WorldWideScience

Sample records for secondary brain damage

  1. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    Science.gov (United States)

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); pbeam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in the treatment of TBI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  3. Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation.

    Directory of Open Access Journals (Sweden)

    Clara Luh

    Full Text Available It is unclear whether a single, brief, 15-minute episode of background anesthesia already modulates delayed secondary processes after experimental brain injury. Therefore, this study was designed to characterize three anesthesia protocols for their effect on molecular and histological study endpoints. Mice were randomly separated into groups that received sevoflurane (sevo, isoflurane (iso or an intraperitoneal anesthetic combination (midazolam, fentanyl and medetomidine; comb prior to traumatic brain injury (controlled cortical impact, CCI; 8 m/s, 1 mm impact depth, 3 mm diameter. Twenty-four hours after insult, histological brain damage, neurological function (via neurological severity score, cerebral inflammation (via real-time RT-PCR for IL6, COX-2, iNOS and microglia (via immunohistochemical staining for Iba1 were determined. Fifteen minutes after CCI, the brain contusion volume did not differ between the anesthetic regimens (sevo = 17.9±5.5 mm(3; iso = 20.5±3.7 mm(3; comb = 19.5±4.6 mm(3. Within 24 hours after injury, lesion size increased in all groups (sevo = 45.3±9.0 mm(3; iso = 31.5±4.0 mm(3; comb = 44.2±6.2 mm(3. Sevo and comb anesthesia resulted in a significantly larger contusion compared to iso, which was in line with the significantly better neurological function with iso (sevo = 4.6±1.3 pts.; iso = 3.9±0.8 pts.; comb = 5.1±1.6 pts.. The expression of inflammatory marker genes was not significantly different at 15 minutes and 24 hours after CCI. In contrast, significantly more Iba1-positive cells were present in the pericontusional region after sevo compared to comb anesthesia (sevo = 181±48/mm(3; iso = 150±36/mm(3; comb = 113±40/mm(3. A brief episode of anesthesia, which is sufficient for surgical preparations of mice for procedures such as delivering traumatic brain injury, already has a significant impact on the extent of secondary brain damage.

  4. Importance of secondary damage in downer cows.

    Science.gov (United States)

    Poulton, P J; Vizard, A L; Anderson, G A; Pyman, M F

    2016-05-01

    To investigate the relative importance in downer cows of the primary cause of recumbency in comparison with secondary complications. Downer dairy cows were monitored during their recumbency under field conditions in South Gippsland, Victoria, Australia. The cause of the original recumbency of the 218 cows was determined and secondary damage, status on day 7 and final outcome were recorded. Some type of secondary damage was found in 183/218 (84%) cows, of which 173/218 (79%) had damage deemed to be clinically important. By day 7, 52 (24%) had recovered and 69 (32%) eventually recovered. Of the 149 (68%) cows that were euthanased or died, 23 (15%) were deemed to have been lost solely from the primary cause, 107 (72%) from secondary damage and 19 (13%) from a combination of both. There was no difference in recovery among the five broad groups of causes of primary recumbency. Secondary damage was very common and presented in a large variety of ways, with many cows having multiple types of secondary damage concurrently. For most cows the secondary damage was more important than the initial primary damage in determining their fate. © 2016 Australian Veterinary Association.

  5. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Pache, F.; Paul, F. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Finke, C. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Humboldt-Universitaet zu Berlin, Berlin School of Mind and Brain, Berlin (Germany); Hamm, B. [Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Ruprecht, K. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Scheel, M. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany)

    2016-12-15

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  6. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    International Nuclear Information System (INIS)

    Pache, F.; Paul, F.; Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U.; Finke, C.; Hamm, B.; Ruprecht, K.; Scheel, M.

    2016-01-01

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  7. Neglect severity after left and right brain damage.

    Science.gov (United States)

    Suchan, Julia; Rorden, Chris; Karnath, Hans-Otto

    2012-05-01

    While unilateral spatial neglect after left brain damage is undoubtedly less common than spatial neglect after a right hemisphere lesion, it is also assumed to be less severe. Here we directly test this latter hypothesis using a continuous measure of neglect severity: the so-called Center of Cancellation (CoC). Rorden and Karnath (2010) recently validated this index for right brain damaged neglect patients. A first aim of the present study was to evaluate this new measure for spatial neglect after left brain damage. In a group of 48 left-sided stroke patients with and without neglect, a score greater than -0.086 on the Bells Test and greater than -0.024 on the Letter Cancellation Task turned out to indicate neglect behavior for acute left brain damaged patients. A second aim was to directly compare the severity of spatial neglect after left versus right brain injury by using the new CoC measure. While neglect is less frequent following left than right hemisphere injury, we found that when this symptom occurs it is of similar severity in acute left brain injury as in patients after acute right brain injury. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Secondary damages to forests caused by industrial exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Donaubauer, E

    1966-01-01

    Acute and chronic damages of diverse origins modify the susceptibility of trees to certain insects and infectious diseases. Especially in connection with air pollution damages, it must be pointed out that such predisposition may occur long before any symptoms become visible or before any growth losses can be measured. In many instances, it is very difficult to evaluate these secondary damages. Very extensive regional comparisons are necessary in order to obtain evidence of damage. Increased occurrence of parasites and/or disease within the emission area must be compared with the frequency and intensity of occurrence outside of said area; this may then serve as circumstantial proof of a demonstrated secondary damage. Examples of these kinds of effects caused by parasitic fungi and insects are discussed in detail. 27 references.

  9. Resolvin D1 Halts Remote Neuroinflammation and Improves Functional Recovery after Focal Brain Damage Via ALX/FPR2 Receptor-Regulated MicroRNAs.

    Science.gov (United States)

    Bisicchia, Elisa; Sasso, Valeria; Catanzaro, Giuseppina; Leuti, Alessandro; Besharat, Zein Mersini; Chiacchiarini, Martina; Molinari, Marco; Ferretti, Elisabetta; Viscomi, Maria Teresa; Chiurchiù, Valerio

    2018-01-22

    Remote damage is a secondary phenomenon that usually occurs after a primary brain damage in regions that are distant, yet functionally connected, and that is critical for determining the outcomes of several CNS pathologies, including traumatic brain and spinal cord injuries. The understanding of remote damage-associated mechanisms has been mostly achieved in several models of focal brain injury such as the hemicerebellectomy (HCb) experimental paradigm, which helped to identify the involvement of many key players, such as inflammation, oxidative stress, apoptosis and autophagy. Currently, few interventions have been shown to successfully limit the progression of secondary damage events and there is still an unmet need for new therapeutic options. Given the emergence of the novel concept of resolution of inflammation, mediated by the newly identified ω3-derived specialized pro-resolving lipid mediators, such as resolvins, we reported a reduced ability of HCb-injured animals to produce resolvin D1 (RvD1) and an increased expression of its target receptor ALX/FPR2 in remote brain regions. The in vivo administration of RvD1 promoted functional recovery and neuroprotection by reducing the activation of Iba-1+ microglia and GFAP+ astrocytes as well as by impairing inflammatory-induced neuronal cell death in remote regions. These effects were counteracted by intracerebroventricular neutralization of ALX/FPR2, whose activation by RvD1 also down-regulated miR-146b- and miR-219a-1-dependent inflammatory markers. In conclusion, we propose that innovative therapies based on RvD1-ALX/FPR2 axis could be exploited to curtail remote damage and enable neuroprotective effects after acute focal brain damage.

  10. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard

    2014-01-01

    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  11. Performance of brain-damaged, schizophrenic, and normal subjects on a visual searching task.

    Science.gov (United States)

    Goldstein, G; Kyc, F

    1978-06-01

    Goldstein, Rennick, Welch, and Shelly (1973) reported on a visual searching task that generated 94.1% correct classifications when comparing brain-damaged and normal subjects, and 79.4% correct classifications when comparing brain-damaged and psychiatric patients. In the present study, representing a partial cross-validation with some modification of the test procedure, comparisons were made between brain-damaged and schizophrenic, and brain-damaged and normal subjects. There were 92.5% correct classifications for the brain-damaged vs normal comparison, and 82.5% correct classifications for the brain-damaged vs schizophrenic comparison.

  12. The ischemic perinatal brain damage

    International Nuclear Information System (INIS)

    Crisi, G.; Mauri, C.; Canossi, G.; Della Giustina, E.

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis

  13. Neuroprotection and secondary damage following spinal cord injury: concepts and methods.

    Science.gov (United States)

    Hilton, Brett J; Moulson, Aaron J; Tetzlaff, Wolfram

    2017-06-23

    Neuroprotection refers to the attenuation of pathophysiological processes triggered by acute injury to minimize secondary damage. The development of neuroprotective treatments represents a major goal in the field of spinal cord injury (SCI) research. In this review, we discuss the strengths and limitations of the methodologies employed to assess secondary damage and neuroprotection in preclinical models of traumatic SCI. We also discuss modelling issues and how new tools might be exploited to study secondary damage and neuroprotection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis - a systematic review and meta-analysis.

    Science.gov (United States)

    Beez, Thomas; Steiger, Hans-Jakob; Etminan, Nima

    2017-12-07

    The effectiveness of pharmacological strategies exclusively targeting secondary brain damage (SBD) following ischemic stroke, aneurysmal subarachnoid hemorrhage, aSAH, intracerebral hemorrhage (ICH), traumatic brain injury (TBI) and bacterial meningitis is unclear. This meta-analysis studied the effect of SBD targeted treatment on clinical outcome across the pathological entities. Randomized, controlled, double-blinded trials on aforementioned entities with 'death' as endpoint were identified. Effect sizes were analyzed and expressed as pooled risk ratio (RR) estimates with 95% confidence intervals (CI). 123 studies fulfilled the criteria, with data on 66,561 patients. In the pooled analysis, there was a minor reduction of mortality for aSAH [RR 0.93 (95% CI:0.85-1.02)], ICH [RR 0.92 (95% CI:0.82-1.03)] and bacterial meningitis [RR 0.86 (95% CI:0.68-1.09)]. No reduction of mortality was found for ischemic stroke [RR 1.05 (95% CI:1.00-1.11)] and TBI [RR 1.03 (95% CI:0.93-1.15)]. Additional analysis of "poor outcome" as endpoint gave similar results. Subgroup analysis with respect to effector mechanisms showed a tendency towards a reduced mortality for the effector mechanism category "oxidative metabolism/stress" for aSAH with a risk ratio of 0.86 [95% CI: 0.73-1.00]. Regarding specific medications, a statistically significant reduction of mortality and poor outcome was confirmed only for nimodipine for aSAH and dexamethasone for bacterial meningitis. Our results show that only a few selected SBD directed medications are likely to reduce the rate of death and poor outcome following aSAH, and bacterial meningitis, while no convincing evidence could be found for the usefulness of SBD directed medications in ischemic stroke, ICH and TBI. However, a subtle effect on good or excellent outcome might remain undetected. These results should lead to a new perspective of secondary reactions following cerebral injury. These processes should not be seen as suicide mechanisms

  15. Brain uptake of C14-cycloleucine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O; Synder, S H

    1969-01-01

    Comparisons were made as to extra vasalation of fluorescence Na and uptake of C14-cycloleucine between barrier damaged and undamaged rabbit brain hemispheres. The results show that mercury ions damage the blood-brain barrier and thus the uptake of C14-cycloleucine.

  16. Deficiency of vasodilator-stimulated phosphoprotein (VASP increases blood-brain-barrier damage and edema formation after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Peter Kraft

    2010-12-01

    Full Text Available Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification.Focal cerebral ischemia was induced in Vasp(-/- mice and wild-type (WT littermates by transient middle cerebral artery occlusion (tMCAO. Evan's Blue tracer was applied to visualize the extent of blood-brain-barrier (BBB damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p0.05 towards worse neurological outcomes.Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage.

  17. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    Science.gov (United States)

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury

    DEFF Research Database (Denmark)

    Hwabejire, John O; Imam, Ayesha M; Jin, Guang

    2013-01-01

    We have previously shown that the extent of traumatic brain injury (TBI) in large animal models can be reduced with early infusion of fresh frozen plasma (FFP), but the precise mechanisms remain unclear. In this study, we investigated whether resuscitation with FFP or normal saline differed in th...... in their effects on cerebral metabolism and excitotoxic secondary brain injury in a model of polytrauma, TBI, and hemorrhagic shock....

  19. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    Science.gov (United States)

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers

  20. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  1. Secondary Damage after Traumatic Brain Injury: Epidemiology, Pathophysiology and Therapy

    NARCIS (Netherlands)

    D.C. Engel (Doortje Caroline)

    2008-01-01

    textabstractTraumatic brain injury (TBI) is defined as a microscopic or macroscopic injury to the brain caused by external physical forces. Road traffic accidents, falls, sports injuries (i.e. boxing), recreational accidents (i.e. parachute jumping), the use of firearms, assault, child abuse,

  2. Sequestosome 1 Deficiency Delays, but Does Not Prevent Brain Damage Formation Following Acute Brain Injury in Adult Mice

    Directory of Open Access Journals (Sweden)

    Anne Sebastiani

    2017-12-01

    -traumatic brain damage formation. SQSTM1 therefore only plays a minor role for secondary brain damage formation and autophagic clearance of debris after TBI.

  3. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  4. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  5. Predicting aphasia type from brain damage measured with structural MRI.

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    Science.gov (United States)

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Sex Differences in the Effects of Unilateral Brain Damage on Intelligence

    Science.gov (United States)

    Inglis, James; Lawson, J. S.

    1981-05-01

    A sexual dimorphism in the functional asymmetry of the damaged human brain is reflected in a test-specific laterality effect in male but not in female patients. This sex difference explains some contradictions concerning the effects of unilateral brain damage on intelligence in studies in which the influence of sex was overlooked.

  8. The neuroimaging evidence for chronic brain damage due to boxing

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, I.F. [Lysholm Radiological Department, National Hospital for Neurology and Neurosurgery, London (United Kingdom)

    2000-01-01

    A number of imaging techniques have been used to investigate changes produced in the brain by boxing. Most morphological studies have failed to show significant correlations between putative abnormalities on imaging and clinical evidence of brain damage. Fenestration of the septum pellucidum, with formation of a cavum, one of the most frequent observations, does not appear to correlate with neurological or physiological evidence of brain damage. Serial studies on large groups may be more informative. Magnetic resonance spectroscopy and cerebral blood flow studies have been reported in only small numbers of boxers; serial studies are not available to date. (orig.)

  9. Effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection

    Institute of Scientific and Technical Information of China (English)

    2017-01-01

    Objective:To study the effect of dexmedetomidine combined with propofol on brain tissue damage in brain glioma resection.Methods: A total of 74 patients who received brain glioma resection in our hospital between May 2014 and December 2016 were selected and randomly divided into Dex group and control group who received dexmedetomidine intervention and saline intervention before induction respectively. Serum brain tissue damage marker, PI3K/AKT/iNOS and oxidation reaction molecule contents as well as cerebral oxygen metabolism index levels were determined before anesthesia (T0), at dura mater incision (T1), immediately after recovery (T2) and 24 h after operation (T3).Results: Serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of both groups at T2 and T3 were significantly higher than those at T0 and T1 while serum SOD and CAT contents as well as SjvO2levels were significantly lower than those at T0 and T1, and serum NSE, S100B, MBP, GFAP, PI3K, AKT, iNOS and MDA contents as well as AVDO2 and CERO2 levels of Dex group at T2 and T3 were significantly lower than those of control group while serum SOD and CAT contents as well as SjvO2 levels were significantly higher than those of control group.Conclusions: Dexmedetomidine combined with propofol can reduce the brain tissue damage in brain glioma resection.

  10. Intrauterine infection/inflammation during pregnancy and offspring brain damages: Possible mechanisms involved

    Directory of Open Access Journals (Sweden)

    Golan Hava

    2004-04-01

    Full Text Available Abstract Intrauterine infection is considered as one of the major maternal insults during pregnancy. Intrauterine infection during pregnancy could lead to brain damage of the developmental fetus and offspring. Effects on the fetal, newborn, and adult central nervous system (CNS may include signs of neurological problems, developmental abnormalities and delays, and intellectual deficits. However, the mechanisms or pathophysiology that leads to permanent brain damage during development are complex and not fully understood. This damage may affect morphogenic and behavioral phenotypes of the developed offspring, and that mice brain damage could be mediated through a final common pathway, which includes over-stimulation of excitatory amino acid receptor, over-production of vascularization/angiogenesis, pro-inflammatory cytokines, neurotrophic factors and apoptotic-inducing factors.

  11. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  12. Categorization skills and recall in brain damaged children: a multiple case study.

    Science.gov (United States)

    Mello, Claudia Berlim de; Muszkat, Mauro; Xavier, Gilberto Fernando; Bueno, Orlando Francisco Amodeo

    2009-09-01

    During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.

  13. Assessment of brain damage in a geriatric population through use of a visual-searching task.

    Science.gov (United States)

    Turbiner, M; Derman, R M

    1980-04-01

    This study was designed to assess the discriminative capacity of a visual-searching task for brain damage, as described by Goldstein and Kyc (1978), for 10 hospitalized male, brain-damaged patients, 10 hospitalized male schizophrenic patients, and 10 normal subjects in a control group, all of whom were approximately 65 yr. old. The derived data indicated, at a statistically significant level, that the visual-searching task was effective in successfully classifying 80% of the brain-damaged sample when compared to the schizophrenic patients and discriminating 90% of the brain-damaged patients from normal subjects.

  14. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  15. Overweight worsens apoptosis, neuroinflammation and blood-brain barrier damage after hypoxic ischemia in neonatal brain through JNK hyperactivation

    Directory of Open Access Journals (Sweden)

    Wu Hsin-Chieh

    2011-04-01

    Full Text Available Abstract Background Apoptosis, neuroinflammation and blood-brain barrier (BBB damage affect the susceptibility of the developing brain to hypoxic-ischemic (HI insults. c-Jun N-terminal kinase (JNK is an important mediator of insulin resistance in obesity. We hypothesized that neonatal overweight aggravates HI brain damage through JNK hyperactivation-mediated upregulation of neuronal apoptosis, neuroinflammation and BBB leakage in rat pups. Methods Overweight (OF pups were established by reducing the litter size to 6, and control (NF pups by keeping the litter size at 12 from postnatal (P day 1 before HI on P7. Immunohistochemistry and immunoblotting were used to determine the TUNEL-(+ cells and BBB damage, cleaved caspase-3 and poly (ADP-ribose polymerase (PARP, and phospho-JNK and phospho-BimEL levels. Immunofluorescence was performed to determine the cellular distribution of phospho-JNK. Results Compared with NF pups, OF pups had a significantly heavier body-weight and greater fat deposition on P7. Compared with the NF-HI group, the OF-HI group showed significant increases of TUNEL-(+ cells, cleaved levels of caspase-3 and PARP, and ED1-(+ activated microglia and BBB damage in the cortex 24 hours post-HI. Immunofluorescence of the OF-HI pups showed that activated-caspase 3 expression was found mainly in NeuN-(+ neurons and RECA1-(+ vascular endothelial cells 24 hours post-HI. The OF-HI group also had prolonged escape latency in the Morris water maze test and greater brain-volume loss compared with the NF-HI group when assessed at adulthood. Phospho-JNK and phospho-BimEL levels were higher in OF-HI pups than in NF-HI pups immediately post-HI. JNK activation in OF-HI pups was mainly expressed in neurons, microglia and vascular endothelial cells. Inhibiting JNK activity by AS601245 caused more attenuation of cleaved caspase-3 and PARP, a greater reduction of microglial activation and BBB damage post-HI, and significantly reduced brain damage in

  16. Pathophysiology of repetitive head injury in sports. Prevention against catastrophic brain damage

    International Nuclear Information System (INIS)

    Mori, Tatsuro; Kawamata, Tatsuro; Katayama, Yoichi

    2008-01-01

    The most common head injury in sports is concussion and experiencing multiple concussions in a short period of time sometimes can cause severe brain damage. In this paper, we investigate severe brain damage due to repeated head injury in sports and discuss the pathophysiology of repeated sports injury. The majority of these severe cases are usually male adolescents or young adults that suffer a second head injury before they have recovered from the first head injury. All cases that could be confirmed by brain CT scan after the second injury revealed brain swelling associated with a thin subdural hematoma. We suggested that the existence of subdural hematoma is one of the major causes of brain swelling after repeated head injury in sports. Since repeated concussions occurring within a short period may have a risk for severe brain damage, the diagnosis for initial cerebral concussion should be done appropriately. To prevent catastrophic brain damage, the player who suffered from concussion should not engage in any sports before recovery. The american Academy of Neurology and Colorado Medical Society set a guideline to return to play after cerebral concussion. An international conference on concussion in sports was held at Prague in 2004. The summary and agreement of this meeting was published and the Sports Concussion Assessment Tool (SCAT) was introduced to treat sports-related concussion. In addition, a number of computerized cognitive assessment tests and test batteries have been developed to allow athletes to return to play. It is important that coaches, as well as players and trainers, understand the medical issues involved in concussion. (author)

  17. Patterns of damage in the mature neonatal brain

    International Nuclear Information System (INIS)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea

    2006-01-01

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  18. Patterns of damage in the mature neonatal brain

    Energy Technology Data Exchange (ETDEWEB)

    Triulzi, Fabio; Parazzini, Cecilia; Righini, Andrea [Children' s Hospital ' ' Vittore Buzzi' ' , Departments of Radiology and Neuroradiology, Milan (Italy)

    2006-07-15

    Patterns of damage in the mature neonatal brain can be subdivided into focal, multifocal and diffuse. The main cause of diffuse brain damage in the term newborn is hypoxic-ischaemic encephalopathy (HIE). HIE is still the major recognized perinatal cause of neurological morbidity in full-term newborns. MRI offers today the highest sensitivity in detecting acute anoxic injury of the neonatal brain. Conventional acquisition techniques together with modern diffusion techniques can identify typical patterns of HIE injury, even in the early course of the disease. However, even though highly suggestive, these patterns cannot be considered as pathognomonic. Perinatal metabolic disease such as kernicterus and severe hypoglycaemia should be differentiated from classic HIE. Other conditions, such as infections, non-accidental injury and rarer metabolic diseases can be misinterpreted as HIE in their early course when diffuse brain swelling is still the predominant MRI feature. Diffusion techniques can help to differentiate different types of diffuse brain oedema. Typical examples of focal injuries are arterial or venous infarctions. In arterial infarction, diffusion techniques can define more precisely than conventional imaging the extent of focal infarction, even in the hyperacute phase. Moreover, diffusion techniques provide quantitative data of acute corticospinal tract injury, especially at the level of the cerebral peduncles. Venous infarction should be suspected in every case of unexplained cerebral haematoma in the full-term newborn. In the presence of spontaneous bleeding, venous structures should always be evaluated by MR angiography. (orig.)

  19. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  20. Computerized axial tomography in the detection of brain damage

    International Nuclear Information System (INIS)

    Cala, L.A.; Mastaglia, F.L.

    1980-01-01

    The cranial computerized axial tomography (CAT) findings in groups of patients with epilepsy, migraine, hypertension, and other general medical disorders have been reviewed to assess the frequency and patterns of focal and diffuse brain damage. In addition to demonstrating focal lesions in a proportion of patients with seizures and in patients presenting with a stroke, the CAT scan showed a premature degree of cerebral atrophy in an appreciable proportion of patients with long-standing epilepsy, hypertension and diabetes, and in some patients with migraine, valvular and ischaemic heart disease, chronic obstructive airways disease, and chronic renal failure. The value of CAT as a means of screening for brain damage in groups of individuals at risk is discussed

  1. Dental deafferentation and brain damage: A review and a hypothesis

    Directory of Open Access Journals (Sweden)

    Yi-Tai Jou

    2018-04-01

    Full Text Available In the last few decades, neurobiological and human brain imaging research have greatly advanced our understanding of brain mechanisms that support perception and memory, as well as their function in daily activities. Knowledge of the neurobiological mechanisms behind the deafferentation of stomatognathic systems has also expanded greatly in recent decades. In particular, current studies reveal that the peripheral deafferentations of stomatognathic systems may be projected globally into the central nervous system (CNS and become an associated critical factor in triggering and aggravating neurodegenerative diseases.This review explores basic neurobiological mechanisms associated with the deafferentation of stomatognathic systems. Further included is a discussion on tooth loss and other dental deafferentation (DD mechanisms, with a focus on dental and masticatory apparatuses associated with brain functions and which may underlie the changes observed in the aging brain. A new hypothesis is presented where DD and changes in the functionality of teeth and the masticatory apparatus may cause brain damage as a result of altered cerebral circulation and dysfunctional homeostasis. Furthermore, multiple recurrent reorganizations of the brain may be a triggering or contributing risk factor in the onset and progression of neurodegenerative conditions such as Alzheimer's disease (AD. A growing understanding of the association between DD and brain aging may lead to solutions in treating and preventing cognitive decline and neurodegenerative diseases. Keywords: Dental deafferentation, Alzheimer's disease, Brain damage, Temporal-mandibular joint

  2. Perioperative brain damage after cardiovascular surgery; Clinical evaluation including CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Michiyuki; Kuriyama, Yoshihiro; Sawada, Toru; Fujita, Tsuyoshi; Omae, T. (National Cardiovascular Center, Suita, Osaka (Japan))

    1989-08-01

    We examined 39 cases (1.6%) of post-operative brain damages out of 2,445 sequential cases of cardiovascular surgery in NCVC during past three years. In this study, we investigated clinical course and CT findings of each patient in details and analyzed the causes of the post operative brain damages. Of 39 cases, 23 (59%) were complicated with cerebral ischemia, 8 (21%) with subdural hematoma (SDH), 2 (5%) with intracranial hemorrhage (ICH) and 1 (2%) with subarachnoid hemorrhage (SAH), respectively. 5 cases (13%) had unclassified brain damages. In 23 cases of cerebral ischemia there were 5 cases of hypotension-induced ischemia, 4 cases of hypoxic encephalopathy, 3 cases of ischemia induced by intra-operative maneuvers, 3 cases of embolism after operation and a single case of 'microembolism'. Seven cases could not be classified into any of these categories. Duration of ECC was 169.9 {plus minus} 48.5 min on the average in patients with such brain damages as SDH, ICH, SAH and cardiogenic embolism, which were thought not to be related with ECC. On the other hand, that of the patients hypotensive ischemia or 'microembolism' gave an average value of 254.5 {plus minus} 96.8 min. And these patients were thought to have occurred during ECC. There was a statistically significant difference between these two mean values. (J.P.N.).

  3. Ischemic perinatal brain damage. Neuropathologic and CT correlations

    Energy Technology Data Exchange (ETDEWEB)

    Crisi, G; Mauri, C; Canossi, G; Della Giustina, E

    1986-01-01

    The term ''hypoxic-ischemic encephalopathy'' covers a large part of neonatal neuropathology including the various forms of intracerebral haemorrhage. In the present work the term is confined to ischemic brain edema and actual infarction, be it diffuse or focal. Eighteen newborns with CT evidence of ischemic brain lesions and infarctual necrosis were selected. Emphasis is placed on current data on neuropathology of ischemic brain edema and its CT appearance. Particular entities such as periventricular leukomalacia and multicystic encephalopathy are discussed. Relationship between CT and temporal profile of cerebral damage is emphasized in order to predict the structural sequelae and the longterm prognosis. 31 refs.

  4. Systems approach to the study of brain damage in the very preterm newborn

    Science.gov (United States)

    Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf

    2015-01-01

    Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780

  5. Brain damage and addictive behavior: a neuropsychological and electroencephalogram investigation with pathologic gamblers.

    Science.gov (United States)

    Regard, Marianne; Knoch, Daria; Gütling, Eva; Landis, Theodor

    2003-03-01

    Gambling is a form of nonsubstance addiction classified as an impulse control disorder. Pathologic gamblers are considered healthy with respect to their cognitive status. Lesions of the frontolimbic systems, mostly of the right hemisphere, are associated with addictive behavior. Because gamblers are not regarded as "brain-lesioned" and gambling is nontoxic, gambling is a model to test whether addicted "healthy" people are relatively impaired in frontolimbic neuropsychological functions. Twenty-one nonsubstance dependent gamblers and nineteen healthy subjects underwent a behavioral neurologic interview centered on incidence, origin, and symptoms of possible brain damage, a neuropsychological examination, and an electroencephalogram. Seventeen gamblers (81%) had a positive medical history for brain damage (mainly traumatic head injury, pre- or perinatal complications). The gamblers, compared with the controls, were significantly more impaired in concentration, memory, and executive functions, and evidenced a higher prevalence of non-right-handedness (43%) and, non-left-hemisphere language dominance (52%). Electroencephalogram (EEG) revealed dysfunctional activity in 65% of the gamblers, compared with 26% of controls. This study shows that the "healthy" gamblers are indeed brain-damaged. Compared with a matched control population, pathologic gamblers evidenced more brain injuries, more fronto-temporo-limbic neuropsychological dysfunctions and more EEG abnormalities. The authors thus conjecture that addictive gambling may be a consequence of brain damage, especially of the frontolimbic systems, a finding that may well have medicolegal consequences.

  6. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  7. The use of computed tomography in brain damage testing

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1980-01-01

    The article deals with the diagnosis of brain damage by the use of computerized tomography - especially referring to the injuries of boxers. Three conditions may be evaluated with computerized tomography: i) fenestration of the septum pellucidum; ii) cortical atrophy; and, iii) cerebral atrophy. It also appears that computerized tomography has a place in the evaluation of injuries sustained in the ring, as well as the detection of accelerated ageing of the brain or atrophy

  8. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Adamchik, Y; Frantseva, M V; Weisspapir, M; Carlen, P L; Perez Velazquez, J L

    2000-04-01

    Organotypic brain slice cultures have been used in a variety of studies on neurodegenerative processes [K.M. Abdel-Hamid, M. Tymianski, Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins, J. Neurosci. 17, 1997, pp. 3538-3553; D.W. Newell, A. Barth, V. Papermaster, A.T. Malouf, Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures, J. Neurosci. 15, 1995, pp. 7702-7711; J.L. Perez Velazquez, M.V. Frantseva, P.L. Carlen, In vitro ischemia promotes glutamate mediated free radical generation and intracellular calcium accumulation in pyramidal neurons of cultured hippocampal slices, J. Neurosci. 23, 1997, pp. 9085-9094; L. Stoppini, L.A. Buchs, D. Muller, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods 37, 1991, pp. 173-182; R.C. Tasker, J.T. Coyle, J.J. Vornov, The regional vulnerability to hypoglycemia induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK 801, J. Neurosci. 12, 1992, pp. 4298-4308.]. We describe two methods to induce traumatic cell damage in hippocampal organotypic cultures. Primary trauma injury was achieved by rolling a stainless steel cylinder (0.9 g) on the organotypic slices. Secondary injury was followed after dropping a weight (0.137 g) on a localised area of the organotypic slice, from a height of 2 mm. The time course and extent of cell death were determined by measuring the fluorescence of the viability indicator propidium iodide (PI) at several time points after the injury. The initial localised impact damage spread 24 and 67 h after injury, cell death being 25% and 54%, respectively, when slices were kept at 37 degrees C. To validate these methods as models to assess neuroprotective strategies, similar insults were applied to slices at relatively low temperatures (30

  9. Prostacyclin infusion may prevent secondary damage in pericontusional brain tissue

    DEFF Research Database (Denmark)

    Reinstrup, Peter; Nordström, Carl-Henrik

    2011-01-01

    Prostacyclin is a potent vasodilator, inhibitor of leukocyte adhesion, and platelet aggregation, and has been suggested as therapy for cerebral ischemia. A case of focal traumatic brain lesion that was monitored using intracerebral microdialysis, and bedside analysis and display is reported here........ When biochemical signs of cerebral ischemia progressed, i.v. infusion of prostacyclin was started....

  10. [Neuroendocrine dysfunction and brain damage. A consensus statement].

    Science.gov (United States)

    Leal-Cerro, Alfonso; Rincón, María Dolores; Domingo, Manel Puig

    2009-01-01

    This consensus statement aims to enhance awareness of the incidence and risks of hypopituitarism in patients with traumatic brain injury (TBI) and/or brain hemorrhages among physicians treating patients with brain damage. The importance of this problem is related not only to the frequency of TBI but also to its prevalence in younger populations. The consequences of TBI are characterized by a series of symptoms that depend on the type of sequels related to neuroendocrine dysfunction. The signs and symptoms of hypopituitarism are often confused with those of other sequels of TBI. Consequently, patients with posttraumatic hypopituitarism may receive suboptimal rehabilitation unless the underlying hormone deficiency is identified and treated. This consensus is based on the recommendation supported by expert opinion that patients with a TBI and/or brain hemorrhage should undergo endocrine evaluation in order to assess pituitary function and, if deficiency is detected, should receive hormone replacement therapy.

  11. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Jittiwat, Jinatta; Tongun, Terdthai; Muchimapura, Supaporn; Ingkaninan, Kornkanok

    2011-01-01

    Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO). Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia. PMID:21197427

  12. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2011-01-01

    Full Text Available Cerebral ischemia is known to produce brain damage and related behavioral deficits including memory. Recently, accumulating lines of evidence showed that dietary enrichment with nutritional antioxidants could reduce brain damage and improve cognitive function. In this study, possible protective effect of Zingiber officinale, a medicinal plant reputed for neuroprotective effect against oxidative stress-related brain damage, on brain damage and memory deficit induced by focal cerebral ischemia was elucidated. Male adult Wistar rats were administrated an alcoholic extract of ginger rhizome orally 14 days before and 21 days after the permanent occlusion of right middle cerebral artery (MCAO. Cognitive function assessment was performed at 7, 14, and 21 days after MCAO using the Morris water maze test. The brain infarct volume and density of neurons in hippocampus were also determined. Furthermore, the level of malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px in cerebral cortex, striatum, and hippocampus was also quantified at the end of experiment. The results showed that cognitive function and neurons density in hippocampus of rats receiving ginger rhizome extract were improved while the brain infarct volume was decreased. The cognitive enhancing effect and neuroprotective effect occurred partly via the antioxidant activity of the extract. In conclusion, our study demonstrated the beneficial effect of ginger rhizome to protect against focal cerebral ischemia.

  13. Gender differences in alcohol-induced neurotoxicity and brain damage.

    Science.gov (United States)

    Alfonso-Loeches, Silvia; Pascual, María; Guerri, Consuelo

    2013-09-06

    Considerable evidence has demonstrated that women are more vulnerable than men to the toxic effects of alcohol, although the results as to whether gender differences exist in ethanol-induced brain damage are contradictory. We have reported that ethanol, by activating the neuroimmune system and Toll-like receptors 4 (TLR4), can cause neuroinflammation and brain injury. However, whether there are gender differences in alcohol-induced neuroinflammation and brain injury are currently controversial. Using the brains of TLR4(+/+) and TLR4(-/-) (TLR4-KO) mice, we report that chronic ethanol treatment induces inflammatory mediators (iNOS and COX-2), cytokines (IL-1β, TNF-α), gliosis processes, caspase-3 activation and neuronal loss in the cerebral cortex of both female and male mice. Conversely, the levels of these parameters tend to be higher in female than in male mice. Using an in vivo imaging technique, our results further evidence that ethanol treatment triggers higher GFAP levels and lower MAP-2 levels in female than in male mice, suggesting a greater effect of ethanol-induced astrogliosis and less MAP-2(+) neurons in female than in male mice. Our results further confirm the pivotal role of TLR4 in alcohol-induced neuroinflammation and brain damage since the elimination of TLR4 protects the brain of males and females against the deleterious effects of ethanol. In short, the present findings demonstrate that, during the same period of ethanol treatment, females are more vulnerable than males to the neurotoxic/neuroinflammatory effects of ethanol, thus supporting the view that women are more susceptible than men to the medical consequences of alcohol abuse. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Inferencing Processes after Right Hemisphere Brain Damage: Effects of Contextual Bias

    Science.gov (United States)

    Blake, Margaret Lehman

    2009-01-01

    Purpose: Comprehension deficits associated with right hemisphere brain damage (RHD) have been attributed to an inability to use context, but there is little direct evidence to support the claim. This study evaluated the effect of varying contextual bias on predictive inferencing by adults with RHD. Method: Fourteen adults with no brain damage…

  15. Clinical characteristics of RA patients with secondary SS and association with joint damage

    OpenAIRE

    Brown, Lindsay E.; Frits, Michelle L.; Iannaccone, Christine K.; Weinblatt, Michael E.; Shadick, Nancy A.; Liao, Katherine P.

    2014-01-01

    Objectives. Secondary SS (sSS) is a common extra-articular manifestation of RA. There are conflicting data regarding the association of sSS with worse joint damage. This study aims to characterize sSS patients in an RA cohort and study the association between sSS and joint damage.

  16. Intertemporal Decision Making After Brain Injury: Amount-Dependent Steeper Discounting after Frontal Cortex Damage

    Directory of Open Access Journals (Sweden)

    Białaszek Wojciech

    2017-12-01

    Full Text Available Traumatic brain injuries to the frontal lobes are associated with many maladaptive forms of behavior. We investigated the association between brain damage and impulsivity, as measured by the rate of delay discounting (i.e., the extent to which future outcomes are devalued in time. The main aim of this study was to test the hypothesis of steeper discounting of different amounts in a group of patients with frontal lobe damage. We used a delay discounting task in the form of a structured interview. A total of 117 participants were divided into five groups: three neurological groups and two groups without brain damage. Our analyses showed that patients with focal damage to the frontal lobes demonstrated steeper delay discounting than other participants. Other clinical groups demonstrated similar discounting rates. The data pattern related to the magnitude effect on the group level suggested that the magnitude effect is absent in the group of patients with damage to the frontal lobes; however, results were less consistent on an individual level. Amount-dependent discounting was observed in only two groups, the healthy control group and the neurological group with other cortical areas damaged.

  17. Patterns of poststroke brain damage that predict speech production errors in apraxia of speech and aphasia dissociate.

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-06-01

    Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.

  18. Vasoparalysis associated with brain damage in asphyxiated term infants

    International Nuclear Information System (INIS)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B.

    1990-01-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage

  19. Vasoparalysis associated with brain damage in asphyxiated term infants

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, O.; Greisen, G.; Lou, H.; Friis-Hansen, B. (Rigshospitalet, Copenhagen (Denmark))

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.

  20. Oxidative burst of circulating neutrophils following traumatic brain injury in human.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Besides secondary injury at the lesional site, Traumatic brain injury (TBI can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91(phox in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected

  1. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Zozulya, Y A; Vinnitsky, A R; Stepanenko, I V [Institute of Neurosurgery, Academy of Medical Sciences, Kiev (Ukraine)

    1997-09-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ``small - dose`` radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs.

  2. Clinical peculiarities of the brain damage in the liquidators of the Chernobyl accident

    International Nuclear Information System (INIS)

    Zozulya, Y.A.; Vinnitsky, A.R.; Stepanenko, I.V.

    1997-01-01

    Investigation into the features of the brain damage by the liquidators of the Chernobyl accident has become an urgent issue of today due to a number of circumstances. According to the classical concept dominating radiobiology until recently, the brain being composed of highly - differentiated nerve cells, present a radioresistant structure responsive to radiation injury induced by high and very high radiation doses (10000 rem and higher) only. The results of clinical examinations given to the Chernobyl accident recovery workers at Kiev Institute of Neurosurgery, Academy of Medical Sciences of Ukraine, show that even the so - called ''small - dose'' radiation, when consumed continuously, produces neurological sings of brain damage. 6 figs

  3. DNA damage in the oligodendrocyte lineage and its role in brain aging.

    Science.gov (United States)

    Tse, Kai-Hei; Herrup, Karl

    2017-01-01

    Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Secondary damage in the spinal cord after motor cortex injury in rats.

    Science.gov (United States)

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  5. Metric to quantify white matter damage on brain magnetic resonance images

    International Nuclear Information System (INIS)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M.; Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni; Dickie, David Alexander; Royle, Natalie A.; Armitage, Paul A.; Deary, Ian J.

    2017-01-01

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white

  6. Selective deficit of second language: a case study of a brain-damaged Arabic-Hebrew bilingual patient

    Directory of Open Access Journals (Sweden)

    Ibrahim Raphiq

    2009-03-01

    Full Text Available Abstract Background An understanding of how two languages are represented in the human brain is best obtained from studies of bilingual patients who have sustained brain damage. The primary goal of the present study was to determine whether one or both languages of an Arabic-Hebrew bilingual individual are disrupted following brain damage. I present a case study of a bilingual patient, proficient in Arabic and Hebrew, who had sustained brain damage as a result of an intracranial hemorrhage related to herpes encephalitis. Methods The patient's performance on several linguistic tasks carried out in the first language (Arabic and in the second language (Hebrew was assessed, and his performance in the two languages was compared. Results The patient displayed somewhat different symptomatologies in the two languages. The results revealed dissociation between the two languages in terms of both the types and the magnitude of errors, pointing to aphasic symptoms in both languages, with Hebrew being the more impaired. Further analysis disclosed that this dissociation was apparently caused not by damage to his semantic system, but rather by damage at the lexical level. Conclusion The results suggest that the principles governing the organization of lexical representations in the brain are not similar for the two languages.

  7. Fetal brain damage following maternal carbon monoxide intoxication: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, M D; Myers, R E

    1974-01-01

    Techniques of fetal monitoring, including fetal blood sampling in utero, were employed to study the physiological effects of acute maternal carbon monoxide intoxication on nine term-pregnant female rhesus monkeys exposed to 0.1 to 0.3% inspired carbon monoxide over 1 to 3 hr. The mothers tolerated carboxyhemoglobin levels exceeding 60% without clinical sequelae, whereas the fetuses promptly developed profound hypoxia upon exposure of the mothers to CO. The fetal COHb levels rose only gradually over 1 to 3 hr, and thus contributed only slightly to the development of early fetal hypoxia. The fetal hypoxia was associated with bradycardia, hypotension, and metabolic and respiratory acidosis. Severity of intrauterine hypoxia was closely correlated with the appearance of brain damage. Brain swelling associated with hemorrhagic necrosis of the cerebral hemispheres (severe brain damage) appeared only in fetuses whose arterial oxygen content was reduced below 1.0 ml/100 ml for at least 45 min during the maternal CO intoxication.

  8. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Kotíková, K.; Nurieva, O.; Hlušička, J.; Kačer, P.; Urban, P.; Vaněčková, M.; Seidl, Z.; Diblík, P.; Kuthan, P.; Navrátil, Tomáš; Pelclová, D.

    2017-01-01

    Roč. 55, č. 4 (2017), s. 249-259 ISSN 1556-3650 Institutional support: RVO:61388955 Keywords : brain damage * leukotrienes * methanol poisoning * Neuroinflammation * nontraumatic brain injury * sequelae of poisoning Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 3.677, year: 2016

  9. Stimulation of Functional Vision in Children with Perinatal Brain Damage

    OpenAIRE

    Alimović, Sonja; Mejaški-Bošnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual st...

  10. Patterns of Post-Stroke Brain Damage that Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate

    Science.gov (United States)

    Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius

    2015-01-01

    Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457

  11. Animal imaging studies of potential brain damage

    Science.gov (United States)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  12. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  13. [Consequence of secondary complications during the rehabilitation of patients with severe brain injury].

    Science.gov (United States)

    Dénes, Zoltán

    2009-01-25

    Recovery from brain injury is not only determined by the primary injury, but a very important element is the development of secondary complications which have a major role in determining the possibility of the achievement of available maximal functional abilities and the quality of life of the patients and their family after rehabilitation. This is why during medical treatment the prevention of secondary complications is at least as important as the prevention of primary injury. Determination of the most important secondary complications after severe brain injury, and observation of these effects on the rehabilitation process. Retrospective study in the Brain Injury Rehabilitation unit of the National Institute for Medical Rehabilitation in Hungary. 166 patients were treated with brain injury; the mean age of the patients was 33 (8-83) years in 2004. The majority of patients suffered traumatic brain injury in traffic accidents (125/166), while the rest of them through falls or acts of violence. Sixty-four patients were admitted directly from an intensive care unit, 18 from a second hospital ward (traumatology, neurosurgery or neurology) and the rest of the patients were treated in several different units before they were admitted for rehabilitation. The time that has elapsed between injury and rehabilitation admission was 50 days (21-177). At the time of admission 27 patients were in a vegetative state, 38 patients in a minimal conscious state, and 101 patients had already regained consciousness. 83 patients were hemiparetic, 54 presented tetraparesis, and 1 paraparesis, but 28 patients were not paretic. The most frequent complications in patients with severe brain injury at admission in our rehabilitation unit were: contractures (47%), pressure sores (35%), respiratory (14%) and urinary (11%) tract infections, malnutrition (20%). The functional outcome was worse in the cases arriving with secondary complications during the same rehabilitation period. The length of

  14. Shock treatment, brain damage, and memory loss: a neurological perspective.

    Science.gov (United States)

    Friedberg, J

    1977-09-01

    The author reviews reports of neuropathology resulting from electroconvulsive therapy in experimental animals and humans. Although findings of petechial hemorrhage, gliosis, and neuronal loss were well established in the decade following the introduction of ECT, they have been generally ignored since then. ECT produces characteristic EEG changes and severe retrograde amnesia, as well as other more subtle effects on memory and learning. The author concludes that ECT results in brain disease and questions whether doctors should offer brain damage to their patients.

  15. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  16. Mapping neuroplastic potential in brain-damaged patients.

    Science.gov (United States)

    Herbet, Guillaume; Maheu, Maxime; Costi, Emanuele; Lafargue, Gilles; Duffau, Hugues

    2016-03-01

    It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Neuroprotective actions of taurine on hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Zhu, Xiao-Yun; Ma, Peng-Sheng; Wu, Wei; Zhou, Ru; Hao, Yin-Ju; Niu, Yang; Sun, Tao; Li, Yu-Xiang; Yu, Jian-Qiang

    2016-06-01

    Taurine is an abundant amino acid in the nervous system, which has been proved to possess antioxidation, osmoregulation and membrane stabilization. Previously it has been demonstrated that taurine exerts ischemic brain injury protective effect. This study was designed to investigate whether the protective effect of taurine has the possibility to be applied to treat neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen to generate the experimental group. The cerebral damage area was measured after taurine post-treatment with 2,3,5-triphenyltetrazolium chloride (TTC) staining, Hematoxyline-Eosin (HE) staining and Nissl staining. The activities of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), myeloperoxtidase (MPO), ATP and Lactic Acid productions were assayed with ipsilateral hemisphere homogenates. Western-blot and immunofluorescence assay were processed to detect the expressions of AIF, Cyt C, Bax, Bcl-2 in brain. We found that taurine significantly reduced brain infarct volume and ameliorated morphological injury obviously reversed the changes of SOD, MDA, GSH-Px, T-AOC, ATP, MPO, and Lactic Acid levels. Compared with hypoxic-ischemic group, it showed marked reduction of AIF, Cyt C and Bax expressions and increase of Bcl-2 after post-treatment. We conclude that taurine possesses an efficacious neuroprotective effect after cerebral hypoxic-ischemic damage in neonatal rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  19. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation.

    Science.gov (United States)

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-03-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving NSCs in the left hemisphere and PBS in the right; group B, receiving NSCs in the right hemisphere and PBS in the left; and group C, receiving equal NSCs in both hemispheres. Murine brains were stained for morphological analysis and subsequent evaluation of infiltrated immune cells. ELISA was performed to detect neurotrophic and immunomodulatory factors in the brain. The findings indicated that brain injury and secondary inflammation in the left hemisphere were more severe than those in the right hemisphere, following NSC transplantation. In contrast to the left hemisphere, more neurotrophic factors but less pro-inflammatory cytokines were detected in the right hemisphere. In addition, increased levels of neurotrophic factors and interleukin (IL)-10 were observed in the NSC transplantation side when compared with the PBS-treated hemispheres, although lower levels of IL-6 and tumor necrosis factor-α were detected. In conclusion, the present study indicated that syringe needle skull penetration vs. drill penetration is an improved method that reduces the risk of brain injury and secondary inflammation following intracerebral NSC transplantation. Furthermore, NSCs have the potential to modulate inflammation secondary to brain injuries.

  20. Prenatal Brain Damage in Preeclamptic Animal Model Induced by Gestational Nitric Oxide Synthase Inhibition

    Directory of Open Access Journals (Sweden)

    Begoña Pellicer

    2011-01-01

    Full Text Available Cerebral palsy is a major neonatal handicap with unknown aetiology. There is evidence that prenatal brain injury is the leading cause of CP. Severe placental pathology accounts for a high percentage of cases. Several factors predispose to prenatal brain damage but when and how they act is unclear. The aim of this paper was to determine if hypoxia during pregnancy leads to damage in fetal brain and to evaluate the localization of this injury. An animal model of chronic hypoxia produced by chronic administration of a nitric oxide synthase inhibitor (L-NAME was used to evaluate apoptotic activity in fetal brains and to localize the most sensitive areas. L-NAME reproduces a preeclamptic-like condition with increased blood pressure, proteinuria, growth restriction and intrauterine mortality. Apoptotic activity was increased in L-NAME brains and the most sensitive areas were the subventricular and pallidum zone. These results may explain the clinical features of CP. Further studies are needed.

  1. Assessment of outcome after severe brain damage.

    Science.gov (United States)

    Jennett, B; Bond, M

    1975-03-01

    Persisting disability after brain damage usually comprises both mental and physical handicap. The mental component is often the more important in contributing to overall social disability. Lack of an objective scale leads to vague and over-optimistic estimates of outcome, which obscure the ultimate results of early management. A five-point scale is described--death, persistent vegetative state, severe disability, moderate disability, and good recovery. Duration as well as intensity of disability should be included in an index of ill-health; this applies particularly after head injury, because many disabled survivors are young.

  2. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    Science.gov (United States)

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  3. Effects of enriched uranium on developing brain damage of neonatal rats

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Wang Liuyi; Yang Shuqin; Zhu Lingli

    2001-01-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium 235 U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 β (IL- β), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells

  4. Effects of enriched uranium on developing brain damage of neonatal rats

    Energy Technology Data Exchange (ETDEWEB)

    Guixiong, Gu; Shoupeng, Zhu; Liuyi, Wang; Shuqin, Yang; Lingli, Zhu [Suzhou Medical College, Suzhou (China)

    2001-04-01

    The model of irradiation-induced brain damage in vivo was settled first of all. The micro-auto-radiographic tracing showed that when the rat's brain at postnatal day after lateral ventricle injection with enriched uranium {sup 235}U the radionuclides were mainly accumulated in the nucleus. At the same time autoradiographic tracks appeared in the cytoplasm and interval between cells. The effects of cerebrum exposure to alpha irradiation by enriched uranium on somatic growth and neuro-behavior development of neonatal rats were examined by determination of multiple parameters. In the growth and development of the neonatal rat's cerebrum exposure to enriched uranium, the somatic growth such as body weight and brain weight increase was lower significantly. The data indicated that the neonatal wistar rats having cerebrum exposure to alpha irradiation by enriched uranium showed delayed growth and abnormal neuro-behavior. The changes of neuron specific enolase (NSE), interleukin-1 {beta} (IL- {beta}), superoxide dismutase (SOD), and endothelin (ET) in cerebellum, cerebral cortex, hippocampus, diencephalons of the rat brain after expose to alpha irradiation by enriched uranium were examined with radioimmunoassay. The results showed that SOD and ET can be elevated by the low dose irradiation of enriched uranium, and can be distinctly inhibited by the high dose. The data in view of biochemistry indicated firstly that alpha irradiation from enriched uranium on the developing brain damage of neonatal rats were of sensibility, fragility and compensation in nervous cells.

  5. A neurocorrective approach for MMPI-2 use for brain-damaged patients

    NARCIS (Netherlands)

    Balen, H.G.G. van; Mey, H.R.A. De; Limbeek, J. van

    1999-01-01

    Conventional administration of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) to aetiologically distinct brain-damaged out-patients (n = 137) revealed significant indications of psychological maladjustment. An adjustment for the endorsement of aetiology-specific items pertaining to

  6. Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2006-01-01

    Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…

  7. Alcohol consumption during adolescence: A link between mitochondrial damage and ethanol brain intoxication.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Mira, Rodrigo G; Torres, Angie K; Jara, Claudia; Pérez, María José; Vergara, Erick H; Cerpa, Waldo; Quintanilla, Rodrigo A

    2017-12-01

    Adolescence is a period of multiple changes where social behaviors influence interpersonal-relations. Adolescents live new experiences, including alcohol consumption which has become an increasing health problem. The age of onset for consumption has declined in the last decades, and additionally, the adolescents now uptake greater amounts of alcohol per occasion. Alcohol consumption is a risk factor for accidents, mental illnesses or other pathologies, as well as for the appearance of addictions, including alcoholism. An interesting topic to study is the damage that alcohol induces on the central nervous system (CNS) in the young population. The brain undergoes substantial modifications during adolescence, making brain cells more vulnerable to the ethanol toxicity. Over the last years, the brain mitochondria have emerged as a cell organelle which is particularly susceptible to alcohol. Mitochondria suffer severe alterations which can be exacerbated if the amount of alcohol or the exposure time is increased. In this review, we focus on the changes that the adolescent brain undergoes after drinking, placing particular emphasis on mitochondrial damage and their consequences against brain function. Finally, we propose the mitochondria as an important mediator in alcohol toxicity and a potential therapeutic target to reduce or treat brain conditions associated with excessive alcohol consumption. © 2017 Wiley Periodicals, Inc.

  8. Prevalence, and Intellectual Outcome of Unilateral Focal Cortical Brain Damage as a Function of Age, Sex and Aetiology

    Directory of Open Access Journals (Sweden)

    C. M. J. Braun

    2002-01-01

    Full Text Available Neurologists and neuropsychologists are aware that aging men are more at risk than women for brain damage, principally because of the well known male-predominant risk for cardiovascular disease and related cerebrovascular accidents. However, a disproportion in prevalence of brain damage between the sexes in childhood may be less suspected. Furthermore, sex-specific risk for other aetiologies of brain damage may be little known, whether in the pediatric or adult populations. Proposals of a sex difference in cognitive recovery from brain damage have also been controversial. Six hundred and thirty five “consecutive” cases with cortical focal lesions including cases of all ages and both sexes were reviewed. Aetiology of the lesion was determined for each case as was postlesion IQ. Risk was highly male prevalent in all age groups, with a predominance of cardiovascular aetiology explaining much of the adult male prevalence. However, several other aetiological categories were significantly male prevalent in juveniles (mitotic, traumatic, dysplasic and adults (mitotic, traumatic. There was no sex difference in outcome (i.e., postlesion IQ of these cortical brain lesions for the cohort as a whole, after statistical removal of the influence of lesion extent, aetiology and presence of epilepsy. Mechanisms potentially responsible for sex differences in prevalence, aetiology of brain damage, and recovery, are reviewed and discussed.

  9. [Neuroprotective effect of naloxone in brain damage caused by repeated febrile seizure].

    Science.gov (United States)

    Shan, Ying; Qin, Jiong; Chang, Xing-zhi; Yang, Zhi-xian

    2004-04-01

    The brain damage caused by repeated febrile seizure (FS) during developing age is harmful to the intellectual development of children. So how to decrease the related damage is a very important issue. The main purpose of the present study was to find out whether the non-specific opiate antagonist naloxone at low dose has the neuroprotective effect on seizure-induced brain damage. Warm water induced rat FS model was developed in this study. Forty-seven rats were randomly divided into two groups: normal control group (n = 10) and hyperthermic seizure groups (n = 37). The latter was further divided into FS control group (n = 13) and naloxone-treated group (n = 24). The dose of naloxone is different in two naloxone-treated groups (12/each group), in one group the dose was 1 mg/kg, in the other one 2 mg/kg. Seven febrile seizures were induced in each rat of hyperthermic seizure groups with the interval of 2 days. The rats were weighed and injected intraperitoneally with naloxone once the FS occurred in naloxone-treated group, while the rats of the other groups were injected with 0.9% sodium chloride. Latency, duration and grade of FS in different groups were observed and compared. HE-staining and the electron microscopy (EM) were used to detect the morphologic and ultrastructural changes of hippocampal neurons. In naloxone-treated group, the rats' FS duration and FS grade (5.02 +/- 0.63, 2.63 +/- 0.72) were significantly lower (t = 5.508, P seizure, it could lighten the brain damage resulted from repeated FS to some extent.

  10. Implications of astrocytes in mediating the protective effects of Selective Estrogen Receptor Modulators upon brain damage

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-04-01

    Full Text Available Selective Estrogen Receptor Modulators (SERMs are steroidal or non-steroidal compounds that are already used in clinical practice for the treatment of breast cancer, osteoporosis and menopausal symptoms. While SERMs actions in the breast, bone, and uterus have been well characterized, their actions in the brain are less well understood. Previous works have demonstrated the beneficial effects of SERMs in different chronic neurodegenerative diseases like Alzheimer, Parkinson’s disease and Multiple sclerosis, as well as acute degeneration as stroke and traumatic brain injury. Moreover, these compounds exhibit similar protective actions as those of estradiol in the Central Nervous System, overt any secondary effect. For these reasons, in the past few years, there has been a growing interest in the neuroprotective effects exerted directly or indirectly by SERMs in the SNC. In this context, astrocytes play an important role in the maintenance of brain metabolism, and antioxidant support to neurons, thus indicating that better protection of astrocytes are an important asset targeting neuronal protection. Moreover, various clinical and experimental studies have reported that astrocytes are essential for the neuroprotective effects of SERMs during neuronal injuries, as these cells express different estrogen receptors in cell membrane, demonstrating that part of SERMs effects upon injury may be mediated by astrocytes. The present work highlights the current evidence on the protective mechanisms of SERMs, such as tamoxifen and raloxifene, in the SNC, and their modulation of astrocytic properties as promising therapeutic targets during brain damage.

  11. Psychotherapy of the child with true brain damage.

    Science.gov (United States)

    Christ, Adolph E

    1978-07-01

    Psychotherapy of the child with true brain damage presents special problems and requires special approaches. Those who are cognitively primitive--at the sensorimotor or preoperational stage of development--require a crisis approach; those at the concrete or formal operational stage can be treated with a modified insight-oriented approach. Development of a therapeutic alliance, establishment of workable defense mechanisms, identification and clarification of unalterable cognitive defects and issues of termination unique to this special population are discussed.

  12. Driving safety after brain damage: follow-up of twenty-two patients with matched controls.

    Science.gov (United States)

    Katz, R T; Golden, R S; Butter, J; Tepper, D; Rothke, S; Holmes, J; Sahgal, V

    1990-02-01

    Driving after brain damage is a vital issue, considering the large number of patients who suffer from cerebrovascular and traumatic encephalopathy. The ability to operate a motor vehicle is an integral part of independence for most adults and so should be preserved whenever possible. The physician may estimate a patient's ability to drive safely based on his own examination, the evaluation of a neuropsychologist, and a comprehensive driving evaluation--testing, driving simulation, behind-the-wheel observation--with a driving specialist. This study sought to evaluate the ability of brain-damaged individuals to operate a motor vehicle safely at follow-up. These patients had been evaluated (by a physician, a neuropsychologist, and a driving specialist) and were judged able to operate a motor vehicle safely after their cognitive insult. Twenty-two brain-damaged patients who were evaluated at our institution were successfully followed up to five years (mean interval of 2.67 years). Patients were interviewed by telephone. Their driving safely was compared with a control group consisting of a close friend or spouse of each patient. Statistical analysis revealed no difference between patient and control groups in the type of driving, the incidence of speeding tickets, near accidents, and accidents, and the cost of vehicle damage when accidents occurred. The patient group was further divided into those who had, and those who had not experienced driving difficulties so that initial neuropsychologic testing could be compared. No significant differences were noted in any aspect of the neuropsychologic test battery. We conclude that selected brain-damaged patients who have passed a comprehensive driving assessment as outlined were as fit to drive as were their normal matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  14. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Imaging study of brain damage from methanol intoxication of wine

    International Nuclear Information System (INIS)

    Yu Chengfu; Liu Yimin; Yang Yi; Shi Jing; Wu Yihang; Zhang Weisen; Mao Xiaofen; Luo Jing

    2006-01-01

    Objective: To investigate the imaging of CT and MRI in brain damage caused by methanol intoxication from false wine, and to study the relations between imaging manifestation and different degrees of the methanol intoxication. Method: Thirty nine cases with methanol intoxication from false wine were retrospectively reported, The latent period of these patients was 0-4 days, and the average latent period of these patients was 0.5 days, All cases were performed by serology examination, brain CT scan, and four cases performed by MRI scan after average 2.5 days (range, 1-6 days) the onset of methanol intoxication. Results: Six cases showed hyperintense signals in bilateral putamen, two cases also showed hyperintense signals in biolateral subcortex white substance regions. Four cases showed hyperintense signals in unilateral internal capsule. One case showed hyperintense changess in subcortex white substance regions. Our study showed the positive correlation between CT features and the amount of methanol and stage of clinic manifestation(χ 2 =4.232, P 2 =0.001, P>0.05). Conclusions: MRI was better than CT in finding early brain damage caused by methanol intoxication from false wine. The characteristic finding changes of the patients was showed mainly in in bilateral putamen, Prognosis for the patients combined with subcortex white substance lesion wasn't hopeful. (authors)

  16. Mixed acid-base disorder secondary to topiramate use in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    S Golla

    2016-01-01

    Full Text Available We report a case of a man with traumatic brain injury. He was started on to prophylactic topiramate which led to a mixed acid-base disorder. He had severe metabolic acidosis secondary to renal tubular acidification defect and respiratory alkalosis secondary to hyperventilation. Withdrawal of the offending drug led to the prompt resolution of the acid-base disturbance.

  17. Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats.

    Science.gov (United States)

    Wajima, Daisuke; Sato, Fumiya; Kawamura, Kenya; Sugiura, Keisuke; Nakagawa, Ichiro; Motoyama, Yasushi; Park, Young-Soo; Nakase, Hiroyuki

    2017-09-01

    Acute subdural hematoma (ASDH) is a frequent complication of severe head injury, whose secondary ischemic lesions are often responsible for the severity of the disease. We focused on the differences of secondary ischemic lesions caused by the components, 0.4ml venous- or arterial-blood, or saline, infused in the subdural space, evaluating the differences in vivo model, using rats. The saline infused rats are made for elderly atrophic brain with subdural effusion (SDE) model. Our data showed that subdural blood, both venous- and arterial-blood, aggravate brain edema and lesion development more than SDE. This study is the first study, in which different fluids in rats' subdural space, ASDH or SDE are compared with the extension of early and delayed brain damage by measuring brain edema and histological lesion volume. Blood constituents started to affect the degree of ischemia underneath the subdural hemorrhage, leading to more pronounced breakdown of the blood-brain barrier and brain damage. This indicates that further strategies to treat blood-dependent effects more efficiently are in view for patients with ASDH. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  19. Vision restoration after brain and retina damage: the "residual vision activation theory".

    Science.gov (United States)

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive

  20. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    Science.gov (United States)

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539). Copyright © 2013 by the Research Society on Alcoholism.

  1. Conversation after Right Hemisphere Brain Damage: Motivations for Applying Conversation Analysis

    Science.gov (United States)

    Barnes, Scott; Armstrong, Elizabeth

    2010-01-01

    Despite the well documented pragmatic deficits that can arise subsequent to Right Hemisphere Brain Damage (RHBD), few researchers have directly studied everyday conversations involving people with RHBD. In recent years, researchers have begun applying Conversation Analysis (CA) to the everyday talk of people with aphasia. This research programme…

  2. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke

    2015-01-01

    of the burn-injury) (p right (p = 0.001) and left caudate nucleus (p = 0.01) was detected....... To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min......, 9 cm(2)) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary...

  3. Study on developing brain damage of neonatal rats induced by enriched uranium

    International Nuclear Information System (INIS)

    Gu Guixiong; Zhu Shoupeng; Yang Shuqin

    2000-01-01

    Objective: The injurious effects of enriched uranium 235 U on developing brain of neonatal Wistar pure bred rats were studied. Methods: The model of irradiation induced brain damage in vivo was settled. The effects of cerebrum exposure by 235 U on somatic growth and neuro-behavior development of neonatal rats were examined by thirteen index determination of multiple parameters. The dynamic retention of autoradiographic tracks of 235 U in cells of developing brain was observed. The changes of NSE, IL-1β, SOD, and ET in cerebral cortex, hippocampus, diencephalon, cerebellum after expose to 235 U were examined with radioimmunoassay. Results: The somatic growth such as increase of body weight and brain weight was lower significantly. The retardation of development was found such as eye opening, sensuous function as auditory startle, movement and coordination function and activity as swimming, physiological reflexes as negative geotaxis, surface righting, grasping reflex suspension and the tendency behavior. The data showed delayed growth and abnormal neuro-behavior. The micro-autoradiographic tracing showed that the tracks of 235 U were mainly accumulated in the nucleus of developing brain. At the same time only few tracks appeared in the cytoplasm and interval between cells. Experimental study showed that when the dose of 235 U irradiation was increased, the level of NSE was decreased and the IL-1β was increased. However, the results indicated that SOD and ET can be elevated by the low dose irradiation of 235 U, and can be inhibited by the high dose. Conclusion: The behavior of internal irradiation from 235 U on the developing brain damage of neonatal rats were of sensibility and compensation in nervous cells

  4. MRI findings of brain damage due to neonatal hypoglycemia

    International Nuclear Information System (INIS)

    Wang Lu; Fan Guoguang; Ji Xu; Sun Baohai; Guo Qiyong

    2009-01-01

    Objective: To report the MRI findings of brain damage observed in neonatal patients who suffered from isolated hypoglycemia and to explore the value of diffusion-weighted imaging(DWI) in early detection of neonatal hypoglycemic brain injury. Methods: Twelve neonates with isolated hypoglycemia (10 of the 12 were diagnosed to suffer from hypoglycemic encephalopathy) were enrolled in this study. They were first scanned at age from 3 days to 10 days with T 1 WI, T 2 WI and DWI(b is 0 s/mm 2 , 1000 s/mm 2 ), and 4 of them were then scanned from 7 days to 10 days following the initial scan. All acquired MR images were retrospectively analysed. Results: First series of DWI images showed distinct hyperintense signal in 11 cases in several areas including bilateral occipital cortex (2 cases), right occipital cortex (1 case), left occipital cortex and subcortical white matter(1 case), bilateral occipital cortex and subcortical white matter (2 cases), bilateral parieto-occipital cortex (2 cases), bilateral parieto-occipital cortex and subcortical white matter(2 cases), the splenium of corpus callosum (4 cases), bilateral corona radiata( 2 cases), left caudate nucleus and globus pallidus (1 case), bilateral thalamus (1 case), bilaterally posterior limb of internal capsule (1 case). In the initial T 1 WI and T 2 WI images, there were subtle hypointensity in the damaged cortical areas (3 cases), hyperintensity in the bilaterally affected occipital cortex( 1 case) on T 1 weighted images, and hyperintensity in the affected cortex and subcortical white matter with poor differentiation on T 2 weighted images. The followed-up MRI of 4 cases showed regional encephalomalacia in the affected occipital lobes(4 cases), slightly hyperintensity on T 2 weighted images in the damaged occipital cortex (2 cases), extensive demyelination (1 case), disappearance of hyperintensity of the splenium of corpus callosum (1 case), and persistent hyperintensity in the splenium of corpus callosum (1 case

  5. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie, E-mail: ettieg@iibr.gov.il

    2016-11-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  6. Propagation of damage in the rat brain following sarin exposure: Differential progression of early processes

    International Nuclear Information System (INIS)

    Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel; Chapman, Shira; Bloch-Shilderman, Eugenia; Grauer, Ettie

    2016-01-01

    Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. In all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.

  7. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  8. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  9. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  10. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  11. Co-speech hand movements during narrations: What is the impact of right vs. left hemisphere brain damage?

    Science.gov (United States)

    Hogrefe, Katharina; Rein, Robert; Skomroch, Harald; Lausberg, Hedda

    2016-12-01

    Persons with brain damage show deviant patterns of co-speech hand movement behaviour in comparison to healthy speakers. It has been claimed by several authors that gesture and speech rely on a single production mechanism that depends on the same neurological substrate while others claim that both modalities are closely related but separate production channels. Thus, findings so far are contradictory and there is a lack of studies that systematically analyse the full range of hand movements that accompany speech in the condition of brain damage. In the present study, we aimed to fill this gap by comparing hand movement behaviour in persons with unilateral brain damage to the left and the right hemisphere and a matched control group of healthy persons. For hand movement coding, we applied Module I of NEUROGES, an objective and reliable analysis system that enables to analyse the full repertoire of hand movements independent of speech, which makes it specifically suited for the examination of persons with aphasia. The main results of our study show a decreased use of communicative conceptual gestures in persons with damage to the right hemisphere and an increased use of these gestures in persons with left brain damage and aphasia. These results not only suggest that the production of gesture and speech do not rely on the same neurological substrate but also underline the important role of right hemisphere functioning for gesture production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Intraoperative Secondary Insults During Orthopedic Surgery in Traumatic Brain Injury.

    Science.gov (United States)

    Algarra, Nelson N; Lele, Abhijit V; Prathep, Sumidtra; Souter, Michael J; Vavilala, Monica S; Qiu, Qian; Sharma, Deepak

    2017-07-01

    Secondary insults worsen outcomes after traumatic brain injury (TBI). However, data on intraoperative secondary insults are sparse. The primary aim of this study was to examine the prevalence of intraoperative secondary insults during orthopedic surgery after moderate-severe TBI. We also examined the impact of intraoperative secondary insults on postoperative head computed tomographic scan, intracranial pressure (ICP), and escalation of care within 24 hours of surgery. We reviewed medical records of TBI patients 18 years and above with Glasgow Coma Scale score Secondary insults examined were: systemic hypotension (systolic blood pressurehypertension (ICP>20 mm Hg), cerebral hypotension (cerebral perfusion pressure40 mm Hg), hypocarbia (end-tidal CO2hypertension), hyperglycemia (glucose>200 mg/dL), hypoglycemia (glucose38°C). A total of 78 patients (41 [18 to 81] y, 68% male) met the inclusion criteria. The most common intraoperative secondary insults were systemic hypotension (60%), intracranial hypertension and cerebral hypotension (50% and 45%, respectively, in patients with ICP monitoring), hypercarbia (32%), and hypocarbia (29%). Intraoperative secondary insults were associated with worsening of head computed tomography, postoperative decrease of Glasgow Coma Scale score by ≥2, and escalation of care. After Bonferroni correction, association between cerebral hypotension and postoperative escalation of care remained significant (Psecondary insults were common during orthopedic surgery in patients with TBI and were associated with postoperative escalation of care. Strategies to minimize intraoperative secondary insults are needed.

  14. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  15. Neuroprotective effects of NAP against excitotoxic brain damage in the newborn mice: implications for cerebral palsy.

    Science.gov (United States)

    Sokolowska, P; Passemard, S; Mok, A; Schwendimann, L; Gozes, I; Gressens, P

    2011-01-26

    Activity-dependent neuroprotective protein (ADNP) was shown to be essential for embryogenesis and brain development while NAP, an active motif of ADNP, is neuroprotective in a broad range of neurodegenerative disorders. In the present study, we examined the protective potential of ADNP/NAP in a mouse model of excitotoxic brain lesion mimicking brain damage associated with cerebral palsy. We demonstrated that NAP had a potent neuroprotective effect against ibotenate-induced excitotoxic damage in the cortical plate and the white matter of P5 mice, and moderate against brain lesions of P0 mice. In contrast, endogenous ADNP appears not to be involved in the response to excitotoxic challenge in the studied model. Our findings further show that NAP reduced the number of apoptotic neurons through activation of PI-3K/Akt pathway in the cortical plate or both PI-3K/Akt and MAPK/MEK1 kinases in the white matter. In addition, NAP prevented ibotenate-induced loss of pre-oligodendrocytes without affecting the number of astrocytes or activated microglia around the site of injection. These findings indicate that protective actions of NAP are mediated by triggering transduction pathways that are crucial for neuronal and oligodendroglial survival, thus, NAP might be a promising therapeutic agent for treating developing brain damage. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Perspectives on Treatment for Communication Deficits Associated with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2007-01-01

    Purpose: To describe the current treatment research for communication (prosodic, discourse, and pragmatic) deficits associated with right hemisphere brain damage and to provide suggestions for treatment selection given the paucity of evidence specifically for this population. Method: The discussion covers (a) clinical decision processes and…

  17. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  18. Paradoxical false memory for objects after brain damage.

    Science.gov (United States)

    McTighe, Stephanie M; Cowell, Rosemary A; Winters, Boyer D; Bussey, Timothy J; Saksida, Lisa M

    2010-12-03

    Poor memory after brain damage is usually considered to be a result of information being lost or rendered inaccessible. It is assumed that such memory impairment must be due to the incorrect interpretation of previously encountered information as being novel. In object recognition memory experiments with rats, we found that memory impairment can take the opposite form: a tendency to treat novel experiences as familiar. This impairment could be rescued with the use of a visual-restriction procedure that reduces interference. Such a pattern of data can be explained in terms of a recent representational-hierarchical view of cognition.

  19. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    Directory of Open Access Journals (Sweden)

    Najmeh Kabiri

    2016-09-01

    Full Text Available The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99. Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly higher than the Sham group, although right hemispheres in all of the treated groups illustrated higher brain water content than the left ones. Brain anti-oxidant capacity elevated in the ischemic rats treated with Kombucha and in the Sham group. Brain and plasma malondialdehyde concentrations significantly decreased in both of the ischemic groups injected with Kombucha. The findings suggest that Kombucha tea could be useful for the prevention of cerebral damage.

  20. Syringe needle skull penetration reduces brain injuries and secondary inflammation following intracerebral neural stem cell transplantation

    OpenAIRE

    Gao, Mou; Dong, Qin; Zhang, Hongtian; Yang, Yang; Zhu, Jianwei; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Intracerebral neural stem cell (NSC) transplantation is beneficial for delivering stem cell grafts effectively, however, this approach may subsequently result in brain injury and secondary inflammation. To reduce the risk of promoting brain injury and secondary inflammation, two methods were compared in the present study. Murine skulls were penetrated using a drill on the left side and a syringe needle on the right. Mice were randomly divided into three groups (n=84/group): Group A, receiving...

  1. Secondary ion mass spectrometry induced damage adjacent to analysis craters in silicon

    International Nuclear Information System (INIS)

    Clark, M.H.; Jones, K.S.; Stevie, F.A.

    2002-01-01

    Damage introduced by dynamic secondary ion mass spectrometry (SIMS) depth profiling is studied. A silicon sample with a boron marker layer was depth profiled by dynamic SIMS. After subsequent annealing at 750 deg. C for 30 min, the SIMS sample was reanalyzed by plan-view transmission electron microscope (PTEM) and SIMS. PTEM images showed the presence of interstitial defects near the original SIMS crater, and SIMS depth profiles of similar regions exhibited boron diffusivity enhancements. Excess interstitials were introduced into the Si surface up to 2 mm from the original 225 μmx225 μm crater. Both PTEM and SIMS results showed that the damage and its effects diminished with an increase in distance from the original crater

  2. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.

    Science.gov (United States)

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza

    2017-09-01

    Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.

  3. Pathological and MRI study on experimental heroin-induced brain damage in rats

    International Nuclear Information System (INIS)

    Long Yu; Kong Xiangquan; Xu Haibo; Liu Dingxi; Yuan Ren; Yu Qun; Xiong Yin; Deng Xianbo

    2005-01-01

    Objective: To study the pathological characteristics of the heroin-induced brain damage in rats, and to assess the diagnostic value of MRI. Methods: A total of 40 adult Wistar rats were studied, 32 rats were used for injecting heroin as heroin group and 8 were used for injecting saline as control group. The heroin dependent rat model was established by administering heroin (ip) in the ascending dosage schedule (0.5 mg/kg), three times a day (at 8:00, 12:00, and 18:00). The control group was established by the same way by injection with saline. The withdrawal scores were evaluated with imp roved criterion in order to estimate the degree of addiction after administering naloxone. Based on the rat model of heroin dependence, the rat model of heroin-induced brain damage was established by the same way with increasing heroin dosage everyday. Two groups were examined by using MRI, light microscope, and electron microscope, respectively in different heroin accumulated dosage (918, 1580, 2686, 3064, 4336, and 4336 mg/kg withdrawal after 2 weeks). Results: There was statistically significant difference (t=9.737, P<0.01) of the withdrawal scores between the heroin dependent group and the saline group (23.0 ± 4.4 and 1.4 ± 0.5, respectively). It suggested that the heroin dependent rat model be established successfully. In different accumulated dosage ( from 1580 mg/kg to 4336 mg/kg), there were degeneration and death of nerve cells in cerebrum and cerebellum of heroin intoxicated rats, and it suggested that the rat model of heroin-induced brain damage was established successfully. The light microscope and electron microscope features of heroin-induced brain damage in rats included: (1) The nerve cells of cerebral cortex degenerated and died. According to the heroin accumulated dosage, there were statistically significant difference of the nerve cell deaths between 4336 mg/kg group and 1580 mg/kg group or control group (P=0.024 and P=0.032, respectively); (2) The main

  4. Clinical evidence of inflammation driving secondary brain injury: A systematic review

    Science.gov (United States)

    Hinson, Holly E.; Rowell, Susan; Schreiber, Martin

    2015-01-01

    Background Despite advances in both prevention and treatment, traumatic brain injury (TBI) remains one of the most burdensome diseases; 2% of the US population currently lives with disabilities resulting from TBI. Recent advances in the understanding of inflammation and its impact on the pathophysiology of trauma have increased the interest in inflammation as a possible mediator in TBI outcome. Objectives The goal of this systematic review is to address the question: “What is the evidence in humans that inflammation is linked to secondary brain injury?” As the experimental evidence has been well described elsewhere, this review will focus on the clinical evidence for inflammation as a mechanism of secondary brain injury. Data Sources Medline database (1996-Week 1 June 2014), Pubmed and Google Scholar databases were queried for relevant studies. Study Eligibility Criteria Studies were eligible if participants were adults and/or children who sustained moderate or severe TBI in the acute phase of injury, published in English. Studies published in the last decade (since 2004) were preferentially included. Trials could be observational or interventional in nature. Appraisal and Synthesis Methods To address the quality of the studies retrieved, we applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria to assess the limitations of the included studies. Results Trauma initiates local central nervous system as well as systemic immune activation. Numerous observational studies describe elevation of pro-inflammatory cytokines that are associated with important clinical variables including neurologic outcome and mortality. A small number of clinical trials have included immunomodulating strategies, but no intervention to date has proven effective in improving outcomes after TBI. Limitations Inclusion of studies not initially retrieved by the search terms may have biased our results. Additionally, some reports may have been

  5. Brain damage associated with apraxia of speech: evidence from case studies.

    Science.gov (United States)

    Moser, Dana; Basilakos, Alexandra; Fillmore, Paul; Fridriksson, Julius

    2016-08-01

    The site of crucial damage that causes acquired apraxia of speech (AOS) has been debated in the literature. This study presents five in-depth cases that offer insight into the role of brain areas involved in AOS. Four of the examined participants had a primary impairment of AOS either with (n = 2) or without concomitant mild aphasia (n = 2). The fifth participant presented with a lesion relatively isolated to the left anterior insula (AIns-L), damage that is rarely reported in the literature, but without AOS. Taken together, these cases challenge the role of the AIns-L and implicate the left motor regions in AOS.

  6. Objective instrumental memory and performance tests for evaluation of patients with brain damage: a search for a behavioral diagnostic tool.

    Science.gov (United States)

    Harness, B Z; Bental, E; Carmon, A

    1976-03-01

    Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.

  7. Tegmen Tympani Defect and Brain Herniation Secondary to Mastoid Surgery: Case Presentation

    Directory of Open Access Journals (Sweden)

    Oguz Kadir Egilmez

    2014-01-01

    Full Text Available Brain herniation into the middle ear is very rarely seen. In addition to reasons like congenital factors, trauma, and infection, tegmen defect may develop as a result of iatrogenic events secondary to chronic otitis media surgery with or without cholesteatoma. Since it may cause life-threatening complications, patients must be evaluated and monitored for tegmen defect. In this paper, diagnosis and treatment of a brain herniation case due to iatrogenic tegmen defect were described along with relevant literature.

  8. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    OpenAIRE

    Tyler, Lorraine K.; Wright, Paul; Randall, Billi; Marslen-Wilson, William D.; Stamatakis, Emmanuel A.

    2010-01-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to b...

  9. Overexpression of HIF-1α in mesenchymal stem cells contributes to repairing hypoxic-ischemic brain damage in rats.

    Science.gov (United States)

    Lin, Deju; Zhou, Liping; Wang, Biao; Liu, Lizhen; Cong, Li; Hu, Chuanqin; Ge, Tingting; Yu, Qin

    2017-01-01

    Preclinical researches on mesenchymal stem cells (MSCs) transplantation, which is used to treat hypoxic-ischemic (HI) brain damage, have received inspiring achievements. However, the insufficient migration of active cells to damaged tissues has limited their potential therapeutic effects. There are some evidences that hypoxia inducible factor-1 alpha (HIF-1α) promotes the viability and migration of the cells. Here, we aim to investigate whether overexpression of HIF-1α in MSCs could improve the viability and migration capacity of cells, and its therapeutic efficiency on HI brain damage. In the study, MSCs with HIF-1α overexpression was achieved by recombinant lentiviral vector and transplanted to the rats subsequent to HI. Our data indicated that overexpression of HIF-1α promoted the viability and migration of MSCs, HIF-1α overexpressed MSCs also had a stronger therapeutic efficiency on HI brain damaged treatment by mitigating the injury on behavioral and histological changes evoked by HI insults, accompanied with more MSCs migrating to cerebral damaged area. This study demonstrated that HIF-1α overexpression could increase the MSCs' therapeutic efficiency in HI and the promotion of the cells' directional migration to cerebral HI area by overexpression may be responsible for it, which showed that transplantation of MSCs with HIF-1α overexpression is an attractive therapeutic option to treat HI-induced brain injury in the future. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  10. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    Directory of Open Access Journals (Sweden)

    Giorgia Martello

    2013-08-01

    Full Text Available Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left temporal brain-damaged patients performed significantly better with concrete than abstract words. Lesion mapping of patients with predominant temporal damage showed that the left superior and middle temporal gyri and the insula were the areas of major overlapping, while the anterior portion of the left temporal lobe was generally spared. Errors on abstract words mainly concerned (although at a non-significant level semantically associate targets, while in the case of concrete words, coordinate targets were significantly more impaired than associate ones. Our results suggest that the left superior and middle temporal gyri and the insula are crucial regions in processing abstract words. They also confirm the hypothesis of a semantic similarity vs. associative organization of concrete and abstract concepts.

  11. Research progress of immune tolerance in the treatment of brain injury

    Directory of Open Access Journals (Sweden)

    Hua YAN

    2014-08-01

    Full Text Available Due to its special anatomical structures and immune pathophysiological mechanisms, brain damage repair is greatly different from damage repair of other systems. Secondary brain injury and inflammation are closely related. As a "double-edged sword", inflammation scavenges hazardous substances on the early stage of injury, but has side effects on normal brain tissue. The use of immunosuppressive therapy or hypothermia can inhibit immune injury, but the presence of reduced immunity may result in infection and tumorigenesis in the long term. Only reducing the autoimmune attack against brain tissue without affecting other immune capacity of the body will be optimized solution, and this paper will make a review on the research of immune tolerance in the treatment of brain injury with optimized program. doi: 10.3969/j.issn.1672-6731.2014.08.017

  12. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model

    Directory of Open Access Journals (Sweden)

    Lijun Yang

    2018-05-01

    Full Text Available Background/Aims: Traumatic brain injury (TBI is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB, subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1 has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. Methods: TBI was induced by controlled cortical impact (CCI in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan’s blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. Results: HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Conclusion: Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI.

  13. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model.

    Science.gov (United States)

    Yang, Lijun; Wang, Feng; Yang, Liang; Yuan, Yunchao; Chen, Yan; Zhang, Gengshen; Fan, Zhenzeng

    2018-01-01

    Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan's blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Stimulation of functional vision in children with perinatal brain damage.

    Science.gov (United States)

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  15. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment

    OpenAIRE

    Donega, Vanessa; van Velthoven, Cindy TJ; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia–ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategie...

  16. Post-stroke acquired amusia: A comparison between right- and left-brain hemispheric damages.

    Science.gov (United States)

    Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H

    2017-01-01

    Although extensive research has been published about the emotional consequences of stroke, most studies have focused on emotional words, speech prosody, voices, or facial expressions. The emotional processing of musical excerpts following stroke has been relatively unexplored. The present study was conducted to investigate the effects of chronic stroke on the recognition of basic emotions in music. Seventy persons, including 25 normal controls (NC), 25 persons with right brain damage (RBD) from stroke, and 20 persons with left brain damage (LBD) from stroke between the ages of 31-71 years were studied. The Musical Emotional Bursts (MEB) test, which consists of a set of short musical pieces expressing basic emotional states (happiness, sadness, and fear) and neutrality, was used to test musical emotional perception. Both stroke groups were significantly poorer than normal controls for the MEB total score and its subtests (p right hemisphere dominance in processing negative emotions.

  17. Automated detection of unfilled pauses in speech of healthy and brain-damaged individuals

    NARCIS (Netherlands)

    Ossewaarde, Roelant; Jonkers, Roel; Jalvingh, Fedor; Bastiaanse, Yvonne

    Automated detection of un lled pauses in speech of healthy and brain-damaged individuals Roelant Ossewaardea,b, Roel Jonkersa, Fedor Jalvingha,c, Roelien Bastiaansea aCenter for Language and Cognition, University of Groningen; bInstitute for ICT, HU University of Applied Science, Utrecht; cSt.

  18. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Bridget Martinez

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is characterized by primary damage to the brain from the external mechanical force and by subsequent secondary injury due to various molecular and pathophysiological responses that eventually lead to neuronal cell death. Secondary brain injury events may occur minutes, hours, or even days after the trauma, and provide valuable therapeutic targets to prevent further neuronal degeneration. At the present time, there is no effective treatment for TBI due, in part, to the widespread impact of numerous complex secondary biochemical and pathophysiological events occurring at different time points following the initial injury. MicroRNAs control a range of physiological and pathological functions such as development, differentiation, apoptosis and metabolism, and may serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. This has implications regarding improving the diagnostic accuracy of brain impairment and long-term outcomes as well as potential novel treatments. Recent human studies have identified specific microRNAs in serum/plasma (miR-425-p, -21, -93, -191 and -499 and cerebro-spinal fluid (CSF (miR-328, -362-3p, -451, -486a as possible indicators of the diagnosis, severity, and prognosis of TBI. Experimental animal studies have examined specific microRNAs as biomarkers and therapeutic targets for moderate and mild TBI (e.g., miR-21, miR-23b. MicroRNA profiling was altered by voluntary exercise. Differences in basal microRNA expression in the brain of adult and aged animals and alterations in response to TBI (e.g., miR-21 have also been reported. Further large-scale studies with TBI patients are needed to provide more information on the changes in microRNA profiles in different age groups (children, adults, and elderly.

  20. Right-sided representational neglect after left brain damage in a case without visuospatial working memory deficits.

    Science.gov (United States)

    van Dijck, Jean-Philippe; Gevers, Wim; Lafosse, Christophe; Fias, Wim

    2013-10-01

    Brain damaged patients suffering from representational neglect (RN) fail to report, orient to, or verbally describe contra-lesional elements of imagined environments or objects. So far this disorder has only been reported after right brain damage, leading to the idea that only the right hemisphere is involved in this deficit. A widely accepted account attributes RN to a lateralized impairment in the visuospatial component of working memory. So far, however, this hypothesis has not been tested in detail. In the present paper, we describe, for the first time, the case of a left brain damaged patient suffering from right-sided RN while imagining both known and new environments and objects. An in-depth evaluation of her visuospatial working memory abilities, with special focus on the presence of a lateralized deficit, did not reveal any abnormality. In sharp contrast, her ability to memorize visual information was severely compromised. The implications of these results are discussed in the light of recent insights in the neglect syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sensitivity of the Halstead and Wechsler Test Batteries to brain damage: Evidence from Reitan's original validation sample.

    Science.gov (United States)

    Loring, David W; Larrabee, Glenn J

    2006-06-01

    The Halstead-Reitan Battery has been instrumental in the development of neuropsychological practice in the United States. Although Reitan administered both the Wechsler-Bellevue Intelligence Scale and Halstead's test battery when evaluating Halstead's theory of biologic intelligence, the relative sensitivity of each test battery to brain damage continues to be an area of controversy. Because Reitan did not perform direct parametric analysis to contrast group performances, we reanalyze Reitan's original validation data from both Halstead (Reitan, 1955) and Wechsler batteries (Reitan, 1959a) and calculate effect sizes and probability levels using traditional parametric approaches. Eight of the 10 tests comprising Halstead's original Impairment Index, as well as the Impairment Index itself, statistically differentiated patients with unequivocal brain damage from controls. In addition, 13 of 14 Wechsler measures including Full-Scale IQ also differed statistically between groups (Brain Damage Full-Scale IQ = 96.2; Control Group Full Scale IQ = 112.6). We suggest that differences in the statistical properties of each battery (e.g., raw scores vs. standardized scores) likely contribute to classification characteristics including test sensitivity and specificity.

  2. Arthroscopic treatment of secondary rotator cuff damage after shoulder hemiarthroplasty (case report

    Directory of Open Access Journals (Sweden)

    S. Y. Dokolin

    2015-01-01

    Full Text Available Anatomical shoulder arthroplasty is an effective treatment for patients with primary deforming arthritis, rheumatoid arthritis and aseptic necrosis of the humeral head. However this kind of surgery is associated with high risk of complications, and within five-year follow-up the incidence of complications increases. The authors described a clinical case illustrating one of these complications - secondary rotator cuff damage after shoulder hemiarthroplasty. The tear was verified using radiological methods and arthroscopy. They performed arthroscopic rotator cuff repair using suture anchors in order to alleviate pain and preserve shoulder functions. If there are no signs of endoprosthetic instability and coracoacromial ligament is preserved, arthroscopic treatment of such damages extends the time of limb function preserving the endoprosthesis. Patients should not raise their arms above the horizontal level.

  3. Perceptual relearning of binocular fusion after hypoxic brain damage: four controlled single-case treatment studies.

    Science.gov (United States)

    Schaadt, Anna-Katharina; Schmidt, Lena; Kuhn, Caroline; Summ, Miriam; Adams, Michaela; Garbacenkaite, Ruta; Leonhardt, Eva; Reinhart, Stefan; Kerkhoff, Georg

    2014-05-01

    Hypoxic brain damage is characterized by widespread, diffuse-disseminated brain lesions, which may cause severe disturbances in binocular vision, leading to diplopia and loss of stereopsis, for which no evaluated treatment is currently available. The study evaluated the effects of a novel binocular vision treatment designed to improve binocular fusion and stereopsis as well as to reduce diplopia in patients with cerebral hypoxia. Four patients with severely reduced convergent fusion, stereopsis, and reading duration due to hypoxic brain damage were treated in a single-subject baseline design, with three baseline assessments before treatment to control for spontaneous recovery (pretherapy), an assessment immediately after a treatment period of 6 weeks (posttherapy), and two follow-up tests 3 and 6 months after treatment to assess stability of improvements. Patients received a novel fusion and dichoptic training using 3 different devices designed to slowly increase fusional and disparity angle. After the treatment, all 4 patients improved significantly in binocular fusion, subjective reading duration until diplopia emerged, and 2 of 4 patients improved significantly in local stereopsis. No significant changes were observed during the pretherapy baseline period and the follow-up period, thus ruling out spontaneous recovery and demonstrating long-term stability of treatment effects. This proof-of-principle study indicates a substantial treatment-induced plasticity after hypoxia in the relearning of binocular vision and offers a viable treatment option. Moreover, it provides new hope and direction for the development of effective rehabilitation strategies to treat neurovisual deficits resulting from hypoxic brain damage.

  4. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia.

    Directory of Open Access Journals (Sweden)

    Wanchao Yang

    Full Text Available Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30-39 mmHg, 40-49 mmHg, 50-59 mmHg, and 60-69 mmHg, respectively or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60-80 mmHg for 180 min. The mean artery pressure (MAP, blood gas, and cerebral blood flow (CBF were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4 expression. In rats treated with severe hypoxia (PaO2 50 mmHg, hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg; especially under mild hypoxemia (PaO2 > 60 mmHg, hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05. Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental effects under severe hypoxemia on brain damage in a rat model of hypoxia-ischemia.

  5. Omega-3 Fatty Acids Could Alleviate the Risks of Traumatic Brain Injury – A Mini Review

    Directory of Open Access Journals (Sweden)

    Parvathy R. Kumar

    2014-04-01

    Full Text Available Traumatic brain injury (TBI is an acquired brain trauma that occurs when any sudden trauma/injury causes damage to the brain. TBI is characterized by tissue damage and imbalance in the cerebral blood flow and metabolism. It has been established through laboratory experiments that the dietary supplementation of omega-3 fatty acids (FAs could reduce the oxidative stress developed in brain due to TBI. The inclusion of omega-3 FA in diet could normalize the levels of brain-derived neurotrophic factor (BDNF, and thus, it could restore the survival of neuronal cells. BDNF improves the synaptic transmission by regulating synapsin 1 and cyclic adenosine monophosphate (cAMP response element binding protein. The brain tissue analysis of TBI models supplemented with omega-3 polyunsaturated fatty acids (PUFAs showed significantly reduced lipid peroxidation, nucleic acid and protein oxidation, thereby promoting neuronal and glial cell survival. Thus, omega-3 FA intake could be considered as a therapeutic option to reduce the secondary neuronal damages initiated by TBI.

  6. Neuronal Rat Brain Damage Caused by Endogenous and Exogenous Hyperthermia

    Directory of Open Access Journals (Sweden)

    Mustafa Aydın

    2012-03-01

    Full Text Available OBJECTIVE: Hyperthermia may induce pathologic alterations within body systems and organs including brain. In this study, neuronal effects of endogenous and exogenous hyperthermia (41°C were studied in rats. METHODS: The endogenous hyperthermia (41°C was induced by lipopolysaccharide and the exogenous by an (electric heater. Possible neuronal damage was evaluated by examining healthy, apoptotic and necrotic cells, and heat shock proteins (HSP 27, HSP 70 in the cerebral cortex, cerebellum and hypothalamus RESULTS: At cellular level, when all neuronal tissues are taken into account; (i a significant increase in the necrotic cells was observed in the both groups (p0.05. CONCLUSION: The neural tissue of brain can show different degree of response to hyperthermia. But we can conclude that endogenous hyperthermia is more harmful to central nervous system than exogenous hyperthermia

  7. Bisecting real and fake body parts: effects of prism adaptation after right brain damage

    Directory of Open Access Journals (Sweden)

    Nadia eBolognini

    2012-06-01

    Full Text Available The representation of body parts holds a special status in the brain, due to their prototypical shape and the contribution of multisensory (visual and somatosensory-proprioceptive information. In a previous study (Sposito et al., 2010, we showed that patients with left unilateral spatial neglect exhibit a rightward bias in setting the mid-point of their left forearm, which becomes larger when bisecting a cylindrical object comparable in size. This body part advantage, found also in control participants, suggests partly different processes for computing the extent of body parts and objects. In this study we tested 16 right-brain-damaged patients, and 10 unimpaired participants, on a manual bisection task of their own (real left forearm, or a size-matched fake forearm. We then explored the effects of adaptation to rightward displacing prism exposure, which brings about leftward aftereffects. We found that all participants showed prism adaptation and aftereffects, with right-brain-damaged patients exhibiting a reduction of the rightward bias for both real and fake forearm, with no overall differences between them. Second, correlation analyses highlighted the role of visual and proprioceptive information for the metrics of body parts. Third, single-patient analyses showed dissociations between real and fake forearm bisections, and the effects of prism adaptation, as well as a more frequent impairment with fake body parts. In sum, the rightward bias shown by right-brain-damaged patients in bisecting body parts is reduced by prism exposure, as other components of the neglect syndrome; discrete spatial representations for real and fake body parts, for which visual and proprioceptive codes play different roles, are likely to exist. Multisensory information seems to render self bodily segments more resistant to the disruption brought about by right-hemisphere injury.

  8. Line and word bisection in right-brain-damaged patients with left spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S

    2014-01-01

    Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support

  9. Decreased Secondary Lesion Growth and Attenuated Immune Response after Traumatic Brain Injury in Tlr2/4−/− Mice

    Directory of Open Access Journals (Sweden)

    Sandro M. Krieg

    2017-08-01

    Full Text Available Danger-associated molecular patterns are released by damaged cells and trigger neuroinflammation through activation of non-specific pattern recognition receptors, e.g., toll-like receptors (TLRs. Since the role of TLR2 and 4 after traumatic brain injury (TBI is still unclear, we examined the outcome and the expression of pro-inflammatory mediators after experimental TBI in Tlr2/4−/− and wild-type (WT mice. Tlr2/4−/− and WT mice were subjected to controlled cortical injury and contusion volume and brain edema formation were assessed 24 h thereafter. Expression of inflammatory markers in brain tissue was measured by quantitative PCR 15 min, 3 h, 6 h, 12 h, and 24 h after controlled cortical impact (CCI. Contusion volume was significantly attenuated in Tlr2/4−/− mice (29.7 ± 0.7 mm3 as compared to 33.5 ± 0.8 mm3 in WT; p < 0.05 after CCI while brain edema was not affected. Only interleukin (IL-1β gene expression was increased after CCI in the Tlr2/4−/− relative to WT mice. Inducible nitric oxide synthetase, TNF, IL-6, and COX-2 were similar in injured WT and Tlr2/4−/− mice, while the increase in high-mobility group box 1 was attenuated at 6 h. TLR2 and 4 are consequently shown to potentially promote secondary brain injury after experimental CCI via neuroinflammation and may therefore represent a novel therapeutic target for the treatment of TBI.

  10. Ancillary procedure for early diagnosis of brain damage in children

    International Nuclear Information System (INIS)

    Sumi, Masatoshi; Sha, Tenei; Ryo, Fukko; Kagawa, Kotaro.

    1979-01-01

    CT scan of the head was performed on 14 patients with cerebral palsy, 16 with central coordination disorders, and 16 controls, and findings showing cerebral atrophy and enlargement of the cerebral ventricle were obtained in cases both of cerebral palsy and of central coordination disorders. To objectify these findings, 10 items were selected and evaluated according to 4 grades (0 - 3) and were compared. As a result, it was concluded that CT scan is an excellent ancillary procedure for early diagnosis of brain damages. (Tsunoda, M.)

  11. Bacterial cytolysin during meningitis disrupts the regulation of glutamate in the brain, leading to synaptic damage.

    Directory of Open Access Journals (Sweden)

    Carolin Wippel

    Full Text Available Streptococcus pneumoniae (pneumococcal meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage.

  12. Reorganization of syntactic processing following left-hemisphere brain damage: does right-hemisphere activity preserve function?

    Science.gov (United States)

    Tyler, Lorraine K; Wright, Paul; Randall, Billi; Marslen-Wilson, William D; Stamatakis, Emmanuel A

    2010-11-01

    The extent to which the human brain shows evidence of functional plasticity across the lifespan has been addressed in the context of pathological brain changes and, more recently, of the changes that take place during healthy ageing. Here we examine the potential for plasticity by asking whether a strongly left-lateralized system can successfully reorganize to the right-hemisphere following left-hemisphere brain damage. To do this, we focus on syntax, a key linguistic function considered to be strongly left-lateralized, combining measures of tissue integrity, neural activation and behavioural performance. In a functional neuroimaging study participants heard spoken sentences that differentially loaded on syntactic and semantic information. While healthy controls activated a left-hemisphere network of correlated activity including Brodmann areas 45/47 and posterior middle temporal gyrus during syntactic processing, patients activated Brodmann areas 45/47 bilaterally and right middle temporal gyrus. However, voxel-based morphometry analyses showed that only tissue integrity in left Brodmann areas 45/47 was correlated with activity and performance; poor tissue integrity in left Brodmann area 45 was associated with reduced functional activity and increased syntactic deficits. Activity in the right-hemisphere was not correlated with damage in the left-hemisphere or with performance. Reduced neural integrity in the left-hemisphere through brain damage or healthy ageing results in increased right-hemisphere activation in homologous regions to those left-hemisphere regions typically involved in the young. However, these regions do not support the same linguistic functions as those in the left-hemisphere and only indirectly contribute to preserved syntactic capacity. This establishes the unique role of the left hemisphere in syntax, a core component in human language.

  13. Therapeutic potential of brain-derived neurotrophic factor (BDNF and a small molecular mimics of BDNF for traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary Wurzelmann

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF, a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  14. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    Science.gov (United States)

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  15. Radial bisection of words and lines in right-brain-damaged patients with spatial neglect.

    Science.gov (United States)

    Veronelli, Laura; Arduino, Lisa S; Girelli, Luisa; Vallar, Giuseppe

    2017-09-01

    The bisection of lines positioned radially (with the two ends of the line close and far, with respect to the participant's body) has been less investigated than that of lines placed horizontally (with their two ends left and right, with respect to the body's midsagittal plane). In horizontal bisection, patients with left neglect typically show a rightward bias for both lines and words, greater with longer stimuli. As for radial bisection, available data indicate that neurologically unimpaired participants make a distal error, while results from right-brain-damaged patients with left spatial neglect are contradictory. We investigated the bisection of radially oriented words, with the prediction that, during bisection, linguistic material would be recoded to its canonical left-to-right format in reading, with the performance of neglect patients being similar to that for horizontal words. Thirteen right-brain-damaged patients (seven with left spatial neglect) and fourteen healthy controls were asked to manually bisect 40 radial and 40 horizontal words (5-10 letters), and 80 lines, 40 radial and 40 horizontal, of comparable length. Right-brain-damaged patients with spatial neglect exhibited a proximal bias in the bisection of short radial words, with the proximal part corresponding to the final right part of horizontally oriented words. This proximal error was not found in patients without neglect and healthy controls. For bisection, short radial words may be recoded to the canonical orthographic horizontal format, unveiling the impact of left neglect on radially oriented stimuli. © 2015 The British Psychological Society.

  16. Calculation of primary and secondary dose in proton therapy of brain tumors using Monte Carlo method

    International Nuclear Information System (INIS)

    Moghbel Esfahani, F.; Alamatsaz, M.; Karimian, A.

    2012-01-01

    High-energy beams of protons offer significant advantages for the treatment of deep-seated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum - Bragg peak - near the end of range with a sharp falloff at the distal edge. Therefore, research must be done to investigate the possible negative and positive effects of using proton therapy as a treatment modality. In proton therapy, protons do account for the vast majority of dose. However, when protons travel through matter, secondary particles are created by the interactions of protons and matter en route to and within the patient. It is believed that secondary dose can lead to secondary cancer, especially in pediatric cases. Therefore, the focus of this work is determining both primary and secondary dose. Dose calculations were performed by MCNPX in tumoral and healthy parts of brain. The brain tumor has a 10 mm diameter and is located 16 cm under the skin surface. The brain was simulated by a cylindrical water phantom with the dimensions of 19 x 19cm 2 (length x diameter), with 0.5 cm thickness of plexiglass (C 4 H 6 O 2 ). Then beam characteristics were investigated to ensure the accuracy of the model. Simulations were initially validated with against packages such as SRIM/TRIM. Dose calculations were performed using different configurations to evaluate depth-dose profiles and dose 2D distributions.The results of the simulation show that the best proton energy interval, to cover completely the brain tumor, is from 152 to 154 MeV. (authors)

  17. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    Science.gov (United States)

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  18. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    International Nuclear Information System (INIS)

    Koukalova, B.; Kuhrova, V.

    1980-01-01

    Cells containing incorporated 3 H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA. (author)

  19. Damage to E. coli cells induced by tritium decay: secondary lethality under nongrowth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koukalova, B; Kuhrova, V [Ceskoslovenska Akademie Ved, Brno. Biofysikalni Ustav

    1980-05-01

    Cells containing incorporated /sup 3/H-thymidine are damaged by its decay. It was found with E.coli TAU-bar cells that a small part of the damage is lethal whereas most of it is reparable and only potentially lethal. If cells are subjected to nongrowth conditions, the potentially lethal damage changes to lethal damage. This process is called secondary lethality (SL). The extent of SL and some changes in DNA under three different modes of growth inhibition were determined. It was found that: (i) SL is maximal under conditions of amino acid starvation (-AA), the viable count decreasing by two orders of magnitude. (ii) SL is 4 times lower in the presence of chloramphenicol (-AA+CLP) and 6.5 times lower under +AA+CLP conditions. Changes in the sedimentation rate of DNA determined in alkaline sucrose gradient correlate with the differences in SL: under -AA conditions the sedimentation rate of DNA decreases whereas in the presence of CLP no decrease occurs. The results suggest that certain enzymatic processes take place under -AA conditions which lead to irreparable changes in DNA.

  20. Reflecting on Co-Creating a Smart Learning Ecosystem for Adolescents with Congenital Brain Damage

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina; Rehm, Matthias; Lund, Maja K. L.

    2018-01-01

    . In this paper we present a first part of an ongoing collaboration with a special needs education facility for adolescents with congenital and acquired brain damage, that is interested in exploring the transformation of the institutional space into a smart learning ecosystem. We exemplify our research approach...

  1. Is it useful to view the brain as a secondary sexual characteristic?

    Science.gov (United States)

    Ball, Gregory F; Balthazart, Jacques; McCarthy, Margaret M

    2014-10-01

    Many sex differences in brain and behavior related to reproduction are thought to have evolved based on sexual selection involving direct competition for mates during male-male competition and female choice. Therefore, certain aspects of brain circuitry can be viewed as secondary sexual characteristics. The study of proximate causes reveals that sex differences in the brain of mammals and birds reflect organizational and activational effects of sex steroids as articulated by Young and collaborators. However, sex differences in brain and behavior have been identified in the cognitive domain with no obvious link to reproduction. Recent views of sexual selection advocate for a broader view of how intra-sexual selection might occur including such examples as competition within female populations for resources that facilitate access to mates rather than mating competition per se. Sex differences can also come about for other reasons than sexual selection and recent work on neuroendocrine mechanisms has identified a plethora of ways that the brain can develop in a sex specific manner. Identifying the brain as sexually selected requires careful hypothesis testing so that one can link a sex-biased aspect of a neural trait to a behavior that provides an advantage in a competitive mating situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. GAP junctional communication in brain secondary organizers.

    Science.gov (United States)

    Bosone, Camilla; Andreu, Abraham; Echevarria, Diego

    2016-06-01

    Gap junctions (GJs) are integral membrane proteins that enable the direct cytoplasmic exchange of ions and low molecular weight metabolites between adjacent cells. They are formed by the apposition of two connexons belonging to adjacent cells. Each connexon is formed by six proteins, named connexins (Cxs). Current evidence suggests that gap junctions play an important part in ensuring normal embryo development. Mutations in connexin genes have been linked to a variety of human diseases, although the precise role and the cell biological mechanisms of their action remain almost unknown. Among the big family of Cxs, several are expressed in nervous tissue but just a few are expressed in the anterior neural tube of vertebrates. Many efforts have been made to elucidate the molecular bases of Cxs cell biology and how they influence the morphogenetic signal activity produced by brain signaling centers. These centers, orchestrated by transcription factors and morphogenes determine the axial patterning of the mammalian brain during its specification and regionalization. The present review revisits the findings of GJ composed by Cx43 and Cx36 in neural tube patterning and discuss Cx43 putative enrollment in the control of Fgf8 signal activity coming from the well known secondary organizer, the isthmic organizer. © 2016 The Authors. Development, Growth & Differentiation published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Developmental Biologists.

  3. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    Jeon, Myounggun; Yoon, Eui-Sung; Cho, Il-Joo; Cho, Jeiwon; Jung, Dahee; Kim, Yun Kyung; Shin, Sehyun

    2014-01-01

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  4. Body knowledge in brain-damaged children: a double-dissociation in self and other's body processing.

    Science.gov (United States)

    Frassinetti, Francesca; Fiori, Simona; D'Angelo, Valentina; Magnani, Barbara; Guzzetta, Andrea; Brizzolara, Daniela; Cioni, Giovanni

    2012-01-01

    Bodies are important element for self-recognition. In this respect, in adults it has been recently shown a self vs other advantage when small parts of the subjects' body are visible. This advantage is lost following a right brain lesion underlying a role of the right hemisphere in self body-parts processing. In order to investigate the bodily-self processing in children and the development of its neuronal bases, 57 typically developing healthy subjects and 17 subjects with unilateral brain damage (5 right and 12 left sided), aged 4-17 years, were submitted to a matching-to-sample task. In this task, three stimuli vertically aligned were simultaneously presented at the centre of the computer screen. Subjects were required which of two stimuli (the upper or the lower one) matched the central target stimulus, half stimuli representing self and half stimuli representing other people's body-parts and face-parts. The results showed that corporeal self recognition is present since at least 4 years of age and that self and others' body parts processing are different and sustained by separate cerebral substrates. Indeed, a double dissociation was found: right brain damaged patients were impaired in self but not in other people's body parts, showing a self-disadvantage, whereas left brain damaged patients were impaired in others' but not in self body parts processing. Finally, since the double dissociation self/other was found for body-parts but not for face parts, the corporal self seems to be dissociated for body and face-parts. This opens the possibility of independent and lateralized functional modules for the processing of self and other body parts during development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ketogenic diet in a patient with congenital hyperinsulinism: a novel approach to prevent brain damage.

    Science.gov (United States)

    Maiorana, Arianna; Manganozzi, Lucilla; Barbetti, Fabrizio; Bernabei, Silvia; Gallo, Giorgia; Cusmai, Raffaella; Caviglia, Stefania; Dionisi-Vici, Carlo

    2015-09-24

    Congenital hyperinsulinism (CHI) is the most frequent cause of hypoglycemia in children. In addition to increased peripheral glucose utilization, dysregulated insulin secretion induces profound hypoglycemia and neuroglycopenia by inhibiting glycogenolysis, gluconeogenesis and lipolysis. This results in the shortage of all cerebral energy substrates (glucose, lactate and ketones), and can lead to severe neurological sequelae. Patients with CHI unresponsive to medical treatment can be subjected to near-total pancreatectomy with increased risk of secondary diabetes. Ketogenic diet (KD), by reproducing a fasting-like condition in which body fuel mainly derives from beta-oxidation, is intended to provide alternative cerebral substrates such ketone bodies. We took advantage of known protective effect of KD on neuronal damage associated with GLUT1 deficiency, a disorder of impaired glucose transport across the blood-brain barrier, and administered KD in a patient with drug-unresponsive CHI, with the aim of providing to neurons an energy source alternative to glucose. A child with drug-resistant, long-standing CHI caused by a spontaneous GCK activating mutation (p.Val455Met) suffered from epilepsy and showed neurodevelopmental abnormalities. After attempting various therapeutic regimes without success, near-total pancreatectomy was suggested to parents, who asked for other options. Therefore, we proposed KD in combination with insulin-suppressing drugs. We administered KD for 2 years. Soon after the first six months, the patient was free of epileptic crises, presented normalization of EEG, and showed a marked recover in psychological development and quality of life. KD could represent an effective treatment to support brain function in selected cases of CHI.

  6. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

    Science.gov (United States)

    Song, Y; Zhong, M; Cai, F-C

    2018-01-01

    Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (pOxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

  7. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation

    DEFF Research Database (Denmark)

    Undén, Johan; Strandberg, Karin; Malm, Jan

    2009-01-01

    INTRODUCTION: A simple and accurate method of differentiating ischemic stroke and intracerebral hemorrhage (ICH) is potentially useful to facilitate acute therapeutic management. Blood measurements of biomarkers of brain damage and activation of the coagulation system may potentially serve as nov...

  8. Various irrigation fluids affect postoperative brain edema and cellular damage during experimental neurosurgery in rats.

    Science.gov (United States)

    Doi, Kazuhisa; Kawano, Takeshi; Morioka, Yujiro; Fujita, Yasutaka; Nishimura, Masuhiro

    2006-12-01

    This study was conducted to investigate how various irrigation fluids used during neurosurgical procedures affect the degree of postoperative brain edema and cellular damage during experimental neurosurgery in rats. The cerebral cortex was exposed and incised crosswise with a surgical knife under irrigation with an artificial CSF, lactated Ringer's solution, or normal saline. Four hours after injury, irrigation was stopped and brain tissue samples were obtained from injured and uninjured sites. Specific gravity, cerebrovascular permeability, and TTC staining of the samples were evaluated. Incision and irrigation of the brain were not performed on the control group. At the injured site, specific gravities of the samples in the normal saline group and the lactated Ringer's solution group were significantly lower than the specific gravity in the artificial CSF group. The EB concentration was significantly higher in the lactated Ringer's solution group and relatively high in the normal saline group as compared with the artificial CSF group. TTC staining did not differ significantly between the artificial CSF group and the control group. It was significantly lower in the lactated Ringer's solution group and the normal saline group than in the control group and the artificial CSF group. As compared with normal saline and lactated Ringer's solution, artificial CSF reduced postoperative brain edema, cerebrovascular permeability, and cellular damage in sites injured by experimental neurosurgery in rats.

  9. The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair.

    Directory of Open Access Journals (Sweden)

    Davide Lecca

    Full Text Available Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs, two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as "danger signals" to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD(4, is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD(4

  10. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  11. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  12. An emboligenic pulmonary abscess leading to ischemic stroke and secondary brain abscess

    Directory of Open Access Journals (Sweden)

    Albrecht Philipp

    2012-11-01

    Full Text Available Abstract Background Ischemic stroke by septic embolism occurs primarily in the context of infective endocarditis or in patients with a right-to-left shunt and formation of a secondary cerebral abscess is a rare event. Erosion of pulmonary veins by a pulmonary abscess can lead to transcardiac septic embolism but to our knowledge no case of septic embolic ischemic stroke from a pulmonary abscess with secondary transformation into a brain abscess has been reported to date. Case presentation We report the case of a patient with a pulmonary abscess causing a septic embolic cerebral infarction which then transformed into a cerebral abscess. After antibiotic therapy and drainage of the abscess the patient could be rehabilitated and presented an impressive improvement of symptoms. Conclusion Septic embolism should be considered as cause of ischemic stroke in patients with pulmonary abscess and can be followed by formation of a secondary cerebral abscess. Early antibiotic treatment and repeated cranial CT-scans for detection of a secondary abscess should be performed.

  13. Serum S-100β protein as a biomarker for brain damage in patients with encephalopathy

    International Nuclear Information System (INIS)

    Takeda, Munekazu; Yaguchi, Arino; Yamada, Sou; Nagai, Atsushi; Yuzawa, Junji

    2008-01-01

    Cerebrospinal fluid concentrations of S-100β protein, an acidic calcium-binding protein found in astrocytes and Schwann cells, increase after central nervous system damage. Serum S-100β protein, thus, has been expected to be a biochemical marker of brain cell damage. Several reports show a relation between severity of head injury and serum S-100β protein levels, although, there are still not significant advances in the study of S-100β regarding the prediction of the clinical outcome in brain diseases. The objective of the present study was to verify S-100β as a marker for the clinical outcome in patients with encephalopathy. Serum S-100β protein concentrations (pg/ml) were measured daily using enzyme-linked immunosorbent assay (ELISA) until discharge from the intensive care unit (ICU) in 82 patients (54 men, 28 women; age 20-93 years [mean 61.0±19.2]) with moderate or severe encephalopathy. There were 50 survivors and 32 non-survivors. S-100β levels were significantly lower in survivors (240.2 pg/ml) than in non-survivors (1,594.8 pg/ml) from day 1 until ICU discharge. The electroencephalogram (EEG) and computed tomography (CT) abnormalities were correlated with S-100β levels. The optimal cut-off value at 451.2 pg/ml calculated from receiver operating characteristic (ROC) curve analysis showed the sensitivity of 80.2% and specificity of 78.1% for ICU mortality. Our results indicate that serum S-100β protein could be a useful biomarker to assess brain damage and predict prognosis in patients with encephalopathy. (author)

  14. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke

    Directory of Open Access Journals (Sweden)

    Kai-Li Lee

    2013-08-01

    Conclusion: Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions.

  15. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Directory of Open Access Journals (Sweden)

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  16. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    Science.gov (United States)

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  17. The 2100MHz radiofrequency radiation of a 3G-mobile phone and the DNA oxidative damage in brain.

    Science.gov (United States)

    Sahin, Duygu; Ozgur, Elcin; Guler, Goknur; Tomruk, Arın; Unlu, Ilhan; Sepici-Dinçel, Aylin; Seyhan, Nesrin

    2016-09-01

    We aimed to evaluate the effect of 2100MHz radiofrequency radiation emitted by a generator, simulating a 3G-mobile phone on the brain of rats during 10 and 40 days of exposure. The female rats were randomly divided into four groups. Group I; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 2 weeks, group II; control 10 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 2 weeks, group III; exposed to 3G modulated 2100MHz RFR signal for 6h/day, 5 consecutive days/wk for 8 weeks and group IV; control 40 days, were kept in an inactive exposure set-up for 6h/day, 5 consecutive days/wk for 8 weeks. After the genomic DNA content of brain was extracted, oxidative DNA damage (8-hydroxy-2'deoxyguanosine, pg/mL) and malondialdehyde (MDA, nmoL/g tissue) levels were determined. Our main finding was the increased oxidative DNA damage to brain after 10 days of exposure with the decreased oxidative DNA damage following 40 days of exposure compared to their control groups. Besides decreased lipid peroxidation end product, MDA, was observed after 40 days of exposure. The measured decreased quantities of damage during the 40 days of exposure could be the means of adapted and increased DNA repair mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    Science.gov (United States)

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  19. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    Science.gov (United States)

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (Pmemory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  20. Salvia officinalis l. (sage) Ameliorates Radiation-Induced Oxidative Brain Damage In Rats

    International Nuclear Information System (INIS)

    Osman, N. N.; Abd El Azime, A.Sh.

    2013-01-01

    The present study was designed to investigate the oxidative stress and the role of antioxidant system in the management of gamma irradiation induced whole brain damage in rats . Also, to elucidate the potential role of Salvia officinalis (sage) in alleviating such negative effects. Rats were subjected to gamma radiation (6 Gy). Sage extract was daily given to rats during 14 days before starting irradiation and continued after radiation exposure for another 14 days. The results revealed that the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and nitric oxide (NO) content were significantly increased, while the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the reduced glutathione (GSH) content were significantly decreased in the brain homogenate of irradiated rats. Additionally, brain acetylcholinesterase (AChE) as well as alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) activities were significantly increased. On the other hand, the results showed that, administration of sage extract to rats was able to ameliorate the mentioned parameters and the values returned close to the normal ones. It could be concluded that sage extract, by its antioxidant constituents, could modulate radiation induced oxidative stress and enzyme activities in the brain.

  1. A Case Report of Unilateral Severe Visual Loss Along with Bilateral Optic Disc Cupping Secondary to Metastatic Brain Tumor

    Directory of Open Access Journals (Sweden)

    M Mahdavi

    2006-07-01

    Full Text Available Purpose: To report a case of unilateral severe visual loss and bilateral optic disc cupping secondary to brain metastasis of bronchogenic carcinoma Patient and findings: A 48 year-old woman presented with severe visual loss of left eye without redness or pain or any systemic findings .Clinical findings included decreased visual acuity of left eye to 4 m CF and (+3 positive Marcus-Gunn reflex .There was asymmetric optic disc cupping associated with visual field defect in left eye The neurologic investigations showed a secondary metastatic tumor in the brain from bronchogenic carcinoma. Conclusion: Before making a diagnosis of normal -tension glaucoma in asymmetric optic disc cupping and normal intraocular pressure, ophthalmologists should rule out neurologic defects and brain tumors.

  2. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  3. Pharmacoepidemiological analysis of the drugs used for secondary prevention of brain infarction on dispensary stage

    Directory of Open Access Journals (Sweden)

    Miheyeva N.V.

    2014-03-01

    Full Text Available Aim. The secondary prevention of cerebral infarction on dispensary stage to current clinical guidelines was analyzed. Adherence of patients to prescribe medications was evaluated. Material and methods. 106 patients of hospital neurologic department with brain infarction were included in prospective pharmacoepidemiological study of the drugs used for secondary prevention of brain infarction on dispensary stage since 1 January 2009 to 31 December 2009. Duration of outpatient observation was 3 years. Results. All of the patients were of 64,9 ± 10,3 years old. Hypertension was diagnosed in 102 of them (96.2%, atrial fibrillation — in 33 (31.1% patients. 39 (36.8% patients died during 3 years after discharge from the hospital. ACE inhibitors/angiotensin II receptor antagonist were prescribed for 83 (78.3% patients, antiplatelet- 76 (71,7%, statins — 16 (15,1% patients in discharge from hospital. Warfarin was prescribed only for 1 (3.05% patient with atrial fibrillation and ischemic stroke.consumption of drugs with evidence efficiency were diminished already after one year of observation in outpatient clinics. Conclusion.Therapy for secondary stroke prevention is not fully comply with current clinical guidelines

  4. Can neuropsychological testing produce unequivocal evidence of brain damage? II. Testing for right vs. left differences.

    Science.gov (United States)

    Reitan, Ralph M; Wolfson, Deborah

    2008-01-01

    Sensation and perception, as well as motor functions, have played an important role in the history of psychology. Although tests of these abilities are sometimes included in neuropsychological assessments, comparisons of intraindividual performances on the two sides of the body (as a basis for drawing conclusions and comparisons about the functional status of the two cerebral hemispheres) are in many instances neglected or considered only casually. This study, utilizing several motor and sensory-perceptual tests, compared intraindividual differences on the two sides of the body in a group of controls and a group of persons with brain damage. The results indicated that the sensory-perceptual tests were particularly effective in differentiating the groups. More than 60% of the group with brain damage had greater differences on the two sides of the body than did any of the controls. These findings suggest that a substantial proportion of persons with cerebral disease or damage may be subject to unequivocal identification using sensory-perceptual tests that take only about 20 minutes to administer. These tests may serve a valuable role as an adjunct to comprehensive neuropsychological evaluation and should be further evaluated in this respect.

  5. Piezosurgery prevents brain tissue damage: an experimental study on a new rat model

    Czech Academy of Sciences Publication Activity Database

    Pavlíková, G.; Foltán, R.; Burian, M.; Horká, E.; Adámek, S.; Hejčl, Aleš; Hanzelka, T.; Šedý, Jiří

    2011-01-01

    Roč. 40, č. 8 (2011), s. 840-844 ISSN 0901-5027 R&D Projects: GA MŠk(CZ) LC554; GA ČR GAP304/10/0320 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : piezosurgery * brain * tissue damage Subject RIV: FJ - Surgery incl. Transplants; FH - Neurology (UEM-P) Impact factor: 1.506, year: 2011

  6. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Directory of Open Access Journals (Sweden)

    Denis N Silachev

    Full Text Available BACKGROUND: Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. METHODOLOGY/PRINCIPAL FINDINGS: We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated

  7. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    Science.gov (United States)

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  8. Toxicological aspects of interesterified fat: Brain damages in rats.

    Science.gov (United States)

    D'avila, Lívia Ferraz; Dias, Verônica Tironi; Vey, Luciana Taschetto; Milanesi, Laura Hautrive; Roversi, Karine; Emanuelli, Tatiana; Bürger, Marilise Escobar; Trevizol, Fabíola; Maurer, H Luana

    2017-07-05

    In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Brain uptake of Se 75-selenomethionine after damage to blood-brain barrier by mercuric ions

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, O

    1969-01-01

    Previous experimental studies have indicated that perfusing the vessels of the brain with mercuric ions may not only cause damage to the blood-brain barrier in allowing the extravasation of acid dyes, but also have the ostensibly contrary effect of diminishing the uptake of radioactive tracers for important nutrients. These observations were based on the direct comparison of the two hemispheres of the same animal, one perfused with mercuric ions and the other serving as a control. The present paper reports the results of a corresponding investigation with Se75-L-selenomethionine. This methionine analogue seems to be transported and metabolized in much the same way as natural methionine and is conveniently assayed due to the labelling into a ..gamma..-emitting isotope. In addition, as in this study, a check as to whether or not the mercuric ions caused asymmetry of the blood flow was desired, and the similar ..gamma..-emitting I 131-iodoantipyrine was used for this purpose. The long half-life of Se75 made it easy to distinguish in the same specimens its activity from that of the blood flow indicator.

  10. Ang-(1-7) exerts protective role in blood-brain barrier damage by the balance of TIMP-1/MMP-9.

    Science.gov (United States)

    Wu, Jitao; Zhao, Duo; Wu, Shuang; Wang, Dan

    2015-02-05

    Cerebrovascular disease (CVD) ranks as the top three health risks, specially cerebral ischemia characterized with the damage of blood-brain barrier (BBB). The angiotensin Ang-(1-7) was proven to have a protective effect on cerebrovascular diseases. However, its role on blood-brain barrier and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved damage of ischemia reperfusion injury on blood-brain barrier in cerebral ischemia reperfusion injury (IRI) rats. Furthermore, its treatment attenuated BBB permeability and brain edema. Similarly, Ang-(1-7) also decreased the barrier permeability of brain endothelial cell line RBE4. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and zonula occludens ZO-1) expression levels both in IRI-rats and hypoxia-induced RBE4 cells. Furthermore, Ang-(1-7) stimulation down-regulated hypoxia-induced matrix metalloproteinase-9 (MMP-9) levels, whose silencing with (matrix metalloproteinase-9 hemopexin domain) MMP9-PEX inhibitor significantly increased the expression of claudin-5 and ZO-1. Further mechanism analysis demonstrated that Ang-(1-7) might junction protein levels by tissue inhibitor of metalloproteinase 1 (TIMP1)-MMP9 pathway, because Ang-(1-7) enhanced TIMP1 expression, whose silencing obviously attenuated the inhibitor effect of Ang-(1-7) on MMP-9 levels and decreased Ang-(1-7)-triggered increase in claudin-5 and ZO-1. Together, this study demonstrated a protective role of Ang-(1-7) in IRI-induced blood-brain barrier damage by TIMP1-MMP9-regulated tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against IRI and its complications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  12. Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2013-01-01

    After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.

  13. Protective effect of Kombucha tea on brain damage induced by transient cerebral ischemia and reperfusion in rat

    OpenAIRE

    Najmeh Kabiri; Mahbubeh Setorki

    2016-01-01

    The aim of study was to investigate the potential neuroprotective effects of Kombucha on cerebral damage induced by ischemia in rats (n=99). Cerebral infarct volume in the ischemic rats received Kombucha solution showed no significance alteration. However, the permeability of blood-brain barrier significantly decreased in both ischemic rats received 15 mg/kg Kombucha tea and Sham group. In addition, brain water content in the ischemic groups treated with Kombucha solution was significantly hi...

  14. Closure of laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy or radiation damage of cranial nerve after radiotherapy of nasopharyngeal carcinoma.

    Science.gov (United States)

    Qu, Shenhong; Su, Zhengzhong; He, Xiaoguang; Li, Min; Li, Tianying

    2006-09-01

    Closure of the laryngotracheal cavity and tracheostomy is especially suitable for intractable aspiration secondary to radiation encephalopathy or damage of cranial nerve after radiation for nasopharyngeal carcinoma (NPC). To investigate the clinical value, technique, indications and contraindications of closure of the laryngotracheal cavity and tracheostomy for intractable aspiration secondary to radiation encephalopathy (REP) or radiation damage of cranial nerve after radiotherapy of NPC. Thirty patients, suffering from intractable aspiration secondary to radiotherapy for nasopharyngeal carcinoma, were treated with closure of the laryngotracheal cavity and tracheostomy and were observed for at least 1 year. Intractable aspiration and dyspnea were completely eradicated in all patients. The quality of their life was greatly improved.

  15. EFFECTS OF CANNABIDIOL PLUS HYPOTHERMIA ON SHORT-TERM NEWBORN PIG BRAIN DAMAGE AFTER ACUTE HYPOXIA-ISCHEMIA

    Directory of Open Access Journals (Sweden)

    Hector Lafuente

    2016-07-01

    Full Text Available Background: Hypothermia is standard treatment for neonatal encephalopathy, but near 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms to hypothermia and would improve neuroprotection. Cannabidiol could be a good candidate.Objective: To test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets.Methods: Hypoxic-ischemic animals were randomized to receive 30 min after the insult: 1 normothermia- and vehicle-treated group; 2 normothermia- and cannabidiol-treated group; 3 hypothermia- and vehicle-treated group; and 4 hypothermia- and cannabidiol-treated group. Six hours after treatment, brains were processed to qualify the number of neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate and excitotoxicity (glutamate/Nacetyl-aspartate. Western blot studies were performed to quantify protein nitrosylation (oxidative stress and expression of caspase-3 (apoptosis and TNFα (inflammation.Results: Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on histological damage, was greater than either hypothermia or cannabidiol alone.Conclusion: Cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage.

  16. Establishing a model for assessing DNA damage in murine brain cells as a molecular marker of chemotherapy-associated cognitive impairment.

    Science.gov (United States)

    Krynetskiy, Evgeny; Krynetskaia, Natalia; Rihawi, Diana; Wieczerzak, Katarzyna; Ciummo, Victoria; Walker, Ellen

    2013-10-17

    Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al., 2008). Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24h and weighed every 24h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and the retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA "comet" tail shape, migration pattern, tail moment and olive moments) between control mice cohort and 5FU-treated mice cohort: tail length - 119 vs. 153; tail moment - 101 vs. 136; olive moment - 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=-0.75, p<0.02). Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. An Evidence-Based Systematic Review on Communication Treatments for Individuals with Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman; Frymark, Tobi; Venedictov, Rebecca

    2013-01-01

    Purpose: The purpose of this review is to evaluate and summarize the research evidence related to the treatment of individuals with right hemisphere communication disorders. Method: A comprehensive search of the literature using key words related to right hemisphere brain damage and communication treatment was conducted in 27 databases (e.g.,…

  18. The effects of vitamin E on brain derived neurotrophic factor, tissues oxidative damage and learning and memory of juvenile hypothyroid rats.

    Science.gov (United States)

    Baghcheghi, Yousef; Beheshti, Farimah; Shafei, Mohammad Naser; Salmani, Hossein; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Anaeigoudari, Akbar; Hosseini, Mahmoud

    2018-06-01

    The effects of vitamin E (Vit E) on brain derived neurotrophic factor (BDNF) and brain tissues oxidative damage as well as on learning and memory impairments in juvenile hypothyroid rats were examined. The rats were grouped as: (1) Control; (2) Propylthiouracil (PTU); (3) PTU-Vit E and (4) Vit E. PTU was added to their drinking water (0.05%) during 6 weeks. Vit E (20 mg/kg) was daily injected (IP). Morris water maze (MWM) and passive avoidance (PA) were carried out. The animals were deeply anesthetized and the brain tissues were removed for biochemical measurements. PTU increased the escape latency and traveled path in MWM (P E (P E improved BDNF, thiol, SOD and CAT while diminished MDA. The results of the present study showed that Vit E improved BDNF and prevented from brain tissues oxidative damage as well as learning and memory impairments in juvenile hypothyroid rats.

  19. Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils.

    Science.gov (United States)

    Lee, Hyung; Bae, Jae Hoon; Lee, Seong-Ryong

    2004-09-15

    Previous studies have demonstrated that a green tea polyphenol, (-)-epigallocatechine gallate (EGCG), has a potent free radical scavenging and antioxidant effect. Glutamate leads to excitotoxicity and oxidative stress, which are important pathophysiologic responses to cerebral ischemia resulting in brain edema and neuronal damage. We investigated the effect of EGCG on excitotoxic neuronal damage in a culture system and the effect on brain edema formation and lesion after unilateral cerebral ischemia in gerbils. In vitro, excitotoxicity was induced by 24-hr incubation with N-methyl-D-aspartate (NMDA; 10 microM), AMPA (10 microM), or kainate (20 microM). EGCG (5 microM) was added to the culture media alone or with excitotoxins. We examined malondialdehyde (MDA) level and neuronal viability to evaluate the effect of EGCG. In vivo, unilateral cerebral ischemia was induced by occlusion of the right common carotid artery for 30, 60, or 90 min and followed by reperfusion of 24 hr. Brain edema, MDA, and infarction were examined to evaluate the protective effect of EGCG. EGCG (25 or 50 mg/kg, intraperitoneally) was administered twice, at 30 min before and immediately after ischemia. EGCG reduced excitotoxin-induced MDA production and neuronal damage in the culture system. In the in vivo study, treatment of gerbils with the lower EGCG dose failed to show neuroprotective effects; however, the higher EGCG dose attenuated the increase in MDA level caused by cerebral ischemia. EGCG also reduced the formation of postischemic brain edema and infarct volume. These results demonstrate EGCG may have future possibilities as a neuroprotective agent against excitotoxicity-related neurologic disorders such as brain ischemia.

  20. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage.

    Science.gov (United States)

    Casas, Ana I; Geuss, Eva; Kleikers, Pamela W M; Mencl, Stine; Herrmann, Alexander M; Buendia, Izaskun; Egea, Javier; Meuth, Sven G; Lopez, Manuela G; Kleinschnitz, Christoph; Schmidt, Harald H H W

    2017-11-14

    Ischemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage. We explain this distinct cellular distribution pattern through cell-specific knockouts. Endothelial NOX4 breaks down the BBB, while neuronal NOX4 leads to neuronal autotoxicity. Vascular smooth muscle NOX4, the common denominator of ischemia within all ischemic organs, played no apparent role. The direct neuroprotective potential of pharmacological NOX4 inhibition was confirmed in an ex vivo model, free of vascular and BBB components. Our results demonstrate that the heightened sensitivity of the brain to ischemic damage is due to an organ-specific role of NOX4 in blood-brain-barrier endothelial cells and neurons. This mechanism is conserved in at least two rodents and humans, making NOX4 a prime target for a first-in-class mechanism-based, cytoprotective therapy in the unmet high medical need indication of ischemic stroke. Copyright © 2017 the Author(s). Published by PNAS.

  1. Piano training in youths with hand motor impairments after damage to the developing brain

    Science.gov (United States)

    Lampe, Renée; Thienel, Anna; Mitternacht, Jürgen; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2015-01-01

    Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. PMID:26345312

  2. Radiation-induced brain damage in children

    International Nuclear Information System (INIS)

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  3. Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction

    Directory of Open Access Journals (Sweden)

    Brenda Rocamonde

    2013-01-01

    Full Text Available After trauma brain injury, oxidative substances released to the medium provoke an enlargement of the initial lesion, increasing glial cell activation and, occasionally, an influx of immune cells into the central nervous system, developing the secondary damage. In response to these stimuli, microglia are activated to perform upregulation of intracellular enzymes and cell surface markers to propagate the immune response and phagocytosis of cellular debris. The phagocytosis of debris and dead cells is essential to limit the inflammatory reaction and potentially prevent extension of the damage to noninjured regions. Lipoic acid has been reported as a neuroprotectant by acting as an antioxidant and anti-inflammatory agent. Furthermore, angiogenic effect promoted by lipoic acid has been recently shown by our group as a crucial process for neural regeneration after brain injury. In this work, we focus our attention on the lipoic acid effect on astroglial and microglial response after brain injury.

  4. Decision-making deficit of a patient with axonal damage after traumatic brain injury.

    Science.gov (United States)

    Yasuno, Fumihiko; Matsuoka, Kiwamu; Kitamura, Soichiro; Kiuchi, Kuniaki; Kosaka, Jun; Okada, Koji; Tanaka, Syohei; Shinkai, Takayuki; Taoka, Toshiaki; Kishimoto, Toshifumi

    2014-02-01

    Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Social isolation stress-induced oxidative damage in mouse brain and its modulation by majonoside-R2, a Vietnamese ginseng saponin.

    Science.gov (United States)

    Huong, Nguyen Thi Thu; Murakami, Yukihisa; Tohda, Michihisa; Watanabe, Hiroshi; Matsumoto, Kinzo

    2005-08-01

    Stressors with a physical factor such as immobilization, electric foot shock, cold swim, etc., have been shown to produce oxidative damage to membrane lipids in the brain. In this study, we investigated the effect of protracted social isolation stress on lipid peroxidation activity in the mouse brain and elucidated the protective effect of majonoside-R2, a major saponin component of Vietnamese ginseng, in mice exposed to social isolation stress. Thiobarbituric acid reactive substance levels, one of the end products of lipid peroxidation reaction, were increased in the brains of mice subjected to 6-8 weeks of social isolation stress. Measurements of nitric oxide (NO) metabolites (NO(x)(-)) also revealed a significant increase of NO production in the brains of socially isolated mice. Moreover, the depletion of brain glutathione content, an endogenous antioxidant, in socially isolated animals occurred in association with the rise in lipid peroxidation. The intraperitoneal administration of majonoside-R2 (10-50 mg/kg) had no effect on thiobarbituric acid reactive substances (TBARS), NO, or glutathione levels in the brains of group-housed control mice but it significantly suppressed the increase in TBARS and NO levels and the decrease in glutathione levels caused by social isolation stress. These results suggest that mice subjected to 6-8 weeks of social isolation stress produces oxidative damage in the brain partly via enhancement of NO production, and that majonoside-R2 exerts a protective effect by modulating NO and glutathione systems in the brain.

  6. Potential for thermal damage to the blood–brain barrier during craniotomy: implications for intracortical recording microelectrodes

    Science.gov (United States)

    Shoffstall, Andrew J.; Paiz, Jen E.; Miller, David M.; Rial, Griffin M.; Willis, Mitchell T.; Menendez, Dhariyat M.; Hostler, Stephen R.; Capadona, Jeffrey R.

    2018-06-01

    Objective. Our objective was to determine how readily disruption of the blood–brain barrier (BBB) occurred as a result of bone drilling during a craniotomy to implant microelectrodes in rat cortex. While the phenomenon of heat production during bone drilling is well known, practices to evade damage to the underlying brain tissue are inconsistently practiced and reported in the literature. Approach. We conducted a review of the intracortical microelectrode literature to summarize typical approaches to mitigate drill heating during rodent craniotomies. Post mortem skull-surface and transient brain-surface temperatures were experimentally recorded using an infrared camera and thermocouple, respectively. A number of drilling conditions were tested, including varying drill speed and continuous versus intermittent contact. In vivo BBB permeability was assayed 1 h after the craniotomy procedure using Evans blue dye. Main results. Of the reviewed papers that mentioned methods to mitigate thermal damage during craniotomy, saline irrigation was the most frequently cited (in six of seven papers). In post mortem tissues, we observed increases in skull-surface temperature ranging from  +3 °C to  +21 °C, dependent on drill speed. In vivo, pulsed-drilling (2 s-on/2 s-off) and slow-drilling speeds (1000 r.p.m.) were the most effective methods we studied to mitigate heating effects from drilling, while inconclusive results were obtained with saline irrigation. Significance. Neuroinflammation, initiated by damage to the BBB and perpetuated by the foreign body response, is thought to play a key role in premature failure of intracortical recording microelectrodes. This study demonstrates the extreme sensitivity of the BBB to overheating caused by bone drilling. To avoid damage to the BBB, the authors recommend that craniotomies be drilled with slow speeds and/or with intermittent drilling with complete removal of the drill from the skull during ‘off’ periods. While

  7. The Neural Correlates of Abstract and Concrete Words: Evidence from Brain-Damaged Patients

    OpenAIRE

    Papagno, Costanza; Martello, Giorgia; Mattavelli, Giulia

    2013-01-01

    Neuropsychological and activation studies on the neural correlates of abstract and concrete words have produced contrasting results. The present study explores the anatomical substrates of abstract/concrete words in 22 brain-damaged patients with a single vascular lesion either in the right or left hemisphere. One hundred and twenty (60 concrete and 60 abstract) noun triplets were used for a semantic similarity judgment task. We found a significant interaction in word type × group since left ...

  8. Effects of Cannabidiol and Hypothermia on Short-Term Brain Damage in New-Born Piglets after Acute Hypoxia-Ischemia

    Science.gov (United States)

    Lafuente, Hector; Pazos, Maria R.; Alvarez, Antonia; Mohammed, Nagat; Santos, Martín; Arizti, Maialen; Alvarez, Francisco J.; Martinez-Orgado, Jose A.

    2016-01-01

    Hypothermia is a standard treatment for neonatal encephalopathy, but nearly 50% of treated infants have adverse outcomes. Pharmacological therapies can act through complementary mechanisms with hypothermia improving neuroprotection. Cannabidiol could be a good candidate. Our aim was to test whether immediate treatment with cannabidiol and hypothermia act through complementary brain pathways in hypoxic-ischemic newborn piglets. Hypoxic-ischemic animals were randomly divided into four groups receiving 30 min after the insult: (1) normothermia and vehicle administration; (2) normothermia and cannabidiol administration; (3) hypothermia and vehicle administration; and (4) hypothermia and cannabidiol administration. Six hours after treatment, brains were processed to quantify the number of damaged neurons by Nissl staining. Proton nuclear magnetic resonance spectra were obtained and analyzed for lactate, N-acetyl-aspartate and glutamate. Metabolite ratios were calculated to assess neuronal damage (lactate/N-acetyl-aspartate) and excitotoxicity (glutamate/Nacetyl-aspartate). Western blot studies were performed to quantify protein nitrosylation (oxidative stress), content of caspase-3 (apoptosis) and TNFα (inflammation). Individually, the hypothermia and the cannabidiol treatments reduced the glutamate/Nacetyl-aspartate ratio, as well as TNFα and oxidized protein levels in newborn piglets subjected to hypoxic-ischemic insult. Also, both therapies reduced the number of necrotic neurons and prevented an increase in lactate/N-acetyl-aspartate ratio. The combined effect of hypothermia and cannabidiol on excitotoxicity, inflammation and oxidative stress, and on cell damage, was greater than either hypothermia or cannabidiol alone. The present study demonstrated that cannabidiol and hypothermia act complementarily and show additive effects on the main factors leading to hypoxic-ischemic brain damage if applied shortly after the insult. PMID:27462203

  9. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations.

    Science.gov (United States)

    Panksepp, Jaak; Fuchs, Thomas; Garcia, Victor Abella; Lesiak, Adam

    2007-12-17

    Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS). Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects) can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  10. Pomegranate Alleviates Oxidative Damage and Neurotransmitter Alterations in Rats Brain Exposed to Aluminum Chloride and/or Gamma Radiation

    International Nuclear Information System (INIS)

    Said, U.Z.; EL-Tahawey, N.A.; Elassal, A.A.; Elsayed, E.M.; Shousha, W.Gh.

    2013-01-01

    Aluminum and gamma radiation, both are potent neurotoxins and have been implicated in many human neuro degenerative diseases. The present study was designed to investigate the role of pomegranate in alleviating oxidative damage and alteration of neurotransmitters in the brain of rats exposed to aluminum chloride (AlCl 3 ), and/or gamma radiation (IR). The results revealed that rats whole body exposed to γ- rays, (1 Gy/week up to 4 Gy), and/or administered aluminum chloride (35 mg/kg body weight), via gavages for 4 weeks, resulted in brain tissue damage, featuring by significant increase of the level of thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP), associated with significant decrease of superoxide dismutase (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content indicating occurrence of oxidative stress. A significant decrease of serotonin (5-HT) level associated with a significant increase of 5-hydroxyindole acetic acid (5-HIAA), in addition to a significant decrease in dopamine (DA), norepinephrine (NE) and epinephrine (EPI) contents recorded at the 1st, 7th and 14th day post-irradiation, indicating alterations in the metabolism of brain monoamines. On the other hand, the results exhibited that, supplementation of rats with pomegranate, via gavages, at a dose of 3 ml /kg body weight/ day, for 4 weeks along with AlCl 3 with or without radiation has significantly ameliorated the changes occurred in the mentioned parameters and the values returned close to the normal ones. It could be concluded that pomegranate, by its antioxidant constituents might antagonize brain oxidative damage and minimize the severity of aluminum (Al), and/or radiation-induced neurotransmitters disorders

  11. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  12. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review

    Directory of Open Access Journals (Sweden)

    Igor Ferraz da Silva

    2018-01-01

    Full Text Available The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs. OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood–brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs.

  13. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    Science.gov (United States)

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Lozano D

    2015-01-01

    Full Text Available Diego Lozano,* Gabriel S Gonzales-Portillo,* Sandra Acosta, Ike de la Pena, Naoki Tajiri, Yuji Kaneko, Cesar V Borlongan Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA *These authors contributed equally to this work Abstract: Traumatic brain injury (TBI is a serious public health problem accounting for 1.4 million emergency room visits by US citizens each year. Although TBI has been traditionally considered an acute injury, chronic symptoms reminiscent of neurodegenerative disorders have now been recognized. These progressive neurodegenerative-like symptoms manifest as impaired motor and cognitive skills, as well as stress, anxiety, and mood affective behavioral alterations. TBI, characterized by external bumps or blows to the head exceeding the brain’s protective capacity, causes physical damage to the central nervous system with accompanying neurological dysfunctions. The primary impact results in direct neural cell loss predominantly exhibiting necrotic death, which is then followed by a wave of secondary injury cascades including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood–brain barrier disruption, and inflammation. All these processes exacerbate the damage, worsen the clinical outcomes, and persist as an evolving pathological hallmark of what we now describe as chronic TBI. Neuroinflammation in the acute stage of TBI mobilizes immune cells, astrocytes, cytokines, and chemokines toward the site of injury to mount an antiinflammatory response against brain damage; however, in the chronic stage, excess activation of these inflammatory elements contributes to an “inflamed” brain microenvironment that principally contributes to secondary cell death in TBI. Modulating these inflammatory cells by changing their phenotype from proinflammatory to antiinflammatory would likely promote therapeutic effects on TBI. Because neuroinflammation occurs at

  15. Moderately delayed post-insult treatment with normobaric hyperoxia reduces excitotoxin-induced neuronal degeneration but increases ischemia-induced brain damage

    Directory of Open Access Journals (Sweden)

    Haelewyn Benoit

    2011-04-01

    Full Text Available Abstract Background The use and benefits of normobaric oxygen (NBO in patients suffering acute ischemic stroke is still controversial. Results Here we show for the first time to the best of our knowledge that NBO reduces both NMDA-induced calcium influxes in vitro and NMDA-induced neuronal degeneration in vivo, but increases oxygen and glucose deprivation-induced cell injury in vitro and ischemia-induced brain damage produced by middle cerebral artery occlusion in vivo. Conclusions Taken together, these results indicate that NBO reduces excitotoxin-induced calcium influx and subsequent neuronal degeneration but favors ischemia-induced brain damage and neuronal death. These findings highlight the complexity of the mechanisms involved by the use of NBO in patients suffering acute ischemic stroke.

  16. Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

    Directory of Open Access Journals (Sweden)

    Tetsuya Takahashi

    Full Text Available Clinical manifestations of methylmercury (MeHg intoxication include cerebellar ataxia, concentric constriction of visual fields, and sensory and auditory disturbances. The symptoms depend on the site of MeHg damage, such as the cerebellum and occipital lobes. However, the underlying mechanism of MeHg-induced tissue vulnerability remains to be elucidated. In the present study, we used a rat model of subacute MeHg intoxication to investigate possible MeHg-induced blood-brain barrier (BBB damage. The model was established by exposing the rats to 20-ppm MeHg for up to 4 weeks; the rats exhibited severe cerebellar pathological changes, although there were no significant differences in mercury content among the different brain regions. BBB damage in the cerebellum after MeHg exposure was confirmed based on extravasation of endogenous immunoglobulin G (IgG and decreased expression of rat endothelial cell antigen-1. Furthermore, expression of vascular endothelial growth factor (VEGF, a potent angiogenic growth factor, increased markedly in the cerebellum and mildly in the occipital lobe following MeHg exposure. VEGF expression was detected mainly in astrocytes of the BBB. Intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of hind-limb crossing signs observed in MeHg-exposed rats. In conclusion, we demonstrated for the first time that MeHg induces BBB damage via upregulation of VEGF expression at the BBB in vivo. Further studies are required in order to determine whether treatment targeted at VEGF can ameliorate MeHg-induced toxicity.

  17. A cross-talk between brain-damage patients and infants on action and language.

    Science.gov (United States)

    Papeo, Liuba; Hochmann, Jean-Remy

    2012-06-01

    Sensorimotor representations in the brain encode the sensory and motor aspects of one's own bodily activity. It is highly debated whether sensorimotor representations are the core basis for the representation of action-related knowledge and, in particular, action words, such as verbs. In this review, we will address this question by bringing to bear insights from the study of brain-damaged patients exhibiting language disorders and from the study of the mechanisms for language acquisition in infants. Cognitive neuropsychology studies have assessed how damage to representations supporting action production impacts patients' ability to process action-related words. While correlations between verbal and nonverbal (motor) impairments are very common in patients, damage to the representations for action production can leave the ability to understand action-words unaffected; likewise, actions can still be produced successfully in cases of impaired action-word understanding. Studies with infants have evaluated the relevance of sensorimotor information when infants learn to map a novel word onto an action that they are performing or perceiving. These results demonstrate that sensorimotor information is insufficient to fully account for the complexity of verb learning: in this process, infants seem to privilege abstract constructs such as goal, intentionality and causality, as well as syntactic constraints, over the perceptual and motor dimensions of an action. Altogether, the empirical data suggest that, while not crucial for verb learning and understanding, sensorimotor processes can contribute to solving the problem of symbol grounding and/or serve as a primary mechanism in social cognition, to learn about others' goals and intentions. By assessing the relevance of sensorimotor representations in the way action-related words are acquired and represented, we aim to provide a useful set of criteria for testing specific predictions made by different theories of concepts

  18. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Yanyun Sun

    2017-08-01

    Full Text Available Disruption of the blood brain barrier (BBB within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2 accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO and in vitro oxygen glucose deprivation (OGD models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.

  19. Neuroimaging of post-traumatic higher brain dysfunction using 123I-Iomazenil (IMZ) SPECT

    International Nuclear Information System (INIS)

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2010-01-01

    In patients with mild traumatic brain injury (MTBI), higher brain dysfunctions which consist of cognitive impairments such as memory, attention, performance and social behavioral disturbances could be rarely apparent. However, higher brain dysfunctions should be identified by neuropsychological tests and supported by a social welfare for handicapped patients. Acknowledgement of higher brain dysfunctions after MTBI without obvious brain damages on morphological neuroimagings could be a social issue under controversy. An imaging of cortical neuron damages in patients with higher brain dysfunctions after MTBI was studied by functional neuroimaging using 123 I-Iomazenil (IMZ) single photon emission computed tomography (SPECT). Statistical imaging analyses using 3 dimensional stereotactic surface projections (3D-SSP) for 123 I-IMZ SPECT and 123 I-IMP SPECT as cerebral blood flow (CBF) studies were performed in 11 patients with higher brain dysfunctions after MTBI. In all patients with higher brain dysfunctions defined by neuropsychological tests, cortical neuron damages were observed in bilateral medial frontal lobes, but reduction of CBF in bilateral medial frontal lobes were less obviously showed in 8 patients (apparent in 3 and little in 5). Group comparison of 3D-SSP of 123 I-IMZ SPECT between 11 patients and 18 normal controls demonstrated significant selective loss of cortical neuron in bilateral medial frontal gyrus (MFG). Extent of abnormal pixels on each cortical gyrus using stereotactic extraction estimation (SEE) for 3D-SSP of 123 I-IMZ SPECT confirmed that 8 patients had abnormal pixel extent >10% in bilateral MFG and 5 patients had abnormal pixel extent >10% in bilateral anterior cingulate gyrus. In patients with MTBI, higher brain dysfunctions seems to correlate with selective loss of cortical neuron within bilateral MFG which could be caused by Wallerian degeneration as secondary phenomena after diffuse axonal injury within corpus callosum. Statistical

  20. Does any aspect of mind survive brain damage that typically leads to a persistent vegetative state? Ethical considerations

    Directory of Open Access Journals (Sweden)

    Fuchs Thomas

    2007-12-01

    Full Text Available Abstract Recent neuroscientific evidence brings into question the conclusion that all aspects of consciousness are gone in patients who have descended into a persistent vegetative state (PVS. Here we summarize the evidence from human brain imaging as well as neurological damage in animals and humans suggesting that some form of consciousness can survive brain damage that commonly causes PVS. We also raise the issue that neuroscientific evidence indicates that raw emotional feelings (primary-process affects can exist without any cognitive awareness of those feelings. Likewise, the basic brain mechanisms for thirst and hunger exist in brain regions typically not damaged by PVS. If affective feelings can exist without cognitive awareness of those feelings, then it is possible that the instinctual emotional actions and pain "reflexes" often exhibited by PVS patients may indicate some level of mentality remaining in PVS patients. Indeed, it is possible such raw affective feelings are intensified when PVS patients are removed from life-supports. They may still experience a variety of primary-process affective states that could constitute forms of suffering. If so, withdrawal of life-support may violate the principle of nonmaleficence and be tantamount to inflicting inadvertent "cruel and unusual punishment" on patients whose potential distress, during the process of dying, needs to be considered in ethical decision-making about how such individuals should be treated, especially when their lives are ended by termination of life-supports. Medical wisdom may dictate the use of more rapid pharmacological forms of euthanasia that minimize distress than the de facto euthanasia of life-support termination that may lead to excruciating feelings of pure thirst and other negative affective feelings in the absence of any reflective awareness.

  1. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  2. Accumulation of neuronal DNA damage as an early covariate of determinant of death after whole-brain irradiaton

    International Nuclear Information System (INIS)

    Wheeler, K.T.; Weinstein, R.E.

    1979-01-01

    The state of the DNA from cerebellar neurons of male Sprague-Dawley rats after whole-brain irradiation with 2000 rad of x rays was determined at various times by obtaining DNA sedimentation profiles using alkaline sucrose gradients in slow reorienting zonal rotors. It took more than 4 weeks after irradiation for the neuronal DNA distributions to return to those obtained from the unirradiated controls. At 7 weeks, the DNA from irradiated neurons sedimented more rapidly than that from unirradiated neurons. Accumulation of the neuronal DNA damage (degradation.) which led to slower sedimenting DNA species began by Week 10 and continued until the majority of the irradiated rats began to die at Week 20. We propose as a working hypothesis that the accumulation of neuronal DNA damage initially observed 10 weeks after 2000 rad of whole-brain irradiation may reflect or cause changes in the central nervous system that later result in the death of the animal

  3. Partial IGF-1 deficiency induces brain oxidative damage and edema, which are ameliorated by replacement therapy.

    Science.gov (United States)

    Puche, Juan E; Muñoz, Úrsula; García-Magariño, Mariano; Sádaba, María C; Castilla-Cortázar, Inma

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) induces multiple cytoprotective effects on every tissue, including the brain. Since the mechanisms by which IGF-1 produces neuroprotection are not fully understood, the aim of this work was to delve into the underlying mechanisms. IGF-1 deficient mice (Hz) were compared with wild type (WT) and Hz mice treated with low doses of IGF-1 (2 µg/100 g body weight/day) for 10 days (Hz + IGF). Gene expression, quantitative PCR, histology, and magnetic resonance imaging were performed in the three groups. IGF-1 deficiency induced increased oxidative damage determined by markers of lipid peroxidation and hypoxia, as well as gene expression of heat shock proteins, antioxidant enzymes, and molecules involved in inflammation, apoptosis, and mitochondrial protection. These changes correlated with edema and learning impairment in Hz mice. IGF-1 therapy improved all these alterations. In conclusion, IGF-1 deficiency is responsible for increased brain oxidative damage, edema, and impaired learning and memory capabilities which are rescued by IGF-1 replacement therapy. © 2016 International Union of Biochemistry and Molecular Biology.

  4. [Depersonalization syndrome after acquired brain damage. Overview based on 3 case reports and the literature and discussion of etiological models].

    Science.gov (United States)

    Paulig, M; Böttger, S; Sommer, M; Prosiegel, M

    1998-12-01

    Depersonalization after brain damage is still only rarely reported and poorly understood. We describe three patients between the ages of 21 and 25 who experienced depersonalization and derealization for periods of 6 weeks to 4 months, two after traumatic brain injury, the third after surgical and radiation treatment of a pineocytoma. Each one believed to be living in a nightmare and thought about committing suicide in order to wake up. One patient developed symptoms as described in Cotard delusion. Aspects of neuroanatomy, psychodynamics, and anthropology are discussed with reference to the literature. Frontal and temporal lesions seem only to play a facilitating role but not to be a necessary condition. There is evidence for additional influence of psychological and premorbid personality factors. Summarizing the current state of information we consider depersonalization with the experience of being in a dream or being dead as a heuristic reaction to brain damage. Similar models have already been discussed in neuropsychological disorders as for instance reduplicative paramnesias, neglect, and anosognosia.

  5. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    Science.gov (United States)

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  6. Minimal Brain Damage/Dysfunction (MBD) en de ontwikkeling van de wetenschappelijke kinderstudie in Nederland, ca. 1950-1990

    NARCIS (Netherlands)

    Bakker, Nelleke

    2014-01-01

    This paper discusses the reception in the Netherlands of Minimal Brain Damage/Dysfunction (MBD) and related labels for normally gifted children with learning disabilities and behavioural problems by child scientists of all sorts from the 1950s up to the late 1980s, when MBD was replaced with

  7. Inference Generation during Text Comprehension by Adults with Right Hemisphere Brain Damage: Activation Failure Versus Multiple Activation.

    Science.gov (United States)

    Tompkins, Connie A.; Fassbinder, Wiltrud; Blake, Margaret Lehman; Baumgaertner, Annette; Jayaram, Nandini

    2004-01-01

    ourse comprehensionEvidence conflicts as to whether adults with right hemisphere brain damage (RHD) generate inferences during text comprehension. M. Beeman (1993) reported that adults with RHD fail to activate the lexical-semantic bases of routine bridging inferences, which are necessary for comprehension. But other evidence indicates that adults…

  8. Secondary Fire Analysis.

    Science.gov (United States)

    1981-09-01

    Megaton Weapons and Secondary Ignition There are very few well documented data on fires initiated by physical damage (i.e., secondary ignitions). Those data...where significant physical damage to buildings and/or contents can occur. Where this outer bound is located relative to the primary ignition range is...maintenance 7.9 Busline facilities, including shops 3.0 Convalescent homes8 3.1 Hospitals 8.0 Radio and television transmitters Collges and universities

  9. Histological evaluation of brain damage caused by crude quinolizidine alkaloid extracts from lupines.

    Science.gov (United States)

    Bañuelos Pineda, J; Nolasco Rodríguez, G; Monteon, J A; García López, P M; Ruiz Lopez, M A; García Estrada, J

    2005-10-01

    The effects of the intracerebroventricular (ICV) administration of crude extracts of lupin quinolizidine alkaloids (LQAs) were studied in adult rat brain tissue. Mature L. exaltatus and L. montanus seeds were collected in western Mexico, and the LQAs from these seeds were extracted and analyzed by capillary gas chromatography. This LQA extract was administered to the right lateral ventricle of adult rats through a stainless steel cannula on five consecutive days. While control animals received 10 microl of sesame oil daily (vehicle), the experimental rats (10 per group) received 20 ng of LQA from either L. exaltatus or from L. montanus. All the animals were sacrificed 40 h after receiving the last dose of alkaloids, and their brains were removed, fixed and coronal paraffin sections were stained with haematoxylin and eosin. Immediately after the administration of LQA the animals began grooming and suffered tachycardia, tachypnea, piloerection, tail erection, muscular contractions, loss of equilibrium, excitation, and unsteady walk. In the brains of the animals treated with LQA damaged neurons were identified. The most frequent abnormalities observed in this brain tissue were "red neurons" with shrunken eosinophilic cytoplasm, strongly stained pyknotic nuclei, neuronal swelling, spongiform neuropil, "ghost cells" (hypochromasia), and abundant neuronophagic figures in numerous brain areas. While some alterations in neurons were observed in control tissues, unlike those found in the animals treated with LQA these were not significant. Thus, the histopathological changes observed can be principally attributed to the administration of sparteine and lupanine present in the alkaloid extracts.

  10. Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble[(3,5,5-Trimethylhexanoyl)ferrocene

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan

    2007-01-01

    Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (......, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.......Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month old rats following supplementationwith the lipophilic iron derivative [(3,5,5-trimethylhexanoyl......)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of a- and ¿-tocopherols and glutathione (GSH) were also higher. In contrast, the brain...

  11. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice.

    Science.gov (United States)

    Adén, Ulrika; Halldner, Linda; Lagercrantz, Hugo; Dalmau, Ishar; Ledent, Catherine; Fredholm, Bertil B

    2003-03-01

    Cerebral hypoxic ischemia (HI) is an important cause of brain injury in the newborn infant. Adenosine is believed to protect against HI brain damage. However, the roles of the different adenosine receptors are unclear, particularly in young animals. We examined the role of adenosine A2A receptors (A2AR) using 7-day-old A2A knockout (A2AR(-/-)) mice in a model of HI. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated with the use of histopathological scoring and measurements of residual brain areas at 5 days, 3 weeks, and 3 months after HI. Behavioral evaluation of brain injury by locomotor activity, rotarod, and beam-walking test was made 3 weeks and 3 months after HI. Cortical cerebral blood flow, assessed by laser-Doppler flowmetry, and rectal temperature were measured during HI. Reduction in cortical cerebral blood flow during HI and rectal temperature did not differ between wild-type (A2AR(+/+)) and knockout mice. In the A2AR(-/-) animals, brain injury was aggravated compared with wild-type mice. The A2AR(-/-) mice subjected to HI displayed increased forward locomotion and impaired rotarod performance in adulthood compared with A2AR(+/+) mice subjected to HI, whereas beam-walking performance was similarly defective in both groups. These results suggest that, in contrast to the situation in adult animals, A2AR play an important protective role in neonatal HI brain injury.

  12. The neuroprotective effect of hyperbaric oxygen treatment on laser-induced retinal damage in rats

    Science.gov (United States)

    Vishnevskia-Dai, Victoria; Belokopytov, Mark; Dubinsky, Galina; Nachum, Gal; Avni, Isaac; Belkin, Michael; Rosner, Mordechai

    2005-04-01

    Retinal damage induced by mechanical trauma, ischemia or laser photocoagulation increases considerably by secondary degeneration processes. The spread of damage may be ameliorated by neuroprotection that is aimed at reducing the extent of the secondary degeneration and promote healing processes. Hyperbaric oxygen (HBO) treatment consists of inspiration of oxygen at higher than one absolute atmospheric pressure. Improved neural function was observed in patients with acute brain trauma or ischemia treated with HBO. This study was designed to evaluate the neuroprotective effect of hyperbaric oxygen (HBO) on laser induced retinal damage in a rat model. Standard argon laser lesions were created in 25 pigmented rats divided into three groups: Ten rats were treated immediately after the irradiation with HBO three times during the first 24 hr followed by 12 consecutive daily treatments. Five rats received a shorter treatment regimen of 10 consecutive HBO treatments. The control group (10 rats) underwent the laser damage with no additional treatment. The retinal lesions were evaluated 20 days after the injury. All outcome measures were improved by the longer HBO treatment (Ptreatment was less effective, showing an increase only in nuclei density at the central area of lesion (Pretinal damage in a rat model. In the range of HBO exposures studied, longer exposure provides more neuroprotection. These results encourage further evaluation of the potential therapeutic use of hyperbaric oxygen in diseases and injuries of the retina.

  13. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment.

    Science.gov (United States)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-05-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.

  14. On the crucial cerebellar wound healing-related pathways and their cross-talks after traumatic brain injury in Danio rerio.

    Directory of Open Access Journals (Sweden)

    Chia-Chou Wu

    Full Text Available Upon injury, the direct damage and the subsequent secondary injury in the brain often result in chronic neurological disorders. Due to multifactorial nature of secondary injury and subsequent complex cellular responses, much of the underlying mechanisms are unclear. This study used an adult zebrafish cerebellum injury model to investigate the phenotypes and the secondary injury responses for recovery mechanisms of injured brain. Using the time course microarray analysis, a candidate protein-protein interaction (PPI network was refined as cerebellar wound healing PPI network by dynamic modeling and big data mining. Pathway enrichment and ontological analysis were incorporated into the refined network to highlight the main molecular scheme of cerebellar wound healing. Several significant pathways, including chemokine, Phosphatidylinositide 3-kinases, and axon guidance signaling pathway and their cross-talks through PI3K, PAK2, and PLXNA3 were identified to coordinate for neurogenesis and angiogenesis, which are essential for the restoration of the injured brain. Our finding provides an insight into the molecular restoration mechanisms after traumatic brain injury, and open up new opportunity to devise the treatment for traumatic brain injury in human.

  15. Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.

    Science.gov (United States)

    Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo

    2016-04-01

    Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi [Juntendo Univ., Tokyo (Japan). School of Medicine

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  17. Study on CT changes in autistic children; Anatomical correlation of the damaged brain and delay of psychomotor development

    Energy Technology Data Exchange (ETDEWEB)

    Yaguchi, Katsumi (Juntendo Univ., Tokyo (Japan). School of Medicine)

    1993-05-01

    Since 1979 we have performed CT examinations on 132 autistic children. Neurological diagnosis of the lesion was established by Dr. Segawa's group. On the CT of many autistic children, we found a small low density change located in the anterior wall of the temporal horn, or localized dilatation of the inferior horn near the damaged brain. We reviewed 96 of these patients who all had the obvious low density changes, or localized irregular dilatations in the anterior wall of the temporal horn. By measuring the distance of damage from the midline, we divided the 96 cases into two groups. Group 1 consisted of those with damage located laterally more than 30 mm line from the midline. Group 2 consisted of those with damage medially to the 30 mm line from the midline. Those cases with a large lesion both laterally and medially of the 30 mm line were categorized into group 1. In the adult brain the lateral border of the amygdaloid nucleus was never located laterally more than 30 mm from the midline. Laterally over the 30 mm line there were two marked fiber systems running near the anterior wall of the temporal horn: the fiber of the anterior commissure and the uncinate fascicle. Group 1 consisted of 62 patients and group 2 of 34 patients. The majority of the two group patients were pure autism children. This suggested that the main lesion in autism was in the amygdala. (author).

  18. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  19. Poor Hand-Pointing to Sounds in Right Brain-Damaged Patients: Not Just a Problem of Spatial-Hearing

    Science.gov (United States)

    Pavani, Francesco; Farne, Alessandro; Ladavas, Elisabetta

    2005-01-01

    We asked 22 right brain-damaged (RBD) patients and 11 elderly healthy controls to perform hand-pointing movements to free-field unseen sounds, while modulating two non-auditory variables: the initial position of the responding hand (left, centre or right) and the presence or absence of task-irrelevant ambient vision. RBD patients suffering from…

  20. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Science.gov (United States)

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  1. Brain Malformations

    Science.gov (United States)

    Most brain malformations begin long before a baby is born. Something damages the developing nervous system or causes it ... medicines, infections, or radiation during pregnancy interferes with brain development. Parts of the brain may be missing, ...

  2. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin

    2011-01-01

    Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence....... The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD...... treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves....

  3. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats.

    Science.gov (United States)

    Mestriner, Régis Gemerasca; Miguel, Patrícia Maidana; Bagatini, Pamela Brambilla; Saur, Lisiani; Boisserand, Lígia Simões Braga; Baptista, Pedro Porto Alegre; Xavier, Léder Leal; Netto, Carlos Alexandre

    2013-05-01

    Stroke causes disability and mortality worldwide and is divided into ischemic and hemorrhagic subtypes. Although clinical trials suggest distinct recovery profiles for ischemic and hemorrhagic events, this is not conclusive due to stroke heterogeneity. The aim of this study was to produce similar brain damage, using experimental models of ischemic (IS) and hemorrhagic (HS) stroke and evaluate the motor spontaneous recovery profile. We used 31 Wistar rats divided into the following groups: Sham (n=7), ischemic (IS) (n=12) or hemorrhagic (HS) (n=12). Brain ischemia or hemorrhage was induced by endotelin-1 (ET-1) and collagenase type IV-S (collagenase) microinjections, respectively. All groups were evaluated in the open field, cylinder and ladder walk behavioral tests at distinct time points as from baseline to 30 days post-surgery (30 PS). Histological and morphometric analyses were used to assess the volume of lost tissue and lesion length. Present results reveal that both forms of experimental stroke had a comparable long-term pattern of damage, since no differences were found in volume of tissue lost or lesion size 30 days after surgery. However, behavioral data showed that hemorrhagic rats were less impaired at skilled walking than ischemic ones at 15 and 30 days post-surgery. We suggest that experimentally comparable stroke design is useful because it reduces heterogeneity and facilitates the assessment of neurobiological differences related to stroke subtypes; and that spontaneous skilled walking recovery differs between experimental ischemic and hemorrhagic insults. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain barrier damage

    International Nuclear Information System (INIS)

    Go, K.G.; Lammertsma, A.A.; Paans, A.M.; Vaalburg, W.; Woldring, M.G.

    1981-01-01

    By external detection, the influence of arterial blood pressure (BP), osmolarity, and cold-induced blood-brain barrier damage was assessed on the extraction of water labeled with oxygen 15 during single-capillary transit in the rat. There was an inverse relation between arterial BP and extraction that was attributable to the influence of arterial BP on cerebral blood flow (CBF) and the relation between CBF and extraction. Neither arterial BP nor osmolarity of the injected bolus had any direct effect on extraction of water 15O, signifying that the diffusional exchange component (determined by blood flow) of extraction greatly surpasses the convection flow contribution by hydrostatic or osmotic forces. Damage to the blood-brain barrier did not change its permeability to water

  6. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    International Nuclear Information System (INIS)

    Wilson, Christy M.; Gaber, M. Waleed; Sabek, Omaima M.; Zawaski, Janice A.; Merchant, Thomas E.

    2009-01-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidate the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.

  7. Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.

    Science.gov (United States)

    Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W

    2015-07-01

    Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (Pbrain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.

  8. Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Lisa Mailleux

    2017-12-01

    Full Text Available Background: In children with unilateral cerebral palsy (uCP virtually nothing is known on the relation between structural brain damage and upper limb (UL kinematics quantified with three-dimensional movement analysis (3DMA. This explorative study aimed to (1 investigate differences in UL kinematics between children with different lesion timings, i.e., periventricular white matter (PWM vs. cortical and deep gray matter (CDGM lesions and (2 to explore the relation between UL kinematics and lesion location and extent within each lesion timing group.Methods: Forty-eight children (age 10.4 ± 2.7 year; 29 boys; 21 right-sided; 33 PWM; 15 CDGM underwent an UL 3DMA during a reach-to-grasp task. Spatiotemporal parameters [movement duration, (timing of maximum velocity, trajectory straightness], the Arm Profile Score (APS and Arm Variable Scores (AVS were extracted. The APS and AVS refer to the total amount of movement pathology and movement deviations of the wrist, elbow, shoulder, scapula and trunk respectively. Brain lesion location and extent were scored based on FLAIR-images using a semi-quantitative MRI-scale.Results: Children with CDGM lesions showed more aberrant spatiotemporal parameters (p < 0.03 and more movement pathology (APS, p = 0.003 compared to the PWM group, mostly characterized by increased wrist flexion (p = 0.01. In the CDGM group, moderate to high correlations were found between lesion location and extent and duration, timing of maximum velocity and trajectory straightness (r = 0.53–0.90. Lesion location and extent were further moderately correlated with distal UL movement pathology (wrist flexion/extension, elbow pronation/supination, elbow flexion/extension; r = 0.50–0.65 and with the APS (r = 0.51–0.63. In the PWM group, only a few and low correlations were observed, mostly between damage to the PLIC and higher AVS of elbow flexion/extension, shoulder elevation and trunk rotation (r = 0.35–0.42. Regression analysis

  9. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  10. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  11. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  12. Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers.

    Science.gov (United States)

    Vieira, Claudia; Pombero, Ana; García-Lopez, Raquel; Gimeno, Lourdes; Echevarria, Diego; Martínez, Salvador

    2010-01-01

    The vertebrate Central Nervous System (CNS) originates from the embryonic dorsal ectoderm. Differentiation of the neural epithelium from the ectoderm and the formation of the neural plate constitute the first phase of a complex process called neurulation which culminates in the formation of the neural tube, the anlage of the CNS in sauropsids and mammals (for review see Smith and Schoenwolf, 1997; Colas and Schoenwolf, 2001). At neural plate and neural tube stages, local signaling centers in the neuroepithelium, known as secondary organizers, refine the antero-posterior specification of different neural territories (for review see Echevarria et al., 2003; Stern et al.,2006; Woltering and Durston, 2008). In this review, we will describe the principle aspects of CNS development in birds and mammals, starting from early stages of embryogenesis (gastrulation and neurulation) and culminating with the formation of a variety of different regions which contribute to the structural complexity of the brain (regionalization and morphogenesis). We will pay special attention to the cellular and molecular mechanisms involved in neural tube regionalization and the key role played by localized secondary organizers in the patterning of neural primordia.

  13. Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue.

    Science.gov (United States)

    Häke, Ines; Schönenberger, Silvia; Neumann, Jens; Franke, Katrin; Paulsen-Merker, Katrin; Reymann, Klaus; Ismail, Ghazally; Bin Din, Laily; Said, Ikram M; Latiff, A; Wessjohann, Ludger; Zipp, Frauke; Ullrich, Oliver

    2009-01-03

    Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 microg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen-glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.

  14. Signs of long-term adaptation to permanent brain damage as revealed by prehension studies of children with spastic hemiparesis

    NARCIS (Netherlands)

    Steenbergen, B.; Meulenbroek, R.G.J.; Latash, M.L.; Levin, M.

    2003-01-01

    This chapter focusses on signs of long-term adaptation to permanent brain damage in children with spastic hemiparesis. First, we recognize that adaptation processes may occur at various time scales. Then, we formulate a tentative strategy to infer signs of adaptation from behavioral data.

  15. CSF inflammation and axonal damage are increased and correlate in progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Romme Christensen, Jeppe; Börnsen, Lars; Khademi, Mohsen

    2013-01-01

    BACKGROUND: The mechanism underlying disease progression in progressive multiple sclerosis (MS) is uncertain. Pathological studies found widespread inflammation in progressive MS brains correlating with disease progression and axonal damage. OBJECTIVES: To study cerebrospinal fluid (CSF) biomarkers...... and clarify whether inflammation and axonal damage are associated in progressive MS. METHODS: Using enzyme-linked immunosorbent assay (ELISA), we analysed CSF from 40 secondary progressive (SPMS), 21 primary progressive (PPMS), and 36 relapsing-remitting (RRMS) and 20 non-inflammatory neurological disease...... (NIND) patients. Twenty-two of the SPMS patients participated in an MBP8298 peptide clinical trial and had CSF follow-up after one year. RESULTS: Compared to NIND patients, inflammatory biomarkers osteopontin and matrix metalloproteinase-9 (MMP9) were increased in all MS patients while CXCL13...

  16. The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage

    DEFF Research Database (Denmark)

    Owens, Trevor

    2003-01-01

    progression correlate with axonal damage, and that brain atrophy resulting from axonal loss is a feature of early multiple sclerosis, and is not restricted to the secondary progressive forms of the disease. Inflammatory mediators (CD8 T cells and antibodies) are implicated in axonal damage, and treatment...... cells for oligodendrocytes. SUMMARY: Oligodendrocyte precursors are abundant in multiple sclerosis lesions, but fail to remyelinate. Oligodendrocyte growth and regeneration are probably compromised by the action of growth inhibitory signals and lack of growth stimuli. Inflammatory cells and mediators......PURPOSE OF REVIEW: The demyelinating disease multiple sclerosis has an autoimmune inflammatory component, which has dominated the description of multiple sclerosis. A degenerative component to multiple sclerosis was always apparent, but was underappreciated until recently. Recent work has brought...

  17. Nuclear medicine in the detection of radiation associated normal tissue damage of kidney, brain and salivary glands

    International Nuclear Information System (INIS)

    Liu Xiaomei; Li Dongxue; Pan Liping

    2005-01-01

    The radiation induced damage of kidney, brain and salivary glands is an important complicating disease after limit radiotherapy. The routine technology of nuclear medicine, such as tracing and imaging technique conduce to dose-effect calculations used in the planning of modern radiotherapy to three major organ systems and early detection of irradiation induced organ dysfunctions, as well as increased availability of radiotherapy. (authors)

  18. False memories to emotional stimuli are not equally affected in right- and left-brain-damaged stroke patients.

    Science.gov (United States)

    Buratto, Luciano Grüdtner; Zimmermann, Nicolle; Ferré, Perrine; Joanette, Yves; Fonseca, Rochele Paz; Stein, Lilian Milnitsky

    2014-10-01

    Previous research has attributed to the right hemisphere (RH) a key role in eliciting false memories to visual emotional stimuli. These results have been explained in terms of two right-hemisphere properties: (i) that emotional stimuli are preferentially processed in the RH and (ii) that visual stimuli are represented more coarsely in the RH. According to this account, false emotional memories are preferentially produced in the RH because emotional stimuli are both more strongly and more diffusely activated during encoding, leaving a memory trace that can be erroneously reactivated by similar but unstudied emotional items at test. If this right-hemisphere hypothesis is correct, then RH damage should result in a reduction in false memories to emotional stimuli relative to left-hemisphere lesions. To investigate this possibility, groups of right-brain-damaged (RBD, N=15), left-brain-damaged (LBD, N=15) and healthy (HC, N=30) participants took part in a recognition memory experiment with emotional (negative and positive) and non-emotional pictures. False memories were operationalized as incorrect responses to unstudied pictures that were similar to studied ones. Both RBD and LBD participants showed similar reductions in false memories for negative pictures relative to controls. For positive pictures, however, false memories were reduced only in RBD patients. The results provide only partial support for the right-hemisphere hypothesis and suggest that inter-hemispheric cooperation models may be necessary to fully account for false emotional memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Potential Adverse Effects of Prolonged Sevoflurane Exposure on Developing Monkey Brain: From Abnormal Lipid Metabolism to Neuronal Damage.

    Science.gov (United States)

    Liu, Fang; Rainosek, Shuo W; Frisch-Daiello, Jessica L; Patterson, Tucker A; Paule, Merle G; Slikker, William; Wang, Cheng; Han, Xianlin

    2015-10-01

    Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.5% sevoflurane for 9 h, and frontal cortical tissues were harvested for DNA microarray, lipidomics, Luminex protein, and histological assays. DNA microarray analysis showed that sevoflurane exposure resulted in a broad identification of differentially expressed genes (DEGs) in the monkey brain. In general, these genes were associated with nervous system development, function, and neural cell viability. Notably, a number of DEGs were closely related to lipid metabolism. Lipidomic analysis demonstrated that critical lipid components, (eg, phosphatidylethanolamine, phosphatidylserine, and phosphatidylglycerol) were significantly downregulated by prolonged exposure of sevoflurane. Luminex protein analysis indicated abnormal levels of cytokines in sevoflurane-exposed brains. Consistently, Fluoro-Jade C staining revealed more degenerating neurons after sevoflurane exposure. These data demonstrate that a clinically relevant concentration of sevoflurane (2.5%) is capable of inducing and maintaining an effective surgical plane of anesthesia in the developing nonhuman primate and that a prolonged exposure of 9 h resulted in profound changes in gene expression, cytokine levels, lipid metabolism, and subsequently, neuronal damage. Generally, sevoflurane-induced neuronal damage was also associated with changes in lipid content, composition, or both; and specific lipid changes could provide insights into the molecular mechanism(s) underlying anesthetic-induced neurotoxicity and may be sensitive biomarkers for the early detection of anesthetic-induced neuronal damage. Published by Oxford University Press on behalf of the

  20. Diagnostic and prognostic value of asphyxia, Sarnat's clinical classification, and CT-scan in perinatal brain damage

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Toshihide; Wakita, Yoshiharu; Kubonishi, Sakae; Yoshikawa, Seishi (Kochi Prefectural Central Hospital (Japan)); Ito, Toshiyuki; Okada, Yasusuke

    1990-11-01

    A retrospective review was made of 145 babies, excluding those with congenital heart disease or chromosome aberration, admitted for CT scanning. The study was done to determine the diagnostic and prognostic value of CT findings, as well as the presence of asphyxia and the clinical stage based on the Sarnat's classification, in perinatal brain damage. The patients had a minimum follow up of 2 years for the evaluation of neurologic manifestations, such as cerebral palsy, epilepsy and mental retardation. Among babies weighing 2,000 g or more at birth, neonatal asphyxia was significantly correlated with neurologic prognosis. In addition, both clinical stages and CT findings were significantly correlated with neurologic prognosis, irrespective of birth weight. The correlation between clinical stages and CT findings was significant, irrespective of body weight, however, a significant correlation between clinical stages and neonatal asphyxia was restricted to those weighing 2,000 g or more. These findings suggest that the presence of asphyxia, clinical stages and CT findings are complementary in the diagnosis and prognosis evaluation of perinatal brain damage. (N.K.).

  1. Correlation of behavior with brain damage after in utero exposure to toxic agents

    International Nuclear Information System (INIS)

    Norton, S.; Kimler, B.F.

    1987-01-01

    Early postnatal behaviors involving sensorimotor integration were measured along with thickness of the sensorimotor cortex in rats irradiated with 1.0 Gy on gestational day 11 or 17. Body weight and morphology of anterior pituitary cells were recorded. Irradiation on day 17 was more effective in reducing cortical thickness and body weight and performance on behavioral tests and less effective in altering pituitary cells than irradiation on day 11. Prediction of behavioral effects, using cortical layers, body weight and pituitary morphology as predictors in stepwise multiple regression, was measured in both irradiated and control rats. Cortical Layer V more than I more than IV and VI as significant predictors of behavior. The best predictions accounted for about half of the variance in the data. When behavioral data were used to predict brain damage, the best predictor was negative geotaxis. Significant association of behavior with Layers V and VI was found. These experiments show the difficulties in correlating complex behaviors with specific brain areas and, at the same time, implicate especially Layer V of the sensorimotor cortex in these behaviors

  2. Brain white matter damage in aging and cognitive ability in youth and older age☆

    Science.gov (United States)

    Valdés Hernández, Maria del C.; Booth, Tom; Murray, Catherine; Gow, Alan J.; Penke, Lars; Morris, Zoe; Maniega, Susana Muñoz; Royle, Natalie A.; Aribisala, Benjamin S.; Bastin, Mark E.; Starr, John M.; Deary, Ian J.; Wardlaw, Joanna M.

    2013-01-01

    Cerebral white matter hyperintensities (WMH) reflect accumulating white matter damage with aging and impair cognition. The role of childhood intelligence is rarely considered in associations between cognitive impairment and WMH. We studied community-dwelling older people all born in 1936, in whom IQ had been assessed at age 11 years. We assessed medical histories, current cognitive ability and quantified WMH on MR imaging. Among 634 participants, mean age 72.7 (SD 0.7), age 11 IQ was the strongest predictor of late life cognitive ability. After accounting for age 11 IQ, greater WMH load was significantly associated with lower late life general cognitive ability (β = −0.14, p cognitive ability, after accounting for prior ability, age 11IQ. Early-life IQ also influenced WMH in later life. Determining how lower IQ in youth leads to increasing brain damage with aging is important for future successful cognitive aging. PMID:23850341

  3. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impedance recordings

    NARCIS (Netherlands)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment

  4. Communication Impairments in Patients with Right Hemisphere Damage

    Directory of Open Access Journals (Sweden)

    Abusamra, Valeria

    2009-06-01

    Full Text Available Right brain damages can manifest deficits of communicative skills, which sometimes cause an important inability.The communication impairments following a right hemisphere damage are distinct from those in aphasia and may affect discursive, lexico-semantic, pragmatic, and prosodic components of communication. It is calculated that this troubles affect almost a 50% of this patients.However, these impairments have essentially been studied separately and their possible coexistence in a same individual is still unknown. Moreover, the clinical profiles of communication impairments following a right hemisphere damage, including their correlation with underlying cognitive deficits, are still unreported. The goal of this article is to offer an overview of the verbal communication deficits that can be found in right-hemisphere-damaged individuals. These deficits can interfere, at different levels, with prosody, the semantic processing of words and discourse and pragmatic abilities. In spite of the incapability that they produce, communicational impairments in right brain damaged are usually neglected. Probably, the sub-diagnostic is due to the lack of an appropriate classification or to the absent of adequate assessment tools. In fact, patients with right brain damages might present harsh communicational deficits but perform correctly on aphasia tests because the last ones are not designed to detect this kind of deficit but left brain damaged impairments. Increasing our knowledge about the role of the right-hemisphere in verbal communication will have major theoretical and clinical impacts; it could facilitate the diagnosis of right brain patients in the clinical circle and it will help to lay the foundations to elaborate methods and strategies of intervention.

  5. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    Science.gov (United States)

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  6. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  7. Neuroprotection of lamotrigine on hypoxic-ischemic brain damage in neonatal rats: Relations to administration time and doses

    Directory of Open Access Journals (Sweden)

    Yong-Hong Yi

    2008-06-01

    Full Text Available Yong-Hong Yi1, Wen-Chao Guo1, Wei-Wen Sun1, Tao Su1, Han Lin1, Sheng-Qiang Chen1, Wen-Yi Deng1, Wei Zhou2, Wei-Ping Liao11Department of Neurology, Institute of Neurosciences and the Second Affiliated Hospital, 2Department of Neonatology, Affiliated Guangzhou Children’s Hospital, Guangzhou Medical College, Guangzhou, Guangdong Province, P.R. ChinaAbstract: Lamotrigine (LTG, an antiepileptic drug, has been shown to be able to improve cerebral ischemic damage by limiting the presynaptic release of glutamate. The present study investigated further the neuroprotective effect of LTG on hypoxic-ischemic brain damage (HIBD in neonatal rats and its relations to administration time and doses. The HIBD model was produced in 7-days old SD rats by left common carotid artery ligation followed by 2 h hypoxic exposure (8% oxygen. LTG was administered intraperitoneally with the doses of 5, 10, 20, and 40 mg/kg 3 h after operation and the dose of 20 mg/kg 1 h before and 3 h, 6 h after operation. Blood and brain were sampled 24 h after operation. Nissl staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL, and neuron-specific enolase (NSE immunohistochemical staining were used for morphological studies. Water content in left cortex and NSE concentration in serum were determined. LTG significantly reduced water content in the cerebral cortex, as well as the number of TUNEL staining neurons in the dentate gyrus and cortex in hypoxic-ischemia (HI model. Furthermore, LTG significantly decreased the NSE level in serum and increased the number of NSE staining neurons in the cortex. These effects, except that on water content, were dose-dependent and were more remarkable in the pre-treated group than in the post-treated groups. These results demonstrate that LTG may have a neuroprotective effect on acute HIBD in neonates. The effect is more prominent when administrated with higher doses and before HI.Keywords: hypoxic-ischemic brain

  8. CEREBRAL CORTEX DAMAGE INDUCED BY ACUTE ORAL ...

    African Journals Online (AJOL)

    2018-02-28

    Feb 28, 2018 ... This study examines alcohol-induced cerebral cortex damage and the association with oxidative ... alcohol has profound effects on the function ... Chronic use of ..... Alcohol induced brain damage and liver damage in young.

  9. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Stephan A.; O' Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V. [Hammersmith Hospital Campus, Imaging Sciences Department, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London (United Kingdom); Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P. [MRC Clinical Sciences Centre, Clinical Research Facility, London (United Kingdom); Hammersmith Hospital, Lipid Clinic, London (United Kingdom)

    2007-11-15

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 {+-} 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 {+-} 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 {+-} 4.2 vs. 4.5 {+-} 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  10. MRI at 3 Tesla detects no evidence for ischemic brain damage in intensively treated patients with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Schmitz, Stephan A.; O'Regan, Declan P.; Fitzpatrick, Julie; Hajnal, Joseph V.; Neuwirth, Clare; Potter, Elizabeth; Tosi, Isabella; Naoumova, Rossi P.

    2007-01-01

    Homozygous familial hypercholesterolemia (FH) is considered a model disease for excessive plasma cholesterol levels. Patients with untreated homozygous FH have a markedly increased risk for premature atherosclerosis. The frequency and extent of ischemic brain damage detectable by high-field magnetic resonance imaging (MRI) after long-term intensive treatment are unknown. In a case control study, five patients with homozygous FH (one male and four females; mean age: 23.6 ± 9.2, range: 12-36 years; mean pre-treatment serum total cholesterol level: 26.9 ± 3.24 mmol/L; all patients with documented atherosclerotic plaques in the carotid arteries) and five age- and sex-matched healthy controls were studied. All patients had been on maximal lipid-lowering medication since early childhood, and four of them were also on treatment with low-density lipoprotein (LDL) apheresis at bi-weekly intervals. Brain MRI was performed at 3 Tesla field strength with fluid-attenuated T2-weighted inversion recovery and T1-weighted spin-echo MR pulse sequences and subsequently evaluated by two independent readers. The maximal lipid-lowering treatment reduced the total serum cholesterol by more than 50% in the patients, but their serum concentrations were still 3.6-fold higher than those found in the controls (11.9 ± 4.2 vs. 4.5 ± 0.5 mmol/L; p < 0.0047). No brain abnormality was observed in any of the patients with homozygous FH. Homozygous FH patients on intensive cholesterol-lowering therapy have no evidence of ischemic brain damage at 3 Tesla MRI despite the remaining high cholesterol levels. (orig.)

  11. No inherent left and right side in human 'mental number line': evidence from right brain damage.

    Science.gov (United States)

    Aiello, Marilena; Jacquin-Courtois, Sophie; Merola, Sheila; Ottaviani, Teresa; Tomaiuolo, Francesco; Bueti, Domenica; Rossetti, Yves; Doricchi, Fabrizio

    2012-08-01

    Spatial reasoning has a relevant role in mathematics and helps daily computational activities. It is widely assumed that in cultures with left-to-right reading, numbers are organized along the mental equivalent of a ruler, the mental number line, with small magnitudes located to the left of larger ones. Patients with right brain damage can disregard smaller numbers while mentally setting the midpoint of number intervals. This has been interpreted as a sign of spatial neglect for numbers on the left side of the mental number line and taken as a strong argument for the intrinsic left-to-right organization of the mental number line. Here, we put forward the understanding of this cognitive disability by discovering that patients with right brain damage disregard smaller numbers both when these are mapped on the left side of the mental number line and on the right side of an imagined clock face. This shows that the right hemisphere supports the representation of small numerical magnitudes independently from their mapping on the left or the right side of a spatial-mental layout. In addition, the study of the anatomical correlates through voxel-based lesion-symptom mapping and the mapping of lesion peaks on the diffusion tensor imaging-based reconstruction of white matter pathways showed that the rightward bias in the imagined clock-face was correlated with lesions of high-level middle temporal visual areas that code stimuli in object-centred spatial coordinates, i.e. stimuli that, like a clock face, have an inherent left and right side. In contrast, bias towards higher numbers on the mental number line was linked to white matter damage in the frontal component of the parietal-frontal number network. These anatomical findings show that the human brain does not represent the mental number line as an object with an inherent left and right side. We conclude that the bias towards higher numbers in the mental bisection of number intervals does not depend on left side spatial

  12. Impact of prenatal antimicrobial treatment on fetal brain damage due to autogenous fecal peritonitis in Wistar rats: A Histomorphometric Study

    Directory of Open Access Journals (Sweden)

    Neylane Gadelha

    2017-10-01

    Full Text Available Purpose: To investigate brain neuronal density in newborn rats whose mothers were subjected to fecal peritonitis and compare findings between rats born to mothers treated and not treated with antimicrobials. Methods: Peritonitis was induced with a 10% fecal suspension (4mL/kg in 2 pregnant rats. Of these, 1 received antimicrobial treatment 24 hours after peritonitis induction: moxifloxacin and dexamethasone plus 2 mL of the inner bark of the Schinus terebinthifolius raddi extract. One pregnant rat underwent no intervention and served as a control. Results: The newborn brains of rats born to mothers with fecal peritonitis were significantly smaller and of less firm consistency. Brain neuronal density was lower in the untreated group than in the control and treated groups (P<0.01. Conclusions: Untreated peritonitis caused brain damage in the offspring, which was averted by effective early antimicrobial treatment. This approach may provide an early avenue for translation of such therapy in humans. Keywords: peritonitis, brain injuries, rats

  13. Fluoro-Jade and TUNEL staining as useful tools to identify ischemic brain damage following moderate extradural compression of sensorimotor cortex.

    Science.gov (United States)

    Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture

    2004-01-01

    Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.

  14. Secondary radiation damage as the main cause for unexpected volume effects: A histopathologic study of the parotid gland

    International Nuclear Information System (INIS)

    Konings, Antonius W.T.; Faber, Hette; Cotteleer, Femmy; Vissink, Arjan; Coppes, Rob P.

    2006-01-01

    Purpose: To elucidate with a histopathological study the mechanism of region-dependent volume effects in the partly irradiated parotid gland of the rat. Methods and Materials: Wistar rats were locally X-irradiated with collimators with conformal radiation portals for 100% volume and 50% cranial/caudal partial volumes. Single doses up to 40 Gy were applied. Parotid saliva samples were collected, and the three lobes of the parotid gland were examined individually on the macro- and micromorphologic level up to 1 year after irradiation. Results: Dose-dependent loss of gland weight was observed 1 year after total or partial X-irradiation. Weight loss of the glands correlated very well with loss of secretory function. Irradiating the cranial 50% volume (implicating a shielded lateral lobe) resulted in substantially more damage in terms of weight loss and loss of secretory function than 50% caudal irradiation (shielding the ventral and dorsal lobe). Histologic examinations of the glands 1 year after irradiation revealed that the shielded lateral lobe was severely affected, in contrast to the shielded ventral and dorsal lobes. Time studies showed that irradiation of the cranial 50% volume caused late development of secondary damage in the shielded lateral lobe, becoming manifest between 240 and 360 days after irradiation. The possible clinical significance of this finding is discussed. Conclusion: It is concluded that the observed region-dependent volume effect for late function loss in the rat parotid gland after partial irradiation is mainly caused by secondary events in the shielded lateral lobe. The most probable first step (primary radiation event) in the development of this secondary damage is radiation exposure to the hilus region (located between the ventral and dorsal lobe). By injuring major excretory ducts and supply routes for blood and nerves in this area, the facility system necessary for proper functioning of the nonexposed lateral lobe is seriously affected

  15. Netrin-1 Ameliorates Blood-Brain Barrier Impairment Secondary to Ischemic Stroke via the Activation of PI3K Pathway

    Directory of Open Access Journals (Sweden)

    Jian Yu

    2017-12-01

    Full Text Available Secondary impairment of blood-brain barrier (BBB occurs in the remote thalamus after ischemic stroke. Netrin-1, an axonal guidance molecule, presents bifunctional effects on blood vessels through receptor-dependent pathways. This study investigates whether netrin-1 protects BBB against secondary injury. Netrin-1 (600 ng/d for 7 days was intracerebroventricularly infused 24 h after middle cerebral artery occlusion (MCAO in hypertensive rats. Neurological function was assessed 8 and 14 days after MCAO, and the permeability of BBB in the ipsilateral thalamus was detected. The viability of brain microvascular endothelial cells was determined after being disposed with netrin-1 (50 ng/mL before oxygen-glucose deprivation (OGD. The role of netrin-1 was further explored by examining its receptors and their function. We found that netrin-1 infusion improved neurological function, attenuated secondary impairment of BBB by up-regulating the levels of tight junction proteins and diminishing extravasation of albumin, with autophagy activation 14 days after MCAO. Netrin-1 also enhanced cell survival and autophagy activity in OGD-treated cells, inhibited by UNC5H2 siRNA transfection. Furthermore, the beneficial effects of netrin-1 were suppressed by PI3K inhibitors 3-Methyladenine and LY294002. Our results showed that netrin-1 ameliorated BBB impairment secondary to ischemic stroke by promoting tight junction function and endothelial survival. PI3K-mediated autophagy activation depending on UNC5H2 receptor could be an underlying mechanism.

  16. Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice.

    Science.gov (United States)

    Li, Qian; Wan, Jieru; Lan, Xi; Han, Xiaoning; Wang, Zhongyu; Wang, Jian

    2017-09-01

    Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.

  17. Intra-individual, randomised comparison of the MRI contrast agents gadobutrol versus gadoteridol in patients with primary and secondary brain tumours, evaluated in a blinded read

    International Nuclear Information System (INIS)

    Koenig, M.; Schulte-Altedorneburg, G.; Piontek, M.; Heuser, L.; Hentsch, A.; Spangenberg, P.; Schwenke, C.; Harders, A.

    2013-01-01

    To prove that 1.0 M gadobutrol provides superior contrast enhancement and MRI image characteristics of primary and secondary brain tumours compared with 0.5 M gadoteridol, thereby providing superior diagnostic information. Brain MRI was performed in two separate examinations in patients scheduled for neurosurgery. Independent injections of 1.0 M gadobutrol and 0.5 M gadoteridol at doses of 0.1 mmol Gd/kg body weight were administered per patient in randomised order. Evaluation was performed in an off-site blinded read. Fifty-one patients in the full analysis set (FAS) were eligible for efficacy analysis and 44 for the per-protocol analysis. For the primary efficacy variable ''preference in contrast enhancement for one contrast agent or the other'', the rate of ''gadobutrol preferred'' was estimated at 0.73 (95 % confidence interval 0.61; 0.83), showing significant superiority of gadobutrol over gadoteridol. Calculated lesion-to-brain contrast and the results of all qualitative secondary efficacy variables were also in favour of gadobutrol. Keeping a sufficient time delay after contrast application proved to be essential to get optimal image quality. Compared with 0.5 M gadoteridol, 1.0 M gadobutrol was proven to have significantly superior contrast enhancement characteristics in a routine MRI protocol of primary and secondary brain tumours. (orig.)

  18. Secondary Headaches

    Science.gov (United States)

    ... in the medical history or examination to suggest secondary headache. Headache can be caused by general medical conditions such as severe hypertension, or by conditions that affect the brain and ...

  19. Adverse effects of the antimalaria drug, mefloquine: due to primary liver damage with secondary thyroid involvement?

    Directory of Open Access Journals (Sweden)

    Herxheimer Andrew

    2002-03-01

    Full Text Available Abstract Background Mefloquine is a clinically important antimalaria drug, which is often not well tolerated. We critically reviewed 516 published case reports of mefloquine adverse effects, to clarify the phenomenology of the harms associated with mefloquine, and to make recommendations for safer prescribing. Presentation We postulate that many of the adverse effects of mefloquine are a post-hepatic syndrome caused by primary liver damage. In some users we believe that symptomatic thyroid disturbance occurs, either independently or as a secondary consequence of the hepatocellular injury. The mefloquine syndrome presents in a variety of ways including headache, gastrointestinal disturbances, nervousness, fatigue, disorders of sleep, mood, memory and concentration, and occasionally frank psychosis. Previous liver or thyroid disease, and concurrent insults to the liver (such as from alcohol, dehydration, an oral contraceptive pill, recreational drugs, and other liver-damaging drugs may be related to the development of severe or prolonged adverse reactions to mefloquine. Implications We believe that people with active liver or thyroid disease should not take mefloquine, whereas those with fully resolved neuropsychiatric illness may do so safely. Mefloquine users should avoid alcohol, recreational drugs, hormonal contraception and co-medications known to cause liver damage or thyroid damage. With these caveats, we believe that mefloquine may be safely prescribed in pregnancy, and also to occupational groups who carry out safety-critical tasks. Testing Mefloquine's adverse effects need to be investigated through a multicentre cohort study, with small controlled studies testing specific elements of the hypothesis.

  20. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    Science.gov (United States)

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  1. 99mTc-HMPAO Brain SPECT in Seizure Disorder: Comparison Brain SPECT, MRI / CT and EEG

    International Nuclear Information System (INIS)

    Yang, Hyung In; Im, Ju Hyuk; Choi, Chang Woon; Lee, Dong Soo; Chung, June Key; No, Jae Kyu; Lee, Myung Chul; Koh, Chang Soon

    1994-01-01

    We studied 115 patients with seizure who had been performed brain SPECT brain MRI of CT and EEG. To evaluate the pattern of brain SPECT in seizure patients 28 of them had secondary epilepsies, 87 had primary epilepsies. In primary epilepsies, 42 were generalized seizure and 45 were partial seizure. The causes of secondary epilepsies were congenital malformation, cerebromalacia, cerebral infarction ultiple sclerosis, AV-malformation. granuloma and etc, in order. In 28 secondary epilepsies, 25 of them, brain SPECT lesions was concordant with MRI or CT lesions. 3 were disconcordant. The brain SPECT findings of generalized seizure were normal in 22 patients, diffuse irregular decreased perfusion in 8, decreased in frontal cortex in 4. temporal in 5 and frontotemporal in 3. In 45 partial seizure, 19 brain SPECT were concordant with EEG (42.4%).

  2. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    Science.gov (United States)

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (pmaternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in

  3. Pragmatic and executive functions in traumatic brain injury and right brain damage: An exploratory comparative study

    Directory of Open Access Journals (Sweden)

    Nicolle Zimmermann

    Full Text Available Abstract Objective: To describe the frequency of pragmatic and executive deficits in right brain damaged (RBD and in traumatic brain injury (TBI patients, and to verify possible dissociations between pragmatic and executive functions in these two groups. Methods: The sample comprised 7 cases of TBI and 7 cases of RBD. All participants were assessed by means of tasks from the Montreal Communication Evaluation Battery and executive functions tests including the Trail Making Test, Hayling Test, Wisconsin Card Sorting Test, semantic and phonemic verbal fluency tasks, and working memory tasks from the Brazilian Brief Neuropsychological Assessment Battery NEUPSILIN. Z-score was calculated and a descriptive analysis of frequency of deficits (Z< -1.5 was carried out. Results: RBD patients presented with deficits predominantly on conversational and narrative discursive tasks, while TBI patients showed a wider spread pattern of pragmatic deficits. Regarding EF, RBD deficits included predominantly working memory and verbal initiation impairment. On the other hand, TBI individuals again exhibited a general profile of executive dysfunction, affecting mainly working memory, initiation, inhibition, planning and switching. Pragmatic and executive deficits were generally associated upon comparisons of RBD patients and TBI cases, except for two simple dissociations: two post-TBI cases showed executive deficits in the absence of pragmatic deficits. Discussion: Pragmatic and executive deficits can be very frequent following TBI or vascular RBD. There seems to be an association between these abilities, indicating that although they can co-occur, a cause-consequence relationship cannot be the only hypothesis.

  4. Evaluation of acute radiation damage of the human brain by 1H-MRS

    International Nuclear Information System (INIS)

    Matsushima, Shigeru; Kinosada, Yasutomi.

    1993-01-01

    Fourteen patients (17 cases) were treated with the whole brain irradiation. Physiological changes in white matter were measured by in vivo 1 H magnetic resonance spectroscopy ( 1 H-MRS). Phantom examination proved the accuracy of our 1 H-MRS method to be valid. The measurement was performed 2 or 3 times in each case at the radiation doses ranging from 0 to 40 Gy with 2 Gy daily fractionation. For the measurement of 1 H-MRS, 1.5 T whole body MR system was used and stimulated echo acquisition mode (STEAM) with chemical shift selective (CHESS) pulse was applied. Volume of the interest (VOI) was 2.5x2.5x2.5 cm 3 , and the repetition time and echo time were 2000 ms and 272 ms, respectively. Acute radiation damage of the brain was evaluated by the change of peak area ratio (PAR) of choline, creatine and N-acetyl aspartate (NAA). 1 H-MRS spectra before irradiation were different from those observed during irradiation. There were statistically significant (p 1 H-MRS is a powerful modality, detecting the subtle physiological change which is difficult to evaluate with conventional images. (author)

  5. Secondary chronic cluster headache treated by posterior hypothalamic deep brain stimulation: first reported case.

    Science.gov (United States)

    Messina, Giuseppe; Rizzi, Michele; Cordella, Roberto; Caraceni, Augusto; Zecca, Ernesto; Bussone, Gennaro; Franzini, Angelo; Leone, Massimo

    2013-01-01

    Deep brain stimulation (DBS) of the posterior hypothalamus (pHyp) has been reported as an effective treatment for primary, drug-refractory and chronic cluster headache (CCH). We here describe the use of such a procedure for the treatment of secondary CCH due to a neoplasm affecting the soft tissues of the right hemiface. A 27-year-old man affected by infiltrating angiomyolipoma of the right hemiface who subsequently developed drug refractory homolateral CCH underwent DBS of the right pHyp region at the Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta. After surgery, the patient presented a significant reduction in frequency of pain bouts. However, because of a subsequent infection, the entire system was removed. After re-implantation of the system, successful outcome was observed at 2 years follow-up. This brief report shows the feasibility of pHyp DBS in secondary drug-refractory CCH syndromes; future reports are needed in order to confirm our positive result.

  6. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

    Science.gov (United States)

    Sundman, Mark H; Chen, Nan-Kuei; Subbian, Vignesh; Chou, Ying-Hui

    2017-11-01

    As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral

  7. Simulation of fatigue damagesin secondary truss of crane

    Directory of Open Access Journals (Sweden)

    Eremin Konstantin Ivanovich

    2014-02-01

    Full Text Available Basing on the damaging statistics obtained during the on-site inspections of industrial multi-span building structures with under-crane secondary trusses which have continuous lower plinth, we simulated the scenario of the most likely damage development of under-crane secondary trusses.The first scenario is the development of cracks along the total cross section of plinth. In the process of calculations we defined a real deformation scheme of plinth of under-crane secondary trusses with damage and its stress condition.The second scenario is the destruction of a support or support mounting unit to the lower plinth of under-crane secondary trusses. The destruction of this kind can occur as a result of a crack in a support or as a result of destruction of high-strength fasteners of a support to plinth. We discovered that a system with such damage is geometrically unchanged; there is no possibility of sudden destruction of both the under-crane secondary trusses and the entire building frame.The third scenario is the upper plinth separation from one of the walls of lower plinth of under-crane secondary trusses.The scenario is developed to define the viability of under-crane secondary trusses as a result of cracks in the area of wall junction with the upper shelf of lower plinth, their further development and the appearance of discrete cracks developing into a backbone along the entire span length of under-crane secondary trusses.Based on the calculations of the stress strain state of under-crane secondary trusses with damages in the emergency nature in a separate span of the lower plinth and a truss member, we estimated the viability of structure. The analysis of viability limits makes it possible to find the measures of collapse preventing and avoid possible victims.

  8. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  9. Piano training in youths with hand motor impairments after damage to the developing brain

    Directory of Open Access Journals (Sweden)

    Lampe R

    2015-08-01

    Full Text Available Renée Lampe,1,* Anna Thienel,2 Jürgen Mitternacht,1 Tobias Blumenstein,1 Varvara Turova,1 Ana Alves-Pinto1,* 1Research Unit for Paediatric Neuroorthopaedics and Cerebral Palsy, Orthopaedics Department, Klinikum Rechts der Isar, Technische Universität München, 2Department Sonderpädagogik, Ludwig Maximilians-Universität München, Munich, Germany *These authors contributed equally to this work Abstract: Damage to the developing brain may lead to impairment of the hand motor function and negatively impact on patients’ quality of life. Development of manual dexterity and finger and hand motor function may be promoted by learning to play the piano. The latter brings together music with the intensive training of hand coordination and fine finger mobility. We investigated if learning to play the piano helped to improve hand motor skills in 18 youths with hand motor disorders resulting from damage during early brain development. Participants trained 35–40 minutes twice a week for 18 months with a professional piano teacher. With the use of a Musical Instrument Digital Interface piano, the uniformity of finger strokes could be objectively assessed from the timing of keystrokes. The analysis showed a significant improvement in the uniformity of keystrokes during the training. Furthermore, the youths showed strong motivation and engagement during the study. This is nevertheless an open study, and further studies remain needed to exclude effects of growth and concomitant therapies on the improvements observed and clarify which patients will more likely benefit from learning to play the piano. Keywords: manual skill, cerebral palsy, neurodevelopmental disorder, music, rehabilitation

  10. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study.

    Science.gov (United States)

    Ding, Yun-Hong; Mrizek, Michael; Lai, Qin; Wu, Yimin; Reyes, Raul; Li, Jie; Davis, William W; Ding, Yuchuan

    2006-11-01

    Exercise reduces ischemia and reperfusion injury in rat stroke models. We investigated whether gradual increases in tumor necrosis factor-alpha (TNF-alpha) reported during exercise down-regulates expression of TNF-alpha receptors I and II (TNFRI and II) in stroke, leading to reduced brain damage. Adult male Sprague Dawley rats were subjected to 30 minutes of exercise on a treadmill each day for 3 weeks. Then, stroke was induced by a 2-hour middle cerebral artery (MCA) occlusion using an intra-luminal filament. Expressions of TNFRI and II mRNA in the brain were detected using a real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Protein expressions of TNFRI and II were determined by enzyme-linked immunoabsorbant assay (ELISA) in serum and brain homogenates. Spatial distribution of TNF-alpha receptors in brain regions was determined with immunocytochemistry. In human umbilical vein endothelial cells (HUVEC), we addressed the causal effect of TNF-alpha pretreatment on TNF I and II expression using ELISA and real-time PCR. In exercised rats after stroke, brain infarct was significantly (p<0.01) reduced in the entire MCA supplied regions, associated with a mild expression of TNFRI and II mRNA and protein. The TNF-alpha receptors were restricted to the ischemic core. In contrast, a robust expression of TNFRI and II molecules was found in non-exercised rats subjected to similar ischemia/reperfusion insults. An in vitro study revealed a causal link between TNF-alpha pretreatment and reduced cellular expression of TNF-alpha receptors under hypoxic/reoxygenated conditions. Our results suggest that reduced-brain damage in ischemic rats after exercise preconditioning may be attributable to the reduced expression of TNF-alpha receptors. Chronically increased TNF-alpha expression was also found to reduce TNFI and II responding to acute ischemia/reperfusion insult.

  11. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice.

    Science.gov (United States)

    Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui

    2016-11-09

    Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.

  12. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Jones, H M; Hitchcock, R; Adams, N; Thompson, R J [Addenbrooke' s Hospital, Cambridge (UK)

    1980-09-20

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 ..mu..g/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients.

  13. Radioimmunoassay of serum creatine kinase BB as index of brain damage after head injury

    International Nuclear Information System (INIS)

    Phillips, J.P.; Jones, H.M.; Hitchcock, R.; Adams, N.; Thompson, R.J.

    1980-01-01

    Brain-type creatine kinase isoenzyme (CK-BB) was measured by radioimmunoassay in the serum of 54 patients with head injuries. CK-BB was not detectable in 476 out of 1006 controls, the remaining 530 normal samples containing a mean of 1.5 +- SDO.75 μg/l. The mean CK-BB concentrations in patients with mild, moderate, and fatal head injuries were all significantly higher than the control value (p<0.01 in each instance). Patients with serious head injury had serum concentrations many times the normal value, in two cases within 30 minutes after impact. Fatally injured patients continued to have high serum concentrations several days after injury. In less serious cases values approached normal within two or three days. Every patient with evidence of cerebral laceration, bruising, or swelling had a serum CK-BB concentration above normal. Raised concentrations were found in 14 out of 22 patients with concussion only. Thus the serum CK-BB concentration appears to be a sensitive index of brain damage and may prove useful in the management and follow-up of head-injured patients. (author)

  14. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M. [Aachen University, Department of Neurosurgery, Aachen (Germany); Krings, T. [Aachen University, Department of Neuroradiology, Aachen (Germany); Sellhaus, B. [Aachen University, Department of Neuropathology, Aachen (Germany)

    2005-10-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0{+-}3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8{+-}41.5 to 693.8{+-}72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  15. Technical pitfalls in a porcine brain retraction model. The impact of brain spatula on the retracted brain tissue in a porcine model: a feasibility study and its technical pitfalls

    International Nuclear Information System (INIS)

    Thiex, R.; Hans, F.J.; Gilsbach, J.M.; Krings, T.; Sellhaus, B.

    2005-01-01

    We describe technical pitfalls of a porcine brain injury model for identifying primary and secondary pathological sequelae following brain retraction by brain spatula. In 16 anaesthetised male pigs, the right frontal brain was retracted in the interhemispheric fissure by a brain spatulum with varying pressures applied by the gravitational force of weights from 10 to 70 g for a duration of 30 min. The retracted brain tissue was monitored for changes in intracranial pressure and perfusion of the cortex using a Laser Doppler Perfusion Imager (MoorLDI). To evaluate the extent of oedema and cortical contusions, MRI was performed 30 min and 72 h after brain retraction. Following the MR scan, the retracted brain areas were histopathologically assessed using H and E and Fluoro-Jade B staining for neuronal damage. Sinus occlusion occurred in four animals, resulting in bilateral cortical contusions and extensive brain oedema. Retracting the brain with weights of 70 g (n=4) caused extensive oedema on FLAIR images that correlated clinically with a hemiparesis in three animals. Morphologically, an increased number of Fluoro-Jade B-positive neurons were found. A sequential decrease in weights prevented functional deficits in animals. A retraction pressure applied by 10-g weights (n=7) caused a mean rise in intracranial pressure to 4.0±3.1 mm Hg, and a decrement in mean cortical perfusion from 740.8±41.5 to 693.8±72.4 PU/cm2, (P<0.24). A meticulous dissection of the interhemispheric fissure and a reduction of weights to 10 g were found to be mandatory to study the cortical impact caused by brain spatula reproducibly. (orig.)

  16. {sup 99m}Tc-HMPAO Brain SPECT in Seizure Disorder: Comparison Brain SPECT, MRI / CT and EEG

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyung In [Kyunghee University Hospital, Seoul (Korea, Republic of); Im, Ju Hyuk; Choi, Chang Woon; Lee, Dong Soo; Chung, June Key; No, Jae Kyu; Lee, Myung Chul; Koh, Chang Soon [Seoul National University Hospital, Seoul (Korea, Republic of)

    1994-03-15

    We studied 115 patients with seizure who had been performed brain SPECT brain MRI of CT and EEG. To evaluate the pattern of brain SPECT in seizure patients 28 of them had secondary epilepsies, 87 had primary epilepsies. In primary epilepsies, 42 were generalized seizure and 45 were partial seizure. The causes of secondary epilepsies were congenital malformation, cerebromalacia, cerebral infarction ultiple sclerosis, AV-malformation. granuloma and etc, in order. In 28 secondary epilepsies, 25 of them, brain SPECT lesions was concordant with MRI or CT lesions. 3 were disconcordant. The brain SPECT findings of generalized seizure were normal in 22 patients, diffuse irregular decreased perfusion in 8, decreased in frontal cortex in 4. temporal in 5 and frontotemporal in 3. In 45 partial seizure, 19 brain SPECT were concordant with EEG (42.4%).

  17. Intra-individual, randomised comparison of the MRI contrast agents gadobutrol versus gadoteridol in patients with primary and secondary brain tumours, evaluated in a blinded read

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, M. [Klinikum Luenen St. Marien-Hospital, Department of Diagnostic and Interventional Radiology and Neuroradiology, Luenen (Germany); Schulte-Altedorneburg, G. [Staedtisches Klinikum Muenchen Harlaching, Department of Diagnostic and Interventional Radiology, Neuroradiology and Nuclear Medicine, Muenchen (Germany); Piontek, M.; Heuser, L. [Universitaetsklinikum Knappschaftskrankenhaus GmbH, Department of Diagnostic and Interventional Radiology, Neuroradiology and Nuclear Medicine, Bochum (Germany); Hentsch, A. [Radiologisches Institut Hohenzollernstrasse, Koblenz (Germany); Spangenberg, P. [Universitaetsklinikum Knappschaftskrankenhaus GmbH, Department of Neurosurgery, Bochum (Germany); Schwenke, C. [SCO:SSiS, Berlin (Germany); Harders, A. [Universitaetsklinikum Knappschaftskrankenhaus GmbH, Department of Neurosurgery Knappschaftskrankenhaus, Bochum (Germany)

    2013-12-15

    To prove that 1.0 M gadobutrol provides superior contrast enhancement and MRI image characteristics of primary and secondary brain tumours compared with 0.5 M gadoteridol, thereby providing superior diagnostic information. Brain MRI was performed in two separate examinations in patients scheduled for neurosurgery. Independent injections of 1.0 M gadobutrol and 0.5 M gadoteridol at doses of 0.1 mmol Gd/kg body weight were administered per patient in randomised order. Evaluation was performed in an off-site blinded read. Fifty-one patients in the full analysis set (FAS) were eligible for efficacy analysis and 44 for the per-protocol analysis. For the primary efficacy variable ''preference in contrast enhancement for one contrast agent or the other'', the rate of ''gadobutrol preferred'' was estimated at 0.73 (95 % confidence interval 0.61; 0.83), showing significant superiority of gadobutrol over gadoteridol. Calculated lesion-to-brain contrast and the results of all qualitative secondary efficacy variables were also in favour of gadobutrol. Keeping a sufficient time delay after contrast application proved to be essential to get optimal image quality. Compared with 0.5 M gadoteridol, 1.0 M gadobutrol was proven to have significantly superior contrast enhancement characteristics in a routine MRI protocol of primary and secondary brain tumours. (orig.)

  18. The relationship between emotion regulation capacity, heart rate variability, and quality of life in individuals with alcohol-related brain damage

    Directory of Open Access Journals (Sweden)

    Steinmetz JP

    2016-08-01

    Full Text Available Jean-Paul Steinmetz,1,2 Claus Vögele,3,4 Christiane Theisen-Flies,5 Carine Federspiel,1,2 Stefan Sütterlin6,7 1Department of Research and Development, ZithaSenior, 2Centre for Memory and Mobility, ZithaSenior, 3Institute for Health and Behaviour, Integrative Research Unit on Social and Individual Development (INSIDE, University of Luxembourg, Luxembourg; 4Research Group Health Psychology, University of Leuven, Leuven, Belgium; 5Home St Joseph, ZithaSenior, Luxembourg; 6Department of Psychology, Lillehammer University College, Lillehammer, 7Division of Surgery and Clinical Neuroscience, Department of Psychosomatic Medicine, Oslo University Hospital – Rikshospitalet, Oslo, Norway Abstract: The reliable measurement of quality of life (QoL presents a challenge in individuals with alcohol-related brain damage. This study investigated vagally mediated heart rate variability (vmHRV as a physiological predictor of QoL. Self- and proxy ratings of QoL and dysexecutive symptoms were collected once, while vmHRV was repeatedly assessed over a 3-week period at weekly intervals in a sample of nine alcohol-related brain damaged patients. We provide robustness checks, bootstrapped correlations with confidence intervals, and standard errors for mean scores. We observed low to very low heart rate variability scores in our patients in comparison to norm values found in healthy populations. Proxy ratings of the QoL scale “subjective physical and mental performance” and everyday executive dysfunctions were strongly related to vmHRV. Better proxy-rated QoL and fewer dysexecutive symptoms were observed in those patients with higher vmHRV. Overall, patients showed low parasympathetic activation favoring the occurrence of dysfunctional emotion regulation strategies. Keywords: heart rate variability, emotion regulation, alcohol-related brain damage, quality of life

  19. Inhibitory Effect on Cerebral Inflammatory Response following Traumatic Brain Injury in Rats: A Potential Neuroprotective Mechanism of N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2008-01-01

    Full Text Available Although N-acetylcysteine (NAC has been shown to be neuroprotective for traumatic brain injury (TBI, the mechanisms for this beneficial effect are still poorly understood. Cerebral inflammation plays an important role in the pathogenesis of secondary brain injury after TBI. However, it has not been investigated whether NAC modulates TBI-induced cerebral inflammatory response. In this work, we investigated the effect of NAC administration on cortical expressions of nuclear factor kappa B (NF-κB and inflammatory proteins such as interleukin-1β (IL-1β, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and intercellular adhesion molecule-1 (ICAM-1 after TBI. As a result, we found that NF-κB, proinflammatory cytokines, and ICAM-1 were increased in all injured animals. In animals given NAC post-TBI, NF-κB, IL-1β, TNF-α, and ICAM-1 were decreased in comparison to vehicle-treated animals. Measures of IL-6 showed no change after NAC treatment. NAC administration reduced brain edema, BBB permeability, and apoptotic index in the injured brain. The results suggest that post-TBI NAC administration may attenuate inflammatory response in the injured rat brain, and this may be one mechanism by which NAC ameliorates secondary brain damage following TBI.

  20. Duration and numerical estimation in right brain-damaged patients with and without neglect: Lack of support for a mental time line.

    Science.gov (United States)

    Masson, Nicolas; Pesenti, Mauro; Dormal, Valérie

    2016-08-01

    Previous studies have shown that left neglect patients are impaired when they have to orient their attention leftward relative to a standard in numerical comparison tasks. This finding has been accounted for by the idea that numerical magnitudes are represented along a spatial continuum oriented from left to right with small magnitudes on the left and large magnitudes on the right. Similarly, it has been proposed that duration could be represented along a mental time line that shares the properties of the number continuum. By comparing directly duration and numerosity processing, this study investigates whether or not the performance of neglect patients supports the hypothesis of a mental time line. Twenty-two right brain-damaged patients (11 with and 11 without left neglect), as well as 11 age-matched healthy controls, had to judge whether a single dot presented visually lasted shorter or longer than 500 ms and whether a sequence of flashed dots was smaller or larger than 5. Digit spans were also assessed to measure verbal working memory capacities. In duration comparison, no spatial-duration bias was found in neglect patients. Moreover, a significant correlation between verbal working memory and duration performance was observed in right brain-damaged patients, irrespective of the presence or absence of neglect. In numerical comparison, only neglect patients showed an enhanced distance effect for numerical magnitude smaller than the standard. These results do not support the hypothesis of the existence of a mental continuum oriented from left to right for duration. We discuss an alternative account to explain the duration impairment observed in right brain-damaged patients. © 2015 The British Psychological Society.

  1. Effect of hyperbaric oxygenation on mitochondrial function of neuronal cells in the cortex of neonatal rats after hypoxic-ischemic brain damage

    Directory of Open Access Journals (Sweden)

    L. Yang

    2016-01-01

    Full Text Available The timing and mechanisms of protection by hyperbaric oxygenation (HBO in hypoxic-ischemic brain damage (HIBD have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.

  2. Brain-Heart Interaction: Cardiac Complications After Stroke.

    Science.gov (United States)

    Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli

    2017-08-04

    Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.

  3. Event-related potentials and secondary task performance during simulated driving.

    Science.gov (United States)

    Wester, A E; Böcker, K B E; Volkerts, E R; Verster, J C; Kenemans, J L

    2008-01-01

    Inattention and distraction account for a substantial number of traffic accidents. Therefore, we examined the impact of secondary task performance (an auditory oddball task) on a primary driving task (lane keeping). Twenty healthy participants performed two 20-min tests in the Divided Attention Steering Simulator (DASS). The visual secondary task of the DASS was replaced by an auditory oddball task to allow recording of brain activity. The driving task and the secondary (distracting) oddball task were presented in isolation and simultaneously, to assess their mutual interference. In addition to performance measures (lane keeping in the primary driving task and reaction speed in the secondary oddball task), brain activity, i.e. event-related potentials (ERPs), was recorded. Performance parameters on the driving test and the secondary oddball task did not differ between performance in isolation and simultaneous performance. However, when both tasks were performed simultaneously, reaction time variability increased in the secondary oddball task. Analysis of brain activity indicated that ERP amplitude (P3a amplitude) related to the secondary task, was significantly reduced when the task was performed simultaneously with the driving test. This study shows that when performing a simple secondary task during driving, performance of the driving task and this secondary task are both unaffected. However, analysis of brain activity shows reduced cortical processing of irrelevant, potentially distracting stimuli from the secondary task during driving.

  4. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  5. Narrative discourse in children with early focal brain injury.

    Science.gov (United States)

    Reilly, J S; Bates, E A; Marchman, V A

    1998-02-15

    Children with early brain damage, unlike adult stroke victims, often go on to develop nearly normal language. However, the route and extent of their linguistic development are still unclear, as is the relationship between lesion site and patterns of delay and recovery. Here we address these questions by examining narratives from children with early brain damage. Thirty children (ages 3:7-10:10) with pre- or perinatal unilateral focal brain damage and their matched controls participated in a storytelling task. Analyses focused on linguistic proficiency and narrative competence. Overall, children with brain damage scored significantly lower than their age-matched controls on both linguistic (morphological and syntactic) indices and those targeting broader narrative qualities. Rather than indicating that children with brain damage fully catch up, these data suggest that deficits in linguistic abilities reassert themselves as children face new linguistic challenges. Interestingly, after age 5, site of lesion does not appear to be a significant factor and the delays we have witnessed do not map onto the lesion profiles observed in adults with analogous brain injuries.

  6. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    Science.gov (United States)

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations

  7. Effects of hyperbaric oxygen and nerve growth factor on the long-term neural behavior of neonatal rats with hypoxic ischemic brain damage.

    Science.gov (United States)

    Wei, Lixia; Ren, Qing; Zhang, Yongjun; Wang, Jiwen

    2017-04-01

    To evaluate the effects of HBO (Hyperbaric oxygen) and NGF (Nerve growth factor) on the long-term neural behavior of neonatal rats with HIBD (Neonatal hypoxic ischemic brain damage). The HIBD model was produced by ligating the right common carotid artery of 7 days old SD (Sprague-Dawley) rats followed by 8% O2 + 92% N2 for 2h. Totally 40 rats were randomly divided into 5 groups including sham-operated group, HIBD control group, HBO treated group, NGF treated group and NGF + HBO treated group. The learning and memory ability of these rats was evaluated by Morris water maze at 30 days after birth, and sensory motor function was assessed by experiments of foot error and limb placement at 42 days after birth. The escape latency of HBO treated group, NGF treated group and NGF + HBO treated group was shorter than that of HIBD control group (pmemory ability and sensory motor function in neonatal rats after hypoxic ischemic brain damage.

  8. Towards a new analytical approach to the challenges of communication difficulties and aquired brain damage in everyday practices

    DEFF Research Database (Denmark)

    Klemmensen, Charlotte Marie Bisgaard

    part of where the participants mainly are persons with acquired brain damage and occupational therapists. I will discuss how a new approach to sense-making practice may be designed in order to study more closely a participants’ perspective in unique situations as they arise. I am interested......The approach of language psychology is grounded in the persons communicating; where as the approach of discursive psychology is grounded in social interaction. There is a lack of scientific knowledge on the social/communicative/interactional challenges of communication difficulties and brain injury...... in everyday life. A sense-making-in-practice approach may help form a new discourse. How may a new analytical approach be designed? May ‘communication’ be described as ‘participation abilities’, using the framework from language psychology combined with discursive psychology and the conventions...

  9. Hydrocephalus secondary to subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Koga, Nobunori; Nakamura, Saburo; Kushi, Hidehiko; Yamamoto, Takamitsu; Tsubokawa, Takashi; Moriyasu, Nobuo

    1982-01-01

    The relationship between the extension and severity of subarachnoid hemorrhage, as demonstrated by computed tomography (CT), and hydrocephalus secondary to subarachnoid hemorrhage was studied. In 94 cases with subarachnoid hemorrhage, as analyzed by CT scan performed within 7 days after onset, high-density areas in the subarachnoid space were recognized in 61 cases (64%) and secondary hydrocephalus occurred in 22 cases (23%). 17 cases died within 2 weeks, before the occurrence of the hydrocephalus. The CT findings of subarachnoid hemorrhage was classified into 5 types, according to its severity and extension; especially the degree of high density in the basal cistern and/or cisterns around the brain stem was remarked. Secondary hydrocephalus after subarachnoid hemorrhage was observed in 90% of the cases; they had a density higher than a CT number of 60 in the basal cistern and/or cisterns around the brain stem (Type V). The mean interval between the onset of subarachnoid hemorrhage and the appearance of hydrocephalus was 20.6 days. We conclude that a significantly high density of extravasated blood in the subarachnoid space, especially in the basal cistern and/or the cisterns around the brain stem, can be predictive of secondary hydrocephalus after subarachnoid hemorrhage. (author)

  10. Assessment of Radiation-Attenuated Vaccine or Thyme Oil Treatment on Controlling DNA Damage and Nitric Oxide Synthesis in Brain of Rat Infected with Toxocara canis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.; Abd Raboo, M.A.

    2016-01-01

    Toxocara canis is a worldwide zoonotic roundworm that infects a number of hosts including humans. It exhibits marked affinity to the nervous tissues. This study deals with the changes in the brain of Toxocara canis infected rats regarding parasitological, nitric oxide (NO) level and DNA damage compared to the effect of vaccination with gamma radiation-attenuated embryonated egg or thyme oil treatment. Eighty rats were classified into four groups (twenty each): GI (normal control); GII infected with 2500 T. canis infective eggs/ml/rat (infected control); GIII vaccinated with 800 Gy gamma-attenuated embryonated eggs (vaccinated group) and GIV infected with 2500 T. canis eggs and treated with thyme oil (thyme treated group). At the 14th day post-infection, ten rats from each group were sacrificed and the remaining were re-infected (challenged) with the same number of eggs. At the 14th days post challenge, brain tissues were taken for larval recovery, nitric oxide level evaluation and DNA damage using fragmentation and comet assay. The results exhibited a significant decrease in larval count and nitric oxide level with less damage in brain cells in thyme treated and gamma radiation-attenuated vaccinated groups compared to control infected group. It is also, concluded that vaccination using γ- rays is more effective in protection compared to using thyme oil.

  11. Environmental Subconcussive Injury, Axonal Injury, and Chronic Traumatic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Wendy A. Morley

    2018-03-01

    Full Text Available Brain injury occurs in two phases: the initial injury itself and a secondary cascade of precise immune-based neurochemical events. The secondary phase is typically functional in nature and characterized by delayed axonal injury with more axonal disconnections occurring than in the initial phase. Axonal injury occurs across the spectrum of disease severity, with subconcussive injury, especially when repetitive, now considered capable of producing significant neurological damage consistent with axonal injury seen in clinically evident concussion, despite no observable symptoms. This review is the first to introduce the concept of environmental subconcussive injury (ESCI and sets out how secondary brain damage from ESCI once past the juncture of microglial activation appears to follow the same neuron-damaging pathway as secondary brain damage from conventional brain injury. The immune response associated with ESCI is strikingly similar to that mounted after conventional concussion. Specifically, microglial activation is followed closely by glutamate and calcium flux, excitotoxicity, reactive oxygen species and reactive nitrogen species (RNS generation, lipid peroxidation, and mitochondrial dysfunction and energy crisis. ESCI damage also occurs in two phases, with the primary damage coming from microbiome injury (due to microbiome-altering events and secondary damage (axonal injury from progressive secondary neurochemical events. The concept of ESCI and the underlying mechanisms have profound implications for the understanding of chronic traumatic encephalopathy (CTE etiology because it has previously been suggested that repetitive axonal injury may be the primary CTE pathogenesis in susceptible individuals and it is best correlated with lifetime brain trauma load. Taken together, it appears that susceptibility to brain injury and downstream neurodegenerative diseases, such as CTE, can be conceptualized as a continuum of brain resilience. At one end

  12. Perinatal brain damage : The term infant

    NARCIS (Netherlands)

    Hagberg, Henrik; David Edwards, A.; Groenendaal, Floris

    2016-01-01

    Perinatal brain injury at term is common and often manifests with neonatal encephalopathy including seizures. The most common aetiologies are hypoxic–ischaemic encephalopathy, intracranial haemorrhage and neonatal stroke. Besides clinical and biochemical assessment the diagnostic evaluation rely

  13. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  14. Blood-brain barrier dysfunction following traumatic brain injury: correlation of K(trans) (DCE-MRI) and SUVR (99mTc-DTPA SPECT) but not serum S100B.

    Science.gov (United States)

    Winter, Craig; Bell, Christopher; Whyte, Timothy; Cardinal, John; Macfarlane, David; Rose, Stephen

    2015-07-01

    Damage to the blood-brain barrier (BBB) is an important secondary mechanism that occurs following traumatic brain injury (TBI) and may provide a potential therapeutic target to improve patient outcome. For such a progress to be realised, an accurate assessment of BBB compromise needs to be established. Fourteen patients with TBI were prospectively recruited. Post-traumatic BBB dysfunction was assessed using dynamic contrast-enhanced MRI (DCE-MRI), single-photon emission computerised tomography (SPECT) and serum S100B levels. A statistically significant correlation between standardised uptake value ratio (SUVR) calculated from 99mTc-DTPA SPECT and K(trans) (a volume transfer constant) from DCE-MRI was found for those eight patients who had concurrent scans. The positive correlation persisted when the data were corrected for patient age, number of days following trauma and both parameters combined. We found no statistically significant correlation between either of the imaging modalities and concurrent serum S100B levels. The correlation of SPECT with DCE-MRI suggests that either scan may be used to assess post-traumatic BBB damage. We could not support serum S100B to be an accurate measure of BBB damage when sampled a number of days following injury but the small number of patients, the heterogeneity in TBI patients and the delay following injury makes any firm conclusions regarding S100B and BBB difficult.

  15. Study habits among Nigerian secondary school students with brain fag syndrome

    Directory of Open Access Journals (Sweden)

    Olufemi Morakinyo

    2010-01-01

    Full Text Available Brain Fag Syndrome (BFS is a psychiatric disorder associated with study affecting two to four out of every ten African students. One of the consequences of this illness is early foreclosure of education in affected students. Etiological factors such as nervous predisposition, motivation for achievement, and psycho-stimulant use have been found associated with it. However, the contributions of study habits to the pathogenesis of this study-related illness deserve more attention than has been given. We carried out this cross-sectional study to ascertain the types of study habits associated with BFS among a sample of senior secondary school students in Ile-Ife, Nigeria. Five hundred students from six schools in Ile-Ife were selected using a stratified random sampling technique. The selected students completed the Socio-demographic Data Schedule, the Brain Fag Syndrome Scale, and Bakare’s Study Habit Inventory. The prevalence of BFS was 40.2% (201. There were no significant socio-demographic variables identifying BFS students apart from those without BFS. The significant measures of study habits that predicted BFS were homework and assignments, examinations, and written work. Those with BFS had 3.58 times the odds to perform poorly on homework and assignments, 3.27 times the odds to perform poorly on examinations, and 1.01 times the odds to perform poorly on written work compared to those without BFS. We concluded that the results of this study suggest that homework and assignments, examinations, and written work were significant study habit variables associated with BFS.

  16. Isoflurane Damages the Developing Brain of Mice and Induces Subsequent Learning and Memory Deficits through FASL-FAS Signaling

    Directory of Open Access Journals (Sweden)

    Xiuwen Yi

    2015-01-01

    Full Text Available Background. Isoflurane disrupts brain development of neonatal mice, but its mechanism is unclear. We explored whether isoflurane damaged developing hippocampi through FASL-FAS signaling pathway, which is a well-known pathway of apoptosis. Method. Wild type and FAS- or FASL-gene-knockout mice aged 7 days were exposed to either isoflurane or pure oxygen. We used western blotting to study expressions of caspase-3, FAS (CD95, and FAS ligand (FASL or CD95L proteins, TUNEL staining to count apoptotic cells in hippocampus, and Morris water maze (MWM to evaluate learning and memory. Result. Isoflurane increased expression of FAS and FASL proteins in wild type mice. Compared to isoflurane-treated FAS- and FASL-knockout mice, isoflurane-treated wild type mice had higher expression of caspase-3 and more TUNEL-positive hippocampal cells. Expression of caspase-3 in wild isoflurane group, wild control group, FAS/FASL-gene-knockout control group, and FAS/FASL-gene-knockout isoflurane group showed FAS or FASL gene knockout might attenuate increase of caspase-3 caused by isoflurane. MWM showed isoflurane treatment of wild type mice significantly prolonged escape latency and reduced platform crossing times compared with gene-knockout isoflurane-treated groups. Conclusion. Isoflurane induces apoptosis in developing hippocampi of wild type mice but not in FAS- and FASL-knockout mice and damages brain development through FASL-FAS signaling.

  17. Effect of brain-based learning strategy on students achievement in senior secondary school mathematics in Oyo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Samuel Adejare Awolola

    2011-06-01

    Full Text Available One dominant factor on how well students learn mathematics is the quality of teaching. Studies have shown that typical mathematics classroom is frosted with teaching technique that centered on explain – practice – memorize. There is a paucity particularly in Nigeria. This study therefore, investigated the effect of brain-based learning strategy on the achievement regarding the learning of Mathematics of 522 Senior Secondary School Students in Oyo State, Nigeria. The moderator effect of cognitive style was also examined on independent variable (instructional strategy and dependent variable (mathematics achievement. The study adopted a pretest-posttest non-equivalent control group design in a quasi – experimental setting. The ANCOVA statistic was used to analyzed the data collected fro the study. The result revealed significant main effect of treatment, (F(1,510 = 75.0; P < 0.05, cognitive style (F(1,510 = 23.78; P < 0.05 and significant interaction effect of treatment and cognitive style (F(1,510 = 5.027; P < 0.05 on achievement in mathematics. The result showed that brain-based instructional strategy enhanced students’ achievement in mathematics more than the conventional lecture method. It is therefore recommended that Teachers of mathematics should adopt the strategy in teaching mathematics in senior secondary school.

  18. Fetal antigen 2 in primary and secondary brain tumors

    DEFF Research Database (Denmark)

    Rasmussen, H Boje; Teisner, B; Schrøder, H D

    1991-01-01

    Immunohistochemical deposition and distribution of fetal antigen 2 (FA2) was examined in normal brain tissue and in primary and metastatic tumors of the brain. In normal brain tissue FA2 was exclusively found linearly around the vessels, along pia and in arachnoidea. A similar localization was seen...

  19. ECT: its brain enabling effects. A review of electroconvulsive therapy-induced structural brain plasticity

    NARCIS (Netherlands)

    Bouckaert, F.; Sienaert, P.; Obbels, J.; Dols, A.; Vandenbulcke, M.; Stek, M.L.; Bolwig, T.

    2014-01-01

    BACKGROUND: Since the past 2 decades, new evidence for brain plasticity has caused a shift in both preclinical and clinical ECT research from falsifying the "brain damage hypothesis" toward exploring ECT's enabling brain (neuro)plasticity effects. METHODS: By reviewing the available animal and human

  20. Beam damage of self-assembled monolayers

    International Nuclear Information System (INIS)

    Rieke, P.C.; Baer, D.R.; Fryxell, G.E.; Engelhard, M.H.; Porter, M.S.

    1993-01-01

    X-ray and electron beam damage studies were performed on Br-terminated and methyl-terminated alkylsilane self-assembled monolayers. X-ray beam initiated damage was primarily limited to removal of the labile Br group and did not significantly damage the hydrocarbon chain. Some of the x-ray beam damage could be attributed to low-energy electrons emitted by the non-monochromatic source, but further damage was attributed to secondary electrons produced in the sample by x-ray exposure. Electron beams caused significant damage to the hydrocarbon chains. Maximum damage occurred with a beam energy of 600 eV and a dosage of 6x10 -3 C/cm 2

  1. Parkinson's disease brain mitochondria have impaired respirasome assembly, age-related increases in distribution of oxidative damage to mtDNA and no differences in heteroplasmic mtDNA mutation abundance

    Directory of Open Access Journals (Sweden)

    Keeney Paula M

    2009-09-01

    Full Text Available Abstract Background Sporadic Parkinson's disease (sPD is a nervous system-wide disease that presents with a bradykinetic movement disorder and is frequently complicated by depression and cognitive impairment. sPD likely has multiple interacting causes that include increased oxidative stress damage to mitochondrial components and reduced mitochondrial bioenergetic capacity. We analyzed mitochondria from postmortem sPD and CTL brains for evidence of oxidative damage to mitochondrial DNA (mtDNA, heteroplasmic mtDNA point mutations and levels of electron transport chain proteins. We sought to determine if sPD brains possess any mtDNA genotype-respiratory phenotype relationships. Results Treatment of sPD brain mtDNA with the mitochondrial base-excision repair enzyme 8-oxyguanosine glycosylase-1 (hOGG1 inhibited, in an age-dependent manner, qPCR amplification of overlapping ~2 kbase products; amplification of CTL brain mtDNA showed moderate sensitivity to hOGG1 not dependent on donor age. hOGG1 mRNA expression was not different between sPD and CTL brains. Heteroplasmy analysis of brain mtDNA using Surveyor nuclease® showed asymmetric distributions and levels of heteroplasmic mutations across mtDNA but no patterns that statistically distinguished sPD from CTL. sPD brain mitochondria displayed reductions of nine respirasome proteins (respiratory complexes I-V. Reduced levels of sPD brain mitochondrial complex II, III and V, but not complex I or IV proteins, correlated closely with rates of NADH-driven electron flow. mtDNA levels and PGC-1α expression did not differ between sPD and CTL brains. Conclusion PD brain mitochondria have reduced mitochondrial respiratory protein levels in complexes I-V, implying a generalized defect in respirasome assembly. These deficiencies do not appear to arise from altered point mutational burden in mtDNA or reduction of nuclear signaling for mitochondrial biogenesis, implying downstream etiologies. The origin of age

  2. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina

    2017-10-26

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  3. Dynamics and heterogeneity of brain damage in multiple sclerosis

    KAUST Repository

    Kotelnikova, Ekaterina; Kiani, Narsis A.; Abad, Elena; Martinez-Lapiscina, Elena H.; Andorra, Magi; Zubizarreta, Irati; Pulido-Valdeolivas, Irene; Pertsovskaya, Inna; Alexopoulos, Leonidas G.; Olsson, Tomas; Martin, Roland; Paul, Friedemann; Tegner, Jesper; Garcia-Ojalvo, Jordi; Villoslada, Pablo

    2017-01-01

    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the

  4. Studies on cerebral protection of digoxin against hypoxic-ischemic brain damage in neonatal rats.

    Science.gov (United States)

    Peng, Kaiwei; Tan, Danfeng; He, Miao; Guo, Dandan; Huang, Juan; Wang, Xia; Liu, Chentao; Zheng, Xiangrong

    2016-08-17

    Hypoxic-ischemic brain damage (HIBD) is a major cause of neonatal acute deaths and chronic nervous system damage. Our present study was designed to investigate the possible neuroprotective effect of digoxin-induced pharmacological preconditioning after hypoxia-ischemia and underlying mechanisms. Neonatal rats were assigned randomly to control, HIBD, or HIBD+digoxin groups. Pharmacological preconditioning was induced by administration of digoxin 72 h before inducing HIBD by carotid occlusion+hypoxia. Behavioral assays, and neuropathological and apoptotic assessments were performed to examine the effects; the expression of Na/K ATPase was also assessed. Rats in the HIBD group showed deficiencies on the T-maze, radial water maze, and postural reflex tests, whereas the HIBD+digoxin group showed significant improvements on all behavioral tests. The rats treated with digoxin showed recovery of pathological conditions, increased number of neural cells and proliferative cells, and decreased number of apoptotic cells. Meanwhile, an increased expression level of Na/K ATPase was observed after digoxin preconditioning treatment. The preconditioning treatment of digoxin contributed toward an improved functional recovery and exerted a marked neuroprotective effect including promotion of cell proliferation and reduction of apoptosis after HIBD, and the neuroprotective action was likely associated with increased expression of Na/K ATPase.

  5. Irreversible brain damage caused by methamphetamine

    Directory of Open Access Journals (Sweden)

    Sebastian Moeller

    2016-03-01

    Full Text Available Methamphetamine is an addictive scene substance usage of which is increasing rapidly. While methamphetamine often causes neuropsychiatric symptoms like anxiety, psychosis and hallucinations, reports of structural ongoing cerebral alterations are rare. We here report a case of this kind of damage caused through methamphetamine use.

  6. 99mTc HM-PAO brain perfusion SPECT in brain death

    International Nuclear Information System (INIS)

    Bonetti, M.G.; Ciritella, P.; Valle, G.; Perrone, E.

    1995-01-01

    We have easily carried out and interpreted 99m Tc HM-PAO SPECT in a consecutive series of 40 comatose patients with brain damage, without discontinuing therapy. Brain death was diagnosed in 7 patients, by recognising absence of brain perfusion, as shown by no intracranial radionuclide uptake. In patients in whom perfusion was seen on brain scans, HM-PAO SPECT improved assessment of the extent of injury, which in general was larger than suggested by CT. (orig.)

  7. MRI of fetal acquired brain lesions

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter C.; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-01-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  8. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  9. Non-invasive electrical brain stimulation: from acute to late-stage treatment of central nervous system damage

    Directory of Open Access Journals (Sweden)

    Petra Henrich-Noack

    2017-01-01

    Full Text Available Non-invasive brain current stimulation (NIBS is a promising and versatile tool for inducing neuroplasticity, protection and functional rehabilitation of damaged neuronal systems. It is technically simple, requires no surgery, and has significant beneficial effects. However, there are various technical approaches for NIBS which influence neuronal networks in significantly different ways. Transcranial direct current stimulation (tDCS, alternating current stimulation (ACS and repetitive transcranial magnetic stimulation (rTMS all have been applied to modulate brain activity in animal experiments under normal and pathological conditions. Also clinical trials have shown that tDCS, rTMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms. The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task, such as current type and strength, timing, distribution of current densities and electrode position. In this review, we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration, motor rehabilitation and cognitive enhancement.

  10. Nicotinamide mononucleotide inhibits post-ischemic NAD(+) degradation and dramatically ameliorates brain damage following global cerebral ischemia.

    Science.gov (United States)

    Park, Ji H; Long, Aaron; Owens, Katrina; Kristian, Tibor

    2016-11-01

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor for multiple cellular metabolic reactions and has a central role in energy production. Brain ischemia depletes NAD(+) pools leading to bioenergetics failure and cell death. Nicotinamide mononucleotide (NMN) is utilized by the NAD(+) salvage pathway enzyme, nicotinamide adenylyltransferase (Nmnat) to generate NAD(+). Therefore, we examined whether NMN could protect against ischemic brain damage. Mice were subjected to transient forebrain ischemia and treated with NMN or vehicle at the start of reperfusion or 30min after the ischemic insult. At 2, 4, and 24h of recovery, the proteins poly-ADP-ribosylation (PAR), hippocampal NAD(+) levels, and expression levels of NAD(+) salvage pathway enzymes were determined. Furthermore, animal's neurologic outcome and hippocampal CA1 neuronal death was assessed after six days of reperfusion. NMN (62.5mg/kg) dramatically ameliorated the hippocampal CA1 injury and significantly improved the neurological outcome. Additionally, the post-ischemic NMN treatment prevented the increase in PAR formation and NAD(+) catabolism. Since the NMN administration did not affect animal's temperature, blood gases or regional cerebral blood flow during recovery, the protective effect was not a result of altered reperfusion conditions. These data suggest that administration of NMN at a proper dosage has a strong protective effect against ischemic brain injury. Published by Elsevier Inc.

  11. Bisecting or Not Bisecting: This Is the Neglect Question. Line Bisection Performance in the Diagnosis of Neglect in Right Brain-Damaged Patients

    Science.gov (United States)

    Guariglia, Paola; Matano, Alessandro; Piccardi, Laura

    2014-01-01

    In the present study we analysed the bisecting behaviour of 287 chronic right brain-damaged patients by taking into account the presence and severity of extrapersonal and/or personal neglect diagnosed with the hemineglect battery. We also analysed right brain-damaged patients who had (or did not have) neglect according to their line bisection performance. Our results showed that performance of the line bisection task correlates with performance of cancellation tasks, reading and perceptual tasks, but not with the presence of personal neglect. Personal neglect seems to be unrelated to line bisection behaviour. Indeed, patients affected by extrapersonal and personal neglect do not show more severe neglect in line bisection than patients with only extrapersonal neglect. Furthermore, we observed that 20.56% of the patients were considered affected or not by neglect on the line bisection task compared with the other spatial tasks of the hemineglect battery. We conclude that using a battery with multiple tests is the only way to guarantee a reliable diagnosis and effectively plan for rehabilitative training. PMID:24937472

  12. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  13. Diffusion tensor imaging of brain in relapsing neuromyelitis optica

    International Nuclear Information System (INIS)

    Yu Chunshui; Li Kuncheng; Qin Wen; Lin Fuchun; Jiang Tianzi

    2007-01-01

    Objective: To investigate the presence of occult brain tissue damage in patients with relapsing neuromyelitis optica (RNMO) and its possible mechanism by using diffusion tensor imaging (DTI). Methods: DTI scans were performed in 16 patients with RNMO and 16 sex- and age-matched healthy controls. Histogram analysis of mean diffusivity (MD) and fractional anisotropy (FA) was performed in brain tissue (BT), white matter (WM) and gray matter (GM) to detect the presence of occult brain tissue damage in RNMO patients. Region of interest (ROI) analysis of MD and FA was also performed in 6 dedicated regions with or without direct connection with spinal cord or optic nerve to determine the relationship between occult brain tissue damage and the damage of spinal cord and optic nerve. Results Patients with RNMO had a significantly higher average MD of the BT [RNMO (0.95 ± 0.02) x 10 -3 mm 2 /s, controls (0.91 ± 0.03) x 10 -3 mm 2 /s, t=3.940, P -3 mm 2 /s, controls(0.80 ± 0.02) x 10 -3 mm 2 /s, t=3.117, P=0.004] an.d GM [RNMO (1.06 ± 0.04) x 10 -3 mm 2 /s, controls (0.88 ± 0.05) x 10 -3 mm 2 /s, t=4.031, P -3 mm 2 /s, controls (0.81 ± 0.02) x 10 -3 mm 2 /s, t=4.373, P -3 mm 2 /s, controls (1.11 ± 0.10) x 10 -3 mm 2 /s, t=4.260, P -3 mm 2 /s, controls (0.87 ± 0.05) x 10 -3 mm 2 /s, t4.391, P -3 mm 2 /s, controls (0.72 ± O.01) x 10 -3 mm 2 /s, t=4.683, P -3 mm 2 /s, controls (0.82+0.03) x 10-3 mm2/s, t = 4. 619, P -3 mm 2 /s, controls (0.73±0.03) x 10 -3 mm 2 /s, t =2.804, P=0.009 and splenium of corpus callosum: RNMO(0.77 ± 0.05) x 10 -3 mm 2 /s, controls (0.73 ± 0.04) x 10 -3 mm 2 /s, t=2.234, P=0.033] and FA [genu of corpus callosum: RNMO 0.82± 0.03 ,controls 0.82 ± 0.03, t=0.196, P=0.846 and splenium of corpus caltosum: RNMO 0.83±0.03, controls 0.83 ± 0.02, t=0.333, P=0.741] between RNMO patients and controls. Conclusion: RNMO patients have occult brain tissue damage, which might be related to the antegrade and retrograde degeneration secondary to lesions in

  14. Late radiation damage in bone, bone marrow and brain vasculature, with particular emphasis upon fractionation models

    International Nuclear Information System (INIS)

    Pitkaenen, Maunu.

    1986-04-01

    X-ray induced changes in rat and human bone and bone marrow vasculature and in rat brain vasculature were measured as a function of time after irradiation and absorbed dose. The absorbed dose in the organ varied from 5 to 25 Gy for single dose irradiations and from 19 to 58 Gy for fractionated irradiations.The number of fractions varied from 3 to 10 for the rats and from 12 to 25 for the human. Blood flow changes were measured using an ''1''2''5I antipyrine or ''8''6RbCl extraction technique. The red blood cell (RBC) volume was examined by ''5''1Cr labelled red cells. Different fractionation models have been compared. Radiation induced reduction of bone and bone marrow blood flow were both time and dose dependent. Reduced blood flow 3 months after irradiation would seem to be an important factor in the subsequent atrophy of bones. With a single dose of 10 Gy the bone marrow blood flow returned to the control level by 7 months after irradiation. In the irradiated bone the RBC volume was about same as that in the control side but in bone marrow the reduction was from 32 to 59%. The dose levels predicted by the nominal standard dose (NSD) formula produced about the same damage to the rat femur seven months after irradiation when the extraction of ''8''6Rb chloride and the dry weight were concerned as the end points. However, the results suggest that the NSB formula underestimates the late radiation damage in bone marrow when a small number of large fractions are used. In the irradiated brains of the rats the blood flow was on average 20.4% higher compared to that in the control group. There was no significant difference in brain blood flow between different fractionation schemes. The value of 0.42 for the exponent of N corresponds to the average value for central nervous system tolerance in the literature. The model used may be sufficiently accurate for clinical work provided the treatment schemes used do not depart too radically from standard practice

  15. Updating impairments and the failure to explore new hypotheses following right brain damage.

    Science.gov (United States)

    Stöttinger, Elisabeth; Guay, Carolyn Louise; Danckert, James; Anderson, Britt

    2018-06-01

    We have shown recently that damage to the right hemisphere impairs the ability to update mental models when evidence suggests an old model is no longer appropriate. We argue that this deficit is generic in the sense that it crosses multiple cognitive and perceptual domains. Here, we examined the nature of this updating impairment to determine more precisely the underlying mechanisms. We had right (RBD, N = 12) and left brain damaged (LBD, N = 10) patients perform versions of our picture-morphing task in which pictures gradually morph from one object (e.g., shark) to another (e.g., plane). Performance was contrasted against two groups of healthy older controls, one matched on age (HCO-age-matched, N = 9) and another matched on general level of cognitive ability (HCO-cognitively-matched, N = 9). We replicated our earlier findings showing that RBD patients took longer than LBD patients and HCOs to report seeing the second object in a sequence of morphing images. The groups did not differ when exposed to a morphing sequence a second time, or when responding to ambiguous images outside the morphing context. This indicates that RBD patients have little difficulty alternating between known representations or labeling ambiguous images. Instead, the difficulty lies in generating alternate hypotheses for ambiguous information. Lesion overlay analyses, although speculative given the sample size, are consistent with our fMRI work in healthy individuals in implicating the anterior insular cortex as critical for updating mental models.

  16. Functionality predictors in acquired brain damage.

    Science.gov (United States)

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C

    2015-01-01

    Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  17. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    Science.gov (United States)

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  18. Brain and Cognitive-Behavioural Development after Asphyxia at Term Birth

    Science.gov (United States)

    de Haan, Michelle; Wyatt, John S.; Roth, Simon; Vargha-Khadem, Faraneh; Gadian, David; Mishkin, Mortimer

    2006-01-01

    Perinatal asphyxia occurs in approximately 1-6 per 1000 live full-term births. Different patterns of brain damage can result, though the relation of these patterns to long-term cognitive-behavioural outcome remains under investigation. The hippocampus is one brain region that can be damaged (typically not in isolation), and this site of damage has…

  19. Damage and repair of irradiated mammalian brain

    International Nuclear Information System (INIS)

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K.

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as ''vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs

  20. Damage and repair of irradiated mammalian brain

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, K.; Lo, E.; Phillips, M.; Fabrikant, J.; Brennan, K.; Valk, P.; Poljak, A.; Delapaz, R.; Woodruff, K. (Lawrence Berkeley Lab., CA (USA); Stanford Univ., CA (USA). Medical Center; Brookside Hospital, San Pablo, CA (USA))

    1989-07-01

    We have demonstrated that focal charged particle irradiation of the rabbit brain can create well-defined lesions which are observable by nuclear magnetic resonance imaging (NMR) and positron emission tomography (PET) imaging techniques. These are similar, in terms of location and characteristic NMR and PET features, to those that occur in the brain of about 10% of clinical research human subjects, who have been treated for intracranial vascular malformations with stereotactic radiosurgery. These lesions have been described radiologically as vasogenic edema of the deep white matter,'' and the injury is of variable intensity and temporal duration, can recede or progress to serious neurologic sequelae, and persist for a considerable period of time, frequently 18 mon to 3 yr. 8 refs., 6 figs.

  1. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?

    Directory of Open Access Journals (Sweden)

    José Pedro Castro

    2018-04-01

    Full Text Available The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis, cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer’s (AD, Parkinson’s (PD or even Huntington’s (HD diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.

  2. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    Science.gov (United States)

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.

  3. Tributyltin exposure causes brain damage in Sebastiscus marmoratus.

    Science.gov (United States)

    Zhang, Jiliang; Zuo, Zhenghong; Chen, Rong; Chen, Yixin; Wang, Chonggang

    2008-09-01

    Tributyltin (TBT) is a ubiquitous marine environmental contaminant characterized primarily by its reproductive toxicity. However, the neurotoxic effect of TBT has not been extensively described, especially in fishes which have a high number of species in the marine environment. This study was conducted to investigate the neurotoxic effects of TBT at environmental levels (1, 10, and 100ngl(-1)) on female Sebastiscus marmoratus. The results showed that TBT exposure induced apoptosis in brain cells of three regions including the pallial areas of the telencephalon, the granular layer of the optic tectum, and the cerebellum. In addition, the increase of reactive oxygen species and nitric oxide levels, and the decrease of Na+/K+-ATPase activity were found in the brain. The results strongly indicated neurotoxicity of TBT to fishes. According to the regions in which apoptosis was found in the brain, TBT exposure might influence the schooling, sensory and motorial functions of fishes.

  4. Specific diagnosis of brain disease with double isotope brain scanning

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P J; Lotritsch, K H; Hilbrand, E; Meixner, M; Barolin, G; Scholz, H [Landesunfallkrankenhaus, Feldkirch (Austria). Dept. of Nuclear Medicine; Landesnervenkrankenhaus, Feldkirch (Austria). Dept. of Neurology)

    1976-02-01

    25 patients with known cerebral disease (either CVA's or primary or secondary tumours) diagnosed by clinical and angiographic criteria were submitted to a double siotope imaging technique using sup(99m)TcO/sub 4/- and sup(99m)Tc-EHDP. The different biological behaviour of these radiopharmaceuticals has provided specific and differential diagnosis between vascular and neoplastic disease of the brain. sup(99m)Tc-EHDP is shown to be the tracer of choice for the imaging of CVA's and sup(99m)TcO/sub 4/- is confirmed as the tracer of choice for the imaging of primary or secondary tumours in the brain.

  5. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chuang

    2017-04-01

    Full Text Available After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS. Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179 was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1. Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced damage following brain injury.

  6. Diagnosis and treatment of vascular damage in dementia

    NARCIS (Netherlands)

    Biessels, GJ

    2016-01-01

    This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain

  7. Evidence for zolpidem efficacy in brain damage | Clauss | South ...

    African Journals Online (AJOL)

    Previous reports have shown that zolpidem could reverse semi-coma and improve cerebral perfusion after brain injury. Studies in animals have implicated omega 1 GABAergic action as reason for this improvement. Evidence for the efficacy of zolpidem in a wide range of brain pathology is reviewed here and the mechanism ...

  8. Observations of localised dielectric excitations, secondary events and ionisation damage by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Howie, A.

    1988-01-01

    In the scanning transmission electron microscope (STEM) a high intensity /approximately/0.5nm diameter, probe of 100 keV electrons is formed. This can be positioned to collect energy loss spectra from surfaces, interfaces, small spheres or other particles at controlled values of impact parameter or can be scanned across the object (usually a thin film) to produce high resolution images formed from a variety of signals - small angle or large angle (Z contrast) elastic scattering, inelastic scattering (both valence and core losses), secondary electron emission and x-ray or optical photon emission. The high spatial resolution achievable in a variety of simple structures raises many unsolved theoretical problems concerning the generation, propagation and decay of excitations in inhomogeneous media. These range from quite well posed problems in the mathematical physics of dielectric excitation to problems of plasmon propagation and rather more exotic and less well understood problems of radiation damage. 15 refs., 4 figs

  9. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    Science.gov (United States)

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  10. Neuroprotection for Nerve Agent-Induced Brain Damage

    National Research Council Canada - National Science Library

    Newmark, Jonathan; Ballough, Gerald P; Filbert, Margaret G

    2002-01-01

    ... secondary to exposure to nerve agents. Preliminary work in this laboratory has demonstrated proof of concept using a compound not yet approved for clinical use by the US Food and Drug Administration...

  11. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    Science.gov (United States)

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  12. Occipital lobe epilepsy secondary to posterior reversible encephalopathy syndrome (PRES) during a post-partum eclampsia in Mali (West Africa).

    Science.gov (United States)

    Youssoufa, Maïga; Callixte, Kuate Tegueu; Christian, Napon

    2013-08-13

    Eclampsia is known to cause posterior reversible encephalopathy syndrome (PRES) that is often associated with an extensive neurovascular damage affecting preferably posterior regions, often leading to reversible cortical blindness. In spite the magnitude of these lesions, post eclamptic symptomatic epilepsy is rare. We therefore report a case of symptomatic occipital lobe epilepsy secondary to PRES. A 39-year-old female right handed teacher who presented with headache of progressive onset, phosphenes, rapid decline of visual acuity to blindness, vomiting, repeated generalized tonic-clonic seizures followed by altered consciousness and very high blood pressure (HBP) of 240/120 mmHg, all of which started about 12 hours following a normal delivery. Nine months later, the patient presented with paroxysmal visual symptoms predominating in the right visual field followed by partial tonic clonic seizures with secondary generalization and recurrence of partial occipital lobe seizures. The pathophysiologic mechanism of irreversible tissue damage during PRES syndrome could result from a combination of events including the delay for early treatment, inadequate antihypertensive drugs that could worsen the brain damage by hypo perfusion, inadequate or delayed treatment for seizures or status epilepticus. Despite its high incidence in the third world, eclampsia is not a usual cause of epilepsy. Our case is the first description of post eclamptic occipital lobe epilepsy in Africa. With this report, we draw practitioners' attention on this rare complication.

  13. Learning after acquired brain injury. Learning the hard way

    NARCIS (Netherlands)

    Boosman, H.

    2015-01-01

    Background: When the brain has suffered damage, the learning process can be considerably disturbed. Brain damage can influence what is learned, but also how learning takes place. What patients can learn can be viewed in terms of ‘learning ability’ and how patients learn in terms of ‘learning style’.

  14. Respiratory mechanics in brain injury: A review

    OpenAIRE

    Koutsoukou, Antonia; Katsiari, Maria; Orfanos, Stylianos E; Kotanidou, Anastasia; Daganou, Maria; Kyriakopoulou, Magdalini; Koulouris, Nikolaos G; Rovina, Nikoletta

    2016-01-01

    Several clinical and experimental studies have shown that lung injury occurs shortly after brain damage. The responsible mechanisms involve neurogenic pulmonary edema, inflammation, the harmful action of neurotransmitters, or autonomic system dysfunction. Mechanical ventilation, an essential component of life support in brain-damaged patients (BD), may be an additional traumatic factor to the already injured or susceptible to injury lungs of these patients thus worsening lung injury, in case ...

  15. Treatment of surgical brain injury by immune tolerance induced by intrathymic and hepatic portal vein injection of brain antigens.

    Science.gov (United States)

    Yang, Weijian; Liu, Yong; Liu, Baolong; Tan, Huajun; Lu, Hao; Wang, Hong; Yan, Hua

    2016-08-24

    Surgical brain injury (SBI) defines complications induced by intracranial surgery, such as cerebral edema and other secondary injuries. In our study, intrathymic and hepatic portal vein injection of allogeneic myelin basic protein (MBP) or autogeneic brain cell suspensions were administered to a standard SBI model. Serum pro-inflammatory IL-2, anti-inflammatory IL-4 concentrations and the CD4(+)T/CD8(+)T ratio were measured at 1, 3, 7, 14 and 21 d after surgery to verify the establishment of immune tolerance. Furthermore, we confirmed neuroprotective effects by evaluating neurological scores at 1, 3, 7, 14 and 21 d after SBI. Anti-Fas ligand (FasL) immunohistochemistry and TUNEL assays of brain sections were tested at 21 d after surgery. Intrathymic injections of MBP or autogeneic brain cell suspensions functioned by both suppressing secondary inflammatory reactions and improving prognoses, whereas hepatic portal vein injections of autogeneic brain cell suspensions exerted a better effect than MBP. Intrathymic and hepatic portal vein injections of MBP had equal effects on reducing secondary inflammation and improving prognoses. Otherwise, hepatic portal vein injections of autogeneic brain cell suspensions had better outcomes than intrathymic injections of autogeneic brain cell suspensions. Moreover, the benefit of injecting antigens into the thymus was outweighed by hepatic portal vein injections.

  16. Does ECT alter brain structure?

    Science.gov (United States)

    Devanand, D P; Dwork, A J; Hutchinson, E R; Bolwig, T G; Sackeim, H A

    1994-07-01

    The purpose of this study was to evaluate whether ECT causes structural brain damage. The literature review covered the following areas: cognitive side effects, structural brain imaging, autopsies of patients who had received ECT, post-mortem studies of epileptic subjects, animal studies of electroconvulsive shock (ECS) and epilepsy, and the neuropathological effects of the passage of electricity, heat generation, and blood-brain barrier disruption. ECT-induced cognitive deficits are transient, although spotty memory loss may persist for events immediately surrounding the ECT course. Prospective computerized tomography and magnetic resonance imaging studies show no evidence of ECT-induced structural changes. Some early human autopsy case reports from the unmodified ECT era reported cerebrovascular lesions that were due to agonal changes or undiagnosed disease. In animal ECS studies that used a stimulus intensity and frequency comparable to human ECT, no neuronal loss was seen when appropriate control animals, blind ratings, and perfusion fixation techniques were employed. Controlled studies using quantitative cell counts have failed to show neuronal loss even after prolonged courses of ECS. Several well-controlled studies have demonstrated that neuronal loss occurs only after 1.5 to 2 hours of continuous seizure activity in primates, and adequate muscle paralysis and oxygenation further delay these changes. These conditions are not approached during ECT. Other findings indicate that the passage of electricity, thermal effects, and the transient disruption of the blood-brain barrier during ECS do not result in structural brain damage. There is no credible evidence that ECT causes structural brain damage.

  17. Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo.

    Science.gov (United States)

    Zahr, Natalie M; Sullivan, Edith V; Rohlfing, Torsten; Mayer, Dirk; Collins, Amy M; Luong, Richard; Pfefferbaum, Adolf

    2016-07-01

    Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.

  18. Ion - biomolecule interactions and radiation damage

    International Nuclear Information System (INIS)

    Schlathoelter, T.

    2004-01-01

    Full text: The biological effects of ionizing radiation in living cells are not a mere result of the direct impact of high energy quanta of radiation. Secondary particles such as low energy electrons, radicals and (multiply charged) ions are formed within the track. The interaction of these secondary particles with biologically relevant molecules is responsible for a large fraction of biological radiation damage to a cell, as well. Singly and multiply charged ions can be of importance as both, primary and secondary particles, and are known to cause severe biological damage. For instance, in heavy ion therapy and proton therapy the pronounced Bragg peak of fast (typically a few 100 MeV/u) ions in biological tissue is utilized. The Bragg peak is located at a depth, where the ions (mostly C q+ or protons) are slowed down to about 100 keV/u and have their maximum linear energy transfer (LET) to the medium. This depth is reasonably well defined and depends on the initial ion kinetic energy. Since the ions are rapidly stopped in this energy range, penetration beyond the Bragg peak is weak and it is thus possible to 'scan' the Bragg peak through a malignant tumour without excessive damage of the surrounding tissue by mere variation of the ion kinetic energy (i.e. the penetration depth). Severe biological damage is almost only possible, when the track of a primary quantum of ionizing radiation crosses the nucleus of a cell. Particularly the induction of double strand breaks of DNA or clustered DNA lesions is potentially lethal or mutagenic. A primary particle interacting with individual molecules within this environment leads to molecular excitation, ionization and fragmentation. In the process, the primary particle looses energy and slow secondary electrons and ions are formed, which might induce further damage. For a deep understanding of biological radiation damage on the level of individual molecules it is thus important to quantify excitation, ionization and

  19. Intracranial abscess secondary to dental infection.

    Science.gov (United States)

    Brady, Paul; Bergin, Sarah; Cryan, Bartley; Flanagan, Oisin

    2014-01-01

    We report a case of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) bacteraemia and secondary brain abscess in a patient where periodontal disease was implicated as the probable source.

  20. Intracranial abscess secondary to dental infection

    OpenAIRE

    Brady, Paul; Bergin, Sarah; Cryan, Bartley; Flanagan, Oisin

    2014-01-01

    We report a case of Aggregatibacter actinomycetemcomitans (A.actinomycetemcomitans) bacteraemia and secondary brain abscess in a patient where periodontal disease was implicated as the probable source.

  1. Bilateral cerebellar and brain stem infarction resulting from vertebral artery injury following cervical trauma without radiographic damage of the spinal column: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Mimata, Yoshikuni; Sato, Kotaro; Suzuki, Yoshiaki [Iwate Prefectural Chubu Hospital, Department of Orthopaedic Surgery, Kitakami (Japan); Murakami, Hideki [Iwate Medical University, Department of Orthopaedic Surgery, School of Medicine, Morioka (Japan)

    2014-01-15

    Vertebral artery injury can be a complication of cervical spine injury. Although most cases are asymptomatic, the rare case progresses to severe neurological impairment and fatal outcomes. We experienced a case of bilateral cerebellar and brain stem infarction with fatal outcome resulting from vertebral artery injury associated with cervical spine trauma. A 69-year-old male was admitted to our hospital because of tetraplegia after falling down the stairs and hitting his head on the floor. Marked bony damage of the cervical spine was not apparent on radiographs and CT scans, so the injury was initially considered to be a cervical cord injury without bony damage. However, an intensity change in the intervertebral disc at C5/C6, and a ventral epidural hematoma were observed on MRI. A CT angiogram of the neck showed the right vertebral artery was completely occluded at the C4 level of the spine. Forty-eight hours after injury, the patient lapsed into drowsy consciousness. The cranial CT scan showed a massive low-density area in the bilateral cerebellar hemispheres and brain stem. Anticoagulation was initiated after a diagnosis of the right vertebral artery injury, but the patient developed bilateral cerebellar and brain stem infarction. The patient's brain herniation progressed and the patient died 52 h after injury. We considered that not only anticoagulation but also treatment for thrombosis would have been needed to prevent cranial embolism. We fully realize that early and appropriate treatment are essential to improve the treatment results, and constructing a medical system with a team of orthopedists, radiologists, and neurosurgeons is also very important. (orig.)

  2. A high-affinity, dimeric inhibitor of PSD-95 bivalently interacts with PDZ1-2 and protects against ischemic brain damage

    DEFF Research Database (Denmark)

    Bach, Anders*; Clausen, Bettina H; Møller, Magda

    2012-01-01

    Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-d-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are ...... of Tat-N-dimer (3 nmol/g) to mice subjected to focal cerebral ischemia reduces infarct volume with 40% and restores motor functions. Thus, Tat-N-dimer is a highly efficacious neuroprotective agent with therapeutic potential in stroke....

  3. Changes of interleukin-1β, tumor necrosis factor α and interleukin-6 in brain and plasma after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    朱涛; 姚智; 袁汉娜; 陆伯刚; 杨树源

    2004-01-01

    Objective: To study the changes of interleukin-1 β (IL-1β), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) levels in brain and plasma after brain injury and to assess the relationship between the cytokine levels and injury severity in rats. Methods: A total of 51 male Wistar rats, weighing 280-340 g, were anesthetized with chloral hydrate (400 mg/kg body weight) through intraperitoneal injection and fixed on a stereotaxic instrument. Severe brain injury was created in 16 rats (severe injury group) and moderate brain injury in 18 rats (moderate injury group) by a fluid percussion model, and cytokine levels of IL-1β, TNFα and IL-6 were measured with biological assay. And sham operation was made on the other 17 rats (control group). Results: In the control group, the levels of IL-1β, TNFα and IL-6 were hardly detected in the cortex of the rats, but in the ipsilateral cortex of the rats in both injury groups, they increased obviously at 8 hours after injury. The increasing degree of these cytokines had no significant difference between the two injury groups. The levels of IL-6 in the plasma of all the rats increased slightly, whereas the levels of IL-1β and TNFα were undetectable. Conclusions: The increase of IL-1β, TNFα and IL-6 levels is closely related to brain injury. The increased cytokine levels in the central nervous system are not parallel to those in the peripheral blood. It suggests that inflammatory cytokines play important roles in the secondary neural damage after brain injury.

  4. Brain dysfunctions in Wistar rats exposed to municipal landfill leachates

    Directory of Open Access Journals (Sweden)

    Chibuisi G. Alimba

    2015-12-01

    Full Text Available Brain damage induced by Olusosun and Aba-Eku municipal landfill leachates was investigated in Wistar rats. Male rats were orally exposed to 1–25% concentrations of the leachates for 30 days. Catalase (CAT and superoxide dismutase (SOD activities, and malondialdehyde (MDA concentrations in the brain and serum of rats were evaluated; body and brain weight gain and histopathology were examined. There was significant (p < 0.05 decrease in body weight gain and SOD activity but increase in absolute and relative brain weight gain, MDA concentration and CAT activity in both brain and serum of treated rats. The biochemical parameters, which were more altered in the brain than serum, corroborated the neurologic lesions; neurodegeneration of purkinje cells with loss of dendrites, perineural vacuolations of the neuronal cytoplasm (spongiosis and neuronal necrosis in the brain. The concentrations of Cr, Cu, Pb, As, Cd, Mn, Ni, sulphates, ammonia, chloride and phosphate in the leachate samples were above standard permissible limits. The interactions of the neurotoxic constituents of the leachates induced the observed brain damage in the rats via oxidative damage. This suggests health risk in wildlife and human populations.

  5. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    Directory of Open Access Journals (Sweden)

    María I. Herrera

    2018-03-01

    Full Text Available Perinatal asphyxia (PA is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP and western blot (for pNF H/M, MAP-2, and GFAP. Behavior was also studied throughout Open Field (OF Test, Passive Avoidance (PA Task and Elevated Plus Maze (EPM Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain.

  6. Impaired behavior on real-world tasks following damage to the ventromedial prefrontal cortex.

    Science.gov (United States)

    Tranel, Daniel; Hathaway-Nepple, Julie; Anderson, Steven W

    2007-04-01

    Patients with damage to the ventromedial prefrontal cortices (VMPC) commonly manifest blatant behavioral navigation defects in the real world, but it has been difficult to measure these impairments in the clinic or laboratory. Using a set of "strategy application" tasks, which were designed by Shallice and Burgess (1991) to be ecologically valid for detecting executive dysfunction, we investigated the hypothesis that VMPC damage would be associated with defective performance on such tasks, whereas damage outside the VMPC region would not. A group of 9 patients with bilateral VMPC damage was contrasted with comparison groups of participants with (a) prefrontal brain damage outside the VMPC region (n = 8); (b) nonprefrontal brain damage (n = 17); and (c) no brain damage (n = 20). We found support for the hypothesis: VMPC patients had more impaired performances on the strategy application tasks, especially on a Multiple Errands Test that required patients to execute a series of unstructured tasks in a real-world setting (shopping mall). The results are consistent with the notion that efficacious behavioral navigation is dependent on the VMPC region. However, the strategy application tasks were relatively time consuming and effortful, and their diagnostic yield over and above conventional executive functioning tests may not be sufficient to warrant their inclusion in standard clinical assessment.

  7. Pronounced Structural and Functional Damage in Early Adult Pediatric-Onset Multiple Sclerosis with No or Minimal Clinical Disability

    Directory of Open Access Journals (Sweden)

    Antonio Giorgio

    2017-11-01

    Full Text Available Pediatric-onset multiple sclerosis (POMS may represent a model of vulnerability to damage occurring during a period of active maturation of the human brain. Whereas adaptive mechanisms seem to take place in the POMS brain in the short-medium term, natural history studies have shown that these patients reach irreversible disability, despite slower progression, at a significantly younger age than adult-onset MS (AOMS patients. We tested for the first time whether significant brain alterations already occurred in POMS patients in their early adulthood and with no or minimal disability (n = 15 in comparison with age- and disability-matched AOMS patients (n = 14 and to normal controls (NC, n = 20. We used a multimodal MRI approach by modeling, using FSL, voxelwise measures of microstructural integrity of white matter tracts and gray matter volumes with those of intra- and internetwork functional connectivity (FC (analysis of variance, p ≤ 0.01, corrected for multiple comparisons across space. POMS patients showed, when compared with both NC and AOMS patients, altered measures of diffusion tensor imaging (reduced fractional anisotropy and/or increased diffusivities and higher probability of lesion occurrence in a clinically eloquent region for physical disability such as the posterior corona radiata. In addition, POMS patients showed, compared with the other two groups, reduced long-range FC, assessed from resting functional MRI, between default mode network and secondary visual network, whose interaction subserves important cognitive functions such as spatial attention and visual learning. Overall, this pattern of structural damage and brain connectivity disruption in early adult POMS patients with no or minimal clinical disability might explain their unfavorable clinical outcome in the long term.

  8. Protective effects of Curcuma longa against neurobehavioral and neurochemical damage caused by cerium chloride in mice.

    Science.gov (United States)

    Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah

    2018-05-07

    Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.

  9. [Evaluation of diffuse cerebral atrophy in patients with a history of traumatic brain injury and its relation to cognitive deterioration].

    Science.gov (United States)

    Narberhaus, A; Segarra-Castells, M D; Verger-Maestre, K; Serra-Grabulosa, J M; Salgado-Pineda, P; Bartomeus-Jené, F; Mercader-Sobrequés, J M

    Diffuse damage secondary to traumatic brain injury (TBI) can be studied through volumetric analysis of several structures that are sensible to this kind of injury, such as corpus callosum, ventricular system, hippocampus, basal ganglia and the volume of cerebrospinal fluid spaces. Our aim is to describe how closed head injury (CHI) occurred in early years produce diffuse damage, and how this damage affects general cognitive functioning at long term. Initially the group of subjects was composed of 27 head injured children and adolescents following paediatric moderate to severe TBI. From this initial group we selected 15 patients without focal lesion, or in case of having suffered focal lesion, this was smaller than 2,600 mm3. These subjects were assessed by means of volumetric analysis of cerebrospinal fluid spaces, corpus callosum, hippocampus and caudate nucleus, comparing the results with a matched control group. We calculated the degree of general cognitive ability of these subjects through tests of intellectual, memory, frontal lobe and motor speed functioning. This study demonstrates that early CHI produce a volume decrease in all measured structures. Corpus callosum atrophy is the factor that better explains general cognitive impairment. Diffuse damage secondary to moderate to severe peadiatric TBI has long term effects on several cerebral structures and on cognitive performance. Corpus callosum atrophy is the best predictor for general cognitive impairment, compared with other affected structures.

  10. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems

    National Research Council Canada - National Science Library

    Caldwell, Kevin

    2001-01-01

    .... One and twenty-four hours following fear conditioning this learning deficit is associated with altered brain signal transduction mechanisms that are dependent on an enzyme termed phosphatidylinositol...

  11. Elevated endogenous erythropoietin concentrations are associated with increased risk of brain damage in extremely preterm neonates.

    Directory of Open Access Journals (Sweden)

    Steven J Korzeniewski

    Full Text Available We sought to determine, in very preterm infants, whether elevated perinatal erythropoietin (EPO concentrations are associated with increased risks of indicators of brain damage, and whether this risk differs by the co-occurrence or absence of intermittent or sustained systemic inflammation (ISSI.Protein concentrations were measured in blood collected from 786 infants born before the 28th week of gestation. EPO was measured on postnatal day 14, and 25 inflammation-related proteins were measured weekly during the first 2 postnatal weeks. We defined ISSI as a concentration in the top quartile of each of 25 inflammation-related proteins on two separate days a week apart. Hypererythropoietinemia (hyperEPO was defined as the highest quartile for gestational age on postnatal day 14. Using logistic regression and multinomial logistic regression models, we compared risks of brain damage among neonates with hyperEPO only, ISSI only, and hyperEPO+ISSI, to those who had neither hyperEPO nor ISSI, adjusting for gestational age.Newborns with hyperEPO, regardless of ISSI, were more than twice as likely as those without to have very low (< 55 Mental (OR 2.3; 95% CI 1.5-3.5 and/or Psychomotor (OR 2.4; 95% CI 1.6-3.7 Development Indices (MDI, PDI, and microcephaly at age two years (OR 2.4; 95%CI 1.5-3.8. Newborns with both hyperEPO and ISSI had significantly increased risks of ventriculomegaly, hemiparetic cerebral palsy, microcephaly, and MDI and PDI < 55 (ORs ranged from 2.2-6.3, but not hypoechoic lesions or other forms of cerebral palsy, relative to newborns with neither hyperEPO nor ISSI.hyperEPO, regardless of ISSI, is associated with elevated risks of very low MDI and PDI, and microcephaly, but not with any form of cerebral palsy. Children with both hyperEPO and ISSI are at higher risk than others of very low MDI and PDI, ventriculomegaly, hemiparetic cerebral palsy, and microcephaly.

  12. Increased expression of aquaporin-4 in human traumatic brain injury and brain tumors

    Institute of Scientific and Technical Information of China (English)

    HU Hua; YAO Hong-tian; ZHANG Wei-ping; ZHANG LEI; DING Wei; ZHANG Shi-hong; CHEN Zhong; WEI Er-qing

    2005-01-01

    Objective: To characterize the expression of aquaporin-4 (AQP4), one of the aquaporins (AQPs), in human brain specimens from patients with traumatic brain injury or brain tumors. Methods: Nineteen human brain specimens were obtained from the patients with traumatic brain injury, brain tumors, benign meningioma or early stage hemorrhagic stroke. MRI or CT imaging was used to assess brain edema. Hematoxylin and eosin staining were used to evaluate cell damage. Immunohistochemistry was used to detect the AQP4 expression. Results: AQP4 expression was increased from 15h to at least 8 d after injury. AQP4immunoreactivity was strong around astrocytomas, ganglioglioma and metastatic adenocarcinoma. However, AQP4 immunoreactivity was only found in the centers of astrocytomas and ganglioglioma, but not in metastatic adenocarcinoma derived from lung.Conclusion: AQP4 expression increases in human brains after traumatic brain injury, within brain-derived tumors, and around brain tumors.

  13. Imaging of mild traumatic brain injury using 57Co and 99mTc HMPAO SPECT as compared to other diagnostic procedures.

    Science.gov (United States)

    Audenaert, Kurt; Jansen, Hugo M L; Otte, Andreas; Peremans, Kathelijne; Vervaet, Myriam; Crombez, Roger; de Ridder, Leo; van Heeringen, Cees; Thirot, Joel; Dierckx, Rudi; Korf, Jaap

    2003-10-01

    Traumatic brain injury (TBI) is usually assessed with the Glasgow Coma Scale (GCS), CT and EEG. TBI can result from either the primary mechanical impact or secondary (ischemic) brain damage, in which calcium (Ca) plays a pivotal role. This study was undertaken to compare the applicability of SPECT using 57Co as a Ca-tracer in patients with mild traumatic brain injury. 8 patients with mild TBI (GCS 15) were clinically examined and studied with EEG, neuropsychological testing (NPT) and SPECT within 2 days post-TBI. After i.v.-administration of 37 MBq (1 mCi) 57Co (effective radiation dose 0.34 mSv x MBq(-1); 1.24 rem x mCi(-1); physical half-life 270 days, biological half-life 37.6 h), single-headed SPECT (12 h pi) was performed, consecutively followed by standard 925 MBq (25 mCi) Tc-99m HMPAO SPECT. In 6 of the 8 patients, baseline NPT and SPECT showed focal abnormalities in the affected frontal and temporal brain regions, which were in good topographical accordance. CT and EEG did not detect (structural) lesions in any of these cases. Single-headed 57Co-SPECT is able to show the site and extent of brain damage in patients with mild TBI, even in the absence of structural lesions. It may confirm and localize NPT findings. The predictive value of 57Co-SPECT should be assessed in larger patient series.

  14. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Stivaros, Stavros M. [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom); University of Manchester, Centre for Imaging Sciences, Institute of Population Health, Manchester (United Kingdom); Radon, Mark R. [The Walton Centre NHS Foundation Trust, Department of Neuroradiology, Liverpool (United Kingdom); Mileva, Reneta; Gledson, Ann; Keane, John A. [University of Manchester, School of Computer Science, Manchester (United Kingdom); Connolly, Daniel J.A.; Batty, Ruth [Sheffield Children' s Hospital NHS Foundation Trust, Department of Neuroradiology, Sheffield (United Kingdom); Cowell, Patricia E. [University of Sheffield, Department of Human Communication Sciences, Sheffield (United Kingdom); Hoggard, Nigel; Griffiths, Paul D. [University of Sheffield, Academic Unit of Radiology, Sheffield (United Kingdom); Wright, Neville B.; Tang, Vivian [Manchester Academic Health Science Centre, Academic Unit of Paediatric Radiology, Royal Manchester Children' s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester (United Kingdom)

    2016-01-15

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  15. Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Stivaros, Stavros M.; Radon, Mark R.; Mileva, Reneta; Gledson, Ann; Keane, John A.; Connolly, Daniel J.A.; Batty, Ruth; Cowell, Patricia E.; Hoggard, Nigel; Griffiths, Paul D.; Wright, Neville B.; Tang, Vivian

    2016-01-01

    Birth-related acute profound hypoxic-ischaemic brain injury has specific patterns of damage including the paracentral lobules. To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Study subjects included 13 children with proven acute profound hypoxic-ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. There was statistically significant narrowing of the mid-posterior body and genu of the corpus callosum in children with hypoxic-ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Focal volume loss is seen in the corpus callosum of children with hypoxic-ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic-ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic-ischaemic brain injury. (orig.)

  16. Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial; a randomized double blind placebo controlled multicenter study

    Directory of Open Access Journals (Sweden)

    von Lindern Jeannette

    2010-02-01

    Full Text Available Abstract Background Hypoxic-ischaemic encephalopathy is associated with development of cerebral palsy and cognitive disability later in life and is therefore one of the fundamental problems in perinatal medicine. The xanthine-oxidase inhibitor allopurinol reduces the formation of free radicals, thereby limiting the amount of hypoxia-reperfusion damage. In case of suspected intra-uterine hypoxia, both animal and human studies suggest that maternal administration of allopurinol immediately prior to delivery reduces hypoxic-ischaemic encephalopathy. Methods/Design The proposed trial is a randomized double blind placebo controlled multicenter study in pregnant women at term in whom the foetus is suspected of intra-uterine hypoxia. Allopurinol 500 mg IV or placebo will be administered antenatally to the pregnant woman when foetal hypoxia is suspected. Foetal distress is being diagnosed by the clinician as an abnormal or non-reassuring foetal heart rate trace, preferably accompanied by either significant ST-wave abnormalities (as detected by the STAN-monitor or an abnormal foetal blood scalp sampling (pH Primary outcome measures are the amount of S100B (a marker for brain tissue damage and the severity of oxidative stress (measured by isoprostane, neuroprostane, non protein bound iron and hypoxanthine, both measured in umbilical cord blood. Secondary outcome measures are neonatal mortality, serious composite neonatal morbidity and long-term neurological outcome. Furthermore pharmacokinetics and pharmacodynamics will be investigated. We expect an inclusion of 220 patients (110 per group to be feasible in an inclusion period of two years. Given a suspected mean value of S100B of 1.05 ug/L (SD 0.37 ug/L in the placebo group this trial has a power of 90% (alpha 0.05 to detect a mean value of S100B of 0.89 ug/L (SD 0.37 ug/L in the 'allopurinol-treated' group (z-test2-sided. Analysis will be by intention to treat and it allows for one interim analysis

  17. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  18. Oligodendrogenesis after Cerebral Ischaemia and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Zheng Gang Zhang

    2013-08-01

    Full Text Available Stroke and traumatic brain injury (TBI damage white and grey matter. Loss of oligodendrocytes and their myelin, impairs axonal function. Remyelination involves oligodendrogenesis during which new myelinating oligodendrocytes are generated by differentiated oligodendrocyte progenitor cells (OPCs. This article briefly reviews the processes of oligodendrogenesis in adult rodent brains, and promising experimental therapies targeting the neurovascular unit that reduce oligodendrocyte damage and amplify endogenous oligodendrogenesis after stroke and TBI.

  19. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  20. Are endogenous sex hormones related to DNA damage in paradoxically sleep-deprived female rats?

    Science.gov (United States)

    Andersen, Monica L; Ribeiro, Daniel A; Alvarenga, Tathiana A; Silva, Andressa; Araujo, Paula; Zager, Adriano; Tenorio, Neuli M; Tufik, Sergio

    2010-02-01

    The aim of this investigation was to evaluate overall DNA damage induced by experimental paradoxical sleep deprivation (PSD) in estrous-cycling and ovariectomized female rats to examine possible hormonal involvement during DNA damage. Intact rats in different phases of the estrous cycle (proestrus, estrus, and diestrus) or ovariectomized female Wistar rats were subjected to PSD by the single platform technique for 96 h or were maintained for the equivalent period as controls in home-cages. After this period, peripheral blood and tissues (brain, liver, and heart) were collected to evaluate genetic damage using the single cell gel (comet) assay. The results showed that PSD caused extensive genotoxic effects in brain cells, as evident by increased DNA migration rates in rats exposed to PSD for 96 h when compared to negative control. This was observed for all phases of the estrous cycle indistinctly. In ovariectomized rats, PSD also led to DNA damage in brain cells. No significant statistically differences were detected in peripheral blood, the liver or heart for all groups analyzed. In conclusion, our data are consistent with the notion that genetic damage in the form of DNA breakage in brain cells induced by sleep deprivation overrides the effects related to endogenous female sex hormones. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function.

    Science.gov (United States)

    Kennedy, David O; Wightman, Emma L

    2011-01-01

    Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites, chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field of natural, phytochemical drug discovery.

  2. The Role of Brain-Reactive Autoantibodies in Brain Pathology and Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Simone Mader

    2017-09-01

    Full Text Available Antibodies to different brain proteins have been recently found to be associated with an increasing number of different autoimmune diseases. They need to penetrate the blood–brain barrier (BBB in order to bind antigens within the central nervous system (CNS. They can target either neuronal or non-neuronal antigen and result in damage either by themselves or in synergy with other inflammatory mediators. Antibodies can lead to acute brain pathology, which may be reversible; alternatively, they may trigger irreversible damage that persists even though the antibodies are no longer present. In this review, we will describe two different autoimmune conditions and the role of their antibodies in causing brain pathology. In systemic lupus erythematosus (SLE, patients can have double stranded DNA antibodies that cross react with the neuronal N-methyl-d-aspartate receptor (NMDAR, which have been recently linked to neurocognitive dysfunction. In neuromyelitis optica (NMO, antibodies to astrocytic aquaporin-4 (AQP4 are diagnostic of disease. There is emerging evidence that pathogenic T cells also play an important role for the disease pathogenesis in NMO since they infiltrate in the CNS. In order to enable appropriate and less invasive treatment for antibody-mediated diseases, we need to understand the mechanisms of antibody-mediated pathology, the acute and chronic effects of antibody exposure, if the antibodies are produced intrathecally or systemically, their target antigen, and what triggers their production. Emerging data also show that in utero exposure to some brain-reactive antibodies, such as those found in SLE, can cause neurodevelopmental impairment since they can penetrate the embryonic BBB. If the antibody exposure occurs at a critical time of development, this can result in irreversible damage of the offspring that persists throughout adulthood.

  3. Critical periods during the in situ repair of radiation-induced DNA damage in rat cerebellar neurons and 9L brain tumor cells

    International Nuclear Information System (INIS)

    Wierowski, J.V.; Thomas, R.R.; Ritter, P.; Wheeler, K.T.

    1982-01-01

    The consequences of delivering a second 1250-rad dose at various times during and after the repair of DNA damage produced by an initial 1250-rad dose were assessed in intracerebral 9L tumor cells and rat cerebellar neurons by measuring the sedimentation properties of their DNA through alkaline sucrose gradients in zonal rotors with slow gradient reorienting capabilities.In cerebellar neurons, separating the two doses by 15 min resulted in an accumulation of DNA damage as expressed by an increase in the amount of DNA sedimenting >250 S over that obtained from unirradiated controls. Although not statistically different from unirradiated controls, a slight increase in the amount of fast-sedimenting neuronal DNA also occurred when a 1-hr interval between the two doses was investigated. At intervals of 2 hr or more, no such increase in fast-sedimenting neuronal DNA was observed. None of the periods between doses resulted in an accumulation of DNA damage in intracerebral 9L tumor cells. The accumulation of this type of DNA damage in neurons but not in tumor cells suggests that avoidance of a critical period in neuronal DNA repair may someday be an important concept in the design of brain tumor therapy schedules

  4. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Maronpot, Robert R; Torres-Jardon, Ricardo; Henríquez-Roldán, Carlos; Schoonhoven, Robert; Acuña-Ayala, Hilda; Villarreal-Calderón, Anna; Nakamura, Jun; Fernando, Reshan; Reed, William; Azzarelli, Biagio; Swenberg, James A

    2003-01-01

    Acute, subchronic, or chronic exposures to particulate matter (PM) and pollutant gases affect people in urban areas and those exposed to fires, disasters, and wars. Respiratory tract inflammation, production of mediators of inflammation capable of reaching the brain, systemic circulation of PM, and disruption of the nasal respiratory and olfactory barriers are likely in these populations. DNA damage is crucial in aging and in age-associated diseases such as Alzheimer's disease. We evaluated apurinic/apyrimidinic (AP) sites in nasal and brain genomic DNA, and explored by immunohistochemistry the expression of nuclear factor NFkappaB p65, inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX2), metallothionein I and II, apolipoprotein E, amyloid precursor protein (APP), and beta-amyloid(1-42) in healthy dogs naturally exposed to urban pollution in Mexico City. Nickel (Ni) and vanadium (V) were measured by inductively coupled plasma mass spectrometry (ICP-MS). Forty mongrel dogs, ages 7 days-10 years were studied (14 controls from Tlaxcala and 26 exposed to urban pollution in South West Metropolitan Mexico City (SWMMC)). Nasal respiratory and olfactory epithelium were found to be early pollutant targets. Olfactory bulb and hippocampal AP sites were significantly higher in exposed than in control age matched animals. Ni and V were present in a gradient from olfactory mucosa > olfactory bulb > frontal cortex. Exposed dogs had (a) nuclear neuronal NFkappaB p65, (b) endothelial, glial and neuronal iNOS, (c) endothelial and glial COX2, (d) ApoE in neuronal, glial and vascular cells, and (e) APP and beta amyloid(1-42) in neurons, diffuse plaques (the earliest at age 11 months), and in subarachnoid blood vessels. Increased AP sites and the inflammatory and stress protein brain responses were early and significant in dogs exposed to urban pollution. Oil combustion PM-associated metals Ni and V were detected in the brain. There was an acceleration of Alzheimer

  5. Psychopathology of Time in Brain Disease and Schizophrenia

    Directory of Open Access Journals (Sweden)

    John Cutting

    1990-01-01

    Full Text Available The literature on disturbance of time-sense in brain disease and schizophrenia is reviewed and the subjective experience of altered time-sense reported by 45 out of 350 personally interviewed schizophrenics is analyzed. A review of the literature on the effect of brain damage revealed that some phenomena (déjà vu, reduplication of time, altered tempo to events were linked with right hemisphere dysfunction, one phenomenon (incorrect sequencing of events was linked with left anterior brain damage, and others (disrupted “biological clock”, disturbed serise of rate of flow of current or past events could arise from subcortical as well as focal cortical damage. The sparse literature on disturbed time-sense in schizophrenia suggested that there was a shared psychopathology in this respect with right hemisphere dysfunction. The phenomena encountered in the 45 schizophrenics are described and classified.

  6. The perception of peripersonal space in right and left brain damage hemiplegic patients

    Directory of Open Access Journals (Sweden)

    Angela eBartolo

    2014-01-01

    Full Text Available Peripersonal space, as opposed to extrapersonal space, is the space that contains reachable objects and in which multisensory and sensorimotor integration is enhanced. Thus, the perception of peripersonal space requires combining information on the spatial properties of the environment with information on the current capacity to act. In support of this, recent studies have provided converging evidences that perceiving objects in peripersonal space activates a neural network overlapping with that subtending voluntary motor action and motor imagery. Other studies have also underlined the dominant role of the right hemisphere in motor planning and of the left hemisphere in on-line motor guiding, respectively. In the present study, we investigated the effect of a right or left hemiplegia in the perception of peripersonal space. 16 hemiplegic patients with brain damage to the left (LH or right (RH hemisphere and 8 matched healthy controls (HC performed a colour discrimination, a motor imagery and a reachability judgment task. Analyses of response times and accuracy revealed no variation among the three groups in the colour discrimination task, suggesting the absence of any specific perceptual or decisional deficits in the patient groups. In contrast, the patient groups revealed longer response times in the motor imagery task when performed in reference to the hemiplegic arm (RH and LH or to the healthy arm (RH. Moreover, RH group showed longer response times in the reachability judgement task, but only for stimuli located at the boundary of peripersonal space, which was furthermore significantly reduced in size. Considered together, these results confirm the crucial role of the motor system in motor imagery task and the perception of peripersonal space. They also revealed that right hemisphere damage has a more detrimental effect on reachability estimates, suggesting that motor planning processes contribute specifically to the perception of

  7. Involvement of the JNK/FOXO3a/Bim Pathway in Neuronal Apoptosis after Hypoxic-Ischemic Brain Damage in Neonatal Rats.

    Directory of Open Access Journals (Sweden)

    Deyuan Li

    Full Text Available c-Jun N-terminal kinase (JNK plays a key role in the regulation of neuronal apoptosis. Previous studies have revealed that forkhead transcription factor (FOXO3a is a critical effector of JNK-mediated tumor suppression. However, it is not clear whether the JNK/FOXO3a pathway is involved in neuronal apoptosis in the developing rat brain after hypoxia-ischemia (HI. In this study, we generated an HI model using postnatal day 7 rats. Fluorescence immunolabeling and Western blot assays were used to detect the distribution and expression of total and phosphorylated JNK and FOXO3a and the pro-apoptotic proteins Bim and CC3. We found that JNK phosphorylation was accompanied by FOXO3a dephosphorylation, which induced FOXO3a translocation into the nucleus, resulting in the upregulation of levels of Bim and CC3 proteins. Furthermore, we found that JNK inhibition by AS601245, a specific JNK inhibitor, significantly increased FOXO3a phosphorylation, which attenuated FOXO3a translocation into the nucleus after HI. Moreover, JNK inhibition downregulated levels of Bim and CC3 proteins, attenuated neuronal apoptosis and reduced brain infarct volume in the developing rat brain. Our findings suggest that the JNK/FOXO3a/Bim pathway is involved in neuronal apoptosis in the developing rat brain after HI. Agents targeting JNK may offer promise for rescuing neurons from HI-induced damage.

  8. Role of sound stimulation in reprogramming brain connectivity.

    Science.gov (United States)

    Chaudhury, Sraboni; Nag, Tapas C; Jain, Suman; Wadhwa, Shashi

    2013-09-01

    Sensory stimulation has a critical role to play in the development of an individual. Environmental factors tend to modify the inputs received by the sensory pathway. The developing brain is most vulnerable to these alterations and interacts with the environment to modify its neural circuitry. In addition to other sensory stimuli, auditory stimulation can also act as external stimuli to provide enrichment during the perinatal period. There is evidence that suggests that enriched environment in the form of auditory stimulation can play a substantial role in modulating plasticity during the prenatal period. This review focuses on the emerging role of prenatal auditory stimulation in the development of higher brain functions such as learning and memory in birds and mammals. The molecular mechanisms of various changes in the hippocampus following sound stimulation to effect neurogenesis, learning and memory are described. Sound stimulation can also modify neural connectivity in the early postnatal life to enhance higher cognitive function or even repair the secondary damages in various neurological and psychiatric disorders. Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism.

  9. [Physical activity: positive impact on brain plasticity].

    Science.gov (United States)

    Achiron, Anat; Kalron, Alon

    2008-03-01

    The central nervous system has a unique capability of plasticity that enables a single neuron or a group of neurons to undergo functional and constructional changes that are important to learning processes and for compensation of brain damage. The current review aims to summarize recent data related to the effects of physical activity on brain plasticity. In the last decade it was reported that physical activity can affect and manipulate neuronal connections, synaptic activity and adaptation to new neuronal environment following brain injury. One of the most significant neurotrophic factors that is critical for synaptic re-organization and is influenced by physical activity is brain-derived neurotrophic factor (BDNF). The frequency of physical activity and the intensity of exercises are of importance to brain remodeling, support neuronal survival and positively affect rehabilitation therapy. Physical activity should be employed as a tool to improve neural function in healthy subjects and in patients suffering from neurological damage.

  10. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    Science.gov (United States)

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (Pofficinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  11. Computer tomography in management and prognosis of patients with severe brain injury

    NARCIS (Netherlands)

    K.J. van Dongen

    1982-01-01

    textabstractThe purpose of this study is to investigate the influence of computer tomography on the management and prognosis of patients with severe traumatic brain damage. To this end a consecutive series of patients with severe brain damage was investigated by means of serial

  12. Percutaneous Needle Tenotomy for the Treatment of Muscle and Tendon Contractures in Adults With Brain Damage: Results and Complications.

    Science.gov (United States)

    Coroian, Flavia; Jourdan, Claire; Froger, Jérome; Anquetil, Claire; Choquet, Olivier; Coulet, Bertand; Laffont, Isabelle

    2017-05-01

    To study the results and complications of percutaneous needle tenotomy for superficial retracted tendons in patients with brain damage. Prospective observational study. University hospital. Patients with severe brain damage (N=38; mean age, 60.7y; age range, 24-93y; 21 women) requiring surgical management of contractures and eligible for percutaneous needle tenotomy were enrolled between February 2015 and February 2016. The percutaneous needle tenotomy gesture was performed by a physical medicine and rehabilitation physician trained by an orthopedic surgeon, under local or locoregional anesthesia. Treated tendons varied among patients. All patients were evaluated at 1, 3, and 6 months to assess surgical outcomes (joint range of motion [ROM], pain, and functional improvement) while screening for complications. Improvements in ROM (37/38) and contractures-related pain (12/12) were satisfactory. Functional results were satisfactory (Goal Attainment Scale score ≥0) for most patients (37/38): nursing (n=12), putting shoes on (n=8), getting in bed or sitting on a chair (n=6), verticalization (n=7), transfers and gait (n=8), and grip (n=2). Five patients had complications related to the surgical gesture: cast-related complications (n=2), hand hematoma (n=2), and cutaneous necrosis of the Achilles tendon in a patient with previous obliterative arteriopathy of the lower limbs (n=1). Percutaneous needle tenotomy yields good results in the management of selected superficial muscle and tendon contractures. The complications rate is very low, and this treatment can be an alternative to conventional surgery in frail patients with neurologic diseases. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. MRI in ischemic brain diseases

    International Nuclear Information System (INIS)

    Steinbrich, W.; Friedmann, G.; Pawlik, G.; Boecher-Schwarz, H.G.; Heiss, W.D.

    1986-01-01

    The results of MRI and CT in 55 patients with brain infarcts were compared; in 26 of these cases an additional PET examination was obtained in order to study the regional glucose utilisation. MRI was superior to CT, demonstrating 11% more of the infarcts, particularly during the first 24 hours, in small lesions confined to the grey or subcortical white matter and in infratentorial ischemic lesion. On the other hand, only CT was able to show fresh hemorrhage, although MRI was the method of choice to demonstrate old blood collections. To characterise the follow up of an infarct, CT and MRI were similar, except the marginal contrast enhancement sometimes demonstrated by CT studies between the 2nd and 4th week after stroke event. PET was inferior to show details because of its poorer spatial resolution, but anyhow had a high sensitivity and provided additional informations concerning secondary inactivations of brain areas not directly damaged. Additionally PET was able to demonstrate areas of anaerobic glycolysis and lesions of diminished glucose utilisation in TIAs. Small areas of gliosis in the white matter of the cerebral hemispheres were frequently found in patients with cerebro-vascular diseases; they were best shown by MRI, but do not correlate with the extent of vascular stenoses or occlusions, shown by angiography. (orig) [de

  14. Damage Control Resuscitation Supplemented with Vasopressin in a Severe Polytrauma Model with Traumatic Brain Injury and Uncontrolled Internal Hemorrhage.

    Science.gov (United States)

    Dickson, J Michael; Wang, Xu; St John, Alexander E; Lim, Esther B; Stern, Susan A; White, Nathan J

    2018-03-14

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of traumatic death worldwide and particularly on the battlefield. They are especially challenging when present simultaneously (polytrauma), and clear blood pressure end points during fluid resuscitation are not well described for this situation. The goal of this study is to evaluate for any benefit of increasing blood pressure using a vasopressor on brain blood flow during initial fluid resuscitation in a swine polytrauma model. We used a swine polytrauma model with simultaneous TBI, femur fracture, and HS with uncontrolled noncompressible internal bleeding from an aortic tear injury. Five animals were assigned to each of three experimental groups (hydroxyethyl starch only [HES], HES + 0.4 U/kg vasopressin, and no fluid resuscitation [No Fluids]). Fluids were given as two 10 mL/kg boluses according to tactical field care guidelines. Primary outcomes were mean arterial blood pressure (MAP) and brain blood flow at 60 min. Secondary outcomes were blood flows in the heart, intestine, and kidney; arterial blood lactate level; and survival at 6 hr. Organ blood flow was measured using injection of colored microspheres. Five animals were tested in each of the three groups. There was a statistically significant increase in MAP with vasopressin compared with other experimental groups, but no significant increase in brain blood flow during the first 60 min of resuscitation. The vasopressin group also exhibited greater total internal hemorrhage volume and rate. There was no difference in survival at 6 hours. In this experimental swine polytrauma model, increasing blood pressure with vasopressin did not improve brain perfusion, likely due to increased internal hemorrhage. Effective hemostasis should remain the top priority for field treatment of the polytrauma casualty with TBI.

  15. Volumetric MRI and 1H MRS study of hippocampus in unilateral MCAO patients: Relationship between hippocampal secondary damage and cognitive disorder following stroke

    International Nuclear Information System (INIS)

    Tang, Xiangyu; Wang, Chengyuan; Xia, Liming; Zhu, Wenhao; Zhao, Lingyun; Zhu, Wenzhen

    2012-01-01

    Objective: To determine whether hippocampi alter in patients at the recovery stage of middle cerebral artery occlusion (MCAO) and whether the changes of hippocampi involve in the cognitive impairment in such patients. Meterials and methods: Forty-four patients with unilateral infarction solely in MCAO territory and 44 age-, sex- and education background-matched healthy volunteers were enrolled in this study. All subjects underwent 3-dimensional fast spoiled gradient-echo (3D FSPGR) and sing-voxel proton magnetic resonance spectroscopy ( 1 H MRS) protocols at a 1.5 T MR scanner. The ratios of n-acetylaspartate/creatine (NAA/Cr) and myo-inositol/creatine (mI/Cr) were obtained by using software integrated in the MR scanner. The hippocampal volumes were estimated by manually measurement. Results: The volume and NAA/Cr ratio were found significantly decreased and mI/Cr ratio significantly increased in the hippocampus ipsilateral to occluded middle cerebral artery (MCA) as compared with values in the contralateral hippocampus or healthy control. A reduced NAA/Cr ratio was also observed in contralateral hippocampus compared to controls. The shrinkage ratio of hippocampus ipsilateral to MCAO was found related to the Mini–Mental State Examination (MMSE) score. Conclusion: Our study identified that the hippocampal secondary damage occurred in patients after MCAO, and it could be evaluated noninvasively by volumetric magnetic resonance imaging (MRI) and 1 H MRS. Moreover, the hippocampal secondary damage in MCAO patients indeed contributed to their cognitive impairment

  16. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    International Nuclear Information System (INIS)

    Inada, Haruo; Miyano, Satoshi

    1995-01-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author)

  17. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Haruo; Miyano, Satoshi [Jikei Univ., Tokyo (Japan). School of Medicine

    1995-03-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author).

  18. Should Individuals Who Possess Only One Brain Be Allowed To Box?

    Science.gov (United States)

    Brady, Don

    This paper questions the acceptance of injuries obtained while participating in sport and in particular, the relationship between participation in boxing and brain injury/damage identified in boxers. A review of the literature indicates research findings support the tenet that brain damage found in boxers is cumulative and is directly related to…

  19. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats.

    Science.gov (United States)

    Tenorio, Neuli M; Ribeiro, Daniel A; Alvarenga, Tathiana A; Fracalossi, Ana Carolina C; Carlin, Viviane; Hirotsu, Camila; Tufik, Sergio; Andersen, Monica L

    2013-01-01

    The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group). The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  20. Music-reading deficiencies and the brain

    Directory of Open Access Journals (Sweden)

    Lola L. Cuddy

    2006-01-01

    Full Text Available This paper reviews the literature on brain damage and music-reading for the past 25 years. Acquired patterns of selective loss and sparing are described, including both the association and dissociation of music and text reading, and association and dissociation among components of music reading. As well, we suggest that developmental music - reading deficiencies may be isolated in a form analogous to developmental dyslexia for text or congenital amusia for auditory music processing. Finally, we propose that the results of brain damage studies can contribute to the development of a model of normal music reading.

  1. Interpreting and Utilising Intersubject Variability in Brain Function.

    Science.gov (United States)

    Seghier, Mohamed L; Price, Cathy J

    2018-03-30

    We consider between-subject variance in brain function as data rather than noise. We describe variability as a natural output of a noisy plastic system (the brain) where each subject embodies a particular parameterisation of that system. In this context, variability becomes an opportunity to: (i) better characterise typical versus atypical brain functions; (ii) reveal the different cognitive strategies and processing networks that can sustain similar tasks; and (iii) predict recovery capacity after brain damage by taking into account both damaged and spared processing pathways. This has many ramifications for understanding individual learning preferences and explaining the wide differences in human abilities and disabilities. Understanding variability boosts the translational potential of neuroimaging findings, in particular in clinical and educational neuroscience. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  3. Sleep loss and acute drug abuse can induce DNA damage in multiple organs of mice.

    Science.gov (United States)

    Alvarenga, T A; Ribeiro, D A; Araujo, P; Hirotsu, C; Mazaro-Costa, R; Costa, J L; Battisti, M C; Tufik, S; Andersen, M L

    2011-09-01

    The purpose of the present study was to characterize the genetic damage induced by paradoxical sleep deprivation (PSD) in combination with cocaine or ecstasy (3,4-methylenedioxymethamphetamine; MDMA) in multiple organs of male mice using the single cell gel (comet) assay. C57BL/6J mice were submitted to PSD by the platform technique for 72 hours, followed by drug administration and evaluation of DNA damage in peripheral blood, liver and brain tissues. Cocaine was able to induce genetic damage in the blood, brain and liver cells of sleep-deprived mice at the majority of the doses evaluated. Ecstasy also induced increased DNA migration in peripheral blood cells for all concentrations tested. Analysis of damaged cells by the tail moment data suggests that ecstasy is a genotoxic chemical at the highest concentrations tested, inducing damage in liver or brain cells after sleep deprivation in mice. Taken together, our results suggest that cocaine and ecstasy/MDMA act as potent genotoxins in multiple organs of mice when associated with sleep loss.

  4. Creativity, brain, and art: biological and neurological considerations.

    Science.gov (United States)

    Zaidel, Dahlia W

    2014-01-01

    Creativity is commonly thought of as a positive advance for society that transcends the status quo knowledge. Humans display an inordinate capacity for it in a broad range of activities, with art being only one. Most work on creativity's neural substrates measures general creativity, and that is done with laboratory tasks, whereas specific creativity in art is gleaned from acquired brain damage, largely in observing established visual artists, and some in visual de novo artists (became artists after the damage). The verb "to create" has been erroneously equated with creativity; creativity, in the classic sense, does not appear to be enhanced following brain damage, regardless of etiology. The turning to communication through art in lieu of language deficits reflects a biological survival strategy. Creativity in art, and in other domains, is most likely dependent on intact and healthy knowledge and semantic conceptual systems, which are represented in several pathways in the cortex. It is adversely affected when these systems are dysfunctional, for congenital reasons (savant autism) or because of acquired brain damage (stroke, dementia, Parkinson's), whereas inherent artistic talent and skill appear less affected. Clues to the neural substrates of general creativity and specific art creativity can be gleaned from considering that art is produced spontaneously mainly by humans, that there are unique neuroanatomical and neurofunctional organizations in the human brain, and that there are biological antecedents of innovation in animals.

  5. Brain damage in former association football players

    International Nuclear Information System (INIS)

    Sortland, O.; Tysvaer, A.T.

    1989-01-01

    Thirty-three former football players from the National Football Team of Norway were examined by cerebral computer tomography (CT). The CT studies, evaluated for brain atrophy, visually and by linear measurements compared two different normal materials. One third of the players were found to have central cerebral atrophy. It is concluded that the atrophy probably was caused by repeated small head injuries during the football play, mainly in connection with heading the ball. (orig.)

  6. MRI Overestimates Excitotoxic Amygdala Lesion Damage in Rhesus Monkeys

    Directory of Open Access Journals (Sweden)

    Benjamin M. Basile

    2017-06-01

    Full Text Available Selective, fiber-sparing excitotoxic lesions are a state-of-the-art tool for determining the causal contributions of different brain areas to behavior. For nonhuman primates especially, it is advantageous to keep subjects with high-quality lesions alive and contributing to science for many years. However, this requires the ability to estimate lesion extent accurately. Previous research has shown that in vivo T2-weighted magnetic resonance imaging (MRI accurately estimates damage following selective ibotenic acid lesions of the hippocampus. Here, we show that the same does not apply to lesions of the amygdala. Across 19 hemispheres from 13 rhesus monkeys, MRI assessment consistently overestimated amygdala damage as assessed by microscopic examination of Nissl-stained histological material. Two outliers suggested a linear relation for lower damage levels, and values of unintended amygdala damage from a previous study fell directly on that regression line, demonstrating that T2 hypersignal accurately predicts damage levels below 50%. For unintended damage, MRI estimates correlated with histological assessment for entorhinal cortex, perirhinal cortex and hippocampus, though MRI significantly overestimated the extent of that damage in all structures. Nevertheless, ibotenic acid injections routinely produced extensive intentional amygdala damage with minimal unintended damage to surrounding structures, validating the general success of the technique. The field will benefit from more research into in vivo lesion assessment techniques, and additional evaluation of the accuracy of MRI assessment in different brain areas. For now, in vivo MRI assessment of ibotenic acid lesions of the amygdala can be used to confirm successful injections, but MRI estimates of lesion extent should be interpreted with caution.

  7. Sleep disorders of Whipple's disease of the brain.

    Science.gov (United States)

    Panegyres, P K; Goh, J

    2015-02-01

    To understand the effects of Whipple's disease (WD) of the brain on sleep function. Clinical and polysomnographic studies of two patients with severe disruption of sleep due to WD: a 48-year-old female with primary WD of the brain and a 41-year-old male with secondary WD of the brain. The patient with primary WD had hypersomnolence with severe obstructive sleep apnoea, reduced sleep efficiency, frequent waking and sleep fragmentation. The patient with secondary WD was also hypersomnolent with oculomastictory myorhythmia. He was shown to have severe sleep initiation insomnia with poor sleep efficiency, severe obstructive sleep apnoea/hypopnoea and oculomasticatory myorhythmia at sleep-wake transitions. WD of the brain may affect sleep biology in its primary and secondary forms leading to hypersomnolence from obstructive sleep apnoea, sleep fragmentation, reduced sleep efficiency, sleep initiation insomnia and intrusive oculomasticatory myorhythmia. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Effects of glycyrrhizin pre-treatment on transient ischemic brain ...

    African Journals Online (AJOL)

    Effects of glycyrrhizin pre-treatment on transient ischemic brain injury in mice. ... on transient ischemic brain injury in mice. Chiyeon Lim, Sehyun Lim, Young-Jun Lee, Bokcheul Kong, Byoungho Lee, Chang-Hyun Kim, Buyeo Kim, Suin Cho ... induced brain damage. Keywords: Glycyrrhizin, licorice, stroke, apoptosis ...

  9. The study of past damaging hydrogeological events for damage susceptibility zonation

    Directory of Open Access Journals (Sweden)

    O. Petrucci

    2008-08-01

    Full Text Available Damaging Hydrogeological Events are defined as periods during which phenomena, such as landslides, floods and secondary floods, cause damage to people and the environment.

    A Damaging Hydrogeological Event which heavily damaged Calabria (Southern Italy between December 1972, and January 1973, has been used to test a procedure to be utilised in the zonation of a province according to damage susceptibility during DHEs. In particular, we analyzed the province of Catanzaro (2391 km2, an administrative district composed of 80 municipalities, with about 370 000 inhabitants.

    Damage, defined in relation to the reimbursement requests sent to the Department of Public Works, has been quantified using a procedure based on a Local Damage Index. The latter, representing classified losses, has been obtained by multiplying the value of the damaged element and the percentage of damage affecting it.

    Rainfall has been described by the Maximum Return Period of cumulative rainfall, for both short (1, 3, 5, 7, 10 consecutive days and long duration (30, 60, 90, 180 consecutive days, recorded during the event.

    Damage index and population density, presumed to represent the location of vulnerable elements, have been referred to Thiessen polygons associated to rain gauges working at the time of the event.

    The procedure allowed us to carry out a preliminary classification of the polygons composing the province according to their susceptibility to damage during DHEs. In high susceptibility polygons, severe damage occurs during rainfall characterised by low return periods; in medium susceptibility polygons maximum return period rainfall and induced damage show equal levels of exceptionality; in low susceptibility polygons, high return period rainfall induces a low level of damage.

    The east and west sectors of the province show the highest susceptibility, while polygons of the N-NE sector show the lowest

  10. Lack of TAFI increases brain damage and microparticle generation after thrombolytic therapy in ischemic stroke.

    Science.gov (United States)

    Orbe, J; Alexandru, N; Roncal, C; Belzunce, M; Bibiot, P; Rodriguez, J A; Meijers, J C M; Georgescu, A; Paramo, J A

    2015-08-01

    Thrombin-activatable fibrinolysis inhibitor (TAFI) plays an important role in coagulation and fibrinolysis. Whereas TAFI deficiency may lead to a haemorrhagic tendency, data from TAFI knockout mice (TAFI-/-) are controversial and no differences have been reported in these animals after ischemic stroke. There are also no data regarding the role of circulating microparticles (MPs) in TAFI-/-. to examine the effect of tPA on the rate of intracranial haemorrhage (ICH) and on MPs generated in a model of ischemic stroke in TAFI-/- mice. Thrombin was injected into the middle cerebral artery (MCA) to analyse the effect of tPA (10mg/Kg) on the infarct size and haemorrhage in the absence of TAFI. Immunofluorescence for Fluoro-Jade C was performed on frozen brain slides to analyse neuronal degeneration after ischemia. MPs were isolated from mouse blood and their concentrations calculated by flow cytometry. Compared with saline, tPA significantly increased the infarct size in TAFI-/- mice (p<0.05). Although plasma fibrinolytic activity (fibrin plate assay) was higher in these animals, no macroscopic or microscopic ICH was detected. A positive signal for apoptosis and degenerating neurons was observed in the infarct area, being significantly higher in tPA treated TAFI-/- mice (p<0.05). Interestingly, higher numbers of MPs were found in TAFI-/- plasma as compared to wild type, after stroke (p<0.05). TAFI deficiency results in increased brain damage in a model of thrombolysis after ischemic stroke, which was not associated with bleeding but with neuronal degeneration and MP production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Secondary gamma-ray data for shielding calculation

    International Nuclear Information System (INIS)

    Miyasaka, Sunichi

    1979-01-01

    In deep penetration transport calculations, the integral design parameters is determined mainly by secondary particles which are produced by interactions of the primary radiation with materials. The shield thickness and the biological dose rate at a given point of a bulk shield are determined from the contribution from secondary gamma rays. The heat generation and the radiation damage in the structural and shield materials depend strongly on the secondary gamma rays. In this paper, the status of the secondary gamma ray data and its further problems are described from the viewpoint of shield design. The secondary gamma-ray data in ENDF/B-IV and POPOP4 are also discussed based on the test calculations made for several shield assemblies. (author)

  12. Training the brain to survive stroke.

    Directory of Open Access Journals (Sweden)

    Jeff F Dunn

    Full Text Available Presently, little can be done to repair brain tissue after stroke damage. We hypothesized that the mammalian brain has an intrinsic capacity to adapt to low oxygen which would improve outcome from a reversible hypoxic/ischemic episode. Acclimation to chronic hypoxia causes increased capillarity and tissue oxygen levels which may improve the capacity to survive ischemia. Identification of these adaptations will lead to protocols which high risk groups could use to improve recovery and reduce costs.Rats were exposed to hypoxia (3 weeks living at ½ an atmosphere. After acclimation, capillary density was measured morphometrically and was increased by 30% in the cortex. Novel implantable oxygen sensors showed that partial pressure of oxygen in the brain was increased by 40% in the normal cortex. Infarcts were induced in brain with 1 h reversible middle cerebral artery occlusions. After ischemia (48 h behavioural scores were improved and T2 weighted MRI lesion volumes were reduced by 52% in acclimated groups. There was a reduction in inflammation indicated by reduced lymphocytes (by 27-33%, and ED1 positive cells (by 35-45%.It is possible to stimulate a natural adaptive mechanism in the brain which will reduce damage and improve outcome for a given ischemic event. Since these adaptations occur after factors such as HIF-1α have returned to baseline, protection is likely related more to morphological changes such as angiogenesis. Such pre-conditioning, perhaps with exercise or pharmaceuticals, would not necessarily reduce the incidence of stroke, but the severity of damage could be reduced by 50%.

  13. Radiation damage to the brain: neuropsychiatric aspects

    International Nuclear Information System (INIS)

    McMahon, T.; Vahora, S.

    1986-01-01

    Although radiation necrosis of the brain is a recognized complication of irradiation of the central nervous system, the psychiatric aspects of this phenomenon are less well defined. Two cases of radiation necrosis in which psychiatric symptoms were a prominent part of the clinical picture are presented. Factors that determine the evolution and clinical presentation of radiation necrosis are reviewed. In particular, the role of the consultation psychiatrist in the diagnosis and management of such patients is discussed

  14. Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain Function1

    Science.gov (United States)

    Kennedy, David O.; Wightman, Emma L.

    2011-01-01

    Humans consume a wide range of foods, drugs, and dietary supplements that are derived from plants and which modify the functioning of the central nervous sytem (CNS). The psychoactive properties of these substances are attributable to the presence of plant secondary metabolites, chemicals that are not required for the immediate survival of the plant but which are synthesized to increase the fitness of the plant to survive by allowing it to interact with its environment, including pathogens and herbivorous and symbiotic insects. In many cases, the effects of these phytochemicals on the human CNS might be linked either to their ecological roles in the life of the plant or to molecular and biochemical similarities in the biology of plants and higher animals. This review assesses the current evidence for the efficacy of a range of readily available plant-based extracts and chemicals that may improve brain function and which have attracted sufficient research in this regard to reach a conclusion as to their potential effectiveness as nootropics. Many of these candidate phytochemicals/extracts can be grouped by the chemical nature of their potentially active secondary metabolite constituents into alkaloids (caffeine, nicotine), terpenes (ginkgo, ginseng, valerian, Melissa officinalis, sage), and phenolic compounds (curcumin, resveratrol, epigallocatechin-3-gallate, Hypericum perforatum, soy isoflavones). They are discussed in terms of how an increased understanding of the relationship between their ecological roles and CNS effects might further the field of natural, phytochemical drug discovery. PMID:22211188

  15. The influence of sleep deprivation and obesity on DNA damage in female Zucker rats

    Directory of Open Access Journals (Sweden)

    Neuli M. Tenorio

    2013-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate overall genetic damage induced by total sleep deprivation in obese, female Zucker rats of differing ages. METHOD: Lean and obese Zucker rats at 3, 6, and 15 months old were randomly distributed into two groups for each age group: home-cage control and sleep-deprived (N = 5/group. The sleep-deprived groups were deprived sleep by gentle handling for 6 hours, whereas the home-cage control group was allowed to remain undisturbed in their home-cage. At the end of the sleep deprivation period, or after an equivalent amount of time for the home-cage control groups, the rats were brought to an adjacent room and decapitated. The blood, brain, and liver tissue were collected and stored individually to evaluate DNA damage. RESULTS: Significant genetic damage was observed only in 15-month-old rats. Genetic damage was present in the liver cells from sleep-deprived obese rats compared with lean rats in the same condition. Sleep deprivation was associated with genetic damage in brain cells regardless of obesity status. DNA damage was observed in the peripheral blood cells regardless of sleep condition or obesity status. CONCLUSION: Taken together, these results suggest that obesity was associated with genetic damage in liver cells, whereas sleep deprivation was associated with DNA damage in brain cells. These results also indicate that there is no synergistic effect of these noxious conditions on the overall level of genetic damage. In addition, the level of DNA damage was significantly higher in 15-month-old rats compared to younger rats.

  16. Are there fetal stem cells in the maternal brain?

    Institute of Scientific and Technical Information of China (English)

    Osman Demirhan; Necmi (C)ekin; Deniz Ta(s)temir; Erdal Tun(c); Ali irfan Güzel; Demet Meral; Bülent Demirbek

    2013-01-01

    Fetal cells can enter maternal blood during pregnancy but whether they can also cross the blood-brain barrier to enter the maternal brain remains poorly understood. Previous results suggest that fetal cells are summoned to repair damage to the mother's brain. If this is confirmed, it would open up new and safer avenues of treatment for brain damage caused by strokes and neural diseases. In this study, we aimed to investigate whether a baby's stem cells can enter the maternal brain during pregnancy. Deceased patients who had at least one male offspring and no history of abortion and blood transfusion were included in this study. DNA was extracted from brain tissue samples of deceased women using standard phenol-chloroform extraction and ethanol precipitation methods. Genomic DNA was screened by quantitative fluorescent-polymerase chain reaction amplification together with short tandem repeat markers specific to the Y chromosome, and 13, 18, 21 and X. Any foreign DNA residues that could be used to interpret the presence of fetal stem cells in the maternal brain were monitored. Results indicated that fetal stem cells can not cross the blood-brain barrier to enter the maternal brain.

  17. Brain venous pathologies: MRI findings

    International Nuclear Information System (INIS)

    Salvatico, Rosana; Gonzalez, Alejandro; Yanez, Paulina; Romero, Carlos; Trejo, Mariano; Lambre, Hector

    2006-01-01

    Purpose: To describe MRI findings of the different brain venous pathologies. Material and Methods: Between January 2002 and March 2004, 18 patients were studied 10 males and 8 females between 6 and 63 years old; with different brain venous pathologies. In all cases brain MRI were performed including morphological sequences with and without gadolinium injection and angiographic venous sequences. Results: 10 venous occlusions were found, 6 venous angiomas, and 2 presented varices secondary to arteriovenous dural fistula. Conclusion: Brain venous pathologies can appear in many different clinical contexts, with different prognosis and treatment. In all the cases brain MRI was the best imaging study to disclose typical morphologic abnormalities. (author) [es

  18. Volumetric MRI and {sup 1}H MRS study of hippocampus in unilateral MCAO patients: Relationship between hippocampal secondary damage and cognitive disorder following stroke

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiangyu; Wang, Chengyuan; Xia, Liming [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenhao [Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhao, Lingyun [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China); Zhu, Wenzhen, E-mail: zhuwenzhen@hotmail.com [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095, Wuhan 430030 (China)

    2012-10-15

    Objective: To determine whether hippocampi alter in patients at the recovery stage of middle cerebral artery occlusion (MCAO) and whether the changes of hippocampi involve in the cognitive impairment in such patients. Meterials and methods: Forty-four patients with unilateral infarction solely in MCAO territory and 44 age-, sex- and education background-matched healthy volunteers were enrolled in this study. All subjects underwent 3-dimensional fast spoiled gradient-echo (3D FSPGR) and sing-voxel proton magnetic resonance spectroscopy ({sup 1}H MRS) protocols at a 1.5 T MR scanner. The ratios of n-acetylaspartate/creatine (NAA/Cr) and myo-inositol/creatine (mI/Cr) were obtained by using software integrated in the MR scanner. The hippocampal volumes were estimated by manually measurement. Results: The volume and NAA/Cr ratio were found significantly decreased and mI/Cr ratio significantly increased in the hippocampus ipsilateral to occluded middle cerebral artery (MCA) as compared with values in the contralateral hippocampus or healthy control. A reduced NAA/Cr ratio was also observed in contralateral hippocampus compared to controls. The shrinkage ratio of hippocampus ipsilateral to MCAO was found related to the Mini–Mental State Examination (MMSE) score. Conclusion: Our study identified that the hippocampal secondary damage occurred in patients after MCAO, and it could be evaluated noninvasively by volumetric magnetic resonance imaging (MRI) and {sup 1}H MRS. Moreover, the hippocampal secondary damage in MCAO patients indeed contributed to their cognitive impairment.

  19. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    Science.gov (United States)

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Disruptions in aromatase expression in the brain, reproductive behavior, and secondary sexual characteristics in male guppies (Poecilia reticulata) induced by tributyltin.

    Science.gov (United States)

    Tian, Hua; Wu, Peng; Wang, Wei; Ru, Shaoguo

    2015-05-01

    Although bioaccumulation of tributyltin (TBT) in fish has been confirmed, information on possible effects of TBT on reproductive system of fish is still relatively scarce, particularly at environmentally relevant levels. To evaluate the adverse effects and intrinsic toxicological properties of TBT in male fish, we studied aromatase gene expression in the brain, sex steroid contents, primary and secondary sexual characteristics, and reproductive behavior in male guppies (Poecilia reticulata) exposed to tributyltin chloride at the nominal concentrations of 5, 50, and 500 ng/L for 28 days in a semi-static exposure system. Radioimmunoassay demonstrated that treatment with 50 ng/L TBT caused an increase in systemic levels of testosterone of male guppies. Gonopodial index, which showed a positive correlation with testosterone levels, was elevated in the 5 ng/L and 50 ng/L TBT treated groups. Real-time PCR revealed that TBT exposure had inhibiting effects on expression of two isoforms of guppy aromatase in the brain, and these changes at the molecular levels were associated with a disturbance of reproductive behavior of the individuals, as measured by decreases in frequencies of posturing, sigmoid display, and chase activities when males were paired with females. This study provides the first evidence that TBT can cause abnormalities of secondary sexual characteristics in teleosts and that suppression of reproductive behavior in teleosts by TBT is due to its endocrine-disrupting action as an aromatase inhibitor targeting the nervous system. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Time dysperception perspective for acquired brain injury

    Directory of Open Access Journals (Sweden)

    Federica ePiras

    2014-01-01

    Full Text Available Distortions of time perception are presented by a number of neuropsychiatric disorders. Here we survey timing abilities in clinical populations with acquired brain injuries in key cerebral areas recently implicated in human studies of timing. We purposely analyzed the complex relationship between cognitive and contextual factors involved in time estimation, as to characterize the correlation between timed and other cognitive behaviors in each group. We assume that interval timing is a solid construct to study cognitive dysfunctions following brain injury, as timing performance is a sensitive metric of information processing, while temporal cognition has the potential of influencing a wide range of cognitive processes. Moreover, temporal performance is a sensitive assay of damage to the underlying neural substrate after a brain insult. Further research in neurological and psychiatric patients will definitively answer the question of whether time distortions are manifestations of cognitive and behavioral symptoms of brain damage and definitively clarify their mechanisms.

  2. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    Directory of Open Access Journals (Sweden)

    Lars eRoll

    2014-08-01

    Full Text Available The limited regeneration capacity of the adult central nervous system requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation.In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo.As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM, a complex network that contains numerous signaling molecules. It appears that signals in the damaged central nervous system lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C.Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.

  3. Relationship between opioid therapy, tissue-damaging procedures, and brain metabolites as measured by proton MRS in asphyxiated term neonates.

    Science.gov (United States)

    Angeles, Danilyn M; Ashwal, Stephen; Wycliffe, Nathaniel D; Ebner, Charlotte; Fayard, Elba; Sowers, Lawrence; Holshouser, Barbara A

    2007-05-01

    To examine the effects of opioid and tissue-damaging procedures (TDPs) [i.e. procedures performed in the neonatal intensive care unit (NICU) known to result in pain, stress, and tissue damage] on brain metabolites, we reviewed the medical records of 28 asphyxiated term neonates (eight opioid-treated, 20 non-opioid treated) who had undergone magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) within the first month of life as well as eight newborns with no clinical findings of asphyxial injury. We found that lower creatine (Cr), myoinositol (Ins), and N-acetylaspartate (NAA)/choline (Cho) (p OGM) NAA/Cr was decreased (p = 0.03) and lactate (Lac) was present in a significantly higher amount (40%; p = 0.03) in non-opioid-treated neonates compared with opioid-treated neonates. Compared with controls, untreated neonates showed larger changes in more metabolites in basal ganglia (BG), thalami (TH), and OGM with greater significance than treated neonates. Our data suggest that TDPs affect spectral metabolites and that opioids do not cause harm in asphyxiated term neonates exposed to repetitive TDPs in the first 2-4 DOL and may provide a degree of neuroprotection.

  4. Sera from remitting and secondary progressive multiple sclerosis patients disrupt the blood-brain barrier.

    Science.gov (United States)

    Shimizu, Fumitaka; Tasaki, Ayako; Sano, Yasuteru; Ju, Mihua; Nishihara, Hideaki; Oishi, Mariko; Koga, Michiaki; Kawai, Motoharu; Kanda, Takashi

    2014-01-01

    Pathological destruction of blood-brain barrier (BBB) has been thought to be the initial key event in the process of developing multiple sclerosis (MS). The purpose of the present study was to clarify the possible molecular mechanisms responsible for the malfunction of BBB by sera from relapse-remitting MS (RRMS) and secondary progressive MS (SPMS) patients. We evaluated the effects of sera from the patients in the relapse phase of RRMS (RRMS-R), stable phase of RRMS (RRMS-S) and SPMS on the expression of tight junction proteins and vascular cell adhesion protein-1 (VCAM-1), and on the transendothelial electrical resistance (TEER) in human brain microvascular endothelial cells (BMECs). Sera from the RRMS-R or SPMS patients decreased the claudin-5 protein expression and the TEER in BMECs. In RRMS-R, this effect was restored after adding an MMP inhibitor, and the MMP-2/9 secretion by BMECs was significantly increased after the application of patients' sera. In SPMS, the immunoglobulin G (IgG) purified from patients' sera also decreased the claudin-5 protein expression and the TEER in BMECs. The sera and purified IgG from all MS patients increased the VCAM-1 protein expression in BMECs. The up-regulation of autocrine MMP-2/9 by BMECs after exposure to sera from RRMS-R patients or the autoantibodies against BMECs from SPMS patients can compromise the BBB. Both RRMS-S and SPMS sera increased the VCAM-1 expression in the BBB, thus indicating that targeting the VCAM-1 in the BBB could represent a possible therapeutic strategy for even the stable phase of MS and SPMS.

  5. Sera from remitting and secondary progressive multiple sclerosis patients disrupt the blood-brain barrier.

    Directory of Open Access Journals (Sweden)

    Fumitaka Shimizu

    Full Text Available BACKGROUND: Pathological destruction of blood-brain barrier (BBB has been thought to be the initial key event in the process of developing multiple sclerosis (MS. The purpose of the present study was to clarify the possible molecular mechanisms responsible for the malfunction of BBB by sera from relapse-remitting MS (RRMS and secondary progressive MS (SPMS patients. METHODS: We evaluated the effects of sera from the patients in the relapse phase of RRMS (RRMS-R, stable phase of RRMS (RRMS-S and SPMS on the expression of tight junction proteins and vascular cell adhesion protein-1 (VCAM-1, and on the transendothelial electrical resistance (TEER in human brain microvascular endothelial cells (BMECs. RESULTS: Sera from the RRMS-R or SPMS patients decreased the claudin-5 protein expression and the TEER in BMECs. In RRMS-R, this effect was restored after adding an MMP inhibitor, and the MMP-2/9 secretion by BMECs was significantly increased after the application of patients' sera. In SPMS, the immunoglobulin G (IgG purified from patients' sera also decreased the claudin-5 protein expression and the TEER in BMECs. The sera and purified IgG from all MS patients increased the VCAM-1 protein expression in BMECs. CONCLUSIONS: The up-regulation of autocrine MMP-2/9 by BMECs after exposure to sera from RRMS-R patients or the autoantibodies against BMECs from SPMS patients can compromise the BBB. Both RRMS-S and SPMS sera increased the VCAM-1 expression in the BBB, thus indicating that targeting the VCAM-1 in the BBB could represent a possible therapeutic strategy for even the stable phase of MS and SPMS.

  6. Hippocampal Damage Increases Deontological Responses during Moral Decision Making.

    Science.gov (United States)

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2016-11-30

    Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses-rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have

  7. Do spotty high intensity regions found in basal ganglia on MRI T2-weighted brain images of elderly subjects indicate gliosis? Comparison of brain MRI T2-weighted images of elderly subjects and necropsy brain

    International Nuclear Information System (INIS)

    Murai, Hiroshi; Hattori, Hideyuki; Matsumoto, Masayuki

    2001-01-01

    Spotty high intensity regions are frequently found on the MRI T2-weighted brain images (T2WI) of elderly people. High intensity regions with a diameter of 3 mm or less have been considered as expanded perivascular space with no pathological implications on radiological diagnosis. However, its morphometrical basis is not clear. We examined the character of the spotty regions using brain MRI of brain screening subjects, and studied morphometrically arteriolosclerosis and perivascular tissue damage using necropsy brains of subjects aged 65 years and over. The size, number and location of the spotty high intensity regions were examined using the brain MRI of 109 T2WI which is used for brain screening at Kanazawa Medical University Hospital. The frontal lobe, temporal lobe, parietal lobe, hippocampus, midbrain and basal ganglia were sampled from 15 subjects aged 65 years and over, and the tissue sections were processed for HE stain, Elastica van Gieson stain and immunostaining with GFAP. We took photographs of brain arterioli and surrounding parenchyma with a digital telescope camera and the degree of arterioscleosis and tissue damage were assessed by measurements with an image analyzer. Spotty high intensity regions on T2WI with a diameter of 3 mm or less were observed in 95.5% subjects aged 65 years and over. 69.4% spotty region was observed in basal ganglia. There was a significant correlation between age and size. In morphometrical examination, at the basal ganglia, the density of GFAP-positive astrocytes in the perivascular tissue had a significant positive correlation with the proportional thickness of the adventitia, which is an index of arteriosclerosis, and a significant negative correlation with the size of the perivascular space. The results suggested that the spotty regions in the brain MRI of elderly people do not represent dilatations of the perivascular space, but is mild brain damage caused by arteriosclerosis. (author)

  8. NEUROSPECIFIC ENOLASE IN DIAGNOSTICS FOR PERINATAL DAMAGE TO THE CENTRAL NERVOUS SYSTEM IN PREMATURE INFANTS

    Directory of Open Access Journals (Sweden)

    E.G. Novopol'tseva

    2010-01-01

    Full Text Available Neurospecific enolase is an endoenzyme of the central nervous system (CNS present in neurons of the brain and peripheral neuraltissue. This is currently the only known general marker of all differentiated neurons. The article illustrates the results of determining this enzyme in premature infants with fetal infections and assessment of their importance as a marker of damage to CNS in this group of children. A high level of neurospecific enolase in children with infectious and inflammatory diseases is not only the marker of damage to blood-brain barrier, but also reflects the nature of damage (hypoxia, intoxication, inflammation. This parameter in premature infants with various pathologies may serve as a degree of perinatal damage severity, and along with other parameters, determine the performed therapy tactics. Key words: neurospecific enolase, marker of CNS damage, perinatal damage, children. (Pediatric Pharmacology. – 2010; 7(3:66-70

  9. Creativity, brain, and art: biological and neurological considerations

    Science.gov (United States)

    Zaidel, Dahlia W.

    2014-01-01

    Creativity is commonly thought of as a positive advance for society that transcends the status quo knowledge. Humans display an inordinate capacity for it in a broad range of activities, with art being only one. Most work on creativity’s neural substrates measures general creativity, and that is done with laboratory tasks, whereas specific creativity in art is gleaned from acquired brain damage, largely in observing established visual artists, and some in visual de novo artists (became artists after the damage). The verb “to create” has been erroneously equated with creativity; creativity, in the classic sense, does not appear to be enhanced following brain damage, regardless of etiology. The turning to communication through art in lieu of language deficits reflects a biological survival strategy. Creativity in art, and in other domains, is most likely dependent on intact and healthy knowledge and semantic conceptual systems, which are represented in several pathways in the cortex. It is adversely affected when these systems are dysfunctional, for congenital reasons (savant autism) or because of acquired brain damage (stroke, dementia, Parkinson’s), whereas inherent artistic talent and skill appear less affected. Clues to the neural substrates of general creativity and specific art creativity can be gleaned from considering that art is produced spontaneously mainly by humans, that there are unique neuroanatomical and neurofunctional organizations in the human brain, and that there are biological antecedents of innovation in animals. PMID:24917807

  10. Creativity, Brain, and Art: Biological and Neurological Considerations

    Directory of Open Access Journals (Sweden)

    Dahlia W. Zaidel

    2014-06-01

    Full Text Available Creativity is commonly thought of as a positive advance for society that transcends the status quo knowledge. Humans display an inordinate capacity for it in a broad range of activities, with art being only one. Most work on creativity’s neural substrates measures general creativity, and that is done with laboratory tasks, whereas specific creativity in art is gleaned from acquired brain damage, largely in observing established visual artists, and some in visual de novo artists (became artists after the damage. The verb to create has been erroneously equated with creativity; creativity, in the classic sense, does not appear to be enhanced following brain damage, regardless of etiology. The turning to communication through art in lieu of language deficits reflects a biological survival strategy. Creativity in art, and in other domains, is most likely dependent on intact and healthy knowledge and semantic conceptual systems, which are represented in several pathways in the cortex. It is adversely affected when these systems are dysfunctional, for congenital reasons (savant autism or because of acquired brain damage (stroke, dementia, Parkinson’s, whereas inherent artistic talent and skill appear less affected. Clues to the neural substrates of general creativity and specific art creativity can be gleaned from considering that art is produced spontaneously mainly by humans, that there are unique neuroanatomical and neurofunctional organizations in the human brain, and that there are biological antecedents of innovation in animals.

  11. Distinct effects of acute and chronic sleep loss on DNA damage in rats.

    Science.gov (United States)

    Andersen, M L; Ribeiro, D A; Bergamaschi, C T; Alvarenga, T A; Silva, A; Zager, A; Campos, R R; Tufik, S

    2009-04-30

    The aim of this investigation was to evaluate genetic damage induced in male rats by experimental sleep loss for short-term (24 and 96 h) and long-term (21 days) intervals, as well as their respective recovery periods in peripheral blood, brain, liver and heart tissue by the single cell gel (comet) assay. Rats were paradoxically deprived of sleep (PSD) by the platform technique for 24 or 96 h, or chronically sleep-restricted (SR) for 21 days. We also sought to verify the time course of their recovery after 24 h of rebound sleep. The results showed DNA damage in blood cells of rats submitted to PSD for 96 h. Brain tissue showed extensive genotoxic damage in PSD rats (both 24 and 96 h), though the effect was more pronounced in the 96 h group. Rats allowed to recover from the PSD-96 h and SR-21 days treatments showed DNA damage as compared to negative controls. Liver and heart did not display any genotoxicity activity. Corticosterone concentrations were increased after PSD (24 and 96 h) relative to control rats, whereas these levels were unaffected in the SR group. Collectively, these findings reveal that sleep loss was able to induce genetic damage in blood and brain cells, especially following acute exposure. Since DNA damage is an important step in events leading to genomic instability, this study represents a relevant contribution to the understanding of the potential health risks associated with sleep deprivation.

  12. The Lateralizer: A Tool for Students to Explore the Divided Brain

    Science.gov (United States)

    Motz, Benjamin A.; James, Karin H.; Busey, Thomas A.

    2012-01-01

    Despite a profusion of popular misinformation about the left brain and right brain, there are functional differences between the left and right cerebral hemispheres in humans. Evidence from split-brain patients, individuals with unilateral brain damage, and neuroimaging studies suggest that each hemisphere may be specialized for certain cognitive…

  13. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...... evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation....

  14. [Pathogenetic and therapeutic aspects of secondary anorexia].

    Science.gov (United States)

    Laviano, A; Cascino, A; Muscaritoli, M; Rossi Fanelli, F

    2000-01-01

    Anorexia is an often underrated symptom in the clinical management of patients suffering from chronic diseases. Moreover, the anorexia accompanying chronic diseases (secondary anorexia) is often confused with anorexia nervosa, a typically neuropsychiatric disorder involving completely different pathogenic mechanisms and therapeutic strategies. Secondary anorexia is one of the main factors responsible for the development of malnutrition, which in turn negatively affects patient morbidity and mortality. Different mechanisms have been proposed to explain the pathogenesis of secondary anorexia. However, consistent experimental and clinical evidence seems to point to hypothalamic serotonergic system hyperactivity as a preeminent cause; this hyperactivity appears to be triggered by enhanced brain availability of tryptophan, the aminoacid precursor of serotonin. The hyperactive hypothalamic serotonergic system might also represent the final effector where different regulatory and modulating pathways, including cytokines, converge. The involvement of tryptophan and the hypothalamic serotonergic system is further supported by the effectiveness of a therapeutic strategy, based on the inhibition of tryptophan entry into the brain, in increasing the food intake of anorectic patients. Although these results represent an encouraging approach to the treatment of secondary anorexia, with possible beneficial effects on the nutritional status of patients, they need to be validated in larger trials.

  15. Markers of cerebral damage during delirium in elderly patients with hip fracture

    NARCIS (Netherlands)

    van Munster, Barbara C.; Korse, Catharina M.; de Rooij, Sophia E.; Bonfrer, Johannes M.; Zwinderman, Aeilko H.; Korevaar, Johanna C.

    2009-01-01

    ABSTRACT: BACKGROUND: S100B protein and Neuron Specific Enolase (NSE) can increase due to brain cell damage and/or increased permeability of the blood-brain-barrier. Elevation of these proteins has been shown after various neurological diseases with cognitive dysfunction. Delirium is characterized

  16. Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury.

    Science.gov (United States)

    Sharma, Pushpa; Su, Yan A; Barry, Erin S; Grunberg, Neil E; Lei, Zhang

    2012-09-01

    Mild traumatic brain injury (mTBI) represents a major health problem in civilian populations as well as among the military service members due to (1) lack of effective treatments, and (2) our incomplete understanding about the progression of secondary cell injury cascades resulting in neuronal cell death due to deficient cellular energy metabolism and damaged mitochondria. The aim of this study was to identify and delineate the mitochondrial targeted genes responsible for altered brain energy metabolism in the injured brain. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed up for 7 days. Rats were either grouped into naïve controls or received lateral fluid percussion brain injury (2-2.5 atm) and followed for 7 days. The severity of brain injury was evaluated by the neurological severity scale-revised (NSS-R) at 3 and 5 days post TBI and immunohistochemical analyses at 7 days post TBI. The expression profiles of mitochondrial-targeted genes across the hippocampus from TBI and naïe rats were also examined by oligo-DNA microarrays. NSS-R scores of TBI rats (5.4 ± 0.5) in comparison to naïe rats (3.9 ± 0.5) and H and E staining of brain sections suggested a mild brain injury. Bioinformatics and systems biology analyses showed 31 dysregulated genes, 10 affected canonical molecular pathways including a number of genes involved in mitochondrial enzymes for oxidative phosphorylation, mitogen-activated protein Kinase (MAP), peroxisome proliferator-activated protein (PPAP), apoptosis signaling, and genes responsible for long-term potentiation of Alzheimer's and Parkinson's diseases. Our results suggest that dysregulated mitochondrial-focused genes in injured brains may have a clinical utility for the development of future therapeutic strategies aimed at the treatment of TBI.

  17. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    Science.gov (United States)

    2015-12-01

    response. e. Correlate imaging findings with histological studies of vascular damage, tumor cell and endothelial cell apoptosis or necrosis and vascular ...phosphatidylserine (PS) is exposed exclusively on tumor vascular endothelium of brain metastases in mouse models. A novel PS-targeting antibody, PGN635... vascular endothelial cells in multi-focal brain metastases throughout the whole mouse brain. Vascular endothelium in normal brain tissues is negative

  18. Focused ion beam damage to MOS integrated circuits

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Campbell, Ann N.; Hembree, Charles E.; Tangyunyong, Paiboon; Jessing, Jeffrey R.; Soden, Jerry M.

    2000-01-01

    Commercial focused ion beam (FIB) systems are commonly used to image integrated circuits (ICS) after device processing, especially in failure analysis applications. FIB systems are also often employed to repair faults in metal lines for otherwise functioning ICS, and are being evaluated for applications in film deposition and nanofabrication. A problem that is often seen in FIB imaging and repair is that ICS can be damaged during the exposure process. This can result in degraded response or out-right circuit failure. Because FIB processes typically require the surface of an IC to be exposed to an intense beam of 30--50 keV Ga + ions, both charging and secondary radiation damage are potential concerns. In previous studies, both types of effects have been suggested as possible causes of device degradation, depending on the type of device examined and/or the bias conditions. Understanding the causes of this damage is important for ICS that are imaged or repaired by a FIB between manufacture and operation, since the performance and reliability of a given IC is otherwise at risk in subsequent system application. In this summary, the authors discuss the relative roles of radiation damage and charging effects during FIB imaging. Data from exposures of packaged parts under controlled bias indicate the possibility for secondary radiation damage during FIB exposure. On the other hand, FIB exposure of unbiased wafers (a more common application) typically results in damage caused by high-voltage stress or electrostatic discharge. Implications for FIB exposure and subsequent IC use are discussed

  19. Susceptibility to social pressure following ventromedial prefrontal cortex damage.

    Science.gov (United States)

    Chen, Kuan-Hua; Rusch, Michelle L; Dawson, Jeffrey D; Rizzo, Matthew; Anderson, Steven W

    2015-11-01

    Social pressure influences human behavior including risk taking, but the psychological and neural underpinnings of this process are not well understood. We used the human lesion method to probe the role of ventromedial prefrontal cortex (vmPFC) in resisting adverse social pressure in the presence of risk. Thirty-seven participants (11 with vmPFC damage, 12 with brain damage outside the vmPFC and 14 without brain damage) were tested in driving simulator scenarios requiring left-turn decisions across oncoming traffic with varying time gaps between the oncoming vehicles. Social pressure was applied by a virtual driver who honked aggressively from behind. Participants with vmPFC damage were more likely to select smaller and potentially unsafe gaps under social pressure, while gap selection by the comparison groups did not change under social pressure. Participants with vmPFC damage also showed prolonged elevated skin conductance responses (SCR) under social pressure. Comparison groups showed similar initial elevated SCR, which then declined prior to making left-turn decisions. The findings suggest that the vmPFC plays an important role in resisting explicit and immediately present social pressure with potentially negative consequences. The vmPFC appears to contribute to the regulation of emotional responses and the modulation of decision making to optimize long-term outcomes. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Intranasal mesenchymal stem cell treatment for neonatal brain damage: long-term cognitive and sensorimotor improvement.

    Directory of Open Access Journals (Sweden)

    Vanessa Donega

    Full Text Available Mesenchymal stem cell (MSC administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic window and dose response relationships. Furthermore, the appearance of MSCs at the lesion site in relation to the therapeutic window was examined. Nine-day-old mice were subjected to unilateral carotid artery occlusion and hypoxia. MSCs were administered intranasally at 3, 10 or 17 days after hypoxia-ischemia (HI. Motor, cognitive and histological outcome was investigated. PKH-26 labeled cells were used to localize MSCs in the brain. We identified 0.5 × 10(6 MSCs as the minimal effective dose with a therapeutic window of at least 10 days but less than 17 days post-HI. A single dose was sufficient for a marked beneficial effect. MSCs reach the lesion site within 24 h when given 3 or 10 days after injury. However, no MSCs were detected in the lesion when administered 17 days following HI. We also show for the first time that intranasal MSC treatment after HI improves cognitive function. Improvement of sensorimotor function and histological outcome was maintained until at least 9 weeks post-HI. The capacity of MSCs to reach the lesion site within 24 h after intranasal administration at 10 days but not at 17 days post-HI indicates a therapeutic window of at least 10 days. Our data strongly indicate that intranasal MSC treatment may become a promising non-invasive therapeutic tool to effectively reduce neonatal encephalopathy.

  1. Antioxidant therapies in traumatic brain injury: a review

    Directory of Open Access Journals (Sweden)

    Romero-Rivera Hector Rolando

    2017-09-01

    Full Text Available Oxidative stress constitute one of the commonest mechanism of the secondary injury contributing to neuronal death in traumatic brain injury cases. The oxidative stress induced secondary injury blockade may be considered as to be a good alternative to improve the outcome of traumatic brain injury (TBI treatment. Due to absence of definitive therapy of traumatic brain injury has forced researcher to utilize unconventional therapies and its roles investigated in the improvement of management and outcome in recent year. Antioxidant therapies are proven effective in many preclinical studies and encouraging results and the role of antioxidant mediaction may act as further advancement in the traumatic brain injury management it may represent aonr of newer moadlaity in neurosurgical aramamentorium, this kind of therapy could be a good alternative or adjuct to the previously established neuroprotection agents in TBI.

  2. Cerebral perfusion changes in traumatic diffuse brain injury. IMP SPECT studies

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kawashima, Ryuta; Fukuda, Hiroshi; Ishii, Kiyoshi; Onuma, Takehide.

    1997-01-01

    Diffuse brain injury (DBI) is characterized by axonal degeneration and neuronal damage which cause diffuse brain atrophy. We have investigated the time course of abnormalities in cerebral perfusion distribution in cases of DBI by using Iodine-123-IMP SPECT, and the relationship to the appearance of diffuse brain atrophy. SPECT scans were performed on eight patients with diffuse brain injury due to closed cranial trauma in acute and chronic stages. All patients showed abnormalities in cerebral perfusion with decreases in perfusion, even in non-depicted regions on MRI, and the affected areas varied throughout the period of observation. Diffuse brain atrophy appeared in all patients. In some patients, diffuse brain atrophy was observed at or just after the time when the maximum number of lesions on SPECT were seen. The abnormalities in cerebral perfusion in cases of DBI might therefore be related to axonal degeneration and neuronal damage which causes diffuse brain atrophy. (author)

  3. Global Proteomic Analysis of Brain Tissues in Transient Ischemia Brain Damage in Rats

    Directory of Open Access Journals (Sweden)

    Jiann-Hwa Chen

    2015-05-01

    Full Text Available Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM and the control rats were separated using two-dimensional gel electrophoresis (2-DE to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT and cathepsin D (CATD, which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2 protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia

  4. Cingulate neglect in humans: disruption of contralesional reward learning in right brain damage.

    Science.gov (United States)

    Lecce, Francesca; Rotondaro, Francesca; Bonnì, Sonia; Carlesimo, Augusto; Thiebaut de Schotten, Michel; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2015-01-01

    Motivational valence plays a key role in orienting spatial attention. Nonetheless, clinical documentation and understanding of motivationally based deficits of spatial orienting in the human is limited. Here in a series of one group-study and two single-case studies, we have examined right brain damaged patients (RBD) with and without left spatial neglect in a spatial reward-learning task, in which the motivational valence of the left contralesional and the right ipsilesional space was contrasted. In each trial two visual boxes were presented, one to the left and one to the right of central fixation. In one session monetary rewards were released more frequently in the box on the left side (75% of trials) whereas in another session they were released more frequently on the right side. In each trial patients were required to: 1) point to each one of the two boxes; 2) choose one of the boxes for obtaining monetary reward; 3) report explicitly the position of reward and whether this position matched or not the original choice. Despite defective spontaneous allocation of attention toward the contralesional space, RBD patients with left spatial neglect showed preserved contralesional reward learning, i.e., comparable to ipsilesional learning and to reward learning displayed by patients without neglect. A notable exception in the group of neglect patients was L.R., who showed no sign of contralesional reward learning in a series of 120 consecutive trials despite being able of reaching learning criterion in only 20 trials in the ipsilesional space. L.R. suffered a cortical-subcortical brain damage affecting the anterior components of the parietal-frontal attentional network and, compared with all other neglect and non-neglect patients, had additional lesion involvement of the medial anterior cingulate cortex (ACC) and of the adjacent sectors of the corpus callosum. In contrast to his lateralized motivational learning deficit, L.R. had no lateral bias in the early phases of

  5. Effect of propolis consumption on hepatotoxicity and brain damage ...

    African Journals Online (AJOL)

    user

    2013-08-14

    Aug 14, 2013 ... histological changes. Also, CPF caused significant decrease in the activity of serum and brain ... animals by esophageal intubation, and propolis was obtained from. Superior Nutrition ... The change in extinction coefficient was ...

  6. The role of mitochondrial ROS in the aging brain.

    Science.gov (United States)

    Stefanatos, Rhoda; Sanz, Alberto

    2018-03-01

    The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging. © 2017 Federation of European Biochemical Societies.

  7. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  8. Improving reasoning skills in secondary history education by working memory training

    NARCIS (Netherlands)

    Ariës, R.J.; Groot, W.; Maassen van den Brink, H.

    2015-01-01

    Secondary school pupils underachieve in tests in which reasoning abilities are required. Brain-based training of working memory (WM) may improve reasoning abilities. In this study, we use a brain-based training programme based on historical content to enhance reasoning abilities in history courses.

  9. Renal ischemia reperfusion causes brain hippocampus oxidative ...

    African Journals Online (AJOL)

    Background: The acute kidney injury (AKI) may do damage to remote organs. Objective of the study is to investigate effect of seaweed extract (SE) on brain oxidative damage in kidney ischemia/reperfusion rats. Material and Methods: Animals were randomly divided into five groups. SE pre-fed to rats. Results: Kidney I/R ...

  10. Effects of alcohol intake on brain structure and function in non-alcohol-dependent drinkers

    OpenAIRE

    Bruin, Eveline Astrid de

    2005-01-01

    About 85% of the adult population in the Netherlands regularly drinks alcohol. Chronic excessive alcohol intake in alcohol-dependent individuals is known to have damaging effects on brain structure and function. Relatives of alcohol-dependent individuals display differences in brain function that are similar to those found in alcoholics, even if they have never been drinking alcohol. This suggests that brain damage in alcohol-dependent individuals is at least partly related to genetic factors...

  11. DNA damage in grasshopper Chorthippus brunneus (Orthoptera) hatchlings following paraquat exposure.

    Science.gov (United States)

    Augustyniak, M; Nocoń, Ł; Kędziorski, A; Łaszczyca, P; Sawczyn, T; Tarnawska, M; Zawisza-Raszka, A

    2015-04-01

    Comet assay was applied to study genotoxic damage induced by paraquat (PQ) in brain cells of Chorthippus brunneus (Insecta: Orthoptera) hatchlings. Percentage of the comet fluorescence in the tail (TDNA), length of the comet tail (TL) and Olive tail moment (OTM) were used for quantitative assessment of the DNA damage. Multiple regression analysis supplemented standard statistical elaboration of the results. Increasing PQ concentrations applied either directly to the brain cells suspension (10, 50, and 250 μM PQ final concentration--in vitro protocol) or indirectly (50, 250, and 1250 μM PQ final concentration--in vivo protocol) provoked significant increase of oxidative damage to DNA (higher median TDNA and OTM values). The damage increased with time of exposure (0, 5, 15, and 30 min) following in vitro application, but decreased in longer interval (3 vs 24 h) after in vivo administration of paraquat. On contrary, median TL values did not correlate with paraquat concentration irrespectively of the exposure protocol. Possible reason of this discrepancy in light of paraquat toxicity is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    Science.gov (United States)

    2010-06-01

    changes after blast injury. J. Trauma 56, 393–403. Murthy, J.M., Chopra, J.S., and Gulati, D.R. (1979). Subdural hematoma in an adult following a blast...neuronal damage), diffuse brain injury, and subdural hemorrhage. It is still controversial whether primary blast forces directly damage the brain, and if...emboli, leading to infarction (Guy et al., 2000a; Guy et al., 2000b). The most common types of TBI are diffuse axonal injury, contusion, and subdural

  13. Treatment of metastatic brain lesion

    Directory of Open Access Journals (Sweden)

    A. M. Zaytsev

    2015-01-01

    Full Text Available Objective. Increasing survival in patients with secondary brain damage, and identifying the factors of favorable and adverse prognosis.Material and method. In P. A. Hertsen Moscow Oncology Research Institute from 2007 to 2013 there were treated 268 patients with brain metastases. The mean age was 55.8 years (from 24 to 81 years. Metastases of colorectal cancer identified in 7.8%, cases of lung cancer in 34%, melanoma 9.3 %, breast cancer in 26%, kidney cancer in 11%, with non-identified primary tumor in 4.5%, other tumors accounted for 6.7%. Solitary metastasis was diagnosed in 164 (61,19% patients, oligometastasis (2-3 - 72 (26,87% patients with polymetastasis (more than 3 – 32 (11,94% patients. In 106 (39,55% of patients with brain metastases it was the only manifestation of the generalization process. To control the radical removal of the tumor in 93 (34,7% patients we used the method of fluorescence navigation (FN with the drug Alasens. In 66 (24,6% patients intraoperatively was held a session of photodynamic therapy (PDT. In 212 (79,1% cases, the removal of metastasis performed totally, 55 (20,9% patients stated Subtotal removal.Results. The observation period for the patients ranged from 3 to 79 months. Survival median among the entire group of patients with metastatic brain lesion was 12 months. Overall survival was significantly dependent on RPA class, the volume of postoperative treatment, histological type of primary tumor, number of intracerebral metastases and the timing of the relapse-free period.Conclusions. Factors that affects the overall survival are the features of the histology of the primary lesion, multiplicity of metastatic lesions, RPA class and the synchronous nature of the metastasis. The median of overall survival of patients who did not receive after surgical treatment of a particular type of therapy was only 4 months. If to use the combined treatment (surgical treatment with the irradiation of the whole brain median

  14. Influence of mild traumatic brain injury during pediatric stage on short-term memory and hippocampal apoptosis in adult rats.

    Science.gov (United States)

    Park, Mi-Sook; Oh, Hyean-Ae; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Sang-Hoon; Kim, Chang-Ju; Kim, Hyun-Bae; Kim, Hong

    2014-06-01

    Traumatic brain injury (TBI) is a leading cause of neurological deficit in the brain, which induces short- and long-term brain damage, cognitive impairment with/without structural alteration, motor deficits, emotional problems, and death both in children and adults. In the present study, we evaluated whether mild TBI in childhood causes persisting memory impairment until adulthood. Moreover, we investigated the influence of mild TBI on memory impairment in relation with hippocampal apoptosis. For this, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Male Sprague-Dawley rats were used in the experiments. The animals were randomly divided into two groups: sham-operation group and TBI-induction group. The mild TBI model was created with an electromagnetic contusion device activated at a velocity of 3.0 m/sec. The results showed that mild TBI during the pediatric stage significantly decreased memory retention. The numbers of TUNEL-positive and caspase-3-positive cells were increased in the TBI-induction group compared to those in the sham-operation group. Defective memory retention and apoptosis sustained up to the adult stage. The present results shows that mild TBI induces long-lasting cognitive impairment from pediatric to adult stages in rats through the high level of apoptosis. The finding of this study suggests that children with mild TBI may need intensive treatments for the reduction of long-lasting cognitive impairment by secondary neuronal damage.

  15. Primary gonadal damage following treatment of brain tumors in childhood

    International Nuclear Information System (INIS)

    Ahmed, S.R.; Shalet, S.M.; Campbell, R.H.; Deakin, D.P.

    1983-01-01

    Gonadal function was studied in two groups of children previously treated for medulloblastoma with surgery followed by postoperative craniospinal irradiation. In group 1 but not in group 2, the children also received adjuvant chemotherapy for one to two years. All children in group 1 received a nitrosourea (BCNU or CCNU), plus vincristine in four and procarbazine in three patients. The nine children in group 1 showed clinical and biochemical evidence of gonadal damage with elevated serum FSH concentrations and, in the boys, small testes for their stage of pubertal development. In group 2 (n . 8), each child had completed pubertal development normally, the boys had adult sized testes and the girls regular menses. Gonadotropin values were normal in all eight children. We conclude that nitrosoureas were responsible for the gonadal damage in the children in group 1, with procarbazine also contributing to the damage in the three children who received this drug. In view of the limited proved value of adjuvant chemotherapy with nitrosoureas in the treatment of medulloblastoma, recognition of this serious complication of cytotoxic drug therapy may necessitate reassessing in which subgroups of children with medulloblastoma the benefits of adjuvant chemotherapy outweigh the complications

  16. Review on herbal medicine on brain ischemia and reperfusion简

    Institute of Scientific and Technical Information of China (English)

    Nahid; Jivad; Zahra; Rabiei

    2015-01-01

    Brain ischemia and reperfusion is the leading cause of serious and long-range disability in the world. Clinically significant changes in central nervous system function are observed following brain ischemia and reperfusion. Stroke patients exhibit behavioral, cognitive,emotional, affective and electrophysiological changes during recovery phase. Brain injury by transient complete global brain ischemia or by transient incomplete brain ischemia afflicts a very large number of patients in the world with death or permanent disability. In order to reduce this damage, we must sufficiently understand the mechanisms involved in brain ischemia and reperfusion and repair to design clinically effective therapy.Cerebral ischemia and reperfusion is known to induce the generation of reactive oxygen species that can lead to oxidative damage of proteins, membrane lipids and nucleic acids.A decrease in tissue antioxidant capacity, an increase in lipid peroxidation as well as an increase in lipid peroxidation inhibitors have been demonstrated in several models of brain ischemia. This paper reviews the number of commonly used types of herbal medicines effective for the treatment of stroke. The aim of this paper was to review evidences from controlled studies in order to discuss whether herbal medicine can be helpful in the treatment of brain ischemia and reperfusion.

  17. Brains on video games.

    Science.gov (United States)

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  18. Molecular Mechanisms of Neonatal Brain Injury

    Directory of Open Access Journals (Sweden)

    Claire Thornton

    2012-01-01

    Full Text Available Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult.

  19. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ieradi, L.A. [Istituto per lo Studio degli Ecosistemi, CNR, Rome (Italy); Udroiu, I.; Chiuchiarelli, G.; Migliorini, D.; Cristaldi, M. [Universite La Sapienza, Dipt. di Biologia Animale e dell' Uomo, Rome (Italy); Tanzarella, C. [Roma Univ., Dipt. di Biologia (Italy)

    2006-07-01

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 {mu}T E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 {mu}T) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors

  20. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    International Nuclear Information System (INIS)

    Ieradi, L.A.; Udroiu, I.; Chiuchiarelli, G.; Migliorini, D.; Cristaldi, M.; Tanzarella, C.

    2006-01-01

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 μT E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 μT) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors