WorldWideScience

Sample records for secondary fluid injection

  1. Secondary air injection system and method

    Science.gov (United States)

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  2. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    Science.gov (United States)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  3. Fluid injection and induced seismicity

    Science.gov (United States)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity

  4. Stability of fault submitted to fluid injections

    Science.gov (United States)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes

  5. Creating fluid injectivity in tar sands formations

    Science.gov (United States)

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  6. Method and apparatus for injecting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, W E

    1966-07-05

    A method and apparatus are described for injecting grouting material into porous, fractured, unconsolidated, or other formations, whose cohesion is to be increased and/or whose permeability is to be decreased. A tool for injecting the fluid consists of a packer and valves through which the pressurized fluid may pass from the interior of the tool to the packer to expand it. Another valve allows pressure fluid to be vented so as to allow contraction of the packer. A third valve allows a flow of pressurized flow out of the tool and into the material when a predetermined pressure within the tool has been attained. (9 claims)

  7. Re-injection feasibility study of fracturing flow-back fluid in shale gas mining

    Science.gov (United States)

    Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao

    2018-02-01

    Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.

  8. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

    OpenAIRE

    Melinder, Åke

    2007-01-01

    Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low tem...

  9. A simple method of injecting tumescent fluid for liposuction

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2011-01-01

    Full Text Available Injection of tumescent fluid is essential to obtain a painless and relatively bloodless liposuction. There are many methods of injecting the tumescent fluid like power pumps, syringes and pressure cuffs. Our method consists of applying air pressure within the plastic transfusion fluid bottle by pricking with a wide bore needle and connecting it to a sphygmomanometer balloon pump. By inflation of the balloon pump and thus increasing pressure inside the plastic bottle, the rate and volume of infusion can be controlled. By applying the cuff outside the bottle the visibility inside is impaired and the bottle gets collapsed preventing a continued pressure and thereby impairing both the quantity as well as the rate of infusion. Power pumps are expensive. This method is inexpensive, infused volume of fluid being visible and the rate of infusion controllable.

  10. Microcontroller-driven fluid-injection system for atomic force microscopy.

    Science.gov (United States)

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  11. An investigation of fluid mixing with safety injection in advanced reactors

    International Nuclear Information System (INIS)

    Cha, Jong Hee; Won, Soon Yean; Chung, Moon Ki; Jun, Hyung Gil

    1994-01-01

    The objective of this work is to investigate the fluid mixing phenomena in aspect of pressurized thermal shock(PTS) in an advanced PWR vessel downcomer during transient cooldown with safety injection. It provides comparison of fluid mixing characteristics between AP 600 DVI, designed by Westinghouse, and ABB CE System 80+ DVI, and the effects of deflector at the reactor downcomer. In order to investigate the fluid mixing phenomena in the downcomer of an advanced PWR, the flow visualization tests and the salt concentration tests were conducted in a 1/7-scale acrylic transparent model, which was designed and built based on AP 600 reactor geometry. The behaviour of the safety injection flow in downcomer associated with mixing phenomenon can be observed during visualization test, and time-dependent mixing rate between safety injection fluid and existing coolant can be determined with concentration test. Visualization tests were performed by the dye injection method. The results of concentration measurements were compared with the calculation using the REMIX code. During the tests, difference between AP 600 DVI flow and ABB CE System 80+ DVI flow and the effect of the deflector were observed

  12. The volume of fluid injected into the tissue expander and the tissue expansion

    Directory of Open Access Journals (Sweden)

    Mahmood Omranifard

    2014-01-01

    Full Text Available Background: Replacement of the lost tissue is the major concerns of the plastic surgeons. Expanded area should be coherent with the surrounding tissue. Tissue expansion technique is the reforming methods the skin tissue scarcities. Several methods for tissue expansion are available; including usage of silicon balloon and injecting fluid into the tissue expander. Materials and Methods: In a clinical trial study, 35 patients, with burn scars, in the face, skull and neck area were studied. We provided a tissue expander device with capacities of 125, 250 and 350cc. Fluid was injected inside the device, 3 consecutive weeks with 1-week interval. After 3 months the device was set out and the tissue expansion was measured using a transparent board and the results were analyzed. Multiple regression was done by SPSS 20 to analyze the data. Results: Regression model showed Skin expansion was positively correlated with the volume of the injected fluid. For each centimeter square of skin expansion, about 6-8 ml of fluid must be injected. Conclusion: Correction of skin defects resulting from burning scar is possible using tissue expanders. The tissue expansion is correlated with the amount of the injected fluid.

  13. Seismicity rate surge on faults after shut-in: poroelastic response to fluid injection

    Science.gov (United States)

    Chang, K. W.; Yoon, H.; Martinez, M. J.

    2017-12-01

    Subsurface energy activities such as geological CO2 storage and wastewater injection require injecting large amounts of fluid into the subsurface, which will alter the states of pore pressure and stress in the storage formation. One of the main issues for injection-induced seismicity is the post shut-in increases in the seismicity rate, often observed in the fluid-injection operation sites. The rate surge can be driven by the following mechanisms: (1) pore-pressure propagation into distant faults after shut-in and (2) poroelastic stressing caused by well operations, depending on fault geometry, hydraulic and mechanical properties of the formation, and injection history. We simulate the aerial view of the target reservoir intersected by strike-slip faults, in which injection-induced pressure buildup encounters the faults directly. We examine the poroelastic response of the faults to fluid injection and perform a series of sensitivity tests considering: (1) permeability of the fault zone, (2) locations and the number of faults with respect to the injection point, and (3) well operations with varying the injection rate. Our analysis of the Coulomb stress change suggests that the sealing fault confines pressure diffusion which stabilizes or weakens the nearby conductive fault depending on the injection location. We perform the sensitivity test by changing injection scenarios (time-dependent rates), while keeping the total amount of injected fluids. Sensitivity analysis shows that gradual reduction of the injection rate minimizes the Coulomb stress change and the least seismicity rates are predicted. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  14. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  15. Insights gained from relating cumulative seismic moments to fluid injection activities

    Science.gov (United States)

    McGarr, A.; Barbour, A. J.

    2017-12-01

    The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.

  16. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    Science.gov (United States)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ 1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low injection rates; most industrial-scale injection

  17. Detecting subsurface fluid leaks in real-time using injection and production rates

    Science.gov (United States)

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to

  18. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    Science.gov (United States)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.

  19. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    Science.gov (United States)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been

  20. A comparative study of vascular injection fluids in fresh-frozen and embalmed human cadaver forearms.

    Science.gov (United States)

    Doomernik, D E; Kruse, R R; Reijnen, M M P J; Kozicz, T L; Kooloos, J G M

    2016-10-01

    Over the years, various vascular injection products have been developed to facilitate anatomical dissections. This study aimed to compare the most commonly used vascular injection products in fresh-frozen and formalin-embalmed cadaver specimens. An overview of the properties, advantages and limitations of each substance was given, and a comparison of vascular infusion procedures in both preservation methods was made. A literature search was performed in order to identify the most commonly used vascular injection products. Acrylic paint, latex, gelatin, silicone, Araldite F and Batson's No. 17 were selected for the study. One fresh-frozen and one embalmed cadaver forearm were infused with each injection product according to a uniform protocol. The curing time, skin- and subcutaneous tissue penetration, degree of filling of the arterial tree, extravasations, consistency of the injected vessels during dissection, and the costs of each injection fluid were noted. There was a large variation between the injection fluids in processing- and curing time, colour intensity, flexibility, fragility, elasticity, strength, toxicity and costs. All fluids were suitable for infusion. The penetration of injection fluid into the skin and subcutaneous tissue was significantly better in fresh-frozen specimens (P = 0.002 and P = 0.009, respectively), with significantly smaller branches casted (P = 0.004). Vascular infusion of fresh-frozen cadaver specimens results in a significantly better filled coloured arterial tree, enabling more detail to be achieved and smaller branches casted. The biomechanical properties of fresh-frozen soft tissues are less affected compared with formalin fixation. All the injection fluids studied are suitable for vascular infusion, but their different properties ensure that certain products and procedures are more suitable for specific study purposes. © 2016 Anatomical Society.

  1. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    Science.gov (United States)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  2. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  3. An improved apparatus for pressure-injecting fluid into trees

    Science.gov (United States)

    Garold F. Gregory; Thomas W. Jones

    1975-01-01

    Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.

  4. Radiographic, Hematologic and Biochemical Alterations in Peritoneal Fluid after Intraperitoneal Injection of Barium Sulfate and Gastrografin in Rabbit

    Directory of Open Access Journals (Sweden)

    Sardar Jafari-Shoorijeh

    2012-07-01

    Full Text Available Background: Evaluation of contrast-induced changes in the peritoneal area may reveal the effects of their permeation followed by gastrointestinal perforation. This study aims to compare the radiographic changes and hematological and biochemical parameters of peritoneal fluid and blood after intraperitoneal injection of barium sulfate and gastrografin to the rabbit.Materials and Methods: In this clinical trial, 15 healthy male rabbits were randomly divided into 3 groups. Respectively to each group 10 ml/kg barium sulfate 30%, 10 ml/kg gastrografin, and 10 ml/kg saline was intraperitoneally injected. Before injection and 24 hours after injection, blood samples and peritoneal fluid were collected to measure glucose, total protein, WBC count and pH. Lateral and dorsal-ventral radiography was provided 20 min and 24 hours after contrast injection.Results: After injection of barium sulfate, serum glucose decreased, cell count and blood neutrophil percentage increased, glucose and the percentage of peritoneal fluid lymphocytes decreased (p<0.05. The amount of total protein, cell count and peritoneal fluid neutrophil percentage increased (p<0.05. Gastrografin injection only increased peritoneal fluid total protein (p=0.04. Other blood factors and peritoneal fluid showed no significant changes. In radiographies, barium sulfate remained in abdominal area and rapid absorption of gastrografin was observed.Conclusion: The use of gastrografin has fewer side effects than barium sulfate and is recommended in patients suspected with gastrointestinal perforation.

  5. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    Science.gov (United States)

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  6. Secondary and tertiary gas injection in fractured carbonate rock: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Karimaie, H.; Torsaeter, O. [SPE, NTNU (Norway); Darvish, G.R. [SPE, STATOIL (Norway); Lindeberg, E. [SPE, SINTEF (Norway)

    2008-09-15

    The use of CO{sub 2} has received considerable interest as a method of EOR but a major drawback is its availability and increasing cost. Therefore, as the number of CO{sub 2} injection projects increase, an alternative must be considered to meet the economic considerations. For this reason attention has been directed to nitrogen injection which may be a good substitute for CO{sub 2}. The purpose of the experiments described in this paper was to investigate the efficiency of oil recovery by CO{sub 2} and N{sub 2} in fractured carbonate rock. The combined effects of gravity drainage and component exchange between gas in fracture and oil in matrix on oil recovery in fractured reservoirs subjected to CO{sub 2} or nitrogen gas injection are experimentally studied. Laboratory experiments have been carried out on a low permeable outcrop chalk, as an analogue to a North Sea reservoir rock. This was surrounded by a fracture, established with a novel experimental set-up. The experiments aimed to investigate the potential of oil recovery by secondary and tertiary CO{sub 2} and nitrogen gas injection at high pressure high temperature condition. The matrix block was saturated using recombined binary mixture live oil (C{sub 1}-C{sub 7}), while the fracture was filled with a sealing material to obtain a homogeneous saturation. The sealing material was then removed by increasing the temperature which in turn creates the fracture surrounding the core. Gas was injected into the fracture at pressures above the bubble point of the oil. Oil recovery as a function of time was monitored during the experiments. Results from secondary gas injection experiments indicate that CO{sub 2} injection at elevated pressure and temperature is more efficient than N{sub 2} injection. Results from tertiary gas injection experiments also show that injection of CO{sub 2} could significantly recover the oil, even after waterflooding, compared to N{sub 2} injection. (author)

  7. Conceptual models of microseismicity induced by fluid injection

    Science.gov (United States)

    Baro Urbea, J.; Lord-May, C.; Eaton, D. W. S.; Joern, D.

    2017-12-01

    Variations in the pore pressure due to fluid invasion are accountable for microseismic activity recorded in geothermal systems and during hydraulic fracturing operations. To capture this phenomenon on a conceptual level, invasion percolation models have been suggested to represent the flow network of fluids within a porous media and seismic activity is typically considered to be directly related to the expansion of the percolated area. Although such models reproduce scale-free frequency-magnitude distributions, the associated b-values of the Gutenberg-Richter relation do not align with observed data. Here, we propose an alternative conceptual invasion percolation model that decouples the fluid propagation from the microseismic events. Instead of a uniform pressure, the pressure is modeled to decay along the distance from the injection site. Wet fracture events are simulated with a stochastic spring block model exhibiting stick-slip dynamics as a result of the variations of the pore pressure. We show that the statistics of the stick-slip events are scale-free, but now the b-values depend on the level of heterogeneity in the local static friction coefficients. Thus, this model is able to reproduce the wide spectrum of b-values observed in field catalogs associated with fluid induced microseismicity. Moreover, the spatial distribution of microseismic events is also consistent with observations.

  8. Fault reactivation by fluid injection considering permeability evolution in fault-bordering damage zones

    Science.gov (United States)

    Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.

    2017-12-01

    Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection

  9. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    Science.gov (United States)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and

  10. Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system

    International Nuclear Information System (INIS)

    Vasconcelos, Adriano Akel; Cárdenas Gómez, Abdul Orlando; Bandarra Filho, Enio Pedone; Parise, José Alberto Reis

    2017-01-01

    Highlights: • SWCNT-water nanofluid was used as secondary fluid for a refrigeration system. • For a given HTFS mass flow rate and inlet temperature, nanofluid performed better than base fluid. • Total power consumption was not significantly affected by volume concentration. • Nanoparticle volume fraction ranged from 0 to 0.21%. - Abstract: SWCNT-water (single walled carbon nanotube) nanofluid was tested as a secondary fluid for a 4–9 kW indirect vapor compression refrigeration system. The evaporator, with boiling refrigerant HCFC-22 extracting heat from the nanofluid, was of the brazed plate counter-flow type. A semi-hermetic compressor, an electronic expansion valve (EEV) and an air-cooled condenser were the other main components of the refrigeration cycle. Tests were carried out with the experimental apparatus operating over a range of different volumetric fractions of nanoparticles (0–0.21%) as well as nanofluid inlet temperatures (30–40 °C) and mass flow rates (40–80 g/s). Overall, the performance of the system working with nanofluid as a secondary fluid was superior to that where just the base fluid (i.e., pure water) circulated in the secondary fluid loop, at the same mass flow rate and inlet temperature. The enhanced thermal conductivity of the nanofluid is believed to be the main reason why the refrigeration system with the nanofluid loop, if compared to that with pure water, presented a higher refrigerating capacity.

  11. Workshop on induced Seismicity due to fluid injection/production from Energy-Related Applications

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Asanuma, Hiroshi; Rueter, Horst; Stump, Brian; Segall, Paul; Zoback, Mark; Nelson, Jim; Frohlich, Cliff; Rutledge, Jim; Gritto, Roland; Baria, Roy; Hickman, Steve; McGarr, Art; Ellsworth, Bill; Lockner, Dave; Oppenheimer, David; Henning, Peter; Rosca, Anca; Hornby, Brian; Wang, Herb; Beeler, Nick; Ghassemi, Ahmad; Walters, Mark; Robertson-Tait, Ann; Dracos, Peter; Fehler, Mike; Abou-Sayed, Ahmed; Ake, Jon; Vorobiev, Oleg; Julian, Bruce

    2011-04-01

    Geothermal energy, carbon sequestration, and enhanced oil and gas recovery have a clear role in U.S. energy policy, both in securing cost-effective energy and reducing atmospheric CO{sub 2} accumulations. Recent publicity surrounding induced seismicity at several geothermal and oil and gas sites points out the need to develop improved standards and practices to avoid issues that may unduly inhibit or stop the above technologies from fulfilling their full potential. It is critical that policy makers and the general community be assured that EGS, CO{sub 2} sequestration, enhanced oil/gas recovery, and other technologies relying on fluid injections, will be designed to reduce induced seismicity to an acceptable level, and be developed in a safe and cost-effective manner. Induced seismicity is not new - it has occurred as part of many different energy and industrial applications (reservoir impoundment, mining, oil recovery, construction, waste disposal, conventional geothermal). With proper study/research and engineering controls, induced seismicity should eventually allow safe and cost-effective implementation of any of these technologies. In addition, microseismicity is now being used as a remote sensing tool for understanding and measuring the success of injecting fluid into the subsurface in a variety of applications, including the enhancement of formation permeability through fracture creation/reactivation, tracking fluid migration and storage, and physics associated with stress redistribution. This potential problem was envisaged in 2004 following observed seismicity at several EGS sites, a study was implemented by DOE to produce a white paper and a protocol (Majer et al 2008) to help potential investors. Recently, however, there have been a significant number of adverse comments by the press regarding induced seismicity which could adversely affect the development of the energy sector in the USA. Therefore, in order to identify critical technology and research

  12. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  13. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    Science.gov (United States)

    Rutter, Ernest; Hackston, Abigail

    2017-08-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  14. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection.

    Science.gov (United States)

    Rutter, Ernest; Hackston, Abigail

    2017-09-28

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.

  15. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    International Nuclear Information System (INIS)

    Serrato, M. G.

    2013-01-01

    located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps

  16. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.

    2013-09-27

    located at the Florida International University Applied Research Center, Miami, FL (FIU-ARC). A follow-on fluid injection test was developed to detect fluid and ion migration in a cementitious material/grouted test cube using a limited number of existing embedded sensor systems. This In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) - Phase 3 Fluid Injection Test Summary Report summarizes the test implementation, acquired and processed data, and results from the activated embedded sensor systems used during the fluid injection test. The ISDSN-MSTB Phase 3 Fluid Injection Test was conducted from August 27 through September 6, 2013 at the FIU-ARC ISDSN-MSTB test cube. The fluid injection test activated a portion of the existing embedded sensor systems in the ISDSN-MSTB test cube: Electrical Resistivity Tomography-Thermocouple Sensor Arrays, Advance Tensiometer Sensors, and Fiber Loop Ringdown Optical Sensors. These embedded sensor systems were activated 15 months after initial placement. All sensor systems were remotely operated and data acquisition was completed through the established Sensor Remote Access System (SRAS) hosted on the DOE D&D Knowledge Management Information Tool (D&D DKM-IT) server. The ISDN Phase 3 Fluid Injection Test successfully demonstrated the feasibility of embedding sensor systems to assess moisture-fluid flow and resulting transport potential for contaminate mobility through a cementitious material/grout monolith. The ISDSN embedded sensor systems activated for the fluid injection test highlighted the robustness of the sensor systems and the importance of configuring systems in-depth (i.e., complementary sensors and measurements) to alleviate data acquisition gaps.

  17. Ultra high-temperature solids-free insulating packer fluid for oil and gas production, steam injection and geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Ezell, R.G.; Harrison, D.J. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Uncontrolled heat transfer from production/injection tubing during thermal oil recovery via steam injection can be detrimental to the integrity of the casing and to the quality of the steam that is injected into the reservoir. An aqueous-based insulating packer fluid (IPF) was introduced to improve the steam injection process by controlling the total heat loss from the produced fluids to the surrounding wellbore, internal annuli and formation. The IPF was developed for elevated temperature environments through extensive investigation across multidisciplinary technology. The innovative system delivers performance beyond conventional systems of comparable thermal conductivity. Its density range and conductivity measurements were presented in this paper. High-temperature static aging tests showed superior gel integrity without any phase separation after exposure to temperatures higher than 260 degrees C. The new fluids are hydrate inhibitive, non-corrosive and pass oil and grease testing. They are considered to be environmentally sound by Gulf of Mexico standards. It was concluded that the new ultra high-performance insulating packer fluid (HTIPF) reduced the heat loss significantly by both conduction and convection. Heat transfer within the aqueous-based HTIPF was 97 per cent less than that of pure water. It was concluded that the HTIPF can be substituted for conventional packer fluids without compromising any well control issues. 21 refs., 1 tab., 4 figs.

  18. Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

    Directory of Open Access Journals (Sweden)

    Seyed Hassan Fallahzadeh

    2017-03-01

    Full Text Available Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150 mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity.

  19. Gallium-67 detection of intramammary injection sites secondary to intravenous drug abuse

    International Nuclear Information System (INIS)

    Swayne, L.C.

    1989-01-01

    A case of gallium localization within the breast occurred secondary to intravenous drug abuse. In the appropriate clinical setting, prior self-administered injections should be considered as a cause of Ga-67 accumulation at unusual sites

  20. Effectiveness of Nitrous Oxide as a Liquid Injection Thrust Vector Control Fluid, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide is proposed as an energetic liquid injection thrust vector control fluid for vehicle attitude control during dynamic vehicle maneuvers. Pulled from the...

  1. Efficacy of intravitreal Ranibizumab injection for choroidal neovascularization secondary to pathologic myopia

    Directory of Open Access Journals (Sweden)

    Li-Hong Cui

    2016-03-01

    Full Text Available AIM:To observe the efficacy and safety of intravitreal Ranibizumab injection in patiens with choroidal neovascularization(CNVsecondary to pathologic myopia.METHODS:In this retrospective and comparative study,24 patients(25 eyeswith CNV secondary to pathologic myopia were enrolled. All patients were assessed by examinations of ETDRS visual acuity chart, preplaced-mirror ophthalmoscopy, fundus fluorescein angiography(FFA, indocyanine green angiography(ICGAand optical coherence tomography(OCT. Patiens received intravitreally injected ranibizumab 0.5mg(0.05mL. Treatments were repeated if the follow-up indicated that it was necessary. The follow-up periods were 4~10mo. Best corrected visual acuity(BCVA, central macular thickness(CMTand leakage of CNV before and after the treatment were compared. RESULTS:No local or systemic complications occurred in any patients during the treatment or follow-up. The average time of injection was 1.52. The mean BCVA was 23.93±12.46 letters before the therapy. In the last follow-up, the mean BCVA was 40.63±7.25 letters, improved by 14.27±9.36 letters and the difference was statically significant(t=5.74, Pt=3.96, PCONCLUSION:Intravitreal ranibizumab injection for CNV secondary to pathologic myopia is safe and effective, and this treatment can improve visual acuity, reduce retina edema and leakage of CNV.

  2. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    Science.gov (United States)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  3. Magnetic fluid equipment for sorting of secondary polyolefins from waste

    NARCIS (Netherlands)

    Rem, P.C.; Di Maio, F.; Hu, B.; Houzeaux, G.; Baltes, L.; Tierean, M.

    2012-01-01

    The paper presents the researches made on the FP7 project „Magnetic Sorting and Ultrasound Sensor Technologies for Production of High Purity Secondary Polyolefins from Waste” in order to develop a magnetic fluid equipment for sorting of polypropylene (PP) and polyethylene (PE) from polymers mixed

  4. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    Science.gov (United States)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  5. Complete Resolution of a Giant Pigment Epithelial Detachment Secondary to Exudative Age-Related Macular Degeneration after a Single Intravitreal Ranibizumab (Lucentis Injection: Results Documented by Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Eleni Loukianou

    2010-12-01

    Full Text Available Aim:To describe a patient with a giant pigment epithelial detachment (PED secondary to exudative age-related macular degeneration (ARMD successfully treated with a single intravitreal ranibizumab (Lucentis injection (0.5 mg/0.05 ml.Methods:An 89-year-old woman presented with a six-day history of reduced vision and distortion in the left eye. Best-corrected visual acuity in that eye was 6/15. Fundoscopy revealed a giant PED and exudates temporally to the fovea. Optical coherence tomography showed a PED associated with subretinal and intraretinal fluid. Fluorescein angiography confirmed the diagnosis of an occult choroidal neovascularization. Treatment with intravitreal injections of ranibizumab (Lucentis was recommended, although the increased risk of retinal pigment epithelium (RPE rip was mentioned. Results:Four weeks after the first intravitreal Lucentis injection, the visual acuity in the left eye improved to 6/7.5, with a significant improvement of the distortion and a complete anatomical resolution of the PED confirmed by optical coherence tomography. Conclusion:Giant PED secondary to exudative ARMD can be successfully treated with intravitreal ranibizumab, despite the increased risk of RPE rip. To our knowledge, this is the first case presenting with complete resolution of PED after a single ranibizumab injection.

  6. Apparatus and method for controlling the secondary injection of fuel

    Science.gov (United States)

    Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

    2013-03-05

    A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

  7. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    Science.gov (United States)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR

  8. Numerical simulation of effects of a non-ionized fluid injection and suction on the MHD flow in a circular channel

    International Nuclear Information System (INIS)

    Rahimi Eosboee, M.; Pourmahmoud, N.; Mirzaie, I.; Mohajeri Khameneh, P.; Majidyfar, S.

    2012-01-01

    Control of a fluid flow velocity profile by injection and suction of a non-ionized fluid in presence of a uniform steady magnetic field has important technical applications. In this paper, the unsteady incompressible and viscous conducting fluid flow has been investigated in a circular channel. The channel walls are assumed to be non-conducting and porous. They are subjected to a uniform steady magnetic field which is perpendicular to the axis of channel, then and suction and injection are applied at the walls. The well known equations of Magnetohydrodynamics are governed to the motion of an electrically conducting fluid flow that is subjected to magnetic field. The numerical solution is carried out by finite difference approach. The results of present numerical simulation shown that the flow injection and suction through the wall can be controlled effectively, the main flow in channel especially in industrial purposes. The results are obtained for different values of the injected and sucked non-ionized flow rate and the effect of Hartman number on the velocity profile is investigated. Finally, a good agreement is seen between the presented results and the corresponding data of finite element method.

  9. Magnetohydrodynamic peristaltic motion of a Newtonian fluid through porous walls through suction and injection

    Science.gov (United States)

    Sivaiah, R.; Hemadri Reddy, R.

    2017-11-01

    In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.

  10. Measurement of glycosaminoglycans in canine synovial fluid and its correlation with the cause of secondary osteoarthritis, age and body weight

    Directory of Open Access Journals (Sweden)

    Radka Andrysíková

    2012-01-01

    Full Text Available Glycosaminoglycans are natural components of healthy joint cartilage and they also appear in healthy synovial fluid. An increased amount of glycosaminoglycans in synovial fluid is believed to be a marker of secondary osteoarthritis, regardless of its primary cause. The aim of our study was to define the relationship between glycosaminoglycans in the synovial fluid and joint disorders, age, and body weight. The samples of synovial fluid were obtained from dogs suffering from secondary secondary osteoarthritis (n = 35 and from control dogs (n = 18; control dogs had normal body weight. The results were compared among joints of dogs with secondary osteoarthritis divided into groups according to the criteria mentioned above and control dogs. Glycosaminoglycan concentrations in synovial fluid were measured using dimethylmethylene blue assay. The lowest mean value of glycosaminoglycans in synovial fluid was measured in the control group. Significantly higher glycosaminoglycan content (P < 0.05 was found in synovial fluid isolated from obese dogs compared to control dogs. Furthermore, we observed an age-related trend, in which the highest mean values were reached either in old dogs or pups. Despite the absence of significant differences in glycosaminoglycan values among dogs suffering from various types of secondary secondary osteoarthritis, the highest mean values were measured in fragmented coronoid processus group. Our data suggest that abnormally increased body weight has an impact on glycosaminoglycan concentration in synovial fluid which may imply faster degradation and turnover of joint cartilage. Such observation has not yet been published in veterinary medicine.

  11. Apparatus utilized for injecting fluids into earth formations penetrated by a well

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H

    1967-04-06

    An apparatus useful for injecting fluid into earth formations penetrated by a well consists of a tubular element which is inserted into the well. A number of axially spaced parts above the tubular element are capable of packing off chosen portions of the well casing. Flow passages in the tubular element cooperate with the packer-off, spaced parts, connecting the inside of the tubular element with the well casing. Check valves close each of the passages to fluid flow. Each check valve is sensitive to a predetermined pressure differential inside the tubular element and to the pressure on the packed-off portion of the well casing outside the tubular element, in order to control the passageway. (9 claims)

  12. Experimental study and calculations of the near critical behavior of a synthetic fluid in nitrogen injection

    International Nuclear Information System (INIS)

    Coronado Parra, Carlos Alberto; Escobar Remolina, Juan Carlos M

    2005-01-01

    In recent years, the use of nitrogen has increased as gas injection to recover oil fluids near the critical point. The behavior of hydrocarbon mixture phases in the critical region shows very interesting complex phenomena when facing a recovery project with nitrogen. Therefore, it is important to have experimental information of the PVTx thermodynamic variable, often scarce, for this type of critical phenomena. This paper reports the experimental measures of the volumetric behavior and phases of synthetic fluid in a nitrogen injection process. The experiment was performed at laboratory scale, and it obtained variations on the saturation pressure, gas oil ratio, density and composition of the hydrocarbon phase when nitrogen was injected at molars of 10,20,30 and 40% on different volumetric portions of the mother sample. In addition, the data obtained experimentally was used to demonstrate the capacity of tune to compositional models. The data provided represents a valuable contribution to the understanding of phenomena associated with retrograde and near critical regions, as well as their use in tuning and developing more elaborate models such as Cubic Equations of State (EOS). It is worth highlighting the importance of this data in the potential processes of nitrogen, CO 2 , and lean gas injection, which require knowledge of the gas-oil ratio, saturation pressures, density and composition of the fluid in current production. The identification of the phenomena shown, represent a potential application to the modeling of displacements and maintaining the pressure in the improved recovery when scaling up the laboratory data to the field / reservoir conditions

  13. Coping with earthquakes induced by fluid injection

    Science.gov (United States)

    McGarr, Arthur F.; Bekins, Barbara; Burkardt, Nina; Dewey, James W.; Earle, Paul S.; Ellsworth, William L.; Ge, Shemin; Hickman, Stephen H.; Holland, Austin F.; Majer, Ernest; Rubinstein, Justin L.; Sheehan, Anne

    2015-01-01

    Large areas of the United States long considered geologically stable with little or no detected seismicity have recently become seismically active. The increase in earthquake activity began in the mid-continent starting in 2001 (1) and has continued to rise. In 2014, the rate of occurrence of earthquakes with magnitudes (M) of 3 and greater in Oklahoma exceeded that in California (see the figure). This elevated activity includes larger earthquakes, several with M > 5, that have caused significant damage (2, 3). To a large extent, the increasing rate of earthquakes in the mid-continent is due to fluid-injection activities used in modern energy production (1, 4, 5). We explore potential avenues for mitigating effects of induced seismicity. Although the United States is our focus here, Canada, China, the UK, and others confront similar problems associated with oil and gas production, whereas quakes induced by geothermal activities affect Switzerland, Germany, and others.

  14. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  15. Changes of synovial fluid protein concentrations in supra-patellar bursitis patients after the injection of different molecular weights of hyaluronic acid.

    Science.gov (United States)

    Chen, Carl P C; Hsu, Chih Chin; Pei, Yu-Cheng; Chen, Ruo Li; Zhou, Shaobo; Shen, Hsuan-Chen; Lin, Shih-Cherng; Tsai, Wen Chung

    2014-04-01

    Knee pain is commonly seen in orthopedic and rehabilitation outpatient clinical settings, and in the aging population. Bursitis of the knee joint, especially when the volume of the synovial fluid is large enough, can compress and distend the nearby soft tissues, causing pain in the knee joint. Out of all the bursae surrounding the knee joint, supra-patellar bursitis is most often associated with knee pain. Treatment strategies in managing supra-patellar bursitis include the aspiration of joint synovial fluid and then followed by steroid injection into the bursa. When supra-patellar bursitis is caused by degenerative disorders, the concept of viscosupplementation treatment may be effective by injecting hyaluronic acid into the bursa. However, the rheology or the changes in the concentrations of proteins (biomarkers) that are related to the development of bursitis in the synovial fluid is virtually unexplored. Therefore, this study aimed to identify the concentration changes in the synovial fluid total protein amount and individual proteins associated with supra-patellar bursitis using the Bradford protein assay and western immunoglobulin methods. A total of 20 patients were divided into two groups with 10 patients in each group. One group received the high molecular weight hyaluronic acid product of Synvisc Hylan G-F 20 and the other group received the low molecular weight hyaluronic acid product of Hya-Joint Synovial Fluid Supplement once per week injection into the bursa for a total of 3 weeks. Significant decreases in the synovial fluid total protein concentrations were observed after the second dosage of high molecular weight hyaluronic acid injections. Apolipoprotein A-I, interleukin 1 beta, alpha 1 antitrypsin, and matrix metalloproteinase 1 proteins revealed a trend of decreasing western immunoblotting band densities after hyaluronic acid injections. The decreases in apolipoprotein A-I and interleukin 1 beta protein band densities were significant in the high

  16. Efficacy of intravitreal anti-vascular endothelial growth factor or steroid injection in diabetic macular edema according to fluid turbidity in optical coherence tomography.

    Science.gov (United States)

    Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk; Sohn, Joonhong

    2014-08-01

    To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initial intravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism.

  17. The use of steady state neutron flux measurement to determine the size of an invaded region following fluid injection

    International Nuclear Information System (INIS)

    Parsons, R.J.

    1983-01-01

    By using a combination of Monte-Carlo and diffusion theory techniques, the behaviour of the thermal neutron flux during fluid injection is studied. It is shown that the change in neutron flux induced by the fluid injection, is equal to the neutron flux due to a certain thermal neutron source distribution. Using this result, a method of estimating the size of an elliptical invaded region is given. This choice of region shape is not a necessity but a convenience and it is possible that the method may be generalised to include higher order shapes. (author)

  18. Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.

    Science.gov (United States)

    Deng, F.; Dixon, T. H.

    2017-12-01

    The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.

  19. Monitoring of magnetic EOR fluids in reservoir under production by using the electromagnetic method

    Science.gov (United States)

    KIM, S.; Min, D. J.; Moon, S.; Kim, W. K.; Shin, Y.

    2014-12-01

    To increase the amount of oil and gas extracted during production, some techniques like EOR (Enhanced Oil Recovery) are applied by injecting some materials such as water and CO2. Recently, there are some researches for injecting magnetic nanoparticles with fluids during EOR. The size of particle is nano-scale, which can prevent particles from adhering to the pores of reservoir. The main purpose of injecting magnetic nanoparticles is to monitor movement or distribution of EOR fluids. To monitor the injected magnetic EOR fluids in the reservoir, CSEM (controlled source electromagnetic method) can be the most optimized geophysical method among various geophysical monitoring methods. Depending on the reservoir circumstances, we can control the electric or magnetic sources to monitor reservoir during oil or gas production. In this study, we perform numerical simulation of CSEM for 3D horizontal-layered models assuming a reservoir under production. We suppose that there are two wells: one is for the controlled source; the other is for the receiver. By changing the distribution, movement and magnetization of EOR fluids, we compare the electric or magnetic fields recorded at the receiver. Maxwell's equations are the governing equation of CSEM and are approximated by using the edge-based finite-element method. Direct solver is applied to solve the linear equations. Because injected magnetic nanoparticle changes the conductivity of EOR fluid, there is high contrast of conductivity of reservoir. This high contrast of conductivity induces secondary electric or magnetic fields that are recorded at the receiver well. We compare these recorded secondary fields generated by various movement or distribution of magnetic EOR fluid. Acknowledgements This work was supported by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea, by the "Civil Military Technology Cooperation Center", and by the International

  20. Evaluation of subconjunctival injection of triamcinolone acetonide in patients with macular edema secondary to uveitis

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2016-05-01

    Full Text Available AIM:To evaluate the clinical effect of subconjunctival injection of triamcinolone acetonide in patients with macular edema secondary to uveitis. METHODS:Sixty-eight patients(82 eyeswith macular edema secondary to uveitis selected in our hospital from October 2014 to October 2015 were assigned into control group and experimental group according to random number table method, with 34 cases(41 eyesin each group. Patients in the control group were treated by intraocular injection of triamcinolone acetonide, and patients in the experimental group were given subconjunctival injection of triamcinolone acetonide. Clinical effect, central macular thickness and adverse reactions in the two groups were compared. RESULTS:There was no significant difference on the central macular thickness and best corrected visual acuity between the two groups before treatment(P>0.05. Central macular thickness in the experimental group after treatment(214.26±65.54 μmwas significantly lower than that in the control group after treatment(256.47±84.52 μm,PPPPCONCLUSION:Subconjunctival injection of triamcinolone acetonide exerts obvious effect in uveitis patients with macular edema, effectively improves visual acuity, alleviates macular edema and reduces the incidence of intraocular pressure increasing, conjunctival hemorrhage and other adverse reactions, which is safe and effective, thus has potential application.

  1. Improved process for the injection of water for secondary recovery of petroleum

    Energy Technology Data Exchange (ETDEWEB)

    1967-07-24

    In this process for the secondary recovery of petroleum from the formation, an aqueous displacing medium is injected through an injection well in communication with the formation. In this aqueous medium, a polymer is dissolved and the petroleum is thus displaced toward a producing well also in communication with the formation. The polymer is a liquid organic polymer, substantially linear, water-soluble, and having a resistance characteristic of at least 1.5. The polymer is dissolved in water in sufficient quantity such that the viscosity of the displacing medium is 0.5-15% of the viscosity of the crude oil to be displaced. The displacing medium is substantially free of molecular oxygen.

  2. Determination of drugs in biological fluids by direct injection of samples for liquid-chromatographic analysis.

    Science.gov (United States)

    Mullett, Wayne M

    2007-03-10

    The analysis of drugs in various biological fluids is an important criterion for the determination of the physiological performance of a drug. After sampling of the biological fluid, the next step in the analytical process is sample preparation. The complexity of biological fluids adds to the challenge of direct determination of the drug by chromatographic analysis, therefore demanding a sample preparation step that is often time-consuming, tedious, and frequently overlooked. However, direct on-line injection methods offer the advantage of reducing sample preparation steps and enabling effective pre-concentration and clean-up of biological fluids. These procedures can be automated and therefore reduce the requirements for handling potentially infectious biomaterial, improve reproducibility, and minimize sample manipulations and potential contamination. The objective of this review is to present an overview of the existing literature with emphasis on advances in automated sample preparation methods for liquid-chromatographic methods. More specifically, this review concentrates on the use of direct injection techniques, such as restricted-access materials, turbulent-flow chromatography and other automated on-line solid-phase extraction (SPE) procedures. It also includes short overviews of emerging automated extraction-phase technologies, such as molecularly imprinted polymers, in-tube solid-phase micro-extraction, and micro-extraction in a packed syringe for a more selective extraction of analytes from complex samples, providing further improvements in the analysis of biological materials. Lastly, the outlook for these methods and potential new applications for these technologies are briefly discussed.

  3. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    International Nuclear Information System (INIS)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility

  4. Fluid Signal Intensity That Mimicked A Supraspinatus Tendon Tear In A Subacromial Injected Shoulder: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hun; Kim, Tae Eun; Shin, Hyun Woong [Daegu Fatima Hospital, Daegu (Korea, Republic of)

    2010-06-15

    Subacromial steroid injections are a common procedure for treating shoulder pain. Several studies have reported on the difficulty of performing an accurate injection into the subacromial bursa, as well as the injected material infiltrated into other regional structures even when an accurate injection was done into the subacromial space. These misplacements, and especially in the rotator cuff, creates high signal intensity on T2WI that can mimic a rotator cuff tear. Bergman and Fredericson found that the bursal and extrabursal fluid is resolved or decreased 3 days after the injection, so they recommended a 3-day delay after the shoulder injection before performing MRI to prevent misinterpretation of the signal changes. We report here on a case of a false fullthickness tear of the supraspinatus tendon on MRI one month after subacromial injection, and the supraspinatus tendon turned out to be intact on the follow up ultrasonography and arthroscopic examination

  5. Enhanced oil recovery using improved aqueous fluid-injection methods: an annotated bibliography. [328 citations

    Energy Technology Data Exchange (ETDEWEB)

    Meister, M.J.; Kettenbrink, G.K.; Collins, A.G.

    1976-10-01

    This annotated bibliography contains abstracts, prepared by the authors, of articles published between 1968 and early 1976 on tests of improved aqueous fluid injection methods (i.e., polymer and surfactant floods). The abstracts have been written and organized to facilitate studies of the oil recovery potential of polymer and surfactant floods under known reservoir conditions. 328 citations.

  6. A two-fluid model for vertical flow applied to CO2 injection wells

    DEFF Research Database (Denmark)

    Linga, Gaute; Lund, Halvor

    2016-01-01

    Flow of CO2 in wells is associated with substantial variations in thermophysical properties downhole, due to the coupled transient processes involved: complex flow patterns, density changes, phase transitions, and heat transfer to and from surroundings. Large temperature variations can lead...... the well, including tubing, packer fluid, casing, cement or drilling mud, and rock formation. This enables prediction of the temperature in the well fluid and in each layer of the well. The model is applied to sudden shut-in and blowout cases of a CO2 injection well, where we employ the highly accurate...

  7. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  8. Injection of colloidal size particles of Fe0 in porous media with shearthinning fluids as a method to emplace a permeable reactive zone

    International Nuclear Information System (INIS)

    Cantrell, K.J.; Kaplan, D.I.; Gilmore, T.J.

    1997-01-01

    Previous work has demonstrated the feasibility of injecting suspensions of micron-size zero-valent (FeO) particles into porous media as a method to emplace a permeable reactive zone. Further studies were conducted to evaluate the effects of several shearthinning fluids on enhancing the injectability of micron-size FeO particles into porous media. In contrast to Newtonian fluids, whose viscosities are constant with shear rate, certain non-Newtonian fluids are shearthinning, that is, the viscosity of these fluids decreases with increasing shear rate. The primary benefit of using these fluids for this application is that they increase the viscosity of the aqueous phase without adversely decreasing the hydraulic conductivity. A suspension formulated with a shearthinning fluid will maintain a relatively high viscosity in solution near the FeO particles (where the shear stress is low) relative to locations near the surfaces of the porous media, where the shear stress is high. The increased viscosity decreases the rate of gravitational settling of the dense FeO colloids (7.6 9/cm3) while maintaining a relatively high hydraulic conductivity that permits pumping the colloid suspensions into porous media at greater flowrates and distances. Aqueous solutions of three polymers at different concentrations were investigated. It was determined that, the use of shear thinning fluids greatly increases the injectability of the colloidal FeO suspensions in porous media

  9. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  10. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  11. Minimizing the Fluid Used to Induce Fracturing

    Science.gov (United States)

    Boyle, E. J.

    2015-12-01

    The less fluid injected to induce fracturing means less fluid needing to be produced before gas is produced. One method is to inject as fast as possible until the desired fracture length is obtained. Presented is an alternative injection strategy derived by applying optimal system control theory to the macroscopic mass balance. The picture is that the fracture is constant in aperture, fluid is injected at a controlled rate at the near end, and the fracture unzips at the far end until the desired length is obtained. The velocity of the fluid is governed by Darcy's law with larger permeability for flow along the fracture length. Fracture growth is monitored through micro-seismicity. Since the fluid is assumed to be incompressible, the rate at which fluid is injected is balanced by rate of fracture growth and rate of loss to bounding rock. Minimizing injected fluid loss to the bounding rock is the same as minimizing total injected fluid How to change the injection rate so as to minimize the total injected fluid is a problem in optimal control. For a given total length, the variation of the injected rate is determined by variations in overall time needed to obtain the desired fracture length, the length at any time, and the rate at which the fracture is growing at that time. Optimal control theory leads to a boundary condition and an ordinary differential equation in time whose solution is an injection protocol that minimizes the fluid used under the stated assumptions. That method is to monitor the rate at which the square of the fracture length is growing and adjust the injection rate proportionately.

  12. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    Science.gov (United States)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  13. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    Science.gov (United States)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  14. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  15. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    Science.gov (United States)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  16. Determination of albumin in bronchoalveolar lavage fluid by flow-injection fluorometry using chromazurol S.

    Science.gov (United States)

    Sato, Takaji; Saito, Yoshihiro; Chikuma, Masahiko; Saito, Yutaka; Nagai, Sonoko

    2008-03-01

    A highly sensitive flow injection fluorometry for the determination of albumin was developed and applied to the determination of albumin in human bronchoalveolar lavage fluids (BALF). This method is based on binding of chromazurol S (CAS) to albumin. The calibration curve was linear in the range of 5-200 microg/ml of albumin. A highly linear correlation (r=0.986) was observed between the albumin level in BALF samples (n=25) determined by the proposed method and by a conventional fluorometric method using CAS (CAS manual method). The IgG interference was lower in the CAS flow injection method than in the CAS manual method. The albumin level in BALF collected from healthy volunteers (n=10) was 58.5+/-13.1 microg/ml. The albumin levels in BALF samples obtained from patients with sarcoidosis and idiopathic pulmonary fibrosis were increased. This finding shows that the determination of albumin levels in BALF samples is useful for investigating lung diseases and that CAS flow injection method is promising in the determination of trace albumin in BALF samples, because it is sensitive and precise.

  17. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  18. MR imaging after therapeutic injection of the subacromial bursa

    International Nuclear Information System (INIS)

    Major, N.M.

    1999-01-01

    Objective. As a therapeutic injection into the subacromial bursa (SAB) is commonly performed for impingement syndrome, it is important to know whether this fluid can be retained for a period of time and cause confusion with a pathologic collection of fluid. This study identifies and describes the appearance of recent subacromial injection using MR imaging, and the appearance of a potential complication.Design and patients. Fourteen asymptomatic shoulders were studied with MR imaging using fast spin echo T2-weighted imaging (1.5 T) prior to injection with 7 cm 3 of xylocaine. Four shoulders had subacromial fluid and were eliminated from the study. The remaining 10 (9 men, 1 woman; age range 27-36 years, average age 33 years) were then re-imaged immediately, and at 6, 12 and 24 h after the injection or until fluid resolved. Each set of images was reviewed for the presence of fluid in the SAB and for additional abnormalities.Results. Fluid was identified in all subjects in the SAB in the immediate, 6 and 12 h post-injection images. At 24 h, fluid was not identified within the SAB in eight of 10 patients. In one patient fluid resolved in 48 h. The other continued to demonstrate fluid in the SAB and in the joint as well as abnormal signal in the infraspinatus muscle from a presumed myositis. Imaging was performed up to 10 days after the injection in this patient.Conclusions. It is known that fluid identified in the SAB without evidence of a cuff tear may be due to bursitis. However, if MR imaging is performed within 24 h of injection, the presence of the fluid may be iatrogenic. In addition, the history of recent therapeutic injection is very important as complications such as myositis can occur as a result of the injection. Knowledge of injection prior to imaging is vital for accurate interpretation of MR shoulder examinations. (orig.)

  19. MR imaging after therapeutic injection of the subacromial bursa

    Energy Technology Data Exchange (ETDEWEB)

    Major, N.M. [Duke University Medical Center, Department of Radiology, Division Musculoskeletal, Durham, NC (United States)

    1999-11-01

    Objective. As a therapeutic injection into the subacromial bursa (SAB) is commonly performed for impingement syndrome, it is important to know whether this fluid can be retained for a period of time and cause confusion with a pathologic collection of fluid. This study identifies and describes the appearance of recent subacromial injection using MR imaging, and the appearance of a potential complication.Design and patients. Fourteen asymptomatic shoulders were studied with MR imaging using fast spin echo T2-weighted imaging (1.5 T) prior to injection with 7 cm{sup 3} of xylocaine. Four shoulders had subacromial fluid and were eliminated from the study. The remaining 10 (9 men, 1 woman; age range 27-36 years, average age 33 years) were then re-imaged immediately, and at 6, 12 and 24 h after the injection or until fluid resolved. Each set of images was reviewed for the presence of fluid in the SAB and for additional abnormalities.Results. Fluid was identified in all subjects in the SAB in the immediate, 6 and 12 h post-injection images. At 24 h, fluid was not identified within the SAB in eight of 10 patients. In one patient fluid resolved in 48 h. The other continued to demonstrate fluid in the SAB and in the joint as well as abnormal signal in the infraspinatus muscle from a presumed myositis. Imaging was performed up to 10 days after the injection in this patient.Conclusions. It is known that fluid identified in the SAB without evidence of a cuff tear may be due to bursitis. However, if MR imaging is performed within 24 h of injection, the presence of the fluid may be iatrogenic. In addition, the history of recent therapeutic injection is very important as complications such as myositis can occur as a result of the injection. Knowledge of injection prior to imaging is vital for accurate interpretation of MR shoulder examinations. (orig.)

  20. Injection-induced moment release can also be aseismic

    Science.gov (United States)

    McGarr, Arthur; Barbour, Andrew J.

    2018-01-01

    The cumulative seismic moment is a robust measure of the earthquake response to fluid injection for injection volumes ranging from 3100 to about 12 million m3. Over this range, the moment release is limited to twice the product of the shear modulus and the volume of injected fluid. This relation also applies at the much smaller injection volumes of the field experiment in France reported by Guglielmi, et al. (2015) and laboratory experiments to simulate hydraulic fracturing described by Goodfellow, et al. (2015). In both of these studies, the relevant moment release for comparison with the fluid injection was aseismic and consistent with the scaling that applies to the much larger volumes associated with injection-induced earthquakes with magnitudes extending up to 5.8. Neither the micro-earthquakes, at the site in France, nor the acoustic emission in the laboratory samples contributed significantly to the deformation due to fluid injection.

  1. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...

  2. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    Science.gov (United States)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  3. Social network-related risk factors for bloodborne virus infections among injection drug users receiving syringes through secondary exchange.

    Science.gov (United States)

    De, Prithwish; Cox, Joseph; Boivin, Jean-François; Platt, Robert W; Jolly, Ann M

    2008-01-01

    Secondary syringe exchange (SSE) refers to the exchange of sterile syringes between injection drug users (IDUs). To date there has been limited examination of SSE in relation to the social networks of IDUs. This study aimed to identify characteristics of drug injecting networks associated with the receipt of syringes through SSE. Active IDUs were recruited from syringe exchange and methadone treatment programs in Montreal, Canada, between April 2004 and January 2005. Information on each participant and on their drug-injecting networks was elicited using a structured, interviewer-administered questionnaire. Subjects' network characteristics were examined in relation to SSE using regression models with generalized estimating equations. Of 218 participants, 126 were SSE recipients with 186 IDUs in their injecting networks. The 92 non-recipients reported 188 network IDUs. Networks of SSE recipients and non-recipients were similar with regard to network size and demographics of network members. In multivariate analyses adjusted for age and gender, SSE recipients were more likely than non-recipients to self-report being HIV-positive (OR=3.56 [1.54-8.23]); require or provide help with injecting (OR=3.74 [2.01-6.95]); have a social network member who is a sexual partner (OR=1.90 [1.11-3.24]), who currently attends a syringe exchange or methadone program (OR=2.33 [1.16-4.70]), injects daily (OR=1.77 [1.11-2.84]), and shares syringes with the subject (OR=2.24 [1.13-4.46]). SSE is associated with several injection-related risk factors that could be used to help focus public health interventions for risk reduction. Since SSE offers an opportunity for the dissemination of important prevention messages, SSE-based networks should be used to improve public health interventions. This approach can optimize the benefits of SSE while minimizing the potential risks associated with the practice of secondary exchange.

  4. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin

    Science.gov (United States)

    Foster, Derek M.; Martin, Luke G.; Papich, Mark G.

    2016-01-01

    Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined) exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL), and the MIC90 for Mannheimia haemolytica (1.0 μg/mL) for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL) for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations, with over 900

  5. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin.

    Directory of Open Access Journals (Sweden)

    Derek M Foster

    Full Text Available Bacterial pneumonia is the most common reason for parenteral antimicrobial administration to beef cattle in the United States. Yet there is little information describing the antimicrobial concentrations at the site of action. The objective of this study was to compare the active drug concentrations in the pulmonary epithelial lining fluid and interstitial fluid of four antimicrobials commonly used in cattle. After injection, plasma, interstitial fluid, and pulmonary epithelial lining fluid concentrations and protein binding were measured to determine the plasma pharmacokinetics of each drug. A cross-over design with six calves per drug was used. Following sample collection and drug analysis, pharmacokinetic calculations were performed. For enrofloxacin and metabolite ciprofloxacin, the interstitial fluid concentration was 52% and 78% of the plasma concentration, while pulmonary fluid concentrations was 24% and 40% of the plasma concentration, respectively. The pulmonary concentrations (enrofloxacin + ciprofloxacin combined exceeded the MIC90 of 0.06 μg/mL at 48 hours after administration. For florfenicol, the interstitial fluid concentration was almost 98% of the plasma concentration, and the pulmonary concentrations were over 200% of the plasma concentrations, exceeding the breakpoint (≤ 2 μg/mL, and the MIC90 for Mannheimia haemolytica (1.0 μg/mL for the duration of the study. For ceftiofur, penetration to the interstitial fluid was only 5% of the plasma concentration. Pulmonary epithelial lining fluid concentration represented 40% of the plasma concentration. Airway concentrations exceeded the MIC breakpoint for susceptible respiratory pathogens (≤ 2 μg/mL for a short time at 48 hours after administration. The plasma and interstitial fluid concentrations of tulathromcyin were lower than the concentrations in pulmonary fluid throughout the study. The bronchial concentrations were higher than the plasma or interstitial concentrations

  6. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  7. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  8. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  9. COMBUSTION HEAT RELEASE RATE ANALYSIS OF C.I. ENGINE WITH SECONDARY CO-INJECTION OF DEE-H2O SOLUTION - A VIBRATIONAL APPROACH

    Directory of Open Access Journals (Sweden)

    Y. V. V. SATYANARAYANA MURTHY

    2015-08-01

    Full Text Available This paper discusses the combustion propensity of single cylinder direct injection engine fueled with palm kernel methyl ester (PKME, which is non- edible oil and a secondary co-injection of saturated Diethyl ether (DEE with water. DEE along with water is fumigated through a high pressure nozzle fitted to the inlet manifold of the engine and the flow rate of the secondary injection was electronically controlled. DEE is known to improve the cold starting problem in engines when used in straight diesel fuel. However, its application in emulsion form is little known. Experimental results show that for 5% DEE- H2O solution injection, occurrence of maximum net heat release rate is delayed due to controlled premixed combustion, which normally helped in better torque conversion when the piston is in accelerated mode. Vibration measurements in the frequency range of 900Hz to 1300Hz revealed that a new mode of combustion has taken place with different excitation frequencies.

  10. Use of TOUGHREACT to Simulate Effects of Fluid Chemistry onInjectivity in Fractured Geothermal Reservoirs with High Ionic StrengthFluids

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Zhang, Guoxiang; Pruess, Karsten

    2005-02-09

    Recent studies suggest that mineral dissolution/precipitation and clay swelling effects could have a major impact on the performance of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs. A major concern is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. A Pitzer ionic interaction model has been introduced into the publicly available TOUGHREACT code for solving non-isothermal multi-phase reactive geochemical transport problems under conditions of high ionic strength, expected in typical HDR and HFR systems. To explore chemically-induced effects of fluid circulation in these systems, we examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance. We performed a number of coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua). Results obtained with the Pitzer activity coefficient model were compared with those using an extended Debye-Hueckel equation. Our simulations show that non-ideal activity effects can be significant even at modest ionic strength, and can have major impacts on permeability evolution in injection-production systems. Alteration of injection water chemistry, for example by dilution with fresh water, can greatly alter precipitation and dissolution effects, and can offer a powerful tool for operating hot dry rock and hot fractured rock reservoirs in a sustainable manner.

  11. Analysis of nitrogen injection as alternative fluid to steam in heavy oil reservoir; Analise da injecao de nitrogenio como fluido alternativo ao vapor em reservatorio de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Marcos Allyson Felipe; Galvao, Edney Rafael Viana Pinheiro; Barillas, Jennys Lourdes; Mata, Wilson da; Dutra Junior, Tarcilio Viana [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    Many of hydrocarbon reserves existing in the world are formed by heavy oils (deg API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steam flooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. In this paper, the use of N{sub 2} as an alternative fluid to the steam was investigated. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Potiguar Basin, Brazil. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that N{sub 2} injection after steam injection interruption achieved the highest net cumulative oil compared to others injection system. Moreover, it was observed that N2 as alternative fluid to steam did not present increase on oil recovery. (author)

  12. Accurate intra-articular knee joint injection in the obese? 'Fat Chance!'-A clinical lesson and recommendations for secondary referral.

    LENUS (Irish Health Repository)

    McGarry, James G

    2011-04-12

    Abstract Corticosteroid joint injections are perceived as being an effective treatment for symptomatic knee osteoarthritis, with a very low risk of complications. While the procedure is often performed in secondary care by orthopaedic surgeons and rheumatologists (and trainees in either specialty), the role of general practitioners (GPs) in chronic disease management has long existed with joint injections also frequently performed in primary care. The perception that serious complications from corticosteroid knee joint injections are rare and that their benefits in treating symptomatic knee osteoarthritis significantly outweigh the risks has not been well addressed. We present a case of a 71-year-old obese female who presented to her general practitioner (GP) with worsening left knee pain and radiographic changes consistent with osteoarthritis. She was administered a corticosteroid joint injection, which gave minimal relief, and over the next few days resulted in worsening severe pain, erythema and swelling. She returned to the GP who commenced oral antibiotics and referred her to casualty. A large knee abscess was diagnosed and intravenous antibiotics were commenced. The patient was admitted under the orthopaedic surgeons with her treatment consisting of multiple surgical procedures over a prolonged duration. Although lengthy, her postoperative recovery was unremarkable. Based on this case report and our review of the literature, we highlight the potential complications associated with corticosteroid knee joint injections and suggest certain patients for whom we would recommend secondary referral before any intervention in primary care.

  13. Injection Technique and Pen Needle Design Affect Leakage From Skin After Subcutaneous Injections

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente; Jensen, Morten Lind

    2016-01-01

    BACKGROUND: After a subcutaneous injection fluid might leak out of the skin, commonly referred to as leakage or backflow. The objective was to examine the influence of needle design and injection technique on leakage after injections in the subcutaneous tissue of humans and pigs. METHOD: Leakage ...

  14. Fluconazole and intrathecal injection of amphotericin B for treating cryptococcal meningitis

    Institute of Scientific and Technical Information of China (English)

    Shiguang Wen; Jian Yin; Shaosen Qin; Meiping Wen; Xiaoyan Zhang; Dongke Chen

    2006-01-01

    intracranial hypertension,were used at the same time of administration. When cryptococcus of cerebrospinal fluid was negative, patients received the secondary therapy at anaphase. The drug withdrawal was not performed untill ink smear of cerebrospinal fluid was negative for 3 successive cultures. ③ Evaluative criteria: Evaluative criteria were classified into 4 styles: Cure: Clinical symptoms and physical signs disappeared and ink smear of cerebrospinal fluid was negative for 3 successful cultures; Improvement: Clinical symptoms and physical signs were improved remarkably, amount of cerebrospinal fluid was decreased, and ink smear was not negative; inefficiency and death.MAIN OUTCOME MEASURE: Clinical effects and poor responses of intrathecal injection of amphotericin B and fluconazole treatment.RESULTS: Among 8 patients with cryptococcal meningitis, one died due to ntracranial hypertension combining with cerebral hernia, and others were returned visit at 1 year after drug withdrawal. ① Clinical effects: Among 8patients with cryptococcal meningitis, 4 were cured, 3 were improved, and one died. There was no relapse case. ② Results of mycological examination: After first intrathecal injection of 4 improved patients, the amount of cryptococcus of cerebrospinal fluid was decreased 20%-30%; in addition, after intrathecal injection for twice or three times, the amount was decreased 33%-50%. ③ Improvement of intracranial hypertension: Seven patients had the intracranial hypertension. After intrathecal injection for twice or three times, pressure of cerebrospinal fluid was decreased below 2 451.75 Pa, and the clinical symptoms were relieved remarkably. ④Poor responses: After intrathecal injection, patients had headache, nausea, emesis and pain of lower limb.Especially, 2 cases had transient paraplegia of both lower limbs, one had retention of urine, and two had conscious disturbance.CONCLUSrON: Controlling intracranial hypertension with repeatedly piercing waist and

  15. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    Science.gov (United States)

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Reverse-Tangent Injection in a Centrifugal Compressor

    Science.gov (United States)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  17. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    DEFF Research Database (Denmark)

    Snaebjornsdottir, Sandra O.; Oelkers, Eric H.; Mesfin, Kiflom

    2017-01-01

    is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co......-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after...

  18. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids

    OpenAIRE

    Chen, Xingyuan

    2014-01-01

    In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...

  19. Analytical and numerical solution of three-dimensional channel flow in presence of a sinusoidal fluid injection and a chemical reaction

    Directory of Open Access Journals (Sweden)

    Sahin Ahmed

    2015-06-01

    Full Text Available Modeling of three-dimensional channel flow in a chemically-reacting fluid between two long vertical parallel flat plates in the presence of a transverse magnetic field is presented. The stationary plate is subjected to a transverse sinusoidal injection velocity distribution while the uniformly moving plate is subjected to a constant suction and slip boundary conditions. Due to this type of injection velocity, the flow becomes three dimensional. Comparisons with previously published work are performed and the results are found to be in excellent agreement. An increase in the permeability/magnetic parameter is found to escalate the velocity near the plate in motion. Growing Reynolds number or magnetic parameter enhances the x-component and reduces the z-component of the skin-friction at the wall at rest. The acquired knowledge in our study can be used by designers to control MHD flow as suitable for certain applications which include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid dynamics.

  20. Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest

    Science.gov (United States)

    De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario

    2016-04-01

    Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity

  1. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs.

    Science.gov (United States)

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas

    2013-01-01

    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. © 2013, National Ground Water Association.

  2. Injection of Fluids into Supercritical Environments

    National Research Council Canada - National Science Library

    Oschwald, M

    2004-01-01

    This paper summarizes and compares the results of systematic research programs at two independent laboratories regarding the injection of cryogenic liquids at subcritical and supercritical pressures...

  3. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) to Blast Furnaces

    International Nuclear Information System (INIS)

    Zhou, Chenn

    2008-01-01

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process

  4. Knee joint mobilization reduces secondary mechanical hyperalgesia induced by capsaicin injection into the ankle joint.

    Science.gov (United States)

    Sluka, K A; Wright, A

    2001-01-01

    Joint mobilization is a treatment approach commonly used by physical therapists for the management of a variety of painful conditions. However, the clinical effectiveness when compared to placebo and the neurophysiological mechanism of action are not known. The purpose of this study was to establish that application of a manual therapy technique will produce antihyperalgesia in an animal model of joint inflammation and that the antihyperalgesia produced by joint mobilization depends on the time of treatment application. Capsaicin (0.2%, 50 microl) was injected into the lateral aspect of the left ankle joint and mechanical withdrawal threshold assessed before and after capsaicin injection in Sprague-Dawley rats. Joint mobilization of the ipsilateral knee joint was performed 2 h after capsaicin injection for a total of 3 min, 9 min or 15 min under halothane anaesthesia. Control groups included animals that received halothane for the same time as the group that received joint mobilization and those whose limbs were held for the same duration as the mobilization (no halothane). Capsaicin resulted in a decreased mechanical withdrawal threshold by 2 h after injection that was maintained through 4 h. Both 9 and 15 min of mobilization, but not 3 min of mobilization, increased the withdrawal threshold to mechanical stimuli to baseline values when compared with control groups. The antihyperalgesic effect of joint mobilization lasted 30 min. Thus, joint mobilization (9 or 15 min duration) produces a significant reversal of secondary mechanical hyperalgesia induced by intra-articular injection of capsaicin. Copyright 2001 European Federation of Chapters of the International Association for the Study of Pain.

  5. Exploration of the role of permeability and effective stress transfer effects on Earthquakes Migration in a Fault Zone induced by a Fluid Injection in the nearby host rock: Experimental and Numerical Result.

    Science.gov (United States)

    Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.

    2016-12-01

    Although it has long been known that anthropogenic fluid injections can induce earthquakes, the mechanisms involved are still poorly understood and our ability to assess the seismic hazard associated to the production of geothermal energy or unconventional hydrocarbon remains limited. Here we present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). A dense network of sensors recorded fluid pressure, flow-rate, deformation and seismic activity. Injections followed an extended leak-off test protocol. Failure in the host rock was observed for a pressure of 4.4 MPa associated to a strike-slip-to-reverse reactivation of a pre-existing fracture. Magnitude -4.2 to -3.8 seismic events were located in the fault zone 3.5-to->10m away from the injection showing focal mechanisms in reasonable agreement with a strike-slip reactivation of the fault structures. We first used fully coupled hydro-mechanical numerical modeling to quantify the injection source parameters (state of stress, size of the rupture patch and size of the pressurized patch). We applied an injection loading protocol characterized by an imposed flow rate-vs-time history according to the volume of fluid injected in-situ, to match calculated and measured pressure and displacement variations at the injection source. We then used a larger model including the fault zone to discuss how predominant the effects of stress transfer mechanisms causing a purely mechanical fault activation can be compared to the effects of effective stress variations associated to fluid propagation in the fault structures. Preliminary results are that calculated slipping patches are much higher than the one estimated from seismicity, respectively 0.3m and <10-6m, and that the dimensions of the pressurized zone hardly matches with the distance of the earthquakes.

  6. Fourth ventricle injection of ghrelin decreases angiotensin II-induced fluid intake and neuronal activation in the paraventricular nucleus of the hypothalamus.

    Science.gov (United States)

    Plyler, Kimberly S; Daniels, Derek

    2017-09-01

    Ghrelin acts in the CNS to decrease fluid intake under a variety of dipsogenic and natriorexigenic conditions. Previous studies on this topic, however, focused on the forebrain as a site of action for this effect of ghrelin. Because the hindbrain contains neural substrates that are capable of mediating the well-established orexigenic effects of ghrelin, the current study tested the hypothesis that ghrelin applied to the hindbrain also would affect fluid intake. To this end, water and saline intakes were stimulated by central injection of angiotensin II (AngII) in rats that also received injections of ghrelin (0.5μg/μl) into either the lateral or fourth ventricle. Ghrelin injected into either ventricle reduced both water and 1.8% NaCl intake that was stimulated by AngII. The nature of the intake effect revealed some differences between the injection sites. For example, forebrain application of ghrelin reduced saline intake by a reduction in both the number of licking bursts and the size of each licking burst, but hindbrain application of ghrelin had a more selective effect on burst number. In an attempt to elucidate a brain structure in which hindbrain-administered ghrelin and forebrain-administered AngII interact to cause the ingestive response, we used Fos-immunohistochemistry in rats given the treatments used in the behavioral experiments. Although several brain areas were found to respond to either ghrelin or AngII, of the sites examined, only the paraventricular nucleus of the hypothalamus (PVN) emerged as a potential site of interaction. Specifically, AngII treatment caused expression of Fos in the PVN that was attenuated by concomitant treatment with ghrelin. These experiments provide the novel finding that the hindbrain contains elements that can respond to ghrelin and cause decreases in AngII-induced fluid intake, and that direct actions by ghrelin on forebrain structures is not necessary. Moreover, these studies suggest that the PVN is an important site

  7. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  8. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  9. A warning system based on the RFID technology for running-out of injection fluid.

    Science.gov (United States)

    Huang, Chi-Fang; Lin, Jen-Hung

    2011-01-01

    For providing an automatic warning system of running-out of injection fluid, RFID technology is applied in this work to propose an infrastructure with low cost to help nurses and patient's company. Specially, a RFID tag is designed and attached on a bag of intravenous drip to demonstrate the benefits in the present system. The main idea of this system is that, tag is disabled when the bag is not empty because of the EM loading due to the liquid contained. The bag can be any kind in the current market and be without any electronic attachment or modification. LAN (Local Area Network) is also applied as a part of this infrastructure for data transmission.

  10. DIAGNOSTIC CARDIAC CATHETERIZATION USING THE MEDRAD AVANTA FLUID MANAGEMENT SYSTEM AS COMPARED TO THE TRADITIONAL MANUAL INJECTION METHOD

    Energy Technology Data Exchange (ETDEWEB)

    Winniford, Michael D

    2013-02-08

    Nearly 4 million patient procedures performed annually in US cardiac catheterization laboratories utilize contrast media to achieve vessel opacification. The amount of contrast media used is variable and depends on the complexity of the procedure, the method of contrast delivery as well as the skill-level of the operator. Since the total amount of contrast used for each procedure can have both patient safety and economic implications, it is essential for cardiologists to have the ability to control contrast delivery such that optimal angiographic image quality is achieved using the least amount of contrast. Although the complication rate associated with cardiac catheterization remains low, the most common serious complication, contrast-induced nephropathy (CIN), is associated with poor prognosis and a high mortality rate. Numerous interventional strategies for preventing and reducing the severity of CIN have demonstrated varying degrees of clinical benefit, but none has been shown to reliably prevent this serious complication. To date, the most effective approach for reducing the risk of CIN is to properly hydrate the patient and to minimize the amount of contrast media administered. Automated injection systems are intended for use in virtually all cardiac catheterization procedures and have numerous features which can provide potential advantages over traditional methods. With automated injection technology the operator is able to control and precisely monitor contrast delivery. Additionally, the MEDRAD Avanta Fluid Management Injection System utilizes a sterile contrast reservoir which eliminates the need to discard unused contrast in individual opened containers following each procedure. Considering that an average of 50% of opened contrast media is wasted using manual injection methods, this savings can provide a substantial economic benefit. Automated systems also facilitate the use of smaller (5 French) catheter sizes. Precise flow control and the use of

  11. Scientific reasoning profile of junior secondary school students on the concept of static fluid

    Science.gov (United States)

    Mariana, N.; Siahaan, P.; Utari, S.

    2018-05-01

    Scientific reasoning is one of the most important ability. This study aims to determine the profile of scientific reasoning of junior high school students about the concept of static fluid. This research uses a descriptive method with a quantitative approach to get an idea about the scientific reasoning of One Roof Junior Secondary School Student Kotabaru Reteh in Riau. The technique of collecting data is done by test of scientific reasoning. Scientific reasoning capability refers to Furtak’s EBR (Evidence Based Reasoning) scientific reasoning indicator that contains the components of claims, data, evidence, and rules. The result obtained on each element of scientific reasoning is 35% claim, 23% data, 21% evidence and 17% rule. The conclusions of this research that scientific reasoning of Satu Atap Junior Secondary School student Kotabaru Reteh, Riau Province still in the low category.

  12. Research and application of multi-hydrogen acidizing technology of low-permeability reservoirs for increasing water injection

    Science.gov (United States)

    Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei

    2017-12-01

    The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.

  13. Injectable barriers for waste isolation

    International Nuclear Information System (INIS)

    Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K.; Muller, S.J.

    1995-03-01

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification

  14. The efficacy of preoperative posterior subtenon injection of triamcinolone acetonide in noninfectious uveitic patients with secondary glaucoma undergoing trabeculectomy

    Directory of Open Access Journals (Sweden)

    Keorochana N

    2017-11-01

    Full Text Available Narumon Keorochana, Sutheera Kunasuntiwarakul, Isaraporn Treesit, Raveewan Choontanom Department of Ophthalmology, Phramongkutklao Hospital, Phramongkutklao College of Medicine, Bangkok, Thailand Objective: The aim of this study was to evaluate the efficacy and safety of preoperative posterior subtenon injection of triamcinolone acetonide (PSTA in noninfectious uveitic patients with secondary glaucoma undergoing primary trabeculectomy with mitomycin C.Design: This was a retrospective study.Patients and methods: We reviewed the medical records of 10 noninfectious uveitic patients, who had received a single preoperative PSTA 40 mg/1 mL, with secondary glaucoma undergoing primary trabeculectomy with mitomycin C. We collected data before and after surgery on intraocular pressure (IOP, anterior chamber (AC cells, best-corrected visual acuity (BCVA, morphologic characteristics of the filtering bleb and complications.Results: The mean time between injection and surgery was 7.8±3.88 days. Postoperative IOP level was significantly lower than preoperative level (31.3±11.44 mmHg at all visits (P<0.02. Antiglaucoma medications were decreased from preoperative (4.9±0.88 to 12-month postoperative (0.8±1.31; P-value <0.001 and also discontinued in seven eyes (70%. About 12 months after surgery, eight eyes (80% with qualified success and two eyes (20% with failed treatment were recorded. AC cells and BCVA did not differ significantly from baseline; however, all inflammations were controlled successfully. Most desirable bleb morphology was shown at 12 months as well. Complications were blepharoptosis and hypotony maculopathy in two eyes (20%.Conclusion: A preoperative PSTA may be an effective and safe option in controlling intraocular inflammation and maintaining bleb function after trabeculectomy in noninfectious uveitic patients with secondary glaucoma during a 12-month period. Keywords: periocular injection, steroid, uveitis, triamcinolone acetonide

  15. Teduglutide Injection

    Science.gov (United States)

    ... who need additional nutrition or fluids from intravenous (IV) therapy. Teduglutide injection is in a class of medications ... of the ingredients.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  16. Fluid Distribution Pattern in Adult-Onset Congenital, Idiopathic, and Secondary Normal-Pressure Hydrocephalus: Implications for Clinical Care.

    Science.gov (United States)

    Yamada, Shigeki; Ishikawa, Masatsune; Yamamoto, Kazuo

    2017-01-01

    In spite of growing evidence of idiopathic normal-pressure hydrocephalus (NPH), a viewpoint about clinical care for idiopathic NPH is still controversial. A continuous divergence of viewpoints might be due to confusing classifications of idiopathic and adult-onset congenital NPH. To elucidate the classification of NPH, we propose that adult-onset congenital NPH should be explicitly distinguished from idiopathic and secondary NPH. On the basis of conventional CT scan or MRI, idiopathic NPH was defined as narrow sulci at the high convexity in concurrent with enlargement of the ventricles, basal cistern and Sylvian fissure, whereas adult-onset congenital NPH was defined as huge ventricles without high-convexity tightness. We compared clinical characteristics and cerebrospinal fluid distribution among 85 patients diagnosed with idiopathic NPH, 17 patients with secondary NPH, and 7 patients with adult-onset congenital NPH. All patients underwent 3-T MRI examinations and tap-tests. The volumes of ventricles and subarachnoid spaces were measured using a 3D workstation based on T2-weighted 3D sequences. The mean intracranial volume for the patients with adult-onset congenital NPH was almost 100 mL larger than the volumes for patients with idiopathic and secondary NPH. Compared with the patients with idiopathic or secondary NPH, patients with adult-onset congenital NPH exhibited larger ventricles but normal sized subarachnoid spaces. The mean volume ratio of the high-convexity subarachnoid space was significantly less in idiopathic NPH than in adult-onset congenital NPH, whereas the mean volume ratio of the basal cistern and Sylvian fissure in idiopathic NPH was >2 times larger than that in adult-onset congenital NPH. The symptoms of gait disturbance, cognitive impairment, and urinary incontinence in patients with adult-onset congenital NPH tended to progress more slowly compared to their progress in patients with idiopathic NPH. Cerebrospinal fluid distributions and

  17. Seismic modeling of acid-gas injection in a deep saline reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ursenbach, C.P.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S) are common byproducts of the energy industry. As such, remediation studies are underway to determine the feasibility of sequestering these byproducts in subsurface reservoirs, including deep saline reservoirs. Acid gas injection at smaller gas wells holds promise. However, in order for such injection programs to work, the progress of the injection plume must be tracked. A modeling study of fluid substitution was carried out to gain insight into the ability of seismic monitoring to distinguish pre- and post-injection states of the reservoir medium. The purpose of this study was to carry out fluid substitution calculations for the modeling of an injection process. A methodology that may be applied or adapted to a variety of acid-gas injection scenarios was also developed. The general approach involved determining acoustic properties at reservoir temperature and pressure of relevant fluids; obtaining elastic properties of the reservoir rock for some reference saturated state, and the elastic properties of the mineral comprising it; and, determining the change in reservoir elastic properties due to fluid substitution via Gassmann's equation. Water, brine and non-aqueous acid gas were the 3 fluids of interest in this case. The feasibility of monitoring was judged by the sensitivity of travel times and reflection coefficients to fluid substitution. 4 refs., 2 figs.

  18. Investigation of Thermal and Thermomechanical Properties of Biodegradable PLA/PBSA Composites Processed via Supercritical Fluid-Assisted Foam Injection Molding

    Directory of Open Access Journals (Sweden)

    Sai Aditya Pradeep

    2017-01-01

    Full Text Available Bio-based polymer foams have been gaining immense attention in recent years due to their positive contribution towards reducing the global carbon footprint, lightweighting, and enhancing sustainability. Currently, polylactic acid (PLA remains the most abundant commercially consumed biopolymer, but suffers from major drawbacks such as slow crystallization rate and poor melt processability. However, blending of PLA with a secondary polymer would enhance the crystallization rate and the thermal properties based on their compatibility. This study investigates the physical and compatibilized blends of PLA/poly (butylene succinate-co-adipate (PBSA processed via supercritical fluid-assisted (ScF injection molding technology using nitrogen (N2 as a facile physical blowing agent. Furthermore, this study aims at understanding the effect of blending and ScF foaming of PLA/PBSA on crystallinity, melting, and viscoelastic behavior. Results show that compatibilization, upon addition of triphenyl phosphite (TPP, led to an increase in molecular weight and a shift in melting temperature. Additionally, the glass transition temperature (Tg obtained from the tanδ curve was observed to be in agreement with the Tg value predicted by the Gordon–Taylor equation, further confirming the compatibility of PLA and PBSA. The compatibilization of ScF-foamed PLA–PBSA was found to have an increased crystallinity and storage modulus compared to their physically foamed counterparts.

  19. Heat exchanger with intermediate evaporating and condensing fluid

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1978-01-01

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes

  20. 4D synchrotron X-ray imaging to understand porosity development in shales during exposure to hydraulic fracturing fluid

    Science.gov (United States)

    Kiss, A. M.; Bargar, J.; Kohli, A. H.; Harrison, A. L.; Jew, A. D.; Lim, J. H.; Liu, Y.; Maher, K.; Zoback, M. D.; Brown, G. E.

    2016-12-01

    Unconventional (shale) reservoirs have emerged as the most important source of petroleum resources in the United States and represent a two-fold decrease in greenhouse gas emissions compared to coal. Despite recent progress, hydraulic fracturing operations present substantial technical, economic, and environmental challenges, including inefficient recovery, wastewater production and disposal, contaminant and greenhouse gas pollution, and induced seismicity. A relatively unexplored facet of hydraulic fracturing operations is the fluid-rock interface, where hydraulic fracturing fluid (HFF) contacts shale along faults and fractures. Widely used, water-based fracturing fluids contain oxidants and acid, which react strongly with shale minerals. Consequently, fluid injection and soaking induces a host of fluid-rock interactions, most notably the dissolution of carbonates and sulfides, producing enhanced or "secondary" porosity networks, as well as mineral precipitation. The competition between these mechanisms determines how HFF affects reactive surface area and permeability of the shale matrix. The resultant microstructural and chemical changes may also create capillary barriers that can trap hydrocarbons and water. A mechanistic understanding of the microstructure and chemistry of the shale-HFF interface is needed to design new methodologies and fracturing fluids. Shales were imaged using synchrotron micro-X-ray computed tomography before, during, and after exposure to HFF to characterize changes to the initial 3D structure. CT reconstructions reveal how the secondary porosity networks advance into the shale matrix. Shale samples span a range of lithologies from siliceous to calcareous to organic-rich. By testing shales of different lithologies, we have obtained insights into the mineralogic controls on secondary pore network development and the morphologies at the shale-HFF interface and the ultimate composition of produced water from different facies. These results

  1. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  2. Biomass fueled closed cycle gas turbine with water injection

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Silvia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    Direct water injection has been studied for a small scale ({approx} 8 MW fuel input) closed cycle gas turbine coupled to a biomass fueled CFB furnace. Two different working fluids have been considered (helium-water mixture and nitrogen-water mixture). The water injection could take place between the compressor stages, as an intercooler, or after the high pressure compressor, as an aftercooler. Both this options have been studied, varying the relative humidity levels after the injection and the temperatures of the injected water. The effect of water injection on thermodynamic properties of the working fluids has been studied, together with its effect on turbomachinery isentropic efficiency. A sensitivity analysis on turbomachinery efficiency and cycle base pressure has been included. The results from this study have been compared to the performance of a dry closed cycle without water injection. The wet cycle shows an electric efficiency in the range 29-32% with helium-water mixture as working fluid and 30-32% with nitrogen-water mixture as working fluid, while the total efficiency (referring to the fuel LHV) is always higher than 100%. In the non-injected cycle the electric efficiency is 30-35% with helium and 32-36 with nitrogen. The total efficiency in the dry case with two level intercooling and postcooling is 87-89%, while is higher than 100% when only one stage inter- and postcooling is present. Aside from this, the study also includes a sizing of the heat exchangers for the different cycle variations. The heat transfer area is very sensible to the working fluid and to the amount of injected water and it's always higher when a nitrogen-water mixture is used. Compared to the cycle without water injection, by the way, the number of heat exchangers is reduced. This will lead to a lower pressure drop and a simpler plant layout. The total heat transfer area, however, is higher in the wet cycle than in the dry cycle.

  3. Fluid diversion in oil recovery

    International Nuclear Information System (INIS)

    Nimir, Hassan B.

    1999-01-01

    In any oil recovery process, large scale heterogeneities, such as fractures, channels, or high-permeability streaks, can cause early break through of injected fluid which will reduce oil recovery efficiency. In waterflooding, enhanced oil recovery, and acidizing operations, this problem is particularly acute because of the cost of the injected fluid. On the other hand coping with excess water production is always a challenging task for field operators. The cost of handling and disposing produced water can significantly shorten the economic production life of an oil well. The hydrostatic pressure created by high fluid levels in a well (water coning) is also detrimental to oil production. In this paper, the concept of fluid diversion is explained. Different methods that are suggested to divert the fluid into the oil-bearing-zones are briefly discussed, to show their advantages and disadvantages. Methods of reducing water production in production well are also discussed. (Author)

  4. Carbon dioxide fluid-flow modeling and injectivity calculations

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.

  5. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    Science.gov (United States)

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  6. Foam injection method and system

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W C; Parmley, J B; Shepard, J C

    1977-05-10

    A method is described for more efficiently practicing in situ combustion techniques by generating a gas-water mist or foam adjacent to the combustion formation within the injection well. The mist or foam is forced out of the well into the formation to transport heat away from the burned region of the formation toward the periphery of the combustion region to conserve fuel. Also taught are a method and system for fluid treating a formation while maintaining enhanced conformance of the fluid injection profile by generating a mist or foam down-hole adjacent to the formation and then forcing the mist or foam out into the formation. (19 claims)

  7. Regional distribution of TL-201 in the brain and spinal cord after injection into the cerebrospinal fluid: Imaging of brain tumors

    International Nuclear Information System (INIS)

    Woo, D.V.; Rubertone, J.; Vincent, S.; Brady, L.W. Jr.

    1986-01-01

    Radiotracers are typically employed to evaluate the brain ventricular space; however, there are no agents designed to be taken up into specific neuronal regions after injection into the cerebrospinal fluids (CSF). The authors report studies in which T1-201 was stereotaxically administered into the lateral or fourth ventricles of Sprague-Dawley rats. Brains were removed (n = 42) 2-6 hours after injection and sectioned for apposition to autoradiographic film. Specific uptake was observed in active neurons of the diencephalon, mesencephalon, cerebellum, brain stem, and spinal gray matter. Astrocytoma cell implants into the caudate nucleus of Sprague-Dawley rats induced histologically confirmed brain tumors (n = 5). Significant localization of T1-201 was observed in the tumor 4 hours after injection into the lateral ventricle. These findings suggest that T1-201 may be useful for delineating specific neuronal function via CSF circulation and for imaging actively growing brain tumors

  8. Radiosensitivity of antibody responses and radioresistant secondary tetanus antitoxin responses

    International Nuclear Information System (INIS)

    Stoner, R.; Terres, G.; Cottier, H.; Hess, M.

    1976-01-01

    Primary tetanus antitoxin responses were increasingly repressed in mice when gamma radiation doses of 100 to 400 rads were delivered by whole-body exposure prior to immunization with fluid tetanus toxoid (FTT). Nearly normal secondary antitoxin responses were obtained in mice exposed to 600 rads of gamma radiation 4 days after secondary antigenic stimulation with FTT. A rapid transition from radiosensitivity of the antibody-forming system on days 1 to 3 was followed by relative radioresistance on day 4 after the booster injection of toxoid. Studies on lymphoid cellular kinetics in popliteal lymph nodes after injection of 3 H--thymidine ( 3 H--TdR) and incorporation of 3 H--L-histidine into circulating antitoxin were carried out. Analysis of tritium radioactivity in antigen--antibody precipitates of serums 2 hr after injection of the labeled amino acid revealed maximum incorporation into antibody around day 7 after the booster in nonirradiated controls and about day 12, i.e., 8 days after irradiation, in experimental mice. The shift from radiosensitivity to relative radioresistance was attributed to a marked peak of plasma-cell proliferation in the medulla of lymph nodes on day 3. Many medullary plasma cells survived and continued to proliferate after exposure to radiation. Germinal centers were destroyed by radiation within 1 day. Since antibody formation continued after exposure to radiation and after the loss of germinal centers, this supports the view that germinal-center cells were involved more in the generation of memory cells than in antibody synthesis

  9. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    Science.gov (United States)

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear

  10. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  11. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  12. Combination of Intra-Articular and Intraosseous Injections of Platelet Rich Plasma for Severe Knee Osteoarthritis: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Mikel Sánchez

    2016-01-01

    Full Text Available The aim of this study was to assess a novel approach to treating severe knee osteoarthritis by targeting synovial membrane, superficial articular cartilage, synovial fluid, and subchondral bone by combining intra-articular injections and intraosseous infiltrations of platelet rich plasma. We explored a new strategy consisting of intraosseous infiltrations of platelet rich plasma into the subchondral bone in combination with the conventional intra-articular injection in order to tackle several knee joint tissues simultaneously. We assessed the clinical outcomes through osteoarthritis outcome score (KOOS and the inflammatory response by quantifying mesenchymal stem cells in synovial fluid. There was a significant pain reduction in the KOOS from baseline (61.55±14.11 to week 24 (74.60±19.19, after treatment (p=0.008, in the secondary outcomes (symptoms, p=0.004; ADL, p=0.022; sport/rec., p=0.017; QOL, p=0.012, as well as VAS score (p<0.001 and Lequesne Index (p=0.008. The presence of mesenchymal stem cells in synovial fluid and colony-forming cells one week after treatment decreased substantially from 7.98±8.21 MSC/μL to 4.04±5.36 MSC/μL (p=0.019 and from 601.75±312.30 to 139.19±123.61  (p=0.012, respectively. Intra-articular injections combined with intraosseous infiltrations of platelet rich plasma reduce pain and mesenchymal stem cells in synovial fluid, besides significantly improving knee joint function in patients with severe knee osteoarthritis. This trial is registered on EudraCT with the number 2013-003982-32.

  13. Temporal pore pressure induced stress changes during injection and depletion

    Science.gov (United States)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  14. Efficacy of intravitreal injection of Ranibizumab combined with laser photocoagulation in treatment of macular edema secondary to branch retina vein occlusion

    Directory of Open Access Journals (Sweden)

    Rui-Fang Yang

    2016-01-01

    Full Text Available AIM:To observe the effect and safety of Ranibizumab intravitreal injection combined with laser photocoagulation in treatment of macular edema secondary to branch retina vein occlusion(BRVO.METHODS:Forty-four patients(44 eyeswith macular edema secondary to BRVO were enrolled. Patients received intravitreal injection of ranibizumab(0.05mL/0.5mgand laser photocoagulation(ranibizumab groupor laser photocoagulation alone(control group. Patients in ranibizumab group were given laser photocoagulation at 1mo after intravitreal injection. Then ranibizumab was given again if needed. The best corrected visual acuity(BCVA, slitlamp examination, fundus examination, non-contact tonometer examination and fundus fluorescein angiography were taken. All patients were followed up for 6mo. We analyzed the changes on BCVA,central macular thickness(CMTbefore and 1,4,12 and 24wk after treatments, and related complications were recorded. RESULTS:Outcomes are significantly better in ranibizumab group with reduced retinal thickness and improved visual acuity. In ranibizumab group, both visual acuity and CMT values were significantly better than those before treatments(visual acuity:t=5.781,7.496,7.341,7.836, all P=0.000; CMT:t=9.784,11.893,11.573,11.437, all P=0.000.In control group, the improvement on visual acuity was not significantly better than that before treatment at 1wk(t=2.130,P=0.053; while the improvement on visual acuity was significantly better at 4,12 and 24wk(t=3.524,6.429,6.922,P=0.04,0.000,0.000.The improvements on visual acuity after treatments in ranibizumab group were significantly better than those in control group at 1,4,12 and 24wk(t=2.604,3.223,3.303,3.296,P=0.015,0.03,0.04,0.03.CMT values after treatments in ranibizumab group were significantly better than those in contral group at 1,4,12 and 24wk(t=43.231,50.504,56.074,38.103,all P=0.000.No severe ocular and systematic side effect was found.CONCLUSION:Intravitreal injection of ranibizumab

  15. Analysis of pulsed injection for microgravity receiver tank chilldown

    Science.gov (United States)

    Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.

    The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.

  16. Multi-fluid renewable geo-energy systems and methods

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-08-22

    A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portion of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.

  17. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    International Nuclear Information System (INIS)

    Scheuerer, Martina; Weis, Johannes

    2012-01-01

    Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  18. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  19. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  20. Channel flow induced by wall injection of fluid and particles; Ecoulement induit par injection parietale de fluide et de particules dans un conduit

    Energy Technology Data Exchange (ETDEWEB)

    Feraille, Th.; Casalis, G. [Aerodynamics and Energetics Modeling Dept., 31 - Toulouse (France)

    2003-12-01

    The Taylor flow is the laminar single phase flow induced by gas injection through porous walls, and is assumed to represent the flow inside solid propellant motors. Such a flow is intrinsically unstable, and the generated instabilities are probably responsible for the thrust oscillations observed in the aforesaid motors. However particles are embedded in the propellants usually used, and are released in the fluid by the lateral walls during the combustion, so that there are two heterogeneous phases in the flow. The purpose of this paper is to study the influence of these particles on stability by comparison with stability results from the single phase studies, in a plane two-dimensional configuration. The particles are supposed to be chemically inert and of a uniform size. In order to carry out a linear stability study for this flow modified by the presence of particles, the mean particle velocity field is first determined, assuming that only the gas exerts forces on the particles. This field is sought in a self similar form, which imposes a limit on the size of the particles. However, the particle mass concentration cannot be obtained in a self similar form, but can only, be described by a partial differential equation. The mean flow characteristics being determined, the spectrum of the discretized linear stability operator shows first that particle addition does not trigger any new 'dangerous' modes compared with the single phase flow case. It also shows that the most amplified mode in the case of the single phase flow remains the most amplified mode in the case of the two phase flow. Moreover, the addition of particles acts continuously upon stability results, behaving linearly with respect to the particle mass concentration when the latter is small. The linear correction to the monophasic mode, as well as the evolution of the modes with weak values of the particle mass concentration at the wall, are shown to be proportional to the ejection velocity of

  1. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  2. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  3. Systems and methods for multi-fluid geothermal energy systems

    Science.gov (United States)

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  4. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  5. Injection nozzle for a turbomachine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  6. Immunotherapy With Magentorheologic Fluids

    Science.gov (United States)

    2011-08-01

    anti-tumor effects are weakened by removal of the tumor antigen pool (i.e. surgery) or use of cytoreductive and immunosuppressive therapies (i.e...particles were injected as magneto -rheological fluid (MRF) into an orthotopic primary breast cancer and followed by application of a magnetic field to...SUBJECT TERMS MRF: Magneto -rehological fluid iron particles, IT: immunotherapy, necrotic death, DCs: dendritic cells, cytokines, chemokines

  7. Electrokinetically controlled fluid injection into unicellular microalgae.

    Science.gov (United States)

    Zhou, Xuewen; Zhang, Xixi; Boualavong, Jonathan; Durney, Andrew R; Wang, Tonghui; Kirschner, Scott; Wentz, Michaela; Mukaibo, Hitomi

    2017-10-01

    Electrokinetically controlled microinjection is reported as an effective transport mechanism for microinjection into the wild-type strain of the widely studied model microalga Chlamydomonas reinhardtii. A microinjection system using glass capillary pipettes was developed to capture and impale the motile cells. To apply an electric field and induce electrokinetic flow (e.g., electrophoresis and electroosmosis), an electrode was inserted directly into the solution inside the impaling injection pipette and another electrode was inserted into the external cell media. The viability of the impaled cells was confirmed for more than an hour under 0.01 V using the fluorescein diacetate/propidium iodide dual fluorescent dye based assay. The viability was also found to increase almost logarithmically with decreasing voltage and to depend strongly on the solution within the injection pipette. Successful electrokinetic microinjection into cells was confirmed by both an increase in cell volume under an applied voltage and electric field dependent delivery of fluorescent fluorescein molecules into an impaled cell. Our study offers novel opportunities for quantitative delivery of biomolecules into microalgae and advancing the research and development of these organisms as biosynthetic factories. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerer, Martina, E-mail: Martina.Scheuerer@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany); Weis, Johannes, E-mail: Johannes.Weis@grs.de [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Forschungsinstitute, 85748 Garching (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Pressurized thermal shocks are important phenomena for plant life extension and aging. Black-Right-Pointing-Pointer The thermal-hydraulics of PTS have been studied experimentally and numerically. Black-Right-Pointing-Pointer In the Large Scale Test Facility a loss of coolant accident was investigated. Black-Right-Pointing-Pointer CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  9. Water injection dredging

    NARCIS (Netherlands)

    Verhagen, H.J.

    2000-01-01

    Some twenty years ago WIS-dredging has been developed in the Netherlands. By injecting water into the mud layer, the water content of the mud becomes higher, it becomes fluid mud and will start to flow. The advantages of this system are that there is no need of transporting the mud in a hopper, and

  10. Efficacy of Repeated Botulinum Toxin Type A Injections for Spastic Equinus in Children with Cerebral Palsy-A Secondary Analysis of the Randomized Clinical Trial.

    Science.gov (United States)

    Hong, Bo Young; Chang, Hyun Jung; Lee, Sang-Jee; Lee, Soyoung; Park, Joo Hyun; Kwon, Jeong-Yi

    2017-08-21

    Botulinum toxin A is considered an important tool to control spasticity in children with cerebral palsy. Several factors are known to affect the efficacy of botulinum toxin, such as dosage, appropriate muscle selection and application, age, and accompanying therapy. A multicenter, double-blind, randomized, prospective phase III clinical trial of botulinum toxin A for the treatment of dynamic equinus in 144 children with cerebral palsy was performed to compare the efficacies of letibotulinumtoxin A and onabotulinumtoxin A. Secondary analyses were performed to evaluate factors that affected the outcome, focusing on the number of times injections were repeated. Effectiveness was defined as a change of 2 or more in the physician's rating scale. Multivariate regression analyses were performed with multiple variables. The first injection of botulinum toxin A significantly improved D subscale of Gross Motor Function Measure-88 scores at 3 months compared to repeated injections ( p < 0.05). After 6 months, patients who had one injection or none before the study showed significantly better outcomes than those who had more than one injection in terms of observational gait scores.

  11. Method for monitoring fluid movement behind casing in oil and gas wells

    International Nuclear Information System (INIS)

    Fertl, W.H.

    1981-01-01

    A new method was developed for locating fluid movement between the casing and the earth formations in a cased earth borehole. It comprises traversing a cased earth borehole with a gamma ray detector, thereby creating a base log; injecting a fluid containing a salt of potassium, thorium or uranium into the formation; and creating a second log indicative of the movement of the injected fluid. (D.N.)

  12. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    International Nuclear Information System (INIS)

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.; Kim, Charlson C.

    2013-01-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d i to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I tor /I inj ) and formation time τ f demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I tor /I inj ) and exhibits much a longer τ f . Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD

  13. Evaluation of Coolant Injection Procedure in the Severe Accident Management Strategy of APR1400

    International Nuclear Information System (INIS)

    Cho, Yongjin; Lim, Kukhee; Song, Sungchu; Lee, Sukho; Hwang, Taesuk

    2013-01-01

    A coolant injection strategy in the severe accident management guideline (SAMG) of APR1400 relates to immediate coolant injection into RCS (Reactor Coolant System) or injection following the recovery of secondary coolant inventory. This strategy could play important role in accident mitigation and radiological consequences. In this study, appropriateness of the strategy was evaluated using MELCOR1.8.6 and several sensitivity studies of the key parameters were performed. Analysis for APR1400 using MELCOR 1.8.6 was performed to evaluate the effectiveness of accident management strategies and the following conclusions were identified. Sequential operation of secondary and RCS injection may not be the best strategy and the simultaneous injection of secondary and RCS injection could be more preferable. At least, the RCS injection should start before complete drainage of water in the safety injection tank using mobile pumps. In this study, the effectiveness of timing of operator action has been examined and the amount of injection flowrate needs to be studied in the future

  14. Botulinum neurotoxin type A injections for vaginismus secondary to vulvar vestibulitis syndrome.

    Science.gov (United States)

    Bertolasi, Laura; Frasson, Emma; Cappelletti, Jee Yun; Vicentini, Silvana; Bordignon, Monia; Graziottin, Alessandra

    2009-11-01

    To investigate whether botulinum neurotoxin type A improves vaginismus and study its efficacy with repeated treatments. Outpatients were referred because standard cognitive-behavioral and medical treatment for vaginismus and vulvar vestibular syndrome failed. From this group, we prospectively recruited consecutive women (n=39) whose diagnostic electromyogram (EMG) recordings from the levator ani muscle showed hyperactivity at rest and reduced inhibition during straining. These women were followed for a mean (+/-standard deviation) of 105 (+/-50) weeks. Recruited patients underwent repeated cycles of botulinum neurotoxin type A injected into the levator ani under EMG guidance and EMG monitoring thereafter. At enrollment and 4 weeks after each cycle, women were asked about sexual intercourse; underwent EMG evaluation and examinations to grade vaginal resistance according to Lamont; and completed a visual analog scale (VAS) for pain, the Female Sexual Function Index Scale, a quality-of-life questionnaire (Short-Form 12 Health Survey), and bowel and bladder symptom assessment. At 4 weeks after the first botulinum neurotoxin type A cycle, the primary outcome measures (the possibility of having sexual intercourse, and levator ani EMG hyperactivity) both improved, as did the secondary outcomes, Lamont scores, VAS, Female Sexual Function Index Scales, Short-Form 12 Health Survey, and bowel-bladder symptoms. These benefits persisted through later cycles. When follow-up ended, 63.2% of the patients completely recovered from vaginismus and vulvar vestibular syndrome, 15.4% still needed reinjections (censored), and 15.4% had dropped out. Botulinum neurotoxin type A is an effective treatment option for vaginismus secondary to vulvar vestibular syndrome refractory to standard cognitive-behavioral and medical management. After patients received botulinum neurotoxin type A, their sexual activity improved and reinjections provided sustained benefits. III.

  15. Case report: Retroperitoneal biliary fluid collections secondary to common bile duct rupture - an unusual complication of choledocholithiasis in a child

    International Nuclear Information System (INIS)

    Rastogi, Rajul; Rastogi, Vaibhav

    2008-01-01

    Rupture of the common bile duct (CBD) in a child secondary to choledocholithiasis is a rare event. In this article, the authors describe a child who presented with an acute abdomen due to CBD rupture, with subsequent acute retroperitoneal fluid collections, all diagnosed preoperatively on CT scan. The aim of this article is to show the pathways that such collections can take in the retroperitoneum

  16. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  17. The Search for Fluid Injection-induced Seismicity in California Oilfields

    Science.gov (United States)

    Layland-Bachmann, C. E.; Brodsky, E. E.; Foxall, W.; Goebel, T.; Jordan, P. D.

    2017-12-01

    During recent years, earthquakes associated with human activity have become a matter of heightened public concern. Wastewater injection is a major concern, as seismic events with magnitudes larger than M5.5 have been linked to this practice. Much of the research in the United States is focused on the mid-continental regions, where low rates of naturally-occurring seismicity and high-volume injection activities facilitate easier identification by statistical correlation of potentially induced seismic events . However, available industry data are often limited in these regions and therefore limits our ability to connect specific human activities to earthquakes. Specifically, many previous studies have focused primarily on injection activity in single wells, ignoring the interconnectivity of production and injection in a reservoir. The situation in California differs from the central U.S. in two ways: (1) A rich dataset of oilfield activity is publically available from state agencies, which enables a more in-depth investigation of the human forcing; and (2) the identification of potential anthropogenically-induced earthquakes is complex as a result of high tectonic activity. Here we address both differences. We utilize a public database of hydrologically connected reservoirs to assess whether there are any statistically significant correlations between the net injected volumes, reservoir pressures and injection depths, and the earthquake locations and frequencies of occurrence. We introduce a framework of physical and empirical models and statistical techniques to identify potentially induced seismic events. While the aim is to apply the methods statewide, we first apply our methods in the Southern San Joaquin Valley. Although, we find an anomalously high earthquake rate in Southern Kern County oilfields, which is consistent with previous studies, we do not find a simple straightforward correlation. To successfully study induced seismicity we need a seismic catalog

  18. Gass-Assisted Displacement of Non-Newtonian Fluids

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard

    2003-01-01

    in a circular cylinder. This is a simple model system used to investigate the gas-fluid displacement, as the problem is reduced to an axis-symmetric flow problem. The understanding of this process is relevant for the geometrically much more complex polymer processing operation Gas-assisted injection moulding...... (GAIM). This is a process, where a mould is filled partly with a polymer melt followed by the injection of inert gas into the core of the polymer melt. The numerical analysis of the fluid flow concerning the experimental observations data in these publications is all based on Newtonian or general...... equation of Boger fluids is the Oldroyd-B model. This model has, with success, been able to describe the complex flow behaviours of Boger fluid. Though, refinements in the flow analysis can be obtained using more complex constitutive models. To keep the flow analysis as simple as possible the Oldroyd...

  19. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow

  20. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities

  1. Changes in concentrations of haemostatic and inflammatory biomarkers in synovial fluid after intra-articular injection of lipopolysaccharide in horses

    DEFF Research Database (Denmark)

    Andreassen, Stine Mandrup; Vinther, Anne Mette Lindberg; Nielsen, Søren Saxmose

    2017-01-01

    BACKGROUND: Septic arthritis is a common and potentially devastating disease characterized by severe intra-articular (IA) inflammation and fibrin deposition. Research into equine joint pathologies has focused on inflammation, but recent research in humans suggests that both haemostatic and inflam......BACKGROUND: Septic arthritis is a common and potentially devastating disease characterized by severe intra-articular (IA) inflammation and fibrin deposition. Research into equine joint pathologies has focused on inflammation, but recent research in humans suggests that both haemostatic...... and inflammatory pathways are activated in the joint compartment in arthritic conditions. The aim of this study was to characterize the IA haemostatic and inflammatory responses in horses with experimental lipopolysaccharide (LPS)-induced joint inflammation. Inflammation was induced by IA injection of LPS into one...... antebrachiocarpal joint of six horses. Horses were evaluated clinically with subjective grading of lameness, and blood and synovial fluid (SF) samples were collected at post injection hours (PIH) -120, -96, -24, 0, 2, 4, 8, 16, 24, 36, 48, 72 and 144. Total protein (TP), white blood cell counts (WBC), serum amyloid...

  2. Injection of Compressed Diced Cartilage in the Correction of Secondary and Primary Rhinoplasty: A New Technique with 12 Years' Experience.

    Science.gov (United States)

    Erol, O Onur

    2017-11-01

    There are instances where small or large pockets are filled with diced cartilage in the nose, without use of wrapping materials. For this purpose, 1-cc commercial syringes were used. The obtained results were partial and incomplete. For better and improved results, the author designed new syringes, with two different sizes, which compress the diced cartilage for injection. The author presents his experience accrued over the past 12 years with 2366 primary, 749 secondary, 67 cleft lip and nose, and a total of 3182 rhinoplasties, using his new syringe design, which compresses diced cartilage and injects the diced cartilages as a conglutinate mass, simulating carved costal cartilage, but a malleable one. In 3125 patients, the take of cartilage graft was complete (98.2 percent) and a smooth surface was obtained, giving them a natural appearance. In 21 patients (0.65 percent), there was partial resorption of cartilage. Correction was performed with touch-up surgery by reinjection of a small amount of diced cartilage. In 36 patients (1.13 percent), there was overcorrection that, 1 year later, was treated by simple rasping. Compared with diced cartilage wrapped with Surgicel or fascia, the amount of injected cartilage graft is predictable because it consists purely of cartilage. The injected diced cartilage, because it is compressed and becomes a conglutinated mass, resembles a wood chip and simulates carved cartilage. It is superior to carved cartilage in that it is moldable, time saving, and gives a good result with no late show or warping. The injection takes only a few minutes.

  3. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  4. Successful outcome after intravenous gasoline injection.

    Science.gov (United States)

    Domej, Wolfgang; Mitterhammer, Heike; Stauber, Rudolf; Kaufmann, Peter; Smolle, Karl Heinz

    2007-12-01

    Gasoline, ingested intentionally or accidentally, is toxic. The majority of reported cases of gasoline intoxication involve oral ingestion or inhalation. Data are scarce on complications and outcomes following hydrocarbon poisoning by intravenous injection. Following a suicide attempt by intravenous self-injection of 10 ml of gasoline, a 26-year-old medical student was admitted to the intensive care unit (ICU) with hemoptysis, symptoms of acute respiratory failure, chest pain, and severe abdominal cramps. Gas exchange was severely impaired and a chest x-ray indicated chemical pneumonitis. Initial treatment consisted of mechanical ventilation, supportive hyperventilation, administration of nitrogen oxide (NO), and prednisone. Unfortunately, the patient developed multi-organ dysfunction syndrome (MODS) complicated by life-threatening severe vasoplegia within 24 hours after gasoline injection. High doses of vasopressors along with massive amounts of parenteral fluids were necessary. Despite fluid replacement, renal function worsened and required hemofiltration on 5 sequential days. After 12 days of intensive care management, the patient recovered completely and was discharged to a psychiatric care facility. Intravenous gasoline injection causes major injury to the lungs, the organ bearing the first capillary bed encountered. Treatment of gasoline poisoning is symptomatic because no specific antidote is available. Early and aggressive supportive care may be conducive to a favorable outcome with minimal residual pulmonary sequelae.

  5. Heavy oil reservoir evaluation : performing an injection test using DST tools in the marine region of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza, J.; Ruiz, P. [Halliburton, Mexico City (Mexico); Barrera, D.; Gutierrez, F. [Pemex, Mexico City (Mexico)

    2010-07-01

    This paper described an injection test conducted to evaluate heavy oil reserves in an offshore area of Mexico. The drill-stem testing (DST) evaluation used a fluid injection technique in order to eliminate the need for artificial lift and coiled tubing. A pressure transient analysis method was used to determine the static pressure of the reservoir, effective hydrocarbon permeability, and formation damage. Boundary effects were also characterized. The total volume of the fluid injection was determined by analyzing various reservoir parameters. The timing of the shut-in procedure was determined by characterizing rock characteristics and fluids within the reservoir. The mobility and diffusivity relationships between the zones with the injection fluids and reservoir fluids were used to defined sweep fluids. A productivity analysis was used to predict various production scenarios. DST tools were then used to conduct a pressure-production assessment. Case histories were used to demonstrate the method. The studies showed that the method provides a cost-effective means of providing high quality data for productivity analyses. 4 refs., 2 tabs., 15 figs.

  6. Nanofluidic bubble pump using surface tension directed gas injection

    NARCIS (Netherlands)

    Tas, Niels Roelof; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van den Berg, Albert

    2002-01-01

    A new concept for liquid manipulation has been developed and implemented in surface-micromachined fluid channels. It is based on the surface tension directed injection of a gas into the liquid flow through micrometer-sized holes in the microchannel wall. The injected gas is directed to an exhaust by

  7. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  8. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake.

    Science.gov (United States)

    Ryan, Philip J; Ross, Silvano I; Campos, Carlos A; Derkach, Victor A; Palmiter, Richard D

    2017-12-01

    Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (Oxtr PBN neurons) are key regulators of fluid satiation. Chemogenetic activation of Oxtr PBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, Oxtr PBN neurons were activated by fluid satiation and hypertonic saline injection. Oxtr PBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (Oxt PVH  neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated Oxtr PBN neurons. Our results suggest that Oxtr PBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.

  9. Steam CFD simulation of injection in suppression pool

    International Nuclear Information System (INIS)

    Naveen Samad, A.M.; Ghosh, Sumana

    2015-01-01

    Boiling water reactor (BWR) is one of the common types of electricity generating nuclear reactor. Suppression pool system is a major component of the BWR which has to be designed efficiently for the safe operations. During some accidents like Loss of Coolant Accident (LOCA) large amount of steam are injected to the pressure suppression system resulting in increase in temperature of the pool and thereby increasing the pressure. The present work discuss about the Computational Fluid Dynamics (CFD) simulation of steam injected to the wet well of BWR through the blow down pipes and there by investigating the hydrodynamic and thermal characteristics of the system. The simulations were carried out for three different steam injection velocities. The numerical simulations were performed with ANSYS FLUENT using multiphase 3D Volume of Fluid (VOF) model and k-ε model was adopted for modelling turbulence flow. (author)

  10. Geothermal Injection Monitoring Project. Phase I status report, April 1981-April 1982

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.; Hanson, J.; Didwall, E.; Kasameyer, P.; Smith, A.; Hearst, J.; Daily, W.; Crow, N.; Younker, J.; Murray, W.

    1982-08-13

    The feasibility of using remote geophysical techniques to monitor the movement of injected brine has been evaluated. It was established that no single approach is likely to be identified that can be used to accurately monitor the precise location of the injected fluid. Several approaches have been considered in parallel because they add new dimensions to the existing monitoring capabilities, and are likely to cover a range of applications at a variety of geothermal sites. These include: microseismicity - a seismic net is used to record small magnitude events associated with injection; streaming potential - self potential anomalies produced by a moving fluid identify fluid flow direction; cross borehole geotomography - two-dimensional image of flow pathways is constructed using electromagnetic waves; and well pressure response to solid earth tide - changes in pore pressures are used to discriminate fracture/pore porosity and estimate fracture orientations.

  11. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    Science.gov (United States)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex

  12. Pleural fluid exchange in rabbits.

    Science.gov (United States)

    Stashenko, Gregg J; Robichaux, Amy; Lee, Y C Gary; Sanders, Jonathan R; Roselli, Robert J; Light, Richard W

    2007-07-01

    The study was designed to better characterize pleural fluid absorption in rabbits with the following two objectives: to determine the relative absorption of saline versus high-protein solutions, and to identify the relative rates of absorption of dextran molecules of varying sizes. Twenty New Zealand white rabbits received a 12-mL intrapleural injection of saline solution and a 10% protein solution on opposite sides, each solution containing dextran molecules with varying MWs. At sacrifice at 1, 4, 8, 18 and 24 h, the volume of pleural fluid and the concentrations of the dextran molecules were determined. Saline was absorbed faster than the high-protein fluid (P higher than those in the protein solution at all times after injection (P = 0.005; P higher-MW dextrans were cleared more slowly than the lower-MW dextrans in a continuously graded manner. Saline was absorbed faster than a solution with a high protein content. There was a continuous spectrum in the rate of absorption of the dextran molecules, with the larger molecules being absorbed more slowly.

  13. Rapid determination of piracetam in human plasma and cerebrospinal fluid by micellar electrokinetic chromatography with sample direct injection.

    Science.gov (United States)

    Yeh, Hsin-Hua; Yang, Yuan-Han; Ko, Ju-Yun; Chen, Su-Hwei

    2006-07-07

    A simple micellar electrokinetic chromatography (MEKC) method with UV detection at 200 nm for analysis of piracetam in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of piracetam from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Using imidazole as an internal standard (IS), the linear ranges of the method for the determination of piracetam in plasma and in CSF were all between 5 and 500 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio=3; injection 0.5 psi, 5s) was 1.0 microg/mL. The applicability of the proposed method for determination of piracetam in plasma and CSF collected after intravenous administration of 3g piracetam every 6h and oral administration 1.2g every 6h in encephalopathy patients with aphasia was demonstrated.

  14. Carbon nanopipettes for cell probes and intracellular injection

    International Nuclear Information System (INIS)

    Schrlau, Michael G; Falls, Erica M; Ziober, Barry L; Bau, Haim H

    2008-01-01

    We developed integrated, carbon-based pipettes with nanoscale dimensions (CNP) that can probe cells with minimal intrusion, inject fluids into the cells, and concurrently carry out electrical measurements. Our manufacturing technique does not require cumbersome nanoassembly and is amenable to mass production. Using CNPs, we demonstrate the injection of reagents into cells with minimal intrusion and without inhibiting cell growth

  15. Carbon nanopipettes for cell probes and intracellular injection

    Energy Technology Data Exchange (ETDEWEB)

    Schrlau, Michael G [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104 (United States); Falls, Erica M [Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Ziober, Barry L [Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104 (United States); Bau, Haim H [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2008-01-09

    We developed integrated, carbon-based pipettes with nanoscale dimensions (CNP) that can probe cells with minimal intrusion, inject fluids into the cells, and concurrently carry out electrical measurements. Our manufacturing technique does not require cumbersome nanoassembly and is amenable to mass production. Using CNPs, we demonstrate the injection of reagents into cells with minimal intrusion and without inhibiting cell growth.

  16. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  17. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    Science.gov (United States)

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey

  18. Ultrasonographic study of subcutaneous penile granuloma secondary to silicone injection

    Directory of Open Access Journals (Sweden)

    Lucio Dell'Atti

    2016-10-01

    Full Text Available Penile augmentation has been reported in the literature by injecting various materials. This study reports our experience in management of penile augmentation complications associated with selfpenile injection of silicone liquid. After a careful ultrasound study, the penile skin was excised through a circumferential sub-coronal incision and dissected with the silicon mass. Histology was well-compatible with silicone granulomas. The patient was discharged after 24 hours. Ultrasonography has permitted preoperatively to determine if the plane between the indurated inflammatory tissue and the Buck’s fascia was preserved for the complete surgical excision of affected tissue.

  19. Applications of nano-fluids to enhance LWR accidents management in in-vessel retention and emergency core cooling systems

    International Nuclear Information System (INIS)

    Chupin, A.; Hu, L. W.; Buongiorno, J.

    2008-01-01

    Water-based nano-fluid, colloidal dispersions of nano-particles in water; have been shown experimentally to increase the critical heat flux and surface wettability at very low concentrations. The use of nano-fluids to enhance accidents management would allow either to increase the safe margins in case of severe accidents or to upgrade the power of an existing power plant with constant margins. Building on the initial work, computational fluid dynamics simulations of the nano-fluid injection system have been performed to evaluate the feasibility of a nano-fluid injection system for in-vessel retention application. A preliminary assessment was also conducted on the emergency core cooling system of the European Pressurized Reactor (EPR) to implement a nano-fluid injection system for improving the management of loss of coolant accidents. Several design options were compared/or their respective merits and disadvantages based on criteria including time to injection, safety impact, and materials compatibility. (authors)

  20. Selective localization of IgG from cerebrospinal fluid to brain parenchyma

    DEFF Research Database (Denmark)

    Mørch, Marlene Thorsen; Forsberg Sørensen, Sofie; Khorooshi, Reza M. H.

    2018-01-01

    the cerebrospinal fluid and induce subpial and periventricular NMO-like lesions and blood-brain barrier breakdown, in a complement-dependent manner. To investigate how IgG trafficking from cerebrospinal fluid to brain parenchyma can be influenced by injury. IgG from healthy donors was intrathecally injected...... into the cerebrospinal fluid via cisterna magna at 1, 2, 4, or 7 days after a distal stereotactic sterile needle insertion to the striatum. Antibody deposition, detected by staining for human IgG, peaked 1 day after the intrathecal injection and was selectively seen close to the needle insertion. When NMO...

  1. Hyperparathyroidism caused by distant pulmonary lesions and parathyromatosis after ethanol injection/parathyroidectomy for secondary hyperparathyroidism.

    Science.gov (United States)

    Nakamura, Michio; Tanaka, Kiho; Fujii, Takeshi

    2017-07-01

    Secondary hyperparathyroidism (SHPT) treatment includes parathyroidectomy and percutaneous ethanol injection therapy (PEIT), which are invasive procedures. The condition in which benign hyperfunctioning parathyroid tissue is distributed throughout the neck and mediastinum is termed parathyromatosis. Here, we present the case of a 51-year-old woman who began hemodialysis in 1986 due to chronic kidney disease of unknown etiology and developed SHPT in 1999. She underwent 6 rounds of PEIT followed by total a parathyroidectomy with partial forearm autotransplantation. Between 2011 and 2013, surgeons removed several nodules from her pulmonary and cervical regions and the transplanted masses from her forearm; all showed hyperplasia but exhibited no histological evidence of malignancy. Damage to the parathyroid capsule after repeated PEITs may cause local cervical recurrence and pulmonary lesions, although distant lesions are extremely rare in SHPT. This case is of interest due to the possible association between PEIT and parathyromatosis and distal lesions. © 2017 International Society for Hemodialysis.

  2. Aqueous Boric acid injection facility of PWR type reactor

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi; Iwami, Masao.

    1996-01-01

    If a rupture should be caused in a secondary system of a PWR type reactor, pressure of a primary coolant recycling system is lowered, and a back flow check valve is opened in response to the lowering of the pressure. Then, low temperature aqueous boric acid in the lower portion of a pressurized tank is flown into the primary coolant recycling system based on the pressure difference, and the aqueous boric acid reaches the reactor core together with coolants to suppress reactivity. If the injection is continued, high temperature aqueous boric acid in the upper portion boils under a reduced pressure, further urges the low temperature aqueous boric acid in the lower portion by the steam pressure and injects the same to the primary system. The aqueous boric acid stream from the pressurized tank flowing by self evaporation of the high temperature aqueous boric acid itself is rectified by a rectifying device to prevent occurrence of vortex flow, and the steam is injected in a state of uniform stream. When the pressure in the pressurized tank is lowered, a bypass valve is opened to introduce the high pressure fluid of primary system into the pressurized tank to keep the pressure to a predetermined value. When the pressure in the pressurized tank is elevated to higher than the pressure of the primary system, a back flow check valve is opened, and high pressure aqueous boric acid is flown out of the pressurized tank to keep the pressure to a predetermined value. (N.H.)

  3. Closure of shallow underground injection wells

    International Nuclear Information System (INIS)

    Veil, J.A.; Grunewald, B.

    1993-01-01

    Shallow injection wells have long been used for disposing liquid wastes. Some of these wells have received hazardous or radioactive wastes. According to US Environmental Protection Agency (EPA) regulations, Class IV wells are those injection wells through which hazardous or radioactive wastes are injected into or above an underground source of drinking water (USDW). These wells must be closed. Generally Class V wells are injection wells through which fluids that do not contain hazardous or radioactive wastes are injected into or above a USDW. Class V wells that are responsible for violations of drinking water regulations or that pose a threat to human health must also be closed. Although EPA regulations require closure of certain types of shallow injection wells, they do not provide specific details on the closure process. This paper describes the regulatory background, DOE requirements, and the steps in a shallow injection well closure process: Identification of wells needing closure; monitoring and disposal of accumulated substances; filling and sealing of wells; and remediation. In addition, the paper describes a major national EPA shallow injection well enforcement initiative, including closure plan guidance for wells used to dispose of wastes from service station operations

  4. Fuel injection assembly for use in turbine engines and method of assembling same

    Science.gov (United States)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  5. Predictors of sharing injection equipment by HIV-seropositive injection drug users.

    Science.gov (United States)

    Latkin, Carl A; Buchanan, Amy S; Metsch, Lisa R; Knight, Kelly; Latka, Mary H; Mizuno, Yuko; Knowlton, Amy R

    2008-12-01

    Among HIV-positive injection drug users (IDUs), we examined baseline predictors of lending needles and syringes and sharing cookers, cotton, and rinse water in the prior 3 months at follow-up. Participants were enrolled in Intervention for Seropositive Injectors-Research and Evaluation, a secondary prevention intervention for sexually active HIV-positive IDUs in 4 US cities during 2001-2005. The analyses involved 357 participants who reported injecting drugs in the prior 6 months at either the 6- or 12-month follow-up visit. About half (49%) reported at least 1 sharing episode. In adjusted analyses, peer norms supporting safer injection practices and having primary HIV medical care visits in the prior 6 months were associated with reporting no sharing of injection equipment. Higher levels of psychological distress were associated with a greater likelihood of reporting drug paraphernalia sharing. These findings suggest that intervention approaches for reducing HIV-seropositive IDUs' transmission of blood-borne infections should include peer-focused interventions to alter norms of drug paraphernalia sharing and promoting primary HIV care and mental health services.

  6. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  7. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio Enrique [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Injection of carbon dioxide (CO2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO2 and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO2-H2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO2) the viscosity of carbon

  8. Field test to assess the effects of drilling fluids on groundwater chemistry collected from Columbia River basalts

    International Nuclear Information System (INIS)

    Graham, D.L.; Bryce, R.W.; Halko, D.J.

    1984-03-01

    The Basalt Waste Isolation Project has used water-based drilling fluids in borehole construction. Fluids begin as a mixture of Columbia River water and bentonite. Other compounds such as organic polymers, soda ash, and chromium lignosulfonate are added to attain desired fluid characteristics. A field test was conducted to assess the effects of these fluids on basaltic groundwater chemistry. A one-month hydrochemistry baseline was established for a single interlow zone in borehole DC-14. Following baseline data collection, approximately 40,000 liters of drilling fluid were injected into the interflow. Samples were collected and analyzed for anions, cations, stable and radioactive isotopes, dissolved gases, and three specific drilling fluid tracers (i.e., tritium, fluorescein, and total organic carbon), for a period of one year following injection. Nearly 8.0 million liters of fluid were removed since initiation of the test. Test results demonstrated that drilling fluid tracers are useful indicators of how well drilling fluids have been removed from a borehole. Constituents such as Na + , SO 4 -2 , and all carbon species showed increases in concentration, whereas species such as Cl - , F - , and Si demonstrated a substantial decrease in concentration as a consequence of drilling fluid injection. Stable isotope ratios of oxygen and hydrogen were insensitive to relatively small amounts ( 14 C was significantly affected by the introduction of ''live'' carbon as a result of drilling fluid injection. 8 refs., 7 figs., 2 tabs

  9. Does flushing the endometrial cavity with follicular fluid after oocyte retrieval affect pregnancy rates in subfertile women undergoing intracytoplasmic sperm injection? A randomized controlled trial.

    Science.gov (United States)

    Hashish, N M; Badway, H S; Abdelmoty, H I; Mowafy, A; Youssef, M A F M

    2014-05-01

    Follicular fluid of mature oocytes is rich in growth factors and cytokines that may exert paracrine and autocrine effects on implantation. The aim of this study was to investigate if flushing the endometrial cavity with follicular fluid after oocyte retrieval improved pregnancy rates in subfertile women undergoing intracytoplasmic sperm injection (ICSI). One hundred subfertile women undergoing ICSI between April 2012 and September 2012 at the centre for reproductive medicine, Cairo University, Egypt were enrolled in this open label, parallel randomized controlled study. Patients were randomized into two groups at the start of treatment using a computer-generated programme and sealed opaque envelopes: the follicular fluid group (n=50) and the control group (n=50). Inclusion criteria were: age 20-38 years; basal follicle-stimulating hormone 1000pg/ml and failure in previous in-vitro fertilization/ICSI cycles; and severe male factor infertility. Clinical pregnancy and implantation rates were higher in the follicular fluid group compared with the control group [354% (17/48) vs 319% (15/47); p=0718] and (18.6% vs 11.3%; p=0.153), respectively. However, the difference was not statistically significant. Flushing the endometrial cavity with follicular fluid after oocyte retrieval neither improved nor adversely affected clinical pregnancy and implantation rates in subfertile women undergoing ICSI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Hydrodynamic analysis of clastic injection and hydraulic fracturing structures in the Jinding Zn-Pb deposit, Yunnan, China

    Directory of Open Access Journals (Sweden)

    Guoxiang Chi

    2012-01-01

    Full Text Available The Jinding Zn-Pb deposit has been generally considered to have formed from circulating basinal fluids in a relatively passive way, with fluid flow being controlled by structures and sedimentary facies, similar to many other sediments-hosted base metal deposits. However, several recent studies have revealed the presence of sand injection structures, intrusive breccias, and hydraulic fractures in the open pit of the Jinding deposit and suggested that the deposit was formed from explosive release of overpressured fluids. This study reports new observations of fluid overpressure-related structures from underground workings (Paomaping and Fengzishan, which show clearer crosscutting relationships than in the open pit. The observed structures include: 1 sand (±rock fragment dikes injecting into fractures in solidified rocks; 2 sand (±rock fragment bodies intruding into unconsolidated or semi-consolidated sediments; 3 disintegrated semi-consolidated sand bodies; and 4 veins and breccias formed from hydraulic fracturing of solidified rocks followed by cementation of hydrothermal minerals. The development of ore minerals (sphalerite in the cement of the various clastic injection and hydraulic fractures indicate that these structures were formed at the same time as mineralization. The development of hydraulic fractures and breccias with random orientation indicates small differential stress during mineralization, which is different from the stress field with strong horizontal shortening prior to mineralization. Fluid flow velocity may have been up to more than 11 m/s based on calculations from the size of the fragments in the clastic dikes. The clastic injection and hydraulic fracturing structures are interpreted to have formed from explosive release of overpressured fluids, which may have been related to either magmatic intrusions at depth or seismic activities that episodically tapped an overpressured fluid reservoir. Because the clastic injection

  11. Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media

    Science.gov (United States)

    Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)

  12. Steroid injection for painful shoulder: Usefulness of ultrasound-guided approach

    International Nuclear Information System (INIS)

    Lee, Min Hee

    2004-01-01

    To evaluate the efficacy of steroid injection into the subacromial bursa and biceps tendon sheath for painful shoulders and the usefulness of ultrasound-guided approach. Seventeen shoulders of twelve patients with shoulder pain and limited motion were included, and these patient were clinically diagnosed as a painful arc syndrome. Under ultrasound guidance, steroid injection was performed into the subacormial bursa (13 cases) and biceps tendon sheath (4 cases). In 7 cases, 1 mL of steroid was used while the remaining six patients received a mixture of 1 mL of steroid and 1 ml of lidocaine. Both shoulders of two patients received 0.5 mL of steroid. The location of needle and injection duration of fluid were continuously monitored, and complications such as leakage of steroid were recorded. Medical records were reviewed for the presence of pain relief and increasing range of motion following the injection. On ultrasonogram, the needle within the subacromial bursa and biceps tendon sheath was seen as a linear echogenic structure, and injected fluid was identified. There was neither the leakage of steroid injection nor any other complications. In 16 (94%) of 17 shoulders, there was decreased intensity of shoulder pain while increased range of motion was noted in three patients following the injection. Steroid injection into the subacormial bursa and biceps tendon sheath is effective in treating shoulder pain and limited range of motion of the shoulder, and ultrasound is useful guiding method.

  13. Experimental survey on percutaneous injection of calcium phosphate cement in preventing the articular surface collapsing secondary to avascular necrosis of femoral head

    International Nuclear Information System (INIS)

    Hou Changlong; Lv Weifu; Zhang Xuebin; Wang Weiyu; Zhang Xingming

    2007-01-01

    Objective: To study the technical way for animal model of ANFH with TAE (transcatheter arterial embolization)and to observe the image and pathologic changes of percutaneous injection with CPC (Calcium Phosphate Cement)in preventing the articular surface collapsing secondary to ANFH (avascular necrosis of femoral head)in pigs and its feasibility and safety. Methods: Branch arteries of the pig's left femoral head were embolized with woolly threads. Twenty pigs were randomly divided into A and B groups, and after about 1 month changes were assessed by imagings. Group A(n=8)was served as control of model contrast group, with only TAE and then surveyed the avascular necrosis features of femoral head by imaging together with pathologic and histologic examinations. Group B (n=12) was designated as percutaneous injection with CPC for interventional treatment group of ANFH at the stage Ficat II. Results: The animal models of ANFH in early stage were established by embolization of feeding arteries. In Group A, bone collapse occurred in 1.5 months after TAE, with imaging features of femoral head necrosis aggravated gradually. In group B, technical success of percutaneous injection with CPC was high and technical criteria included precise injection time, vigorous percutaneous fixing of bone, suitable proportion of CPC powder to liquid. CT scan of femoral head with injection CPC showed that it diffused well. Volume of bone trabecula (TBV)and percentage of bone lacuna (PBL)at unit area under microscopy were also inspected in two groups. TBV and PBL of two groups were compared in different special times and calculated especially for group B (P<0.05). Conclusion: The percutaneous injection of CPC to femoral head is a quite safe and effective palliative therapy for ANFH in early stage. (authors)

  14. Post injection pressures in well treatments

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G

    1967-06-05

    Behavior of wellhead pressure immediately after injection of liquids or slurries in well completion and workover treatments can often indicate the success of the operation. Since the rate of wellhead pressure build-down after injection is related to the permeability of the exposed formation to the treating fluid, interpretation of success or failure of the fluid to communicate with the reservoir is possible. Treatments designed to plug-up or clean-out formation flow channels can both be evaluated. Early appreciation can speed completion and workover operations. An explanation of the phenomena of increasing bottomhole treating pressure during fracture-type treatments, and the change in it throughout the life of a well, will result in better understanding of basic fracturing mechanics. On-the-job observations of decreasing rate of pressure build-down after increments of stage squeeze cementing will help the well-site engineer to vary the volume of increments of slurry and the duration of each stage.

  15. Infusion pressure and pain during microneedle injection into skin of human subjects

    Science.gov (United States)

    Gupta, Jyoti; Park, Sohyun; Bondy, Brian; Felner, Eric I.; Prausnitz, Mark R.

    2011-01-01

    Infusion into skin using hollow microneedles offers an attractive alternative to hypodermic needle injections. However, the fluid mechanics and pain associated with injection into skin using a microneedle have not been studied in detail before. Here, we report on the effect of microneedle insertion depth into skin, partial needle retraction, fluid infusion flow rate and the co-administration of hyaluronidase on infusion pressure during microneedle-based saline infusion, as well as on associated pain in human subjects. Infusion of up to a few hundred microliters of fluid required pressures of a few hundred mmHg, caused little to no pain, and showed weak dependence on infusion parameters. Infusion of larger volumes up to 1 mL required pressures up to a few thousand mmHg, but still usually caused little pain. In general, injection of larger volumes of fluid required larger pressures and application of larger pressures cause more pain, although other experimental parameters also played a significant role. Among the intradermal microneedle groups, microneedle length had little effect; microneedle retraction lowered infusion pressure but increased pain; lower flow rate reduced infusion pressure and kept pain low; and use of hyaluronidase also lowered infusion pressure and kept pain low. We conclude that microneedles offer a simple method to infuse fluid into the skin that can be carried out with little to no pain. PMID:21684001

  16. Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model.

    Directory of Open Access Journals (Sweden)

    Chun-Jung Chen

    Full Text Available The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model.Seventy two Sprague-Dawley rats weighing 200-250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups.NT-3 (Neurotrophin 3, BDNF (Brain derived neurotrophic factor, CNTF (Ciliary neurotrophic factor, and GDNF (Glia cell line derived neurotrophic factor were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology.Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection furthermore improves the nerve

  17. Control procedure for fluid kicks in hydrocarbons wells

    Energy Technology Data Exchange (ETDEWEB)

    Gavignet, A

    1989-02-10

    This invention is a control procedure of the fluids inflows coming from an underground formation during a drill. These inflows happen when a drill reaches a permeable area containing a high pressure fluid. The latter will engulf into the well which may cause a catastrophic eruption, if nothing is done. Therefore is it necessary to know as soon as possible the physical nature of the fluids inflows. The proposed method consists in calculating the fluids characteristic through the measure of the pressures and debits of injection and return of the drilling mud.

  18. Challenges with Tertiary-Level Mechatronic Fluid Power

    DEFF Research Database (Denmark)

    Dransfield, Peter; Conrad, Finn

    1996-01-01

    As authors we take the view that mechatronics, as it relates to fluid power, has three levels which we designate as primary, secondary and tertiary. A brief review of the current status of fluid power, hydraulic and pneumatic, and of electronic control of it is presented and discussed. The focus...... is then on tertiary-level mechatronic fluid power and the challenges to it being applied successfully....

  19. Myositis complicating benzathine penicillin-G injection in a case of rheumatic heart disease

    Directory of Open Access Journals (Sweden)

    Joshua R. Francis

    2016-01-01

    Full Text Available A 7-year old boy developed myositis secondary to intramuscular injection of benzathine penicillin-G in the context of secondary prophylaxis for rheumatic heart disease. Side effects of intramuscular delivery of benzathine penicillin-G are well described and include injection site pain and inflammation, but myositis, as depicted on magnetic resonance imaging in this case, has not previously been described.

  20. Immunological indices of blood and interstitial fluid in estimation of a program of therapy of upper limb secondary edemas

    International Nuclear Information System (INIS)

    Kuz'mina, E.G.; Degtyareva, A.A.; Doroshenko, L.N.; Rogova, N.M.; Zorina, L.N.

    1990-01-01

    The efficacy of therapy of upper limb secondary edemas after 4 programs was compared among 83 patients. The methods were as follows: traditional method (TM) including routine conservative therapy, acupuncture (AP), He-Ne laser OKG-13 and semiconductor laser against a background of traditional therapy. A study was made of the time course of the extent of edema, total protein, IG, G, A and M and circulating immune complexes (CIC) during therapy of such patients. Blood serum and interstitial fluid indices were compared. It was shown that the application of both lasers led to increasing efficacy of TM and AP

  1. Evaluation of the efficiency of injection of polyacrylamide in different reservoir-rock samples; Avaliacao da eficiencia de injecao de poliacrilamida em diferentes amostras de rocha-reservatorio

    Energy Technology Data Exchange (ETDEWEB)

    Marcelino, Cleuton P.; Valentim, Adriano C.M.; Medeiros, Ana Catarina R. de; Girao, Joaquim H.S.; Barcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2004-07-01

    Water soluble polymers have been used extensively in the petroleum recovery, due to their ability in increasing the viscosity of the injection water and to reduce water/oil mobility ratio and the water relative permeability in the reservoir. This reduction acts favorably as a secondary effect, and it reestablishes part of the pressure in the reservoir after the flow of the polymer, causing a correction of the injection profile in the wells through the restructuring of the resident fluids in the porous media. Nevertheless, some parameters influence the improve of this mechanism, such as petrophysics properties, chemical composition of the rock, adsorption, resistance factor and the residual resistance factor. Many paper in the area of polymers applied to the enhanced petroleum recovery indicate a high efficiency in the injection of different partially hydrolysed polyacrylamides, in different concentrations, or even in different injection conditions, as: temperature, flow, among others. In this work it was evaluated the behavior and efficiency of partially hydrolysed polyacrylamide flooding on outcrop cores from Botucatu, Rio Bonito, Clashach and Assu, using core flow tests and computer simulations. (author)

  2. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    Science.gov (United States)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  3. Injection of nano-particles in mitigating flow accelerated corrosion (FAC) damage in the secondary system of nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Lim, Dong Seok; Ku, Hee Kwon; Cho, Jae Seon

    2015-01-01

    NPPs produces electric energy through phase transition of water. According to this, a piping, which is flow path, integrity is essential for safety functions. Erosion, FAC and fittings are corrosion failure mechanism by increasing service life. Especially, there are 10-kilometers of piping in secondary systems. It needs to estimate FAC and apply periodic management. Iron oxides produced by FAC cause power reduction and Loss Of Coolant Accident (LOCA) will be occurred through the continued piping wall thinning. In this study, corrosion rate of pipe materials with carbon steel(SA106.Gr.B) and low-alloy steel (SA335.P22) was evaluated for pipe configuration and dissolved oxygen concentration on 150 °C, pH 9.5∼10.0 and flow velocity of 5m/s. Temperature of 150°C is well known that causes high FAC rate and pH consider a NPPs in-service condition. Further corrosion rate test was performed to develop FAC reduction technology through Pt-nanoparticle injection. In this study, corrosion rate is evaluated by weight depletion method. The results of material impact assessment show that corrosion rate of carbon steel is more higher than that of low-alloy steel because of Cr content. And also, the results of pipe configuration test show that case with 90° elbow had maximum wall thinning than with 180° horizontal pipe. The dissolved oxygen concentration test shows that low oxygen condition, ≤5 ppb, had high corrosion rate compared to normal condition and the corrosion rate decreased 50% at Pt-nanoparticle injection test on maximum corrosion rate condition compared to maximum wall thinning condition without Pt-nanoparticle injection. In this study, samples provided by each test case had analyzed through SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy). Behavior evaluation for oxide film was performed and Electrochemical corrosion potential (ECP) was measured for electrochemistry evaluation. To apply Pt-nanoparticle injection technology on nuclear

  4. CO2 Injectivity in Geological Storages: an Overview of Program and Results of the GeoCarbone-Injectivity Project

    International Nuclear Information System (INIS)

    Lombard, J.M.; Egermann, P.; Azaroual, M.; Pironon, J.; Broseta, D.; Egermann, P.; Munier, G.; Mouronval, G.

    2010-01-01

    The objective of the GeoCarbone-Injectivity project was to develop a methodology to study the complex phenomena involved in the near well bore region during CO 2 injection. This paper presents an overview of the program and results of the project, and some further necessary developments. The proposed methodology is based on experiments and simulations at the core scale, in order to understand (physical modelling and definition of constitutive laws) and quantify (calibration of simulation tools) the mechanisms involved in injectivity variations: fluid/rock interactions, transport mechanisms, geomechanical effects. These mechanisms and the associated parameters have then to be integrated in the models at the well bore scale. The methodology has been applied for the study of a potential injection of CO 2 in the Dogger geological formation of the Paris Basin, in collaboration with the other ANR GeoCarbone projects. (authors)

  5. Modeling earthquake magnitudes from injection-induced seismicity on rough faults

    Science.gov (United States)

    Maurer, J.; Dunham, E. M.; Segall, P.

    2017-12-01

    It is an open question whether perturbations to the in-situ stress field due to fluid injection affect the magnitudes of induced earthquakes. It has been suggested that characteristics such as the total injected fluid volume control the size of induced events (e.g., Baisch et al., 2010; Shapiro et al., 2011). On the other hand, Van der Elst et al. (2016) argue that the size distribution of induced earthquakes follows Gutenberg-Richter, the same as tectonic events. Numerical simulations support the idea that ruptures nucleating inside regions with high shear-to-effective normal stress ratio may not propagate into regions with lower stress (Dieterich et al., 2015; Schmitt et al., 2015), however, these calculations are done on geometrically smooth faults. Fang & Dunham (2013) show that rupture length on geometrically rough faults is variable, but strongly dependent on background shear/effective normal stress. In this study, we use a 2-D elasto-dynamic rupture simulator that includes rough fault geometry and off-fault plasticity (Dunham et al., 2011) to simulate earthquake ruptures under realistic conditions. We consider aggregate results for faults with and without stress perturbations due to fluid injection. We model a uniform far-field background stress (with local perturbations around the fault due to geometry), superimpose a poroelastic stress field in the medium due to injection, and compute the effective stress on the fault as inputs to the rupture simulator. Preliminary results indicate that even minor stress perturbations on the fault due to injection can have a significant impact on the resulting distribution of rupture lengths, but individual results are highly dependent on the details of the local stress perturbations on the fault due to geometric roughness.

  6. Microtomography and pore-scale modeling of two-phase Fluid Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.

    2010-10-19

    Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.

  7. Recovery enhancement at the later stage of supercritical condensate gas reservoir development via CO2 injection: A case study on Lian 4 fault block in the Fushan sag, Beibuwan Basin

    Directory of Open Access Journals (Sweden)

    Wenyan Feng

    2016-11-01

    Full Text Available Lian 4 fault block is located in the northwest of Fushan sag, Beibuwan Basin. It is a high-saturated condensate gas reservoir with rich condensate oil held by three faults. In order to seek an enhanced condensate oil recovery technology that is suitable for this condensate gas reservoir at its later development stage, it is necessary to analyze its reserve producing degree and remaining development potential after depletion production, depending on the supercritical fluid phase behavior and depletion production performance characteristics. The supercritical fluid theories and multiple reservoir engineering dynamic analysis methods were adopted comprehensively, such as dynamic reserves, production decline, liquid-carrying capacity of a production well, and remaining development potential analysis. It is shown that, at its early development stage, the condensate in Lian 4 fault block presented the features of supercritical fluid, and the reservoir pressure was lower than the dew point pressure, so retrograde condensate loss was significant. Owing to the retrograde condensate effect and the fast release of elastic energy, the reserve producing degree of depletion production is low in Lian 4 fault block, and 80% of condensate oil still remains in the reservoir. So, the remaining development potential is great. The supercritical condensate in Lian 4 fault block is of high density. Based on the optimization design by numerical simulation of compositional model, it is proposed to inject CO2 at the top and build up pressure by alternating production and injection, so that the secondary gas cap is formed while the gravity-stable miscible displacement is realized. In this way, the recovery factor of condensate reservoirs can be improved by means of the secondary development technology.

  8. EDF plan for a dispersant injection trial

    International Nuclear Information System (INIS)

    Mercier, Stephane; Corredera, Geraldine; Alves-Vieira, Maria; Mansour, Carine; You, Dominique

    2012-09-01

    In its strategy for SG fouling control, EDF is considering the use of dispersant as a preventive remedy. A trial on Golfech 2 started in May 2012. The dispersant selected for the trial is Polyacrylic Acid (PAA). The main goals of the test are to check and quantify the gain on iron transport to blowdown, to evaluate the possible effects on secondary side chemistry and the operational costs of the injection - reactant, ion exchange resins and filters. The results of the test, if satisfying, will be used to set EDF strategy for dispersant long term use on its fleet. So, one concern about the trial is to make sure that the conclusions of this test will be applicable to a wide range of EDF plants. For that purpose, several criteria have been examined for the choice of the candidate plant such as fouling level, secondary circuit materials (presence or absence of copper alloys,...), SG tube material, thermal power margin, secondary side chemistry (amine used and pH applied). Before starting the trial, EDF had to take into account the international feedback and to adapt it to its specific requirements: the neutralization amine was switched from ETA to morpholine, additional work had been completed to validate the innocuousness of PAA injection for EDF plants... This work especially includes laboratory testing of secondary side corrosion cracking in the presence of PAA and water chemistries used in EdF plants. Moreover, investigation on the thermal stability of PAA and degradation products was completed and further evaluation of environmental impact was performed. A dedicated skid for the injection of PAA was implemented in Golfech Chemicals injection room. The installation and the process were notably designed to take into account the high viscosity of the commercial product, and the need to proceed to a good rinsing of the pipes without increasing the discharged effluents. The first available data from Golfech 2 trial are also provided and discussed. (authors)

  9. Factors affecting the development of sprays produced by multihole injectors for direct-injection engine applications

    OpenAIRE

    Van Romunde, R. Z.

    2011-01-01

    The spray form development from a state of the art multi-hole injector for gasoline direct injection internal combustion engines is examined to attempt to determine the thermo-fluid dynamics affecting the spray development. The current state of knowledge regarding spray break-up and the interactivity of the factors on spray form are detailed. The spray under investigation was injected into purposely designed quiescent chambers to decouple the effects of the fluid mechanics on s...

  10. Therapeutic effectiveness and safety parathyroid adenoma ablation with percutaneous ethanol injection under sonographic guidance in patients with chronic renal failure and secondary hyperparathyroidism refractory to medical treatment

    International Nuclear Information System (INIS)

    De Nubila, Eduardo; Vega, Jose; Garcia Luz; Murillo, Marlyn; Mercado, Jaime

    2010-01-01

    Secondary hyperparathyroidism unresponsive to medical treatment is a common complication in patients with chronic renal failure and prolonged dialysis therapy, which requires surgery of the parathyroid glands, with the risks and costs of surgery. Objective: To evaluate the therapeutic effectiveness and safety of ablation of parathyroid adenomas by percutaneous ethanol injection under ultrasound guidance. Method: After approval by the institutional medical ethics committee, informed written consent was obtained in 15 patients who met the inclusion criteria. Sonographically guided ethanol was injected consecutively into adenomas, with an interval of time less than six months. Results: Size, Doppler vascularity of adenomas, and the levels of parathyroid hormone, calcium and phosphorus were measured before and after ablation as criteria for treatment response in 15 patients. Of all patients, six (40%) had no therapeutic response. Therapeutic response was observed in nine patients (60%). In the latter group, five patients (33.3%) had successful response and symptomatic improvement, in two patients (13.3%), therapeutic response was suboptimal, and in two patients (13.3%), the response was unsatisfactory. The procedure was safe. Local pain, transient dysphonia and cough were considered minor complications and were the most common, with resolution in all cases. There were no major complications. Conclusion: Ablation of parathyroid adenomas with percutaneous ethanol injection and ultrasound guidance, in uremic patients with secondary hyperparathyroidism unresponsive to medical treatment is an effective and safe therapy. Studies involving more patients and longer follow up are needed in order to stablish more conclusive results

  11. Injection related anxiety in insulin-treated diabetes.

    Science.gov (United States)

    Zambanini, A; Newson, R B; Maisey, M; Feher, M D

    1999-12-01

    The presence of injection related anxiety and phobia may influence compliance, glycaemic control and quality of life in patients with insulin-treated diabetes. Unselected consecutive, insulin-treated patients attending a diabetes clinic for follow-up, completed a standardised questionnaire providing an injection anxiety score (IAS) and general anxiety score (GAS). A total of 115 insulin-treated (80 Type 1 and 35 Type 2) diabetic patients completed the questionnaire. Injections had been avoided secondary to anxiety in 14% of cases and 42% expressed concern at having to inject more frequently. An IAS > or = 3 was seen in 28% of patients and of these, 66% injected insulin one to two times/day, 45% had avoided injections, and 70% would be bothered by more frequent injections. A significant correlation between IAS and GAS was seen (Kendall's tau-a 0.30, 95% CI 0.19-0.41, P < 0.001). GAS was significantly associated with both previous injection avoidance and expressed concern at increased injection frequency. No significant correlation was seen with HbA1c and injection or general anxiety scores. Symptoms relating to insulin injection anxiety and phobia have a high prevalence in an unselected group of diabetic patients requiring insulin injections and are associated with higher levels of general anxiety.

  12. Oral and injectable contraceptive use and HIV acquisition risk among women in four African countries: a secondary analysis of data from a microbicide trial.

    Science.gov (United States)

    Balkus, Jennifer E; Brown, Elizabeth R; Hillier, Sharon L; Coletti, Anne; Ramjee, Gita; Mgodi, Nyaradzo; Makanani, Bonus; Reid, Cheri; Martinson, Francis; Soto-Torres, Lydia; Abdool Karim, Salim S; Chirenje, Zvavahera M

    2016-01-01

    To assess the effect of oral and injectable contraceptive use compared to nonhormonal contraceptive use on HIV acquisition among Southern African women enrolled in a microbicide trial. This is a prospective cohort study using data from women enrolled in HIV Prevention Trials Network protocol 035. At each quarterly visit, participants were interviewed about self-reported contraceptive use and sexual behaviors and underwent HIV testing. Cox proportional hazards regression was used to assess the effect of injectable and oral hormonal contraceptive use on HIV acquisition. The analysis included 2830 participants, of whom 106 became HIV infected (4.07 per 100 person-years). At baseline, 1546 (51%) participants reported using injectable contraceptives and 595 (21%) reported using oral contraceptives. HIV incidence among injectable, oral and nonhormonal contraceptive method users was 4.72, 2.68 and 3.83 per 100 person-years, respectively. Injectable contraceptive use was associated with a nonstatistically significant increased risk of HIV acquisition [adjusted hazard ratio (aHR)=1.17; 95% confidence interval (CI) 0.70, 1.96], while oral contraceptive use was associated with a nonstatistically significant decreased risk of HIV acquisition (aHR=0.76; 95% CI 0.37,1.55). In this secondary analysis of randomized trial data, a marginal, but nonstatistically significant, increase in HIV risk among women using injectable hormonal contraceptives was observed. No increased HIV risk was observed among women using oral contraceptives. Our findings support the World Health Organization's recommendation that women at high risk for acquiring HIV, including those using progestogen-only injectable contraception, should be strongly advised to always use condoms and other HIV prevention measures. Among Southern African women participating in an HIV prevention trial, women using injectable hormonal contraceptives had a modest increased risk of HIV acquisition; however, this association was

  13. Level set method for computational multi-fluid dynamics: A review on ...

    Indian Academy of Sciences (India)

    to multi fluid/phase as well as to various types of two-phase flow. In the second ...... simulated bubble generation in a quiescent and co-flowing fluid, for various liquid-to-gas mean injection velocity at ... in modelling of droplet impact behaviour.

  14. CFD Analysis of the Safety Injection Tank and Fluidic Device

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadi, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine [KUSTAR, Abu Dhabi (United Arab Emirates)

    2016-05-15

    One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling to predict the performance during accident scenarios more accurately. The safety injection tank with fluidic device was analyzed thoroughly using CFD. The preliminary calculation used 60,000 meshes for the initial test calculation. The results fit the experimental results surprisingly despite its coarse grid. Nonetheless, the mesh resolution was increased to capture the vortex in the fluidic device precisely. Once a detailed CFD computation is finished, a small-scale experiment will be conducted for the given conditions. Using the experimental results and the CFD model, physical models can be improved to fit the results more accurately.

  15. Spontaneous or secondary to intravitreal injections of anti-angiogenic agents retinal pigment epithelial tears in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Pia E. Leon

    2014-08-01

    Full Text Available AIM:To evaluate the visual function evolution of retinal pigment epithelial (RPE tears in patients with age-related macular degeneration (AMD according to type of occurrence [spontaneous or secondary to anti-vascular endothelial growth factor (anti-VEGF injection] and the topographic location of the tear after a two-year follow-up period.METHODS:A total of 15 eyes of 14 patients with RPE tears in exudative AMD were analyzed retrospectively at the University Eye Clinic of Trieste. Inclusion criteria were:patient age of 50 or older with AMD and RPE tears both spontaneous occurring or post anti-VEGF treatment. Screening included:careful medical history, complete ophthalmological examination, fluorescein angiography (FA, indocyanine green angiography (ICG, autofluorescence and infrared imaging and optical coherence tomography (OCT. Patients were evaluated every month for visual acuity (VA, fundus examination and OCT. Other data reported were:presence of PED, number of injections before the tear, location of the lesion.RESULTS: Mean follow-up was 24wk (SD±4wk. A total of 15 eyes were studied for RPE tear. In 6 cases (40%, the RPE tears occurred within two years of anti-VEGF injections the others occurred spontaneously. In 13 cases (86.6%, the RPE tear was associated with pigment epithelial detachment (PED. In 7 cases (46.6%, the RPE tear occurred in the central area of the retina and involved the fovea. Two lesions were found in the parafoveal region, six in the extra-macular area. In all cases visual acuity decreased at the end of the follow-up period (P<0.01 independently of the type or the topographical location of the lesion.CONCLUSION:RPE tear occurs in exudative AMD as a spontaneous complication or in relation to anti-VEGF injections. Visual acuity decreased significantly and gradually in the follow-up period in all cases. No correlation was found between visual loss and the type of onset or the topographic location of the tears.

  16. Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Adamson, David; Oostrom, Martinus; Zhong, Lirong; Mackley, Rob D.; Fritz, Brad G.; Horner, Jacob A.; Johnson, Timothy C.; Thomle, Jonathan N.; Newcomer, Darrell R.; Johnson, Christian D.; Rysz, Michal; Wietsma, Thomas W.; Newell, Charles J.

    2015-03-01

    Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection of a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.

  17. Combined Transpupillary Thermotherapy with Subtenon Triamcinolone Injection in Treatment of Choroidal Neovascularization Secondary to Exudative Age Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    M Naseripour

    2008-04-01

    Full Text Available ABSTRACT: Introduction & Objective: In spite of several treatment methods which are being used to treat exudative age-related macular degeneration (ARMD like laser therapy, Intravitreal steroids injections or anti-vascular endothelial growth factors (VEGF, no method has been yet presented as the best treatment way. This study aimed to assess the effectiveness of combined transpupillary thermotherapy (TTT with subtenon triamcinolone acetonide (TA injection in treatment of choroidal neovascularization (CNV in patients with ARMD. Materials & Methods: In this clinical trial, 63 eyes of 57 patients with CNV secondary to exudative age-related macular degeneration (ARMD were studied. All CNVs (including 20 predominantly classic and 43 predominantly occult lesions were treated with diode laser (810nm. In 20 eyes with predominantly classic CNVs, 20 mg and 40 mg subtenon triamcinolone was injected in 12 and 8 eyes respectively. The patients were followed for a mean of 9.1 months (ranging from 5.5 to 16 months. The average number of treatment sessions was 1.25. In 43 eyes with occult CNV, 20 mg and 40 mg subtenon triamcinolone was injected in 31 eyes and in 12 eyes respectively. Mean follow up time was 12 months (4.5 to 23 months. Mean treatment times was 1.17. A variable spot size of 0.8, 1.2, 2 and 3 mm was used depending on the size of CNV and treatment was given in one area for 1 minute. Thermotherapy was adminstered through a contact lens at a power range between 120-560 mw. At the end of treatment, each patient randomly received 20 mg or 40 mg subtenon triamcinolone acetonide injection in superotemporal quadrant. Outcome was assessed with clinical and angiographic examination.collected data were analyzed by one-sample and paired –sample T test, using SPSS software. Results: At the end of the study in first group, visual acuity remained stable (0 to ± one line in 14 out of 20 (70 % of eyes, improved (> one line in 2 of 20 (10 % eyes and showed a

  18. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by means of Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F. Y.

    2003-01-01

    and control techniques. The feasibility of influencing the dynamic fluid film coefficients (stiffness and damping) by means of a controllable fluid injection into opposed bearing recesses is investigated. By controlling the pressure and flow injection using servo control systems, it is possible to obtain...

  19. Diagnostic Accuracy of Secondary Ultrasound Exam in Blunt Abdominal Trauma

    International Nuclear Information System (INIS)

    Rajabzadeh Kanafi, Alireza; Giti, Masoumeh; Gharavi, Mohammad Hossein; Alizadeh, Ahmad; Pourghorban, Ramin; Shekarchi, Babak

    2014-01-01

    In stable patients with blunt abdominal trauma, accurate diagnosis of visceral injuries is crucial. To determine whether repeating ultrasound exam will increase the sensitivity of focused abdominal sonography for trauma (FAST) through revealing additional free intraperitoneal fluid in patients with blunt abdominal trauma. We performed a prospective observational study by performing primary and secondary ultrasound exams in blunt abdominal trauma patients. All ultrasound exams were performed by four radiology residents who had the experience of more than 400 FAST exams. Five routine intraperitoneal spaces as well as the interloop space were examined by ultrasound in order to find free fluid. All patients who expired or were transferred to the operating room before the second exam were excluded from the study. All positive ultrasound results were compared with intra-operative and computed tomography (CT) findings and/or the clinical status of the patients. Primary ultrasound was performed in 372 patients; 61 of them did not undergo secondary ultrasound exam; thus, were excluded from the study.Three hundred eleven patients underwent both primary and secondary ultrasound exams. One hundred and two of all patients were evaluated by contrast enhanced CT scan and 31 underwent laparotomy. The sensitivity of ultrasound exam in detecting intraperitoneal fluid significantly increased from 70.7% for the primary exam to 92.7% for the secondary exam. Examining the interloop space significantly improved the sensitivity of ultrasonography in both primary (from 36.6% to 70.7%) and secondary (from 65.9% to 92.7%) exams. Performing a secondary ultrasound exam in stable blunt abdominal trauma patients and adding interloop space scan to the routine FAST exam significantly increases the sensitivity of ultrasound in detecting intraperitoneal free fluid

  20. Increased cartilage volume after injection of hyaluronic acid in osteoarthritis knee patients who underwent high tibial osteotomy.

    Science.gov (United States)

    Chareancholvanich, Keerati; Pornrattanamaneewong, Chaturong; Narkbunnam, Rapeepat

    2014-06-01

    High tibial osteotomy (HTO) is a surgical procedure used to correct abnormal mechanical loading of the knee joint; additionally, intra-articular hyaluronic acid injections have been shown to restore the viscoelastic properties of synovial fluid and balance abnormal biochemical processes. It was hypothesized that combining HTO with intra-articular hyaluronic acid injections would have benefit to improve the cartilage volume of knee joints. Forty patients with medial compartment knee osteoarthritis (OA) were randomly placed into 1 of 2 groups. The study group (n = 20) received 2 cycles (at 6-month intervals) of 5 weekly intra-articular hyaluronic acid injections after HTO operation. The control group (n = 20) did not receive any intra-articular injections after HTO surgery. Cartilage volume (primary outcome) was assessed by magnetic resonance imaging (MRI) pre-operatively and 1 year post-operatively. Treatment efficacy (secondary outcomes) was evaluated with the Western Ontario and McMaster Universities OA Index (WOMAC) and by the comparison of the total rescue medication (paracetamol/diclofenac) used (weeks 6, 12, 24, 48). MRI studies showed a significant increase in total cartilage volume (p = 0.033), lateral femoral cartilage volume (p = 0.044) and lateral tibial cartilage volume (p = 0.027) in the study group. Cartilage volume loss was detected at the lateral tibial plateau in the control group. There were significant improvements after surgery in both groups for all subscales of WOMAC scores (p hyaluronic acid injections may be beneficial for increasing total cartilage volume and preventing the loss of lateral tibiofemoral joint cartilage after HTO. Therapeutic study, Level I.

  1. [Cutaneous atrophy and hypopigmentation secondary to intra-articular corticosteroid injection].

    Science.gov (United States)

    Loarte Pasquel, E P; Cabal García, A A

    2014-04-01

    Epicondylitis is the most common disease of the elbow. It is a tendinitis caused, in most cases, by repetitive motion of the forearm extensor muscles, and belongs to the group of occupational diseases that are related to work activity or sport. Intra-articular injections of glucocorticoids are often used by dermatologists, rheumatologists, orthopaedic surgeons, and primary care due to their ease of administration. However, this procedure has potential side effects. There are a limited number of case reports describing atrophy and hypopigmentation of the skin as a side effect. The general indications for glucocorticoid injections are monofocal and multifocal inflammatory disease, multifocal articular or soft tissue disease. It is more often used in more severe monofocal or multifocal inflammation, failure of drug treatment and/or rehabilitatory when other treatments are contraindicated. Copyright © 2012 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  2. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  3. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    Science.gov (United States)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  4. Secondary fuel delivery system

    Science.gov (United States)

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  5. Method for the secondary recovery of petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Roth, H H

    1966-10-11

    A method for the secondary recovery of petroleum from subterranean formations consists of flooding these formations with aqueous fluids. These aqueous fluids contain one or more saline solutes which are either present before the flooding or which are dissolved from the formation during flooding. These fluids contain, as a thickening agent, a substantially linear, high molecular weight, water-soluble alkenylaromatic polymer which has sulfonic acid or sulfonate groups on the aromatic nuclei. This saline solute and polymer are mutually compatible. (5 claims)

  6. Cerebrospinal fluid abnormalities in HIV-negative patients with secondary and early latent syphilis and serum VDRL ≥ 1:32

    Directory of Open Access Journals (Sweden)

    Maciej Pastuszczak

    2013-01-01

    Full Text Available Background : Syphilis is caused by a spirochete Treponema pallidum. Invasion of the central nervous system (CNS by T. pallidum may appear early during the course of disease. The diagnosis of confirmed neurosyphilis is based on the reactive Venereal Disease Research Laboratory (VDRL in cerebrospinal fluid (CSF. Recent studies indicated that serum RPR ≥ 1:32 are associated with higher risk of reactivity of CSF VDRL. Aims : The main aim of the current study was to assess cerebrospinal fluid serological and biochemical abnormalities in HIV negative subjects with secondary and early latent syphilis and serum VDRL ≥ 1:32. Materials and Methods : Clinical and laboratory data of 33 HIV-negative patients with secondary and early latent syphilis, with the serum VDRL titer ≥ 1:32, who underwent a lumbar puncture and were treated in Department of Dermatology at Jagiellonian University School of Medicine in Cracow, were collected. Results : Clinical examination revealed no symptoms of CNS involvement in all patients. 18% ( n = 6 of patients met the criteria of confirmed neurosyphilis (reactive CSF-VDRL. In 14 (42% patients CSF WBC count ≥ 5/ul was found, and in 13 (39% subjects there was elevated CSF protein concentration (≥ 45 mg/dL. 10 patients had CSF WBC count ≥ 5/ul and/or elevated CSF protein concentration (≥ 45 mg/dL but CSF-VDRL was not reactive. Conclusions : Indications for CSF examination in HIV-negative patients with early syphilis are the subject of discussion. It seems that all patients with syphilis and with CSF abnormalities (reactive serological tests, elevated CSF WBC count, elevated protein concentration should be treated according to protocols for neurosyphilis. But there is a need for identification of biomarkes in order to identify a group of patients with syphilis, in whom risk of such abnormalities is high.

  7. Epinephrine auto-injection radically increases risk for clostridial infection and necrotizing fasciitis

    Directory of Open Access Journals (Sweden)

    Kenneth Larson

    2017-04-01

    Full Text Available Clostridial perfringens is a bacteria commonly found on skin flora. Due to the optimal growth environment intramuscular epinephrine injections predispose patients to the rapid development of clostridial myonecrosis. There have been only four cases, including this one, reported in the last 60 years of pediatric Clostridium perfringens infections post-epinephrine injection. We detail the successful management of a 16 year old, immunocompetent female who developed gas gangrene and necrotizing fasciitis on her thigh secondary to clostridial infection after utilization of an Epinephrine Auto-Injector and review the pediatric literature of patients with Clostridial perfringens secondary to epinephrine injection. We define common clinical signs and symptoms of clostridial infection from the review of the literature. The relevance of our findings is to raise awareness among emergency physicians when patients present following an injection in order to reduce diagnostic delay that could result in amputation or death.

  8. Data processing for the fluid flow tomography method; Ryutai ryudo den`iho no data kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, K; Mizunaga, H; Tanaka, T [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Hashimoto, K [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    1997-05-27

    An automatic measurement system by means of conductive potential and self-potential methods (fluid flow tomography method) has been developed to measure the change of geothermal steam fluid during production and injection. For the fluid flow tomography method, the four-electrode configuration of the conductive potential method is adopted using the casing pipe of well as a current source. A lot of potential receiving electrodes are connected to the earth, preliminarily. The surface potential profile is measured, which is formed during the injection and production of the fluid through the well. Artificial and spontaneous potential profiles were continuously measured using this system during the hydraulic crushing tests at the test field of hot dry rock power generation at Ogachi-machi, Akita Prefecture. As a result of inversion analysis of self-potential data using a four-layer structural model of specific resistance, it was observed that the fluid injected at the depth of 711 m in the borehole permeated into the depth between 700 and 770 m in the south-eastern part of the well, and that the fractures propagated into the deeper part, gradually with the progress of hydraulic crushing test. 3 figs.

  9. Thermal effects on fluid flow and hydraulic fracturing from wellbores and cavities in low-permeability formations

    Energy Technology Data Exchange (ETDEWEB)

    Yarlong Wang [Petro-Geotech Inc., Calgary, AB (Canada); Papamichos, Euripides [IKU Petroleum Research, Trondheim (Norway)

    1999-07-01

    The coupled heat-fluid-stress problem of circular wellbore or spherical cavity subjected to a constant temperature change and a constant fluid flow rate is considered. Transient analytical solutions for temperature, pore pressure and stress are developed by coupling conductive heat transfer with Darcy fluid flow in a poroelastic medium. They are applicable to lower permeability porous media suitable for liquid-waste disposal and also simulating reservoir for enhanced oil recovery, where conduction dominates the heat transfer process. A full range of solutions is presented showing separately the effects of temperature and fluid flow on pore pressure and stress development. It is shown that injection of warm fluid can be used to restrict fracture development around wellbores and cavities and generally to optimise a fluid injection operation. Both the limitations of the solutions and the convective flow effect are addressed. (Author)

  10. Fluid-Evaporation Records Preserved in Meridiani Rocks

    Science.gov (United States)

    Rao, M. N.; Nyquist, Laurence E.; Sutton, S. R.

    2009-01-01

    We have shown earlier that the high SO3/Cl ratios found in secondary mineral assemblages in shergottite GRIM glasses (Gas-Rich Impact-Melt) likely resulted from interactions of regolith materials with sulfate-rich (and Cl-poor) solutions. The low SO3/Cl ratios determined in secondary salts in nakhalite fracture-fillings presumably formed by rock interactions with chloride-rich (and SO4-poor) solutions near Mars surface. The SO3 and Cl abundances determined by APXS in abraded rocks (RAT) from Endurance, Fram and Eagle craters indicate that these salt assemblages likely formed by evaporative concentration of brine fluids at Meridiani. The SO3/Cl ratios in the abraded rocks are examined here, instead of their absolute abundances, because the abundance ratios might provide better guide-lines for tracking the evolution of evaporating fluids at Meridiani. The SO3/Cl ratios in these samples, in turn, might provide clues for the mobile element ratios of the altering fluids that infiltrated into the Meridiani rocks.

  11. Surveying and analyzing injection responses for patterns with horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Fedenczuk, L.; Hoffman, K.

    1998-12-31

    A novel method for visualizing injection responses in patterns that include horizontal and/or vertical wells is described. Understanding fluid communication between the horizontal well and the surrounding injectors is essential to estimating the effectiveness of the waterflood. Armed with the understanding of responses, injection patterns can be optimized, production rates can be increased and more efficient oil recovery can be achieved. In this study the time lags of correlations and a new parameter, the waterflood response type is introduced. The response type is based on the oil and total fluid responses. In addition spider diagrams are introduced to help visualizing the correlations, time lags and response types. Integration of the results with geology, petrophysics and completion techniques can help to find the cause and effect rules in waterflood fields. 6 refs., 10 figs.

  12. In situ upgrading of heavy oil under steam injection with tetralin and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, A.A. [Texas A and M Univ., College Station, TX (United States); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    Steam injection has become the most successful thermal recovery method for heavy oil production. Heavy oil refineries use upgrading processes to improve oil quality. They generally involve the use of catalysts that are used to remove heavy metals, sulfur and nitrogen, or used in hydro-treating and hydro-cracking. In-situ upgrading is thought to have advantages over conventional surface upgrading technology. Experiments were performed to verify the feasibility of in-situ upgrading of heavy crude oil. A hydrogen donor called tetralin was used along with an organometallic catalyst, at steam injection temperatures and pressures normally encountered in the field. Crude oil from the Jobo Oil Field, located in Venezuela was used. The paper described the experimental methodology with reference to the injection cell; fluid injection system; fluid production system; data measurement and recording system; and experimental procedure. It also discussed the extent of upgrading by comparing the properties of the original and produced oil. Oil properties that were measured and compared included hydrogen-to-carbon ratio; heavy metal content; viscosity; and API gravity. The paper also presented a comparison of oil recovery and fluid production between all cases. It was concluded that in the field, the reaction time was significantly longer than encountered in the experiments and may lead to further upgrading, assuming the catalyst could be dispersed in the formation. 10 refs., 1 tab., 9 figs.

  13. Policing behaviors, safe injection self-efficacy, and intervening on injection risks: Moderated mediation results from a randomized trial.

    Science.gov (United States)

    Pitpitan, Eileen V; Patterson, Thomas L; Abramovitz, Daniela; Vera, Alicia; Martinez, Gustavo; Staines, Hugo; Strathdee, Steffanie A

    2016-01-01

    We aim to use conditional or moderated mediation to simultaneously test how and for whom an injection risk intervention was efficacious at reducing receptive needle sharing among female sex workers who inject drugs (FSWs-IDUs) in Mexico. Secondary analysis of data from a randomized trial. A total of 300 FSW-IDUs participated in Mujer Mas Segura in Ciudad Juarez, Mexico, and were randomized to an interactive injection risk intervention or a didactic injection risk intervention. We measured safe injection self-efficacy as the hypothesized mediator and policing behaviors (being arrested and syringe confiscation) as hypothesized moderators. In total, 213 women provided complete data for the current analyses. Conditional (moderated) mediation showed that the intervention affected receptive needle sharing through safe injection self-efficacy among women who experienced syringe confiscation. On average, police syringe confiscation was associated with lower safe injection self-efficacy (p = .04). Among those who experienced syringe confiscation, those who received the interactive (vs. didactic) intervention reported higher self-efficacy, which in turn predicted lower receptive needle sharing (p = .04). Whereas syringe confiscation by the police negatively affected safe injection self-efficacy and ultimately injection risk behavior, our interactive intervention helped to "buffer" this negative impact of police behavior on risky injection practices. The theory-based, active skills building elements included in the interactive condition, which were absent from the didactic condition, helped participants' self-efficacy for safer injection in the face of syringe confiscation. (c) 2015 APA, all rights reserved).

  14. Is ultrasound-guided injection more effective in chronic subacromial bursitis?

    Science.gov (United States)

    Hsieh, Lin-Fen; Hsu, Wei-Chun; Lin, Yi-Jia; Wu, Shih-Hui; Chang, Kae-Chwen; Chang, Hsiao-Lan

    2013-12-01

    Although ultrasound (US)-guided subacromial injection has shown increased accuracy in needle placement, whether US-guided injection produces better clinical outcome is still controversial. Therefore, this study aimed to compare the efficacy of subacromial corticosteroid injection under US guidance with palpation-guided subacromial injection in patients with chronic subacromial bursitis. Patients with chronic subacromial bursitis were randomized to a US-guided injection group and a palpation-guided injection group. The subjects in each group were injected with a mixture of 0.5 mL dexamethasone suspension and 3 mL lidocaine into the subacromial bursa. The primary outcome measures were the visual analog scale for pain and active and passive ranges of motion of the affected shoulder. Secondary outcome measures were the Shoulder Pain and Disability Index, the Shoulder Disability Questionnaire, and the 36-item Short-Form Health Survey (SF-36). The primary outcome measures were evaluated before, immediately, 1 wk, and 1 month after the injection; the secondary outcome measures were evaluated before, 1 wk, and 1 month after the injection. Of the 145 subjects screened, 46 in each group completed the study. Significantly greater improvement in passive shoulder abduction and in physical functioning and vitality scores on the SF-36 were observed in the US-guided group. The pre- and postinjection within-group comparison revealed significant improvement in the visual analog scale for pain and range of motion, as well as in the Shoulder Pain and Disability Index, Shoulder Disability Questionnaire, and SF-36 scores, in both groups. The US-guided subacromial injection technique produced significantly greater improvements in passive shoulder abduction and in some items of the SF-36. US is effective in guiding the needle into the subacromial bursa in patients with chronic subacromial bursitis.

  15. A comprehensive study on the effect of cavitation on injection velocity in diesel nozzles

    International Nuclear Information System (INIS)

    Javier López, J.; Salvador, F.J.; Garza, Oscar A. de la; Arrègle, Jean

    2012-01-01

    Highlights: ► Cavitation has an indirect effect on the effective injection velocity. ► Cavitation in the injector hole reduces locally the fluid viscosity. ► A lower viscosity leads to a more turbulent velocity profile. ► The more turbulent velocity profile justifies the increase in effective velocity. - Abstract: Results when testing cavitating injection nozzles show a strong reduction in mass flow rate when cavitation appears (the flow is choked), while the momentum flux is reduced to a lesser extent, resulting in an increase in effective injection velocity. So as to better understand the origin of this increase in effective injection velocity, the basic equations for mass and momentum conservation were applied to an injection nozzle in simplified conditions. The study demonstrated that the increase in injection velocity provoked by cavitation is not a direct effect of the latter, but an indirect effect. In fact, the vapor appearance inside the injection hole produces a decrease in the viscosity of the fluid near the wall. This leads to lower momentum flux losses and to a change in the velocity profile, transforming it into a more “top hat” profile type. This change in the profile shape allows explaining why the momentum flux reduction is not so important compared to that of the mass flow rate, thus explaining why the effective injection velocity increases.

  16. CO2 injection into fractured peridotites: a reactive percolation experiment

    Science.gov (United States)

    Escario, S.; Godard, M.; Gouze, P.; Leprovost, R.; Luquot, L.; Garcia-Rios, M.

    2017-12-01

    Mantle peridotites have the potential to trap CO2 as carbonates. This process observed in ophiolites and in oceanic environments provides a long term and safe storage for CO2. It occurs as a part of a complex suite of fluid-rock reactions involving silicate dissolution and precipitation of hydrous phases, carbonates and minor phases that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks. The efficiency and lastingness of the process require the renewal of fluids at the mineral-fluid interface. Fractures are dominant flow paths in exhumed mantle sections. This study aims at better understanding the effect of CO2-enriched saline fluids on hydrodynamic and chemical processes through fractured peridotites. Experiments were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. It allows monitoring the permeability changes during experiments. Effluents are recurrently sampled for analysing cation concentration, pH and alkalinity. Reacted rock samples were characterized by high resolution X-ray microtomography (ESRF ID19, Grenoble, France) and SEM. Experiments consisted in injecting CO2-enriched brines (NaCl 0.5 M) at a rate of 6 mL.h-1 into artificially fractured cores (9 mm diameter × 20 mm length) of Oman harzburgites at T=170°C and Ptotal = 25 MPa for up to 2 weeks. Fractures are of few µm apertures with rough walls. Three sets of experiments were performed at increasing value of [CO2] (0, 0.1 and 1 mol/kg). All experiments showed a decrease in permeability followed by steady state regime that can be caused by a decrease in the roughness of fracture walls (dissolution dominated process), thus favouring fracture closing, or by the precipitation of secondary phases. Maximum enrichments in Mg, Fe and Ca of the effluent fluids occur during the first 2 hours of the experiments whereas Si displays a maximum enrichment at t = 20 h, suggesting extensive dissolution. Maximum enrichments are observed with

  17. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses.

    Science.gov (United States)

    Carrade, Danielle D; Owens, Sean D; Galuppo, Larry D; Vidal, Martin A; Ferraro, Gregory L; Librach, Fred; Buerchler, Sabine; Friedman, Michael S; Walker, Naomi J; Borjesson, Dori L

    2011-04-01

    The development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horses. Sixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injection. MSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSC. The healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.

  18. Numerical Modeling of Geomechanical Processes Related to CO{sub 2} Injection within Generic Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Andreas

    2013-05-31

    In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ΔP{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ΔP{sub c} magnitudes, especially for the compressional stress regime.

  19. Supercritical fluid chromatography in drug analysis: a literature survey.

    Science.gov (United States)

    Salvador, A; Jaime, M A; Becerra, G; Guardia, M de L

    1996-08-01

    The applications of supercritical fluid chromatography to the analysis of drugs have been carefully revised from the literature compiled in the Analytical Abstracts until March 1994. Easy-to-read tables provide useful information about the state-of-the-art and possibilities offered by SFC in pharmaceutical analysis. The tables comprise extensive data about samples analyzed, pharmaceutical principles determined, solvents used and sample quantity injected, supercritical fluids and modifiers employed, injection system, instrumentation, experimental conditions for chromatographic separations (density, pressure, flow, temperature), characteristics of columns employed (type, support, length, diameter, particle film thickness, stationary phase), detectors, type of restrictors, and also some analytical features of the methods developed (such as retention time, resolution, sensitivity, limit of detection and relative standard deviation).

  20. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-01-01

    To support the development of a Probabilistic Safety Assessment (PSA) model usable in Riskinformed Applications (RIA) for Korea Standard Nuclear power Plants (KSNP), we have performed a thermal hydraulic analysis of Aggressive Secondary Cooldown (ASC) in a 2-inch Small Break Loss Of Coolant Accident (SBLOCA) with a total loss of High Pressure Safety Injection (HPSI). The present study focuses on the estimation of the success criteria of ASC, and the enhanced understanding of the detailed thermal hydraulic behavior and phenomena. The results have shown that the Reactor Coolant System (RCS) pressure can be reduced to the Low Pressure Safety Injection (LPSI) operation conditions without core damage. It was also shown that more relaxed success criteria compared to those in the previous PSA models of KSNP could be used in the new PSA model. However, it was found that the results could be affected by various parameters related with ASC operation, i.e., reference temperature for the calculation of the cooldown rate and its control method

  1. Experiment on performance of upper head injection system with ROSA-II

    International Nuclear Information System (INIS)

    1976-09-01

    Thermo-hydraulic behavior in the primary cooling system of a pressurized water reactor with an upper head injection system (UHI) in a postulated loss-of-coolant accident (LOCA) has been studied with ROSA-II test facility. Simulated UHI and internal structures of the pressure vessel were installed to the facility for the experiment. Nine maximum-sized double-ended break tests and one medium-sized split break test were performed for the cold-leg break condition. The results are as follows: (1) Fluid mixing in the upper head is not perfect. (2) Cold water injection into the steam or two-phase fluid causes violent depressurization due to the condensation. Flow pattern in the primary cooling system is largely influenced by the above two. (auth.)

  2. Water injection profiling

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1982-01-01

    A method of neutron-gamma logging is described, in which water, injected in a cased well borehole with peforations, is irradiated with neutrons of 10 MeV or greater, and subsequent gamma radiation is detected by a pair of detectors along the borehole. Counting rates of detectors are analyzed in terms of two gamma ray energy windows. Linear flow velocity of fluid moving downward within the casing is used in conjunction with count rate data to determine volume flow rates of water moving in other directions. Apparatus includes a sonde with a neutron source and appropriate gamma sensors

  3. Efficacy of betamethasone on the fetal motion and biophysical profile and amniotic fluid index in preterm fetuses.

    Science.gov (United States)

    Abbasalizadeh, Shamsi; Pharabar, Zahra Neghadan; Abbasalizadeh, Fatmeh; Ghojazadeh, Morteza; Goldust, Mohamad

    2013-11-15

    The term ofpreterm birth is used to define the premature neonates considering pregnancy age. In less than 34 week pregnancies, corticosteroids are prescribed to promote embryos' lung maturity. The presents study aimed at evaluating effects of betamethasone injection on feeling embryo motion by mother and index and biophysical profile in preterm pregnancies. In a descriptive-analytical study, 40 pregnant women with the pregnancy age of 30-34 weeks were evaluated. Embryo motion and index and biophysical profile of the amniotic fluid were checked before prescription of double dosage of muscular betamethasone (12 mg) at a 24 h time interval. The injection was repeated for 24 and 48 h after the first injection. The resulted outcomes were compared with those results related to before betamethasone injection. In this study, there was statistically meaningful relationship between embryo motions before injection of betamethasone and 12 h after its injection (p = 0.03). Also, there was a significant relationship between embryo motions 24 and 48 h after injection of betamethasone (p = 0.001). In other words, the embryo motions decreased 12 h after injection of betamethasone. They were improved 48 h after betamethasone injection. But, index and biophysical profile results of amniotic fluid were left unchanged. Application of betamethasone leads to evident but transient decrease in embryo motions. Although motion element of index and biophysical profile of amniotic fluid which is one of the tests used in evaluating the embryo health is fixed and normal, it can be concluded that injection of betamethasone may not affect embryo health.

  4. Injectable biomaterials for the treatment of stress urinary incontinence: their potential and pitfalls as urethral bulking agents.

    LENUS (Irish Health Repository)

    Davis, Niall F

    2013-06-01

    Injectable urethral bulking agents composed of synthetic and biological biomaterials are minimally invasive treatment options for stress urinary incontinence (SUI). The development of an ideal urethral bulking agent remains challenging because of clinical concerns over biocompatibility and durability. Herein, the mechanical and biological features of injectable urethral biomaterials are investigated, with particular emphasis on their future potential as primary and secondary treatment options for SUI. A literature search for English language publications using the two online databases was performed. Keywords included "stress urinary incontinence", "urethral bulking agent" and "injectable biomaterial". A total of 98 articles were analysed, of which 45 were suitable for review based on clinical relevance and importance of content. Injectable biomaterials are associated with a lower cure rate and fewer postoperative complications than open surgery for SUI. They are frequently reserved as secondary treatment options for patients unwilling or medically unfit to undergo surgery. Glutaraldehyde cross-linked bovine collagen remains the most commonly injected biomaterial and has a cure rate of up to 53 %. Important clinical features of an injectable biomaterial are durability, biocompatibility and ease of administration, but achieving these requirements is challenging. In carefully selected patients, injectable biomaterials are feasible alternatives to open surgical procedures as primary and secondary treatment options for SUI. In future, higher cure rates may be feasible as researchers investigate alternative biomaterials and more targeted injection techniques for treating SUI.

  5. Anti-collapse mechanism of CBM fuzzy-ball drilling fluid

    Directory of Open Access Journals (Sweden)

    Lihui Zheng

    2016-03-01

    Full Text Available Although fuzzy-ball drilling fluid has been successfully applied in CBM well drilling, it is necessary to study its anti-collapse mechanism so that adjustable coalbed sealing effects, controllable sealing strength, rational sealing cost and controllable reservoir damage degree can be realized. In this paper, laboratory measurement was performed on the uniaxial compressive strength of the plungers of No. 3 coalbed in the Qinshui Basin and the inlet pressure of Ø38 mm coal plunger displacement. The strengths of coal plungers were tested and compared after 2% potassium chloride solution, low-solids polymer drilling fluid and fuzzy-ball drilling fluid were injected into the coal plungers respectively. It is shown that coal strength rises by 38.46% after the fuzzy-ball drilling fluid is injected (in three groups; and that no fuzzy-ball drilling fluid is lost at the displacement pressures of 20.73 and 21.46 MPa, nor 2% potassium chloride solution is leaked at such pressures of 24.79 and 25.64 MPa after the plunger was sealed by the fuzzy-ball drilling fluid. This indicates that the fuzzy-ball drilling fluid can increase the formation resistance to fluid. Indoor microscopic observation was conducted on the sealing process of the fuzzy-ball drilling fluid in sand packs with coal cuttings of three grain sizes (60–80, 80–100 and 100–120 mesh. It is shown that the leakage pathways of different sizes are sealed by the vesicles in the form of accumulation, stretch and blockage. And there are vesicles at the inlet ends of the flowing pathways in the shape of beaded blanket. The impact force of drilling tools on the sidewalls is absorbed by the vesicles due to their elasticity and tenacity, so the sidewall instability caused by drilling tools is relieved. It is concluded that the main anti-collapse mechanisms of the CBM fuzzy-ball drilling fluid are to raise the coal strength, increase the formation resistance to fluid, and buffer the impact of

  6. Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-01

    Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

  7. Contraception With Medroxyprogesterone Injections in Port Harcourt ...

    African Journals Online (AJOL)

    Five accidental pregnancies occurred (Pearl Index 0.22 per hundred woman years). Defaults from scheduled injections and discontinuations of use were common with a low continuation rate (7.6%) at the end of the observation period. Secondary amenorrhoea was responsible for 33.3% of discontinuations. Conclusion: ...

  8. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    Science.gov (United States)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  9. Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe

    KAUST Repository

    Gooneratne, Chinthaka P.

    2013-11-29

    Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. 2013 Gooneratne et al.

  10. Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe

    KAUST Repository

    Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jü rgen

    2013-01-01

    Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. 2013 Gooneratne et al.

  11. Analysis of the distribution of magnetic fluid inside tumors by a giant magnetoresistance probe.

    Directory of Open Access Journals (Sweden)

    Chinthaka P Gooneratne

    Full Text Available Magnetic fluid hyperthermia (MFH therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42 °C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe.

  12. INJECT and the modeling of waste recycling processes

    Energy Technology Data Exchange (ETDEWEB)

    Gracyalny, E.J.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Enhancements were performed to the computer model CORCON to allow for more general energy and transport processes, thus creating a general equilibrium, chemistry tool for a liquid pool with fluid injection. The summation of these model modifications are referred to as INJECT. It is believed that with these enhancements, INJECT becomes a useful tool to study waste management technologies and materials processing. A demonstration of such was performed with a simulation of pyrolysis and materials extraction of ion exchange resins produced by pressurized water reactors. A 5 kg pool consisting of iron, carbon and alumina was injected with CO{sub 2} and contaminated resin, commonly known as styrene. The injection rates varied from 0.2-1.0 {sub min}{sup L} for the CO{sub 2} and 0.5-1.5 {sub min}{sup g} for the resin. Simulation results indicated that the cesium and zinc contaminants were released as gases, cobalt would be in the metallic phase, cerium remained in the oxidic phase and manganese was found in both the oxidic and metallic phases.

  13. Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.

    Science.gov (United States)

    Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky

    2018-05-01

    Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Pressure–Temperature–Fluid Constraints for the Poona Emerald Deposits, Western Australia: Fluid Inclusion and Stable Isotope Studies

    Directory of Open Access Journals (Sweden)

    Dan Marshall

    2016-12-01

    Full Text Available Emerald from the deposits at Poona shows micrometre-scale chemical, optical, and cathodoluminescence zonation. This zonation, combined with fluid inclusion and isotope studies, indicates early emerald precipitation from a single-phase saline fluid of approximately 12 weight percent NaCl equivalent, over the temperature range of 335–525 °C and pressures ranging from 70 to 400 MPa. The large range in pressure and temperature likely reflects some post entrapment changes and re-equilibration of oxygen isotopes. Secondary emerald-hosted fluid inclusions indicate subsequent emerald precipitation from higher salinity fluids. Likewise, the δ18O-δD of channel fluids extracted from Poona emerald is consistent with multiple origins yielding both igneous and metamorphic signatures. The combined multiple generations of emerald precipitation, different fluid compositions, and the presence of both metamorphic and igneous fluids trapped in emerald, likely indicate a protracted history of emerald precipitation at Poona conforming to both an igneous and a metamorphic origin at various times during regional lower amphibolite to greenschist facies metamorphism over the period ~2710–2660 Ma.

  15. A Combined Experimental and Computational Fluid Dynamics Investigation of Particulate Matter Emissions from a Wall-Guided Gasoline Direct Injection Engine

    Directory of Open Access Journals (Sweden)

    Davide D. Sciortino

    2017-09-01

    Full Text Available The latest generation of high-efficiency gasoline direct injection (GDI engines continues to be a significant source of dangerous ultra-fine particulate matter (PM emissions. The forthcoming advent in the 2017–2020 timeframe of the real driving emission (RDE standards affords little time for the identification of viable solutions. The present research work aims to contribute towards a much-needed improved understanding of the process of PM formation in theoretically-homogeneous stoichiometric spark-ignition combustion. Experimental measurements of engine-out PM have been taken from a wall-guided GDI engine operated at part-load; through parallel computational fluid dynamics (CFD simulations of the test-engine, the process of mixture preparation was investigated. About 80% of the total particle number is emitted on average in the 5–50 nm range, with the vast majority being below the regulated lower limit of 23 nm. The results suggest that both improved charge homogeneity and lower peak combustion temperature contribute to lower particle number density (PNDen and larger particle size, as engine speed and load increase. The effect of engine load is stronger and results from greater injection pressure through better fuel droplet atomisation. Increases in pre-combustion homogeneity of 6% are associated with one order of magnitude reductions of PNDen. A simplified two-equation functional model was developed, which returns satisfactory qualitative predictions of PNDen as a function of basic engine control variables.

  16. Treatment of surgical brain injury by immune tolerance induced by intrathymic and hepatic portal vein injection of brain antigens.

    Science.gov (United States)

    Yang, Weijian; Liu, Yong; Liu, Baolong; Tan, Huajun; Lu, Hao; Wang, Hong; Yan, Hua

    2016-08-24

    Surgical brain injury (SBI) defines complications induced by intracranial surgery, such as cerebral edema and other secondary injuries. In our study, intrathymic and hepatic portal vein injection of allogeneic myelin basic protein (MBP) or autogeneic brain cell suspensions were administered to a standard SBI model. Serum pro-inflammatory IL-2, anti-inflammatory IL-4 concentrations and the CD4(+)T/CD8(+)T ratio were measured at 1, 3, 7, 14 and 21 d after surgery to verify the establishment of immune tolerance. Furthermore, we confirmed neuroprotective effects by evaluating neurological scores at 1, 3, 7, 14 and 21 d after SBI. Anti-Fas ligand (FasL) immunohistochemistry and TUNEL assays of brain sections were tested at 21 d after surgery. Intrathymic injections of MBP or autogeneic brain cell suspensions functioned by both suppressing secondary inflammatory reactions and improving prognoses, whereas hepatic portal vein injections of autogeneic brain cell suspensions exerted a better effect than MBP. Intrathymic and hepatic portal vein injections of MBP had equal effects on reducing secondary inflammation and improving prognoses. Otherwise, hepatic portal vein injections of autogeneic brain cell suspensions had better outcomes than intrathymic injections of autogeneic brain cell suspensions. Moreover, the benefit of injecting antigens into the thymus was outweighed by hepatic portal vein injections.

  17. Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Kempka Thomas

    2015-04-01

    Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.

  18. Working Memory Capacity: Attention Control, Secondary Memory, or Both? A Direct Test of the Dual-Component Model

    Science.gov (United States)

    Unsworth, Nash; Spillers, Gregory J.

    2010-01-01

    The current study examined the extent to which attention control abilities, secondary memory abilities, or both accounted for variation in working memory capacity (WMC) and its relation to fluid intelligence. Participants performed various attention control, secondary memory, WMC, and fluid intelligence measures. Confirmatory factor analyses…

  19. Ultrasound Guided Nerve Root Injection in Patients with Cervical Spondylytic Radicular Pain

    Directory of Open Access Journals (Sweden)

    LT Choong

    2009-05-01

    Full Text Available Selective cervical nerve root injection using a mixture of corticosteroid and lignocaine is a treatment option for managing cervical radiculopathic pain. The procedure is usually performed under image guided fluoroscopy or Computerized Tomograhy. Ultrasound-guided cervical nerve root block does not expose the patients and personnel to radiation. During injection, the fluid is mostly visualized in a real-time fashion. This retrospective study reviewed the effectiveness of ultrasound in guiding cervical peri-radicular injection for pain relief in patients with recalcitrant cervical radiculopathy. There were no complications reported in this series.

  20. Raman Scattering Study of Supercritical Bi-Component Mixtures Injected into a Subcritical Environment

    National Research Council Canada - National Science Library

    An, Young M

    2007-01-01

    .... Unique thermodynamic and transport properties of supercritical fluids along with phase transition phenomena during fuel injection process can significantly change combustion characteristics inside a scramjet combustor...

  1. Simulation of uncompressible fluid flow through a porous media

    International Nuclear Information System (INIS)

    Ramirez, A.; Gonzalez, J.L.; Carrillo, F.; Lopez, S.

    2009-01-01

    Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.

  2. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  3. Can I Hang? Ideal Time to Replace Isotonic Crystalloid Intravenous Fluids and Sets to Prevent Fluid Contamination and Blood Stream Infection: a Knowledge Summary

    Directory of Open Access Journals (Sweden)

    Erik Davis Fausak

    2016-11-01

    Full Text Available Clinical bottom lineBased on very poor veterinary and human evidence, fluid bags and IV sets should be changed every 96 hours whether on one or multiple patients. Additionally, supportive evidence suggests that creating a routine of wiping ports with alcohol prior to injection or withdrawal may significantly decrease the likelihood of fluid contamination. This certainly seems to be an area that needs more research. 

  4. Thickness and Closure Kinetics of the Suprachoroidal Space Following Microneedle Injection of Liquid Formulations.

    Science.gov (United States)

    Chiang, Bryce; Venugopal, Nitin; Grossniklaus, Hans E; Jung, Jae Hwan; Edelhauser, Henry F; Prausnitz, Mark R

    2017-01-01

    To determine the effect of injection volume and formulation of a microneedle injection into the suprachoroidal space (SCS) on SCS thickness and closure kinetics. Microneedle injections containing 25 to 150 μL Hanks' balanced salt solution (HBSS) were performed in the rabbit SCS ex vivo. Distribution of SCS thickness was measured by ultrasonography and three-dimensional (3D) cryo-reconstruction. Microneedle injections were performed in the rabbit SCS in vivo using HBSS, Discovisc, and 1% to 5% carboxymethyl cellulose (CMC) in HBSS. Ultrasonography was used to track SCS thickness over time. Increasing HBSS injection volume increased the area of expanded SCS, but did not increase SCS thickness ex vivo. With SCS injections in vivo, the SCS initially expanded to thicknesses of 0.43 ± 0.06 mm with HBSS, 1.5 ± 0.4 mm with Discovisc, and 0.69 to 2.1 mm with 1% to 5% CMC. After injection with HBSS, Discovisc, and 1% CMC solution, the SCS collapsed to baseline with time constants of 19 minutes, 6 hours, and 2.4 days, respectively. In contrast, injections with 3% to 5% CMC solution resulted in SCS expansion to 2.3 to 2.8 mm over the course of 2.8 to 9.1 hours, after which the SCS collapsed to baseline with time constants of 4.5 to 9.2 days. With low-viscosity formulations, SCS expands to a thickness that remains roughly constant, independent of the volume of fluid injected. Increasing injection fluid viscosity significantly increased SCS thickness. Expansion of the SCS is hypothesized to be controlled by a balance between the viscous forces of the liquid formulation and the resistive biomechanical forces of the tissue.

  5. Study of Mururoa's basaltic massif alteration (French Polynesia): solid and fluid phases analysis and thermodynamical modeling

    International Nuclear Information System (INIS)

    Destrigneville, Christine

    1991-01-01

    The alteration processes occurring in the volcanics of Mururoa have been studied using petrological data on secondary minerals, chemical analyses of the interstitial fluids and isotopic analyses on both minerals and fluids. Chemical and isotopic exchanges were first modelled, then thermodynamical modeling characterized the chemical evolution during the alteration of the secondary assemblage and of the fluid. The main secondary sequences which have been observed in Mururoa volcanics result from the alteration occurring during the lavas setting. Two different processes have been evidenced. The first one is the deuteric alteration with the CO_2-rich magmatic fluid exsolved from the magma and trapped in the vesicles and the olivine microcracks of the lava intrusions. This alteration in a closed system is dominated by the solid phases when the CO_2 molar fraction in the fluid is higher than 0.25. The second process is the alteration of the lavas by seawater or a meteoric fluid. The basaltic flows present alteration assemblages composed of clay minerals and zeolites whose chemical composition has been forced by the fluid composition. Shallowness emissions of lavas result in completely argillized levels. The present interstitial fluids chemistry result from the percolation of seawater in the volcano. In the argillized levels the fluids have interacted with the clay minerals and their chemical compositions have been modified. The important chemical changes in the present interstitial fluids show that the present alteration in the volcano is higher than the fluids circulation. (author) [fr

  6. Microbiological method for exploitation of oil deposits with a high mineralization of interstitial waters

    Energy Technology Data Exchange (ETDEWEB)

    Senyukov, V M; Yulbarisov, E M; Taldykina, N N; Shishenina, E P

    1970-07-01

    A literature review is made of microbiological processes suitable for secondary oil recovery. On the basis of literature data, basic experiments were conducted in the Arlansk field. This field has viscous oil, highly mineralized connate water (rho = 1.18) and permeability above 1,000 md. A mixture of aerobic and anaerobic bacteria with nutrient was injected through one well, then 650 cu m of fresh water was injected. Mineralogical and bacteriological analyses were made of produced fluids in nearby wells. Both aerobic and anaerobic bacteria were found in produced fluids, 600 m from the injection wells. On the basis of this result, it was concluded that microbiological processes can be used to increase secondary recovery of oil. However, no oil recovery data are presented. (10 refs.)

  7. Modeling vertical loads in pools resulting from fluid injection

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1978-01-01

    Table-top model experiments were performed to investigate pressure suppression pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peachbottom Mark I boiling water reactor containment system. The results guided subsequent conduct of experiments in the 1 / 5 -scale facility and provided new insight into the vertical load function (VLF). Model experiments show an oscillatory VLF with the download typically double-spiked followed by a more gradual sinusoidal upload. The load function contains a high frequency oscillation superimposed on a low frequency one; evidence from measurements indicates that the oscillations are initiated by fluid dynamics phenomena

  8. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-09-01

    In oil reservoir engineering, multi-phase displacement processes are important. This doctoral thesis describes simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a complex, random porous medium and in a single fracture. The study is restricted to two-phase flow in the quasi-static limit in which viscous forces can be neglected. The secondary migration of oil takes place in this regime, however, the discussion is broader in scope. The thesis connects the problem of slow two-phase flow to percolation theory and discusses the mechanisms that control immiscible displacements. A new, modified version of the invasion percolation model is used to simulate an imbibition process in a porous medium and the migration of a cluster of non-wetting fluid through a porous medium saturated with a wetting fluid. The simulations include the secondary migration of oil through porous homogeneous rock. Fluid migration through heterogeneous porous media is simulated qualitatively. Slow displacement of a wetting fluid by a non-wetting fluid in a single rock fracture is simulated by using the standard invasion percolation model. Experiments and simulations are performed to study the fragmentation of invasion percolation-like structures of non-wetting fluid in a porous medium saturated with a wetting fluid. A scenario is studied in which a cluster of non-wettable fluid migrates through a porous medium that is saturated with a wetting fluid, the migration being driven by continuously increasing buoyancy forces. There is a simulation of the secondary migration of oil in both two- and three-dimensional media. 361 refs., 115 figs.

  9. An experimental study of tracers for labelling of injection gas in oil reservoirs

    International Nuclear Information System (INIS)

    Dugstad, Oe.

    1992-01-01

    This work demonstrates the feasibility of the PMCP and PMCH as tracers in field experiments. These compounds have properties which make them as well suited for well to well studies as the more common tracers CH 3 T and 85 Kr. In an injection project carried out at the Gullfaks field in the North Sea the two PFCs verified communication between wells. This implies communication between different geological layers in the reservoir and also communication across faults within the same layers. Laboratory studies carried out have focused on the retention of the tracers in dynamic flooding experiments under conditions comparable with those in the petroleum reservoirs. Simultaneous injection of a variety of tracers has shown individual variations in tracer retention which are caused by important reservoir parameters as fluid saturation and rock properties. By proper design of field injection programs the tracers response may therefore be used to estimate fluid saturation if actual rock properties are known. 45 refs., 20 figs., 13 tabs

  10. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  11. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model

    Directory of Open Access Journals (Sweden)

    Guang Li

    2016-09-01

    Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.

  12. A comparative study of vascular injection fluids in fresh-frozen and embalmed human cadaver forearms

    NARCIS (Netherlands)

    Doomernik, D.E.; Kruse, R.R.; Reijnen, M.M.; Kozicz, T.; Kooloos, J.G.M.

    2016-01-01

    Over the years, various vascular injection products have been developed to facilitate anatomical dissections. This study aimed to compare the most commonly used vascular injection products in fresh-frozen and formalin-embalmed cadaver specimens. An overview of the properties, advantages and

  13. The Kinetics of Reversible Hyaluronic Acid Filler Injection Treated With Hyaluronidase.

    Science.gov (United States)

    Juhász, Margit L W; Levin, Melissa K; Marmur, Ellen S

    2017-06-01

    Hyaluronidase is an enzyme capable of dissolution of hyaluronic acid (HA). There is a lack of evidence-based research defining time- and concentration-dependent reversal of HA filler using hyaluronidase. To explore the efficacy of different concentrations of hyaluronidase in digesting commercially available HA-based reversible fillers-Belotero Balance (BEL), Juvederm Ultra XC (JUVXC), Juvederm Ultra Plus (JUVX+), Juvederm Voluma XC (JUVV), Restylane-L (RESL), Restylane Silk (RESS), and Perlane/Restylane Lyft (RESLYFT). This was a blinded randomized study involving 15 participants. Participants received HA filler injection into their back, followed by no secondary injection, or injection with normal saline, 20 or 40 units of hyaluronidase. Using a 5-point palpation scale, the degradation of HA filler was monitored over 14 days. In the authors' study, there is a significant decrease in HA filler degradation using 20 and 40 units of hyaluronidase compared with no secondary injection or normal saline. There is no significant difference in HA filler dissolution when comparing 20 to 40 units of hyaluronidase. Lower concentrations of hyaluronidase may be just as effective as higher concentrations to degrade HA filler in situations where the reversal of cutaneous augmentation with HA filler arises.

  14. Multi-Phase Modeling of Rainbird Water Injection

    Science.gov (United States)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  15. A statistical mechanics approach to mixing in stratified fluids

    OpenAIRE

    Venaille , Antoine; Gostiaux , Louis; Sommeria , Joël

    2016-01-01

    Accepted for the Journal of Fluid Mechanics; Predicting how much mixing occurs when a given amount of energy is injected into a Boussinesq fluid is a longstanding problem in stratified turbulence. The huge number of degrees of freedom involved in these processes renders extremely difficult a deterministic approach to the problem. Here we present a statistical mechanics approach yielding a prediction for a cumulative, global mixing efficiency as a function of a global Richard-son number and th...

  16. Evaluation of performance, safety, subject acceptance, and compliance of a disposable autoinjector for subcutaneous injections in healthy volunteers.

    Science.gov (United States)

    Berteau, Cecile; Schwarzenbach, Florence; Donazzolo, Yves; Latreille, Mathilde; Berube, Julie; Abry, Herve; Cotten, Joël; Feger, Celine; Laurent, Philippe E

    2010-10-05

    A disposable autoinjector was developed for subcutaneous (SC) self-injection by patients with chronic diseases. To verify its performance and evaluate its acceptance, a clinical study was conducted in healthy volunteers, comparing SC injections performed by subjects using the autoinjector with SC injections performed by nurses using a syringe. This was a randomized, single-center, crossover study comparing SC self-injection using an autoinjector with SC nurse-administered injection using a syringe. Two volumes (0.2 mL and 1 mL) were injected into healthy volunteers. Study objectives included assessment of the accuracy and consistency of the volume injected by the injection systems, and skin reaction and pain associated with the injection. The fluid depot in the SC tissue layer was evaluated by ultrasound. Subject acceptance was evaluated using questionnaires on attitudes and emotions towards the injection technique, and challenged by seeking the subjects' preferred system for a final study injection or future treatment. A total of 960 injections (480 with autoinjector, 480 with syringe) were performed in 40 subjects. There were no significant differences in mean fluid leakage and injected volumes between the systems. Pain associated with the injection was significantly lower with the auto-injector than with the syringe. Local skin reaction at the injection site was overall satisfactory. Injections were appropriately performed by all subjects. At study end, all 40 subjects preferred the autoinjector for a final study injection and for future treatment. This study indicated that the autoinjector used by the subject was similar to a syringe used by a nurse in terms of performance and safety in administering the injections, and better in terms of pain, overall acceptance, and preference.

  17. Simulation of uncompressible fluid flow through a porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico)], E-mail: adaramil@yahoo.com.mx; Gonzalez, J.L. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico); Carrillo, F. [Instituto Politecnico Nacional (SEPI-CICATA-IPN), Unidad Altamira Tamaulipas, Mexico (Mexico); Lopez, S. [Instituto Mexicano del Petroleo (I.M.P.-D.F.), Mexico (Mexico)

    2009-02-28

    Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.

  18. Experimental investigation on natural circulation and air-injection enhanced circulation in a simple loop

    International Nuclear Information System (INIS)

    Walter Ambrosini; Nicola Forgione; Francesco Oriolo; Filippo Pellacani; Mariano Tarantino; Claudio Struckmann

    2005-01-01

    Full text of publication follows: Natural circulation represents an interesting phenomenon because of both the complex aspects characterising it and for the widespread application in industry. On the other hand, injection of a gas into a rising branch of a loop represents a means to establish or to enhance a circulation flow, as it occurs in the so-called 'air-lift' loops. Both natural circulation and gas-injection enhanced circulation are presently considered for cooling Accelerator Driven System (ADS) reactors. These are subcritical reactors in which the fission reaction chain is maintained by the injection of neutrons obtained by spallation reactions in a target through a high energy proton beam generated in an external accelerator. The capability of such reactors to be used as incinerators of long lived fission products makes them particularly interesting in the light of the closure of the nuclear fuel cycle. Some of the fluids proposed as coolants for these reactors are liquid metals, with main interest for lead and lead-bismuth eutectic (LBE). Experimental activities are being performed in support to the design of the reactor prototype by different organisations. The university of Pisa, in addition to provide cooperation in these large scale activities performed with LBE has set up a specific experimental program aimed at studying the fundamental mechanisms involved in natural circulation and gas-injection enhanced circulation. The adopted experimental facility consists in a simple loop, having a rectangular lay-out (roughly, 4 m tall and 1 m wide), equipped with a 5 kW, 1 m tall heater, a 2 m long pipe-in-pipe heat exchanger, an air injection device and a separator. The fluid adopted in the tests performed up to now is water, though studies for evaluating the feasibility of the adoption of different fluids have been undertaken. Experimental data reported in previous publications concerning this research were related to a relatively high range of gas-injection

  19. High-rate injection is associated with the increase in U.S. mid-continent seismicity

    Science.gov (United States)

    Weingarten, Matthew; Ge, Shemin; Godt, Jonathan W.; Bekins, Barbara A.; Rubinstein, Justin L.

    2015-01-01

    An unprecedented increase in earthquakes in the U.S. mid-continent began in 2009. Many of these earthquakes have been documented as induced by wastewater injection. We examine the relationship between wastewater injection and U.S. mid-continent seismicity using a newly assembled injection well database for the central and eastern United States. We find that the entire increase in earthquake rate is associated with fluid injection wells. High-rate injection wells (>300,000 barrels per month) are much more likely to be associated with earthquakes than lower-rate wells. At the scale of our study, a well’s cumulative injected volume, monthly wellhead pressure, depth, and proximity to crystalline basement do not strongly correlate with earthquake association. Managing injection rates may be a useful tool to minimize the likelihood of induced earthquakes.

  20. 2-D fluid transport simulations of gaseous/radiative divertors

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Brown, P.N.; Campbell, R.B.; Kaiser, T.B.; Knoll, D.A.; McHugh, P.R.; Porter, G.D.; Rensink, M.E.; Smith, G.R.

    1994-01-01

    The features of the fully implicit 2-D fluid code UEDGE are described. The utility of the code is demonstrated by showing bifurcations or multiple solutions of the tokamak edge plasma for both deuterium and impurity injection in the divertor. (orig.)

  1. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Dong Jin; Lim, Chang Hyun [Kangwon National University, Chuncheon (Korea, Republic of)

    2005-02-15

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures.

  2. Supercritical Fluid Chromatographic Separation of Dimethylpolysiloxane Polymer

    International Nuclear Information System (INIS)

    Pyo, Dong Jin; Lim, Chang Hyun

    2005-01-01

    Water was used as a polar modifier and a μ-porasil column as a saturator column. The μ-porasil column was inserted between the pump outlet and the injection valve. During the passage of the supercritical fluid mobile phase through the silica column, a polar modifier (water) can be dissolved in the pressurized supercritical fluid. Dimethylpolysiloxane polymer has been known as more polar polymer than polystyrene polymer. Dimethylpolysiloxane polymer has never been separated using water modified mobile phase. In this paper, using a μ-porasil column as a saturator column, excellent supercritical fluid chromatograms of dimethylpolysiloxane oligomers were obtained. The use of compressed (dense) gases and supercritical fluids as chromatographic mobile phases in conjunction with liquid chromatographic (LC)-type packed columns was first reported by Klesper et al. in 1962. During its relatively short history, supercritical fluid chromatography (SFC) has become an attractive alternative to GC and LC in certain industrially important applications. SFC gives the advantage of high efficiency and allows the analysis of nonvolatile or thermally labile mixtures

  3. Investigations of needle-free jet injections.

    Science.gov (United States)

    Schramm-Baxter, J R; Mitragotri, S

    2004-01-01

    Jet injection is a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers drugs. Although a number of jet injectors are commercially available, especially for insulin delivery, they have a low market share compared to needles possibly due to occasional pain associated with jet injection. Jets employed by the traditional jet injectors penetrate deep into the dermal and sub-dermal regions where the nerve endings are abundantly located. To eliminate the pain associated with jet injections, we propose to utilize microjets that penetrate only into the superficial region of the skin. However, the choice of appropriate jet parameters for this purpose is challenging owing to the multiplicity of factors that determine the penetration depth. Here, we describe the dependence of jet injections into human skin on the power of the jet. Dermal delivery of liquid jets was quantified using two measurements, penetration of a radiolabeled solute, mannitol, into skin and the shape of jet dispersion in the skin which was visualized using sulforhodamine B. The dependence of the amount of liquid delivered in the skin and the geometric measurements of jet dispersion on nozzle diameter and jet velocity was captured by a single parameter, jet power.

  4. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    Science.gov (United States)

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  5. The flow of a non-Newtonian fluid induced due to the oscillations of a porous plate

    Directory of Open Access Journals (Sweden)

    S. Asghar

    2004-01-01

    Full Text Available An analytic solution of the flow of a third-grade fluid on a porous plate is constructed. The porous plate is executing oscillations in its own plane with superimposed injection or suction. An increasing or decreasing velocity amplitude of the oscillating porous plate is also examined. It is also shown that in case of third-grade fluid, a combination of suction/injection and decreasing/increasing velocity amplitude is possible as well. Several limiting situations with their implications are given and discussed.

  6. Safety and efficacy of bi-annual intra-articular LBSA0103 injections in patients with knee osteoarthritis.

    Science.gov (United States)

    Lee, Jin Kyu; Choi, Chong-Hyuk; Oh, Kwang-Jun; Kyung, Hee-Soo; Yoo, Ju-Hyung; Ha, Chul-Won; Bin, Seong-Il; Kang, Seung-Baik; Kim, Myung Ku; Lee, Ju-Hong; Lee, Myung Chul

    2017-11-01

    The objective of this study is to assess the safety and efficacy of repeated intra-articular injection of high molecular weight hyaluronic acid (LBSA0103) at a 26-week interval, in patients with osteoarthritis of the knee. The study was an open-label, single arm, multicentre prospective trial conducted in patients with symptomatic knee osteoarthritis. The intervention consisted of two intra-articular injections of LBSA0103, with the second injection performed 26 weeks after the first injection. The primary outcome was the incidence of adverse drug reactions related to each injection. Assessment of efficacy of repeated injections in terms of maintenance of pain relief was a secondary objective of this study. Of the 185 patients screened, 174 patients received the first injection and 153 patients received both injections of LBSA0103. Nine adverse drug reactions occurred in seven patients (4.02%) after the first injection, while only one adverse drug reaction occurred (0.65%) after the second injection. As a secondary outcome measure, the improvements in the efficacy parameters including total WOMAC score and weight-bearing pain were all significant at both week 13 and 39 compared to the baseline value (P injection were consistent with those after the initial injection of LBSA0103 (between week 26 and week 39, P injection of LBSA0103 at a 26-week interval is safe without increased risk of adverse drug reactions. Additionally, LBSA0103 is effective in reduction of osteoarthritis knee pain and in maintenance of pain reduction for a 39-week period when a second injection is administered.

  7. Severe transient tests on operation steam generators: Analysis of the fluid structure dynamic thermal interaction

    International Nuclear Information System (INIS)

    Billon, F.; David, J.; Procaccia, H.

    1983-01-01

    The operating efficiency of steam generators (S.G.s) and their structural integrity depend on the design configurations of the feedwater spray within the S.G., and on the operating procedure. To check the merit of some design modifications, and to verify the fluid-structure interaction with a view to preserve the S.G.s integrity during severe operating transients, a special instrumentation that admits the determination of the instantaneous thermal hydraulic characteristics of the flow in the secondary water and the S.G. tube sheet, has been installed by EDF on one steam generator of Tricastin unit 1 power plant. In parallel, FRAMATOME has developped a computer code, TEMPTRON, that allows the calculations of the thermal loads and the consequent stresses in the most sollicited zones of the steam generator during transient operation of the plant. This code divides the S.G. into three parts: - the first concerns the S.G.s region above the downcomer, zone where the mixing between hot water and cold feedwater occurs, - the second is the downcomer itself which is divided into n segments, - the third concerns the tube sheet zone which is also divided into n segments. The most severe transient test performed is the auxiliary cold feedwater injection into the steam generator during a hot standby of the plant: two levels of flow rate have been realised: 55 and 110 m 3 /h of 42 0 C feedwater. The tests have shown that if the cold feedwater injection occurs when the steam generator water level is below feedwater ring, the lowest fluid temperature reached at tube sheet inlet is about 230 0 C. (orig.)

  8. Injection dynamics of gelled propellants

    Science.gov (United States)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow

  9. Simultaneous injection of polymer and surfactant for improving oil recovery; Injecao simultanea de polimero e surfactante para aumento da recuperacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Ana C.R.; Valentim, Adriano C.M.; Marcelino, Cleuton P.; Fagundes, Fabio P.; Girao, Joaquim H.S.; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Pesquisa em Petroleo (LAPET)

    2004-07-01

    The injection of polymeric solutions in petroleum reservoirs is a supplemental method of petroleum recovery, that seeks to increase the volumetric efficiency of swept of the oil with the decrease of the mobility of the injection water. In the contact between two non miscible fluids, superficial tensions are established, that can influence the relations between the rock and the fluids, depending on the nature of both. Therefore, the combined injection of a surfactant and a polymer can promote improvements in the injectivity and in the global recovery efficiency. In this work it was used samples of commercial polyacrylamide, which were characterized through hydrolysis degree, molecular weight and rheological behavior. From these results it was chosen one sample to be used associated to a polymeric surfactant. Through a core flood system, the following tests were done: injection of polymer solution; injection of surfactant solution followed by polymer solution and injection of surfactant / polymer mixture. The results showed that the injection of surfactant / polymer mixture promoted a significant increase in the residual resistance factor, in relation to the other situations. (author)

  10. Generation of a rotating liquid liner by tangential injection

    International Nuclear Information System (INIS)

    Burton, R.L.; Turchi, P.J.; Jenkins, D.J.; Lanham, R.E.; Cameron, J.; Cooper, A.L.

    1979-01-01

    Efficient compression of low mass-density payloads by the implosion of higher mass-density liquid cylinders or liners, as in the NRL LINUS concept for controlled thermonuclear fusion, requires rotation of the liner material to avoid Rayleigh--Taylor instabilities at the liner-payload interface. Experimentally, such implosions have been demonstrated with liners formed within rotating implosion chambers. The present work uses a scale-model experimental apparatus to investigate the possibility of creating liner rotation by tangential injection of the liquid liner material. Different modes of behavior are obtained depending on the fluid exhaust procedures. Right-circular, cylindrical free surfaces are achieved with axial exhaust of fluid at radii interior to the injection nozzles, for which the liner exhibits a combination of solid-body and free vortex flows in different regions. Measurements allow estimates of power losses to viscous shear, turbulence, etc. A simple model based on open-channel flow is then derived, which is in good agreement with experiment, and is used to extrapolate results to the scale of a possible LINUS fusion reactor

  11. Working Memory and Fluid Intelligence: Capacity, Attention Control, and Secondary Memory Retrieval

    Science.gov (United States)

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.

    2015-01-01

    Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. PMID:24531497

  12. Risk/benefit in prophylaxis and treatment of secondary hyperparathyroidism. A comparison of two low calcium peritoneal dialysis fluids

    DEFF Research Database (Denmark)

    Bro, S; Brandi, L; Olgaard, K

    1996-01-01

    levels after 2-6 weeks of treatment. No statistically significant difference was observed between the two groups. In both groups median PTH levels were kept below 2.5 times the upper normal limit for non-uraemic patients; median P concentrations below 1.80 mmol/l and median iCa levels within 1.25-1......OBJECTIVE: A comparison of (i) levels of plasma ionized calcium (Ca), phosphate (P) and iPTH, (ii) risk of hypercalcaemia and (iii) need for Al-containing P binders, in patients on CAPD treated with calcium carbonate as the main P binder and twice weekly oral doses of alfacalcidol for control...... of secondary hyperparathyroidism during a 1 year follow-up after switching from a dialysis fluid with a Ca concentration of 1.75 mmol/l to 1.25 mmol/l (n = 39) or 1.35 mmol/l (n = 37). RESULTS: In both groups, a significant initial increase of iPTH was seen. However, iPTH was again suppressed to baseline...

  13. Fluid-flow monitoring using electromagnetic probing

    International Nuclear Information System (INIS)

    Lytle, R.J.; Lager, D.L.; Laine, E.F.; Salisbury, J.D.; Okada, J.T.

    1979-01-01

    High-frequency electromagnetic probing is used to monitor the rate and direction of flow of fluids injected into the ground. This method shows the potential for providing more detailed information than procedures presently used. The experimental technique and the test-of-concept experimental results are discussed. This technique has applications in oil-reservoir engineering and in hydrology studies concerning storage of chemical and nuclear wastes. 11 figures

  14. Fluids, evaporation and precipitates at Gale Crater

    OpenAIRE

    Schwenzer, S. P.; Bridges, J. C.; Leveille, R.; Wiens, R. C.; Mangold, N.; McAdam, A.; Conrad, P.; Kelley, S. P.; Westall, F.; Martín-Torres, F.; Zorzano, M.-P.

    2015-01-01

    The Mars Science Laboratory (MSL) mission landed in Gale Crater, Mars, on 6th August 2012, and has explored the Yellowknife Bay area. The detailed mineralogical and sedimentological studies provide a unique opportunity to characterise the secondary fluids associated with this habitable environment.

  15. Clinical therapeutic effects of intravitreal Ranibizumab injection combined laser photocoagulation for macular edema in BRVO

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2014-11-01

    Full Text Available AIM: To evaluate the clinical therapeutic efficacy of intravitreal ranibizumab injection combined grid laser photocoagulation for macular edema secondary to branch retinal vein occlusion(BRVO. METHODS: Forty-two confirmed cases(42 eyeswith macular edema secondary to BRVO were randomized into 3 groups, each group contained 14 eyes. The ranibizumab group was received intravitreal injection of ranibizumab(0.05mL, the laser group was received grid laser photocoagulation, and the combined group was received a second therapy of grid laser photocoagulation after 1wk of the intravitreal injection of ranibizumab. Recorded the best-corrected visual acuity(BCVAand the central macular thickness(CMTpreoperative and at 1, 3, 6mo after therapy. RESULTS: The BCVA and the CMT had no differences among three groups pretherapy(P>0.05. While BCVA was much better and CMT was reduced significantly posttherapy than pretherapy in all three groups(PPP>0.05. While the BCVA was better and the CMT was thinner in the combined group than ranibizumab group and laser group at every time point(PPCONCLUSION: The intravitreal ranibizumab injection combined grid laser photocoagulation is an effective treatment method for the macular edema secondary to BRVO, it is more effective in improving BCVA than intravitreal ranibizumab or grid laser photocoagulation alone.

  16. Fluids in the Siilinjärvi carbonatite complex, eastern Finland: Fluid inclusion evidence for the formation conditions of zircon and apatite

    Directory of Open Access Journals (Sweden)

    Poutiainen, M.

    1995-06-01

    Full Text Available In the studied zircon and apatite crystals, data recorded two different compositional types of fluid inclusions: Type 1 H2O-CO2, low salinity inclusions (XCO2 = 0.42 to 0.87; XNaCl = 0.001 to 0.005 with bulk densities of 0.73 to 0.87 g/cm3, and Type 2 H2O moderate salinity (XNaCl = 0.03 to 0.06 inclusions with densities of 0.83 to 1.02 g/cm3. The Type 1 inclusions are not present in apatite. In zircon, the observed fluid inclusion types occur in separate domains: around (Type 1 and outside (Type 2 the apparent core. Fluid inclusions are further subdivided into pseudosecondary and secondary inclusions. Using a combination of SEM-EDS, optical characteristics and crushing-stage, various daughter and captive minerals were identified. The fluid inclusion data suggest that the pseudosecondary Type 1 and Type 2 inclusions in zircon and apatite were trapped during the pre-emplacement evolution of the carbonatite at mid-crustal conditions (P≥4 kbar, T≥625°C. The Type 1 fluid was depleted in CO2, during crystal fractionation and cooling leading to a fluid phase enriched in water and alkalies. Fenitization was obviously induced by these saline aqueous fluids. During emplacement of the carbonatite to the present level, zircon phenocrysts were intensively fractured, some Type 1 inclusions were re-equilibrated, and multiphase Type 2 inclusions were trapped. It is assumed that all these inclusions in zircon and the pseudosecondary Type 2 inclusions in apatite have a magmatic origin. In apatite, calcite inclusions occur side-by-side with the secondary Type 2 inclusions. These calcites co-existed with the aqueous fluid during fracturing and metamorphic re-crystallization of apatites. Probably, this metamorphic fluid also is responsible for the transport and deposition of at least some of the calcite at low temperatures (200-350°C.

  17. Systemic embolism produced by subcutaneous injections of liquid silicone for esthetic purposes

    International Nuclear Information System (INIS)

    Falconi, Guillermo

    2003-01-01

    Even though its use is not recommended, liquid silicone is a substance that has been used illegally for esthetic purposes for a long time. A case report is presented in which a young woman was injected subcutaneously, by an uncertified practitioner, industrial fluid silicone and subsequently developed a case of systemic embolism with pulmonary, skin and ocular complications. This article explains the physiopathology and the different manifestations of systemic embolism produced by fluid silicone. TAC was used. (The author)

  18. Hyperacid volcano-hydrothermal fluids from Copahue volcano, Argentina: Analogs for "subduction zone fluids"?

    Science.gov (United States)

    Varekamp, J. C.

    2007-12-01

    Hyperacid concentrated Chlorine-Sulfate brines occur in many young arc volcanoes, with pH values Copahue volcanic system (Argentina) suggest reservoir temperatures of 175-300 oC, whereas the surface fluids do not exceed local boiling temperatures. These fluids are generated at much lower P-T conditions than fluids associated with a dehydrating subducted sediment complex below arc volcanoes, but their fundamental chemical compositions may have similarities. Incompatible trace element, major element concentrations and Pb isotope compositions of the fluids were used to determine the most likely rock protoliths for these fluids. Mean rock- normalized trace element diagrams then indicate which elements are quantitatively extracted from the rocks and which are left behind or precipitated in secondary phases. Most LILE show flat rock-normalized patterns, indicating close to congruent dissolution, whereas Ta-Nb-Ti show strong depletions in the rock-normalized diagrams. These HFSE are either left behind in the altered rock protolith or were precipitated along the way up. The behavior of U and Th is almost identical, suggesting that in these low pH fluids with abundant ligands Th is just as easily transported as U, which is not the case in more dilute, neutral fluids. Most analyzed fluids have steeper LREE patterns than the rocks and have negative Eu anomalies similar to the rocks. Fluids that interacted with newly intruded magma e.g., during the 2000 eruption, have much less pronounced Eu anomalies, which was most likely caused by the preferential dissolution of plagioclase when newly intruded magma interacted with the acid fluids. The fluids show a strong positive correlation between Y and Cd (similar to MORB basalts, Yi et al., JGR, 2000), suggesting that Cd is mainly a rock-derived element that may not show chalcophilic behavior. The fluids are strongly enriched (relative to rock) in As, Zn and Pb, suggesting that these elements were carried with the volcanic gas phase

  19. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion.

    Science.gov (United States)

    Walter, André; Bechsgaard, Jesper; Scavenius, Carsten; Dyrlund, Thomas S; Sanggaard, Kristian W; Enghild, Jan J; Bilde, Trine

    2017-08-10

    Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.

  20. Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid ...

    African Journals Online (AJOL)

    patients after intra-articular injection of sodium hyaluronate, while the effect is insignificant in severe patients. Thus, sodium hyaluronate can effectively improve nitric oxide levels in synovial fluid, reduce ..... Modern Med Health, 2014; 1:.

  1. Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid ...

    African Journals Online (AJOL)

    Changes in Nitric Oxide Level and Thickness Index of Synovial Fluid in Osteoarthritis Patients ... Tropical Journal of Pharmaceutical Research ... and moderate phase patients after intra-articular injection of sodium hyaluronate, while the effect ...

  2. Post-Injection Induced Seismicity in EGS: Triggering Mechanisms and Mitigation.

    Science.gov (United States)

    De Simone, S.; Carrera, J.; Vilarrasa, V.

    2017-12-01

    Induced microseismicity is a controversial issue related to Enhanced Geothermal Systems (EGS) and in general with fluid injection into deep geological formations. The occurring of felt earthquakes after stopping injection especially generates concern, because the correlation between injection and seismic activity is unclear. The aim of this work is to advance in the understanding of the processes that may induce or trigger co- and post-injection seismicity. To this end we investigate the thermo-hydro-mechanical coupling by means of numerical simulations of hydraulic stimulation of deep geothermal systems. We find that preferential flow through conductive fractures or fault zones provokes pressure and temperature perturbations that result in not only heterogeneous variation of the stress field, but also highly anisotropic variations of the local stress tensor. Anisotropic variations tend to stabilize some fractures, but destabilize others. Moreover, activation of shear slip causes a significant variation of the stress field that enlarges the range of critical fracture orientations. We find that post-injection seismicity may occur on non-critically oriented faults that were originally stable. During injection, such faults become destabilized by thermal and shear slip stress changes, but remain static by the superposition of the stabilizing effect of pressure forces. However, these fractures become unstable and fail when the pressure forcing dissipates shortly after injection stops abruptly, which suggests that a slow reduction in injection rate may mitigate post-injection seismicity.

  3. CFD analysis of poison injection in AHWR calandria

    International Nuclear Information System (INIS)

    Kansal, A.K.; Kamble, M.T.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    The present work intends to give details of design and performance validation of SDS-2. The performance is evaluated on the basis of dispersion of poison in calandria in a given period of time. Location of injection tube and injection holes, size of jet hole and number of holes are some of the design parameters which greatly affect dispersion of poison in calandria. A Computational Fluid Dynamic (CFD) study for axial and radial injection of poison was carried out using open source CFD code OpenFOAM. CFD benchmarking was done using experiments performed by Johari (Johari et al. 1997) to identify suitable turbulence model for this problem. An experimental facility simulating poison injection in moderator in presence of calandria tubes was used to further validate the CFD model is shown in the paper. CFD analysis was carried out for axial as well as radial injection for AHWR geometry. CFD analysis using OpenFOAM has been carried out to study high pressure poison injection for single jet of Shut Down System - 2 (SDS- 2) of Advanced Heavy Water Reactor (AHWR) for various design options. CFD model used in analysis have been validated with experimental data available in literature as well as experiments performed for AHWR specific geometry. Various turbulence models are tested and their adequacy for such flow problems has been established. The CFD model is then used to simulate poison injection for two design options for AHWR and their performance is compared. (author)

  4. Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response

    Science.gov (United States)

    Prasad, M.; Livo, K.

    2017-12-01

    Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.

  5. Experimental study on gas-injection enhanced circulation performed with the CIRCE facility

    International Nuclear Information System (INIS)

    Benamati, G.; Foletti, C.; Forgione, N.; Oriolo, F.; Scaddozzo, G.; Tarantino, M.

    2007-01-01

    This paper describes the results of an experimental campaign concerning the possibility of achieving a steady state circulation by gas-injection in a pool containing lead-bismuth eutectic (LBE) as working fluid. The activity was aimed at gaining information about the basic mechanisms of the gas injection enhanced circulation intended as a pumping system for a liquid metal cooled reactor. In particular, the paper is focused on the experimental work performed in the CIRCE large-scale facility, installed at the ENEA Brasimone Centre for studying the fluid-dynamic and operating behaviour of ADS reactor plants cooled by LBE. The gas enhanced circulation tests were carried out for different LBE temperatures (from 200 to 320 deg. C), under isothermal conditions and with a wide range of argon injected flow rates (from 0.5 to 7.0 Nl/s). The gas is injected from the bottom of the riser, by means of an appropriate nozzle, and the liquid metal flow rate is measured by a Venturi-Nozzle flow meter installed in the single phase part of the test section. The obtained results allowed formulating a characteristic curve of the system and evaluating the void fraction distribution along the riser path by means differential pressure measurements, which play an important role to generating the driving force for the circulation

  6. Drug use and AIDS: estimating injection prevalence in a rural state.

    Science.gov (United States)

    Leukefeld, Carl G; Logan, T K; Farabee, David; Clayton, Richard

    2002-01-01

    This paper presents approaches used in one rural U.S. state to describe the level of injecting drug use and to estimate the number of injectors not receiving drug-user treatment. The focus is on two broad areas of estimation that were used to present the prevalence of injecting drug use in Kentucky. The first estimation approach uses available data from secondary data sources. The second approach involves three small community studies.

  7. Effects of hypertonic dextrose injections in the rabbit carpal tunnel.

    Science.gov (United States)

    Yoshii, Yuichi; Zhao, Chunfeng; Schmelzer, James D; Low, Phillip A; An, Kai-Nan; Amadio, Peter C

    2011-07-01

    This study investigated the effects of different doses of hypertonic dextrose injection on the carpal tunnel subsynovial connective tissue (SSCT) and median nerve in a rabbit model. Thirty-eight New Zealand white rabbits weighing 4.0-4.5 kg were used. One forepaw carpal tunnel was randomly injected with one of five different treatments: saline-single injection; saline-two injections 1 week apart; 10% dextrose-single injection; 20% dextrose-single injection; or 10% dextrose-two injections 1 week apart. Animals were sacrificed at 12 weeks after the initial injection and were evaluated by electrophysiology (EP), SSCT mechanical testing and histology. There were significant increases in the energy absorption of the SSCT in the 10% dextrose-double injection group compared to the saline injection groups. SSCT stiffness was also significantly increased in the 10% dextrose-double injection group compared to the other groups. There was a significant increase in the thickness of the SSCT in the 10% dextrose-double injection group compared to the saline-single injection group and a significant decrease in the nerve short-long diameter ratio in the 10% dextrose-double injection group compared to the saline-single injection group. There were no changes in EP among the groups. SSCT fibrosis is present for up to 12 weeks after dextrose injection; multiple injections have bigger effects, including what appears to be a secondary change in nerve flattening. This model may be useful to study the effects of external fibrosis on nerve morphology and physiology, such as occurs clinically in carpal tunnel syndrome. Copyright © 2011 Orthopaedic Research Society.

  8. Epidural injections with or without steroids in managing chronic low back pain secondary to lumbar spinal stenosis: a meta-analysis of 13 randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Meng H

    2015-08-01

    steroids or with local anesthetic alone provide significant pain relief and functional improvement in managing chronic low back pain secondary to lumbar spinal stenosis, and the inclusion of steroids confers no advantage compared to local anesthetic alone. Keywords: chronic low back pain, spinal stenosis, epidural injections, steroids, local anesthetics 

  9. Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.

    Science.gov (United States)

    Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K

    2014-06-01

    Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Fluid-structure interaction analysis of a water pool under loading caused by steam injection

    International Nuclear Information System (INIS)

    Timperi, A.; Paettikangas, T.; Niemi, J.; Ilvonen, M.

    2006-04-01

    CFD and structural analysis codes. MpCCI 3.0 was used for coupling Fluent CFD code with ABAQUS FE code. ES-FSI was used for coupling Star-CD CFD code with ABAQUS. FSI analyses, in which the calculation was carried out entirely in ABAQUS, were also performed. In this case, acoustic elements were used for the fluid and the acoustic and structural domains were coupled. FSI calculations were performed for simple test cases and for a test pool at Lappeenranta University of Technology. The Method of Images was studied as an alternative method for the analyses of the pool. Particularly, the determination of pressure source for the method was studied. Earlier work carried out with the homogenous two-phase model was continued by testing the model with Fluent. Calculation of condensation of steam in a water pool was tested with a new implementation. The two-directionally coupled simulations of the pool with MpCCI and ES-FSI were found to be numerically instable. It was concluded that an implicit coupling method may have to be used in order to avoid the instability. Calculations of the pool were finally performed by using one directional coupling. In the simulations with MpCCI, the incompressible and compressible VOF models of Fluent were used. With ES-FSI, the incompressible VOF model of Star-CD was used for modelling the beginning of a steam injection experiment. The magnitudes of pressure and stress peaks in the simulation and experiment were of comparable size. Otherwise, however, differences between the simulation and experiment were large due to the simplifications used in the simulation. Results obtained with the acoustic-structural FE analyses were compared to analytical and experimental results. The results indicated that the coupled acoustic-structural analysis can be used for calculating the coupled Eigenmodes of BWR pressure suppression pools. (au)

  11. Fluid-structure interaction analysis of a water pool under loading caused by steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A.; Paettikangas, T.; Niemi, J.; Ilvonen, M. [VTT Technical Researc Centre of Finland (Finland)

    2006-04-15

    CFD and structural analysis codes. MpCCI 3.0 was used for coupling Fluent CFD code with ABAQUS FE code. ES-FSI was used for coupling Star-CD CFD code with ABAQUS. FSI analyses, in which the calculation was carried out entirely in ABAQUS, were also performed. In this case, acoustic elements were used for the fluid and the acoustic and structural domains were coupled. FSI calculations were performed for simple test cases and for a test pool at Lappeenranta University of Technology. The Method of Images was studied as an alternative method for the analyses of the pool. Particularly, the determination of pressure source for the method was studied. Earlier work carried out with the homogenous two-phase model was continued by testing the model with Fluent. Calculation of condensation of steam in a water pool was tested with a new implementation. The two-directionally coupled simulations of the pool with MpCCI and ES-FSI were found to be numerically instable. It was concluded that an implicit coupling method may have to be used in order to avoid the instability. Calculations of the pool were finally performed by using one directional coupling. In the simulations with MpCCI, the incompressible and compressible VOF models of Fluent were used. With ES-FSI, the incompressible VOF model of Star-CD was used for modelling the beginning of a steam injection experiment. The magnitudes of pressure and stress peaks in the simulation and experiment were of comparable size. Otherwise, however, differences between the simulation and experiment were large due to the simplifications used in the simulation. Results obtained with the acoustic-structural FE analyses were compared to analytical and experimental results. The results indicated that the coupled acoustic-structural analysis can be used for calculating the coupled Eigenmodes of BWR pressure suppression pools. (au)

  12. Pulmonary Complications of Gastric Fluid and Bile Salts Aspiration, an Experimental Study in Rat

    Directory of Open Access Journals (Sweden)

    Mitra Samareh Fekri

    2013-06-01

    Full Text Available   Objective(s: Gastroesophageal Reflux Disease (GERD is one of the most common digestive disorders that frequently lead to pulmonary complications due to gastric fluid aspiration. In the present experimental study, chronic aspiration of gastric fluid, its components and bile salts in rat lung was performed to find out the main factor(s causing pulmonary complications of gastric fluid aspiration.   Materials and Methods: Forty eight male rats weighted 250-300 g were selected in six groups. After anesthesia and tracheal cannulation, the animals received 0.5 ml/kg normal saline, 0.5 ml/kg of whole gastric fluid, 0.5 ml/kg pepsin (2.5 μg/ml, 0.5 ml/kg hydrochloric acid (pH=1.5 or 0.5 ml/kg bile salts (2.5 μg/ml by injection into their trachea and lungs. In sham group nothing was injected. Results: Parenchymal and airways inflammation and fibrosis of bronchi, bronchioles and parenchyma were significantly more in the test groups compared to saline and sham groups (P

  13. Device for regulating and controlling of fluid pressure

    International Nuclear Information System (INIS)

    Andrews, H.N.; Singleton, N.R.; Frisch, E.; Stein, P.C.

    1972-01-01

    A pressure regulating valve for high pressures, suitable for PWR pressurisers, is based on controlled leakage. The valve may also function as a safety valve. The valve and seat surfaces are machined such that an annular space is formed towards the inner edge, and into this space cold fluid may be injected, thus preventing crud deposition and hindering steam formation. Fluid also leaks into the annular space between two bellows, which exert a closing force on the valve, in addition to the closing force provided by springs, whose force is adjustable by means of a screw arrangement. (JIW)

  14. Thermal hydraulic analysis of aggressive secondary cooldown in small break loss of coolant accident with total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, S. J.; Im, H. K.; Yang, J. U.

    2003-01-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). To use RIA, the present study focuses on the detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study is to evaluate the success criteria of Aggressive Secondary Cooldown (ASC) in Small Break Loss Of Coolant Accident (SBLOCA) with total loss of High Pressure Safety Injection (HPSI) and to enhance the understanding of related thermal hydraulic behavior and phenomena. The accident scenario was 2 inch coldleg break LOCA without HPSI, with 1/2 Low Pressure Safety Injection (LPSI), and performing ASC limited by 55.6 .deg. C /hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip, which successively reaches the LPSI condition for about 1.5hr after starting ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria 1204.4 .deg. C (2200 .deg. F). In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that operator should maintain the adequate ASC operation. However, it is necessary to evaluate uncertainties arisen from the related parameters of the ASC operation

  15. Injection frequency and anatomic outcomes 1 year following conversion to aflibercept in patients with neovascular age-related macular degeneration.

    Science.gov (United States)

    Messenger, Wyatt B; Campbell, J Peter; Faridi, Ambar; Shippey, Loton; Bailey, Steven T; Lauer, Andreas K; Flaxel, Christina J; Hwang, Thomas S

    2014-09-01

    To evaluate the clinical, anatomic and functional effects of conversion to aflibercept following ranibizumab and/or bevacizumab in patients with neovascular age-related macular degeneration (AMD). A retrospective review of patients with neovascular AMD treated with intravitreal ranibizumab and/or bevacizumab who were switched to aflibercept was performed. The primary outcome was change in injection frequency in the year following the change. Secondary outcomes included change in central macular thickness (CMT) at 6 months and 1 year, presence of intraretinal and subretinal fluid at 6 months and visual acuity at 1 year. A total of 109 eyes with neovascular AMD were switched to aflibercept and met inclusion criteria. Overall, aflibercept injection frequency was unchanged with patients receiving 7.4 antivascular endothelial growth factor (VEGF) injections the year prior to conversion compared with 7.2 aflibercept injections in the year following (p=0.47). However, the change to aflibercept was associated with improvement in CMT from 324 to 295 μm (p=0.0001) at 6 months and 299 μm (p=0.0047) at 1 year. There was no effect on visual acuity at 1 year. In a subgroup analysis, patients who had received ≥10 anti-VEGF injections in the year prior had fewer injections (11.1 to 8.4, p<0.0001) and clinic visits (13.9 to 9.6, p<0.0001) as well as a significant decrease in CMT (-35 μm, p=0.02). In our population, switching to aflibercept therapy was not associated with a change in injection frequency nor improved visual acuity, but was associated with improved CMT at 6 months and 1 year. In patients who received at least 10 anti-VEGF injections in the year prior, transitioning to aflibercept was associated with a reduced injection frequency and CMT, suggesting potential cost savings in this population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Analytical prediction and experimental verification of reactor safety system injection transient

    International Nuclear Information System (INIS)

    Roy, B.N.; Nomm, E.

    1991-01-01

    This paper describes the computer code that was developed for thermal hydraulic transient analysis of mixed phase fluid system and the flow tests that were carried out to validate the Code. A full scale test facility was designed to duplicate the Supplementary Shutdown System (SSS) of Savannah River Production Reactors. Several steady state and dynamic flow tests were conducted simulating the actual reactor injection transients. A dynamic multiphase fluid flow code was developed and validated with experimental results and utilized for system performance predictions and development of technical specifications for reactors. 3 refs

  17. Numerical simulation for cyclic steam injection at Santa Clara field

    International Nuclear Information System (INIS)

    Rodriguez, Edwin; Barrios, Wilson; Sandoval, Roy; Santos, Nicolas; Cortes, Ingrid

    2008-01-01

    This article presents the methodology used and the results obtained in the construction, match and prediction of the first thermal composition simulation model done in Colombia by employing advanced thermal process commercial software, globally recognized because of its effectiveness in modeling these types of processes (CMG-STARS, 2005). The Santa Clara and Palermo fields were modeled and an excellent history match was achieved. All in all 28 wells and 17 years of production were matched. Two production scenes were proposed. The first involved primary production from existing wells, in other words: primary production; and a second scene where all the wells in the field are converted into injectors and producers, to simulate cyclic steam injection. This injection process included a series of sensitivity studies for several of the parameters involved in this technology, such as: pressure and temperature injection, time and rate of injection, heat injected, soaking period, steam quality, and injection cycles. This sensitivity study was focused on optimizing the processes to obtain the maximum end recovery possible. The information entered into the simulator was validated by laboratory tests developed at the Instituto Colombiano del Petroleo (ICP). Among the tests performed the following were assessed: rock compressibility, relative permeability curve behavior at different temperatures, formation sensitivity to injection fluids, DRX analysis and residual saturation of crude oil for steam injection. The aforementioned results are documented in this paper

  18. A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well

    Directory of Open Access Journals (Sweden)

    Kadivar Arash

    2017-03-01

    Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.

  19. Bulk derivatization and direct injection of human cerebrospinal fluid for trace-level quantification of endogenous estrogens using trap-and-elute liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Fan, Hui; Papouskova, Barbora; Lemr, Karel; Wigginton, Jane G; Schug, Kevin A

    2014-08-01

    Although there are existing methods for determining estrogen in human bodily fluids including blood plasma and serum, very little information is available regarding estrogen levels in human cerebrospinal fluid (CSF), which is critical to assess in studies of neuroprotective functions and diffusion of neuroprotective estrogens across the blood-brain barrier. To address this problem, a liquid chromatography with tandem mass spectrometry method for the simultaneous quantification of four endogenous estrogens (estrone, 17α-estradiol, 17β-estradiol, and estriol) in human CSF was developed. An aliquot (300 μL) of human CSF was bulk derivatized using dansyl chloride in the sample and 10 μL was directly injected onto a restricted-access media trap column for protein removal. No off-line sample extraction or cleanup was needed. The limits of detection of estrone, 17α-estradiol, 17β-estradiol, and estriol were 17, 28, 13, and 30 pg/mL, respectively, which is in the parts-per-trillion regime. The method was then applied to human CSF collected from ischemic trauma patients. Endogenous estrogens were detected and quantified, demonstrating the effectiveness of this method. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  1. Deciphering fluid inclusions in high-grade rocks

    Directory of Open Access Journals (Sweden)

    Alfons van den Kerkhof

    2014-09-01

    Full Text Available The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary inclusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the “original” peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL techniques combined with trace element analysis of quartz (EPMA, LA-ICPMS have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and Al, low-temperature re-equilibrated quartz typically shows reduced trace element concentrations. The resulting microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries, and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 °C, i.e. the range of semi-brittle deformation (greenschist-facies and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.

  2. Simulation of CO2 Injection in Porous Media with Structural Deformation Effect

    KAUST Repository

    Negara, Ardiansyah

    2011-06-18

    Carbon dioxide (CO2) sequestration is one of the most attractive methods to reduce the amount of CO2 in the atmosphere by injecting it into the geological formations. Furthermore, it is also an effective mechanism for enhanced oil recovery. Simulation of CO2 injection based on a suitable modeling is very important for explaining the fluid flow behavior of CO2 in a reservoir. Increasing of CO2 injection may cause a structural deformation of the medium. The structural deformation modeling in carbon sequestration is useful to evaluate the medium stability to avoid CO2 leakage to the atmosphere. Therefore, it is important to include such effect into the model. The purpose of this study is to simulate the CO2 injection in a reservoir. The numerical simulations of two-phase flow in homogeneous and heterogeneous porous media are presented. Also, the effects of gravity and capillary pressure are considered. IMplicit Pressure Explicit Saturation (IMPES) and IMplicit Pressure-Displacements and an Explicit Saturation (IMPDES) schemes are used to solve the problems under consideration. Various numerical examples were simulated and divided into two parts of the study. The numerical results demonstrate the effects of buoyancy and capillary pressure as well as the permeability value and its distribution in the domain. Some conclusions that could be derived from the numerical results are the buoyancy of CO2 is driven by the density difference, the CO2 saturation profile (rate and distribution) are affected by the permeability distribution and its value, and the displacements of the porous medium go to constant values at least six to eight months (on average) after injection. Furthermore, the simulation of CO2 injection provides intuitive knowledge and a better understanding of the fluid flow behavior of CO2 in the subsurface with the deformation effect of the porous medium.

  3. Pharmacokinetics, pharmacodynamics and local tolerance at injection site of marbofloxacin administered by regional intravenous limb perfusion in standing horses.

    Science.gov (United States)

    Lallemand, Elodie; Trencart, Pierre; Tahier, Carine; Dron, Frederic; Paulin, Angelique; Tessier, Caroline

    2013-08-01

    To evaluate pharmacokinetic-pharmacodynamic variables and local tolerance at injection-site of marbofloxacin administered via regional intravenous limb perfusion (RIVLP) in standing horses. Adult horses (n = 6). RIVLP were performed with rubber tourniquets applied to the forelimbs of standing sedated horses. Marbofloxacin (0.67 mg/kg) was randomly injected in 1 forelimb, with the contralateral limb serving as a control (0.9% NaCl solution). Samples of jugular blood and synovial fluid from the radiocarpal joint of the marbofloxacin-perfused limb were collected before and at intervals after RIVLP for determination of drug concentrations. All injection sites were evaluated before, 24 and 48 hours after RIVLP by means of ultrasonographic examination, circumferential measurements and subjective visible inflammation scores by veterinarians unaware of treatment received. No adverse effects associated with the technique or antibiotic were observed. High marbofloxacin concentrations were obtained in the synovial fluid, AUCINF was significantly higher in synovial fluid than in plasma (78.64 ± 49.41 and 2.85 ± 0.60 µg h/mL respectively, P = .028). The efficacy indices, AUC0-24 /MIC90 and Cmaxobs/MIC90 , predicted a favorable outcome in the treatment of synovial fluid infections caused by enterobacteriaceae and Staphylococcus aureus. After RIVLP, there was no statistically significant difference between marbofloxacin-injected and control limbs for lameness, visual inflammation score, limb circumference, and ultrasonographic appearance of the veins. Marbofloxacin injected limbs had a significantly greater subcutaneous thickness, compared with control limbs. These data suggest that RIVLP of marbofloxacin (0.67 mg/kg) could be a safe and effective method for treatment of infections of the distal portion of the limb for susceptible organisms. © Copyright 2013 by The American College of Veterinary Surgeons.

  4. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity

    Science.gov (United States)

    Rubinstein, Justin L.; Mahani, Alireza Babaie

    2015-01-01

    The central United States has undergone a dramatic increase in seismicity over the past 6 years (Fig. 1), rising from an average of 24 M≥3 earthquakes per year in the years 1973–2008 to an average of 193 M≥3 earthquakes in 2009–2014, with 688 occurring in 2014 alone. Multiple damaging earthquakes have occurred during this increase including the 2011 M 5.6 Prague, Oklahoma, earthquake; the 2011 M 5.3 Trinidad, Colorado, earthquake; and the 2011M 4.7 Guy‐Greenbrier, Arkansas, earthquake. The increased seismicity is limited to a few areas and the evidence is mounting that the seismicity in many of these locations is induced by the deep injection of fluids from nearby oil and gas operations. Earthquakes that are caused by human activities are known as induced earthquakes. Most injection operations, though, do not appear to induce earthquakes. Although the message that these earthquakes are induced by fluid injection related to oil and gas production has been communicated clearly, there remains confusion in the popular press beyond this basic level of understanding.

  5. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    Science.gov (United States)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  6. Influence of repeated infusion of capsaicin-contained red pepper sauce on esophageal secondary peristalsis in humans.

    Science.gov (United States)

    Liu, T T; Yi, C H; Lei, W Y; Hung, X S; Yu, H C; Chen, C L

    2014-10-01

    The transient receptor potential vanilloid 1 has been implicated as a target mediator for heartburn perception and modulation of esophageal secondary peristalsis. Our aim was to determine the effect of repeated esophageal infusion of capsaicin-contained red pepper sauce on heartburn perception and secondary peristalsis in healthy adults. Secondary peristalsis was performed with mid-esophageal injections of air in 15 healthy adults. Two separate protocols including esophageal infusion with saline and capsaicin-contained red pepper sauce and 2 consecutive sessions of capsaicin-contained red pepper sauce were randomly performed. After repeated infusion of capsaicin-contained red pepper sauce, the threshold volume to activate secondary peristalsis was significantly increased during slow (p sauce enhanced heartburn perception (p sauce infusion (p = 0.007). Acute infusion of capsaicin-contained red pepper sauce significantly increased pressure wave amplitudes of distal esophagus during slow (p = 0.003) and rapid air injections (p = 0.01), but repeated infusion of capsaicin-contained red pepper sauce significantly decreased pressure wave amplitude of distal esophagus during slow (p = 0.0005) and rapid air injections (p = 0.003). Repeated esophageal infusion of capsaicin appears to attenuate heartburn perception and inhibit distension-induced secondary peristalsis in healthy adults. These results suggest capsaicin-sensitive afferents in modulating sensorimotor function of secondary peristalsis in human esophagus. © 2014 John Wiley & Sons Ltd.

  7. Widerspread Hypopigmentation Secondary to the Prolonged use of ...

    African Journals Online (AJOL)

    A 24-year old Nigerian woman presented at our clinic with extensive hypopigmentation following the use of very potent steroidal cream in widerspread lichen planus. She was treated with intramuscular injection of triamcinolone acetonide and the associated secondary bacterial infection was treated with an antibiotic.

  8. Circulation of cerebrospinal fluid. Anatomical bases and physiopathological conditions observed with radioisotopes

    International Nuclear Information System (INIS)

    Oberson, R.

    1975-01-01

    Cerebrospinal fluid circulation (tertiary circulation) was studied by lumbar or sub-occipital injection of radiotracers. The method is divided into three techniques which differ by the location of the injection and the space which is explored. Radio-isotopic cisternography is primarily concerned with the leptomeningitic space of the skull, and sub-occipital injection is preferred. Myelo-scintigraphy is the study principally of the rachidian leptomeningitic space and lumbar injection is preferred in this case. Radio-isotopic ventriculography explores the ependymal space, e.g. the ventricular system. The radiotracer is injected directly or indirectly by Rickham's reservoir, into a horn of a lateral ventricle; these three spaces communicate. Various radiotracers were utilized, the DTPA complex and sup(99m)Tc being preferred. The documents obtained are scintigrams from a scintillation camera [fr

  9. Good mixing length: Digital simulation of fluid mixing with and without obstacles

    International Nuclear Information System (INIS)

    Suarez Antola, R.; Burgos, D.

    2006-07-01

    The good mixing length of a tracer assures that the samples or measures taken are fair. A non homogeneous tracer mixing through the cross section of the fluid medium involved in the experiment (eg. a river or a pipe) may conduct to erroneous conclusions. For establishing that length, a digital simulation of a two dimensional fluid flow, using Navier-Stokes equations, was done. A continuous tracer injection was simulated.The good mixing length was studied in two cases, first with a free of obstacles situation and then the effect of a significant obstacle located after the tracer injection point. As usual in practice, the good mixing length was estimated using a suitable upper bound for the concentration deviations from the mean in a given cross section. An analytical discussion of the obtained results is done

  10. Groundwater monitoring for deep-well injection

    International Nuclear Information System (INIS)

    Chia, Y.; Chiu, J.

    1994-01-01

    A groundwater monitoring system for detecting waste migration would not only enhance confidence in the long-term containment of injected waste, but would also provide early warnings of contamination for prompt responses to protect underground sources of drinking water (USDWs). Field experiences in Florida have demonstrated monitoring water quality and fluid pressure changes in overlying formations is useful in detecting the upward migration of injected waste. Analytical and numerical solutions indicate changes in these two monitoring parameters can vary on the basis of hydrogeologic characteristics, operation conditions, and the distances from the injection well to the monitoring wells and to the preferential hydrologic conduits. To detect waste migration through defects around the wellbore or the leaky containment interval, groundwater monitoring wells should be placed as close as possible to an injection well. In the vertical direction, a monitoring well completed in a permeable interbed within the containment interval is expected to have the highest potential for detecting upward migration. Another acceptable horizon for groundwater monitoring is the lower portion of the buffer brine aquifer immediately above the containment interval. Monitoring wells in USDWs may be needed when waste has been detected in deeper formations or when leakage out of well casings poses a concern. A monitoring well open to the injection interval is of little value in alleviating the concerns of long-term upward migration. Moreover, the installation of the well could create additional preferential pathways. Complications in groundwater monitoring may arise at existing injection sites, especially with prior releases. It is also important to recognize that monitoring in the vicinity of the wellbore may not be effective for detecting waste migration through unidentified unplugged wells or undetected transmissive fractures

  11. Feasibility of calibration of liquid sodium flowmeters by neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1976-07-01

    Velocities of fluids in pipes can be measured by injecting radioactive tracers into the fluid and recording the activity downstream of the injection point. One convenient method of injecting radioactive tracers is by neutron activation of the fluid itself. The present report describes a FORTRAN program that can be used for the prediction of the counting rates of fluid flow tests performed with a pulsed neutron source and a scintillation detector. The program models the flow profile and the mixing of the fluid, the attenuation of neutrons and gamma rays in the fluid, and the geometric arrangement of the source and the detector. Using this program, an experiment for the measurement of the secondary sodium flow of the EBR-II was optimized. A pulsed D,T neutron source and a 5 in. x 5 in. NaI detector will be used in the EBR-II test. Under optimized conditions, the expected accuracy of the flow measurement is about 2 percent

  12. A randomized, double-blinded, controlled trial of the effects of fluid rate and/or presence of dextrose in intravenous fluids on the labor course of nulliparas.

    Science.gov (United States)

    Fong, Alex; Serra, Allison E; Caballero, Deysi; Garite, Thomas J; Shrivastava, Vineet K

    2017-08-01

    Prolonged labor has been demonstrated to increase adverse maternal and neonatal outcome. A practice that may decrease the risk of prolonged labor is the modification of fluid intake during labor. Several studies demonstrated that increased hydration in labor as well as addition of dextrose-containing fluids may be associated with a decrease in length of labor. The purpose of our study was to characterize whether high-dose intravenous fluids, standard-dose fluids with dextrose, or high-dose fluids with dextrose show a difference in the duration of labor in nulliparas. Nulliparous subjects with singletons who presented in active labor were randomized to 1 of 3 groups of intravenous fluids: 250 mL/h of normal saline, 125 mL/h of 5% dextrose in normal saline, or 250 mL/h of 2.5% dextrose in normal saline. The primary outcome was total length of labor from initiation of intravenous fluid in vaginally delivered subjects. Secondary outcomes included cesarean delivery rate and length of second stage of labor, among other maternal and neonatal outcomes. In all, 274 subjects who met inclusion criteria were enrolled. There were no differences in baseline characteristics among the 3 groups. There was no difference in the primary outcome of total length of labor in vaginally delivered subjects among the 3 groups. First stage of labor duration, second stage of labor duration, and cesarean delivery rates were also equivalent. There were no differences identified in other secondary outcomes including clinical chorioamnionitis, postpartum hemorrhage, blood loss, Apgar scores, or neonatal intensive care admission. There is no difference in length of labor or delivery outcomes when comparing high-dose intravenous fluids, addition of dextrose, or use of high-dose intravenous fluids with dextrose in nulliparous women who present in active labor. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Prenatal diagnosis of Bartter syndrome: amniotic fluid aldosterone.

    Science.gov (United States)

    Rachid, Myriam; Dreux, Sophie; Pean de Ponfilly, Gauthier; Vargas-Poussou, Rosa; Czerkiewicz, Isabelle; Chevenne, Didier; Oury, Jean-François; Deschênes, Georges; Muller, Françoise

    2017-04-01

    Bartter syndrome is a severe inherited tubulopathy characterized at birth by salt wasting, severe polyuria, dehydration, growth retardation and secondary hyperaldosteronism. Prenatally, the disease is usually discovered following onset of severe polyhydramnios. We studied amniotic fluid aldosterone concentration in cases of Bartter syndrome and in control groups. Amniotic fluid aldosterone was assayed by radioimmunoassay. We undertook a retrospective case-control study based on 36 cases of postnatally diagnosed Bartter syndrome and 144 controls matched for gestational age. Two controls groups were defined: controls with polyhydramnios (n=72) and control without polyhydramnios (n=72). Amniotic fluid aldosterone was compared between the three groups. The median amniotic fluid aldosterone concentration in the Bartter syndrome group (90 pg/mL) did not differ significantly from that in the controls with polyhydramnios (90 pg/mL, p=0.33) or the controls without polyhydramnios (87 pg/mL, p=0.41). In conclusion, amniotic fluid aldosterone assay cannot be used for prenatal diagnosis of Bartter syndrome.

  14. Thermal-fluid assessment of multijet atomization for spray cooling applications

    International Nuclear Information System (INIS)

    Panao, Miguel R.O.; Moreira, Antonio L.N.; Durao, Diamantino F.G.

    2011-01-01

    Thermal management is a particularly difficult challenge to the miniaturization of electronic components because it requires high performance cooling systems capable of removing large heat loads at fast rates in order to keep the operating temperature low and controlled. To meet this challenge, the Intermittent Spray Cooling (ISC) concept has been suggested as a promising technology which uses a proper match between the frequency and duration of consecutive injection cycles to control heat transfer. This concept also depends on: the atomization strategy; a homogeneous dispersion of droplets impinging on the hot surface; and the quantitative control of the liquid deposited, avoiding excessive secondary atomization or pre-impingement-evaporation. In this work, the use of liquid atomization by multiple jets impact, also referred as multijet atomization, is the subject of a thermal-fluid assessment using heat transfer correlations previously derived for intermittent sprays. Simultaneous measurements of droplet size and velocity are provided as input for the correlations and the analysis explores the influence of the number of impinging jets on the heat removal pattern and magnitude. Emphasis is put on the promising applicability of multijet atomization for promoting an intelligent use of energy in the thermal management of electronic devices.

  15. Dynamic Fluid Flow and Geomechanical Coupling to Assess the CO2 Storage Integrity in Faulted Structures

    Directory of Open Access Journals (Sweden)

    Baroni A.

    2015-04-01

    Full Text Available The SiteChar research on the Southern Adriatic Sea site focused on the investigation of the geomechanical and hydrodynamic behaviour of the storage complex in the case of CO2 injection in a reservoir consisting of fractured carbonate formations. Special attention was paid to the effects that natural faults and fractures might have on CO2 migration, and the effects that injection might have on the stability of faults. This assessment was originally performed via a hydro-geomechanical one-way coupling which relies on an adequate representation of faults in the model, allowing one to simulate fluid flow along the fault plane and inside faults as well as evolution of the stress state due to CO2 injection. The geological model was populated with petrophysical and geomechanical parameters derived either from laboratory measurements performed on samples from a reservoir analogue, or published literature. Since only sparse data were available, various scenarios were simulated to take into account the uncertainties in the fluid flow and geomechanical properties of the model: the different state of faults (i.e., open or closed and various in situ stress state, commonly named geostatic stresses as the earth’s crust deformation is assumed to be slow regarding the short-term study. Various fluid flow parameters were also considered, although only one set of petrophysical data corresponding to the most realistic ones is considered here. Faults modeled as volumetric elements behave as flow pathways for fluids when they are conductive. The injected CO2 migrates inside and through the Rovesti fault, which is located near the injection well. The fluid flow also induces overpressure in the faults. The overpressure in the Rovesti fault reaches 2.2 MPa while it reaches 4.4 MPa at the bottom hole of the injector. Extending to about 30 km, the pore pressure field reaches the Gondola fault located at 15 km from the injection zone but the overpressure does not exceed

  16. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    Science.gov (United States)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  17. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  18. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  19. Analysis of hopanes and steranes in single oil-bearing fluid inclusions using time-of-flight secondary ion mass spectrometry (ToF-SIMS).

    Science.gov (United States)

    Siljeström, S; Lausmaa, J; Sjövall, P; Broman, C; Thiel, V; Hode, T

    2010-01-01

    Steranes and hopanes are organic biomarkers used as indicators for the first appearance of eukaryotes and cyanobacteria on Earth. Oil-bearing fluid inclusions may provide a contamination-free source of Precambrian biomarkers, as the oil has been secluded from the environment since the formation of the inclusion. However, analysis of biomarkers in single oil-bearing fluid inclusions, which is often necessary due to the presence of different generations of inclusions, has not been possible due to the small size of most inclusions. Here, we have used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to monitor in real time the opening of individual inclusions trapped in hydrothermal veins of fluorite and calcite and containing oil from Ordovician source rocks. Opening of the inclusions was performed by using a focused C(60)(+) ion beam and the in situ content was precisely analysed for C(27)-C(29) steranes and C(29)-C(32) hopanes using Bi(3)(+) as primary ions. The capacity to unambiguously detect these biomarkers in the picoliter amount of crude oil from a single, normal-sized (15-30 mum in diameter) inclusion makes the approach promising in the search of organic biomarkers for life's early evolution on Earth.

  20. Modelling of liquid injection shutdown system (LISS) in ACR-1000

    International Nuclear Information System (INIS)

    Boubcher, M.; Colton, A.; Donnelly, J.V.

    2008-01-01

    Modelling of the Liquid Injection Shutdown System (LISS) in the ACR-1000 reactor core must account for the major phenomena that occur following its activation, namely the moderator hydraulics and core neutronics. The former requires modelling of the poison volumes, their time of entry into the reactor, and their propagation into the moderator after emission from the nozzle. The latter requires the reactivity worth of varying volumes and geometries of poisoned moderator fluid in order to simulate the reactivity effect of the injected poison. The time-dependent poison map is generated from hydraulic calculations, and then the neutronics data for standard geometries and concentrations is constructed using DRAGON. (author)

  1. Efficacy and safety of single injection of cross-linked sodium hyaluronate vs. three injections of high molecular weight sodium hyaluronate for osteoarthritis of the knee: a double-blind, randomized, multi-center, non-inferiority study.

    Science.gov (United States)

    Ha, Chul-Won; Park, Yong-Beom; Choi, Chong-Hyuk; Kyung, Hee-Soo; Lee, Ju-Hong; Yoo, Jae Doo; Yoo, Ju-Hyung; Choi, Choong-Hyeok; Kim, Chang-Wan; Kim, Hee-Chun; Oh, Kwang-Jun; Bin, Seong-Il; Lee, Myung Chul

    2017-05-26

    This randomized, double-blind, multi-center, non-inferiority trial was conducted to assess the efficacy and safety of a cross-linked hyaluronate (XLHA, single injection form) compared with a linear high molecular hyaluronate (HMWHA, thrice injection form) in patients with symptomatic knee osteoarthritis. Two hundred eighty seven patients with osteoarthritis (Kellgren-Lawrence grade I to III) were randomized to each group. Three weekly injections were given in both groups but two times of saline injections preceded XLHA injection to maintain double-blindness. Primary endpoint was the change of weight-bearing pain (WBP) at 12 weeks after the last injection. Secondary endpoints included Western Ontario and McMaster Universities Osteoarthritis index; patient's and investigator's global assessment; pain at rest, at night, or in motion; OMERACT-OARSI responder rate; proportion of patients achieving at least 20 mm or 40% decrease in WBP; and rate of rescue medicine use and its total consumption. Mean changes of WBP at 12 weeks after the last injection were -33.3 mm with XLHA and -29.2 mm with HMWHA, proving non-inferiority of XLHA to HMWHA as the lower bound of 95% CI (-1.9 mm, 10.1 mm) was well above the predefined margin (-10 mm). There were no significant between-group differences in all secondary endpoints. Injection site pain was the most common adverse event and no remarkable safety issue was identified. This study demonstrated that a single injection of XLHA was non-inferior to three weekly injections of HMWHA in terms of WBP reduction, and supports XLHA as an effective and safe treatment for knee osteoarthritis. ClinicalTrials.gov ( NCT01510535 ). This trial was registered on January 6, 2012.

  2. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-06-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  3. Study on the Fluid Flow Characteristics of Coherent Jets with CO2 and O2 Mixed Injection in Electric Arc Furnace Steelmaking Processes

    Science.gov (United States)

    Wei, Guangsheng; Zhu, Rong; Wu, Xuetao; Yang, Lingzhi; Dong, Kai; Cheng, Ting; Tang, Tianping

    2018-03-01

    As an efficient oxygen supplying technology, coherent jets are widely applied in electric arc furnace (EAF) steelmaking processes to strengthen chemical energy input, speed up smelting rhythm, and promote the uniformity of molten bath temperature and compositions. Recently, the coherent jet with CO2 and O2 mixed injection (COMI) was proposed and demonstrated great application potentiality in reducing the dust production in EAF steelmaking. In the present study, based on the eddy dissipation concept model, a computational fluid dynamics model of coherent jets with COMI was built with the overall and detailed chemical kinetic mechanisms (GRI-Mech 3.0). Compared with one-step combustion reaction, GRI-Mech 3.0 consists of 325 elementary reactions with 53 components and can predict more accurate results. The numerical simulation results were validated by the combustion experiment data. The jet behavior and the fluid flow characteristics of coherent jets with COMI under 298 K and 1700 K (25 °C and 1427 °C) were studied and the results showed that for coherent jets with COMI, the chemical effect of CO2 significantly weakened the shrouding combustion reactions of CH4 and the relative importance of the chemical effect of CO2 increases with CO2 concentration increasing. The potential core length of coherent jet decreases with the volume fraction of CO2 increasing. Moreover, it also can be found that the potential core length of coherent jets was prolonged with higher ambient temperature.

  4. Evaluation of performance, safety, subject acceptance, and compliance of a disposable autoinjector for subcutaneous injections in healthy volunteers

    Directory of Open Access Journals (Sweden)

    Cecile Berteau

    2010-09-01

    Full Text Available Cecile Berteau1, Florence Schwarzenbach1, Yves Donazzolo2, Mathilde Latreille2, Julie Berube3, Herve Abry1, Joël Cotten1, Celine Feger1, Philippe E Laurent11BD Medical Pharmaceutical Systems, Le-Pont-de-Claix, 2Eurofins Optimed Clinical Research, Gières, France; 3Statistics, BD Corporate, Franklin Lakes, NJ, USAObjective: A disposable autoinjector was developed for subcutaneous (SC self-injection by patients with chronic diseases. To verify its performance and evaluate its acceptance, a clinical study was conducted in healthy volunteers, comparing SC injections performed by subjects using the autoinjector with SC injections performed by nurses using a syringe.Methods: This was a randomized, single-center, crossover study comparing SC self-injection using an autoinjector with SC nurse-administered injection using a syringe. Two volumes (0.2 mL and 1 mL were injected into healthy volunteers. Study objectives included assessment of the accuracy and consistency of the volume injected by the injection systems, and skin reaction and pain associated with the injection. The fluid depot in the SC tissue layer was evaluated by ultrasound. Subject acceptance was evaluated using questionnaires on attitudes and emotions towards the injection technique, and challenged by seeking the subjects’ preferred system for a final study injection or future treatment.Results: A total of 960 injections (480 with autoinjector, 480 with syringe were performed in 40 subjects. There were no significant differences in mean fluid leakage and injected volumes between the systems. Pain associated with the injection was significantly lower with the autoinjector than with the syringe. Local skin reaction at the injection site was overall satisfactory. Injections were appropriately performed by all subjects. At study end, all 40 subjects preferred the autoinjector for a final study injection and for future treatment.Conclusion: This study indicated that the autoinjector used by

  5. Salinity effects during immiscible displacement in porous media: electrokinetic stabilization of viscous fingering

    Science.gov (United States)

    Mirzadeh, Mohammad; Bazant, Martin

    2017-11-01

    Interfacial instabilities are ubiquitous in Fluid Mechanics and have been one of the main the subjects of pattern formation. However, these instabilities could lead to inefficiencies which are undesired in many applications. For instance, viscous fingering results in residual trapping of oil during secondary recovery when a low-viscosity fluid, e.g. water, is used for injection. In their seminal work, Saffman and Taylor showed that the onset of this instability is controlled by the viscosity ratio of the two fluids. However, other physiochemical processes could enhance or suppress viscous fingering. Here we consider the role of salinity effects on the front stability. Our recent theory suggests that viscous fingering could be controlled, and even suppressed, by appropriately injecting electric currents. However, even in the absence of any external currents, strong electrokinetic coupling (present in small pores when the electric double layers overlap) can reduce viscous fingering by increasing the ``effective viscosity'' of the injected fluid. These findings suggest that it might be possible to improve extraction efficiencies by appropriately controlling the salt concentration of the injected fluid.

  6. Simulation for estimation of hydrogen sulfide scavenger injection dose rate for treatment of crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh

    2015-12-01

    Full Text Available The presence of hydrogen sulfide in the hydrocarbon fluids is a well known problem in many oil and gas fields. Hydrogen sulfide is an undesirable contaminant which presents many environmental and safety hazards. It is corrosive, malodorous, and toxic. Accordingly, a need has been long left in the industry to develop a process which can successfully remove hydrogen sulfide from the hydrocarbons or at least reduce its level during the production, storage or processing to a level that satisfies safety and product specification requirements. The common method used to remove or reduce the concentration of hydrogen sulfide in the hydrocarbon production fluids is to inject the hydrogen sulfide scavenger into the hydrocarbon stream. One of the chemicals produced by the Egyptian Petroleum Research Institute (EPRI is EPRI H2S scavenger. It is used in some of the Egyptian petroleum producing companies. The injection dose rate of H2S scavenger is usually determined by experimental lab tests and field trials. In this work, this injection dose rate is mathematically estimated by modeling and simulation of an oil producing field belonging to Petrobel Company in Egypt which uses EPRI H2S scavenger. Comparison between the calculated and practical values of injection dose rate emphasizes the real ability of the proposed equation.

  7. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  8. Acceptability of rapid oral fluid HIV testing among male injection drug users in Taiwan, 1997 and 2007.

    Science.gov (United States)

    Lyu, Shu-Yu; Morisky, Donald E; Yeh, Ching-Ying; Twu, Shiing-Jer; Peng, Eugene Yu-Chang; Malow, Robert M

    2011-04-01

    Rapid oral fluid HIV testing (rapid oral testing) is in the process of being adapted in Taiwan and elsewhere given its advantages over prior HIV testing methods. To guide this process, we examined the acceptability of rapid oral testing at two time points (i.e., 1997 and 2007) among one of the highest risk populations, male injection drug users (IDUs). For this purpose, an anonymous self-administered survey was completed by HIV-negative IDUs involved in the criminal justice system in 1997 (N (1)=137 parolees) and 2007 (N (2)=106 prisoners). A social marketing model helped guide the design of our questionnaire to assess the acceptability of rapid oral testing. This included assessing a new product, across four marketing dimensions: product, price, promotion, and place. Results revealed that in both 1997 and 2007, over 90% indicated that rapid oral testing would be highly acceptable, particularly if the cost was under US$6, and that a pharmacy would be the most appropriate and accessible venue for selling the rapid oral testing kits. The vast majority of survey respondents believed that the cost of rapid oral testing should be federally subsidized and that television and newspaper advertisements would be the most effective media to advertise for rapid oral testing. Both the 1997 and 2007 surveys suggested that rapid oral HIV testing would be particularly accepted in Taiwan by IDUs after release from the criminal justice system.

  9. Continuous monitoring of fluid flow rate and contemporaneous biogeochemical fluxes in the sub-seafloor; the Mosquito flux meter

    Science.gov (United States)

    Culling, D. P.; Solomon, E. A.; Kastner, M.; Berg, R. D.

    2013-12-01

    Fluid flow through marine sediments and oceanic crust impacts seawater chemistry as well as diagenetic, thermal, seismic, and magmatic processes at plate boundaries, creates ore and gas hydrate deposits at and below seafloor, and establishes and maintains deep microbial ecosystems. However, steady-state fluid flow rates, as well as the temporal and spatial variability of fluid flow and composition are poorly constrained in many marine environments. A new, low-cost instrument deployable by ROV or submersible, named the Mosquito, was recently developed to provide continuous, long-term and campaign style monitoring of fluid flow rate and contemporaneous solute fluxes at multiple depths below the sea floor. The Mosquito consists of a frame that houses several osmotic pumps (Osmo-Samplers [OS]) connected to coils of tubing that terminate with an attachment to long thin titanium (Ti) needles, all of which are mounted to a release plate. The OS's consist of an acrylic housing which contains a brine chamber (BC) and a distilled water chamber (DWC) separated by semi permeable membranes. The osmotic gradient between the chambers drives the flow of distilled water into the BC. The DWC is connected to the Teflon tubing coil and a Ti needle, both of which are also filled with distilled water, thus the OS pulls fluid from the base of the needle through the tubing coil. One central Ti needle is attached to a custom-made tracer injection assembly, filled with a known volume of tracer, which is triggered, injecting a point source in the sediment. On a typical Mosquito, 4 needles are mounted vertically at varying depths with respect to the tracer injection needle, and 4 needles are mounted at equal depth but set at variable horizontal distances away from the tracer injection. Once the Mosquito has been placed on the seafloor, the release plate is manually triggered pushing the Ti needles into the sediment, then the tracer injection assembly is actuated. As the tracer is advected

  10. Secondary Circuit Start Up Chemistry Optimisation

    International Nuclear Information System (INIS)

    Fontan, Guillaume; Morel, Pascal

    2012-09-01

    In a context of investment and renewal of equipment, Electricite De France (EDF) put enhanced efforts on operating practices during start-up of the secondary circuit, in order to improve operational performance and materials lifetime. This article focuses on the objective of optimizing the filling, the chemical conditioning and the thermal conditioning of the secondary fluid, while taking into account the following issues: - Limiting the time required to obtain a proper chemistry, - Limiting the amount of water and steam used, - Limiting the amount of effluent generated. The scope is all start-up conditions of secondary circuit, both after refuelling outage or fortuitous shutdowns of the plant. The recommendations produced are based on existing local procedures and good practices, which were collected and developed in order to propose a generic methodology understandable and useful both for operators, chemists and managers. (authors)

  11. The safety of peri-articular local anaesthetic injection for patients undergoing total knee replacement with autologous blood transfusion: a randomised trial.

    Science.gov (United States)

    Wallace, D F; Emmett, S R; Kang, K K; Chahal, G S; Hiskens, R; Balasubramanian, S; McGuinness, K; Parsons, H; Achten, J; Costa, M L

    2012-12-01

    Intra-operative, peri-articular injection of local anaesthesia is an increasingly popular way of controlling pain following total knee replacement. At the same time, the problems associated with allogenic blood transfusion have led to interest in alternative methods for managing blood loss after total knee replacement, including the use of auto-transfusion of fluid from the patient's surgical drain. It is safe to combine peri-articular infiltration with auto-transfusion from the drain. We performed a randomised clinical trial to compare the concentration of local anaesthetic in the blood and in the fluid collected in the knee drain in patients having either a peri-articular injection or a femoral nerve block. Clinically relevant concentrations of local anaesthetic were found in the fluid from the drains of patients having peri-articular injections (4.92 μg/ml (sd 3.151)). However, none of the patients having femoral nerve blockade had detectable levels. None of the patients in either group had clinically relevant concentrations of local anaesthetic in their blood after re-transfusion. The evidence from this study suggests that it is safe to use peri-articular injection in combination with auto-transfusion of blood from peri-articular drains during knee replacement surgery.

  12. Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales

    Science.gov (United States)

    Collettini, C.; Scuderi, M. M.; Marone, C.

    2017-12-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  13. Lipidomics by Supercritical Fluid Chromatography

    Directory of Open Access Journals (Sweden)

    Laurent Laboureur

    2015-06-01

    Full Text Available This review enlightens the role of supercritical fluid chromatography (SFC in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC. It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering or highly specific (mass spectrometry detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides defined by the LIPID MAPS consortium.

  14. Lipidomics by Supercritical Fluid Chromatography

    Science.gov (United States)

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  15. Simulation of the injection casting of metallic fuels

    International Nuclear Information System (INIS)

    Nakagawa, Tomokazu; Ogata, Takanari; Tokiwai, Moriyasu.

    1989-01-01

    For the fabrication of metallic fuel pins, injection casting is a preferable process because the simplicity of the process is suitable for remote operation. In this process, the molten metal in the crucible is injected into evacuated molds (suspended above the crucible) by pressurizing the casting furnace. Argonne National Laboratory has already adopted this process in the Integral Fast Reactor program. To obtain fuel pins with good quality, the casting parameters, such as the molten metal temperature, the magnitude of the pressure applied, the pressurizing rate, the cooling time, etc., must be optimized. Otherwise, bad-quality castings (short castings, rough surfaces, shrinkage cavities, mold fracture) may result. Therefore, it is very important in designing the casting equipment and optimizing the operation conditions to be able to predict the fluid and thermal behavior of the castings. This paper describes methods to simulate the heat and mass transfer in the molds and molten metallic fuel during injection casting. The results obtained by simulation are compared with experimental ones. Also, appropriate casting conditions for the uranium-plutonium-zirconium alloy are discussed based on the simulated results

  16. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  17. LOFT/LP-SB-3, Loss of Fluid Test, Cold Leg Break LOCA, No High Pressure injection System (HPIS)

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: The sixth OECD LOFT experiment was conducted on 5 March 1984. It simulated a 1.8-in cold leg break LOCA with no HPIS available. This experiment was designed mainly for investigation of plant recovery effectiveness using secondary bleed and feed during core uncover and addressed accumulator injection at low pressure differentials. 3 - Experimental limitations or shortcomings: Short core and steam generator, excessive core bypass, other scaling compromises, and lack of adequate measurements in certain areas

  18. Disappearing fluid?

    International Nuclear Information System (INIS)

    Graney, K.; Chu, J.; Lin, P.C.

    2002-01-01

    Full text: A 78-year old male in end stage renal failure (ESRF) with a background of NIDDM retinopathy, nephropathy, and undergoing continuous ambulatory peritoneal dialysis (CAPD) presented with anorexia, clinically unwell, decreased mobility and right scrotal swelling. There was no difficulty during CAPD exchange except there was a positive fluid balance Peritoneal dialysates remained clear A CAPD peritoneal study was requested. 100Mbq 99mTc Sulphur Colloid was injected into a standard dialysate bag containing dialysate. Anterior dynamic images were acquired over the abdomen pelvis while the dialysate was infused Static images with anatomical markers were performed 20 mins post infusion, before and after patient ambulation and then after drainage. The study demonstrated communication between the peritoneal cavity and the right scrotal sac. Patient underwent right inguinal herniaplasty with a marlex mesh. A repeat CAPD flow study was performed as follow up and no abnormal connection between the peritoneal cavity and the right scrotal sac was demonstrated post operatively. This case study shows that CAPD flow studies can be undertaken as a simple, minimally invasive method to evaluate abnormal peritoneal fluid flow dynamics in patients undergoing CAPD, and have an impact on dialysis management. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    Science.gov (United States)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  20. Gas injection pilot in the Hochleiten field

    Energy Technology Data Exchange (ETDEWEB)

    Potsch, K.; Ramberger, R.; Glantschnig, J.; Baumgarthuber, S.; Goessnitzer, F. [OMV AG, Wien (Austria)

    2004-07-01

    The Hochleiten field, located in the north of Vienna, is small in extension and highly compartmentalized. The main reservoir horizons are at a depth of approximately 1000 m. The oil quality shows high density and viscosity. Waterflood was initiated, but worked only in a part of the reservoir. Compartmentalization and lateral facies changes result in poor comunication and big pressure differences across the field. Some of the oil in place is not reached by primary or secondary recovery processes, and a solution was sought for accessing the bypassed oil. The screening process suggested gas injection as the most promising method. This contribution presents the first results of a field pilot project. Information will be given on the geology, additional lab work, and the realization in the field. The injection and production profiles of this pilot are presented. CO{sub 2} improved the inflow capacity of the injector, but the oil rates of the effected wells increased only slightly. In order to match the actual response of the reservoir, we had to adjust our reservoir model. Meanwhile N{sub 2} was injected as a tracer in one of the wells, to find out the preferred communication paths, before we proceeded with further gas injection. (orig.)

  1. Reverse flow and vortex breakdown in a shear-thinning fluid

    International Nuclear Information System (INIS)

    Cabeza, C; Sarasua, G; Barrere, N; Marti, A C

    2011-01-01

    The effect of polymer concentration on the development of reverse secondary flow and vortex breakdown was studied using a viscoelastic solution of polyacrlylamide in water. The fluid was contained in cylindrical containers of two different radii, the top end wall of which rotated at a varying speed, thus, imparting a circulating motion to the fluid. Whereas using a newtonian fluid, streamlines will occupy the entire container, the flow of a shear-thinning fluid may divide into two cells of opposite circulating motion. The curve of critical Reynolds and elasticity numbers (Re, E) values corresponding to the development of reverse flow was obtained over a wide range of Re values. Vortex breakdown was found to occur at extremely low Re values.

  2. Intravitreal bevacizumab as therapy for refractory neovascular glaucoma secondary to iris metastasis of breast carcinoma

    Directory of Open Access Journals (Sweden)

    Stephanie Vale

    2018-03-01

    Conclusions & importance: A single intravitreal bevacizumab injection may be sufficient to achieve palliative control of neovascular glaucoma secondary to iris breast cancer metastasis. To our knowledge, this is the first case report in which a single intravitreal bevacizumab injection was used for the effective management of this condition.

  3. Long-term complications of polyethylene glycol injection to the face.

    Science.gov (United States)

    Altintas, Hande; Odemis, Mustafa; Bilgi, Selcuk; Cakmak, Ozcan

    2012-04-01

    Currently, filling, smoothing, or recontouring the face through the use of injectable fillers is one of the most popular forms of cosmetic surgery. Because these materials promise a more youthful appearance without anesthesia in a noninvasive way, various fillers have been used widely in different parts of the world. However, most of these fillers have not been approved by the Food and Drug Administration, and their applications might cause unpleasant disfiguring complications. This report describes a case of foreign body granuloma in the cheeks secondary to polyethylene glycol injection and shows the possible complications associated with the use of facial fillers.

  4. Optics and Fluid Dynamics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Juul Rasmussen, J.; Hanson, S.G.

    1991-02-01

    Research in the Optics and Fluid Dynamics Department covers plasma physics, fluid dynamics, optics, and neural networks. Plasma physics is concentrated on basic investigations with relevance to fusion plasmas. Both theoretical and experimental work has been performed. Pellet injection systems have been developed. Within the area of fluid dynamics spectral models for studying the dynamcis of coherent structures have been developed. Optical diagnostic methods based on quasi-elastic light scattering have been developed. Beam propagation in random and nonlinear media has been investigated. Spatial and temporal processing schemes, especially for pattern recognition, have been investigated. (author)

  5. Assessment of brine migration risks along vertical pathways due to CO2 injection

    Science.gov (United States)

    Kissinger, Alexander; Class, Holger

    2015-04-01

    Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems. Among these competing uses are Carbon Capture and Storage (CCS), geothermal energy, nuclear waste disposal, 'renewable' methane or hydrogen storage as well as the ongoing production of fossil resources like oil, gas and coal. Additionally, these technologies may also create conflicts with essential public interests such as water supply. For example, the injection of CO2 into the subsurface causes an increase in pressure reaching far beyond the actual radius of influence of the CO2 plume, potentially leading to large amounts of displaced salt water. In this work we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. In contrast to modeling on the reservoir scale the spatial scale required for this work is much larger in both vertical and lateral direction, as the regional hydrogeology has to be considered. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt domes are considered as potential pathways for displaced fluids into shallow systems and their influence has to be taken into account. We put the focus of our investigations on the latter type of scenario, since there is still a poor understanding of the role that salt diapirs would play in CO2 storage projects. As there is hardly any field data available on this scale, we compare different levels of model complexity in order to identify the relevant processes for brine displacement and simplify the modeling process wherever possible, for example brine injection vs. CO2 injection, simplified geometries vs. the complex formation geometry and the role of salt induced density differences on flow. Further we investigate the impact of the

  6. 26 CFR 1.613A-7 - Definitions.

    Science.gov (United States)

    2010-04-01

    ...) is a secondary or tertiary process. A process (such as fire flooding or miscible fluid injection... in ownership for federal tax purposes after December 31, 1974, by sale, exchange, gift, lease...

  7. Safe and Effective Use of the Once Weekly Dulaglutide Single-Dose Pen in Injection-Naïve Patients With Type 2 Diabetes.

    Science.gov (United States)

    Matfin, Glenn; Van Brunt, Kate; Zimmermann, Alan G; Threlkeld, Rebecca; Ignaut, Debra A

    2015-04-21

    This 4-week, phase 3b, multicenter, open-label, single-arm, outpatient study demonstrated the safe and effective use of the dulaglutide single-dose pen containing 0.5 mL of placebo for subcutaneous injection in injection-naïve adult patients with type 2 diabetes (T2D), with A1C ≤ 8.5% (69 mmol/mol), BMI ≥ 23 kg/m2 and ≤ 45 kg/m(2). Patients completed a modified self-injecting subscale of the Diabetes Fear of Injecting and Self-Testing Questionnaire (mD-FISQ) and were trained to self-inject with the single-dose pen. Patients completed the initial self-injection at the site, injected at home for 2 subsequent weeks, and returned to the site for the final injection. The initial and final self-injections were evaluated for success; the final (initial) self-injection success rate was the primary (secondary) outcome measure, and the primary (secondary) objective was to demonstrate this success rate as being significantly greater than 80%. Patients recorded their level of pain after each injection. After the final injection, patients completed the mD-FISQ and the Medication Delivery Device Assessment Battery (MDDAB) to assess their perceptions of the single-dose pen, including ease of use and experience with the device. Among 211 patients (mean age: 61 years), the primary objective was met, with a final injection success rate of 99.1% (95% CI: 96.6% to 99.7%). Among 214 patients, the initial injection success rate was 97.2% (95% CI: 94.0% to 98.7%), meeting the key secondary objective. Overall, most patients (>96%) found the device easy to use, were satisfied with the device, and would be willing to continue to use the single-dose pen after the study. There was a significant reduction (P injecting, as measured by the mD-FISQ. The dulaglutide single-dose pen was found to be a safe and effective device for use by patients with T2D who were injection-naïve. A positive injection experience is an important factor for patients and providers when initiating injectable

  8. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  9. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  10. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    Science.gov (United States)

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  11. Tertiary recovery and tritide injection equipment

    International Nuclear Information System (INIS)

    Li Lin

    1989-01-01

    The exploitation of an oil field is a continously developing process, undergoing seveal stages, such as the low production, the high production, the stable production and the decline. The tertiary recovery is an important means of the enhanced oil recovery. Since the object of the tertiary recovery is to treat the oil in micropores which is difficult to be produced, it is more necessary to know further the reservoir. Tritide can be used as a tracer and is an ideal marker of knowing the reservoir and the state of the fluid movement. The paper presents the tritide injection equipment

  12. Ultrasound-Guided 50% Ethyl Alcohol Injection for Patients With Malleolar and Olecranon Bursitis: A Prospective Pilot Study

    Science.gov (United States)

    Hong, Ji Seong; Lee, Jin Hyung

    2016-01-01

    Objective To evaluate the feasibility and effect of ultrasound-guided ethyl alcohol injection on malleolar and olecranon synovial proliferative bursitis. Methods Twenty-four patients received ultrasound-guided 50% diluted ethyl alcohol injection at the site of synovial proliferative bursitis after aspiration of the free fluid. Results Swelling and symptoms significantly decreased in 13 of the 24 patients without any complications. Eleven patients had partial improvement in swelling and symptoms. Conclusion Ultrasound-guided alcohol injection could be an alternative therapeutic option before surgery in patients with chronic intractable malleolar and olecranon synovial proliferative bursitis. PMID:27152282

  13. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  14. Differential radioautographic visualization of central catecholaminergic neurons following intracisternal or intraventricular injection of tritiated norepinephrine

    International Nuclear Information System (INIS)

    Nowaczyk, T.; Pujol, J.F.; Valatx, J.L.; Bobillier, P.

    1978-01-01

    The differential [ 3 H]NE labeling of CA groups following cerebrospinal fluid (CSF) injection procedures seems to be accounted by the dynamics of CSF formation and circulation, which is similar in the rat to that known in man. Following intraventricular injection there was a lack of labeling of CA neurons located at a distance from the cerebrospinal cavities. Labeled neurons were also visualized outside known CA groups, questioning the nature and functional significance of these cells. (C.F.)

  15. Gamma-variate plasma clearance versus urinary plasma clearance of 51Cr-EDTA in patients with cirrhosis with and without fluid retention

    DEFF Research Database (Denmark)

    Fuglsang, Stefan; Henriksen, Ulrik L; Hansen, Hanne Boskov

    2017-01-01

    In patients with fluid retention, the plasma clearance of (51) Cr-EDTA (Clexp obtained by multiexponential fit) may overestimate the glomerular filtration rate (GFR). The present study was undertaken to compare a gamma-variate plasma clearance (Clgv) with the urinary plasma clearance of (51) Cr......-EDTA (Clu ) in patients with cirrhosis with and without fluid retention. A total of 81 patients with cirrhosis (22 without fluid retention, 59 with ascites) received a quantitative intravenous injection of (51) Cr-EDTA followed by plasma and quantitative urinary samples for 5 h. Clgv was determined from...... the injected dose relative to the plasma concentration-time area, obtained by a gamma-variate iterative fit. Clexp and Clu were determined by standard technique. In patients without fluid retention, Clgv , Clexp and Clu were closely similar. The difference between Clgv and Clu (Clgv - Clu = ΔCl) was mean -0...

  16. Influence of capillary die geometry on wall slip of highly filled powder injection molding compounds

    Czech Academy of Sciences Publication Activity Database

    Sanétrník, D.; Hausnerová, B.; Filip, Petr; Hnátková, E.

    2018-01-01

    Roč. 325, February (2018), s. 615-619 ISSN 0032-5910 R&D Projects: GA ČR GA17-26808S Grant - others:Ministerstvo školství, mládeže a tělovýchovy (MŠMT)(CZ) LO1504 Institutional support: RVO:67985874 Keywords : powder injection molding * highly filled polymer * wall slip * capillary entrance angle Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.942, year: 2016

  17. Study of the reactive processes during CO2 injection into sedimentary reservoirs: Experimental quantification of the processes at meso-scale

    International Nuclear Information System (INIS)

    Luquot, L.

    2008-11-01

    In order to minimize CO 2 atmospheric concentration, a solution consists in sequestrating CO 2 in geological reservoirs. To estimate long term risks, it is necessary to quantify the couplings between reaction processes as well as structural and hydrodynamical modifications. We realised two experimental benches enabling injecting CO 2 -enriched-brine in conditions corresponding to in situ storage (T ≤ 200 C and P ≤ 200 bar) and developed an experimental protocol using X-Ray microtomography and fluid and rock analyses in order to measure the variations of physical and chemical parameters. The study of carbonated reservoirs near the injection well, allows quantifying different k-phi relationships depending on the dissolution processes and triggered by the local fluid chemical composition and initials conditions. Away from the injection well, we observe carbonate precipitation decreasing the permeability. The study of fractured cap-rock samples shows that alternative percolation of CO 2 -enriched-brine and CO 2 gas increases the fracture permeability. The study of silicated rocks indicates carbonate precipitation in zeolite sandstone and sintered dunite grains. Nevertheless, in zeolite sandstone we also observe the precipitation of clay particles located in the fluid pathways which decrease strongly the permeability. (author)

  18. All that glitters is not gold: Increased Signal in the Subarachnoid Space on Fluid-Attenuated Inversion Recovery Imaging after gadolinium injection

    Directory of Open Access Journals (Sweden)

    Juliana Avila Duarte

    2016-08-01

    Full Text Available A 61-year-old woman arrived at the emergency department of the Hospital Nossa Senhora das Graças, Canoas, southern Brazil, with suspected ischemic stroke. After clinical and laboratory examination, the clinical diagnosis of ischemic stroke was made, without fulfilling criteria for thrombolysis. The patient had no history of renal failure. Three days later, she performed a magnetic resonance imaging (MRI examination that confirmed the suspected diagnosis. This examination was performed without sedation or supplemental oxygen. Brain MRI was performed after gadolinium injection, using fluid-attenuated inversion recovery (FLAIR imaging, T1-weighted image, diffusion-weighted imaging, and T2-weighted image sequences that revealed signs of subacute watershed stroke in the left cerebral hemisphere (Figures 1, 2 and 3. There was a hyperintense cerebrospinal fluid (CSF in the subarachnoid space (SAS on FLAIR imaging, a finding that has been reported in many  pathologic conditions1 such as superior sagittal thrombosis, subarachnoid hemorrhage², meningitis,  meningeal carcinomatosis,  next to tumors, status epilepticus and stroke.3-7 It has also been reported in otherwise healthy patients undergoing anesthesia with supplemental oxygen.8 The exact mechanism by which CSF diffuses into the SAS in patients with or without renal insufficiency is not completely explained. Some authores have suggested that in patients with renal failure, the gadolinium may shift across an osmotic gradient at the circumventricular organs in the setting of proctracted elevation of plasma concentrations.9 We believe that the cause of this imaging phenomenon of hyperintense signal of the CSF in the SAS which has already been noted in patients with compromised cerebral perfusion, including cases of acute ischemic stroke, was due to the recent stroke.10-11 Keywords: Flair hyperintensity, MRI, stroke, Gadolinium

  19. Use of Invasion Percolation Models To Study the Secondary Migration of Oil and Related Problems

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1997-12-31

    This thesis studies simulations of the slow displacement of a wetting fluid by a non-wetting fluid in porous media and in a single fracture. The simulations are based on the invasion percolation model. New modified versions of the model are presented that simulate migration, fragmentation and coalescence processes of the clusters of non-wetting fluid. The resulting displacement patterns are characterized by scaling laws. In particular, simulations of the secondary migration of oil through porous homogeneous rock are discussed. Fractured rocks are extreme cases of inhomogeneous porous media. Simulations of the slow displacement of a wetting fluid by a non-wetting fluid in a single fracture using the standard invasion model are presented. There is a discussion of a scenario in which a cluster of non-wetting fluid migrates through a porous medium that was saturated with a wetting fluid. The migration is driven by continuously driven buoyancy forces. Both experiments and simulations are described. The same scenario is also studied theoretically and by simulations using a simplified percolation model of fluid migration in one dimension. The migration model in two dimensions, with constant buoyancy forces, is also discussed. Simulations of fluid migration, such as the secondary migration of oil, in two- and three-dimensional media are examined, the media having multi-affine properties rather than being homogeneous. Slow immiscible displacement processes in single fractures are studied using fractal geometries to model single fractures. 167 refs., 123 figs.

  20. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    Science.gov (United States)

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  1. Wastewater injection and slip triggering: Results from a 3D coupled reservoir/rate-and-state model

    Science.gov (United States)

    Babazadeh, M.; Olson, J. E.; Schultz, R.

    2017-12-01

    Seismicity induced by fluid injection is controlled by parameters related to injection conditions, reservoir properties, and fault frictional behavior. We present results from a combined model that brings together injection physics, reservoir dynamics, and fault physics to better explain the primary controls on induced seismicity. We created a 3D fluid flow simulator using the embedded discrete fracture technique and then coupled it with a 3D displacement discontinuity model that uses rate and state friction to model slip events. The model is composed of three layers, including the top-seal, the injection reservoir, and the basement. Permeability is anisotropic (vertical vs horizontal) and along with porosity varies by layer. Injection control can be either rate or pressure. Fault properties include size, 2D permeability, and frictional properties. Several suites of simulations were run to evaluate the relative importance of each of the factors from all three parameter groups. We find that the injection parameters interact with the reservoir parameters in the context of the fault physics and these relations change for different reservoir and fault characteristics, leading to the need to examine the injection parameters only within the context of a particular faulted reservoir. For a reservoir with no flow boundaries, low permeability (5 md), and a fault with high fault-parallel permeability and critical stress, injection rate exerts the strongest control on magnitude and frequency of earthquakes. However, for a higher permeability reservoir (80 md), injection volume becomes the more important factor. Fault permeability structure is a key factor in inducing earthquakes in basement rocks below the injection reservoir. The initial failure state of the fault, which is challenging to assess, can have a big effect on the size and timing of events. For a fault 2 MPa below critical state, we were able to induce a slip event, but it occurred late in the injection history

  2. Modelling of limestone injection for SO2 capture in a coal fired utility boiler

    International Nuclear Information System (INIS)

    Kovacik, G.J.; Reid, K.; McDonald, M.M.; Knill, K.

    1997-01-01

    A computer model was developed for simulating furnace sorbent injection for SO 2 capture in a full scale utility boiler using TASCFlow TM computational fluid dynamics (CFD) software. The model makes use of a computational grid of the superheater section of a tangentially fired utility boiler. The computer simulations are three dimensional so that the temperature and residence time distribution in the boiler could be realistically represented. Results of calculations of simulated sulphur capture performance of limestone injection in a typical utility boiler operation were presented

  3. Subcutaneous injection of 99mTc pertechnetate at acupuncture points K-3 and B-60

    International Nuclear Information System (INIS)

    Wu Chung-Chieng; Jong Shiang-Bin; Lin Chun-Ching; Chen Min-Fen; Chen Jong-Rern; Chung Chieng.

    1990-01-01

    The acupuncture points are known to be morphologically related to the nerves and vessels. Yet the physiological role of blood vessels in the formation of acupuncture points remains unknown. With subcutaneous injection of 99m Tc pertechnetate at the acupuncture points K-3 and B-60 and with intra-acupuncture point injection of 99m Tc pertechnetate at K-3 and B-60, a lower-limb venography like what was obtained by intravenous injection of 99m Tc macroaggregated albumin was demonstrated in the present study. It seems that some acupuncture points do play a role in drainage of tissue fluid from soft tissue into the veins. (author)

  4. Study on effects of turbulence promoter on fluid mixing in T-junction piping system

    International Nuclear Information System (INIS)

    Nagao, Akihiro; Hibara, Hideki; Ochi, Junji; Muramatsu, Toshiharu

    2004-07-01

    Flows in T-junction piping system with turbulence promoter have been investigated experimentally using flow visualization techniques (the dye injection method) and velocity measurement by LDV. Effects of turbulent promoter on characteristics of fluid mixing and thermal-striping phenomena are examined. From the experiment, following results are obtained. (1) Arch vortex is formed further than the case without promoter in the upstream station and is rapidly transported to the downstream direction. (2) Secondary flow induced in the cross section become stronger and the diffusion of axial momentum is promoted, as the height of turbulence promoter is higher. (3) Main flow deflects towards to the opposite side of branch pipe at the T-junction, as the height of turbulence promoter is higher, and as velocity ratio becomes smaller, and the flow continues to deflect to a considerably downstream station. (4) Velocity fluctuation is observed in the position where the vortex is formed, and it becomes a maximum at z/Dm=2. In the further downstream, velocity fluctuation decreases with the vortex breakdown, and it considerably remains to the downstream. (author)

  5. Are joint and soft tissue injections painful? Results of a national French cross-sectional study of procedural pain in rheumatological practice

    Directory of Open Access Journals (Sweden)

    Poncet Coralie

    2010-01-01

    Full Text Available Abstract Background Joint, spinal and soft tissue injections are commonly performed by rheumatologists in their daily practice. Contrary to other procedures, e.g. performed in pediatric care, little is known about the frequency, the intensity and the management of procedural pain observed in osteo-articular injections in daily practice. Methods This observational, prospective, national study was carried out among a French national representative database of primary rheumatologists to evaluate the prevalence and intensity of pain caused by intra-and peri-articular injections, synovial fluid aspirations, soft tissue injections, and spinal injections. For each physician, data were collected over 1 month, for up to 40 consecutive patients (>18-years-old for whom a synovial fluid aspiration, an intra or peri-articular injection or a spinal injection were carried out during consultations. Statistical analysis was carried out in order to compare patients who had suffered from pain whilst undergoing the procedure to those who had not. Explanatory analyses were conducted by stepwise logistic regression with the characteristics of the patients to explain the existence of pain. Results Data were analysed for 8446 patients (64% female, mean age 62 ± 14 years recruited by 240 physicians. The predominant sites injected were the knee (45.5% and spine (19.1%. Over 80% of patients experienced procedural pain which was most common in the small joints (42% and spine (32% Pain was severe in 5.3% of patients, moderate in 26.6%, mild in 49.8%, and absent in 18.3%. Pain was significantly more intense in patients with severe pain linked to their underlying pathology and for procedures performed in small joints. Preventative or post-procedure analgesia was rarely given, only to 5.7% and 36.3% of patients, respectively. Preventative analgesia was more frequently prescribed in patients with more severe procedural pain. Conclusion Most patients undergoing intra-or peri

  6. The Applicability of Different Fluid Media to Measure Effective Stress Coefficient for Rock Permeability

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available Effective stress coefficient for permeability (ESCK is the key parameter to evaluate the properties of reservoir stress sensitivity. So far, little studies have clarified which ESCK is correct for a certain reservoir while rock ESCK is measured differently by different fluid media. Thus, three different fluids were taken to measure a fine sandstone sample’s ESCK, respectively. As a result, the ESCK was measured to be the smallest by injecting nitrogen, the largest by injecting water, and between the two by brine. Besides, those microcharacteristics such as rock component, clay mineral content, and pore structure were further analyzed based on some microscopic experiments. Rock elastic modulus was reduced when water-sensitive clay minerals were encountered with aqua fluid media so as to enlarge the rock ESCK value. Moreover, some clay minerals reacting with water can spall and possibly block pore throats. Compared with water, brine can soften the water sensitivity; however, gas has no water sensitivity effects. Therefore, to choose which fluid medium to measure reservoir ESCK is mainly depending on its own exploitation conditions. For gas reservoirs using gas to measure ESCK is more reliable than water or brine, while using brine is more appropriate for oil reservoirs.

  7. What controls the maximum magnitude of injection-induced earthquakes?

    Science.gov (United States)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  8. Determination of a safe INR for joint injections in patients taking warfarin.

    Science.gov (United States)

    Bashir, M A; Ray, R; Sarda, P; Li, S; Corbett, S

    2015-11-01

    With an increase in life expectancy in 'developed' countries, the number of elderly patients receiving joint injections for arthritis is increasing. There are legitimate concerns about an increased risk of thromboembolism if anticoagulation is stopped or reversed for such an injection. Despite being a common dilemma, the literature on this issue is scarce. We undertook 2,084 joint injections of the knee and shoulder in 1,714 patients between August 2008 and December 2013. Within this cohort, we noted 41 patients who were taking warfarin and followed them immediately after joint injection in the clinic or radiology department, looking carefully for complications. Then, we sought clinical follow-up, correspondence, and imaging evidence for 4 weeks, looking for complications from these joint injections. We recorded International Normalised Ratio (INR) values before injection. No complications were associated with the procedure after any joint injection. The radiologists who undertook ultrasound-guided injections to shoulders re-scanned the joints looking for haemarthroses: they found none. A similar outcome was noted clinically after injections in the outpatient setting. With a mean INR of 2.77 (range, 1.7-5.5) and a maximum INR within this group of 5.5, joint injections to the shoulder and knee can be undertaken safely in primary or secondary care settings despite the patient taking warfarin.

  9. Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections

    Directory of Open Access Journals (Sweden)

    Hidemi Hattori

    2018-04-01

    Full Text Available Endoscopic mucosal resection (EMR and endoscopic submucosal dissection (ESD have been used for surgical treatment of early gastric cancer. These endoscopic techniques require proper submucosal injections beneath the tumor to provide a sufficiently high submucosal fluid cushion (SFC to facilitate clean dissection and resection of the tumor. Until now, the submucosal injection materials developed for endoscopic techniques such as EMR and ESD of tumors have been composed of macromolecules, proteins, or polysaccharides. We have been investigating the use of chitosan, a product that is obtained by the alkaline deacetylation of chitin, the second-most abundant natural polysaccharide. Specifically, we have been studying a photocrosslinked chitosan hydrogel (PCH and solubilized chitosan derivatives for use as novel submucosal injections for endoscopic techniques. Notably, chitosan derivatives with lactose moieties linked to the amino groups of its glucosamine units can specifically interact with acidic mucopolysaccharides and mucins in submucosa without the need for the incorporation of harmful photoreactive groups nor potentially mutagenic ultraviolet irradiation.

  10. Cerebrospinal fluid ascites. a case report and literature review ...

    African Journals Online (AJOL)

    Cerebrospinal fluid ascites is one complication of ventriculoperitoneal shunt surgery. This case reports a 7year old child with abdominal distention five years after ventriculoperitoneal shunt insertion for hydrocephalus secondary to aqueductal stenosis. The child had a history of multiple shunt revisions. Liver, cardiac and ...

  11. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities

    Science.gov (United States)

    Krueger, Martin; Jimenez, Nuria

    2017-04-01

    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperature, high pressure) were conducted using groundwater samples from three different locations. Series of microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in

  12. 3D-CFD Simulation of Confined Cross-Flow Injection Process Using Single Piston Pump

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-12-01

    Full Text Available Injection process into a confined cross flow is quite important for many applications including chemical engineering and water desalination technology. The aim of this study is to investigate the performance of the injection process into a confined cross-flow of a round pipe using a single piston injection pump. A computational fluid dynamics (CFD analysis has been carried out to investigate the effect of the locations of the maximum velocity and minimum pressure on the confined cross-flow process. The jet trajectory is analyzed and related to the injection pump shaft angle of rotation during the injection duty cycle by focusing on the maximum instant injection flow of the piston action. Results indicate a low effect of the jet trajectory within the range related to the injection pump operational conditions. Constant cross-flow was used and injection flow is altered to vary the jet to line flow ratio (QR. The maximum jet trajectory exhibits low penetration inside the cross-flow. The results showed three regions of the flow ratio effect zones with different behaviors. Results also showed that getting closer to the injection port causes a significant decrease on the locations of the maximum velocity and minimum pressure.

  13. Experimental study on secondary electron emission characteristics of Cu

    Science.gov (United States)

    Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang

    2018-02-01

    Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.

  14. Process development report: 0.20-m secondary burner system

    International Nuclear Information System (INIS)

    Rickman, W.S.

    1977-09-01

    HTGR fuel reprocessing consists of crushing the spent fuel elements to a size suitable for burning in a fluidized bed to remove excess graphite; separating, crushing, and reburning the fuel particles to remove the remainder of the burnable carbon; dissolution and separation of the particles from insoluble materials; and solvent extraction separation of the dissolved uranium and thorium. Burning the crushed fuel particles is accomplished in a secondary burner. This is a batch fluidized-bed reactor with in-vessel, off-gas filtration. Process heat is provided by an induction heater. This report documents operational tests performed on a commercial size 0.20-m secondary burner using crushed Fort St. Vrain type TRISO fuel particles. Analysis of a parametric study of burner process variables led to recommending lower bed superficial velocity (0.8 m/s), lower ignition temperature (600 0 C), lower fluid bed operating temperature (850 0 C), lower filter blowback frequency (1 cycle/minute), and a lower fluid bed superficial velocity during final bed burnout

  15. Fluid mechanics of Windkessel effect.

    Science.gov (United States)

    Mei, C C; Zhang, J; Jing, H X

    2018-01-08

    We describe a mechanistic model of Windkessel phenomenon based on the linear dynamics of fluid-structure interactions. The phenomenon has its origin in an old-fashioned fire-fighting equipment where an air chamber serves to transform the intermittent influx from a pump to a more steady stream out of the hose. A similar mechanism exists in the cardiovascular system where blood injected intermittantly from the heart becomes rather smooth after passing through an elastic aorta. In existing haeodynamics literature, this mechanism is explained on the basis of electric circuit analogy with empirical impedances. We present a mechanistic theory based on the principles of fluid/structure interactions. Using a simple one-dimensional model, wave motion in the elastic aorta is coupled to the viscous flow in the rigid peripheral artery. Explicit formulas are derived that exhibit the role of material properties such as the blood density, viscosity, wall elasticity, and radii and lengths of the vessels. The current two-element model in haemodynamics is shown to be the limit of short aorta and low injection frequency and the impedance coefficients are derived theoretically. Numerical results for different aorta lengths and radii are discussed to demonstrate their effects on the time variations of blood pressure, wall shear stress, and discharge. Graphical Abstract A mechanistic analysis of Windkessel Effect is described which confirms theoretically the well-known feature that intermittent influx becomes continuous outflow. The theory depends only on the density and viscosity of the blood, the elasticity and dimensions of the vessel. Empirical impedence parameters are avoided.

  16. Behaviour analysis of the fuel injected in the intake manifold of port-injected spark ignition engines: modeling and experimental validation; Analyse du comportement du carburant injecte dans les conduits d`admission des moteurs a allumage commande a injection multipoint: modelisation et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Sches, C

    1999-01-27

    In order to limit pollutant emissions resulting from transient engine operation, the mastering of mixture formation is essential. In this context, an interactive work was undertaken between a modeling job and an experimental study, to get better understanding of the mechanisms of fuel dynamic behavior in the intake manifold of port-injected spark-ignition engines. The experimental study, elaborated thanks to experimental designs, showed out two essential factors: injection timing and coolant liquid temperature, which act on the fuel dynamic behavior through a second order filter. Then, a phenomenological modeling was established and validated, to analyze the various phenomena influencing mixture formation and to calculate the air/fuel ratio evolutions during transient operation. This program uses the results of a 3D model describing the fuel spray transportation, evaporation and impact on the port walls. The calculation does not need any boundary conditions and the running times are vary satisfactory. We showed that a correct description of the liquid fuel film was necessary to get good prediction of the mixture fuel/air ratio. The spray modeling, which is necessary, can however be kept simple. Future work may develop either in the engine control filed (injection strategies development, optimization of the injection system configuration, ...), or in the theoretical field (better modeling of fuel film displacement or of secondary atomization of the fuel on the intake valve). (author) 79 refs.

  17. Alternative water injection device to reactor equipment facility

    International Nuclear Information System (INIS)

    Yamashita, Masahiro.

    1995-01-01

    The device of the present invention injects water to the reactor and the reactor container continuously for a long period of time for preventing occurrence of a severe accident in a BWR type reactor and maintaining the integrity of the reactor container even if the accident should occur. Namely, diesel-driven pumps disposed near heat exchangers of a reactor after-heat removing system (RHR) are operated before the reactor is damaged by the after heat to cause reactor melting. A sucking valve disposed to a pump sucking pipeline connecting a secondary pipeline of the RHR heat exchanger and the diesel driving pump is opened. A discharge valve disposed to a pump discharge pipeline connecting a primary pipeline of the RHR heat exchanger and the diesel driving pump is opened. With such procedures, sea water is introduced from a sea water taking port through the top end of the secondary pipeline of the RHR heat exchanger and water is injected into the inside of the pressure vessel or the reactor container by way of the primary pipeline of the RHR heat exchanger. As a result, the reactor core is prevented from melting even upon occurrence of a severe accident. (I.S.)

  18. Experiments and MPS analysis of stratification behavior of two immiscible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gen, E-mail: ligen@fuji.waseda.jp [Cooperative Major in Nuclear Energy, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Oka, Yoshiaki [Cooperative Major in Nuclear Energy, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Furuya, Masahiro; Kondo, Masahiro [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511 (Japan)

    2013-12-15

    Highlights: • Improving numerical stability of MPS method. • Implicitly calculating viscous term in momentum equation for highly viscous fluids. • Validation of the enhanced MPS method by analyzing dam break problem. • Various stratification behavior analysis by experiments and simulations. • Sensitivity analysis of the effects of the fluid viscosity and density difference. - Abstract: Stratification behavior is of great significance in the late in-vessel stage of core melt severe accident of a nuclear reactor. Conventional numerical methods have difficulties in analyzing stratification process accompanying with free surface without depending on empirical correlations. The Moving Particle Semi-implicit (MPS) method, which calculates free surface and multiphase flow without empirical equations, is applicable for analyzing the stratification behavior of fluids. In the present study, the original MPS method was improved to simulate the stratification behavior of two immiscible fluids. The improved MPS method was validated through simulating classical dam break problem. Then, the stratification processes of two fluid columns and injected fluid were investigated through experiments and simulations, using silicone oil and salt water as the simulant materials. The effects of fluid viscosity and density difference on stratification behavior were also sensitively investigated by simulations. Typical fluid configurations at various parametric and geometrical conditions were observed and well predicted by improved MPS method.

  19. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been...... collected and used to predict coating lifetimes. Samples have been characterized immediately after coating, after 500+ IM cycles to test durability and after 7 months to test temporal stability. Sessile drop contact angle was measured for multiple fluids, namely water, di-iodomethane and benzylacohol....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface...

  20. A TSTT integrated FronTier code and its applications in computational fluid physics

    International Nuclear Information System (INIS)

    Fix, Brian; Glimm, James; Li Xiaolin; Li Yuanhua; Liu Xinfeng; Samulyak, Roman; Xu Zhiliang

    2005-01-01

    We introduce the FronTier-Lite software package and its adaptation to the TSTT geometry and mesh entity data interface. This package is extracted from the original front tracking code for general purpose scientific and engineering applications. The package contains a static interface library and a dynamic front propagation library. It can be used in research of different scientific problems. We demonstrate the application of FronTier in the simulations of fuel injection jet, the fusion pellet injection and fluid mixing problems

  1. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    Science.gov (United States)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  2. A NEW TECHNIQUE OF OIL TRANSPORTATION IN PIPELINE BY STEAM INJECTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The direct contact heating of crude oil with steam is promising technique for improving crude oil transportation in pipelines. Crude oil temperature is increased greatly by a small quantity of steam due to the high steam latent heat and direct contact heat transfer. A jet pump was developed for injecting steam into oil in order to get a high efficiency by transferring momentum and energy from a high-velocity jet to ambient fluid. The jet pump was designed based on the free injection principle, which has no rotation parts and no converging mixing chamber, therefore it would not be blocked by the viscous crude oil. The technical feasibility of this method has been tested in the Liaohe Oilfeld, China.

  3. 3D Adaptive Mesh Refinement Simulations of Pellet Injection in Tokamaks

    International Nuclear Information System (INIS)

    Samtaney, S.; Jardin, S.C.; Colella, P.; Martin, D.F.

    2003-01-01

    We present results of Adaptive Mesh Refinement (AMR) simulations of the pellet injection process, a proven method of refueling tokamaks. AMR is a computationally efficient way to provide the resolution required to simulate realistic pellet sizes relative to device dimensions. The mathematical model comprises of single-fluid MHD equations with source terms in the continuity equation along with a pellet ablation rate model. The numerical method developed is an explicit unsplit upwinding treatment of the 8-wave formulation, coupled with a MAC projection method to enforce the solenoidal property of the magnetic field. The Chombo framework is used for AMR. The role of the E x B drift in mass redistribution during inside and outside pellet injections is emphasized

  4. Development of liquid poison injection system (SDS-2) for 500 MWe PHWRs

    International Nuclear Information System (INIS)

    Nawathe, Shirish; Umashankari, P.; Balakrishnan, Kamala; Mahajan, S.C.; Kakodkar, A.

    1991-01-01

    A secondary shut-down system (SDS-2) in the form of a mecahnism for introducing poison into the moderator of the PHWR is under development in Reactor Engineering Division of BARC. The system, as conceived, consists of a tank containing pressurised helium connected to poison tanks through quick opening solenoid valves. The tanks are connected to horizontal injection tubes in the calandria. On system actuation, gadolinium nitrate solution from the tanks passes to the injection tubes which have a number of holes through which the poison enters the moderator. This report details the development work being done on this poison injection system. An experimental facility was set up to measure the poison jet growth rate and the jet spread after injection, and mathematical models were developed to convert the observed jets into reactivity worth values. A description of the work and the computed results are presented. (author). 21 graphs. , 15 tabs

  5. Subcutaneous injection of sup 99m Tc pertechnetate at acupuncture points K-3 and B-60

    Energy Technology Data Exchange (ETDEWEB)

    Wu Chung-Chieng; Jong Shiang-Bin; Lin Chun-Ching; Chen Min-Fen; Chen Jong-Rern (Kaohsiung Medical Coll., Taiwan (China)); Chung Chieng

    1990-06-01

    The acupuncture points are known to be morphologically related to the nerves and vessels. Yet the physiological role of blood vessels in the formation of acupuncture points remains unknown. With subcutaneous injection of {sup 99m}Tc pertechnetate at the acupuncture points K-3 and B-60 and with intra-acupuncture point injection of {sup 99m}Tc pertechnetate at K-3 and B-60, a lower-limb venography like what was obtained by intravenous injection of {sup 99m}Tc macroaggregated albumin was demonstrated in the present study. It seems that some acupuncture points do play a role in drainage of tissue fluid from soft tissue into the veins. (author).

  6. Scintigraphy of parathyroids in secondary hyperparathyroidism

    International Nuclear Information System (INIS)

    Hublo, D.; Beauchat, V.; Pattou, F.; Lecomte-Houcke, M.; Prangere, T.; Ziegels, P.; Carnaille, B.; Proye, C.; Marchandise, X.; Steiling, M.

    1997-01-01

    Use of pre-surgery imaging of parathyroids is still questioned. The goal of this study is to evaluate the sensitivity of the scintigraphy in the detection of secondary parathyroid anomalies with renal insufficiency. Thirty two patients (20 F, 12 M) of 14 - 74 years old were operated of secondary hyperparathyroidism with renal insufficiency. It was a matter of re-intervention in 9 cases. The acquisitions were achieved 20 min and 2 h after injection of 550 MBq of MIBI- 99m Tc or of Tetrofosmine - 99m Tc and 2 h after injection of 5.5 MBq of iodine 123. Eighty seven glands of 28 to 3820 mg were pulled out in 23 first surgeries while the parathyroid tissue was found in thymic prolongations in 5 of these patients. The masses of 41 glands, positive by scintigraphy (from 69 to 3829 mg), were significantly higher (Wilcoxon's test, p -8 ) than the 46 not-seen (from 28 to 1050 mg). The sensitivity of total detection is 47%, of 85% for the 33 glands of 500 mg or more and of 24% for the 54 glands of less than 500 mg. In 9 re-interventions, 12 abnormal glands were pulled out: 11 (of 430 to 4500 mg were positive by scintigraphy, while only one gland of 80 mg was not seen. In conclusion, the scintigraphy realised before first surgery for secondary hyperparathyroidism with renal insufficiency presents low sensitivity, related partly, at least, to the low mass of glands and justifies itself only by search for positive ectopic parathyroids. Instead, it appears performing and indispensable in case of re-intervention

  7. Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2

    Directory of Open Access Journals (Sweden)

    Matthias Haeckel

    2012-06-01

    Full Text Available The recovery of natural gas from CH4-hydrate deposits in sub-marine and sub-permafrost environments through injection of CO2 is considered a suitable strategy towards emission-neutral energy production. This study shows that the injection of hot, supercritical CO2 is particularly promising. The addition of heat triggers the dissociation of CH4-hydrate while the CO2, once thermally equilibrated, reacts with the pore water and is retained in the reservoir as immobile CO2-hydrate. Furthermore, optimal reservoir conditions of pressure and temperature are constrained. Experiments were conducted in a high-pressure flow-through reactor at different sediment temperatures (2 °C, 8 °C, 10 °C and hydrostatic pressures (8 MPa, 13 MPa. The efficiency of both, CH4 production and CO2 retention is best at 8 °C, 13 MPa. Here, both CO2- and CH4-hydrate as well as mixed hydrates can form. At 2 °C, the production process was less effective due to congestion of transport pathways through the sediment by rapidly forming CO2-hydrate. In contrast, at 10 °C CH4 production suffered from local increases in permeability and fast breakthrough of the injection fluid, thereby confining the accessibility to the CH4 pool to only the most prominent fluid channels. Mass and volume balancing of the collected gas and fluid stream identified gas mobilization as equally important process parameter in addition to the rates of methane hydrate dissociation and hydrate conversion. Thus, the combination of heat supply and CO2 injection in one supercritical phase helps to overcome the mass transfer limitations usually observed in experiments with cold liquid or gaseous CO2.

  8. Improved upper bounds on energy dissipation rates in plane Couette flow with boundary injection and suction

    Science.gov (United States)

    Lee, Harry; Wen, Baole; Doering, Charles

    2017-11-01

    The rate of viscous energy dissipation ɛ in incompressible Newtonian planar Couette flow (a horizontal shear layer) imposed with uniform boundary injection and suction is studied numerically. Specifically, fluid is steadily injected through the top plate with a constant rate at a constant angle of injection, and the same amount of fluid is sucked out vertically through the bottom plate at the same rate. This set-up leads to two control parameters, namely the angle of injection, θ, and the Reynolds number of the horizontal shear flow, Re . We numerically implement the `background field' variational problem formulated by Constantin and Doering with a one-dimensional unidirectional background field ϕ(z) , where z aligns with the distance between the plates. Computation is carried out at various levels of Re with θ = 0 , 0 .1° ,1° and 2°, respectively. The computed upper bounds on ɛ scale like Re0 as Re > 20 , 000 for each fixed θ, this agrees with Kolmogorov's hypothesis on isotropic turbulence. The outcome provides new upper bounds to ɛ among any solution to the underlying Navier-Stokes equations, and they are sharper than the analytical bounds presented in Doering et al. (2000). This research was partially supported by the NSF Award DMS-1515161, and the University of Michigan's Rackham Graduate Student Research Grant.

  9. Safe injection procedures, injection practices, and needlestick ...

    African Journals Online (AJOL)

    Results: Safe injection procedures regarding final waste disposal were sufficiently adopted, while measures regarding disposable injection equipment, waste containers, hand hygiene, as well as injection practices were inadequately carried out. Lack of job aid posters that promote safe injection and safe disposal of ...

  10. Simulation of a Potential CO2 Storage in the West Paris Basin: Site Characterization and Assessment of the Long-Term Hydrodynamical and Geochemical Impacts Induced by the CO2 Injection

    Directory of Open Access Journals (Sweden)

    Estublier Audrey

    2017-07-01

    Full Text Available This article presents the preliminary results of a study carried out as part of a demonstration project of CO2 storage in the Paris Basin. This project funded by ADEME (French Environment and Energy Management Agency and several industrial partners (TOTAL, ENGIE, EDF, Lafarge, Air Liquide, Vallourec aimed to study the possibility to set up an experimental infrastructure of CO2 transport and storage. Regarding the storage, the objectives were: (1 to characterize the selected site by optimizing the number of wells in a CO2 injection case of 200 Mt over 50 years in the Trias, (2 to simulate over time the CO2 migration and the induced pressure field, and (3 to analyze the geochemical behavior of the rock over the long term (1,000 years. The preliminary site characterization study revealed that only the southern area of Keuper succeeds to satisfy this injection criterion using only four injectors. However, a complementary study based on a refined fluid flow model with additional secondary faults concluded that this zone presents the highest potential of CO2 injection but without reaching the objective of 200 Mt with a reasonable number of wells. The simulation of the base scenario, carried out before the model refinement, showed that the overpressure above 0.1 MPa covers an area of 51,869 km2 in the Chaunoy formation, 1,000 years after the end of the injection, which corresponds to the whole West Paris Basin, whereas the CO2 plume extension remains small (524 km2. This overpressure causes brine flows at the domain boundaries and a local overpressure in the studied oil fields. Regarding the preliminary risk analysis of this project, the geochemical effects induced by the CO2 injection were studied by simulating the fluid-rock interactions with a coupled geochemical and fluid flow model in a domain limited to the storage complex. A one-way coupling of two models based on two domains fitting into each other was developed using dynamic boundary

  11. Fluid characterization for miscible EOR projects and CO2 sequestration

    DEFF Research Database (Denmark)

    Jessen, Kristian; Stenby, Erling Halfdan

    2007-01-01

    Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO, sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid...... in the data reduction and demonstrate that for some gas/oil systems, swelling tests do not contribute to a more accurate prediction of multicontact miscibility. Finally, we report on the impact that use of EOS models based on different characterization procedures can have on recovery predictions from dynamic...... and the injected fluid(s). The mixtures that form when gas displaces oil in a porous medium will, in many cases, differ significantly from compositions created in swelling tests and other standard pressure/volume/temperature (PVT) experiments. Multicontact experiments (e.g., slimtube displacements) are often used...

  12. Isotope investigation of the fluid flow in a continuous peritoneal dialysis in a rabbit

    International Nuclear Information System (INIS)

    Dziuk, E.; Siekierzynski, M.; Jedrzejczak, W.

    1975-01-01

    The peritoneal dialysis has become more and more popular in treating some diseases of the kidneys. In the standard technique, the dialization fluid is fed intermittently through a single catheter introduced into the peritoneal cavity. The efficiency of the procedure can be increased by using a continuous fluid flow. In 17 rabbits a continuous mode of peritoneal dialyses was employed by using two catheters introduced by a single injection. The studies were made on two groups of animals using a different distance between the catheter ends. The dialization fluid contained 131 I labelled albumin. By determining the amount of the isotope in the outflowing fluid the degree of the fluid intermixing in the peritoneal cavity was evaluated. An open one-compartamental model was found to be useful in the estimation of the dynamics of the fluid flow during the continuous peritoneal dialysis. When the distance between both catheter ends was larger the fluid was better intermixed in the peritoneal cavity. This made it possible to obtain a high gradient of the concentrations of various substances between the blood and the dialization fluid. (author)

  13. Aseismic and seismic slip induced by fluid injection from poroelastic and rate-state friction modeling

    Science.gov (United States)

    Liu, Y.; Deng, K.; Harrington, R. M.; Clerc, F.

    2016-12-01

    Solid matrix stress change and pore pressure diffusion caused by fluid injection has been postulated as key factors for inducing earthquakes and aseismic slip on pre-existing faults. In this study, we have developed a numerical model that simulates aseismic and seismic slip in a rate-and-state friction framework with poroelastic stress perturbations from multi-stage hydraulic fracturing scenarios. We apply the physics-based model to the 2013-2015 earthquake sequences near Fox Creek, Alberta, Canada, where three magnitude 4.5 earthquakes were potentially induced by nearby hydraulic fracturing activity. In particular, we use the relocated December 2013 seismicity sequence to approximate the fault orientation, and find the seismicity migration spatiotemporally correlate with the positive Coulomb stress changes calculated from the poroelastic model. When the poroelastic stress changes are introduced to the rate-state friction model, we find that slip on the fault evolves from aseismic to seismic in a manner similar to the onset of seismicity. For a 15-stage hydraulic fracturing that lasted for 10 days, modeled fault slip rate starts to accelerate after 3 days of fracking, and rapidly develops into a seismic event, which also temporally coincides with the onset of induced seismicity. The poroelastic stress perturbation and consequently fault slip rate continue to evolve and remain high for several weeks after hydraulic fracturing has stopped, which may explain the continued seismicity after shut-in. In a comparison numerical experiment, fault slip rate quickly decreases to the interseismic level when stress perturbations are instantaneously returned to zero at shut-in. Furthermore, when stress perturbations are removed just a few hours after the fault slip rate starts to accelerate (that is, hydraulic fracturing is shut down prematurely), only aseismic slip is observed in the model. Our preliminary results thus suggest the design of fracturing duration and flow

  14. Normotension, hypertension and body fluid regulation

    DEFF Research Database (Denmark)

    Bie, Peter; Evans, R G

    2017-01-01

    The fraction of hypertensive patients with essential hypertension (EH) is decreasing as the knowledge of mechanisms of secondary hypertension increases, but in most new cases of hypertension the pathophysiology remains unknown. Separate neurocentric and renocentric concepts of aetiology have...... activity are elevated in about 50% of cases; (iii) in EH as in normal conditions, mediators other than arterial blood pressure are the major determinants of renal sodium excretion; (iv) chronic hypertension is always associated with a shift in the pressure-natriuresis curve, but this may...... prevailed without much interaction. In this regard, several questions regarding the relationships between body fluid and blood pressure regulation are pertinent. Are all forms of EH associated with sympathetic overdrive or a shift in the pressure-natriuresis curve? Is body fluid homoeostasis normally driven...

  15. An evaluation of the fluid-elastic instability for Intermediate Heat Exchanger of Prototype Sodium-cooled fast Reactor

    International Nuclear Information System (INIS)

    Cho, Jaehun; Kim, Sungkyun; Koo, Gyeonghoi

    2014-01-01

    The sodium-cooled fast reactor (SFR) module consists of the vessel, containment vessel, head, rotating plug (RP), upper internal structure (UIS), intermediate heat exchanger (IHX), decay heat exchanger (DHX), primary pump, internal structure, internal components and reactor core. The IHXs transfer heat from the radioactive sodium coolant (primary sodium) in the primary heat transport system to the nonradioactive sodium coolant (secondary sodium) in the intermediate heat transport system. Each sodium flows like Fig. 1. Primary sodium flows inside of tube and secondary sodium flows outside. During transferring heat two sodium to sodium, the fluid-elastic instability is occurred among tube bundle by cross flow. Large amplitude vibration occurred by the fluid-elastic instability is caused such as crack and wear of tube. Thus it is important to decrease the fluid-elastic instability in terms of a safety. The purpose of this paper is to evaluate the fluid-elastic instability for tube bundle in the IHX following ASME code. This paper evaluated the fluid-elastic instability of tube bundle in the SFR IHX. According evaluation results, the fluid-elastic instability of IHX tube bundle is occurred. A installing an additional TSP under the upper tubesheet can decrease a probability of fluid-elastic instability. If a location of an additional TSP does not exceed tube length to become a 750 mm, tube bundle of IHX is safety from the fluid-elastic instability

  16. Heat performance resulting from combined effects of radiation and mixed convection in a rectangular cavity ventilated by injection or suction

    Science.gov (United States)

    Ezzaraa, K.; Bahlaoui, A.; Arroub, I.; Raji, A.; Hasnaoui, M.; Naïmi, M.

    2018-05-01

    In this work, we investigated numerically heat transfer by mixed convection coupled to thermal radiation in a vented rectangular enclosure uniformly heated from below with a constant heat flux. The fresh fluid is admitted into the cavity by injection or suction, by means of two openings located on the lower part of both right and left vertical sides. Another opening is placed on the middle of the top wall to ensure the ventilation. Air, a radiatively transparent medium, is considered to be the cooling fluid. The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and reflectors of radiation with identical emissivities. The effects of some pertinent parameters such as the Reynolds number, 300 ≤ Re ≤ 5000, and the emissivity of the walls, 0 ≤ ɛ ≤ 0.85, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes (injection and suction). The results indicate that the flow and thermal structures are affected by the thermal radiation for the two modes of imposed flow. However, the suction mode is found to be more favorable to the heat transfer in comparison with the injection one.

  17. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    International Nuclear Information System (INIS)

    Sugiharto, S.; Kurniadi, R.; Abidin, Z.; Stegowski, Z.; Furman, L.

    2013-01-01

    Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT) having an inner diameter of 24 in (60,96 m). The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD) curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD) simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct. (author)

  18. Prediction of Separation Length of Turbulent Multiphase Flow Using Radiotracer and Computational Fluid Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    S. Sugiharto1

    2013-04-01

    Full Text Available Multiphase flow modeling presents great challenges due to its extreme importance in various industrial and environmental applications. In the present study, prediction of separation length of multiphase flow is examined experimentally by injection of two kinds of iodine-based radiotracer solutions into a hydrocarbon transport pipeline (HCT having an inner diameter of 24 in (60,96 m. The main components of fluids in the pipeline are water 95%, crude oil 3% and gas 2%. A radiotracing experiment was carried out at the segment of pipe which is located far from branch points with assumptions that stratified flows in such segment were achieved. Two radiation detectors located at 80 and 100 m from injection point were used to generate residence time distribution (RTD curve resulting from injection of radiotracer solutions. Multiphase computational fluid dynamics (CFD simulations using Eulerian-Eulerian control volume and commercial CFD package Fluent 6.2 were employed to simulate separation length of multiphase flow. The results of study shows that the flow velocity of water is higher than the flow rate of crude oil in water-dominated system despite the higher density of water than the density of the crude oil. The separation length in multiphase flow predicted by Fluent mixture model is approximately 20 m, measured from injection point. This result confirms that the placement of the first radiation detector at the distance 80 m from the injection point was correct

  19. Monitoring artificially stimulated fluid movement in the Cretaceous Dakota aquifer, western Kansas

    Science.gov (United States)

    Macfarlane, Allen; Förster, Andrea; Merriam, Daniel; Schrötter, Jörg; Healey, John

    2002-10-01

    Aquifer properties can be evaluated by monitoring artificially stimulated fluid movements between wells, if the fluid is heated. Changes in the temperature profile recorded in observation wells indicate the flow path of the heated fluid, which in effect acts as a tracer. A fluid-flow experiment in the Cretaceous Dakota Formation at the Hodgeman County site, west-central Kansas, demonstrated the advantage of using the distributed optical-fiber temperature sensing method for monitoring transient temperature conditions in this hydrological application. The fluid flow in the aquifer was increased by producing water from a pumping well and injecting heated water in an injection well 13 m (43 ft) distant from the pumping well. The time-temperature series data obtained and compared with results from previous pumping tests point to interwell heterogeneity of the aquifer and to a zone in the sandstone aquifer of high hydraulic conductivity. However, the experiment would have allowed further clarification of aquifer heterogeneity and thermal properties if at least one observation well had been present between the injection and production wells. Résumé. Les caractéristiques d'un aquifère peuvent être évaluées en effectuant un suivi des mouvements du fluide stimulés artificiellement entre des puits, si le fluide est chauffé. Les variations de profils de température enregistrés dans les puits d'observation donnent des informations sur les directions d'écoulement du fluide chauffé, qui en fait se comporte comme un traceur. Réalisée dans la formation crétacée de Dakota, sur le site du Comté de Hodgeman (centre-ouest du Kansas), une expérience a démontré l'intérêt d'utiliser la méthode de détection distribuée de température par fibres optiques pour suivre les variations de température dans cette application hydrologique. L'écoulement du fluide dans l'aquifère a été favorisé en extrayant de l'eau par pompage et en injectant de l'eau chaude dans un

  20. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    Science.gov (United States)

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  1. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator

    Science.gov (United States)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.

    2018-02-01

    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of

  2. Measurement and Overall Characterization of Permeability Anisotropy by Tracer Injection Mesure et caractérisation globale de léanisotropie de perméabilité par injection de traceurs

    Directory of Open Access Journals (Sweden)

    Bieber M. T.

    2006-11-01

    Full Text Available Reservoir rocks can exhibit very strong permeability (K anisotropy. The classical anisotropy measurement methods, which consist of taking several plugs with differently oriented axes from a single core, or of taking measurements on samples with a particular shape, do not generally allow the permeability anisotropy to be fully defined. We have developed a simple, overall method to measure and characterize this anisotropy. If, at a point in a porous, permeable, infinite medium, totally saturated with a relatively incompressible fluid, a second fluid is injected that is perfectly miscible with the first, and has the same density, the interface between these two fluids (i. e. , the invasion front describes a surface such that, at a given moment, the distance from the injection point to the surface is proportional to the square root of K in the direction under consideration. To provide an overall quantification of the permeability of a medium, it suffices to describe the geometrical characteristics of an invasion front during a miscible displacement due to a pinpoint injection, and to measure a single absolute value of permeability. The proposed method consists of injecting a salt solution (e. g. , KI that absorbs X rays into a rock that has been previously saturated with brine; the resulting invasion front can be followed easily using X ray tomography. The method's validation is based on experimental verification that there is no disturbance due to ionic diffusion, that the results are insensitive to injection parameters, and there are no edge effects. The method has been applied to four rocks that are often studied in the laboratory, and whose permeability anisotropy is known from classical measurements. An excellent quantitative concordance is observed between CT scan results and conventional results, as long as the intrinsic heterogeneity of natural porous media as it affects permeability is taken into account. After smoothing raw data using a

  3. Flow of mantle fluids through the ductile lower crust: Heliumisotope trends

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack; van Soest, Matthijs C.

    2007-10-07

    Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

  4. Nicolau Syndrome after Intramuscular Injection of Non-Steroidal Anti-Inflammatory Drugs (NSAID

    Directory of Open Access Journals (Sweden)

    Mehmet Dadaci

    2015-01-01

    Full Text Available Nicolau syndrome is a rare complication of intramuscular injection that leads to local ischemic necrosis of the skin and adipose tissue. In this paper, we discuss etiologies, risk factors, and treatment options for gluteal Nicolau syndrome referring to patients treated in our hospital. Our study includes 17 women who visited our clinic with symptoms of gluteal necrosis secondary to intramuscular injection. The following variables were taken into account: injection site, drug administered, frequency of injections, the person who administered the injections, needle size, and needle tip color. Magnetic resonance images obtained in the aftermath of intramuscular injection application were carefully analyzed for presence of necrosis, cyst formation and the thickness of the gluteal fat tissue layer. Drugs that had been received in intramuscular injection were exclusively non-steroidal anti-inflammatory drugs. Mean patient BMI was 41.8 (all patients were considered as obese, and mean gluteal fat thickness was 54 mm. Standard length of needles (3.8 cm had been used in procedures. The wounds were treated with primary closure in 11 patients and with local flap therapy in 6 patients. The observed necrosis was a consequence of misplaced gluteal injection, where drugs were injected into the adipose tissue instead of the muscle due to the extreme thickness of the fat layer, on one hand, and the inappropriate length of standard needles, on the other hand. Intramuscular injection should be avoided in obese patients whenever possible: if it is necessary, proper injection technique should be used.

  5. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    Science.gov (United States)

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  6. Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Javier Andrés Martínez

    2011-09-01

    Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.

  7. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  8. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine

    Directory of Open Access Journals (Sweden)

    Nader Raeie

    2014-06-01

    Full Text Available It is well known that injection strategies including the injection timing and pressure play the most important role in determining engine performance, especially in pollutant emissions. However, the injection timing and pressure quantitatively affect the performance of diesel engine with a turbo charger are not well understood. In this paper, the fire computational fluid dynamics (CFD code with an improved spray model has been used to simulate the spray and combustion processes of diesel with early and late injection timings and six different injection pressure (from 275 bar to 1000 bar. It has been concluded that the use of early injection provides lower soot and higher NOx emissions than the late injection. In this study, it has been tried using the change of fuel injection time at these two next steps: before top dead center (BTDC and after top dead center (ATDC in order to achieving optimum emission and power in a specific point.

  9. Liberal or restrictive fluid administration in fast-track colonic surgery

    DEFF Research Database (Denmark)

    Holte, K; Foss, N B; Andersen, J

    2007-01-01

    surgery were randomized to 'restrictive' (Group 1) or 'liberal' (Group 2) perioperative fluid administration. Fluid algorithms were based on fixed rates of crystalloid infusions and a standardized volume of colloid. Pulmonary function (spirometry) was the primary outcome measure, with secondary outcomes...... and complications were also noted. RESULTS: 'Restrictive' (median 1640 ml, range 935-2250 ml) compared with 'liberal' fluid administration (median 5050 ml, range 3563-8050 ml) led to significant improvement in pulmonary function and postoperative hypoxaemia. In contrast, we found significantly reduced...... concentrations of cardiovascularly active hormones (renin, aldosterone, and angiotensin II) in Group 2. The number of patients with complications was not significantly different between the groups [1 ('liberal' group) [corrected] vs 6 ('restrictive' group) [corrected] patients, P = 0.08]. CONCLUSIONS...

  10. Distribution of Platelet-rich Plasma after Ultrasound-Guided Injection for Chronic Elbow Tendinopathies

    Directory of Open Access Journals (Sweden)

    Gi-Young Park, Dong Rak Kwon, Hee Kyung Cho, Jinyoung Park, Jung Hyun Park

    2017-03-01

    Full Text Available Characteristics of the spreads of platelet-rich plasma (PRP are not widely known despite commonly use. This study aims to evaluate whether PRP stays within the injected area by using ultrasonography, to improve understanding of the spreads of intratendinous injected PRP. Thirty-nine patients (15 males, 24 females; mean age, 49.3 years, who had symptoms on their elbows (> 6 months and diagnosed as lateral (25 elbows or medial (14 elbows tendinopathies of elbow, were included. The severity of tendon pathology was assessed by ultrasonography as tear or no tear. Immediately after ultrasound-guided PRP injection, ultrasound images were evaluated to assess the area of PRP distribution, which was defined as the presence of fluid or microbubbles. Ultrasound revealed that 13 elbows had tendon tear and 26 had no tear, respectively. Post-injection ultrasound confirmed the injected PRP was within the tendon in all cases. The mean distance of distribution from the injection site was 12.6 mm (5.0–26.0 mm. There was no difference in the distance of PRP distribution between tendon tear and no tear. Injected PRP spread to soft tissue outside the tendon in 20 of 39 cases. Intra-articular extension of PRP was observed in 5 cases. Although PRP remained intratendinous after the injection in all cases, some portion tended to spread outside from the injection site in a short space of time. Postinjection ultrasonographic imaging has a value for observing the spreading patterns of intratendinous PRP injection.

  11. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study

    NARCIS (Netherlands)

    Reurink, Gustaaf; Goudswaard, Gert Jan; Moen, Maarten H.; Weir, Adam; Verhaar, Jan A. N.; Bierma-Zeinstra, Sita M. A.; Maas, Mario; Tol, Johannes L.

    2015-01-01

    Platelet-rich plasma (PRP) injections are an experimental treatment for acute muscle injuries. We examined whether PRP injections would accelerate return to play after hamstring injury. The methods and the primary outcome measure were published in the New England Journal of Medicine (NEJM) as

  12. Hydro-geomechanical behaviour of gas-hydrate bearing soils during gas production through depressurization and CO2 injection

    Science.gov (United States)

    Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.

    2015-12-01

    Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.

  13. Botox® after Botox® - a new approach to treat diplopia secondary to cosmetic botulinic toxin use: case reports

    Directory of Open Access Journals (Sweden)

    Cassiano Rodrigues Isaac

    2012-06-01

    Full Text Available A new technique for the treatment of diplopia secondary to cosmetic botulinum toxin A use is described. In this interventional case reports, two consecutive patients who developed diplopia after periocular cosmetic use of botulinum toxin A were treated with intramuscular botulinum toxin A injection into the antagonist extraocular muscle. Diplopia resolved in both patients in less than 1 week with no side effects or complications. In conclusion, the injection of intramuscular botulinum toxin A is an encouraging option for treatment of diplopia secondary to botulinum toxin A use for facial lifting.

  14. Improved voluntary cough immediately following office-based vocal fold medialization injections.

    Science.gov (United States)

    Ruddy, Bari H; Pitts, Teresa E; Lehman, Jeff; Spector, Brian; Lewis, Vicki; Sapienza, Christine M

    2014-07-01

    This study examined changes in voluntary cough airflow measures immediately following in-office injection of Radiesse in patients diagnosed with glottic insufficiency. Due to significant comorbidities, these patients were poor candidates for medialization under general anesthesia. Each patient presented with dysphonia and dysphagia and ineffective voluntary cough, resulting in a poor clearing of secretions and a presence of ingested fluids on examination. Prospective cohort and case series study. Three patients with a diagnosis of glottic insufficiency were included for study based on flexible endoscopy and laryngostroboscopic examination. Voluntary cough airflow measures were obtained approximately 30 minutes before and after the Radiesse injections. The airflow measures were: compression phase duration (CPD), expiratory rise time (EPRT), expiratory phase peak airflow (EPPF), and cough volume acceleration (CVA). Injection of Radiesse was found to improve voluntary cough airflow measures. The immediate increase in the objective airflow measures obtained from voluntary cough production after Radiesse injections can be used to document airway protection improvements. Cough airflow is a straightforward measure to obtain and is considered an objective measure of cough function. 4. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Ultrasound-Guided Single-Injection Infraclavicular Block Versus Ultrasound-Guided Double-Injection Axillary Block: A Noninferiority Randomized Controlled Trial.

    Science.gov (United States)

    Boivin, Ariane; Nadeau, Marie-Josée; Dion, Nicolas; Lévesque, Simon; Nicole, Pierre C; Turgeon, Alexis F

    2016-01-01

    Single-injection ultrasound-guided infraclavicular block is a simple, reliable, and effective technique. A simplified double-injection ultrasound-guided axillary block technique with a high success rate recently has been described. It has the advantage of being performed in a superficial and compressible location, with a potentially improved safety profile. However, its effectiveness in comparison with single-injection infraclavicular block has not been established. We hypothesized that the double-injection ultrasound-guided axillary block would show rates of complete sensory block at 30 minutes noninferior to the single-injection ultrasound-guided infraclavicular block. After approval by our research ethics committee and written informed consent, adults undergoing distal upper arm surgery were randomized to either group I, ultrasound-guided single-injection infraclavicular block, or group A, ultrasound-guided double-injection axillary block. In group I, 30 mL of 1.5% mepivacaine was injected posterior to the axillary artery. In group A, 25 mL of 1.5% mepivacaine was injected posteromedial to the axillary artery, after which 5 mL was injected around the musculocutaneous nerve. Primary outcome was the rate of complete sensory block at 30 minutes. Secondary outcomes were the onset of sensory and motor blocks, surgical success rates, performance times, and incidence of complications. All outcomes were assessed by a blinded investigator. The noninferiority of the double-injection ultrasound-guided axillary block was considered if the limits of the 90% confidence intervals (CIs) were within a 10% margin of the rate of complete sensory block of the infraclavicular block. At 30 minutes, the rate of complete sensory block was 79% in group A (90% CI, 71%-85%) compared with 91% in group I (90% CI, 85%-95%); the upper limit of CI of group A is thus included in the established noninferiority margin of 10%. The rate of complete sensory block was lower in group A (proportion

  16. Grid laser with modified pro re nata injection of bevacizumab and ranibizumab in macular edema due to branch retinal vein occlusion: MARVEL report no 2.

    Science.gov (United States)

    Narayanan, Raja; Panchal, Bhavik; Stewart, Michael W; Das, Taraprasad; Chhablani, Jay; Jalali, Subhadra; Hasnat Ali, Mohd

    2016-01-01

    The purpose of this study was to prospectively study the efficacy of grid laser combined with intravitreal bevacizumab or ranibizumab in eyes with macular edema due to branch retinal vein occlusion. Treatment-naïve eyes were enrolled to receive injections of ranibizumab or bevacizumab. During the first 6 months, patients were evaluated monthly and injected if the best-corrected visual acuity changed by five or more letters or fluid was noted on spectral domain optical coherence tomography (OCT); during the next 6 months, patients were evaluated bimonthly and injected only if the best-corrected visual acuity decreased by five or more letters with the associated fluid. Grid laser photocoagulation was performed if there was fluid on OCT and was repeated if patients were eligible after a minimum interval of 3 months. The mean numbers of ranibizumab and bevacizumab injections were, respectively, 3.2±1.5 and 3.0±1.4 in the first 6 months and 0.3±0.6 and 0.3±0.6 in the last 6 months. Moreover, 55/75 (73.33%) participants did not receive any injections in the last 6 months. The mean reductions in central retinal thickness at 12 months were 165.67 μm (P<0.001; 95% confidence interval -221.50 to -135.0) in the ranibizumab group and 184.78 μm (P<0.001; 95% confidence interval -246.49 to -140.0) in the bevacizumab group (P=0.079). More patients in the bevacizumab group compared to those in the ranibizumab group required rescue laser at 12 months (20 vs eleven; P=0.06). Bimonthly evaluations after month 6 with very few pro re nata injections were effective in maintaining visual gains achieved during the first 6 months. Grid laser photocoagulation is effective in maintaining the vision even in the presence of fluid on OCT, although it's required more often in patients treated with bevacizumab.

  17. Grid laser with modified pro re nata injection of bevacizumab and ranibizumab in macular edema due to branch retinal vein occlusion: MARVEL report no 2

    Science.gov (United States)

    Narayanan, Raja; Panchal, Bhavik; Stewart, Michael W; Das, Taraprasad; Chhablani, Jay; Jalali, Subhadra; Hasnat Ali, Mohd

    2016-01-01

    Purpose The purpose of this study was to prospectively study the efficacy of grid laser combined with intravitreal bevacizumab or ranibizumab in eyes with macular edema due to branch retinal vein occlusion. Patients and methods Treatment-naïve eyes were enrolled to receive injections of ranibizumab or bevacizumab. During the first 6 months, patients were evaluated monthly and injected if the best-corrected visual acuity changed by five or more letters or fluid was noted on spectral domain optical coherence tomography (OCT); during the next 6 months, patients were evaluated bimonthly and injected only if the best-corrected visual acuity decreased by five or more letters with the associated fluid. Grid laser photocoagulation was performed if there was fluid on OCT and was repeated if patients were eligible after a minimum interval of 3 months. Results The mean numbers of ranibizumab and bevacizumab injections were, respectively, 3.2±1.5 and 3.0±1.4 in the first 6 months and 0.3±0.6 and 0.3±0.6 in the last 6 months. Moreover, 55/75 (73.33%) participants did not receive any injections in the last 6 months. The mean reductions in central retinal thickness at 12 months were 165.67 μm (P<0.001; 95% confidence interval −221.50 to −135.0) in the ranibizumab group and 184.78 μm (P<0.001; 95% confidence interval −246.49 to −140.0) in the bevacizumab group (P=0.079). More patients in the bevacizumab group compared to those in the ranibizumab group required rescue laser at 12 months (20 vs eleven; P=0.06). Conclusion Bimonthly evaluations after month 6 with very few pro re nata injections were effective in maintaining visual gains achieved during the first 6 months. Grid laser photocoagulation is effective in maintaining the vision even in the presence of fluid on OCT, although it’s required more often in patients treated with bevacizumab. PMID:27330272

  18. Acupuncture point injection treatment of primary dysmenorrhoea: a randomised, double blind, controlled study.

    Science.gov (United States)

    Wade, C; Wang, L; Zhao, W J; Cardini, F; Kronenberg, F; Gui, S Q; Ying, Z; Zhao, N Q; Chao, M T; Yu, J

    2016-01-05

    To determine if injection of vitamin K3 in an acupuncture point is optimal for the treatment of primary dysmenorrhoea, when compared with 2 other injection treatments. A Menstrual Disorder Centre at a public hospital in Shanghai, China. Chinese women aged 14-25 years with severe primary dysmenorrhoea for at least 6 months not relieved by any other treatment were recruited. Exclusion criteria were the use of oral contraceptives, intrauterine devices or anticoagulant drugs, pregnancy, history of abdominal surgery, participation in other therapies for pain and diagnosis of secondary dysmenorrhoea. Eighty patients with primary dysmenorrhoea, as defined on a 4-grade scale, completed the study. Two patients withdrew after randomisation. A double-blind, double-dummy, randomised controlled trial compared vitamin K3 acupuncture point injection to saline acupuncture point injection and vitamin K3 deep muscle injection. Patients in each group received 3 injections at a single treatment visit. The primary outcome was the difference in subjective perception of pain as measured by an 11 unit Numeric Rating Scale (NRS). Secondary measurements were Cox Pain Intensity and Duration scales and the consumption of analgesic tablets before and after treatment and during 6 following cycles. Patients in all 3 groups experienced pain relief from the injection treatments. Differences in NRS measured mean pain scores between the 2 active control groups were less than 1 unit (-0.71, CI -1.37 to -0.05) and not significant, but the differences in average scores between the treatment hypothesised to be optimal and both active control groups (1.11, CI 0.45 to 1.78) and (1.82, CI 1.45 to 2.49) were statistically significant in adjusted mixed-effects models. Menstrual distress and use of analgesics were diminished for 6 months post-treatment. Acupuncture point injection of vitamin K3 relieves menstrual pain rapidly and is a useful treatment in an urban outpatient clinic. NCT00104546; Results

  19. Stability of FDTS monolayer coating on aluminum injection molding tools

    International Nuclear Information System (INIS)

    Cech, Jiri; Taboryski, Rafael

    2012-01-01

    Highlights: ► We present novel and highly useful results on FDTS monolayer coating of aluminum. ► The coating is particularly applicable for coating of prototyping injection molding tools, which often are made of Al. ► We have demonstrated that the coating prevails in injection molding conditions and that the coating will prevent wear of the tools. - Abstract: We have characterized perfluorodecyltrichlorosilane (FDTS) molecular coating of aluminum molds for polymer replication via injection molding (IM). X-ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energies and roughness data have been collected. Samples have been characterized immediately after coating, after more than 500 IM cycles to test durability, and after 7 months to test temporal stability. The coating was deposited in an affordable process, involving near room temperature gas phase reactions. XPS shows detectable fluorine presence on both freshly coated samples as well as on post-IM samples with estimated 30 at.% on freshly coated and 28 at.% on post-IM samples with more than 500 IM cycles with polystyrene (PS) and ABS polymer.

  20. Characterization of fluid inclusions from mineralized pegmatites of the Damara Belt, Namibia: insight into late-stage fluid evolution and implications for mineralization

    Science.gov (United States)

    Ashworth, Luisa; Kinnaird, Judith Ann; Nex, Paul Andrew Martin; Erasmus, Rudolph Marthinus; Przybyłowicz, Wojciech Józef

    2018-05-01

    Mineralized NYF and LCT pegmatites occur throughout the northeast-trending Neoproterozoic Damara Belt, Namibia. Mineralization in the pegmatites varies geographically, from the northeast, where they are enriched in Li-Be, to the southwest, where they also contain notable Sn and U. Similar fluid inclusion populations occur throughout the pegmatites, regardless of their respective metal enrichments, and primary fluid inclusion textures were destroyed by continued fluid activity. Pseudosecondary to secondary inclusions are aqueo-carbonic, carbonic, and aqueous in composition, and have been divided into five types. The earliest populations are saline (>26.3 eq. wt.% NaCl), homogenizing at temperatures in excess of 300 °C. Their carbonic phase is composed of CO2, with minor CH4, and micro-elemental mapping indicates they contain trace metals, including Ca, Fe, Zn, Cu, and K. Type 3 inclusions formed later, homogenize at 325 °C, and are less saline, with a carbonic phase composed of CO2. Type 4 carbonic inclusions are composed of pure CO2, and represent the latest stages of fluid evolution, while Type 5 aqueous inclusions are believed to be unrelated to the crystallization of the pegmatites, and rather the result of regional Cretaceous magmatism, or the ingress of meteoric water. The similarities in fluid inclusion populations observed in the pegmatites suggest that differences in mineralization were driven by magma composition rather than fluid activity alone, however saline fluids facilitated the enrichment and deposition of metals during the late stages of crystallization. Furthermore, the similarities between fluid inclusion populations in different pegmatites suggests they share a similar fluid evolution.

  1. Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks

    Science.gov (United States)

    Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.

    2009-04-01

    samples (38 mm in diameter, approximately 60 mm long) were dried in oven under reduced pressure. In dynamic saturation experiments, samples were jacketed in the experimental cell, made from transparent for X-radiation material (PMMA). Distillate water was injected into the sample from the one side. Fluid distribution in such "dynamic" experiment: both spatial and time dependant was measured using X-ray Computer Tomograph (CT) with resolution 0.2 x 0.2 x 1 mm3. Velocities (Vp, and Vs) at ultrasonic frequency of 1 MHz, were measured in the direction perpendicular to initial direction of the fluid flow injection. Sample saturation was estimated from the CT results. In "quasi static" experiments samples were saturated during long period of time (over 2 weeks) to achieve uniform distribution of liquid inside the sample. Saturation was determined by measurement of the weight of water fraction. All experiments were performed at laboratory environments at temperature 25 C. Ultrasonic velocities and fluid saturations were measured simultaneously during water injection into sandstone core samples. The experimental results obtained on low-permeability samples show that at low saturation values the velocity-saturation dependence can be described by the Gassmann-Wood relationship. However, with increasing saturation a sharp increase of P-wave velocity is observed, eventually approaching the Gassmann-Hill relationship. We connect the characteristics of the transition behavior of the velocity-saturation relationships to the increasing size of the patches inside the rock sample. In particular, we show that for relatively large fluid injection rate this transition occurs at smaller degrees of saturation as compared with high injection rate. We model the experimental data using the so-called White model (Toms 2007) that assumes fluid patch distribution as a periodic assemblage of concentric spheres. We can observe reasonable agreement between experimental results and theoretical

  2. Influence of Powder Injection Parameters in High-Pressure Cold Spray

    Science.gov (United States)

    Ozdemir, Ozan C.; Widener, Christian A.

    2017-10-01

    High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.

  3. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon

    International Nuclear Information System (INIS)

    Stankov, M. N.; Marković, V. Lj.; Stamenković, S. N.; Jovanović, A. P.; Petković, M. D.

    2015-01-01

    The simple fluid model, an extended fluid model, and the fluid model with nonlocal ionization are applied for the calculations of static breakdown voltages, Paschen curves and current-voltage characteristics. The best agreement with the experimental data for the Paschen curve modeling is achieved by using the model with variable secondary electron yield. The modeling of current-voltage characteristics is performed for different inter-electrode distances and the results are compared with the experimental data. The fluid model with nonlocal ionization shows an excellent agreement for all inter-electrode distances, while the extended fluid model with variable electron transport coefficients agrees well with measurements at short inter-electrode distances when ionization by fast electrons can be neglected. (physics of gases, plasmas, and electric discharges)

  4. Tracking sharp interface of two fluids by the CIP (cubic-interpolated propagation) scheme

    International Nuclear Information System (INIS)

    Yabe, T.; Xiao, F.

    1993-01-01

    A method to treat a sharp discontinuity by the density function is proposed. The surface of the density function is described by one grid throughout the calculation even when the surface is largely distorted. This description is made possible by the CIP method combined with variable transformation. This scheme is applied to the linear wave propagation in one- and two-dimensions. In the nonlinear case, the injection of heavier fluid into lighter fluid his calculated and the winding of mushroom structure is successfully treated by the density function. (author)

  5. Secondary motion in three-dimensional branching networks

    Science.gov (United States)

    Guha, Abhijit; Pradhan, Kaustav

    2017-06-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters

  6. Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.

    Science.gov (United States)

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric

    2013-01-01

    In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties. © 2013, The Author(s). Ground Water © 2013, National Ground Water Association.

  7. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    Science.gov (United States)

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  8. Percutaneous injection laryngoplasty in the management of acute vocal fold paralysis.

    Science.gov (United States)

    Damrose, Edward J

    2010-08-01

    To evaluate the clinical outcome of patients with acute vocal fold paralysis treated with bovine collagen via percutaneous injection laryngoplasty under simple topical anesthesia. Retrospective case series. The charts of 38 consecutive patients with acute unilateral vocal fold paralysis who underwent percutaneous injection laryngoplasty under simple topical anesthesia were reviewed. Symptoms and laryngeal function were assessed pre- and postinjection using the Glottal Function Index (GFI), GRBAS Dysphonia Scale, Functional Outcome Swallowing Scale (FOSS), and maximum phonation time (MPT). Mean GFI, GRBAS, FOSS, and MPT improved from 13.71 to 7.68, 7.24 to 3.95, 3.70 to 2.20, and 12.87 to 16.45, respectively (P dysphagia and aspiration, injection was successful in restoring oral alimentation in only three patients, with the four failures occurring in patients with multiple cranial neuropathies. Percutaneous injection laryngoplasty is a viable option for immediate rehabilitation of acute vocal fold paralysis, and can be performed in the inpatient setting. With dysphagia and aspiration secondary to multiple cranial nerve palsies, medialization of the paralyzed cord alone may be insufficient to restore safe oral alimentation.

  9. Percolation experiments to determine fluid-matrix interaction (with particular regard to pretreatment of the drill core); Kerndurchstroemungsversuche zur Ermittlung von Fluid-Matrix-Wechselwirkungen (unter besonderer Beruecksichtigung der Kernvorbehandlung)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M; Seibt, A [TU Bergakademie Freiberg (Germany). Inst. fuer Bohrtechnik und Fluidbergbau; Hoth, P [GeoForschungsZentrum Potsdam (Germany)

    1997-12-01

    The injection of fluids into sandstone reservoirs leads to interactions between these waters, the reservoir rocks, and the formation fluids. Estimations about possible permeability reducing processes caused by these interactions are therefore of great importance for the exploitation of sandstone aquifers as geothermal reservoirs. Percolation experiments under in situ conditions with core samples from North German geothermal boreholes were done in order to investigate these fluid-rock interactions. (orig./AKF) [Deutsch] Die Injektion von Fluiden in Aquiferspeicher fuehrt zu Wechselwirkungen zwischen dem Speichergestein, den Formationsfluiden und den injizierten Loesungen. Fuer die Bewirtschaftung der Speicher sind insbesondere Kenntnisse ueber moegliche Permeabilitaetsreduzierungen durch diese Wechselwirkungen von Bedeutung. Mit Hilfe von Kern-Durchstroemungsexperimenten, durchgefuehrt unter lagerstaettenaehnlichen Bedingungen mit Original- bzw. modifizierten Fluiden, wurde daher das Durchstroemungsverhalten von unterschiedlich ausgebildeten Reservoirsandsteinen aus norddeutschen Geothermiebohrungen untersucht. (orig./AKF)

  10. Comparative study of FDG-PET and sestamibi-SPECT in the diagnosis of secondary hyperparathyroidism

    International Nuclear Information System (INIS)

    Higuchi, T.; Ozawa, K.; Oriuchi, N.; Khan, N.; Endo, K.; Otake, H.; Matsubara, K.

    2002-01-01

    Aim: FDG-PET is reported to be more accurate in preoperative localization of hyper functioning parathyroid gland of primary hyperparathyroidism in comparison with sestamibi-SPECT by Neumann et al. However, its usefulness in the diagnosis of secondary hyperparathyroidism has not been reported yet. In this study, we've performed the direct comparison of the usefulness of FDG-PET and sestamibi-SPECT in the detection of abnormal parathyroid tissue in the patients of secondary hyperparathyroidism under hemodilysis. Material and Methods: One primary and 5 secondary hyperparathyroidism patients underwent FDG-PET and sestamibi-SPECT. After overnight fasting, 300 to 400 MBq of FDG was intravenously injected, followed by whole body PET image acquisition after 50 minutes. In the same day before FDG-PET, 600 MBq of sestamibi was injected and early and delayed planar image and delayed SPECT image has been obtained. Visual interpretation of the abnormal parathyroid uptake has been performed by 2 experienced nuclear physician independently. Results: In the secondary cases, FDG-PET shows no hyper functioning gland in all 5 cases, whereas sestamibi-SPECT shows 8 hyper functioning glands. In contrast, hyper functioning gland of the primary hyperparathyroidism case has been clearly visualized only by FDG-PET. Conclusion: Although FDG-PET is very useful in detecting hyper functioning gland in primary hyperparathyroidism, it is not useful in secondary hyperparathyroidism. Further pathological analysis about the different glucose metabolism of primary and secondary hyper functioning gland should be added in the future study

  11. Short-term outcome after intravitreal ranibizumab injections for the treatment of retinopathy of prematurity.

    Science.gov (United States)

    Castellanos, María Ana Martínez; Schwartz, Shulamit; García-Aguirre, Gerardo; Quiroz-Mercado, Hugo

    2013-07-01

    To evaluate ocular outcome in premature infants treated with intravitreal ranibizumab injections for retinopathy of prematurity (ROP) over a period of 3 years. An interventional case series. Premature infants with high-risk prethreshold or threshold ROP with plus disease received an off label monotherapy with intravitreal injections of ranibizumab. The primary outcome was treatment success defined as regression of neovascularisation (NV) and absence of recurrence. The secondary outcomes were ocular and systemic adverse events and visual acuity. Six eyes were included in the study and treated with intravitreal injections of ranibizumab. All showed complete resolution of NV after a single injection. The anti-angiogenic intravitreal injections allowed for continued normal vessel growth into the peripheral retina, without any signs of disease recurrence or progression during the follow up period. No ocular or systemic adverse effects were observed. Three years of follow up in a small series suggest that intravitreal ranibizumab injections for ROP result in apparently preserved ocular outcome. Further large scale studies are needed to address the long-term safety and efficacy.

  12. Sensitive flow-injection spectrophotometric analysis of bromopride

    Science.gov (United States)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  13. Maximization of ICRF power by SOL density tailoring with local gas injection

    Czech Academy of Sciences Publication Activity Database

    Jacquet, P.; Goniche, M.; Bobkov, V.; Lerche, E.; Pinsker, R.I.; Pitts, R.A.; Zhang, W.; Colas, L.; Hosea, J.; Moriyama, S.; Wang, S.-J.; Wukitch, S.; Zhang, X.; Bilato, R.; Bufferand, H.; Guimarais, L.; Faugel, H.; Hanson, G.R.; Kocan, M.; Monakhov, I.; Noterdaeme, J.-M.; Petržílka, Václav; Shaw, A.; Stepanov, I.; Sips, A.C.C.; Van Eester, D.; Wauters, T.

    2016-01-01

    Roč. 56, č. 4 (2016), s. 046001 ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : ICRF power * antenna loading * gas injection * SOL density Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/4/046001

  14. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.

    Science.gov (United States)

    Kreisserman, Yevgeny; Emmanuel, Simon

    2018-01-16

    During hydraulic fracturing, a technique often used to extract hydrocarbons from shales, large volumes of water are injected into the subsurface. Although the injected fluid typically contains various reagents, it can become further contaminated by interaction with minerals present in the rocks. Pyrite, which is common in organic-rich shales, is a potential source of toxic elements, including arsenic and lead, and it is generally thought that for these elements to become mobilized, pyrite must first dissolve. Here, we use atomic force microscopy and environmental scanning electron microscopy to show that during fluid-rock interaction, the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment, and mobilization, of embedded pyrite grains. In experiments carried out over a range of pH, salinity, and temperature we found that in all cases pyrite particles became detached from the shale surfaces. On average, the amount of pyrite detached was equivalent to 6.5 × 10 -11 mol m -2 s -1 , which is over an order of magnitude greater than the rate of pyrite oxidation expected under similar conditions. This result suggests that mechanical detachment of pyrite grains could be an important pathway for the mobilization of arsenic in hydraulic fracturing operations and in groundwater systems containing shales.

  15. Intravitreal pegaptanib for refractory macular edema secondary to retinal vein occlusion

    Directory of Open Access Journals (Sweden)

    Udaondo P

    2011-07-01

    Full Text Available Patricia Udaondo1,2, Salvador Garcia-Delpech1,3, David Salom1,3, Maria Garcia-Pous1,3, Manuel Diaz-Llopis1,31Nuevo Hospital Universitario y Politecnico La Fe, Valencia, Spain; 2University Cardenal Herrera CEU, Valencia, Spain; 3Faculty of Medicine, University of Valencia, Valencia, SpainPurpose: To assess the efficacy of intravitreal Pegaptanib sodium (Macugen® injection in the management of refractory macular edema secondary to branch retinal vein occlusion.Methods: This is a prospective, nonrandomized, interventional case series. Five eyes of five patients with macular edema refractory to either bevacizumab or triamcinolone were treated with intravitreal injection of Pegaptanib sodium.Results: After three months follow-up, both visual acuity and macular edema, measured by optical coherence tomography and fluorescence angiography, dramatically improved.Conclusion: Pegaptanib sodium is a safe and efficacy treatment for macular edema secondary to branch retinal vein occlusion.Keywords: Macugen®, BRVO, BCVA, pegaptanib sodium

  16. Steam and solvent injection as an advanced recovering method for heavy oil reservoirs; Injecao de vapor e solvente como um metodo de recuperacao avancada em reservatorios de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Edney Rafael V.P.; Rodrigues, Marcos Allyson F.; Barbosa, Janaina Medeiros D.; Barillas, Jennys Lourdes M.; Dutra Junior, Tarcilio V.; Mata, Wilson da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was driven contemplating the effects of some operational parameters (distance between wells, injection fluids rate, kind of solvent and injected solvent volume) on the accumulated production of oil and recovery factor. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled. (author)

  17. Method and apparatus for determining fluid circulation conditions in well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Gehrig, G.F.; Speers, J.M.

    1986-09-09

    A system is described for monitoring the delta flow-rate of drilling fluid in the course of circulating drilling fluid through a well from a drilling rig, comprising: an inflow flowmeter adapted for establishing a first signal representing the rate at which drilling fluid is injected into the well from the drilling rig; an outflow flowmeter adapted for establishing a second signal representing the rate at which drilling fluid is returned to the drilling rig from the well; and a signal processing system adapted for receiving the first and second signals and calculating a third signal representing the filtered difference between the first and second signals, the signal processing system being adapted to repeatedly update the degree of filtering applied in calculating the third signal in accordance with a relation serving to increase the degree of filtering in response to an increase in the magnitude of the cyclical variations in the rate at which drilling fluid is returned to the drilling rig and to decrease the degree of filtering in response to a decrease in the magnitude of the cyclical variations in the rate at which drilling fluid is returned to the drilling rig.

  18. Energetics and dynamics of excess electrons in simple fluids

    International Nuclear Information System (INIS)

    Space, B.

    1992-01-01

    Excess electronic dynamical and equilibrium properties are modeled in both polarizable and nonpolarizable noble gas fluids. Explicit dynamical calculations are carried out for excess electrons in fluid helium, where excess electronic eigenstates are localized. Energetics and dynamics are considered for fluids which span the entire range of polarizability present in the rare gases. Excess electronic eigenstates and eigenvalues are calculated for fluids of helium, argon and xenon. Both equilibrium and dynamical information is obtained from the calculation of these wavefunctions. A surface hopping trajectory method for studying nonadiabatic excess electronic relaxation in condensed systems is used to explore the nonadiabatic relaxation after photoexciting an equilibrated excess electron in dense fluid helium. The different types on nonadiabatic phenomena which are important in excess electronic relaxation are surveyed. The same surface hopping trajectory method is also used to study the rapid nonadiabatic relaxation after an excess electron is injected into unperturbed fluid helium. Several distinctively different relaxation processes, characterized by their relative importance at different times during the relaxation to a localized equilibrium state, are detailed. Though the dynamical properties of excess electrons under the conditions considered here have never been studied before, the behavior is remarkably similar to that observed in both experimental and theoretical studies of electron hydration dynamics, indicating that the processes described may be very general relaxation mechanisms for localization and trapping in fluids. Additionally, ground state energies of an excess electron, e 0 , are computed as a function of solvent density using model electron-atom pseudopotentials in fluid helium, argon, and xenon. The nonuniqueness of the pseudopotential description of electron-molecule interactions is demonstrated

  19. A Semi-Analytical Method for Rapid Estimation of Near-Well Saturation, Temperature, Pressure and Stress in Non-Isothermal CO2 Injection

    Science.gov (United States)

    LaForce, T.; Ennis-King, J.; Paterson, L.

    2015-12-01

    Reservoir cooling near the wellbore is expected when fluids are injected into a reservoir or aquifer in CO2 storage, enhanced oil or gas recovery, enhanced geothermal systems, and water injection for disposal. Ignoring thermal effects near the well can lead to under-prediction of changes in reservoir pressure and stress due to competition between increased pressure and contraction of the rock in the cooled near-well region. In this work a previously developed semi-analytical model for immiscible, nonisothermal fluid injection is generalised to include partitioning of components between two phases. Advection-dominated radial flow is assumed so that the coupled two-phase flow and thermal conservation laws can be solved analytically. The temperature and saturation profiles are used to find the increase in reservoir pressure, tangential, and radial stress near the wellbore in a semi-analytical, forward-coupled model. Saturation, temperature, pressure, and stress profiles are found for parameters representative of several CO2 storage demonstration projects around the world. General results on maximum injection rates vs depth for common reservoir parameters are also presented. Prior to drilling an injection well there is often little information about the properties that will determine the injection rate that can be achieved without exceeding fracture pressure, yet injection rate and pressure are key parameters in well design and placement decisions. Analytical solutions to simplified models such as these can quickly provide order of magnitude estimates for flow and stress near the well based on a range of likely parameters.

  20. Change of Static and Dynamic Elastic Properties due to CO² Injection in North Sea Chalk

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Hjuler, M.L.; Christensen, H.F.

    2012-01-01

    important in enhanced oil recovery by CO2 injection (CO2-EOR) in chalk as, chalk reservoirs are vulnerable to compaction under changed stress and pore fluid. From South Arne field, North Sea, we used Ekofisk Formation chalk having approximately 20% non-carbonate and Tor Formation chalk having less than 5...

  1. Analysis on inflowing of the injecting Water in faulted formation

    Directory of Open Access Journals (Sweden)

    Ji Youjun

    2015-06-01

    Full Text Available As to low permeability reservoir, faults and fractures have a significant impact on effect of water injection and may lead up to the lower efficiency of oil displacement, which will bring about low efficiency of injecting water, and the intended purpose of improving recovery factor by water injection will not be reached. In order to reveal the mechanism for channeling of injecting water, research work is conducted as follows: First of all, based on seepage mechanics, fluid mechanics, rock mass mechanics, and multifield coupling theory, the mathematical model considering fluid–solid coupling of water-flooding development for low permeability reservoir is established, the numerical solution of the coupling model is obtained, and by creating an interface program between the seepage simulation procedure and stress computation program, we set up a feasible method to simulate the process of development of reservoir considering deformation of reservoir stratum; second, some cores are selected to test the stress sensitivity of rock in reservoir, and the relation of permeability and stress is proposed to connect the field parameters of the coupling model; finally, taking the S11 block of Daqing Oilfield, for instance, the seepage field and deformation of reservoir stratum is analyzed, and then the mechanism for leakage of injecting water in this block is given out, and the advice for adjustment of injection–production scheme in the future development stage is provided.

  2. Predicting, monitoring and controlling geomechanical effects of CO2 injection

    International Nuclear Information System (INIS)

    Streit, J.E.; Siggins, A.F.

    2005-01-01

    A key objective of geological carbon dioxide (CO 2 ) storage in porous rock is long-term subsurface containment of CO 2 . Fault stability and maximum sustainable pore-fluid pressures should be estimated in geomechanical studies in order to avoid damage to reservoir seals and fault seals of storage sites during CO 2 injection. Such analyses rely on predicting the evolution of effective stresses in rocks and faults during CO 2 injection. However, geomechanical analyses frequently do not incorporate poroelastic behaviour of reservoir rock, as relevant poroelastic properties are rarely known. The knowledge of rock poroelastic properties would allow the use of seismic methods for the accurate measurement of the effective stress evolution during CO 2 injection. This paper discussed key geomechanical effects of CO 2 injection into porous rock, and in particular, focused on the effects that the poroelasticity of reservoir rocks and pore pressure/stress coupling have on effective stresses. Relevant geophysical monitoring techniques were also suggested. The paper also outlined how these techniques could be applied to measure stress changes related to poroelastic rock behaviour during CO 2 injection and to test the predictions of sustainable changes in effective stress in CO 2 storage sites. It was concluded that a combination of predictive geomechanical techniques and application of geophysical monitoring techniques is a valid new concept for controlling and monitoring the geomechanical effects of CO 2 storage. 36 refs., 5 figs

  3. Effects of oxygen on the re-injection characteristics of thermal water with high salinity and a high iron content; Zum Einfluss von Sauerstoff auf das Reinjektionsverhalten hochsalinarer, eisenhaltiger Thermalwaesser

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.; Koeckritz, V. [TU BA Freiberg (Germany). Inst. fuer Bohrtechnnik und Fluidbergbau; Seibt, A. [GeoForschungsZentrum PB 4.4, Neubrandenburg (Germany)

    1998-12-31

    For reasons of environmental protection and in order to maintain a constant pressure level, hydrogeothermal water must be re-injected into the reservoir after use. However, human interception in the natural fluid/rock system will change the thermodynamic parameters and also the pH and redox potential. This may cause interactions between bedrock, underground water, and the re-injected fluid and have negatives effects on injectivity. Research is going on in this field on the basis of the experience gained in geothermal heating stations in north eastern Germany. (orig.) [Deutsch] Bei einer energetischen und/oder stofflichen Nutzung hydrogeothermaler Ressourcen muessen die Waesser aus Gruenden des Umweltschutzes und der Druckerhaltung im Speicher wieder in das Reservoir verbracht werden. Durch den Eingriff in das natuerliche System Fluid/Gestein werden nicht nur thermodynamische Zustandsgroessen veraendert, sondern es sind auch pH- und Redoxpotentialaenderungen z.B. durch Gasentloesungen zu erwarten. Dies kann beim Reinjizieren zu Wechselwirkungen zwischen dem Speichergestein, dem Schichtwasser und dem injizierten Fluid fuehren, was negative Auswirkungen auf die Injektivitaetsentwicklung haben kann. Eine geeignete Methode zur Aufklaerung von Einzeleffekten und zur Abschaetzung von chemischen Wechselwirkungen stellen Kerndurchstroemungsversuche dar. Ausgangspunkt der Untersuchungen sind die Erfahrungen aus dem Betrieb Geothermischer Heizzentralen Nordostdeutschlands. (orig.)

  4. The fate of heterologous antigen (131I-HSA) in the organs of chickens exposed to total-body X-irradiation before a secondary antigenic stimulus

    International Nuclear Information System (INIS)

    Prohazka, Z.; Hampl, J.; Krejci, J.

    1975-01-01

    A study was made on the effect of ionizing radiation on the rate of elimination of 131 I-labelled human serum albumin from the blood and its organ deposition in chickens exposed to 1200 R (LD 50 ) at various intervals before secondary antigen injection. In unirradiated control chickens, the elimination of antigen after its secondary injection followed the typical three-phase pattern, characterized by an early onset and a rapid progress of the third phase. The elimination curve from irradiated birds paralleled rather closely that from the controls during the first and second phases while the phase of immune elimination was hardly perceptible. No major differences were found between the individual irrradiated groups. The irradiated birds also showed less formation of antibodies and antigen-antibody complexes and a lower antigen content of the organs than the unirradiated controls. From the results it appears that the specific antigen uptake from the blood of chickens during the first and second phases of elimination of a secondary dose of antigen is radioresistant; the temporal relation between X-irradiation and secondary antigen injection does not play a substantial role in impairment of the secondary antibody response to soluble antigens in chickens

  5. Performance indicators for water injections projects; Indicadores de desempenho para projetos de injecao de agua

    Energy Technology Data Exchange (ETDEWEB)

    Hastenreiter, Livia; Correa, Antonio C. de F.; Mendes, Roberta A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Currently, the water injection process into oil reservoirs is the method of secondary recovery more important to increase the recovery factor. Thus, it is necessary an efficient project management, with constant data acquisitions and interpretation. This paper aims to present some indicators to evaluate the performance of water injection projects. Each indicator is presented based on a methodology that transforms the data collected in information. The results are expressed in graphical form for better viewing of the indicators measurement. (author)

  6. Role of α2-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    International Nuclear Information System (INIS)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V.

    2014-01-01

    Central α 2 -adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α 2 -adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α 2 -adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α 2 -adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α 2 -adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α 2 -adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion

  7. Computational Fluid Dynamics for nuclear applications: from CFD to multi-scale CMFD

    International Nuclear Information System (INIS)

    Yadigaroglu, G.

    2005-01-01

    New trends in computational methods for nuclear reactor thermal-hydraulics are discussed; traditionally, these have been based on the two-fluid model. Although CFD computations for single phase flows are commonplace, Computational Multi-Fluid Dynamics (CMFD) is still under development. One-fluid methods coupled with interface tracking techniques provide interesting opportunities and enlarge the scope of problems that can be solved. For certain problems, one may have to conduct 'cascades' of computations at increasingly finer scales to resolve all issues. The case study of condensation of steam/air mixtures injected from a downward-facing vent into a pool of water and a proposed CMFD initiative to numerically model Critical Heat Flux (CHF) illustrate such cascades. For the venting problem, a variety of tools are used: a system code for system behaviour; an interface-tracking method (Volume of Fluid, VOF) to examine the behaviour of large bubbles; direct-contact condensation can be treated either by Direct Numerical Simulation (DNS) or by analytical methods

  8. Computational Fluid Dynamics for nuclear applications: from CFD to multi-scale CMFD

    Energy Technology Data Exchange (ETDEWEB)

    Yadigaroglu, G. [Swiss Federal Institute of Technology-Zurich (ETHZ), Nuclear Engineering Laboratory, ETH-Zentrum, CLT CH-8092 Zurich (Switzerland)]. E-mail: yadi@ethz.ch

    2005-02-01

    New trends in computational methods for nuclear reactor thermal-hydraulics are discussed; traditionally, these have been based on the two-fluid model. Although CFD computations for single phase flows are commonplace, Computational Multi-Fluid Dynamics (CMFD) is still under development. One-fluid methods coupled with interface tracking techniques provide interesting opportunities and enlarge the scope of problems that can be solved. For certain problems, one may have to conduct 'cascades' of computations at increasingly finer scales to resolve all issues. The case study of condensation of steam/air mixtures injected from a downward-facing vent into a pool of water and a proposed CMFD initiative to numerically model Critical Heat Flux (CHF) illustrate such cascades. For the venting problem, a variety of tools are used: a system code for system behaviour; an interface-tracking method (Volume of Fluid, VOF) to examine the behaviour of large bubbles; direct-contact condensation can be treated either by Direct Numerical Simulation (DNS) or by analytical methods.

  9. Clinical and ultrasonographic features associated to response to intraarticular corticosteroid injection. A one year follow up prospective cohort study in knee osteoarthritis patient with joint effusion.

    Science.gov (United States)

    Calvet, Joan; Orellana, Cristóbal; Galisteo, Carlos; García-Manrique, María; Navarro, Noemí; Caixàs, Assumpta; Larrosa, Marta; Gratacós, Jordi

    2018-01-01

    Intraarticular injection is used for pain relief in knee osteoarthritis (OA), but there is not a well defined profile of patient who could get more benefit from it. The purpose of this study was to evaluate the frequency of pain relief at one year after corticosteroids intraarticular injection and to identify clinical factors associated to response in patients with knee osteoarthritis with joint effusion. One-year prospective cohort study of patients with knee OA with joint effusion confirmed by ultrasound. An intraarticular injection was performed following a clinical protocol. Anthropometric measurements, laboratory parameters, clinical severity, ultrasound parameters and radiological severity were collected. Response regarding pain and presence of synovial fluid on ultrasound at one month and at one year were evaluated. Clinical responder were consider in subjects with enough improvement to carry out normal daily activities with pain VAS<40mm. One hundred and thirty-two patients were included.A significant number of patients (61.4%) improved pain at one year following the protocol established in this study. Pain and ultrasound synovial fluid at one month appeared to predict the response at one year. The Lequesne index and the percentage of body fat were independently associated to pain at one year while the Lequesne index and ultrasound synovial hypertrophy were independently related to the presence of synovial fluid at one year. The status regarding pain or ultrasound synovial fluid at one month after an intraarticular joint injection appeared to predict the status at one year in patients with knee osteoarthritis and synovial effusion.

  10. The radioimmunoassay of biologically active compounds in parotid fluid and plasma

    International Nuclear Information System (INIS)

    Walker, R.F.; Read, G.F.; Riad-Fahmy, D.

    1977-01-01

    The potential value of parotid fluid estimations of clomipramine, d-norgestrel, and cortisol have been evaluated for assessment of clinical status and patient compliance. Excellent agreement (r > 0.9) was observed when parotid fluid samples were assayed with and without chromatographic purification. Clomipramine levels following oral dosage (150mg) rose steadily to a maximum in plasma but showed wide fluctuations in parotid fluid. Following an oral dose of d-norgestrel(0.3mg), parotid fluid levels rose steadily to a maximum but plasma response was biphasic making correlation impossible. The sensitivity and high throughput of the d-norgestrel methodology suggests its use in evaluating patient compliance in large scale fertility control programmes. Changes in circulating cortisol concentrations were rapidly and accurately reflected in parotid fluid in normal volunteers. Parotid fluid cortisol showed a market diurnal rythm, suppression to low levels after dexamethasone, and elevation following Synacthen. Low levels after Synacthen stimulation in a patient with secondary adrenal atrophy and constant high levels in Cushingoid patients indicate that parotid fluid cortisol levels could be used for accurate adrenocortical evaluation. The value in rapid screening procedures is stressed since the assay can be performed directly on only 10μl of parotid fluid. (orig./AJ) [de

  11. Numerical Study on CO2-Brine-Rock Interaction of Enhanced Geothermal Systems with CO2 as Heat Transmission Fluid

    Directory of Open Access Journals (Sweden)

    Wan Yuyu

    2016-01-01

    Full Text Available Enhanced Geothermal Systems (EGS with CO2 instead of water as heat transmission fluid is an attractive concept for both geothermal resources development and CO2 geological sequestration. Previous studies show that CO2 has lots of favorable properties as heat transmission fluid and also can offer geologic storage of CO2 as an ancillary benefit. However, after CO2 injection into geological formations, chemical reaction between brine and rock can change chemical characteristics of saline and properties of rock such as porosity and permeability. Is this advantage or disadvantage for EGS operating? To answer this question, we have performed chemically reactive transport modeling to investigate fluid-rock interactions and CO2 mineral carbonation of Enhanced Geothermal Systems (EGS site at Desert Peak (Nevada operated with CO2. The simulation results show that (1 injection CO2 can create a core zone fulfilled with CO2 as main working domain for EGS, and (2 CO2 storage can induced self-enhancing alteration of EGS.

  12. Steady flow in a porous layer subjected to a stream uniformly injecting from a plane; Ichiyo ni men kara fukidasu nagare ni sarasareta takoshitsu sonai no teijo nagare

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, E; Horiguchi, Y; Kitazawa, K [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-08-25

    A steady flow in an non-deformable porous layer subjected to a fluid stream is studied analytically and numerically. One side of the layer of sponge is bounded by a solid wall and the other by a layer of fluid. The fluid is injected uniformly from a plane, through which the fluid can pass, set up parallel to the sponge layer. The flow in the sponge layer is assumed to be governed by Darcy`s law. The problem considered is solved in terms of a similarity solution. The equations governing the fluid flows in both the porous layer and the fluid layer are reduced to a system of the ordinary differential equations. These equations are solved analytically for three cases ideal fluid flow, low Reynolds number flow and high Reynolds number flow. On the other hand, these equations are solved numerically for the general case by using the finite difference method. The distributions of the velocity and the pressure in both layers are found for various parameters. In particular, the speed which the fluid intrudes into the sponge layer due to the injection of the stream from the plane is found to be a function of dimensionless parameters. To find this speed is essential to the understanding of porous material. 15 refs., 9 figs.

  13. Geothermal heat exchanger with coaxial flow of fluids

    Directory of Open Access Journals (Sweden)

    Pejić Dragan M.

    2005-01-01

    Full Text Available The paper deals with a heat exchanger with coaxial flow. Two coaxial pipes of the secondary part were placed directly into a geothermal boring in such a way that geothermal water flows around the outer pipe. Starting from the energy balance of the exchanger formed in this way and the assumption of a study-state operating regime, a mathematical model was formulated. On the basis of the model, the secondary circle output temperature was determined as a function of the exchanger geometry, the coefficient of heat passing through the heat exchange areas, the average mass isobaric specific heats of fluid and mass flows. The input temperature of the exchanger secondary circle and the temperature of the geothermal water at the exit of the boring were taken as known values. Also, an analysis of changes in certain factors influencing the secondary water temperature was carried out. The parameters (flow temperature of the deep boring B-4 in Sijarinska Spa, Serbia were used. The theoretical results obtained indicate the great potential of this boring and the possible application of such an exchanger.

  14. Modeling liver electrical conductivity during hypertonic injection.

    Science.gov (United States)

    Castellví, Quim; Sánchez-Velázquez, Patricia; Moll, Xavier; Berjano, Enrique; Andaluz, Anna; Burdío, Fernando; Bijnens, Bart; Ivorra, Antoni

    2018-01-01

    Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Fluid contact monitoring in some western Canadian reefs

    International Nuclear Information System (INIS)

    Pickel, J.S.; Heslop, A.

    1978-01-01

    Thirty years have passed since oil was first discovered in reefal reservoirs in the Western Canadian Sedimentary Basin. The early giants such as Redwater, Leduc, and the large Swan Hill pools have been followed in subsequent years by the development of reef pools of declining size, culminating with the discovery of the Keg River reefs of the Rainbow Zama area some 10 years ago. Unfortunately the majority of reef pools are reaching a mature stage in their productive cycle. With this maturity comes an increasing need for the log analyst to diversify his role from merely recognizing hydrocarbons during the discovery process, to the analysis of remaining hydrocarbon distribution within the depleting reservoir. The monitoring of fluid movement has become an integral part of reservoir description. Geologist, log analyst, reservoir and production engineer must work as a coordinated team to explain the often anomalous fluid distributions that occur in the well bore. Oil recovery from the Devonian Leduc age reef at Golden Spike, Alberta has been, until recently, by displacement with a miscible solvent bank. The monitoring of gas--fluid interfaces has been accomplished by the use of pulsed neutron logs in cased holes and the combination of SNP-Density and SNP-Acoustic data in open hole situations. At Judy Creek premature advances of formation water and inefficient reservoir depletion resulted from a highly stratified reefal reservoir. Pulsed neutron logs, used after the recognition of the production problems, have helped define oil-water distributions in the reservoir and led to an improvement in recovery efficiency. Rainbow Devonian Keg River reefs are subjected to gas, miscible and water injection recovery schemes. A pool that has been converted from a primary gas expansion drive to water drive by injection has used the pulsed neutron log to monitor the effectiveness of this change

  16. Current trends in needle-free jet injection: an update

    Directory of Open Access Journals (Sweden)

    Barolet D

    2018-05-01

    Full Text Available Daniel Barolet,1,2 Antranik Benohanian3 1RoseLab Skin Optics Research Laboratory, Laval, QC, Canada; 2MUHC Dermatology Service, Department of Medicine, McGill University, Montreal, QC, Canada; 3CHUM Service de Dermatologie, Université de Montréal, Montréal, QC, Canada Background: Jet injection can be defined as a needle-free drug delivery method in which a high-speed stream of fluid impacts the skin and delivers a drug. Despite 75 years of existence, it never reached its full potential as a strategic tool to deliver medications through the skin. Objective: The aim of this review was to evaluate and summarize the evolution of jet injection intradermal drug delivery method including technological advancements and new indications for use. Methods: A review of the literature was performed with no limits placed on publication date. Results: Needleless injectors not only reduce pain during drug delivery but also confine the drug more evenly in the dermis. Understanding skin properties of the injection site is a key factor to obtain optimal results as well as setting the right parameters of the jet injector. Until the advent of disposable jet injectors/cartridges, autoclaving of the injector remains the only reliable method to eliminate the risk of infection. Needle-free intradermal injection using corticosteroids and/or local anesthetics is well documented with promising indications being developed. Limitations: Limitations of the review include low-quality evidence, small sample sizes, varying treatment parameters, and publication bias. Conclusion: New developments may help reconsider the use of jet injection technology. Future studies should focus on measurable optimized parameters to insure a safe and effective outcome. Keywords: needle free, injector, jet injection, xylocaine, triamcinolone, PDT

  17. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  18. Hydromagnetic Flow and Heat Transfer over a Porous Oscillating Stretching Surface in a Viscoelastic Fluid with Porous Medium.

    Science.gov (United States)

    Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer

    2015-01-01

    An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.

  19. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  20. Resolution of issues related to alternative RCS injection in the absence of containment sump recirculation

    International Nuclear Information System (INIS)

    Charles L Kling; Stephen S Barshay; Mathew C Jacob; Michael J Friedman

    2005-01-01

    Full text of publication follows: On June 9, 2003 the US NRC issued Bulletin No. 2003-01 that deals with the potential impact of debris blockage on containment sump recirculation at PWRs during a Loss-of-Coolant Accident (LOCA). In response to the bulletin, the Omaha Public Power District (OPPD) is in the process of developing procedural and operational strategies for their Fort Calhoun Station (FCS) to address the issues raised. Westinghouse provided engineering support to OPPD in identifying and resolving issues related to alternative means of supplying safety injection water to the reactor coolant system (RCS) in the absence of containment sump recirculation. Nuclear power plants are designed to protect the core following a LOCA by providing a continuous supply of cooling water to the core. In the long term, the Refueling Water Storage Tank (RWST) inventory will be depleted and core heat removal accomplished via recirculation of water previously injected into the Reactor Coolant System (RCS) and collected in the containment sump. Debris generated within the containment as a result of the impingement of fluid jets in the Zone of Influence (ZOI) of the RCS break and containment wash down may find its way into the containment sump. As the safety injection pumps take suction from the sump, in the recirculation mode of operation, the debris suspended in the sump water could begin to accumulate in the sump screen that is located in the recirculation path. Should sufficient debris accumulate on the sump screen, a flow blockage could potentially develop. This would result in insufficient safety injection pump NPSH, thereby impairing the recirculation mode of injection into RCS. Potential debris blockage and prevention of sump recirculation may be addressed by refilling the RWST with water and injecting this water directly into the core. This paper identifies and attempts to resolve several issues related to this alternative mode of RCS injection. In particular, the

  1. Continuous mixer, process and use in a pumping plant for a high viscosity fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cholet, H.

    1993-03-12

    The invention concerns a novel continuous mixer comprising a rotary shaft carrying two or more vanes for mixing two or more fluids of different viscosities supplied at the inlet of the mixer body and for providing, at the mixer body outlet, a mixture of viscosity lower than that of the more or most viscous fluid. Preferentially, the vane profile is such that, without fluid circulation, rotation of the vanes produces a reaction force parallel to the rotational axis and in the same direction as the resulting flow or does not produce a reaction force of significant magnitude parallel to the rotational axis. The mixer shaft is connected to a pump shaft which is rotated by hydraulic motor driven by pressurized fluid injection. The mixer is used especially for facilitating viscous crude oil pumping from directional wells including horizontal or inclined portions.

  2. Autologous Stem Cell Injection for Spinal Cord Injury - A Clinical Study from India.

    Directory of Open Access Journals (Sweden)

    Ravikumar R

    2007-01-01

    Full Text Available We studied 100 patients with Spinal Cord injury (SCI after Autologous Stem cell Injection in the Spinal fluid with a Follow up of 6 months post Stem cell injection. There were 69 males and 31 females; age ranging from 8 years to 55 years.? Time after Spinal Injury ranged from 11 years - 3 months (Average: 4.5 years. The Level of Injury ranged from Upper Thoracic (T1-T7 - 34 pts, Lower thoracic (T7-T12 -45 pts, Lumbar -12, Cervical-9 pts. All patients had an MRI Scan, urodynamic study and SSEP (somatosensory Evoked Potential tests before and 3 months after Stem cell Injection.80% of patients had Grade 0 power in the Lower limbs and rest had grade 1-2 power before stem cell injections. 70% of cases had complete lack of Bladder control and 95% had reduced detrusor function.We Extracted CD34 and CD 133 marked Stem cells from 100 ml of Bone marrow Aspirate using Ficoll Gradient method with Cell counting done using flowcytometry.15 ml of the Stem cell concentrate was injected into the Lumbar spinal fluid in aseptic conditions. The CD 34/CD45 counts ranged from 120-400 million cells in the total volume.6 months after Injection, 8 patients had more than 2 grades of Motor power improvement, 3 are able to walk with support. 1 patient with T12/L1 injury was able to walk without support. 12 had sensory tactile and Pain perception improvement and 8 had objective improvement in bladder control and Bladder Muscle contractility. A total of 18 patients had reported or observed improvement in Neurological status. 85% of patients who had motor Improvement had Lesions below T8. MRI, SSEP and Urodynamic Study data are gathered at regular intervals. Conclusion: This study shows that Quantitative and qualitative Improvement in the Neurological status of paralyzed patients after Spinal cord injury is possible after autologous bone marrow Stem cell Injections in select patients. There was no report of Allodynia indicating the safety of the procedure. Further studies to

  3. Conceptual design of intravenous fluids level monitoring system - a review

    Science.gov (United States)

    Verma, Prikshit; Padmani, Aniket; Boopathi, M.

    2017-11-01

    In today’s world of automation, there are advancements going on in all the fields. Each work is being automated day by day. However, if we see our current medical care system, some areas require manual caretaker and are loaded with heavy jobs, which consumes a lot of time. Nevertheless, since the work is related to human health, it should be properly done and that too with accuracy. An example of such a particular work is injecting saline or Intravenous (IV) fluids in a patient. The monitoring of such fluids needs utter attention as if the bottle of the fluid is not changed on time, it may lead to various problems for the patients like backflow of blood, blood loss etc. Various researches have been performed to overcome such critical situation. Different monitoring and alerting techniques are described in different researches. So, in our study, we will go through the researches done in this particular field and will see how different ideas are implemented.

  4. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2017-01-01

    the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out......, enabling evaluation of the mechanical condition of the rotating machine. Using the lubricant fluid film as a non-invasive calibrated shaker is troublesome, once several transfer functions among mechanical, hydraulic and electronic components become necessary. In this framework the main original...

  5. Non-Invasive Parameter Identification in Rotordynamics via Fluid Film Bearings: Linking Active Lubrication and Operational Modal Analysis

    DEFF Research Database (Denmark)

    Santos, Ilmar; Svendsen, Peter Kjær

    2016-01-01

    the rotor as a function of a suitable control signal. The servovalve input signal and the radial injection pressure are the two main parameters responsible for dynamically modifying the journal oil film pressure and generating active fluid film forces in controllable fluid film bearings. Such fluid film...... forces, resulting from a strong coupling between hydrodynamic, hydrostatic and controllable lubrication regimes, can be used either to control or to excite rotor lateral vibrations. If non-invasive forces are generated via lubricant fluid film, in situ parameter identification can be carried out......, enabling evaluation of the mechanical condition of the rotating machine.Using the lubricant fluid film as a non-invasive calibrated shaker is troublesome, once several transfer functions among mechanical, hydraulic and electronic components become necessary. In this framework the main original contribution...

  6. CONSERVATIVE TREATMENT VERSUS STEROID INJECTIONS IN THE MANAGEMENT OF UNICAMERAL BONE CYST

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar Roy

    2017-05-01

    Full Text Available BACKGROUND Unicameral Bone Cyst (UBC is described as a central metaphyseal cystic lesion of the bone with serum fluid content. Diagnosis is typically based on x-ray imaging features, age, localisation at proximal humerus and femur and the absence of symptoms until pathological fracture development. MATERIALS AND METHODS Eighteen patients with unicameral bone cysts were reviewed in Nalanda Medical College Hospital. Nine patients received serial steroid injections and the other nine patients were treated conservatively following fractures. In the steroid injection group, six cases were in the proximal femur and three in the proximal humerus. RESULTS The nine steroid injection patients showed radiological evidence of cyst healing within four months of treatment. Subsequently, all 9 patients showed a satisfactory radiological outcome after a year and complete resolution after 2 years. In the conservative group, all 9 cases were in the proximal humerus. Persistent cystic lesions were observed in all 9 patients and 2 was complicated by another fracture within 6 months. CONCLUSION Fractures through UBC in the upper extremity can be treated nonoperatively. However, steroid injection is an effective option to hasten healing and should be considered as a primary treatment of unicameral bone cyst.

  7. Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications

    Directory of Open Access Journals (Sweden)

    Bruce Chehroudi

    2012-01-01

    Full Text Available Pressure and temperature of the liquid rocket thrust chambers into which propellants are injected have been in an ascending trajectory to gain higher specific impulse. It is quite possible then that the thermodynamic condition into which liquid propellants are injected reaches or surpasses the critical point of one or more of the injected fluids. For example, in cryogenic hydrogen/oxygen liquid rocket engines, such as Space Shuttle Main Engine (SSME or Vulcain (Ariane 5, the injected liquid oxygen finds itself in a supercritical condition. Very little detailed information was available on the behavior of liquid jets under such a harsh environment nearly two decades ago. The author had the opportunity to be intimately involved in the evolutionary understanding of injection processes at the Air Force Research Laboratory (AFRL, spanning sub- to supercritical conditions during this period. The information included here attempts to present a coherent summary of experimental achievements pertinent to liquid rockets, focusing only on the injection of nonreacting cryogenic liquids into a high-pressure environment surpassing the critical point of at least one of the propellants. Moreover, some implications of the results acquired under such an environment are offered in the context of the liquid rocket combustion instability problem.

  8. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-03-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). The present study focuses on detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model using RIA for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study in this year is to evaluate the success cri-teria of Aggressive Secondary Cooldown (ASC) in a Small Size Loss Of Coolant Accident (SBLOCA) without HPSI and to enhance the understanding of related thermal hydraulic behavior and phenomena. An effort was made to evaluate the system success criteria and a mission time for the recovery action by an operator to prevent the core damage for that accident scenario. The accident scenario for KSNP was a 2 inch coldleg break LOCA with a total loss of High Pressure Safety Injection (HPSI) and 1/2 Low Pressure Safety Injection (LPSI) available and perform-ing ASC limited by 55.6 .deg. C/hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip. It successively reached the LPSI condition for about 1.5hr after starting the ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria of 1204.4 .deg. C (2200 .deg. F). Sensitivity studies were performed for (1) cool-ant average temperature parameters, (2) ASC operation control method, (3) operation start time, (4) 1 inch break size. The present analysis identified thermal hydraulic phenomena and parameters affecting on the behavior, which consist of coolant break flow and inventory, parameters governing secondary heat removal, ASC operation control method, and its reference temperature parameters. In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that an operator should maintain the ade-quate ASC operation. However, it is necessary to evaluate the uncertainties arisen from the

  9. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    International Nuclear Information System (INIS)

    1993-07-01

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state's regulations and Federal regulations, and any closure guidelines for Class IV and V wells

  10. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    Science.gov (United States)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; Nussbaum, Christophe; Birkholzer, Jens

    2017-08-01

    We studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite difference modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. The plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).

  11. Animal study assessing safety of an acoustic coupling fluid that holds the potential to avoid surgically induced artifacts in 3D ultrasound guided operations

    International Nuclear Information System (INIS)

    Jakola, Asgeir S; Jørgensen, Arve; Selbekk, Tormod; Michler, Ralf-Peter; Solheim, Ole; Torp, Sverre H; Sagberg, Lisa M; Aadahl, Petter; Unsgård, Geirmund

    2014-01-01

    Use of ultrasound in brain tumor surgery is common. The difference in attenuation between brain and isotonic saline may cause artifacts that degrade the ultrasound images, potentially affecting resection grades and safety. Our research group has developed an acoustic coupling fluid that attenuates ultrasound energy like the normal brain. We aimed to test in animals if the newly developed acoustic coupling fluid may have harmful effects. Eight rats were included for intraparenchymal injection into the brain, and if no adverse reactions were detected, 6 pigs were to be included with injection of the coupling fluid into the subarachnoid space. Animal behavior, EEG registrations, histopathology and immunohistochemistry were used in assessment. In total, 14 animals were included, 8 rats and 6 pigs. We did not detect any clinical adverse effects, seizure activity on EEG or histopathological signs of tissue damage. The novel acoustic coupling fluid intended for brain tumor surgery appears safe in rats and pigs under the tested circumstances

  12. Fluid Intelligence and Psychosocial Outcome: From Logical Problem Solving to Social Adaptation

    Science.gov (United States)

    Huepe, David; Roca, María; Salas, Natalia; Canales-Johnson, Andrés; Rivera-Rei, Álvaro A.; Zamorano, Leandro; Concepción, Aimée; Manes, Facundo; Ibañez, Agustín

    2011-01-01

    Background While fluid intelligence has proved to be central to executive functioning, logical reasoning and other frontal functions, the role of this ability in psychosocial adaptation has not been well characterized. Methodology/Principal Findings A random-probabilistic sample of 2370 secondary school students completed measures of fluid intelligence (Raven's Progressive Matrices, RPM) and several measures of psychological adaptation: bullying (Delaware Bullying Questionnaire), domestic abuse of adolescents (Conflict Tactic Scale), drug intake (ONUDD), self-esteem (Rosenberg's Self Esteem Scale) and the Perceived Mental Health Scale (Spanish adaptation). Lower fluid intelligence scores were associated with physical violence, both in the role of victim and victimizer. Drug intake, especially cannabis, cocaine and inhalants and lower self-esteem were also associated with lower fluid intelligence. Finally, scores on the perceived mental health assessment were better when fluid intelligence scores were higher. Conclusions/Significance Our results show evidence of a strong association between psychosocial adaptation and fluid intelligence, suggesting that the latter is not only central to executive functioning but also forms part of a more general capacity for adaptation to social contexts. PMID:21957464

  13. Fluid intelligence and psychosocial outcome: from logical problem solving to social adaptation.

    Science.gov (United States)

    Huepe, David; Roca, María; Salas, Natalia; Canales-Johnson, Andrés; Rivera-Rei, Álvaro A; Zamorano, Leandro; Concepción, Aimée; Manes, Facundo; Ibañez, Agustín

    2011-01-01

    While fluid intelligence has proved to be central to executive functioning, logical reasoning and other frontal functions, the role of this ability in psychosocial adaptation has not been well characterized. A random-probabilistic sample of 2370 secondary school students completed measures of fluid intelligence (Raven's Progressive Matrices, RPM) and several measures of psychological adaptation: bullying (Delaware Bullying Questionnaire), domestic abuse of adolescents (Conflict Tactic Scale), drug intake (ONUDD), self-esteem (Rosenberg's Self Esteem Scale) and the Perceived Mental Health Scale (Spanish adaptation). Lower fluid intelligence scores were associated with physical violence, both in the role of victim and victimizer. Drug intake, especially cannabis, cocaine and inhalants and lower self-esteem were also associated with lower fluid intelligence. Finally, scores on the perceived mental health assessment were better when fluid intelligence scores were higher. Our results show evidence of a strong association between psychosocial adaptation and fluid intelligence, suggesting that the latter is not only central to executive functioning but also forms part of a more general capacity for adaptation to social contexts.

  14. Fluid intelligence and psychosocial outcome: from logical problem solving to social adaptation.

    Directory of Open Access Journals (Sweden)

    David Huepe

    Full Text Available While fluid intelligence has proved to be central to executive functioning, logical reasoning and other frontal functions, the role of this ability in psychosocial adaptation has not been well characterized.A random-probabilistic sample of 2370 secondary school students completed measures of fluid intelligence (Raven's Progressive Matrices, RPM and several measures of psychological adaptation: bullying (Delaware Bullying Questionnaire, domestic abuse of adolescents (Conflict Tactic Scale, drug intake (ONUDD, self-esteem (Rosenberg's Self Esteem Scale and the Perceived Mental Health Scale (Spanish adaptation. Lower fluid intelligence scores were associated with physical violence, both in the role of victim and victimizer. Drug intake, especially cannabis, cocaine and inhalants and lower self-esteem were also associated with lower fluid intelligence. Finally, scores on the perceived mental health assessment were better when fluid intelligence scores were higher.Our results show evidence of a strong association between psychosocial adaptation and fluid intelligence, suggesting that the latter is not only central to executive functioning but also forms part of a more general capacity for adaptation to social contexts.

  15. Developing of two-dimensional model of the corium cooling and behavior with non-condensible gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chang Hyun; Cho, Jae Seon; Kim, Ju Youl; Kim, Do Hyoung [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The purpose of this study is to understand the effect of the non-condensible gas injection into the molten corium on the heat transfer and dynamic behavior within the melt when molten core-concrete interaction occurs during the hypothetical severe accident. Corium behavior with gas injection effect is two phase fluid pattern in which droplet has dispersed gas phase in continuous liquid phase of corium. To analyze this behavior, two dimensional governing equation using the governing equation, the computer program is accomplished using the finite difference method and SIMPLER algorithm. And benchmarking calculation is performed for the KfK experiment, which consider the gas injection effect. After this pre-calculation, an analyses is performed with typical corium under severe accidents. It is concluded that the heat transfer within corium increases as the metal components of the corium and gas injection velocity increase. 88 refs., 23 tabs., 35 figs. (author)

  16. Imaging fluid/solid interactions in hydrocarbon reservoir rocks.

    Science.gov (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D

    1993-08-01

    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  17. Changes in Ultrasonic Velocity from Fluid Substitution, Calculated with Laboratory Methods, Digital Rock Physics, and Biot Theory

    Science.gov (United States)

    Goldfarb, E. J.; Ikeda, K.; Tisato, N.

    2017-12-01

    Seismic and ultrasonic velocities of rocks are function of several variables including fluid saturation and type. Understanding the effect of each variable on elastic waves can be valuable when using seismic methods for subsurface modeling. Fluid type and saturation are of specific interest to volcanology, water, and hydrocarbon exploration. Laboratory testing is often employed to understand the effects of fluids on elastic waves. However, laboratory testing is expensive and time consuming. It normally requires cutting rare samples into regular shapes. Fluid injection can also destroy specimens as removing the fluid after testing can prove difficult. Another option is theoretical modeling, which can be used to predict the effect of fluids on elastic properties, but it is often inaccurate. Alternatively, digital rock physics (DRP) can be used to investigate the effect of fluid substitution. DRP has the benefit of being non invasive, as it does not require regular sample shapes or fluid injection. Here, we compare the three methods for dry and saturated Berea sandstone to test the reliability of DRP. First, ultrasonic velocities were obtained from laboratory testing. Second, for comparison, we used a purely theoretical approach - i.e., Hashin-Shtrikman and Biot theory - to estimate the wave speeds at dry and wet conditions. Third, we used DRP. The dry sample was scanned with micro Computed Tomography (µCT), and a three dimensional (3D) array was recorded. We employed a segmentation-less method to convert each 3D array value to density, porosity, elastic moduli, and wave speeds. Wave propagation was simulated numerically at similar frequency as the laboratory. To simulate fluid substitution, we numerically substituted air values for water and repeated the simulation. The results from DRP yielded similar velocities to the laboratory, and accurately predicted the velocity change from fluid substitution. Theoretical modeling could not accurately predict velocity, and

  18. Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?

    Science.gov (United States)

    Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

    2011-01-01

    An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

  19. Caffeine-containing beverages, total fluid consumption, and premenstrual syndrome.

    Science.gov (United States)

    Rossignol, A M; Bonnlander, H

    1990-09-01

    The main objective of this study was to evaluate whether daily consumption of caffeine-containing beverages is related to the prevalence and severity of premenstrual syndrome apart from any effects of daily total fluid consumption. A secondary objective was to determine whether daily total fluid consumption itself is related to premenstrual syndrome. The study is based on 841 responses to a questionnaire probing menstrual and premenstrual health, and daily fluid consumption, which was mailed to female university students in Oregon. Analysis of the data revealed that consumption of caffeine-containing beverages was strongly related to the prevalence of premenstrual syndrome. Among women with more severe symptoms, the relation between consumption of caffeine-containing beverages and premenstrual syndrome was dose-dependent, with prevalence odds ratios equal to 1.3 for consumers of one cup of a caffeine-containing beverage per day and increasing steadily to 7.0 for consumers of eight to 10 cups per day. The effects were apparent among both caffeine-containing tea/coffee consumers and caffeine-containing soda consumers. The observed effects were only slightly reduced when daily total fluid consumption was controlled. Daily total fluid consumption also was related to the prevalence of premenstrual symptoms although the effects were large only for consumers of 13-19 cups of fluid per day (the largest amount studied).

  20. Dermal Titanium Dioxide Deposition Associated With Intralesional Triamcinolone Injection.

    Science.gov (United States)

    Cohen, Brandon E; Bashey, Sameer; Cole, Christine; Abraham, Jerrold L; Ragsdale, Bruce; Ngo, Binh

    2016-12-01

    Cutaneous discoloration secondary to dermal deposition of titanium dioxide (TiO2) particles is recognized but seldom reported in the literature. In this report, the authors describe the case of a 61-year-old gentleman, with a long history of alopecia areata, who presented with numerous, discrete dark blue macules on the scalp. Scanning electron microscopy with energy dispersive x-ray spectroscopy analysis ultimately identified the macules as deposits of TiO2. The patient had a history of intralesional triamcinolone injections for management of alopecia areata. A sample of generic 0.1% triamcinolone acetonide paste was analyzed and found to contain many TiO2 particles analogous to those seen in the patient's biopsy sample. To the authors' knowledge, this is the first reported case of TiO2 deposition in the dermis likely resulting from topical combined with intralesional triamcinolone injection.