrialized economy is essential not only for enrich-ing empirical studies in this field, but also for the purpose of cross country asset evaluation. By estimating a pa...

  19. Transaction cost determinants of credit governance structures of ...

    African Journals Online (AJOL)

    This paper explores transaction cost determinants of credit governance structures (CGS) of commercial banks in Tanzania. Descriptive statistics, linear regression model, binary and multinomial logistic regression models were employed for analysis. Findings revealed four modes of credit governance structures that are ...

  20. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, Thomas C. T., E-mail: tctm3@cam.ac.uk; Lazell, Hamish W.; Arosio, Paolo; Knowles, Tuomas P. J., E-mail: tpjk2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-08-07

    The formation of aggregates in many protein systems can be significantly accelerated by secondary nucleation, a process where existing assemblies catalyse the nucleation of new species. In particular, secondary nucleation has emerged as a central process controlling the proliferation of many filamentous protein structures, including molecular species related to diseases such as sickle cell anemia and a range of neurodegenerative conditions. Increasing evidence suggests that the physical size of protein filaments plays a key role in determining their potential for deleterious interactions with living cells, with smaller aggregates of misfolded proteins, oligomers, being particularly toxic. It is thus crucial to progress towards an understanding of the factors that control the sizes of protein aggregates. However, the influence of secondary nucleation on the time evolution of aggregate size distributions has been challenging to quantify. This difficulty originates in large part from the fact that secondary nucleation couples the dynamics of species distant in size space. Here, we approach this problem by presenting an analytical treatment of the master equation describing the growth kinetics of linear protein structures proliferating through secondary nucleation and provide closed-form expressions for the temporal evolution of the resulting aggregate size distribution. We show how the availability of analytical solutions for the full filament distribution allows us to identify the key physical parameters that control the sizes of growing protein filaments. Furthermore, we use these results to probe the dynamics of the populations of small oligomeric species as they are formed through secondary nucleation and discuss the implications of our work for understanding the factors that promote or curtail the production of these species with a potentially high deleterious biological activity.

  1. Determination of plutonium by secondary coulometric titration with internally generated iron(II) Pt. 2

    International Nuclear Information System (INIS)

    Chitnis, R.T.; Talnikar, S.G.; Thakur, V.A.; Paranjape, A.H.

    1979-01-01

    Determination of plutonium by secondary coulometry involving the controlled potential technique for the generation of an iron(II) mediator, is reported in Part I. In this paper, the same determination is reported using constant current coulometry for the generation of the mediator, and zero current potentiometry for end-point detection. The factors affecting the current efficiency, viz. current density and supporting electrolyte composition have been checked in order to define the appropriate conditions for obtaining 100% current efficiency. The original method of Carson et al. suffers from the disadvantage that it involves complicated sample treatment. Introduction of perchloric acid treatment as a method for the oxidation of plutonium and the pretitration of the supporting electrolyte to the end-point potential prior to sample addition, have considerably helped to improve the precision and accuracy of the method. Exhaustive analytical data are reported covering plutonium quantities ranging from 25 micrograms to 5 milligrams, which establishes the scope of the method. (author)

  2. Determinants of capital structure and financial crisis impact: evidence

    OpenAIRE

    Proença, Pedro Miguel Correia

    2012-01-01

    Mestrado em contabilidade The objectives of this empirical work are to investigate the determinants of Portuguese SMEs capital structure, evaluate whether and how the impacts of those determinants affect the debt ratios and examine the effects of financial crisis and industry on Portuguese SMEs capital structure. The sample used considers the period 2007-2010, resulting in 12.857 Portugues e SMEs per year observations. R...

  3. Observed Lesson Structure during the First Year of Secondary Education: Exploration of Change and Link with Academic Engagement

    Science.gov (United States)

    Maulana, Ridwan; Opdenakker, Marie-Christine; Stroet, Kim; Bosker, Roel

    2012-01-01

    This study investigates whether lesson structure (LS) matters and which components are important for academic engagement during the first grade of secondary education. Data from videoed lessons of 10 Dutch and 12 Indonesian teachers analyzed using an observation protocol show that six LS components are found, that between class and over…

  4. X-ray structure determination and deuteration of nattokinase

    International Nuclear Information System (INIS)

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Naito, Sawa; Ohsugi, Tadanori; Yatagai, Chieko; Sumi, Hiroyuki; Kawaguchi, Akio; Chiba-Kamosida, Kaori; Ogawa, Megumi; Adachi, Tatsumi; Morimoto, Yukio

    2013-01-01

    X-ray structure determination and deuteration of nattokinase were performed to facilitate neutron crystallographic analysis. Nattokinase (NK) is a strong fibrinolytic enzyme, which is produced in abundance by Bacillus subtilis natto. Although NK is a member of the subtilisin family, it displays different substrate specificity when compared with other subtilisins. The results of molecular simulations predict that hydrogen arrangements around Ser221 at the active site probably account for the substrate specificity of NK. Therefore, neutron crystallographic analysis should provide valuable information that reveals the enzymatic mechanism of NK. In this report, the X-ray structure of the non-hydrogen form of undeuterated NK was determined, and the preparation of deuterated NK was successfully achieved. The non-hydrogen NK structure was determined at 1.74 Å resolution. The three-dimensional structures of NK and subtilisin E from Bacillus subtilis DB104 are near identical. Deuteration of NK was carried out by cultivating Bacillus subtilis natto in deuterated medium. The D 2 O resistant strain of Bacillus subtilis natto was obtained by successive cultivation rounds, in which the concentration of D 2 O in the medium was gradually increased. NK was purified from the culture medium and its activity was confirmed by the fibrin plate method. The results lay the framework for neutron protein crystallography analysis

  5. Using molecular principal axes for structural comparison: determining the tertiary changes of a FAB antibody domain induced by antigenic binding

    Directory of Open Access Journals (Sweden)

    Silverman B David

    2007-11-01

    Full Text Available Abstract Background Comparison of different protein x-ray structures has previously been made in a number of different ways; for example, by visual examination, by differences in the locations of secondary structures, by explicit superposition of structural elements, e.g. α-carbon atom locations, or by procedures that utilize a common symmetry element or geometrical feature of the structures to be compared. Results A new approach is applied to determine the structural changes that an antibody protein domain experiences upon its interaction with an antigenic target. These changes are determined with the use of two different, however comparable, sets of principal axes that are obtained by diagonalizing the second-order tensors that yield the moments-of-geometry as well as an ellipsoidal characterization of domain shape, prior to and after interaction. Determination of these sets of axes for structural comparison requires no internal symmetry features of the domains, depending solely upon their representation in three-dimensional space. This representation may involve atomic, Cα, or residue centroid coordinates. The present analysis utilizes residue centroids. When the structural changes are minimal, the principal axes of the domains, prior to and after interaction, are essentially comparable and consequently may be used for structural comparison. When the differences of the axes cannot be neglected, but are nevertheless slight, a smaller relatively invariant substructure of the domains may be utilized for comparison. The procedure yields two distance metrics for structural comparison. First, the displacements of the residue centroids due to antigenic binding, referenced to the ellipsoidal principal axes, are noted. Second, changes in the ellipsoidal distances with respect to the non-interacting structure provide a direct measure of the spatial displacements of the residue centroids, towards either the interior or exterior of the domain

  6. Fourier transform infrared spectroscopic studies of the secondary structure and thermal denaturation of CaATPase from rabbit skeletal muscle

    Science.gov (United States)

    Jaworsky, Mark; Brauner, Joseph W.; Mendelsohn, Richard

    Fourier transform i.r. spectroscopy has been used to monitor structural alterations induced by thermal denaturation of the intrinsic membrane protein CaATPase in aqueous media. The protein has been isolated, purified and studied in five forms: (i) In its native lipid environment after isolation from rabbit sarcoplasmic reticulum, both in H 2O and D 2O suspensions. (ii) After both mild and extensive tryptic digestion has cleaved those residues external to the membrane bilayer. (iii) Reconstituted in vesicle form with bovine brain sphingomyelin. Fourier deconvolution techniques have been used to enhance the resolution of the intrinsically overlapped Amide I and Amide II spectral regions. Large spectral alterations apparent in the deconvoluted spectra occur in these regions upon thermal denaturation of the protein which are consistent with the formation of a large proportion of β-antiparallel sheet form. The alteration parallels the loss in ATPase activity. A mild tryptic digestion increases slightly the proportion of α-helix and/or random coil secondary structure. A thermal transition to a form containing a high proportion of β structure is still evident. Extensive tryptic digestion nearly abolishes the alpha helical plus random coil secondary structure, while producing a high proportion of β form which is resistant to further thermally induced structural alterations. Studies of CaATPase reconstituted into vesicles with bovine brain sphingomyelin reveal a higher proportion of β structure than the native enzyme, with further introduction of β structure on thermal denaturation. Both the utility of deconvolution techniques and the necessity for caution in their application are apparent from the current experiments.

  7. Structural determinants of students' employability: Influence of ...

    African Journals Online (AJOL)

    Structural determinants of students' employability: Influence of career ... greatest influence on students' employability, followed by decision-making skills, and ... efforts in developing app-ropriate strategies so as to engage undergraduates with ...

  8. IRSS: a web-based tool for automatic layout and analysis of IRES secondary structure prediction and searching system in silico

    Directory of Open Access Journals (Sweden)

    Hong Jun-Jie

    2009-05-01

    Full Text Available Abstract Background Internal ribosomal entry sites (IRESs provide alternative, cap-independent translation initiation sites in eukaryotic cells. IRES elements are important factors in viral genomes and are also useful tools for bi-cistronic expression vectors. Most existing RNA structure prediction programs are unable to deal with IRES elements. Results We designed an IRES search system, named IRSS, to obtain better results for IRES prediction. RNA secondary structure prediction and comparison software programs were implemented to construct our two-stage strategy for the IRSS. Two software programs formed the backbone of IRSS: the RNAL fold program, used to predict local RNA secondary structures by minimum free energy method; and the RNA Align program, used to compare predicted structures. After complete viral genome database search, the IRSS have low error rate and up to 72.3% sensitivity in appropriated parameters. Conclusion IRSS is freely available at this website http://140.135.61.9/ires/. In addition, all source codes, precompiled binaries, examples and documentations are downloadable for local execution. This new search approach for IRES elements will provide a useful research tool on IRES related studies.

  9. Denotational, Causal, and Operational Determinism in Event Structures

    NARCIS (Netherlands)

    Rensink, Arend; Kirchner, H.

    1996-01-01

    Determinism of labelled transition systems and trees is a concept of theoretical and practical importance. We study its generalisation to event structures. It turns out that the result depends on what characterising property of tree determinism one sets out to generalise. We present three distinct

  10. Denotational, Causal, and Operational Determinism in Event Structures

    NARCIS (Netherlands)

    Rensink, Arend

    Determinism is a theoretically and practically important concept in labelled transition systems and trees. We study its generalisation to event structures. It turns out that the result depends on what characterising property of tree determinism one sets out to generalise. We present three distinct

  11. Prediction of the secondary structure of the mitochondrial tRNASer (UCN) of Lutzomyia hartmanni (Diptera: Psychodidae)

    International Nuclear Information System (INIS)

    Perez Doria, Alveiro; Bejarano, Eduar E

    2011-01-01

    Lutzomyia (Helcocyrtomyia) hartmanni is a sand fly that has been implicated in the transmission of Leishmania (Viannia) colombiensis, an etiologic agent of cutaneous Leishmaniasis in Colombia. The objective of this work was to explore the potential usefulness of the mitochondrial serine transfer RNA (UCN) (tRNASer) in the taxonomic determination of L. hartmanni. Mitochondrial DNA was extracted, amplified and sequenced from entomological material collected in Envigado, Antioquia, Colombia. The tRNASer gene length was 68 nucleotide pairs, with an average adenine-thymine content of 80.9%. The studied tRNASer differs from other sand fly tRNASer known to date, on the basis of its primary and secondary structure. The observed number of intrachain base pairing was 7 in the acceptor arm, 3 in the dihydrouridine (DHU) arm, 5 in the anticodon arm, and 5 in the ribothymidine-pseudouridine-cytosine (TC) arm. The size of the DHU, anticodon, variable and TC loops was estimated to be 5, 7, 4, and 8 nucleotides, respectively. The notorious absence of non-Watson-Crick base pairs in the four arms of the tRNASer distinguishes that of L. hartmanni from others Lutzomyia spp.

  12. Making Sense of Abstract Algebra: Exploring Secondary Teachers' Understandings of Inverse Functions in Relation to Its Group Structure

    Science.gov (United States)

    Wasserman, Nicholas H.

    2017-01-01

    This article draws on semi-structured, task-based interviews to explore secondary teachers' (N = 7) understandings of inverse functions in relation to abstract algebra. In particular, a concept map task is used to understand the degree to which participants, having recently taken an abstract algebra course, situated inverse functions within its…

  13. Representing Personal Determinants in Causal Structures.

    Science.gov (United States)

    Bandura, Albert

    1984-01-01

    Responds to Staddon's critique of the author's earlier article and addresses issues raised by Staddon's (1984) alternative models of causality. The author argues that it is not the formalizability of causal processes that is the issue but whether cognitive determinants of behavior are reducible to past stimulus inputs in causal structures.…

  14. Clinical significance of determination serum sex hormones levels in patients with secondary amenorrhea

    International Nuclear Information System (INIS)

    Jiang Hua

    2007-01-01

    Objective: To explore the clinical significance of changes of serum sex hormones levels in patients with secondary amenorrhea. Methods: Serum levels of E 2 , FSH, LH, PRL and P were detected with RIA in 33 patients with secondary amenorrhea and 30 controls. Results: In the patients, the serum E 2 levels were significantly lower and FSH, LH, PRL and P levels were significantly higher than those in controls (P 2 , FSH, LH, PRL and P levels is of help for assessment of severity of secondary amenorrhea as well as outcome prediction. (authors)

  15. Organizational Structure as a Determinant of Job Burnout.

    Science.gov (United States)

    Bilal, Atif; Ahmed, Hafiz Mushtaq

    2017-03-01

    This exploratory study determined the impact of organizational structure, particularly participation in decision making, instrumental communication, formalization, integration, and promotional opportunity, on burnout among Pakistani pediatric nurses. Data were collected from pediatric nurses working for Punjab's largest state-run hospital. The findings revealed that participation in decision making, instrumental communication, and promotional opportunity prevented burnout. Formalization contributed to burnout but integration was not related to burnout. Quite interestingly, except for supervisory status, most control variables for this study were not significantly related to emotional burnout. Hence, the hypothesis that organizational structure is a determinant of job burnout was accepted.

  16. Modelling secondary eclipses of Kepler exoplanets

    Directory of Open Access Journals (Sweden)

    Hambálek Lubomír

    2015-01-01

    Full Text Available We have selected several Kepler objects with potentially the deepest secondary eclipses. By combination of many single phased light-curves (LCs we have produced a smooth LC with a larger SNR and made the secondary eclipses more distinct. This allowed us to measure the depth of primary and secondary minimum with greater accuracy and then to determine stellar and planetary radii by simplex modelling.

  17. X-ray structure determination and deuteration of nattokinase

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Yasuhide [Chiba Institute of Science, 15-8 Shiomi-cho, Cho-shi, Chiba 288-025 (Japan); Chatake, Toshiyuki [Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494 (Japan); Naito, Sawa; Ohsugi, Tadanori; Yatagai, Chieko; Sumi, Hiroyuki [Kurashiki University of Science and the Arts, 2640 Nishinoura, Tsurajima-cho, Kurashiki, Okayama 712-8505 (Japan); Kawaguchi, Akio [Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494 (Japan); Chiba-Kamosida, Kaori [Nippon Advanced Technology Co. Ltd, J-PARC, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ogawa, Megumi; Adachi, Tatsumi [Chiba Institute of Science, 15-8 Shiomi-cho, Cho-shi, Chiba 288-025 (Japan); Morimoto, Yukio [Kyoto University, Asashironishi 2, Kumatori, Osaka 590-0494 (Japan)

    2013-11-01

    X-ray structure determination and deuteration of nattokinase were performed to facilitate neutron crystallographic analysis. Nattokinase (NK) is a strong fibrinolytic enzyme, which is produced in abundance by Bacillus subtilis natto. Although NK is a member of the subtilisin family, it displays different substrate specificity when compared with other subtilisins. The results of molecular simulations predict that hydrogen arrangements around Ser221 at the active site probably account for the substrate specificity of NK. Therefore, neutron crystallographic analysis should provide valuable information that reveals the enzymatic mechanism of NK. In this report, the X-ray structure of the non-hydrogen form of undeuterated NK was determined, and the preparation of deuterated NK was successfully achieved. The non-hydrogen NK structure was determined at 1.74 Å resolution. The three-dimensional structures of NK and subtilisin E from Bacillus subtilis DB104 are near identical. Deuteration of NK was carried out by cultivating Bacillus subtilis natto in deuterated medium. The D{sub 2}O resistant strain of Bacillus subtilis natto was obtained by successive cultivation rounds, in which the concentration of D{sub 2}O in the medium was gradually increased. NK was purified from the culture medium and its activity was confirmed by the fibrin plate method. The results lay the framework for neutron protein crystallography analysis.

  18. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    Science.gov (United States)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  19. Potential hazard to secondary containment from HCDA-generated missiles and sodium fires

    International Nuclear Information System (INIS)

    Romander, C.M.

    1979-02-01

    The potential hazard of HCDA-generated missiles is analyzed, and the current status of the potential hazards of sodium fires is summarized. Simple analyses are performed to determine lower bounds on the HCDA energetics required to generate missiles that could reach the secondary containment structure of a 1000-MWe LMFBR. The potential missiles considered include the vessel head, components mounted on the head, and conrol rods

  20. Chemistry of the aqueous medium - Determining factor of corrosion in carbon steel components of secondary circuit

    International Nuclear Information System (INIS)

    Radulescu, M.; Pirvan, I.; Dinu, A.; Velciu, L.

    2003-01-01

    The interplay of chemistry of aqueous medium and corrosion processes followed by deposition and/or release of corrosion products determines both formation and growth of superficial films as well as the kinetics of ion release from materials into the aqueous medium. Material corrosion in the secondary circuit of a NPP can be minimized by choosing the materials of the components and by a rigorous inspection of the chemistry of aqueous agent. The chemical inspection helps in minimizing: - the corrosion of the components immersed in feedwater and vapor and of Steam Generator components; - 'dirtying' of the systems particularly of the surfaces implied in heat transfer; - the amount of insoluble chemical species resulting in corrosion process and carried along the circuit; - the corrosion of secondary circuit components during revisions or outages. An important role among the chemical parameters of the fluids circulated in NPP tubing appears to be the pH. In CANDU reactors it must be kept within the range of 8.7 to 9.4 by treating the medium with volatile amines (morpholine and cyclohexylamine). A plot is presented giving the corrosion rate of carbon steels as a function of the pH of the medium. Besides, the oxygen concentration dissolved in the aqueous medium must be maintained under 5 μg per water kg. Other factors determining the corrosion rates are also discussed. The paper gives the results of the experiments done with various materials, solutions and analysis methods

  1. Importance of secondary damage in downer cows.

    Science.gov (United States)

    Poulton, P J; Vizard, A L; Anderson, G A; Pyman, M F

    2016-05-01

    To investigate the relative importance in downer cows of the primary cause of recumbency in comparison with secondary complications. Downer dairy cows were monitored during their recumbency under field conditions in South Gippsland, Victoria, Australia. The cause of the original recumbency of the 218 cows was determined and secondary damage, status on day 7 and final outcome were recorded. Some type of secondary damage was found in 183/218 (84%) cows, of which 173/218 (79%) had damage deemed to be clinically important. By day 7, 52 (24%) had recovered and 69 (32%) eventually recovered. Of the 149 (68%) cows that were euthanased or died, 23 (15%) were deemed to have been lost solely from the primary cause, 107 (72%) from secondary damage and 19 (13%) from a combination of both. There was no difference in recovery among the five broad groups of causes of primary recumbency. Secondary damage was very common and presented in a large variety of ways, with many cows having multiple types of secondary damage concurrently. For most cows the secondary damage was more important than the initial primary damage in determining their fate. © 2016 Australian Veterinary Association.

  2. Research on user satisfaction with the quality of services in secondary education in Croatia

    Directory of Open Access Journals (Sweden)

    Olivera Jurković Majić

    2007-12-01

    Full Text Available With the arrival of private schools and competition a new situation has arisen in which, due to long-term survival of some schools, it is necessary to consider marketing activities and service quality in the field of secondary education. It is well-known that during their secondary education students are influenced by many persons, among whom the most significant are teachers, other students and parents. Therefore, human relations at school are in the focus of the analysis of student satisfaction. In order to determine the level of student satisfaction with the secondary education service in Croatia as well as the acceptance and the use of marketing principles in Croatian secondary education during May, June and September 2006, research was conducted among students of secondary schools. The size of the sample for this occasion was n = 600 students, with a highly structured questionnaire as the research instrument. Research results have shown average satisfaction of students in Croatia with the cur¬rent level of interaction and of interactive connection in the secondary education system, while also showing that business marketing philosophy has not been implemented sufficiently in secondary education in Croatia.

  3. Mechanism of mechanochemical synthesis of complex oxides and the peculiarities of their nano-structurization determining sintering

    Directory of Open Access Journals (Sweden)

    Zyryanov V.V.

    2005-01-01

    Full Text Available A mechanism of superfast mechanosynthesis reaction for oxide systems is proposed on the base of a dynamics study. The threshold effect and linear dependence of the chemical response on the effective temperature of the reaction zone are established. Major factors are determined: molecular mass of reagents, enthalpy and difference of reagents in Mohs’s hardness, which also influence the composition of the primary product. Primary acts are characterized by a superfast roller mechanism of mass transfer with the formation of a transient dynamic state (D*. Secondary acts slowly approximate the composition of the product to the composition of the starting mixture by diffusion mass transfer in a deformation mixing regime with a contribution of a rotation (roller mechanism. The list of structure types for complex oxides derived by mechanosynthesis includes perovskites, fluorites, pyrochlors, sheelites, and some other ones. Powders of crystal products display multilevel structurization. In all studied complex oxides strong disordering of the “anti-glass” type was observed. The mechanism of sintering was studied in BaTiO3 powders of different origin and in metastable complex oxides derived by mechanosynthesis. The major contribution in shrinkage belongs to rearrangements of crystalline particles as a whole. Structure transformations accompany, as a rule, sintering of inhomogeneous powders derived by mechanosynthesis.

  4. BIRTHDAY CAKE ACTIVITY STRUCTURED ARRANGEMENT FOR HELPING CHILDREN DETERMINING QUANTITIES

    Directory of Open Access Journals (Sweden)

    Neni Mariana

    2010-07-01

    Full Text Available Few researches have been concerned about relation between children’s spatialthinking and number sense. Narrowing for this small research, we focused onone component of spatial thinking, that is structuring objects, and onecomponent of number senses, that is cardinality by determining quantities. Thisstudy focused on a design research that was conducted in Indonesia in which weinvestigated pre-school children’s (between 2 and 3.5 years old ability inmaking structured arrangement and their ability to determine the quantities bylooking at the arrangements. The result shows us that some of the children wereable to make such arrangement. However, the children found difficulties eitherto determine quantities from those arrangements or to compare some structuresto easily recognize number of objects.Keywords: structures, structured arrangement, cardinality DOI: http://dx.doi.org/10.22342/jme.1.1.790.53-70

  5. Inelastic analysis of prestressed concrete secondary containments

    International Nuclear Information System (INIS)

    Murray, D.W.; Chitnuyanondh, L.; Wong, C.; Rijub-Agha, K.Y.

    1978-07-01

    An elastic-plastic constitutive model for the simulation of stress-strain response of concrete under any biaxial combination of compressive and/or tensile stresses is developed. An effective tensile stress-strain curve is obtained indirectly from experimental results of a test on a large scale prestressed concrete wall segment. These concrete properties are then utilized in predicting the response of a second test and the results compared with the experiment. Modificications to the BOSOR5 program, in order to incorporate the new constitutive relation into it, are described. Techniques of modelling structures in order to perform inelastic analysis of thin shell axisymmetric prestressed concrete secondary containments are investigated. The results of inelastic BOSOR5 analyses of two different models of the University of Alberta Test Structure are presented. The predicted deterioration of the structure and the limit states associated with its behaviour are determined and discussed. It is concluded that the technique is a practical one which can be used for the inelastic analysis of Gentilly-type containment structures. (author)

  6. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus

    Directory of Open Access Journals (Sweden)

    Wolf Matthias

    2009-12-01

    Full Text Available Abstract Background Current molecular phylogenetic studies of Lepidoptera and most other arthropods are predominantly based on mitochondrial genes and a limited number of nuclear genes. The nuclear genes, however, generally do not provide sufficient information for young radiations. ITS2 , which has proven to be an excellent nuclear marker for similarly aged radiations in other organisms like fungi and plants, is only rarely used for phylogeny estimation in arthropods, although universal primers exist. This is partly due to difficulties in the alignment of ITS2 sequences in more distant taxa. The present study uses ITS2 secondary structure information to elucidate the phylogeny of a species-rich young radiation of arthropods, the butterfly subgenus Agrodiaetus. One aim is to evaluate the efficiency of ITS2 to resolve the phylogeny of the subgenus in comparison with COI , the most important mitochondrial marker in arthropods. Furthermore, we assess the use of compensatory base changes in ITS2 for the delimitation of species and discuss the prospects of ITS2 as a nuclear marker for barcoding studies. Results In the butterfly family Lycaenidae, ITS2 secondary structure enabled us to successfully align sequences of different subtribes in Polyommatini and produce a Profile Neighbour Joining tree of this tribe, the resolution of which is comparable to phylogenetic trees obtained with COI+COII . The subgenus Agrodiaetus comprises 6 major clades which are in agreement with COI analyses. A dispersal-vicariance analysis (DIVA traced the origin of most Agrodiaetus clades to separate biogeographical areas in the region encompassing Eastern Anatolia, Transcaucasia and Iran. Conclusions With the inclusion of secondary structure information, ITS2 appears to be a suitable nuclear marker to infer the phylogeny of young radiations, as well as more distantly related genera within a diverse arthropod family. Its phylogenetic signal is comparable to the

  7. Macromolecular structure determination in the post-genome era

    CERN Document Server

    Kuhn, P

    2001-01-01

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system...

  8. [Correlation of codon biases and potential secondary structures with mRNA translation efficiency in unicellular organisms].

    Science.gov (United States)

    Vladimirov, N V; Likhoshvaĭ, V A; Matushkin, Iu G

    2007-01-01

    Gene expression is known to correlate with degree of codon bias in many unicellular organisms. However, such correlation is absent in some organisms. Recently we demonstrated that inverted complementary repeats within coding DNA sequence must be considered for proper estimation of translation efficiency, since they may form secondary structures that obstruct ribosome movement. We have developed a program for estimation of potential coding DNA sequence expression in defined unicellular organism using its genome sequence. The program computes elongation efficiency index. Computation is based on estimation of coding DNA sequence elongation efficiency, taking into account three key factors: codon bias, average number of inverted complementary repeats, and free energy of potential stem-loop structures formed by the repeats. The influence of these factors on translation is numerically estimated. An optimal proportion of these factors is computed for each organism individually. Quantitative translational characteristics of 384 unicellular organisms (351 bacteria, 28 archaea, 5 eukaryota) have been computed using their annotated genomes from NCBI GenBank. Five potential evolutionary strategies of translational optimization have been determined among studied organisms. A considerable difference of preferred translational strategies between Bacteria and Archaea has been revealed. Significant correlations between elongation efficiency index and gene expression levels have been shown for two organisms (S. cerevisiae and H. pylori) using available microarray data. The proposed method allows to estimate numerically the coding DNA sequence translation efficiency and to optimize nucleotide composition of heterologous genes in unicellular organisms. http://www.mgs.bionet.nsc.ru/mgs/programs/eei-calculator/.

  9. Design of the GOES Telescope secondary mirror mounting

    Science.gov (United States)

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  10. Nucleic acid helix structure determination from NMR proton chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Werf, Ramon M. van der; Tessari, Marco; Wijmenga, Sybren S., E-mail: S.Wijmenga@science.ru.nl [Radboud University Nijmegen, Department of Biophysical Chemistry, Institute of Molecules and Materials (Netherlands)

    2013-06-15

    We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

  11. Post-Secondary Students' Views on Health: Support for Individual and Social Health Determinants

    Science.gov (United States)

    Shyleyko, Robert; Godley, Jenny

    2012-01-01

    This paper examines how post-secondary students understand health, and whether opinions about health are correlated with area of study. We present results from an online survey administered in 2011 to 287 students at one post-secondary institution in Western Canada. Overall, the survey students are more likely to adopt an individualistic, rather…

  12. Cellulose-hemicellulose interaction in wood secondary cell-wall

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Shi; Hong, Yu; Chen, Youping; Xiong, Liming

    2015-01-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose. (paper)

  13. Cellulose-hemicellulose interaction in wood secondary cell-wall

    Science.gov (United States)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  14. Codon usage determines translation rate in Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Michael Askvad; Kurland, C G; Pedersen, Steen

    1989-01-01

    We wish to determine whether differences in translation rate are correlated with differences in codon usage or with differences in mRNA secondary structure. We therefore inserted a small DNA fragment in the lacZ gene either directly or flanked by a few frame-shifting bases, leaving the reading fr...

  15. Secondary metabolites of cyanobacteria Nostoc sp.

    Science.gov (United States)

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  16. From bacterial to human dihydrouridine synthase: automated structure determination

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Fiona, E-mail: fiona.whelan@york.ac.uk; Jenkins, Huw T., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Griffiths, Samuel C. [University of Oxford, Headington, Oxford OX3 7BN (United Kingdom); Byrne, Robert T. [Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377 Munich (Germany); Dodson, Eleanor J.; Antson, Alfred A., E-mail: fiona.whelan@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom)

    2015-06-30

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer.

  17. From bacterial to human dihydrouridine synthase: automated structure determination

    International Nuclear Information System (INIS)

    Whelan, Fiona; Jenkins, Huw T.; Griffiths, Samuel C.; Byrne, Robert T.; Dodson, Eleanor J.; Antson, Alfred A.

    2015-01-01

    The crystal structure of a human dihydrouridine synthase, an enzyme associated with lung cancer, with 18% sequence identity to a T. maritima enzyme, has been determined at 1.9 Å resolution by molecular replacement after extensive molecular remodelling of the template. The reduction of uridine to dihydrouridine at specific positions in tRNA is catalysed by dihydrouridine synthase (Dus) enzymes. Increased expression of human dihydrouridine synthase 2 (hDus2) has been linked to pulmonary carcinogenesis, while its knockdown decreased cancer cell line viability, suggesting that it may serve as a valuable target for therapeutic intervention. Here, the X-ray crystal structure of a construct of hDus2 encompassing the catalytic and tRNA-recognition domains (residues 1–340) determined at 1.9 Å resolution is presented. It is shown that the structure can be determined automatically by phenix.mr-rosetta starting from a bacterial Dus enzyme with only 18% sequence identity and a significantly divergent structure. The overall fold of the human Dus2 is similar to that of bacterial enzymes, but has a larger recognition domain and a unique three-stranded antiparallel β-sheet insertion into the catalytic domain that packs next to the recognition domain, contributing to domain–domain interactions. The structure may inform the development of novel therapeutic approaches in the fight against lung cancer

  18. Using photoelectron diffraction to determine complex molecular adsorption structures

    International Nuclear Information System (INIS)

    Woodruff, D P

    2010-01-01

    Backscattering photoelectron diffraction, particularly in the energy-scan mode, is now an established technique for determining in a quantitative fashion the local structure of adsorbates on surfaces, and has been used successfully for ∼100 adsorbate phases. The elemental and chemical-state specificity afforded by the characteristic core level photoelectron binding energies means that it has particular advantages for molecular adsorbates, as the local geometry of inequivalent atoms in the molecule can be determined in a largely independent fashion. On the other hand, polyatomic molecules present a general problem for all methods of surface structure determination in that a mismatch of intramolecular distances with interatomic distances on the substrate surface means that the atoms in the adsorbed molecule are generally in low-symmetry sites. The quantities measured experimentally then represent an incoherent sum of the properties of each structural domain that is inequivalent with respect to the substrate point group symmetry. This typically leads to greater ambiguity or precision in the structural solutions. The basic principles of the method are described and illustrated with a simple example involving molecule/substrate bonding through only one constituent atom (TiO 2 -(110)/H 2 O). This example demonstrates the importance of obtaining quantitative local structural information. Further examples illustrate both the successes and the problems of this approach when applied to somewhat more complex molecular adsorbates.

  19. Secondary structure analyses of the nuclear rRNA internal transcribed spacers and assessment of its phylogenetic utility across the Brassicaceae (mustards.

    Directory of Open Access Journals (Sweden)

    Patrick P Edger

    Full Text Available The internal transcribed spacers of the nuclear ribosomal RNA gene cluster, termed ITS1 and ITS2, are the most frequently used nuclear markers for phylogenetic analyses across many eukaryotic groups including most plant families. The reasons for the popularity of these markers include: 1. Ease of amplification due to high copy number of the gene clusters, 2. Available cost-effective methods and highly conserved primers, 3. Rapidly evolving markers (i.e. variable between closely related species, and 4. The assumption (and/or treatment that these sequences are non-functional, neutrally evolving phylogenetic markers. Here, our analyses of ITS1 and ITS2 for 50 species suggest that both sequences are instead under selective constraints to preserve proper secondary structure, likely to maintain complete self-splicing functions, and thus are not neutrally-evolving phylogenetic markers. Our results indicate the majority of sequence sites are co-evolving with other positions to form proper secondary structure, which has implications for phylogenetic inference. We also found that the lowest energy state and total number of possible alternate secondary structures are highly significantly different between ITS regions and random sequences with an identical overall length and Guanine-Cytosine (GC content. Lastly, we review recent evidence highlighting some additional problematic issues with using these regions as the sole markers for phylogenetic studies, and thus strongly recommend additional markers and cost-effective approaches for future studies to estimate phylogenetic relationships.

  20. A novel strategy for NMR resonance assignment and protein structure determination

    International Nuclear Information System (INIS)

    Lemak, Alexander; Gutmanas, Aleksandras; Chitayat, Seth; Karra, Murthy; Farès, Christophe; Sunnerhagen, Maria; Arrowsmith, Cheryl H.

    2011-01-01

    The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution – especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.

  1. Determinants of rural bank loan repayment capacity among farmers ...

    African Journals Online (AJOL)

    This study examined the determinants of the Nigeria Agricultural Cooperative and Rural Development Bank (NACRDB) repayment by farmers in Yewa division of Ogun State. Primary data collected through scheduled interview with the help of a structured questionnaire as well as secondary data were used for this purpose.

  2. Secondary structure of the rRNA ITS2 region reveals key evolutionary patterns in acroporid corals.

    Science.gov (United States)

    Coleman, Annette W; van Oppen, Madeleine J H

    2008-10-01

    This study investigates the ribosomal RNA transcript secondary structure in corals as confirmed by compensatory base changes in Isopora/Acropora species. These species are unique versus all other corals in the absence of a eukaryote-wide conserved structural component, the helix III in internal transcriber spacer (ITS) 2, and their variability in the 5.8S-LSU helix basal to ITS2, a helix with pairings identical among all other scleractinian corals. Furthermore, Isopora/Acropora individuals display at least two, and as many as three, ITS sequence isotypes in their genome which appear to be capable of function. From consideration of the conserved elements in ITS2 and flanking regions, it appears that there are three major groups within the IsoporaAcropora lineage: the Isopora + Acropora "longi" group, the large group including Caribbean Acropora + the Acropora "carib" types plus the bulk of the Indo-Pacific Acropora species, and the remaining enigmatic "pseudo" group found in the Pacific. Interbreeding is possible among Caribbean A. palmata and A. cervicornis and among some species of Indo-Pacific Acropora. Recombinant ITS sequences are obvious among these latter, such that morphology (as represented by species name) does not correlate with common ITS sequence. The combination of characters revealed by RNA secondary structure analyses suggests a recent past/current history of interbreeding among the Indo-Pacific Acropora species and a shared ancestry of some of these with the Caribbean Acropora. The unusual absence of helix III of ITS2 of Isopora/Acropora species may have some causative role in the equally unusual instability in the 5.8S-LSU helix basal to ITS2 of this species complex.

  3. Structure of E. coli 16S RNA elucidated by psoralen crosslinking

    International Nuclear Information System (INIS)

    Thompson, J.F.; Hearst, J.E.

    1983-01-01

    E. coli 16S RNA in solution was photoreacted with hydroxymethyltrimethylpsoralen and long wave ultraviolet light. Positions of crosslinks were determined to high resolution by partially digesting the RNA with T 1 RNase, separating the crosslinked fragments by two-dimensional gel electrophoresis, reversing the crosslink, and sequencing the separated fragments. This method yielded the locations of crosslinks to +/-15 nucleotides. Even finer placement has been made on the basis of our knowledge of psoralen reactivity. Thirteen unique crosslinks were mapped. Seven crosslinks confirmed regions of secondary structure which had been predicted in published phylogenetic models, three crosslinks discriminated between phylogenetic models, and three proved the existence of new structures. The new structures were all long-range interactions which appear to be in dynamic equilibrium with local secondary structure. Because this technique yields direct information about the secondary structure of large RNAs, it should prove invaluable in studying the structure of other RNAs of all sizes

  4. The leucine-rich repeat structure.

    Science.gov (United States)

    Bella, J; Hindle, K L; McEwan, P A; Lovell, S C

    2008-08-01

    The leucine-rich repeat is a widespread structural motif of 20-30 amino acids with a characteristic repetitive sequence pattern rich in leucines. Leucine-rich repeat domains are built from tandems of two or more repeats and form curved solenoid structures that are particularly suitable for protein-protein interactions. Thousands of protein sequences containing leucine-rich repeats have been identified by automatic annotation methods. Three-dimensional structures of leucine-rich repeat domains determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. As the essential structural principles become well established, the leucine-rich repeat architecture is emerging as an attractive framework for structural prediction and protein engineering. This review presents an update of the current understanding of leucine-rich repeat structure at the primary, secondary, tertiary and quaternary levels and discusses specific examples from recently determined three-dimensional structures.

  5. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  6. Determinants of Secondary School Learners Performance in Christian Religious Education in Lelan Sub County, Kenya

    Science.gov (United States)

    Akaranga, Stephen; Simiyu, Patrick Cheben

    2016-01-01

    In Kenya, Christian Religious Education is taught and examined by the Kenya National Examinations Council in the Kenya Certificate of Secondary Education at the end of the four years of Secondary Education cycle. The teaching of this subject in Secondary Schools ensures that learners are offered an opportunity to develop morally and spiritually…

  7. Applications of Qualitative Microanalysis to the Determination of Secondary Species Associated with Uranium; Application de la microanalyse qualitative a la determination des especes secondaires d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Agrinier, H

    1959-02-01

    Microanalytical techniques are described which allow rapid determinations of secondary species associated with uranium. They consist in exposing the constituent elements of the ores by means of characteristic microchemical reactions. Because of their rapidity and the small amount of apparatus needed, these techniques can be used either in the field or in the laboratory. (author) [French] Les techniques de microanalyse decrites dans cet ouvrage permettent la determination rapide des especes secondaires d'uranium. Elles consistent a mettre en evidence les elements constitutifs des mineraux par des reactions microchimiques caracteristiques. En raison de leur rapidite et du peu de materiel qu'elles necessitent, ces techniques peuvent etre utilisees aussi bien sur le terrain qu'au laboratoire. (auteur)

  8. Birthday Cake Activity Structured Arrangement for Helping Children Determining Quantities

    Directory of Open Access Journals (Sweden)

    Neni Mariana

    2010-07-01

    Full Text Available Few researches have been concerned about relation between children’s spatial thinking and number sense. Narrowing for this small research, we focused on one component of spatial thinking, that is structuring objects, and one component of number senses, that is cardinality by determining quantities. This study focused on a design research that was conducted in Indonesia in which we investigated pre-school children’s (between 2 and 3.5 years old ability in making structured arrangement and their ability to determine the quantities by looking at the arrangements. The result shows us that some of the children were able to make such arrangement. However, the children found difficulties either to determine quantities from those arrangements or to compare some structures to easily recognize number of objects.

  9. Overconfidence, Managerial Optimism, and the Determinants of Capital Structure

    Directory of Open Access Journals (Sweden)

    Alexandre di Miceli da Silveira

    2008-12-01

    Full Text Available This research examines the determinants of the capital structure of firms introducing a behavioral perspective that has received little attention in corporate finance literature. The following central hypothesis emerges from a set of recently developed theories: firms managed by optimistic and/or overconfident people will choose more levered financing structures than others, ceteris paribus. We propose different proxies for optimism/overconfidence, based on the manager’s status as an entrepreneur or non-entrepreneur, an idea that is supported by theories and solid empirical evidence, as well as on the pattern of ownership of the firm’s shares by its manager. The study also includes potential determinants of capital structure used in earlier research. We use a sample of Brazilian firms listed in the Sao Paulo Stock Exchange (Bovespa in the years 1998 to 2003. The empirical analysis suggests that the proxies for the referred cognitive biases are important determinants of capital structure. We also found as relevant explanatory variables: profitability, size, dividend payment and tangibility, as well as some indicators that capture the firms’ corporate governance standards. These results suggest that behavioral approaches based on human psychology research can offer relevant contributions to the understanding of corporate decision making.

  10. Dynamic changes in the secondary structure of ECE-1 and XCE account for their different substrate specificities

    Directory of Open Access Journals (Sweden)

    Ul-Haq Zaheer

    2012-11-01

    Full Text Available Abstract Background X-converting enzyme (XCE involved in nervous control of respiration, is a member of the M13 family of zinc peptidases, for which no natural substrate has been identified yet. In contrast, it’s well characterized homologue endothelin-converting enzyme-1 (ECE-1 showed broad substrate specificity and acts as endopeptidase as well as dipeptidase. To explore the structural differences between XCE and ECE-1, homology model of XCE was built using the complex structure of ECE-1 with phosphoramidon (pdb-id: 3DWB as template. Phosphoramidon was docked into the binding site of XCE whereas phosphate oxygen of the inhibitor was used as water molecule to design the apo forms of both enzymes. Molecular dynamics simulation of both enzymes was performed to analyze the dynamic nature of their active site residues in the absence and presence of the inhibitor. Results Homology model of XCE explained the role of non-conserved residues of its S2’ subsite. Molecular dynamics (MD simulations identified the flexible transitions of F149/I150, N566/N571, W714/W719, and R145/R723 residues of ECE-1/XCE for the strong binding of the inhibitor. Secondary structure calculations using DSSP method reveals the folding of R145/R723 residue of ECE-1/XCE into β-sheet structure while unfolding of the S2’ subsite residues in aECE-1 and sustained compact folding of that of aXCE. The results evaluated are in good agreement with available experimental data, thus providing detailed molecular models which can explain the structural and specificities differences between both zinc peptidases. Conclusions Secondary structure changes of both enzymes during the simulation time revealed the importance of β-sheet structure of R145/R723 for its binding with the terminal carboxylate group of the inhibitor. Unfolding of the α-helix comprising the S2’ subsite residues in aECE-1 correlate well with its endopeptidase activity while their compact folding in aXCE may

  11. Global search in photoelectron diffraction structure determination using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M L [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Muino, R Diez [Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Soares, E A [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Hove, M A Van [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Carvalho, V E de [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil)

    2007-11-07

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 x 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  12. MOTIVATION INTERNALIZATION AND SIMPLEX STRUCTURE IN SELF-DETERMINATION THEORY.

    Science.gov (United States)

    Ünlü, Ali; Dettweiler, Ulrich

    2015-12-01

    Self-determination theory, as proposed by Deci and Ryan, postulated different types of motivation regulation. As to the introjected and identified regulation of extrinsic motivation, their internalizations were described as "somewhat external" and "somewhat internal" and remained undetermined in the theory. This paper introduces a constrained regression analysis that allows these vaguely expressed motivations to be estimated in an "optimal" manner, in any given empirical context. The approach was even generalized and applied for simplex structure analysis in self-determination theory. The technique was exemplified with an empirical study comparing science teaching in a classical school class versus an expeditionary outdoor program. Based on a sample of 84 German pupils (43 girls, 41 boys, 10 to 12 years old), data were collected using the German version of the Academic Self-Regulation Questionnaire. The science-teaching format was seen to not influence the pupils' internalization of identified regulation. The internalization of introjected regulation differed and shifted more toward the external pole in the outdoor teaching format. The quantification approach supported the simplex structure of self-determination theory, whereas correlations may disconfirm the simplex structure.

  13. On the importance of cotranscriptional RNA structure formation

    Science.gov (United States)

    Lai, Daniel; Proctor, Jeff R.; Meyer, Irmtraud M.

    2013-01-01

    The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation. PMID:24131802

  14. Determinants of Market Structure and the Airline Industry

    Science.gov (United States)

    Raduchel, W.

    1972-01-01

    The general economic determinants of market structure are outlined with special reference to the airline industry. Included are the following facets: absolute size of firms; distributions of firms by size; concentration; entry barriers; product and service differentiation; diversification; degrees of competition; vertical integration; market boundaries; and economies of scale. Also examined are the static and dynamic properties of market structure in terms of mergers, government policies, and economic growth conditions.

  15. Shadow Education in Malaysia: Identifying the Determinants of Spending and Amount of Time Attending Private Supplementary Tutoring of Upper Secondary School Students

    OpenAIRE

    Chang Da Wan; Benedict Weerasena

    2017-01-01

    This paper examines the determinants of spending and the amount of time attending private supplementary tutoring, or commonly known as private tuition, in Malaysia. Based on 343 self-reported questionnaires with upper secondary students across three states in Malaysia and using multiple regression analysis, we identified ethnicity, father’s level of education and past academic performance as significant determinants of spending and amount of time attending private tuition. However, interestin...

  16. Structure and properties of silver sulfate complexes derived from dipyridyl methylthio ligands with secondary donor site

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Hua; Yan, Hao-Jie; Chen, Hui; Liu, Rui-Heng; Li, Ai-Min; Wang, Guo [Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048 (China); Wan, Chong-Qing, E-mail: wancq@cnu.edu.cn [Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048 (China); State Key Laboratory of Structural Chemistry in China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2017-06-15

    Dipyridyl sulphide ligands 4-(pyridin-4-ylmethylthio)pyridine (abbreviated as L1) and 3-(pyridin-4-ylmethylthio)pyridine (abbreviated as L2) have been designed and used as μ-{sub N},{sub N}-bridging linkages to construct coordination polymers with free –S–CH{sub 2}– groups as secondary donor sites. By use solvent control method, coordination polymers ([Ag{sub 3}SO{sub 4}(L1){sub 3}](Cl)·4.5H{sub 2}O){sub ∞}(1), ([Ag{sub 2}SO{sub 4}(L1){sub 2}]·6H{sub 2}O·2CH{sub 3}OH){sub ∞}(2), ([Ag{sub 2}SO{sub 4}(L2){sub 2}]·H{sub 2}O){sub ∞}(3) and ([Ag{sub 4}(SO{sub 4}){sub 2}(L2){sub 4}]·5H{sub 2}O){sub ∞}(4) with different architectures were obtained. Complexes 1, 3 and 4 feature 1D channel with different sizes and structures. Complex 1 exhibits guest exchange by THF and 1,4-dioxane, and Hg{sup 2+} sorption ability from solution due to its relative larger channel and available bonding sites of –S– exposed to the channel region. All complexes have been characterized through single-crystal and powder X-ray diffraction (PXRD), FT-IR spectra, X-ray photoelectron spectroscopy (XPS), elemental and thermogravimetric analyses. The guest exchange and Hg{sup 2+} sorption were monitored and identified, and the structure-property relationship of coordination polymers 1–4 are discussed. - Graphical abstract: Coordination polymers of silver(I) sulfate with secondary donor sites are shown guest exchange property and Hg{sup 2+} absorb ability from solution. This work provides a new method to construct functional materials with potential application. - Highlights: • New example of constructing functional coordination polymer with secondary donor methylthio group. • Guest exchange and interesting Hg(II) absorb ability from solution are investigated. • New method to construct functional materials with potential application.

  17. Protein structure determination by exhaustive search of Protein Data Bank derived databases.

    Science.gov (United States)

    Stokes-Rees, Ian; Sliz, Piotr

    2010-12-14

    Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database.

  18. Optimization of a spectrometry for energy-dispersive x-ray fluorescence analysis by x-ray tube in combination with secondary target for multielements determination of sediment samples

    International Nuclear Information System (INIS)

    Zaidi Embong; Husin Wagiran

    1997-01-01

    The design of an energy-dispersive X-ray fluorescence spectrometer equipped with a conventional X-ray tube and secondary target is described. The spectrometer system constructed in our laboratory consists of a semiconductor detector system, irradiation chamber and X-ray tube. Primary source from X-ray tube was used to produced secondary X-ray from selenium, molybdenum and cadmium targets. The fluorescence X-ray from the sample was detected using Si(Li) detector with resolution of 0. 175 keV (Mn-K(x). The spectrometer was used for determination of multi-elements with atomic number between 20 to 44 in river sediment samples. The X-ray spectrum, from the samples were analysed using computer software which was developed based on Marquardt method. Optimal conditions and detection limits are determined experimentally by variation of excitation parameters for each combination of secondary target and tube voltage

  19. An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models

    Directory of Open Access Journals (Sweden)

    Shenkar Noa

    2009-08-01

    Full Text Available Abstract Background Tunicates have been recently revealed to be the closest living relatives of vertebrates. Yet, with more than 2500 described species, details of their evolutionary history are still obscure. From a molecular point of view, tunicate phylogenetic relationships have been mostly studied based on analyses of 18S rRNA sequences, which indicate several major clades at odds with the traditional class-level arrangements. Nonetheless, substantial uncertainty remains about the phylogenetic relationships and taxonomic status of key groups such as the Aplousobranchia, Appendicularia, and Thaliacea. Results Thirty new complete 18S rRNA sequences were acquired from previously unsampled tunicate species, with special focus on groups presenting high evolutionary rate. The updated 18S rRNA dataset has been aligned with respect to the constraint on homology imposed by the rRNA secondary structure. A probabilistic framework of phylogenetic reconstruction was adopted to accommodate the particular evolutionary dynamics of this ribosomal marker. Detailed Bayesian analyses were conducted under the non-parametric CAT mixture model accounting for site-specific heterogeneity of the evolutionary process, and under RNA-specific doublet models accommodating the occurrence of compensatory substitutions in stem regions. Our results support the division of tunicates into three major clades: 1 Phlebobranchia + Thaliacea + Aplousobranchia, 2 Appendicularia, and 3 Stolidobranchia, but the position of Appendicularia could not be firmly resolved. Our study additionally reveals that most Aplousobranchia evolve at extremely high rates involving changes in secondary structure of their 18S rRNA, with the exception of the family Clavelinidae, which appears to be slowly evolving. This extreme rate heterogeneity precluded resolving with certainty the exact phylogenetic placement of Aplousobranchia. Finally, the best fitting secondary-structure and CAT-mixture models

  20. Structure determination of helical filaments by solid-state NMR spectroscopy

    Science.gov (United States)

    Ahmed, Mumdooh; Spehr, Johannes; König, Renate; Lünsdorf, Heinrich; Rand, Ulfert; Lührs, Thorsten; Ritter, Christiane

    2016-01-01

    The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVSCARD filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers. PMID:26733681

  1. Effect of Programmed Instruction on Students' Attitude towards Structure of the Atom and the Periodic Table among Kenyan Secondary Schools

    Science.gov (United States)

    Wangila, M. J.; Martin, W.; Ronald, M.

    2015-01-01

    This study examined the effect of Programmed Instruction on students' attitude towards Structure of the Atom and the Periodic Table (SAPT) among mixed (co-educational) secondary schools of Butere district, Kakamega county, Kenya. The quasi-experimental research design was adopted, using the nonrandomized Solomon four-group as a model. The sample…

  2. Simultaneous determination of protein structure and dynamics

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.

    2005-01-01

    at the atomic level about the structural and dynamical features of proteins-with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout......We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information...... the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant...

  3. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  4. Problems Encountered by Religious Vocational Secondary School and Other Secondary School Students in Physical Education and Sports Activities

    Science.gov (United States)

    Bar, Mustafa; Yaman, Menzure Sibel; Hergüner, Gülten

    2016-01-01

    The study aimed to determine problems encountered by Religious Vocational Secondary School and other Secondary School students in physical education and sports activities and to compare these problems according to school type and gender. A questionnaire named "Problems encountered in attending to physical education and sports activities"…

  5. Efficacy of secondary isoniazid preventive therapy among ...

    African Journals Online (AJOL)

    Objective. To determine the efficacy of secondary preventive therapy against tuberculosis (TB) among goldminers working in South Africa. Design. An observational study. Methods. The incidence of recurrent TB was compared between two cohorts of HIV-infected miners: one cohort had received secondary preventive ...

  6. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  7. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  8. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    Science.gov (United States)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  9. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Weinberg Zasha

    2011-01-01

    Full Text Available Abstract Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  10. R2R - software to speed the depiction of aesthetic consensus RNA secondary structures

    Science.gov (United States)

    2011-01-01

    Background With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. Results We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. Conclusions R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file. PMID:21205310

  11. R2R--software to speed the depiction of aesthetic consensus RNA secondary structures.

    Science.gov (United States)

    Weinberg, Zasha; Breaker, Ronald R

    2011-01-04

    With continuing identification of novel structured noncoding RNAs, there is an increasing need to create schematic diagrams showing the consensus features of these molecules. RNA structural diagrams are typically made either with general-purpose drawing programs like Adobe Illustrator, or with automated or interactive programs specific to RNA. Unfortunately, the use of applications like Illustrator is extremely time consuming, while existing RNA-specific programs produce figures that are useful, but usually not of the same aesthetic quality as those produced at great cost in Illustrator. Additionally, most existing RNA-specific applications are designed for drawing single RNA molecules, not consensus diagrams. We created R2R, a computer program that facilitates the generation of aesthetic and readable drawings of RNA consensus diagrams in a fraction of the time required with general-purpose drawing programs. Since the inference of a consensus RNA structure typically requires a multiple-sequence alignment, the R2R user annotates the alignment with commands directing the layout and annotation of the RNA. R2R creates SVG or PDF output that can be imported into Adobe Illustrator, Inkscape or CorelDRAW. R2R can be used to create consensus sequence and secondary structure models for novel RNA structures or to revise models when new representatives for known RNA classes become available. Although R2R does not currently have a graphical user interface, it has proven useful in our efforts to create 100 schematic models of distinct noncoding RNA classes. R2R makes it possible to obtain high-quality drawings of the consensus sequence and structural models of many diverse RNA structures with a more practical amount of effort. R2R software is available at http://breaker.research.yale.edu/R2R and as an Additional file.

  12. Secondary Control for Voltage Quality Enhancement in Microgrids

    DEFF Research Database (Denmark)

    Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos

    2012-01-01

    In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each of these con......In this paper, a hierarchical control scheme is proposed for enhancement of sensitive load bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary levels. The primary control level comprises distributed generators (DGs) local controllers. Each...

  13. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    Science.gov (United States)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  14. Prevalence and Determinants of Current Smoking and Intention to Smoke among Secondary School Students: A Cross-Sectional Survey among Han and Tujia Nationalities in China.

    Science.gov (United States)

    Xu, Xianglong; Liu, Dengyuan; Sharma, Manoj; Zhao, Yong

    2017-10-30

    Objectives: This study examined the patterns and determinants of current smoking and intention to smoke among secondary school students of Han and Tujia nationalities in China. Methods: A cross-sectional survey was conducted in three regions, namely, Chongqing, Liaocheng, and Tianjin, of China in 2015. A structured self-administered questionnaire was used for data collection. Results: Of the total subjects ( n = 1805), 78.9% were ethnic Han and 21.1% were ethnic Tujia. Overall 9.4% (Han: 7.7%; Tujia: 15.5%) secondary school students were smokers and 37.28% smoked more than once per day. Of the non-smoker students ( n = 1636), 17.4% have an intention to smoke. A total of 81.1% of students reportedly had never been taught throughout school about smoking or tobacco prevention. When compared to the students who were taught in the school about smoking or tobacco prevention (18.90%) students who were never taught were more likely to smoke (OR = 2.39; 95% CI = 1.14-5.01). As compared to Han nationality students who were from Tujia nationality were more likely to smoke (OR = 2.76; 95% CI = 1.88-4.04) and were more likely to have a higher frequency of smoking (95% CI (0.88, 0.88), p = 0.010). Non-smokers who were high school students (OR = 4.29; 95% CI = 2.12-8.66), whose academic performance were situated in the last 25% (OR = 2.23; 95% CI = 1.48-3.34) and lower than 50% (OR = 1.50; 95% CI = 1.02-2.20) were more likely to have an intention of smoking. Conclusions: About one in ten secondary school students was a smoker, one in three smokers smoked more than one time per day, and a quarter of non-smokers had an intention of smoking in China. Smoking rate was higher among students from Tujia than the Han nationality. This study provided some important information for future tobacco control programs among secondary school students in the ethnic minority autonomous region and minority settlements in a multi-ethnic country.

  15. Structure determination of enterovirus 71

    Energy Technology Data Exchange (ETDEWEB)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-02-20

    Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.

  16. Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements.

    Science.gov (United States)

    Rachel, Natalie M; Quaglia, Daniela; Lévesque, Éric; Charette, André B; Pelletier, Joelle N

    2017-11-01

    Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site-specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100-fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5-cd]indolizine-type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α-helical, β-sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q-GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG-reactive glutamines can be readily introduced into a protein domain for fluorescent labeling. © 2017 The Protein Society.

  17. Determinants of Capital Structure in Non-Financial Companies

    OpenAIRE

    Kühnhausen, Fabian; Stieber, Harald W.

    2014-01-01

    In this paper, we evaluate firm-, industry- and country-specific factors determining a firm's capital structure. The empirical validity of several capital structure theories has been ambiguous so far. We shed light on the main drivers of leverage and depict differences in industry and country characteristics. Using a short panel data set with a large cross-section, we are able to show that firm size, industry leverage, industry growth and tax shield positively affect leverage ratios, while pr...

  18. Sulfated oligosaccharide structures, as determined by NMR techniques

    International Nuclear Information System (INIS)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J.; Cerezo, A.S.

    1997-01-01

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a λ-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author)

  19. Experimental determination of the structure of H3+

    International Nuclear Information System (INIS)

    Gaillard, M.J.; Gemmell, D.S.; Goldring, G.; Levine, I.; Pietsch, W.J.; Poizat, J.C.; Ratkowski, A.J.; Remillieux, J.; Vager, Z.; Zabransky, B.J.

    1978-01-01

    Three different measurements on the structure of the H 3 + molecular ion are reported. The measurements all make use of a new technique: the foil-induced dissociation of a fast molecular-ion beam. It is shown that the structure is equilaterally triangular in shape. The most probable length of side of the triangle is determined by the three measurements to be 0.97 +- 0.03 A, 0.95 +- 0.06 A, and 1.2 +- 0.2 A, respectively

  20. The Determinants of Capital Structure: Some Evidence from Banks

    OpenAIRE

    Heider, Florian; Gropp, Reint

    2008-01-01

    This paper documents that standard cross-sectional determinants of firm leverage also apply to the capital structure of large banks in the United States and Europe. We find a remarkable consistency in sign, significance and economic magnitude. Like non-financial firms, banks appear to have stable capital structures at levels that are specific to each individual bank. The results suggest that capital requirements may only be of second-order importance for banks’ capital structures and confirm ...

  1. Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

    Science.gov (United States)

    Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu

    2014-01-15

    The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. How an inquiry-based classroom lesson intervenes in science efficacy, career-orientation and self-determination

    Science.gov (United States)

    Schmid, S.; Bogner, F. X.

    2017-11-01

    Three subscales of the 'Science Motivation Questionnaire II' (SMQII; motivational components: career motivation, self-efficacy and self-determination), with 4 items each, were applied to a sample of 209 secondary school students to monitor the impact of a 3-hour structured inquiry lesson. Four testing points (before, immediately after, 6 and 12 weeks after) were applied. The modified SMQII was factor-analyzed at each testing cycle and the structure confirmed. Only self-determination was shown to be influenced by an inquiry course, while self-efficacy and career motivation did not. Only self-efficacy and career motivation were intercorrelated and also correlated with science subject grades and subsequent achievement. Implications for using the modified SMQII subscales for research and teaching in secondary school are discussed.

  3. Stacking faults in Zr(Fe, Cr)2 Laves structured secondary phase particle in Zircaloy-4 alloy.

    Science.gov (United States)

    Liu, Chengze; Li, Geping; Yuan, Fusen; Han, Fuzhou; Zhang, Yingdong; Gu, Hengfei

    2018-02-01

    Stacking faults (SFs) in secondary phase particles (SPPs), which generally crystallize in the Laves phase in Zircaloy-4 (Zr-4) alloy, have been frequently observed by researchers. However, few investigations on the nano-scale structure of SFs have been carried out. In the present study, an SF containing C14 structured SPP, which located at grain boundaries (GBs) in the α-Zr matrix, was chosen to be investigated, for its particular substructure as well as location, aiming to reveal the nature of the SFs in the SPPs in Zr-4 alloy. It was indicated that the SFs in the C14 structured SPP actually existed in the local C36 structured Laves phase, for their similarities in crystallography. The C14 → C36 phase transformation, which was driven by synchroshearing among the (0001) basal planes, was the formation mechanism of the SFs in the SPPs. By analyzing the strained regions near the SPP, a model for understanding the driving force of the synchroshear was proposed: the interaction between SPP and GB resulted in the Zener pinning effect, leading to the shearing parallel to the (0001) basal planes of the C14 structured SPP, and the synchroshear was therefore activated.

  4. Diagnosis of secondary pulmonary lymphangiectasia in congenital heart disease: a novel role for chest ultrasound and prognostic implications.

    Science.gov (United States)

    Lam, Christopher Z; Bhamare, Tanmay Anant; Gazzaz, Tamadhir; Manson, David; Humpl, Tilman; Seed, Mike

    2017-10-01

    Secondary pulmonary lymphangiectasia is a complication of congenital heart disease that results from chronic pulmonary venous obstruction. We aimed to evaluate the performance of chest ultrasound (US) in diagnosing secondary pulmonary lymphangiectasia and to review the clinical course of children with secondary pulmonary lymphangiectasia. Chest US was performed on 26 children with hypoplastic left heart syndrome, total anomalous pulmonary venous connection or cor triatriatum in a prospective observational study. Thirteen children had pulmonary venous obstruction (62% male; median age: 17 days old, range: 1-430 days old) and 13 children did not have obstruction (62% male; median age: 72 days old, range: 4-333 days old). US features of secondary pulmonary lymphangiectasia were documented and diagnostic performance was determined. Clinical course of patients with secondary pulmonary lymphangiectasia was reviewed. Eleven of 13 (84.6%) patients in the obstructed group had a clinical and/or biopsy diagnosis of secondary pulmonary lymphangiectasia. Statistically significant chest US criteria for diagnosis were presence of irregular lung surface (likelihood ratio [LR] 6.8, 95% confidence interval [CI] 1.9-25.1), subpleural cystic appearing structures (LR 3.6, 95% CI 1.2-10.7), and combination of subpleural cystic appearing structures and surface irregularity together (LR 10.9, 95% CI 1.6-75.0). Seven of 11 (63.6%) patients with secondary pulmonary lymphangiectasia died during follow-up, the majority due to cardiopulmonary failure or complications. Chest US is an accurate and reproducible bedside method for diagnosing secondary pulmonary lymphangiectasia in patients with pulmonary venous obstruction. These patients may have worse prognoses.

  5. Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers: a leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes.

    Science.gov (United States)

    Crisanti, A; Leuzzi, L; Paoluzzi, M

    2011-09-01

    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.

  6. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy

    Directory of Open Access Journals (Sweden)

    Yong Yi

    2018-03-01

    Full Text Available This work was inspired by previous experiments which managed to establish an optimal template-dealloying route to prepare ultralow density metal foams. In this study, we propose a new analytical–numerical model of hollow-structured metal foams with structural hierarchy to predict its stiffness and strength. The two-level model comprises a main backbone and a secondary nanoporous structure. The main backbone is composed of hollow sphere-packing architecture, while the secondary one is constructed of a bicontinuous nanoporous network proposed to describe the nanoscale interactions in the shell. Firstly, two nanoporous models with different geometries are generated by Voronoi tessellation, then the scaling laws of the mechanical properties are determined as a function of relative density by finite volume simulation. Furthermore, the scaling laws are applied to identify the uniaxial compression behavior of metal foams. It is shown that the thickness and relative density highly influence the Young’s modulus and yield strength, and vacancy defect determines the foams being self-supported. The present study provides not only new insights into the mechanical behaviors of both nanoporous metals and metal foams, but also a practical guide for their fabrication and application.

  7. Modeling protein structures: construction and their applications.

    Science.gov (United States)

    Ring, C S; Cohen, F E

    1993-06-01

    Although no general solution to the protein folding problem exists, the three-dimensional structures of proteins are being successfully predicted when experimentally derived constraints are used in conjunction with heuristic methods. In the case of interleukin-4, mutagenesis data and CD spectroscopy were instrumental in the accurate assignment of secondary structure. In addition, the tertiary structure was highly constrained by six cysteines separated by many residues that formed three disulfide bridges. Although the correct structure was a member of a short list of plausible structures, the "best" structure was the topological enantiomer of the experimentally determined conformation. For many proteases, other experimentally derived structures can be used as templates to identify the secondary structure elements. In a procedure called modeling by homology, the structure of a known protein is used as a scaffold to predict the structure of another related protein. This method has been used to model a serine and a cysteine protease that are important in the schistosome and malarial life cycles, respectively. The model structures were then used to identify putative small molecule enzyme inhibitors computationally. Experiments confirm that some of these nonpeptidic compounds are active at concentrations of less than 10 microM.

  8. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    Directory of Open Access Journals (Sweden)

    Halvoník Jaroslav

    2018-03-01

    Full Text Available Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s in a critical cross-section(s or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS.

  9. Secondary Moments due to Prestressing with Different Bond at the Ultimate Limit State

    Science.gov (United States)

    Halvoník, Jaroslav; Pažma, Peter; Vida, Radoslav

    2018-03-01

    Secondary effects of prestressing develop in statically indeterminate structures (e.g., continuous beams) due to the restraint of deformations imposed by hyperstatic restraints. These effects may significantly influence internal forces and stresses in prestressed structures. Secondary effects are influenced by the redundancy of a structural system, which raises the question of whether they will remain constant after a change in the structural system, e.g., due to the development of plastic hinge(s) in a critical cross-section(s) or after the development of a kinematic mechanism, or if they will disappear when the structure changes into a sequence of simply supported beams. The paper deals with an investigation of the behavior of continuous post-tensioned beams subjected to an ultimate load with significant secondary effects from prestressing. A total of 6 two-span beams prestressed by tendons with different bonds were tested in a laboratory with a load that changed their structural system into a kinematic mechanism. The internal forces and secondary effects of the prestressing were controlled through measurements of the reactions in all the supports. The results revealed that the secondary effects remained as a permanent part of the action on the experimental beams, even after the development of the kinematic mechanism. The results obtained confirmed that secondary effects should be included in all combinations of actions for verifications of ultimate limit states (ULS).

  10. Predicted Rates of Secondary Malignancies From Proton Versus Photon Radiation Therapy for Stage I Seminoma

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Charles B., E-mail: csimone@alumni.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Kramer, Kevin [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); O' Meara, William P. [Division of Radiation Oncology, National Naval Medical Center, Bethesda, Maryland (United States); Bekelman, Justin E. [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); Belard, Arnaud [Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland (United States); McDonough, James [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania (United States); O' Connell, John [Radiation Oncology Service, Walter Reed Army Medical Center, Washington, DC (United States)

    2012-01-01

    Purpose: Photon radiotherapy has been the standard adjuvant treatment for stage I seminoma. Single-dose carboplatin therapy and observation have emerged as alternative options due to concerns for acute toxicities and secondary malignancies from radiation. In this institutional review board-approved study, we compared photon and proton radiotherapy for stage I seminoma and the predicted rates of excess secondary malignancies for both treatment modalities. Methods and Material: Computed tomography images from 10 consecutive patients with stage I seminoma were used to quantify dosimetric differences between photon and proton therapies. Structures reported to be at increased risk for secondary malignancies and in-field critical structures were contoured. Reported models of organ-specific radiation-induced cancer incidence rates based on organ equivalent dose were used to determine the excess absolute risk of secondary malignancies. Calculated values were compared with tumor registry reports of excess secondary malignancies among testicular cancer survivors. Results: Photon and proton plans provided comparable target volume coverage. Proton plans delivered significantly lower mean doses to all examined normal tissues, except for the kidneys. The greatest absolute reduction in mean dose was observed for the stomach (119 cGy for proton plans vs. 768 cGy for photon plans; p < 0.0001). Significantly more excess secondary cancers per 10,000 patients/year were predicted for photon radiation than for proton radiation to the stomach (4.11; 95% confidence interval [CI], 3.22-5.01), large bowel (0.81; 95% CI, 0.39-1.01), and bladder (0.03; 95% CI, 0.01-0.58), while no difference was demonstrated for radiation to the pancreas (0.02; 95% CI, -0.01-0.06). Conclusions: For patients with stage I seminoma, proton radiation therapy reduced the predicted secondary cancer risk compared with photon therapy. We predict a reduction of one additional secondary cancer for every 50 patients

  11. Generative probabilistic models extend the scope of inferential structure determination

    DEFF Research Database (Denmark)

    Olsson, Simon; Boomsma, Wouter; Frellsen, Jes

    2011-01-01

    demonstrate that the use of generative probabilistic models instead of physical forcefields in the Bayesian formalism is not only conceptually attractive, but also improves precision and efficiency. Our results open new vistas for the use of sophisticated probabilistic models of biomolecular structure......Conventional methods for protein structure determination from NMR data rely on the ad hoc combination of physical forcefields and experimental data, along with heuristic determination of free parameters such as weight of experimental data relative to a physical forcefield. Recently, a theoretically...

  12. SMEs capital structure determinants during severe economic crisis: The case of Greece

    Directory of Open Access Journals (Sweden)

    D. Balios

    2016-12-01

    Full Text Available The objective of this paper was to explore whether and how the main capital structure determinants of SMEs affected capital structure determination in different ways during the years of economic crisis. We used panel data of 8,052 SMEs operating in Greece during 2009–2012. We found that the effect of capital structure determinants on leverage does not change in an environment of economic crisis; larger SMEs continued to show higher debt ratios, the relationship between profitability and tangibility of assets with leverage continued to be negative, and growth was positively related to leverage.

  13. New method to determine structures in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tanzi, C.P.

    1998-01-01

    The information from tomographic methods is not always sufficient to determine fast changing structures, e.g. very hot plasmas. A new method has been developed by means of which, among other things, physical mechanisms of plasma instability can be disentangled. 4 refs

  14. QUALITY IMPROVEMENT OF SECONDARY SILUMINS BY USING REFINING-MODIFYING, HEAT AND LASER TREATMENTS

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2014-10-01

    Full Text Available Purpose. As a rule secondary silumins are characterized by lower quality than their primary analogues. During manufacture of alloys a large quantity of intermetallides, first of all on the basis of iron, in their structure is ignored. To achieve the optimum level of properties it is necessary to search for ways to adapt refining-modifying, heat and laser treatments to peculiarities of the structure of secondary Al-Si alloys. Methodology. The research was carried out by using standard methods of metallographic analysis, determination of foundry, mechanical and service properties of alloys according to rotatable plans of multifactor experiments. Findings. It was established, that refiningmodifying treatment is a required procedure during manufacture of secondary silumins as it permits to effectively influence the iron-containing phases' segregations by changing their morphology, size and distribution and to increase the effectiveness of further treatment in solid state. It was found that standard modes of heat treatment are not optimal for secondary silumins. Laser treatment has shown high effectiveness in increasing of strength, wear resistance, corrosion and cavitation resistance of secondary Al-Si alloys, and the increased iron content contributed to additional solid solution hardening. Originality. It was established, that after refining-modifying treatment the phase Al5SiFe, which crystallizes in the shape of long stretched plates transformed into phase Al15(FeMn3Si2 in skeletal or polyhedral shape. The relationship between iron content in secondary silumins and holding time during heat treatment that ensures optimum of mechanical properties was obtained. It was proved that the presence of ironcontaining intermetallides Al5SiFe results in the decrease of hardened layer's depth during laser treatment. It was established, that with increasing of iron concentration the corrosion rate of secondary silumins in 3 % NaCl + 0.1 % H2O2 and 10 % HCl

  15. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Sulfated oligosaccharide structures, as determined by NMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Noseda, M.D.; Duarte, M.E.R.; Tischer, C.A.; Gorin, P.A.J. [Parana Univ., Curitiba, PR (Brazil). Dept. De Bioquimica; Cerezo, A.S. [Buenos Aires Univ. Nacional (Argentina). Dept. de Quimica Organica

    1997-12-31

    Carrageenans are sulfated polysaccharides, produced by red seaweeds (Rhodophyta), that have important biological and physico-chemical properties. Using partial autohydrolysis, we obtained sulfated oligosaccharides from a {lambda}-carrageenan (Noseda and Cerezo, 1993). These oligosaccharides are valuable not only for the study of the structures of the parent carrageenans but also for their possible biological activities. In this work we determined the chemical structure of one of the sulfated oligosaccharides using 1D and 2D NMR techniques. (author) 4 refs., 8 figs., 1 tabs.

  17. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    Science.gov (United States)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  18. Implications of secondary structure prediction and amino acid sequence comparison of class I and class II phosphoribosyl diphosphate synthases on catalysis, regulation, and quaternary structure

    DEFF Research Database (Denmark)

    Krath, B N; Hove-Jensen, B

    2001-01-01

    Spinach 5-phospho-D-ribosyl alpha-1-diphosphate (PRPP) synthase isozyme 4 was synthesized in Escherichia coli and purified to near homogeneity. The activity of the enzyme is independent of P(i); it is inhibited by ADP in a competitive manner, indicating a lack of an allosteric site; and it accepts...... is consistent with a homotrimer. Secondary structure prediction shows that spinach PRPP synthase isozyme 4 has a general folding similar to that of Bacillus subtilis class I PRPP synthase, for which the three-dimensional structure has been solved, as the position and extent of helices and beta-sheets of the two...... in the spinach enzyme. In contrast, residues of the active site of B. subtilis PRPP synthase show extensive conservation in spinach PRPP synthase isozyme 4....

  19. Cell-free protein synthesis for structure determination by X-ray crystallography.

    Science.gov (United States)

    Watanabe, Miki; Miyazono, Ken-ichi; Tanokura, Masaru; Sawasaki, Tatsuya; Endo, Yaeta; Kobayashi, Ichizo

    2010-01-01

    Structure determination has been difficult for those proteins that are toxic to the cells and cannot be prepared in a large amount in vivo. These proteins, even when biologically very interesting, tend to be left uncharacterized in the structural genomics projects. Their cell-free synthesis can bypass the toxicity problem. Among the various cell-free systems, the wheat-germ-based system is of special interest due to the following points: (1) Because the gene is placed under a plant translational signal, its toxic expression in a bacterial host is reduced. (2) It has only little codon preference and, especially, little discrimination between methionine and selenomethionine (SeMet), which allows easy preparation of selenomethionylated proteins for crystal structure determination by SAD and MAD methods. (3) Translation is uncoupled from transcription, so that the toxicity of the translation product on DNA and its transcription, if any, can be bypassed. We have shown that the wheat-germ-based cell-free protein synthesis is useful for X-ray crystallography of one of the 4-bp cutter restriction enzymes, which are expected to be very toxic to all forms of cells retaining the genome. Our report on its structure represents the first report of structure determination by X-ray crystallography using protein overexpressed with the wheat-germ-based cell-free protein expression system. This will be a method of choice for cytotoxic proteins when its cost is not a problem. Its use will become popular when the crystal structure determination technology has evolved to require only a tiny amount of protein.

  20. Simulation of fatigue damagesin secondary truss of crane

    Directory of Open Access Journals (Sweden)

    Eremin Konstantin Ivanovich

    2014-02-01

    Full Text Available Basing on the damaging statistics obtained during the on-site inspections of industrial multi-span building structures with under-crane secondary trusses which have continuous lower plinth, we simulated the scenario of the most likely damage development of under-crane secondary trusses.The first scenario is the development of cracks along the total cross section of plinth. In the process of calculations we defined a real deformation scheme of plinth of under-crane secondary trusses with damage and its stress condition.The second scenario is the destruction of a support or support mounting unit to the lower plinth of under-crane secondary trusses. The destruction of this kind can occur as a result of a crack in a support or as a result of destruction of high-strength fasteners of a support to plinth. We discovered that a system with such damage is geometrically unchanged; there is no possibility of sudden destruction of both the under-crane secondary trusses and the entire building frame.The third scenario is the upper plinth separation from one of the walls of lower plinth of under-crane secondary trusses.The scenario is developed to define the viability of under-crane secondary trusses as a result of cracks in the area of wall junction with the upper shelf of lower plinth, their further development and the appearance of discrete cracks developing into a backbone along the entire span length of under-crane secondary trusses.Based on the calculations of the stress strain state of under-crane secondary trusses with damages in the emergency nature in a separate span of the lower plinth and a truss member, we estimated the viability of structure. The analysis of viability limits makes it possible to find the measures of collapse preventing and avoid possible victims.

  1. Traditional biomolecular structure determination by NMR spectroscopy allows for major errors

    NARCIS (Netherlands)

    Nabuurs, S.B.; Spronk, C.A.E.M.; Vuister, G.W.; Vriend, G.

    2006-01-01

    One of the major goals of structural genomics projects is to determine the three-dimensional structure of representative members of as many different fold families as possible. Comparative modeling is expected to fill the remaining gaps by providing structural models of homologs of the

  2. CAPITAL STRUCTURE DETERMINANTS: EVIDENCE FROM PALESTINE AND EGYPT STOCK EXCHANGES

    Directory of Open Access Journals (Sweden)

    Abdul Razak Abdul Hadi

    2017-04-01

    Full Text Available Abstract -This study is driven by the motivation to examine the capital structure determinants for Palestine Stock Exchange (PEX and Egypt Stock Exchange (EGX. Within the framework of capital structure theories, this study uses Generalized Method of Moments (GMM,1982 as an estimation model employing quarterly panel data analysis during the observed period from 2008 till 2012. The test results from GMM indicate that all the examined determinants have significant relationship with leverage. It has a negative value with liquidity, non-debt tax shield, profitability, size and growth. The Egyptian firms have some uniqueness in its trend. Current assets, debt ratio and liquidity behave positively with leverage except for growth. The other tested determinants in Egyptian companies are found to be not significant.

  3. Halo structure of 8B determined from intermediate energy proton elastic scattering in inverse kinematics

    Science.gov (United States)

    Korolev, G. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Alkhazov, G. D.; Egelhof, P.; Estradé, A.; Dillmann, I.; Farinon, F.; Geissel, H.; Ilieva, S.; Ke, Y.; Khanzadeev, A. V.; Kiselev, O. A.; Kurcewicz, J.; Le, X. C.; Litvinov, Yu. A.; Petrov, G. E.; Prochazka, A.; Scheidenberger, C.; Sergeev, L. O.; Simon, H.; Takechi, M.; Tang, S.; Volkov, V.; Vorobyov, A. A.; Weick, H.; Yatsoura, V. I.

    2018-05-01

    The absolute differential cross section for small-angle proton elastic scattering on the proton-rich 8B nucleus has been measured in inverse kinematics for the first time. The experiment was performed using a secondary radioactive beam with an energy of 0.7 GeV/u at GSI, Darmstadt. The active target, namely hydrogen-filled time projection ionization chamber IKAR, was used to measure the energy, angle and vertex point of the recoil protons. The scattering angle of the projectiles was simultaneously determined by the tracking detectors. The measured differential cross section is analyzed on the basis of the Glauber multiple scattering theory using phenomenological nuclear-density distributions with two free parameters. The radial density distribution deduced for 8B exhibits a halo structure with the root-mean-square (rms) matter radius Rm = 2.58 (6) fm and the rms halo radius Rh = 4.24 (25) fm. The results on 8B are compared to those on the mirror nucleus 8Li investigated earlier by the same method. A comparison is also made with previous experimental results and theoretical predictions for both nuclei.

  4. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    International Nuclear Information System (INIS)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and 3 H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by α-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S 2 episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. 3 H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system

  5. Protein Structure and the Sequential Structure of mRNA

    DEFF Research Database (Denmark)

    Brunak, Søren; Engelbrecht, Jacob

    1996-01-01

    entries in the Brookhaven Protein Data Bank produced 719 protein chains with matching mRNA sequence, amino acid sequence, and secondary structure assignment, By neural network analysis, we found strong signals in mRNA sequence regions surrounding helices and sheets, These signals do not originate from......A direct comparison of experimentally determined protein structures and their corresponding protein coding mRNA sequences has been performed, We examine whether real world data support the hypothesis that clusters of rare codons correlate with the location of structural units in the resulting...... protein, The degeneracy of the genetic code allows for a biased selection of codons which may control the translational rate of the ribosome, and may thus in vivo have a catalyzing effect on the folding of the polypeptide chain, A complete search for GenBank nucleotide sequences coding for structural...

  6. NMR in a crystallography-based high-throughput protein structure-determination environment

    International Nuclear Information System (INIS)

    Wüthrich, Kurt

    2010-01-01

    As an introduction to three papers on comparisons of corresponding crystal and NMR solution structures determined by the Joint Center for Structural Genomics (JCSG), an outline is provided of the JCSG strategy for combined use of the two techniques. A special commentary addresses the potentialities of the concept of ‘reference crystal structures’, which is introduced in the following three papers. An introduction is provided to three papers which compare corresponding protein crystal and NMR solution structures determined by the Joint Center for Structural Genomics (JCSG). Special mention is made of the JCSG strategy for combined use of the two techniques, and of potential applications of the concept of ‘reference crystal structures’, which is introduced in the following three papers

  7. Evolutionary diversification of secondary mechanoreceptor cells in tunicata.

    Science.gov (United States)

    Rigon, Francesca; Stach, Thomas; Caicci, Federico; Gasparini, Fabio; Burighel, Paolo; Manni, Lucia

    2013-06-04

    Hair cells are vertebrate secondary sensory cells located in the ear and in the lateral line organ. Until recently, these cells were considered to be mechanoreceptors exclusively found in vertebrates that evolved within this group. Evidence of secondary mechanoreceptors in some tunicates, the proposed sister group of vertebrates, has recently led to the hypothesis that vertebrate and tunicate secondary sensory cells share a common origin. Secondary sensory cells were described in detail in two tunicate groups, ascidians and thaliaceans, in which they constitute an oral sensory structure called the coronal organ. Among thaliaceans, the organ is absent in salps and it has been hypothesised that this condition is due to a different feeding system adopted by this group of animals. No information is available as to whether a comparable structure exists in the third group of tunicates, the appendicularians, although different sensory structures are known to be present in these animals. We studied the detailed morphology of appendicularian oral mechanoreceptors. Using light and electron microscopy we could demonstrate that the mechanosensory organ called the circumoral ring is composed of secondary sensory cells. We described the ultrastructure of the circumoral organ in two appendicularian species, Oikopleura dioica and Oikopleura albicans, and thus taxonomically completed the data collection of tunicate secondary sensory cells. To understand the evolution of secondary sensory cells in tunicates, we performed a cladistic analysis using morphological data. We constructed a matrix consisting of 19 characters derived from detailed ultrastructural studies in 16 tunicate species and used a cephalochordate and three vertebrate species as outgroups. Our study clearly shows that the circumoral ring is the appendicularian homologue of the coronal organ of other tunicate taxa. The cladistic analysis enabled us to reconstruct the features of the putative ancestral hair cell in

  8. Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-Helix and beta-sheet conformations

    Energy Technology Data Exchange (ETDEWEB)

    Grigsby, J.J.; Blanch, H.W.; Prausnitz, J.M.

    2001-10-30

    Because poly-L-lysine (PLL) can exist in the {alpha}-helix or {beta}-sheet conformation depending on solution preparation and solution conditions, PLL is a suitable candidate to probe the dependence of protein interactions on secondary structure. The osmotic second virial coefficient and weight-average molecular weight are reported from low-angle laser-light scattering measurements for PLL as a function of NaCl concentration, pH, and {alpha}-helix or {beta}-sheet content. Interactions between PLL molecules become more attractive as salt concentration increases due to screening of PLL charge by salt ions and at low salt concentration become more attractive as pH increases due to decreased net charge on PLL. The experimental results show that interactions are stronger for the {beta}-sheet conformation than for the {alpha}-helix conformation. A spherically-symmetric model for the potential of mean force is used to account for specific interactions not described by DLVO theory and to show how differences in secondary structure affect PLL interactions.

  9. Synthesis and Structural Determination of Temocapril Sulfoxide Hydrochlorides

    International Nuclear Information System (INIS)

    Seong, Seok Bong; Moon, Jong Taik; Kim, Jung Ahn; Choo, Dong Joon; Lee, Jae Yeol

    2012-01-01

    Impurity (or related substance) control in pharmaceutical products is a primary goal of drug development. Stringent international regulatory requirements have been in place for several years as outlined in the International Conference on Harmonization (ICH) Guidelines Q3A (R), Q3B (R) and Q3C. According to ICH guidelines, impurities associated with the manufacture of a drug substance, also known as an active pharmaceutical ingredient (API), are classified into the following categories: (1) organic impurities (process and drug-related); (2) inorganic impurities (3) residual solvents. Many potential impurities result from the API manufacturing process including starting materials, isomers, intermediates, reagents, solvents, catalysts and reaction by-products. These potential impurities should be investigated to determine process control mechanisms for their removal and the need for specification controls at appropriate points in the process. The suggested structures of the impurities can be synthesized and will provide the final evidence for their structures, previously determined by spectroscopic methods. Therefore it is essential to know the structure of these impurities in the bulk drug in order to alter the reaction condition and to reduce the quantity of impurity to an acceptable level. Isolation, identification and quantification of impurities help the pharmaceutical company to obtain a pure substance with less toxicity and safety in drug therapy

  10. X-ray structure determination and deuteration of nattokinase.

    Science.gov (United States)

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Naito, Sawa; Ohsugi, Tadanori; Yatagai, Chieko; Sumi, Hiroyuki; Kawaguchi, Akio; Chiba-Kamosida, Kaori; Ogawa, Megumi; Adachi, Tatsumi; Morimoto, Yukio

    2013-11-01

    Nattokinase (NK) is a strong fibrinolytic enzyme, which is produced in abundance by Bacillus subtilis natto. Although NK is a member of the subtilisin family, it displays different substrate specificity when compared with other subtilisins. The results of molecular simulations predict that hydrogen arrangements around Ser221 at the active site probably account for the substrate specificity of NK. Therefore, neutron crystallographic analysis should provide valuable information that reveals the enzymatic mechanism of NK. In this report, the X-ray structure of the non-hydrogen form of undeuterated NK was determined, and the preparation of deuterated NK was successfully achieved. The non-hydrogen NK structure was determined at 1.74 Å resolution. The three-dimensional structures of NK and subtilisin E from Bacillus subtilis DB104 are near identical. Deuteration of NK was carried out by cultivating Bacillus subtilis natto in deuterated medium. The D2O resistant strain of Bacillus subtilis natto was obtained by successive cultivation rounds, in which the concentration of D2O in the medium was gradually increased. NK was purified from the culture medium and its activity was confirmed by the fibrin plate method. The results lay the framework for neutron protein crystallography analysis.

  11. Structure determination by X-ray crystallography

    CERN Document Server

    Ladd, M F C

    1977-01-01

    Crystallography may be described as the science of the structure of materi­ als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal­ lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post­ graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain ...

  12. Secondary metabolites in fungus-plant interactions

    Science.gov (United States)

    Pusztahelyi, Tünde; Holb, Imre J.; Pócsi, István

    2015-01-01

    Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed. PMID:26300892

  13. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  14. Feasibility Study on Nano-structured Coatings to Mitigate Flow-accelerated Corrosion in Secondary System of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghyun; Kim, Jeong Won; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan (Korea, Republic of)

    2015-05-15

    There have been many efforts to mitigate FAC through the adoption of the advanced and modified water chemistries such as optimized dissolved oxygen (DO) concentration and temperature. However, these mitigation techniques pose certain challenges relating to the compatibility of new water chemistries with the steam generator, the thermal efficiency of the secondary side, etc. In this context, nano-particle reinforced electroless nickel plating (NP ENP) could help solve the FAC issues in secondary pipe systems. This does not require modification of water chemistry or structural materials, and hence, its application is reasonable and time-saving compared to previous FAC mitigation techniques. The main parameters of FAC are known as electrochemical reaction at the interface, dissolution of magnetite and ferrous ions due to concentration gradient between carbon steels and water and wear due to a fast-flowing fluid. High-temperature corrosion characteristics of the both coatings have potential as FAC barrier for carbon steel. Feasibility study will be carried out with FAC simulation experiments.

  15. Sheath structure transition controlled by secondary electron emission

    Science.gov (United States)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio Δφs/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  16. Nutritional environment at secondary schools in Bloemfontein, South ...

    African Journals Online (AJOL)

    Objective: The objective was to determine the nutritional environment at secondary schools in Bloemfontein, Free State province. Design: This was a cross-sectional, descriptive study. Subjects and setting: The subjects were secondary school principals in Bloemfontein, Free State province, in 2006. Method: Principals of 10 ...

  17. Community structure, life histories and secondary production of stoneflies in two small mountain streams with different degree of forest cover

    Directory of Open Access Journals (Sweden)

    Pavel Beracko

    2015-10-01

    Full Text Available Our study examines community structure and nymphal biology (life cycles and secondary production of stoneflies in two adjacent mountain streams with different degree of forest cover in the Prosiečanka River Basin (Chočské Vrchy Mts., West Carpathians. One of the streams has non-forested catchment, converted to meadows and pastures, while the other one has catchment with 60% covered by spruce forest. Differences in forest cover and in thermal regime of the streams were reflected by the difference of stonefly communities at their structural and functional level. Species Nemoura cinerea and Leuctra aurita created stonefly assemblage in non-forested stream, whereas Nemoura cinerea also occurred in naturally forested stream together with species Leuctra armata, Leuctra nigra, Leuctra prima, Siphonoperla neglecta and Arcynopteryx dichroa. All examined species had maximally annual life cycle and in eudominant species Nemoura cinerea one month shift was found in nymphal hatching and adult emergence between streams. Total secondary production of stoneflies in undisturbed stream (126.46 mg DW m-2 y-1 was more than two times higher than the production in non-forested stream (47.39 mg DW m-2 y-1. 

  18. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.

    Science.gov (United States)

    Ho, Phuong T; Reddy, Vijay S

    2018-01-01

    The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (∼3.0 Å) and size (∼310.0 Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508 Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9 Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    Science.gov (United States)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  20. Labor Market Structure and Salary Determination among Professional Basketball Players.

    Science.gov (United States)

    Wallace, Michael

    1988-01-01

    The author investigates the labor market structure and determinants of salaries for professional basketball players. An expanded version of the resource perspective is used. A three-tiered model of labor market segmentation is revealed for professional basketball players, but other variables also are important in salary determination. (Author/CH)

  1. Determining modulus of elasticity of ancient structural timber

    Science.gov (United States)

    Houjiang Zhang; Lei Zhu; Yanliang Sun; Xiping Wang; Haicheng Yan

    2011-01-01

    During maintenance of ancient timber architectures, it is important to determine mechanical properties of the wood component materials non-destructively and effectively, so that degraded members may be replaced or repaired to avoid structural failure. Experimental materials are four larch (Larix principis-rupprechtii Mayr.) components, which were taken down from the...

  2. the influence of cartoons as instructional medium on secondary ...

    African Journals Online (AJOL)

    Global Journal

    This study examined the influence of cartoon strips as instructional medium on the academic performance of secondary school students in Cross River State. The instrument used was a structured. Achievement Test in Fine Arts (SATFA). The sample used consisted of 46 Junior Secondary School two students. SATFA was ...

  3. The Efficiency of Managing School Records by Secondary School ...

    African Journals Online (AJOL)

    This study examined the efficiency of management of school records by secondary school principals in Delta state, Nigeria. As a descriptive survey, the study population comprised all the 602 public secondary school principals in the state. A structured questionnaire was used to gather data which was subsequently ...

  4. The influence of cartoons as instructional medium on secondary ...

    African Journals Online (AJOL)

    This study examined the influence of cartoon strips as instructional medium on the academic performance of secondary school students in Cross River State. The instrument used was a structured Achievement Test in Fine Arts (SATFA). The sample used consisted of 46 Junior Secondary School two students. SATFA was ...

  5. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  6. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    Science.gov (United States)

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  8. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  9. Synthesis/literature review for determining structural layer coefficients (SLC) of bases.

    Science.gov (United States)

    2014-12-01

    FDOTs current method of determining a base material structural layer coefficient (SLC) is detailed in the : Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement Base Materials. : Currently, any new base material not a...

  10. Sequence-specific 1H NMR assignments and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Breg, J.N.; Boelens, R.; George, A.V.E.; Kaptein, R.

    1989-01-01

    The Arc repressor of bacteriophage P22 is a DNA binding protein that does not belong to any of the known classes of such proteins. The authors have undertaken a 1 H NMR study of the protein with the aim of elucidating its three-dimensional structure in solution and its mode of binding of operator DNA. Here the authors present the 1 H nuclear magnetic resonance (NMR) assignments of all backbone protons an most of the side-chain protons of Arc repressor. Elements of secondary structure have been identified on the basis of networks of characteristics sequential and medium-range nuclear Overhauser enhancements (NOEs). Two α-helical regions have been found in the peptide regions 16-29 and 35-45. The ends of the helices could not yet be firmly established and could extend to residue 31 for the first helix and to residue 49 for the second. Immediately before the first helix, between residues 8 and 14, a region is present with β-sheet characteristics dominated by a close proximity of the α-protons of residues 9 and 13. Because of the dimeric nature of the protein there are still two possible ways in which the NOEs in the β-sheet region can be interpreted. While the data presently do not allow an unambiguous choice between these two possibilities, some evidence is discussed that favors the latter (β-sheet between monomers). Since the N-terminal region of Arc is responsible for the sequence-specific recognition of its operator, the findings suggest the existence of a DNA binding motif in which a β-sheet region is present

  11. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs

    Directory of Open Access Journals (Sweden)

    Ricardo eFlores

    2012-06-01

    Full Text Available As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson-Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunvioidae adopt multibranched conformations occasionally stabilized by kissing loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunvioidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures ⎯either global or local ⎯ determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.

  12. Application of nano-structured coatings to mitigate flow-accelerated corrosion in secondary pipe systems of nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Seung Hyun; Kim, Jong Jin; Yoo, Seung Chang; Kim, Ji Hyun

    2014-01-01

    Carbon steel is widely used as a structural material in secondary pipe systems. However, the passivity of carbon steel is not sufficient for protection in secondary water chemistry with a very fast-flowing fluid because of the dissolution of ferrous and magnetite ions and surface friction at the interface of the coolant and pipe surface. There have been many efforts to mitigate flow-accelerated corrosion through adoption of advanced water chemistries such as optimized dissolve oxygen (DO) concentration and temperature, as well as usage of new additives such as monoethanol amine (ETA) to adjust pH. However, these mitigation techniques pose certain challenges relating to the compatibility of new water chemistries with the steam generator, the thermal efficiency of the secondary side, etc. In this study, to improve the passivity of carbon steel, nanostructured coatings especially nanoparticle-enhanced surface coatings were adopted to improve resistance to corrosion and wear. Nanoparticles in the coating matrix help decrease the electrochemical potential compared coatings without nanoparticles, and thus help improve the mechanical properties, especially hardness, through precipitation. In other words, nanoparticle-enhanced surface coatings have the potential to mitigate flow-accelerated corrosion in secondary pipe systems. As candidate coatings, TiO 2 - and SiC-enhanced electrolytic and electroless nickel plating and Fe-Cr-W amorphous metallic coatings (AMC) were selected by acquiring the Pourbaix diagram with thermodynamic calculations. Both TiO 2 and SiC show a stable state in secondary water chemistry, and it is estimated that Fe-Cr-W can be applied to secondary water chemistry because it has a similar chemical composition to carbon steel. Electron microscopic analysis results with scanning electron microscopy (SEM) and tunneling electron microscopy (TEM) show the distribution of TiO 2 nanoparticles in the nickel matrix coating layer, whereas the SiC nanoparticles

  13. Status Of Strategic Management Practices Of Secondary School ...

    African Journals Online (AJOL)

    The purpose of the study was to determine the extent to which principals practice strategic management skills in students' administration in secondary schools in Anambra State. All the two hundred and fifty-nine (259) secondary school principals of the six education zones of Anambra State were used for the study.

  14. Pre-Service Secondary Teachers' Attitudes towards Inclusive Education

    Science.gov (United States)

    Costello, Shane; Boyle, Christopher

    2013-01-01

    The attitudes held by pre-service teachers have been shown to affect their willingness and ability to implement an inclusive approach to education. A sample consisting of 193 pre-service secondary teachers enrolled in secondary education courses at an Australian university were surveyed to determine their attitudes towards inclusive education,…

  15. Dopamine agonist suppression of rapid-eye-movement sleep is secondary to sleep suppression mediated via limbic structures

    Energy Technology Data Exchange (ETDEWEB)

    Miletich, R.S.

    1985-01-01

    The effects of pergolide, a direct dopamine receptor agonist, on sleep and wakefulness, motor behavior and /sup 3/H-spiperone specific binding in limbic structures and striatum in rats was studied. The results show that pergolide induced a biphasic dose effect, with high doses increasing wakefulness and suppressing sleep while low dose decreased wakefulness, but increased sleep. It was shown that pergolide-induced sleep suppression was blocked by ..cap alpha..-glupenthixol and pimozide, two dopamine receptor antagonists. It was further shown that pergolide merely delayed the rebound resulting from rapid-eye-movement (REM) sleep deprivation, that dopamine receptors stimulation had no direct effect on the period, phase or amplitude of the circadian rhythm of REM sleep propensity and that there was no alteration in the coupling of REM sleep episodes with S/sub 2/ episodes. Rapid-eye-movement sleep deprivation resulted in increased sensitivity to the pergolide-induced wakefulness stimulation and sleep suppression and pergolide-induced motor behaviors of locomotion and head bobbing. /sup 3/H-spiperone specific binding to dopamine receptors was shown to be altered by REM sleep deprivation in the subcortical limbic structures. It is concluded that the REM sleep suppressing action of dopamine receptor stimulation is secondary to sleep suppression per se and not secondary to a unique effect on the REM sleep. Further, it is suggested that the wakefulness stimulating action of dopamine receptor agonists is mediated by activation of the dopamine receptors in the terminal areas of the mesolimbocortical dopamine projection system.

  16. The magnetic domain structures of Fe thin films on rectangular land-and-groove substrates studied by spin-polarized secondary electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan)]. E-mail: uedas@postman.riken.go.jp; Iwasaki, Y. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Micro Systems Network Company, Sony Corporation, Tagajo, Miyagi 985-0842 (Japan); Ushioda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2004-10-01

    The magnetic domain structures of Fe thin films on rectangular land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area in the magnetization reversal due to the difference in surface roughness between land and groove areas. The magnetic domain structure and domain wall pinning behavior during the reversal process depended on the direction of the magnetic field relative to the rectangles. These results show that the anisotropy induced by film geometry also contributes to the magnetization reversal process of thin magnetic films on land{sub a}nd{sub g}roove substrates.

  17. Document boundary determination using structural and lexical analysis

    Science.gov (United States)

    Taghva, Kazem; Cartright, Marc-Allen

    2009-01-01

    The document boundary determination problem is the process of identifying individual documents in a stack of papers. In this paper, we report on a classification system for automation of this process. The system employs features based on document structure and lexical content. We also report on experimental results to support the effectiveness of this system.

  18. Secondary electron emission in nanostructured porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G D; Ferron, J; Koropecki, R R, E-mail: gdruano@ceride.gov.a [INTEC-UNL-CONICET, Gueemes 3450 - 3000 Santa Fe (Argentina)

    2009-05-01

    We studied the reversible reduction induced by ion bombardment of the secondary electron emission (SEE) yield. This effect has been modelled as due to changes in dynamically sustained dipoles related with ions and electrons penetration ranges. Such charge configuration precludes the escape of electrons from the nanoporous silicon, making the SEE dependent on the flux of impinging ions. Since this dipolar momentum depends on the electric conduction of the porous medium, by controlled oxidation of the nanoporous structure we change the conduction features of the sample, studying the impact on the SEE reduction effect. Li ion bombardment was also used with the intention of changing the parameters determining the effect. FT-IR and Auger electron spectroscopy were used to characterize the oxidation degree of the samples at different depth scales

  19. Microbial Composition in Decomposing Pine Litter Shifts in Response to Common Soil Secondary Minerals

    Science.gov (United States)

    Welty-Bernard, A. T.; Heckman, K.; Vazquez, A.; Rasmussen, C.; Chorover, J.; Schwartz, E.

    2011-12-01

    A range of environmental and biotic factors have been identified that drive microbial community structure in soils - carbon substrates, redox conditions, mineral nutrients, salinity, pH, and species interactions. However, soil mineralogy has been largely ignored as a candidate in spite of recent studies that indicate that minerals have a substantial impact on soil organic matter stores and subsequent fluxes from soils. Given that secondary minerals and organic colloids govern a soil's biogeochemical activity due to surface area and electromagnetic charge, we propose that secondary minerals are a strong determinant of the communities that are responsible for process rates. To test this, we created three microcosms to study communities during decomposition using pine forest litter mixed with two common secondary minerals in soils (goethite and gibbsite) and with quartz as a control. Changes in bacterial and fungal communities were tracked over the 154-day incubation by pyrosequencing fragments of the bacterial 16S and fungal 18S rRNA genes. Ordination using nonmetric multidimensional scaling showed that bacterial communities separated on the basis of minerals. Overall, a single generalist - identified as an Acidobacteriaceae isolate - dominated all treatments over the course of the experiment, representing roughly 25% of all communities. Fungal communities discriminated between the quartz control alone and mineral treatments as a whole. Again, several generalists dominated the community. Coniochaeta ligniaria dominated communities with abundances ranging from 29 to 40%. The general stability of generalist populations may explain the similarities between treatment respiration rates. Variation between molecular fingerprints, then, were largely a function of unique minor members with abundances ranging from 0.01 to 8%. Carbon availability did not surface as a possible mechanism responsible for shifts in fingerprints due to the relatively large mass of needles in the

  20. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding