WorldWideScience

Sample records for seaplanes

  1. Seaplane Economics: A Quantitative Cost Comparison of Seaplanes and Land Planes for Sea Base Operations

    National Research Council Canada - National Science Library

    Denz, Thomas; Smith, Stephanie; Shrestha, Rajeev

    2007-01-01

    ...) operating from an air base and concept seaplanes operating from a Sea Base. Using published current and historical data a total cost per flight hour was determined for both land planes and seaplanes...

  2. Water-Pressure Distribution on Seaplane Float

    Science.gov (United States)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  3. Seaplane Economics: A Quantitative Cost Comparison of Seaplanes and Land Planes for Sea Base Operations

    National Research Council Canada - National Science Library

    Denz, Thomas; Smith, Stephanie; Shrestha, Rajeev

    2007-01-01

    .... This study examined whether there is an economic justification for using seaplanes, the method being a quantitative cost comparison between existing conventional fixed-wing aircraft (land planes...

  4. The Use of Seaplanes as an Advanced Weapon Systemxc

    Science.gov (United States)

    1988-09-01

    thousands of people. In the military field, the seaplane has been virtually phased out by most countries. It is the objective of this thesis to take a...support for land-or carrier-based aircraft, leading to the virtual abandonment of seaplanes. In this thesis, Platzer’s proposal (Reference 22) to use giant... Biblioteca do ITA Centro Tecnico Aeroespacial 12 225 - Sao Jose dos Campos - SP, Brasil 14. Director da EMBRAER Empresa Brasileira de Aeronautica Sao Jose

  5. 36 CFR 328.5 - Guidelines for seaplane use of project waters.

    Science.gov (United States)

    2010-07-01

    ... of project waters. 328.5 Section 328.5 Parks, Forests, and Public Property CORPS OF ENGINEERS... ADMINISTERED BY THE CHIEF OF ENGINEERS § 328.5 Guidelines for seaplane use of project waters. (a) All... power boats or vessels. (b) Seaplanes on project waters and lands in excess of 24 hours shall be...

  6. Water Pressure Distribution on a Twin-Float Seaplane

    Science.gov (United States)

    Thompson, F L

    1930-01-01

    This is the second of a series of investigations to determine water pressure distribution on various types of seaplane floats and hulls, and was conducted on a twin-float seaplane. It consisted of measuring water pressures and accelerations on a TS-1 seaplane during numerous landing and taxiing maneuvers at various speeds and angles. The results show that water pressures as great as 10 lbs. per sq. in.may occur at the step in various maneuvers and that pressures of approximately the same magnitude occur at the stern and near the bow in hard pancake landings with the stern way down. At the other parts of the float the pressures are less and are usually zero or slightly negative for some distance abaft the step. A maximum negative pressure of 0.87 lb. Per square inch was measured immediately abaft the step. The maximum positive pressures have a duration of approximately one-twentieth to one-hundredth second at any given location and are distributed over a very limited area at any particular instant.

  7. 33 CFR 162.15 - Manhasset Bay, N.Y.; seaplane restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Manhasset Bay, N.Y.; seaplane... Bay, N.Y.; seaplane restricted area. (a) The restricted area. An area in Manhasset Bay between the... line bearing 166°50′ true from latitude 40°50′17.337 N, longitude 73°43′03.877 W, which point is on the...

  8. Dynamic stability of a seaplane in takeoff

    CSIR Research Space (South Africa)

    Dala, L

    2015-01-01

    Full Text Available This research is based on the investigation into the dynamic stability associated with seaplanes during take-off. Various forces acting on a hydroplaning hull form have been empirically defined. Such empirical data have shown that under a certain...

  9. 36 CFR 13.1180 - Closed waters, motor vessels and seaplanes.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Closed waters, motor vessels... and Preserve Vessel Operating Restrictions § 13.1180 Closed waters, motor vessels and seaplanes. (a... Hugh Miller Inlet. (4) Waters within the Beardslee Island group (except the Beardslee Entrance), that...

  10. Appreciation and Determination of the Hydrodynamic Qualities of Seaplanes

    Science.gov (United States)

    1947-05-17

    satisfqctory handling on the ~ atar , — Tincyclso provida maans i’o:comperati~e evaluations “ofdifYeront seaplanes and direct correlations between model...Washington, D. C. PUBLISHED BY: (Same) SAH May 47 ABSTRACT: DOC OAM. Unclass. _yjL English _2A_ ATI- 12970 (None) TN-1290 (Same) f...MOtCT HO. TN-1290 PUBLISHED BY: (Same) ruaawtto AS1HCT KO. DATO May 󈧳 DOC OJU1. Unclass. coumar U.S. i. NOUAM English FAOB 54 numuTiOKS

  11. STANDARD METHODS FOR THE DETERMINATION OF THE RUNWAY AND SEAKEEPING CHARACTERISTICS OF A SEAPLANE ON THE WATERS DURING FULL-SCALE TESTS

    Directory of Open Access Journals (Sweden)

    A. A. Khokhlov

    2015-01-01

    Full Text Available One of the main stages of the creation of seaplanes and amphibious aircraft are flight certification tests, including tests to determine their landing and sailing characteristics on the water. In accordance with aviation regulations (part 21 certification work is carried out according to the methods of determination of compliance (MOC, which are the main organizational and methodological document for testing. The paper discusses the main provisions of the standard methods for the determination of the runway and sea keeping characteristics of seaplanes and amphibians on water areas with full-scale tests.

  12. Take-off Stability Characteristics of a 1/13-scale Model of the Consolidated Vultee Skate 7 Seaplane (TED No. NACA DE 338)

    Science.gov (United States)

    McKann, Robert; Coffee, Claude W.; Abrabian, Donald D.

    1949-01-01

    The take-off stability characteristics of a Consolidated Vultee Aircraft Corporation Skate 7 seaplane were determined in the Langley tank no. 2. Trim limits of stability, trim tracks, and elevator limits of stability are presented.

  13. A Transonic Wind-Tunnel Investigation of a Seaplane Configuration having a 40 Deg Sweptback Wing, TED No. NACA DE 387

    Science.gov (United States)

    Hieser, Gerald; Kudlacik, Louis; Gray, W. H.

    1956-01-01

    During the course of an aerodynamic loads investigation of a model of the Martin XP6M-1 flying boat in the.Langley 16-foot transonic tunnel, longitudinal-aerodynamic-performance information was obtained. Data were obtained at speeds up to and exceeding those anticipated for the seaplane in level flight and included the Mach number range from 0.84. to 1.09. The angle of attack was varied from -2deg to 6deg and the average Reynolds number, based on wing mean aerodyn&ic chord, was about 3.7 x 10(exp 6). This seaplane, although not designed to maintain level flight at Mach numbers beyond the force break, was found to have a transonic drag-rise coefficient of 0.0728, with an accompanying drag-rise Mach number of about 0.85. A large portion of the.drag rise and the relatively low value of drag-rise Mach number result from the axial coincidence of the maximum areas of the principal airplane components.

  14. Smooth-Water Landing Stability and Rough-Water Landing and Take-Off Behavior of a 1/13-Scale Model of the Consolidated Vultee Skate 7 Seaplane, TED No. NACA DE 338

    Science.gov (United States)

    McKann, Robert F.; Coffee, Claude W.; Arabian, Donald D.

    1949-01-01

    A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.

  15. Chart Supplements - Aeronautical Information Services Digital Products

    Data.gov (United States)

    Department of Transportation — The Chart Supplements are searchable by individual airport in PDF format. They contain data on public and joint use airports, seaplane bases, heliports, VFR airport...

  16. Lennusadam = Seaplane Harbour / Andrus Kõresaar

    Index Scriptorium Estoniae

    Kõresaar, Andrus, 1975-

    2013-01-01

    Tallinna Lennusadama vesilennukite angaaride rekonstrueerimisest, Eesti Meremuuseumi uue ekspositsiooni kujundusest. Autorid: Andrus Kõresaar, Olga Batuhtina, Raivo Kotov, Margit Argus, Margit Aule, Indrek Mikk (KOKO Arhitektid). Insener Karl Õiger. Arhitektuuriajaloolase Mart Kalmu ning arhitektuurikriitiku ja ESLi aastapreemiate žürii liikme Triin Ojari arvamused

  17. 14 CFR 25.529 - Hull and main float landing conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float landing conditions. 25... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Water Loads § 25.529 Hull and main.... (b) Unsymmetrical landing for hull and single float seaplanes. Unsymmetrical step, bow, and stern...

  18. Water Pressure Distribution on a Flying Boat Hull

    Science.gov (United States)

    Thompson, F L

    1931-01-01

    This is the third in a series of investigations of the water pressures on seaplane floats and hulls, and completes the present program. It consisted of determining the water pressures and accelerations on a Curtiss H-16 flying boat during landing and taxiing maneuvers in smooth and rough water.

  19. 14 CFR 23.529 - Hull and main float landing conditions.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float landing conditions. 23... Water Loads § 23.529 Hull and main float landing conditions. (a) Symmetrical step, bow, and stern... directed perpendicularly to the keel line. (b) Unsymmetrical landing for hull and single float seaplanes...

  20. 14 CFR 23.1399 - Riding light.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Riding light. 23.1399 Section 23.1399... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Lights § 23.1399 Riding light. (a) Each riding (anchor) light required for a seaplane or amphibian, must be installed so that it...

  1. Exploring glacial change - flying in the tailwind of the early 20th century Greenland explorers

    DEFF Research Database (Denmark)

    Bjork, A. A.; Kjaer, K. H.; Kjeldsen, K. K.

    In the early 1930s Greenlandic explorers and scientists began using airplanes as an effective mean of surveying and mapping the hitherto unknown and inaccessible lands. By replacing the dogsled and the drawing board with the seaplane and camera, huge areas could now be covered. Here in the 21st...

  2. 14 CFR 23.753 - Main float design.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Main float design. 23.753 Section 23.753... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Floats and Hulls § 23.753 Main float design. Each seaplane main float must meet the requirements of § 23.521. [Doc...

  3. 14 CFR 23.755 - Hulls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hulls. 23.755 Section 23.755 Aeronautics... Hulls § 23.755 Hulls. (a) The hull of a hull seaplane or amphibian of 1,500 pounds or more maximum weight must have watertight compartments designed and arranged so that the hull auxiliary floats, and...

  4. 14 CFR 25.1399 - Riding light.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Riding light. 25.1399 Section 25.1399... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Lights § 25.1399 Riding light. (a) Each riding (anchor) light required for a seaplane or amphibian must be installed so that it can— (1) Show a white light for...

  5. 14 CFR 23.527 - Hull and main float load factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull and main float load factors. 23.527... Water Loads § 23.527 Hull and main float load factors. (a) Water reaction load factors nw must be...=seaplane landing weight in pounds. (6) K1=empirical hull station weighing factor, in accordance with figure...

  6. VMLO: The Strategic, Operational and Tactical imperative for a Light Observation Squadron with the USMC

    Science.gov (United States)

    2012-06-01

    Improvised Explosive Device IFR Instrument Flight Rules IMC Instrument Meteorological Conditions IR Infrared ISAF International Security and...CAT 1 IFR Dual LOS/BLOS/USF/SATCOM Seaplane T/O < 2500 170 KIAS Cruise 25,000’ Service Ceiling Side Loading Cargo Door Minimum 8...overruns and uncertainty over what models of the F- 35 the Marines will use are jeopardizing their ability to provide organic CAS to units. 1. Rapid

  7. Tank Tests on Water Rudders for Float Seaplanes

    Science.gov (United States)

    1939-11-01

    a Jr.l;.’ to inveeti -atj the technique of the method . Cone luol one At a speod oi 10 knots In the flrat set o. tout a the yawing moments...required for maintaining a atrni ht aourse in a slduulnd. The whirling arm method can lvo iwauuremunta ol tho turning sireles obtainable with dl.ferent...ore« aa« paala« aaaaata.1,1’ It »aa aaaiawd that taa air an« « atar roadero aora« thron-h -h» aaao angle. .1« balance of too lorceo aa

  8. The United States Army Air Arm, April 1861 to April 1917

    Science.gov (United States)

    1985-01-01

    the enlisted men messing with a coast artillery company and Geiger living at the Fort.84 The base at Fort Kamehameha was far from satisfactory...station at Fort Kamehameha , and the fourth to the Canal Zone. The Philippine and Hawaiian companies were to have seaplane equip- ment but were to have no...fol- lowed by Capt. John B. Brooks and 49 men, who sailed on the March transport. They were sta- tioned temporarily at Fort Kamehameha while Curry

  9. RFB research and development in WIG vehicles

    Science.gov (United States)

    Fischer, Hanno

    An account is given of the development history of wing-in-ground (WIG) effect aircraft at a major West German aircraft manufacturer since 1964; these efforts have encompassed the development of the X113 and X114 'airfoilboat' WIG seaplanes. Attention is given to the aerodynamic efficiency and operational economy trends that result from up-scaling of WIG craft configurations to takeoff gross weights of the order of 300 tons. Also noted is the illustration of comparative efficiency among types of transportation, including WIG vehicles, given by the von Karman-Gabrielli diagram.

  10. Eesti Meremuuseumi hoone Lennusadamas = Estonian Maritime Museum in the Tallinn Seaplane Harbour

    Index Scriptorium Estoniae

    2015-01-01

    Eesti Meremuuseumi rekonstrueeritud vesilennukite angaarid Tallinnas Vesilennuki 6, valminud 2012. Eesti kultuurkapitali aastapreemia 2012. Arhitektid Raivo Kotov, Andrus Kõresaar, Indrek Mikk, Margit Aule, Tõnis Savi, Lea Laidra, Karis Kahr, Jelena Altmäe, Jaanus Männik (KOKO Arhitektid). Sisearhitektid Margit Argus, Andrus Kõresaar, Olga Batuhtina (KOKO Arhitektid). Raudbetoonkonstruktsioonide renoveerimisprojekt Karl Õiger, Heiki Onton (Tallinna Tehnikaülikool). Uued konstruktsioonid Neoprojekt

  11. Economic considerations for deep water Gulf of Mexico development

    International Nuclear Information System (INIS)

    Brown, R.; O'Sullivan, J.; Bayazitoglu, Y.O.

    1994-01-01

    This paper examines the economic drivers behind deep water development in the Gulf of Mexico. Capital costs are also examined versus water depth and required system. Cost categories are compared. The cost analysis was carried out by using the SEAPLAN computer program. The program is an expert system that identifies, conceptually defines, and economically compares technically feasible approaches for developing offshore oil and gas fields. The program's sizing logic and cost data base create physical and cost descriptions of systems representative of developments being planned in the deep water GOM. The examination was done separately for oil and gas developments. The material presented here is for only oil, it serves as a useful framework for viewing development economics and technology trends

  12. Estimation of Hydrodynamic Impact Loads and Pressure Distributions on Bodies Approximating Elliptical Cylinders with Special Reference to Water Landings of Helicopters

    Science.gov (United States)

    Schnitzer, Emanuel; Hathaway, Melvin E

    1953-01-01

    An approximate method for computing water loads and pressure distributions on lightly loaded elliptical cylinders during oblique water impacts is presented. The method is of special interest for the case of emergency water landings of helicopters. This method makes use of theory developed and checked for landing impacts of seaplanes having bottom cross sections of V and scalloped contours. An illustrative example is given to show typical results obtained from the use of the proposed method of computation. The accuracy of the approximate method was evaluated through comparison with limited experimental data for two-dimensional drops of a rigid circular cylinder at a trim of 0 degrees and a flight -path angle of 90 degrees. The applicability of the proposed formulas to the design of rigid hulls is indicated by the rough agreement obtained between the computed and experimental results. A detailed computational procedure is included as an appendix.

  13. Methodological fundamentals for increase of effectiveness designing both safety of operation of seaplanes and amphibians

    Directory of Open Access Journals (Sweden)

    А.А. Rasstrygin

    2005-04-01

    Full Text Available  On the basis of earlier developed methodology of estimation of local and general hydrodynamics of amphibious and water-landing aircrafts, some outcomes of numerical researches of hydrodynamic parameters and their analysis for a mild multi-purpose amphibian are adduced at different versions of interplay with water surface on take-off and landing modes.

  14. Comparison of Water-Load Distributions Obtained during Seaplane Landings with Bureau of Aeronautics Specifications. TED No. NACA 2413

    Science.gov (United States)

    Smiley, Robert F.; Haines, Gilbert A.

    1949-01-01

    Bureau of Aeronautics Design Specifications SS-IC-2 for water loads in sheltered water are compared with experimental water loads obtained during a full--scale landing investigation. This investigation was conducted with a JRS-1 flying boat which has a 20 degrees dead-rise V-bottom with a partial chine flare. The range of landing conditions included airspeeds between 88 and 126 feet per second, sinking speeds between 1.6 and 9.1 feet per second, flight angles less than 6 degrees, and trims between 2 degrees and 12 degrees. Landings were moderate and were made in calm water. Measurements were obtained of maximum over-all loads, maximum pitching moments, and pressure distributions. Maximum experimental loads include over-all load factors of 2g, moments of 128,000 pound-feet, and maximum local pressures greater than 40 pounds per square inch. Experimental over-all loads are approximately one-half the design values, while local pressures are of the same order as or larger than pressures calculated from specifications for plating, stringer, floor, and frame design. The value of this comparison is limited, to some extent, by the moderate conditions of the test and by the necessary simplifying assumptions used in comparing the specifications with the experimental loads.

  15. Preliminary Tests in the NACA Tank to Investigate the Fundamental Characteristics of Hydrofoils

    Science.gov (United States)

    Ward, Kenneth E.; Land, Norman S.

    1940-01-01

    This preliminary investigation was made to study the hydrodynamic properties and general behavior of simple hydrofoils. Six 5- by 30-inch plain, rectangular hydrofoils were tested in the NACA tank at various speeds, angles of attack and depths below the water surface. Two of the hydrofoils had sections representing the sections of commonly used airfoils, one had a section similar to one developed Guidoni for use with hydrofoil-equipped seaplane floats, and three had sections designed to have constant chordwise pressure distributions at given values of the lift coefficient for the purpose of delaying the speed at which cavitation begins. The experimental results are presented as curves of the lift and drag coefficients plotted against speed for the various angles of attack and depths for which the hydrofoils were tested. A number of derived curves are included for the purpose of better comparing the characteristics of the hydrofoils and to show the effects of depth. Several representative photographs show the development of cavitation on the the upper surface of the hydrofoils. The results indicate that properly designed hydrofoil sections will have excellent characteristics and that the speed at which cavitation occurs may be delayed to an appreciable extent by the use of suitable sections.

  16. The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly

    Science.gov (United States)

    Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.

    2016-02-01

    The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.

  17. Resistance and Spray Characteristics of a 1/13-Scale Model of the Consolidated Vultee Skate 7 Seaplane, TED No. NACA DE 338

    Science.gov (United States)

    McKann, Robert E.; Coffee, Claude W.; Arabian, Donald D.

    1949-01-01

    A model of a Consolidated Vultee Aircraft Corporation Skate 7 sea-plane:was tested in Langley tank no= 2. Resistance data, 'spray photographs, and underwater photographs,are given in this report without discussion.

  18. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    Science.gov (United States)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  19. Nüüdisaeg ja ajaloo ingel Tallinna Lennusadamas = The "Now-Time" and the angel of history in the Tallinn Seaplane Harbour / Carl-Dag Lige

    Index Scriptorium Estoniae

    Lige, Carl-Dag, 1982-

    2012-01-01

    Tallinna Lennusadama vesilennukite angaaridest, nende arhitektuurist, Eesti Meremuuseumi uuest ekspositsioonist. Projekt ja ekspositsiooni kujundus: KOKO Arhitektid. Raudbetoonkonstruktsioonide renoveerimisprojekt: Karl Õiger ja Heiki Onton, uued konstruktsioonid: Neoprojekt. Projekt: 2009-2010, ehitus 2010-2012

  20. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves

    Science.gov (United States)

    Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise

    2017-10-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.

  1. WASS: an open-source stereo processing pipeline for sea waves 3D reconstruction

    Science.gov (United States)

    Bergamasco, Filippo; Benetazzo, Alvise; Torsello, Andrea; Barbariol, Francesco; Carniel, Sandro; Sclavo, Mauro

    2017-04-01

    Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community. In fact, recent advances of both computer vision algorithms and CPU processing power can now allow the study of the spatio-temporal wave fields with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner so that the implementation of a 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well-tested software package that automates the steps from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS, a completely Open-Source stereo processing pipeline for sea waves 3D reconstruction, available at http://www.dais.unive.it/wass/. Our tool completely automates the recovery of dense point clouds from stereo images by providing three main functionalities. First, WASS can automatically recover the extrinsic parameters of the stereo rig (up to scale) so that no delicate calibration has to be performed on the field. Second, WASS implements a fast 3D dense stereo reconstruction procedure so that an accurate 3D point cloud can be computed from each stereo pair. We rely on the well-consolidated OpenCV library both for the image stereo rectification and disparity map recovery. Lastly, a set of 2D and 3D filtering techniques both on the disparity map and the produced point cloud are implemented to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface (examples are sun-glares, large white-capped areas, fog and water areosol, etc). Developed to be as fast as possible, WASS