WorldWideScience

Sample records for sea levels storm

  1. Adriatic storm surges and related cross-basin sea-level slope

    Science.gov (United States)

    Međugorac, Iva; Orlić, Mirko; Janeković, Ivica; Pasarić, Zoran; Pasarić, Miroslava

    2018-05-01

    Storm surges pose a severe threat to the northernmost cities of the Adriatic coast, with Venice being most prone to flooding. It has been noted that some flooding episodes cause significantly different effects along the eastern and western Adriatic coasts, with indications that the difference is related to cross-basin sea-level slope. The present study aims to determine specific atmospheric conditions under which the slope develops and to explore connection with increased sea level along the two coastlines. The analysis is based on sea-level time series recorded at Venice and Bakar over the 1984-2014 interval, from which 38 most intensive storm-surge episodes were selected, and their meteorological backgrounds (ERA-Interim) were studied. The obtained sea-level extremes were grouped into three categories according to their cross-basin sea-level slope: storm surges that slope strongly westward (W type), those that slope eastward (E type) and ordinary storm surges (O type). Results show that the slope is controlled by wind action only, specifically, by the wind component towards a particular coast and by the cross-basin shear of along-basin wind. Meteorological fields were used to force an oceanographic numerical model in order to confirm the empirically established connection between the atmospheric forcing and the slope. Finally, it has been found that the intensity of storm surges along a particular Adriatic coast is determined by an interplay of sea-level slopes in the along and cross-basin directions.

  2. Estimating Areas of Vulnerability: Sea Level Rise and Storm Surge Hazards in the National Parks

    Science.gov (United States)

    Caffrey, M.; Beavers, R. L.; Slayton, I. A.

    2013-12-01

    The University of Colorado Boulder in collaboration with the National Park Service has undertaken the task of compiling sea level change and storm surge data for 105 coastal parks. The aim of our research is to highlight areas of the park system that are at increased risk of rapid inundation as well as periodic flooding due to sea level rise and storms. This research will assist park managers and planners in adapting to climate change. The National Park Service incorporates climate change data into many of their planning documents and is willing to implement innovative coastal adaptation strategies. Events such as Hurricane Sandy highlight how impacts of coastal hazards will continue to challenge management of natural and cultural resources and infrastructure along our coastlines. This poster will discuss the current status of this project. We discuss the impacts of Hurricane Sandy as well as the latest sea level rise and storm surge modeling being employed in this project. In addition to evaluating various drivers of relative sea-level change, we discuss how park planners and managers also need to consider projected storm surge values added to sea-level rise magnitudes, which could further complicate the management of coastal lands. Storm surges occurring at coastal parks will continue to change the land and seascapes of these areas, with the potential to completely submerge them. The likelihood of increased storm intensity added to increasing rates of sea-level rise make predicting the reach of future storm surges essential for planning and adaptation purposes. The National Park Service plays a leading role in developing innovative strategies for coastal parks to adapt to sea-level rise and storm surge, whilst coastal storms are opportunities to apply highly focused responses.

  3. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    OpenAIRE

    Neumann, James; Ludwig, Lindsay; Verly, Caroleen; Emanuel, Kerry Andrew; Ravela, Srinivas

    2015-01-01

    This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam an area already known to be highly vulnerable to coastal risks. By combining a range of sea level rise scenarios for 2050 with the simulated storm surge level for the 100-year storm surge, we analyze permanently inundated lands and temporary flood zones. As is well-established in the literature, sea level rise will increase the risk of storms by raising the base sea level from which surg...

  4. Risks of Coastal Storm Surge and the Effect of Sea Level Rise in the Red River Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    James E. Neumann

    2015-05-01

    Full Text Available This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam. Permanently inundated lands and temporary flood zones are analyzed by combining sea level rise scenarios for 2050 with simulated storm surge levels for the 100-year event. Our analysis finds that sea level rise through 2050 could increase the effective frequency of the current 100-year storm surge, which is associated with a storm surge of roughly five meters, to once every 49 years. Approximately 10% of the Hanoi region’s GDP is vulnerable to permanent inundation due to sea level rise, and more than 40% is vulnerable to periodic storm surge damage consistent with the current 100-year storm. We conclude that coastal adaptation measures, such as a planned retreat from the sea, and construction of a more substantial seawall and dike system, are needed to respond to these threats.

  5. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida

    Science.gov (United States)

    Frazier, Tim G.; Wood, Nathan; Yarnal, Brent; Bauer, Denise H.

    2010-01-01

    Although the potential for hurricanes under current climatic conditions continue to threaten coastal communities, there is concern that climate change, specifically potential increases in sea level, could influence the impacts of future hurricanes. To examine the potential effect of sea level rise on community vulnerability to future hurricanes, we assess variations in socioeconomic exposure in Sarasota County, FL, to contemporary hurricane storm-surge hazards and to storm-surge hazards enhanced by sea level rise scenarios. Analysis indicates that significant portions of the population, economic activity, and critical facilities are in contemporary and future hurricane storm-surge hazard zones. The addition of sea level rise to contemporary storm-surge hazard zones effectively causes population and asset (infrastructure, natural resources, etc) exposure to be equal to or greater than what is in the hazard zone of the next higher contemporary Saffir–Simpson hurricane category. There is variability among communities for this increased exposure, with greater increases in socioeconomic exposure due to the addition of sea level rise to storm-surge hazard zones as one progresses south along the shoreline. Analysis of the 2050 comprehensive land use plan suggests efforts to manage future growth in residential, economic and infrastructure development in Sarasota County may increase societal exposure to hurricane storm-surge hazards.

  6. Modelling sea level rise impacts on storm surges along US coasts

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; Strauss, Benjamin H; Zervas, Chris E

    2012-01-01

    Sound policies for protecting coastal communities and assets require good information about vulnerability to flooding. Here, we investigate the influence of sea level rise on expected storm surge-driven water levels and their frequencies along the contiguous United States. We use model output for global temperature changes, a semi-empirical model of global sea level rise, and long-term records from 55 nationally distributed tidal gauges to develop sea level rise projections at each gauge location. We employ more detailed records over the period 1979–2008 from the same gauges to elicit historic patterns of extreme high water events, and combine these statistics with anticipated relative sea level rise to project changing local extremes through 2050. We find that substantial changes in the frequency of what are now considered extreme water levels may occur even at locations with relatively slow local sea level rise, when the difference in height between presently common and rare water levels is small. We estimate that, by mid-century, some locations may experience high water levels annually that would qualify today as ‘century’ (i.e., having a chance of occurrence of 1% annually) extremes. Today’s century levels become ‘decade’ (having a chance of 10% annually) or more frequent events at about a third of the study gauges, and the majority of locations see substantially higher frequency of previously rare storm-driven water heights in the future. These results add support to the need for policy approaches that consider the non-stationarity of extreme events when evaluating risks of adverse climate impacts. (letter)

  7. Assessing economic impact of storm surge under projected sea level rise scenarios

    Science.gov (United States)

    Del Angel, D. C.; Yoskowitz, D.

    2017-12-01

    Global sea level is expected to rise 0.2-2m by the year 2100. Rising sea level is expected to have a number of impacts such as erosion, saltwater intrusion, and decline in coastal wetlands; all which have direct and indirect socio-economic impact to coastal communities. By 2050, 25% of the world's population will reside within flood-prone areas. These statistics raise a concern for the economic cost that sea level and flooding has on the growing coastal communities. Economic cost of storm surge inundation and rising seas may include loss or damage to public facilities and infrastructure that may become temporarily inaccessible, as well as disruptions to business and services. This goal of this project is to assess economic impacts of storms under four SLR scenarios including low, intermediate-low, intermediate-high, and high (0.2m, 0.5m, 1.2m and 2m, respectively) in the Northern Gulf of Mexico region. To assess flooding impact on communities from storm surge, this project utilizes HAZUS-MH software - a Geographic Information System (GIS)-based modeling tool developed by the Federal Emergency Management Agency - to estimate physical, economic, and social impacts of natural disasters such as floods, earthquakes and hurricanes. The HAZUS database comes integrated with aggregate and site specific inventory which includes: demographic data, general building stock, agricultural statistics, vehicle inventory, essential facilities, transportation systems, utility systems (among other sensitive facilities). User-defined inundation scenarios will serve to identify assets at risk and damage estimates will be generated using the Depth Damage Function included in the HAZUS software. Results will focus on 3 communities in the Gulf and highlight changes in storm flood impact. This approach not only provides a method for economic impact assessment but also begins to create a link between ecosystem services and natural and nature-based features such as wetlands, beaches and dunes

  8. Extreme storms, sea level rise, and coastal change: implications for infrastructure reliability in the Gulf of Mexico

    Science.gov (United States)

    Anarde, K.; Kameshwar, S.; Irza, N.; Lorenzo-Trueba, J.; Nittrouer, J. A.; Padgett, J.; Bedient, P. B.

    2016-12-01

    Predicting coastal infrastructure reliability during hurricane events is important for risk-based design and disaster planning, such as delineating viable emergency response routes. Previous research has focused on either infrastructure vulnerability to coastal flooding or the impact of changing sea level and landforms on surge dynamics. Here we investigate the combined impact of sea level, morphology, and coastal flooding on the reliability of highway bridges - the only access points between barrier islands and mainland communities - during future extreme storms. We forward model coastal flooding for static projections of geomorphic change using ADCIRC+SWAN. First-order parameters that are adjusted include sea level and elevation. These are varied for each storm simulation to evaluate relative impact on the reliability of bridges surrounding Freeport, TX. Simulated storms include both synthetic and historical events, which are classified by intensity using the storm's integrated kinetic energy, a metric for surge generation potential. Reliability is estimated through probability of failure - given wave and surge loads - and time inundated. Findings include that: 1) bridge reliability scales inversely with surge height, and 2) sea level rise reduces bridge reliability due to a monotonic increase in surge height. The impact of a shifting landscape on bridge reliability is more complex: barrier island rollback can increase or decrease inundation times for storms of different intensity due to changes in wind-setup and back-barrier bay interactions. Initial storm surge readily inundates the coastal landscape during large intensity storms, however the draining of inland bays following storm passage is significantly impeded by the barrier. From a coastal engineering standpoint, we determine that to protect critical infrastructure, efforts now implemented that nourish low-lying barriers may be enhanced by also armoring back-bay coastlines and elevating bridge approach

  9. Atmospheric circulation and storm events in the Black Sea and Caspian Sea

    Science.gov (United States)

    Surkova, Galina V.; Arkhipkin, Victor S.; Kislov, Alexander V.

    2013-12-01

    Extreme sea storms are dangerous and a potential source of damage. In this study, we examine storm events in the Black Sea and Caspian Sea, the atmosphere circulation patterns associated with the sea storm events, and their changes in the present (1961-2000) and future (2046-2065) climates. A calendar of storms for the present climate is derived from results of wave model SWAN (Simulating WAves Nearshore) experiments. On the basis of this calendar, a catalog of atmospheric sea level pressure (SLP) fields was prepared from the NCEP/NCAR reanalysis dataset for 1961-2000. The SLP fields were subjected to a pattern recognition algorithm which employed empirical orthogonal decomposition followed by cluster analysis. The NCEP/NCAR reanalysis data is used to evaluate the occurring circulation types (CTs) within the ECHAM5-MPI/OM Atmosphere and Ocean Global Circulation Model (AOGCM) for the period 1961-2000. Our analysis shows that the ECHAM5-MPI/OM model is capable of reproducing circulation patterns for the storm events. The occurrence of present and future ECHAM5-MPI/OM CTs is investigated. It is shown that storm CTs are expected to occur noticeably less frequently in the middle of the 21st century.

  10. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK.

    Science.gov (United States)

    Haigh, Ivan D; Wadey, Matthew P; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J; Brown, Jennifer M; Horsburgh, Kevin; Gouldby, Ben

    2016-12-06

    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915-2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (sea level events from happening within 4-8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective.

  11. A geospatial dataset for U.S. hurricane storm surge and sea-level rise vulnerability: Development and case study applications

    Directory of Open Access Journals (Sweden)

    Megan C. Maloney

    2014-01-01

    Full Text Available The consequences of future sea-level rise for coastal communities are a priority concern arising from anthropogenic climate change. Here, previously published methods are scaled up in order to undertake a first pass assessment of exposure to hurricane storm surge and sea-level rise for the U.S. Gulf of Mexico and Atlantic coasts. Sea-level rise scenarios ranging from +0.50 to +0.82 m by 2100 increased estimates of the area exposed to inundation by 4–13% and 7–20%, respectively, among different Saffir-Simpson hurricane intensity categories. Potential applications of these hazard layers for vulnerability assessment are demonstrated with two contrasting case studies: potential exposure of current energy infrastructure in the U.S. Southeast and exposure of current and future housing along both the Gulf and Atlantic Coasts. Estimates of the number of Southeast electricity generation facilities potentially exposed to hurricane storm surge ranged from 69 to 291 for category 1 and category 5 storms, respectively. Sea-level rise increased the number of exposed facilities by 6–60%, depending on the sea-level rise scenario and the intensity of the hurricane under consideration. Meanwhile, estimates of the number of housing units currently exposed to hurricane storm surge ranged from 4.1 to 9.4 million for category 1 and category 4 storms, respectively, while exposure for category 5 storms was estimated at 7.1 million due to the absence of landfalling category 5 hurricanes in the New England region. Housing exposure was projected to increase 83–230% by 2100 among different sea-level rise and housing scenarios, with the majority of this increase attributed to future housing development. These case studies highlight the utility of geospatial hazard information for national-scale coastal exposure or vulnerability assessment as well as the importance of future socioeconomic development in the assessment of coastal vulnerability.

  12. Can barrier islands survive sea level rise? Tidal inlets versus storm overwash

    Science.gov (United States)

    Nienhuis, J.; Lorenzo-Trueba, J.

    2017-12-01

    Barrier island response to sea level rise depends on their ability to transgress and move sediment to the back barrier, either through flood-tidal delta deposition or via storm overwash. Our understanding of these processes over decadal to centennial timescales, however, is limited and poorly constrained. We have developed a new barrier inlet environment (BRIE) model to better understand the interplay between tidal dynamics, overwash fluxes, and sea-level rise on barrier evolution. The BRIE model combines existing overwash and shoreface formulations [Lorenzo-Trueba and Ashton, 2014] with alongshore sediment transport, inlet stability [Escoffier, 1940], inlet migration and flood-tidal delta deposition [Nienhuis and Ashton, 2016]. Within BRIE, inlets can open, close, migrate, merge with other inlets, and build flood-tidal delta deposits. The model accounts for feedbacks between overwash and inlets through their mutual dependence on barrier geometry. Model results suggest that when flood-tidal delta deposition is sufficiently large, barriers require less storm overwash to transgress and aggrade during sea level rise. In particular in micro-tidal environments with asymmetric wave climates and high alongshore sediment transport, tidal inlets are effective in depositing flood-tidal deltas and constitute the majority of the transgressive sediment flux. Additionally, we show that artificial inlet stabilization (via jetty construction or maintenance dredging) can make barrier islands more vulnerable to sea level rise. Escoffier, F. F. (1940), The Stability of Tidal Inlets, Shore and Beach, 8(4), 114-115. Lorenzo-Trueba, J., and A. D. Ashton (2014), Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model, J. Geophys. Res. Earth Surf., 119(4), 779-801, doi:10.1002/2013JF002941. Nienhuis, J. H., and A. D. Ashton (2016), Mechanics and rates of tidal inlet migration: Modeling and application to

  13. Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

    Science.gov (United States)

    Krien, Yann; Dudon, Bernard; Roger, Jean; Arnaud, Gael; Zahibo, Narcisse

    2017-09-01

    In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100 % in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.

  14. Coastal Flooding in Florida's Big Bend Region with Application to Sea Level Rise Based on Synthetic Storms Analysis

    Directory of Open Access Journals (Sweden)

    Scott C. Hagen Peter Bacopoulos

    2012-01-01

    Full Text Available Flooding is examined by comparing maximum envelopes of water against the 0.2% (= 1-in-500-year return-period flooding surface generated as part of revising the Federal Emergency Management Agency¡¦s flood insurance rate maps for Franklin, Wakulla, and Jefferson counties in Florida¡¦s Big Bend Region. The analysis condenses the number of storms to a small fraction of the original 159 used in production. The analysis is performed by assessing which synthetic storms contributed to inundation extent (the extent of inundation into the floodplain, coverage (the overall surface area of the inundated floodplain and the spatially variable 0.2% flooding surface. The results are interpreted in terms of storm attributes (pressure deficit, radius to maximum winds, translation speed, storm heading, and landfall location and the physical processes occurring within the natural system (storms surge and waves; both are contextualized against existing and new hurricane scales. The approach identifies what types of storms and storm attributes lead to what types of inundation, as measured in terms of extent and coverage, in Florida¡¦s Big Bend Region and provides a basis in the identification of a select subset of synthetic storms for studying the impact of sea level rise. The sea level rise application provides a clear contrast between a dynamic approach versus that of a static approach.

  15. Reconnaissance level study Mississippi storm surge barrier

    NARCIS (Netherlands)

    Van Ledden, M.; Lansen, A.J.; De Ridder, H.A.J.; Edge, B.

    2012-01-01

    This paper reports a reconnaissance level study of a storm surge barrier in the Mississippi River. Historical hurricanes have shown storm surge of several meters along the Mississippi River levees up to and upstream of New Orleans. Future changes due to sea level rise and subsidence will further

  16. Great Britain Storm Surge Modeling for a 10,000-Year Stochastic Catalog with the Effect of Sea Level Rise

    Science.gov (United States)

    Keshtpoor, M.; Carnacina, I.; Blair, A.; Yablonsky, R. M.

    2017-12-01

    Storm surge caused by Extratropical Cyclones (ETCs) has significantly impacted not only the life of private citizens but also the insurance and reinsurance industry in Great Britain. The storm surge risk assessment requires a larger dataset of storms than the limited recorded historical ETCs. Thus, historical ETCs were perturbed to generate a 10,000-year stochastic catalog that accounts for surge-generating ETCs in the study area with return periods from one year to 10,000 years. Delft3D-Flexible Mesh hydrodynamic model was used to numerically simulate the storm surge along the Great Britain coastline. A nested grid technique was used to increase the simulation grid resolution up to 200 m near the highly populated coastal areas. Coarse and fine mesh models were calibrated and validated using historical recorded water elevations. Then, numerical simulations were performed on a 10,000-year stochastic catalog. The 50-, 100-, and 500-year return period maps were generated for Great Britain coastal areas. The corresponding events with return periods of 50-, 100-, and 500-years in Humber Bay and Thames River coastal areas were identified, and simulated with the consideration of projected sea level rises to reveal the effect of rising sea levels on the inundation return period maps in two highly-populated coastal areas. Finally, the return period of Storm Xaver (2013) was determined with and without the effect of rising sea levels.

  17. The impact of waves and sea spray on modelling storm track and development

    Directory of Open Access Journals (Sweden)

    Lichuan Wu

    2015-09-01

    Full Text Available In high wind speed conditions, sea spray generated by intensely breaking waves greatly influences the wind stress and heat fluxes. Measurements indicate that the drag coefficient decreases at high wind speeds. The sea spray generation function (SSGF, an important term of wind stress parameterisation at high wind speeds, is usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave-state-dependent SSGF and wave-age-dependent Charnock number into a high wind speed–wind stress parameterisation. The newly proposed wind stress parameterisation and sea spray heat flux parameterisation were applied to an atmosphere–wave coupled model to study the mid-latitude storm development of six storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterisation can reduce wind speed simulation errors in the high wind speed range. Considering only sea spray impact on wind stress (and not on heat fluxes will intensify the storms (in terms of minimum sea level pressure and maximum wind speed, but has little effect on the storm tracks. Considering the impact of sea spray on heat fluxes only (not on wind stress can improve the model performance regarding air temperature, but it has little effect on the storm intensity and storm track performance. If the impact of sea spray on both the wind stress and heat fluxes is taken into account, the model performs best in all experiments for minimum sea level pressure, maximum wind speed and air temperature.

  18. Sea level during storm surges as seen in tide-gauge records along the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sundar, D.; Shankar, D.; Shetye, S.R.

    and crossed the north Orissa coast later that day; it weakened and moved westward subsequent to landfall. Sea-level variations due to surges triggered by storm winds form a noise superimposed on the highly periodic tides, which have astronomical origins.... In the next section we describe the analysis used to 1326 CURRENT SCIENCE, VOL. 77, NO. 10, 25 NOVEMBER 1999 COMPUTATIONAL ENGINEERING SCIENCE Figure 1b. Astronomical tide and dehyphenminustided sea level during Event 1. The dark blue vertical lines...

  19. An ensemble study of extreme storm surge related water levels in the North Sea in a changing climate

    Directory of Open Access Journals (Sweden)

    A. Sterl

    2009-09-01

    Full Text Available The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.

  20. Past and future changes in extreme sea levels and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Lawe, J.A.; Woodworth, P.L.; Knutson, T.; McDonald, R.E.; Mclnnes, K.L.; Woth, K.; Von Storch, H.; Wolf, J.; Swail, V.; Bernier, N.B.; Gulev, S.; Horsburgh, K.J.; Unnikrishnan, A.S.; Hunter, J.R.; Weisse, R.

    of Extreme Sea Level 11.3.1 An Introduction to Storms Both mid-latitude and tropical storms are associated with extremes of sea level. Storm surges are generated by low atmospheric pressure and intense winds over the ocean. The latter also cause high wave... timescales, extremes and mean-sea-level change are both major factors in determining coastal evolution including the development of coastal ecosystems. It will be seen below that, although it is difficult to determine how mean sea level has changed...

  1. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios

    Science.gov (United States)

    Jones, Jeanne M.; Henry, Kevin; Wood, Nathan J.; Ng, Peter; Jamieson, Matthew

    2017-01-01

    The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.

  2. HERA: A dynamic web application for visualizing community exposure to flood hazards based on storm and sea level rise scenarios

    Science.gov (United States)

    Jones, Jeanne M.; Henry, Kevin; Wood, Nathan; Ng, Peter; Jamieson, Matthew

    2017-12-01

    The Hazard Exposure Reporting and Analytics (HERA) dynamic web application was created to provide a platform that makes research on community exposure to coastal-flooding hazards influenced by sea level rise accessible to planners, decision makers, and the public in a manner that is both easy to use and easily accessible. HERA allows users to (a) choose flood-hazard scenarios based on sea level rise and storm assumptions, (b) appreciate the modeling uncertainty behind a chosen hazard zone, (c) select one or several communities to examine exposure, (d) select the category of population or societal asset, and (e) choose how to look at results. The application is designed to highlight comparisons between (a) varying levels of sea level rise and coastal storms, (b) communities, (c) societal asset categories, and (d) spatial scales. Through a combination of spatial and graphical visualizations, HERA aims to help individuals and organizations to craft more informed mitigation and adaptation strategies for climate-driven coastal hazards. This paper summarizes the technologies used to maximize the user experience, in terms of interface design, visualization approaches, and data processing.

  3. Influence of Sea-Level Rise and Storms on Soil Accretion Rates in the Mangrove Forests of Everglades National Park, USA

    Science.gov (United States)

    Smoak, J. M.; Breithaupt, J.; Smith, T., III; Sanders, C. J.; Peterson, L. C.

    2014-12-01

    Mangrove forests provide a range of valuable ecosystem services including sequestering large quantities of organic carbon (OC) in their soils at rates higher than other forests. Whether or not mangrove soils continue to be a sink for OC will be determined by the mangrove ecosystems' response to climate change-induced stressors. The threats of rising sea level outpacing mangrove forest soil accretion and increased wave energy associated with this rise may become the primary climate change-induced stressors on mangrove ecosystems. The threat from wave energy is amplified during storm events, which could increasingly damage mangrove forests along the coastline. However, storms may enhance accretion rates at some sites due to delivery of storm surge material, which could increase the system's ability to keep pace with sea-level rise (SLR). To investigate these processes we measure soil accretion rates over the last 100 years (via 210Pb dating) within the mangrove forests of Everglades National Park, which are situated within the largest contiguous mangrove forest in North America. Accretion rates range from 2 to 2.8 mm per year for sites within 10 km of the Gulf of Mexico. These rates match (within error) or exceed SLR over the last 100 years. Sites farther inland than 10 km have slightly lower accretion rates. Throughout the system organic matter accumulation is the most important source material contributing to accretion. The more seaward sites also show an important contribution from carbonate material. Soil cores from the most seaward sites exhibited visual laminations and Ca peaks (determined via x-ray fluorescence). These are indicators of storm surge deposits. While higher sea level might produce more damage and loss of mangrove forest along open water (e.g., Gulf of Mexico), our findings suggest some sites will have enhanced accretion rates due to supplementation with storm surge material.

  4. Projecting future sea level

    Science.gov (United States)

    Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard

    2006-01-01

    California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future

  5. The exposure of Sydney (Australia) to earthquake-generated tsunamis, storms and sea level rise: a probabilistic multi-hazard approach.

    Science.gov (United States)

    Dall'Osso, F; Dominey-Howes, D; Moore, C; Summerhayes, S; Withycombe, G

    2014-12-10

    Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney.

  6. Using Direct Policy Search to Identify Robust Strategies in Adapting to Uncertain Sea Level Rise and Storm Surge

    Science.gov (United States)

    Garner, G. G.; Keller, K.

    2017-12-01

    Sea-level rise poses considerable risks to coastal communities, ecosystems, and infrastructure. Decision makers are faced with deeply uncertain sea-level projections when designing a strategy for coastal adaptation. The traditional methods have provided tremendous insight into this decision problem, but are often silent on tradeoffs as well as the effects of tail-area events and of potential future learning. Here we reformulate a simple sea-level rise adaptation model to address these concerns. We show that Direct Policy Search yields improved solution quality, with respect to Pareto-dominance in the objectives, over the traditional approach under uncertain sea-level rise projections and storm surge. Additionally, the new formulation produces high quality solutions with less computational demands than the traditional approach. Our results illustrate the utility of multi-objective adaptive formulations for the example of coastal adaptation, the value of information provided by observations, and point to wider-ranging application in climate change adaptation decision problems.

  7. SeaWiFS: North Pacific Storm

    Science.gov (United States)

    2002-01-01

    An extratropical storm can be seen swirling over the North Pacific just south of Alaska. This SeaWiFS image was collected yesterday at 23:20 GMT. Credit: Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  8. Estimating sea-level allowances for Atlantic Canada under conditions of uncertain sea-level rise

    Directory of Open Access Journals (Sweden)

    B. Greenan

    2015-03-01

    Full Text Available This paper documents the methodology of computing sea-level rise allowances for Atlantic Canada in the 21st century under conditions of uncertain sea-level rise. The sea-level rise allowances are defined as the amount by which an asset needs to be raised in order to maintain the same likelihood of future flooding events as that site has experienced in the recent past. The allowances are determined by combination of the statistics of present tides and storm surges (storm tides and the regional projections of sea-level rise and associated uncertainty. Tide-gauge data for nine sites from the Canadian Atlantic coast are used to derive the scale parameters of present sea-level extremes using the Gumbel distribution function. The allowances in the 21st century, with respect to the year 1990, were computed for the Intergovernmental Panel on Climate Change (IPCC A1FI emission scenario. For Atlantic Canada, the allowances are regionally variable and, for the period 1990–2050, range between –13 and 38 cm while, for the period 1990–2100, they range between 7 and 108 cm. The negative allowances in the northern Gulf of St. Lawrence region are caused by land uplift due to glacial isostatic adjustment (GIA.

  9. Air-sea interactions during strong winter extratropical storms

    Science.gov (United States)

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  10. Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016

    Science.gov (United States)

    Talke, S. A.; Kemp, A.; Woodruff, J. D.

    2017-12-01

    Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.

  11. Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea

    Science.gov (United States)

    Mel, Riccardo; Lionello, Piero

    2014-12-01

    In the Adriatic Sea, storm surges present a significant threat to Venice and to the flat coastal areas of the northern coast of the basin. Sea level forecast is of paramount importance for the management of daily activities and for operating the movable barriers that are presently being built for the protection of the city. In this paper, an EPS (ensemble prediction system) for operational forecasting of storm surge in the northern Adriatic Sea is presented and applied to a 3-month-long period (October-December 2010). The sea level EPS is based on the HYPSE (hydrostatic Padua Sea elevation) model, which is a standard single-layer nonlinear shallow water model, whose forcings (mean sea level pressure and surface wind fields) are provided by the ensemble members of the ECMWF (European Center for Medium-Range Weather Forecasts) EPS. Results are verified against observations at five tide gauges located along the Croatian and Italian coasts of the Adriatic Sea. Forecast uncertainty increases with the predicted value of the storm surge and with the forecast lead time. The EMF (ensemble mean forecast) provided by the EPS has a rms (root mean square) error lower than the DF (deterministic forecast), especially for short (up to 3 days) lead times. Uncertainty for short lead times of the forecast and for small storm surges is mainly caused by uncertainty of the initial condition of the hydrodynamical model. Uncertainty for large lead times and large storm surges is mainly caused by uncertainty in the meteorological forcings. The EPS spread increases with the rms error of the forecast. For large lead times the EPS spread and the forecast error substantially coincide. However, the EPS spread in this study, which does not account for uncertainty in the initial condition, underestimates the error during the early part of the forecast and for small storm surge values. On the contrary, it overestimates the rms error for large surge values. The PF (probability forecast) of the EPS

  12. Historical changes in the Mississippi-Alabama barrier islands and the roles of extreme storms, sea level, and human activities

    Science.gov (United States)

    Morton, Robert A.

    2007-01-01

    westward sediment transport by alongshore currents, and Cat Island is being reshaped as it adjusts to post-formation changes in wave and current patterns associated with deposition of the St. Bernard lobe of the Mississippi delta. The principal causes of barrier island land loss are frequent intense storms, a relative rise in sea level, and a deficit in the sediment budget. The only factor that has a historical trend that coincides with the progressive increase in rates of land loss is the progressive reduction in sand supply associated with nearly simultaneous deepening of channels dredged across the outer bars of the three tidal inlets maintained for deep-draft shipping. Neither rates of relative sea level rise nor storm parameters have long-term historical rends that match the increased rates of land loss since the mid 1800s. The historical rates of relative sea level rise in the northern Gulf of Mexico have been relatively constant and storm frequencies and intensities occur in multidecal cycles. However, the most recent land loss accelerations likely related to the increased storm activity since 1995. Considering the predicted trends for storms and sea level related to global warming, it is clear that the barrier islands will continue to lose land area at a rapid rate without a reversal in trend of at least one of the causal factors. The reduction in sand supply related to disruption of the alongshore sediment transport system is the only factor contributing to land loss that can be managed directly. This can be accomplished by placing dredged material so that the adjacent barrier island shores revive it for island nourishment and rebuilding.

  13. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait

    Science.gov (United States)

    Wei, Jianfen; Zhang, Xiangdong; Wang, Zhaomin

    2018-05-01

    Studies have indicated regime shifts in atmospheric circulation, and associated changes in extratropical storm tracks and Arctic storm activity, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and cyclone activity on Arctic sea ice export through Fram Strait by using a high resolution global ocean-sea ice model, MITgcm-ECCO2. The model was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter (in this study winter is defined as October-March and summer as April-September) storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  14. Arctic Storms and Their Influence on Surface Climate in the Chukchi-Beaufort Seas

    Science.gov (United States)

    Yang, Y.; Zhang, X.; Rinke, A.; Zhang, J.

    2017-12-01

    Increases in the frequency and intensity of Arctic storms and resulting weather hazards may endanger the offshore environment, coastal community, and energy infrastructure in the Arctic as sea ice retreats. Advancing ability to identify fine-scale variations in surface climate produced by progressively stronger storm would be extremely helpful to resources management and sustainable development for coastal community. In this study, we analyzed the storms and their impacts on surface climate over the Beaufort-Chukchi seas by employing the date sets from both the hindcast simulations of the coupled Arctic regional climate model HIRHAM-NAOSIM and the recently developed Chukchi-Beaufort High-resolution Atmospheric Reanalysis (CBHAR). Based on the characteristics of spatial pattern and temporal variability of the Arctic storm activity, we categorized storms to three groups with their different origins: the East Siberia Sea, Alaska and the central Arctic Ocean. The storms originating from the central Arctic Ocean have the strongest intensity in winter with relatively less storm number. Storms traveling from Alaska to the Beaufort Sea most frequently occurred in autumn with weaker intensity. A large portion of storms originated from the East Siberia Sea region in summer. Further statistical analysis suggests that increase in surface air temperature and wind speed could be attributed to the increased frequency of storm occurrence in autumn (September to November) along the continental shelf in the Beaufort Sea.

  15. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    Science.gov (United States)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  16. Impacts of Changed Extratropical Storm Tracks on Arctic Sea Ice Export through Fram Strait

    Science.gov (United States)

    Wei, J.; Zhang, X.; Wang, Z.

    2017-12-01

    Studies have indicated a poleward shift of extratropical storm tracks and intensification of Arctic storm activities, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of dynamic effect on changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and activities on Arctic sea ice export through Fram Strait through ocean-sea ice model simulations. The model employed is the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm), which was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  17. Changing Sediment Dynamics of a Mature Backbarrier Salt Marsh in Response to Sea-Level Rise and Storm Events

    Directory of Open Access Journals (Sweden)

    Mark Schuerch

    2018-05-01

    Full Text Available Our study analyses the long-term development of a tidal backbarrier salt marsh in the northern German Wadden Sea. The focus lies on the development of the high-lying, inner, mature part of the salt marsh, which shows a striking history of changing sediment dynamics. The analysis of high-resolution old aerial photographs and sampled sediment cores suggests that the mature part of the marsh was shielded by a sand barrier from the open sea for decades. The supply with fine-grained sediments occurred from the marsh inlet through the tidal channels to the inner salt marsh. Radiometric dating (210Pb and 137Cs reveals that the sedimentation pattern changed fundamentally around the early-mid 1980s when the sedimentation rates increased sharply. By analyzing the photographic evidence, we found that the sand barrier was breached during storm events in the early 1980s. As a result, coarse-grained sediments were brought directly through this overwash from the sea to the mature part of the salt marsh and increased the sedimentation rates. We show that the overwash and the channels created by these storm events built a direct connection to the sea and reduced the distance to the sediment source which promoted salt marsh growth and a supply with coarse-grained sediments. Consequently, the original sediment input from the tidal channels is found to play a minor role in the years following the breach event. The presented study showcases the morphological development of a mature marsh, which contradicts the commonly accepted paradigm of decreasing sedimentation rates with increasing age of the marsh. We argue that similar trends are likely to be observed in other backbarrier marshes, developing in the shelter of unstabilized sand barriers. It further highlights the question of how resilient these salt marshes are toward sea level rise and how extreme storm events interfere in determining the resilience of a mature salt marsh.

  18. Implications of Sea Level Rise on Coastal Flood Hazards

    Science.gov (United States)

    Roeber, V.; Li, N.; Cheung, K.; Lane, P.; Evans, R. L.; Donnelly, J. P.; Ashton, A. D.

    2012-12-01

    Recent global and local projections suggest the sea level will be on the order of 1 m or higher than the current level by the end of the century. Coastal communities and ecosystems in low-lying areas are vulnerable to impacts resulting from hurricane or large swell events in combination with sea-level rise. This study presents the implementation and results of an integrated numerical modeling package to delineate coastal inundation due to storm landfalls at future sea levels. The modeling package utilizes a suite of numerical models to capture both large-scale phenomena in the open ocean and small-scale processes in coastal areas. It contains four components to simulate (1) meteorological conditions, (2) astronomical tides and surge, (3) wave generation, propagation, and nearshore transformation, and (4) surf-zone processes and inundation onto dry land associated with a storm event. Important aspects of this package are the two-way coupling of a spectral wave model and a storm surge model as well as a detailed representation of surf and swash zone dynamics by a higher-order Boussinesq-type wave model. The package was validated with field data from Hurricane Ivan of 2005 on the US Gulf coast and applied to tropical and extratropical storm scenarios respectively at Eglin, Florida and Camp Lejeune, North Carolina. The results show a nonlinear increase of storm surge level and nearshore wave energy with a rising sea level. The exacerbated flood hazard can have major consequences for coastal communities with respect to erosion and damage to infrastructure.

  19. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Science.gov (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  20. Deep Uncertainties in Sea-Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management.

    Science.gov (United States)

    Oddo, Perry C; Lee, Ben S; Garner, Gregory G; Srikrishnan, Vivek; Reed, Patrick M; Forest, Chris E; Keller, Klaus

    2017-09-05

    Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies. © 2017 Society for Risk Analysis.

  1. Scale-dependent behavior of the foredune: Implications for barrier island response to storms and sea-level rise

    Science.gov (United States)

    Houser, Chris; Wernette, Phil; Weymer, Bradley A.

    2018-02-01

    The impact of storm surge on a barrier island tends to be considered from a single cross-shore dimension, dependent on the relative elevations of the storm surge and dune crest. However, the foredune is rarely uniform and can exhibit considerable variation in height and width at a range of length scales. In this study, LiDAR data from barrier islands in Texas and Florida are used to explore how shoreline position and dune morphology vary alongshore, and to determine how this variability is altered or reinforced by storms and post-storm recovery. Wavelet analysis reveals that a power law can approximate historical shoreline change across all scales, but that storm-scale shoreline change ( 10 years) and dune height exhibit similar scale-dependent variations at swash and surf zone scales (< 1000 m). The in-phase nature of the relationship between dune height and storm-scale shoreline change indicates that areas of greater storm-scale shoreline retreat are associated with areas of smaller dunes. It is argued that the decoupling of storm-scale and historical shoreline change at swash and surf zone scales is also associated with the alongshore redistribution of sediment and the tendency of shorelines to evolve to a more diffusive (or straight) pattern with time. The wavelet analysis of the data for post-storm dune recovery is also characterized by red noise at the smallest scales characteristic of diffusive systems, suggesting that it is possible that small-scale variations in dune height can be repaired through alongshore recovery and expansion if there is sufficient time between storms. However, the time required for dune recovery exceeds the time between storms capable of eroding and overwashing the dune. Correlation between historical shoreline retreat and the variance of the dune at swash and surf zone scales suggests that the persistence of the dune is an important control on transgression through island migration or shoreline retreat with relative sea-level rise.

  2. Joint projections of sea level and storm surge using a flood index

    Science.gov (United States)

    Little, C. M.; Lin, N.; Horton, R. M.; Kopp, R. E.; Oppenheimer, M.

    2016-02-01

    Capturing the joint influence of sea level rise (SLR) and tropical cyclones (TCs) on future coastal flood risk poses significant challenges. To address these difficulties, Little et al. (2015) use a proxy of tropical cyclone activity and a probabilistic flood index that aggregates flood height and duration over a wide area (the US East and Gulf coasts). This technique illuminates the individual impacts of TCs and SLR and their correlation across different coupled climate models. By 2080-2099, changes in the flood index relative to 1986-2005 are substantial and positively skewed: a 10th-90th percentile range of 35-350x higher for a high-end business-as-usual emissions scenario (see figure). This aggregated flood index: 1) is a means to consistently combine TC-driven storm surges and SLR; 2) provides a more robust description of historical surge-climate relationships than is available at any one location; and 3) allows the incorporation of a larger climate model ensemble - which is critical to uncertainty characterization. It does not provide a local view of the complete spectrum of flood severity (i.e. return curves). However, alternate techniques that provide localized return curves (e.g. Lin et al., 2012) are computationally intensive, limiting the set of large-scale climate models that can be incorporated, and require several linked statistical and dynamical models, each with structural uncertainties that are difficult to quantify. Here, we present the results of Little et al. (2015) along with: 1) alternate formulations of the flood index; 2) strategies to localize the flood index; and 3) a comparison of flood index projections to those provided by model-based return curves. We look to this interdisciplinary audience for feedback on the advantages and disadvantages of each tool for coastal planning and decision-making. Lin, N., K. Emanuel, M. Oppenheimer, and E. Vanmarcke, 2012: Physically based assessment of hurricane surge threat under climate change. Nature

  3. Hindcast storm events in the Bering Sea for the St. Lawrence Island and Unalakleet Regions, Alaska

    Science.gov (United States)

    Erikson, Li H.; McCall, Robert T.; van Rooijen, Arnold; Norris, Benjamin

    2015-01-01

    This study provides viable estimates of historical storm-induced water levels in the coastal communities of Gambell and Savoonga situated on St. Lawrence Island in the Bering Sea, as well as Unalakleet located at the head of Norton Sound on the western coast of Alaska. Gambell, Savoonga, and Unalakleet are small Native Villages that are regularly impacted by coastal storms but where little quantitative information about these storms exists. The closest continuous water-level gauge is at Nome, located more than 200 kilometers from both St. Lawrence Island and Unalakleet. In this study, storms are identified and quantified using historical atmospheric and sea-ice data and then used as boundary conditions for a suite of numerical models. The work includes storm-surge (temporary rise in water levels due to persistent strong winds and low atmospheric pressures) modeling in the Bering Strait region, as well as modeling of wave runup along specified sections of the coast in Gambell and Unalakleet. Modeled historical water levels are used to develop return periods of storm surge and storm surge plus wave runup at key locations in each community. It is anticipated that the results will fill some of the data void regarding coastal flood data in western Alaska and be used for production of coastal vulnerability maps and community planning efforts.

  4. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, USA

    Science.gov (United States)

    2013-01-01

    Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, USA 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...tive comments on the manuscript. Permission was granted by the Chief, USACE, to publish this information. LITERATURE CITED Blanton, B.; Stillwell, L...Geospatial Center. http://www.agc.army.mil/ (accessed February 29, 2012). Vickery, P.; Wadhera, D.; Cox, A.; Cardone , V.; Hanson, J., and Blanton, B

  5. Building Coastal Resilience to sea-level rise and storm hazards: supporting decisions in the NE USA, Gulf of Mexico, and eastern Caribbean

    Science.gov (United States)

    Shepard, C.; Beck, M. W.; Gilmer, B.; Ferdana, Z.; Raber, G.; Agostini, V.; Whelchel, A.; Stone, J.

    2012-12-01

    Coastal communities are increasingly vulnerable to coastal hazards including storm surge and sea level rise. We describe the use of Coastal Resilience, an approach to help support decisions to reduce socio-economic and ecological vulnerability to coastal hazards. We provide examples of this work from towns and cities around Long Island Sound (NY, CT) and the Gulf of Mexico (FL, AL, MS, LA, TX) in the USA and from the Eastern Caribbean (Grenada, St. Vincent and the Grenadines). All of these shores are densely populated and have significant coastal development only centimetres above the sea. This makes people and property very vulnerable and threatens coastal wetlands (marsh, mangrove) and reefs (oyster, coral) that provide habitat and natural buffers to storms while providing other ecosystem services. We describe this work specifically and then offer broader perspectives and recommendations for using ecological habitats to reduce vulnerability to coastal hazards. The Nature Conservancy's Coastal Resilience approach is driven by extensive community engagement and uses spatial information on storm surge, sea level rise, ecological and socio-economic variables to identify options for reducing the vulnerability of human and natural communities to coastal hazards (http://www.coastalresilience.org). We have worked with local communities to map current and future coastal hazards and to identify the vulnerable natural resources and human communities. Communities are able to visualize potential hazard impacts and identify options to reduce them within their existing planning and regulatory frameworks.

  6. Wave modelling to assess the storm conditions in the Black Sea

    Science.gov (United States)

    Rusu, Liliana; Raileanu, Alina

    2014-05-01

    The work proposed herewith presents the results of a ten-year wave hindcast performed in the Black Sea and focused on the storm conditions. A wave modelling system, SWAN based, was implemented in the basin of the Black Sea. Validations have been performed both against in situ and remotely sensed data for the entire ten-year period considered (1999-2008). The wind field provided by NCEP-CFSR (United States National Centers for Environmental Prediction, Climate Forecast System Reanalysis) with a spatial resolution of 0.312ºx0.312º and a temporal resolution of 3 hours was considered for forcing the wave model. In statistical terms, the results are in general in line with those provided by similar wave prediction systems implemented in enclosed or semi-enclosed seas, the most important factors in increasing the general system reliability being the accuracy and resolution of the wind fields considered. As regards the physical processes, the calibration tests performed show that whitecapping still represents the weak link in deep water wave modelling. The most relevant storm conditions encountered in this ten-year period considered were further analysed. This analysis was performed from the point of view of the intensity, location of occurrence, duration and propagation in the geographical space of the storms. Following the results of the work, the western side of the sea is more energetic and almost each year storms with significant wave heights of about eight meters are encountered in this part of the Black Sea, while in the case of the extreme storms significant wave heights even greater than eleven meters may occur. From this perspective, it can be concluded that the present work provides valuable information about the characteristics of the storm conditions and on their dynamics in the Black Sea. Moreover, this marine environment is currently subjected to high navigation traffic and to offshore operations and the strong storms that systematically occur may produce

  7. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.

    2015-01-12

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  8. The impact of dust storms on the Arabian Peninsula and the Red Sea

    KAUST Repository

    Jish Prakash, P.; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Osipov, Sergey; Bangalath, Hamza Kunhu

    2015-01-01

    Located in the dust belt, the Arabian Peninsula is a major source of atmospheric dust. Frequent dust outbreaks and some 15 to 20 dust storms per year have profound effects on all aspects of human activity and natural processes in this region. To quantify the effect of severe dust events on radiation fluxes and regional climate characteristics, we simulated the storm that occurred from 18 to 20 March 2012 using a regional weather research forecast model fully coupled with the chemistry/aerosol module (WRF–Chem). This storm swept over a remarkably large area affecting the entire Middle East, northeastern Africa, Afghanistan, and Pakistan. It was caused by a southward propagating cold front, and the associated winds activated the dust production in river valleys of the lower Tigris and Euphrates in Iraq; the coastal areas in Kuwait, Iran, and the United Arab Emirates; the Rub al Khali, An Nafud, and Ad Dahna deserts; and along the Red Sea coast on the west side of the Arabian Peninsula. Our simulation results compare well with available ground-based and satellite observations. We estimate the total amount of dust generated by the storm to have reached 94 Mt. Approximately 78% of this dust was deposited within the calculation domain. The Arabian Sea and Persian Gulf received 5.3 Mt and the Red Sea 1.2 Mt of dust. Dust particles bring nutrients to marine ecosystems, which is especially important for the oligotrophic Northern Red Sea. However, their contribution to the nutrient balance in the Red Sea remains largely unknown. By scaling the effect of one storm to the number of dust storms observed annually over the Red Sea, we estimate the annual dust deposition to the Red Sea, associated with major dust storms, to be 6 Mt.

  9. Clusters of community exposure to coastal flooding hazards based on storm and sea level rise scenarios—implications for adaptation networks in the San Francisco Bay region

    Science.gov (United States)

    Hummel, Michelle; Wood, Nathan J.; Schweikert, Amy; Stacey, Mark T.; Jones, Jeanne; Barnard, Patrick L.; Erikson, Li H.

    2018-01-01

    Sea level is projected to rise over the coming decades, further increasing the extent of flooding hazards in coastal communities. Efforts to address potential impacts from climate-driven coastal hazards have called for collaboration among communities to strengthen the application of best practices. However, communities currently lack practical tools for identifying potential partner communities based on similar hazard exposure characteristics. This study uses statistical cluster analysis to identify similarities in community exposure to flooding hazards for a suite of sea level rise and storm scenarios. We demonstrate this approach using 63 jurisdictions in the San Francisco Bay region of California (USA) and compare 21 distinct exposure variables related to residents, employees, and structures for six hazard scenario combinations of sea level rise and storms. Results indicate that cluster analysis can provide an effective mechanism for identifying community groupings. Cluster compositions changed based on the selected societal variables and sea level rise scenarios, suggesting that a community could participate in multiple networks to target specific issues or policy interventions. The proposed clustering approach can serve as a data-driven foundation to help communities identify other communities with similar adaptation challenges and to enhance regional efforts that aim to facilitate adaptation planning and investment prioritization.

  10. Historical changes in the Mississippi-Alabama barrier-island chain and the roles of extreme storms, sea level, and human activities

    Science.gov (United States)

    Morton, R.A.

    2008-01-01

    Barrier-island chains worldwide are undergoing substantial changes, and their futures remain uncertain. An historical analysis of a barrier-island chain in the north-central Gulf of Mexico shows that the Mississippi barriers are undergoing rapid systematic land loss and translocation associated with: (1) unequal lateral transfer of sand related to greater updrift erosion compared to downdrift deposition; (2) barrier narrowing resulting from simultaneous erosion of shores along the Gulf and Mississippi Sound; and (3) barrier segmentation related to storm breaching. Dauphin Island, Alabama, is also losing land for some of the same reasons as it gradually migrates landward. The principal causes of land loss are frequent intense storms, a relative rise in sea level, and a sediment-budget deficit. Considering the predicted trends for storms and sea level related to global warming, it is certain that the Mississippi-Alabama (MS-AL) barrier islands will continue to lose land area at a rapid rate unless the trend of at least one causal factor reverses. Historical land-loss trends and engineering records show that progressive increases in land-loss rate correlate with nearly simultaneous deepening of channels dredged across the outer bars of the three tidal inlets maintained for deep-draft shipping. This correlation indicates that channel-maintenance activities along the MS-AL barriers have impacted the sediment budget by disrupting the alongshore sediment transport system and progressively reducing sand supply. Direct management of this causal factor can be accomplished by strategically placing dredged sediment where adjacent barrier-island shores will receive it for island nourishment and rebuilding.

  11. Storm surge climatology report

    OpenAIRE

    Horsburgh, Kevin; Williams, Joanne; Cussack, Caroline

    2017-01-01

    Any increase in flood frequency or severity due to sea level rise or changes in storminess would adversely impact society. It is crucial to understand the physical drivers of extreme storm surges to have confidence in the datasets used for extreme sea level statistics. We will refine and improve methods to the estimation of extreme sea levels around Europe and more widely. We will do so by developing a comprehensive world picture of storm surge distribution (including extremes) for both tropi...

  12. A simplified approach for simulating changes in beach habitat due to the combined effectgs of long-term sea level rise, storm erosion, and nourishment

    Science.gov (United States)

    Better understanding of vulnerability of coastal habitats to sea level rise and major storm events require the use of simulation models. Coastal habitats also undergo frequent nourishment restoration works in order to maintain their viability. Vulnerability models must be able to assess the combined...

  13. Climate Adaptation and Sea Level Rise

    Science.gov (United States)

    EPA supports the development and maintenance of water utility infrastructure across the country. Included in this effort is helping the nation’s water utilities anticipate, plan for, and adapt to risks from flooding, sea level rise, and storm surge.

  14. A probabilistic approach for assessing the vulnerability of transportation infrastructure to flooding from sea level rise and storm surge.

    Science.gov (United States)

    Douglas, E. M.; Kirshen, P. H.; Bosma, K.; Watson, C.; Miller, S.; McArthur, K.

    2015-12-01

    There now exists a plethora of information attesting to the reality of our changing climate and its impacts on both human and natural systems. There also exists a growing literature linking climate change impacts and transportation infrastructure (highways, bridges, tunnels, railway, shipping ports, etc.) which largely agrees that the nation's transportation systems are vulnerable. To assess this vulnerability along the coast, flooding due to sea level rise and storm surge has most commonly been evaluated by simply increasing the water surface elevation and then estimating flood depth by comparing the new water surface elevation with the topographic elevations of the land surface. While this rudimentary "bathtub" approach may provide a first order identification of potential areas of vulnerability, accurate assessment requires a high resolution, physically-based hydrodynamic model that can simulate inundation due to the combined effects of sea level rise, storm surge, tides and wave action for site-specific locations. Furthermore, neither the "bathtub" approach nor other scenario-based approaches can quantify the probability of flooding due to these impacts. We developed a high resolution coupled ocean circulation-wave model (ADCIRC/SWAN) that utilizes a Monte Carlo approach for predicting the depths and associated exceedance probabilities of flooding due to both tropical (hurricanes) and extra-tropical storms under current and future climate conditions. This required the development of an entirely new database of meteorological forcing (e.g. pressure, wind speed, etc.) for historical Nor'easters in the North Atlantic basin. Flooding due to hurricanes and Nor'easters was simulated separately and then composite flood probability distributions were developed. Model results were used to assess the vulnerability of the Central Artery/Tunnel system in Boston, Massachusetts to coastal flooding now and in the future. Local and regional adaptation strategies were

  15. Doubling of coastal flooding frequency within decades due to sea-level rise

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L.; Fletcher, Charles H.; Frazer, Neil; Erikson, Li; Storlazzi, Curt D.

    2017-01-01

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  16. Doubling of coastal flooding frequency within decades due to sea-level rise.

    Science.gov (United States)

    Vitousek, Sean; Barnard, Patrick L; Fletcher, Charles H; Frazer, Neil; Erikson, Li; Storlazzi, Curt D

    2017-05-18

    Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

  17. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    Science.gov (United States)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the

  18. Ensemble projection of the sea level rise impact on storm surge and inundation at the coast of Bangladesh

    Science.gov (United States)

    Jisan, Mansur Ali; Bao, Shaowu; Pietrafesa, Leonard J.

    2018-01-01

    The hydrodynamic model Delft3D is used to study the impact of sea level rise (SLR) on storm surge and inundation in the coastal region of Bangladesh. To study the present-day inundation scenario, the tracks of two known tropical cyclones (TC) were used: Aila (Category 1; 2009) and Sidr (Category 5; 2007). Model results were validated with the available observations. Future inundation scenarios were generated by using the strength of TC Sidr, TC Aila and an ensemble of historical TC tracks but incorporating the effect of SLR. Since future change in storm surge inundation under SLR impact is a probabilistic incident, a probable range of future change in the inundated area was calculated by taking into consideration the uncertainties associated with TC tracks, intensities and landfall timing. The model outputs showed that the inundated area for TC Sidr, which was calculated as 1860 km2, would become 31 % larger than the present-day scenario if a SLR of 0.26 m occurred during the mid-21st-century climate scenario. Similarly to that, an increasing trend was found for the end-21st-century climate scenario. It was found that with a SLR of 0.54 m, the inundated area would become 53 % larger than the present-day case. Along with the inundation area, the impact of SLR was examined for changes in future storm surge level. A significant increase of 14 % was found in storm surge level for the case of TC Sidr at Barisal station if a SLR of 0.26 m occurred in the mid-21st century. Similarly to that, an increase of 29 % was found at storm surge level with a SLR of 0.54 m in this location for the end-21st-century climate scenario. Ensemble projections based on uncertainties of future TC events also showed that, for a change of 0.54 m in SLR, the inundated area would range between 3500 and 3750 km2, whereas for present-day SLR simulations it was found within the range of 1000-1250 km2. These results revealed that even if the future TCs remain at the same strength as at present, the

  19. Regional sea level projections with observed gauge, altimeter and reconstructed data along China coast

    Science.gov (United States)

    Du, L.; Shi, H.; Zhang, S.

    2017-12-01

    Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.

  20. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    treaties with greater transparency. Among the various communication technologies used for real-time transmission of sea-level data are the wired telephone connection, VHF/UHF transceivers, satellite transmit terminals and cellular connectivity. Wired... telephone connections are severely susceptible to loss of connectivity during natural disasters such as storm surges, primarily because of telephone line breakage. Communication via VHF/UHF transceivers is limited by line-of-sight distance between...

  1. Advancing Best Practices for the Formulation of Localized Sea Level Rise/Coastal Inundation Extremes Scenarios for Military Installations in the Pacific Islands

    Science.gov (United States)

    2015-07-14

    in mean sea level, El Niño Southern Oscillation (ENSO) and other modes of natural variability, tropical and extratropical storms , and unusually high...parameter) and changes in typical ( extratropical ) storm track (scale parameter) need to be explored as does the applicability of customized climate...mean sea level over decades to months; tropical and extratropical storms , and swell from distant storms that manifest as events lasting hours to

  2. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain)

    Science.gov (United States)

    Sayol, J. M.; Marcos, M.

    2018-02-01

    This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.

  3. Sediment transport and deposition during extreme sea storm events at the Salerno Bay (Tyrrhenian Sea: comparison of field data with numerical model results

    Directory of Open Access Journals (Sweden)

    F. Budillon

    2006-01-01

    Full Text Available Seismic stratigraphy and core litho-stratigraphy in the Salerno Bay inner shelf (Southern Tyrrhenian Sea reveal significant storm deposition episodes over the last 1 ky. Three major events are preserved as decimetre thick silt/sand layers bounded at their base by erosional surfaces and sealed in the muddy marine sequences between 25 and 60 m of depth. Geochronology and chrono-stratigraphy on core sediment point towards a recurrence of major sea storms between 0.1 and 0.3 ky and put the last significant event in the 19th century, when no local meteorological time series is available. A modelling of extreme sea-storms with a return period of about 0.1 ky is here proposed based on historical hindcast and aims at explaining the occurrence of such unusual deep and thick sand deposits in the northern sector of the bay. Results highlight the vulnerability of the northern coast of the Salerno Bay to the south western sea storms which can drive waves up to about 8 m high and wave period of about 13 s. With these conditions an intense combined flow current is formed and might account for winnowing fine sand down to the depth of 40 m at least. The numerical model thus confirms a possible sand transport in the bottom boundary layer due to wave-current interaction and could corroborate the interpretation of the most recent sand layers, included in the cores, as being generated under extreme sea storm conditions.

  4. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.

    Science.gov (United States)

    Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A

    2015-07-01

    Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end

  5. Return Period of a Sea Storm with at Least Two Waves Higher than a Fixed Threshold

    Directory of Open Access Journals (Sweden)

    Felice Arena

    2013-01-01

    Full Text Available Practical applications in ocean engineering require the long-term analysis for prediction of extreme waves, that identify design conditions. If extreme individual waves are investigated, we need to combine long-term statistical analysis of ocean waves with short-term statistics. The former considers the distribution of standard deviation of free surface displacement in the considered location in a long-time span, of order of 10 years or more. The latter analyzes the distribution of individual wave heights in a sea state, which is a Gaussian process in time domain. Recent advanced approaches enable the combination of the two analyses. In the paper the analytical solution is obtained for the return period of a sea storm with at least two individual waves higher than a fixed level. This solution is based on the application of the Equivalent Triangular Storm model for the representation of actual storms. One of the corollaries of the solution gives the exact expression for the probability that at least two waves higher than fixed level are produced during the lifetime of a structure. The previous solution of return period and the relative probability of exceedance may be effectively applied for the risk analysis of ocean structures.

  6. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    International Nuclear Information System (INIS)

    Brydsten, Lars; Engqvist, Anders; Naeslund, Jens-Ove; Lindborg, Tobias

    2009-01-01

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about ± 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  7. Expected extreme sea levels at Forsmark and Laxemar-Simpevarp up until year 2100

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars (Umeaa Univ., Umeaa (Sweden)); Engqvist, Anders (Royal Institute of Technology, Stockholm (Sweden)); Naeslund, Jens-Ove; Lindborg, Tobias (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2009-01-15

    Literature data on factors that can affect the highest expected shoreline during the operational lifetime of a final repository up until ca 2100 AD have been compiled for Forsmark and Laxemar/Simpevarp. The study takes into consideration eustasy (global sea level), isostasy (isostatic rebound) and their trends, as well as regional (North Sea) and local (Baltic Sea) annual extremes of today's sea levels and those in year 2100. The most uncertain factor of these is the future global sea level change. For this factor, three possible scenarios have been included from the literature, forming an rough uncertainty interval around a case with an 'intermediate' global sea level. To this end, the study thus makes use of information on global sea level change that has been published since the IPCC's (UN Intergovernmental Panel on Climate Change) most recent report (2007). The local cumulative impact on the shoreline of the eustatic and isostatic components for both the Forsmark and Laxemar/Simpevarp coastal areas is that the maximum sea level occurs at the end of the investigation period, by year 2100. The interaction of these estimates is discussed in terms of coastal oceanographic aspects and estimated return periods for local extreme sea level-impacting events, including estimated storm surge. Maximum sea levels in year 2100 based on the sea level rise estimates by Rahmstorf are + 254 cm for Forsmark and + 297 cm for Laxemar/Simpevarp, both of these levels with an uncertainty interval of about +- 70 cm. The numbers apply for the worst possible case in regard to future sea level rise, and for occasions of short duration during heavy storms. In this context it is important to note that the data on which these estimates are based are the subject of intense research, and that revisions are therefore to be expected

  8. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    Science.gov (United States)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  9. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-01-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262

  10. A parabolic model of drag coefficient for storm surge simulation in the South China Sea

    Science.gov (United States)

    Peng, Shiqiu; Li, Yineng

    2015-10-01

    Drag coefficient (Cd) is an essential metric in the calculation of momentum exchange over the air-sea interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with sea surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China Sea (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.

  11. How sea level rise and storm climate impact the looming morpho-economic bubble in coastal property value.

    Science.gov (United States)

    McNamara, D.; Keeler, A.; Smith, M.; Gopalakrishnan, S.; Murray, A.

    2012-12-01

    In the United States, the coastal region is now the most densely populated zone in the country and as a result has become a significant source of tax revenue and has some of the highest property values in the country. The loss of land at the coastline from erosion and damage to property from storms has always been a source of vulnerability to coastal economies. To manage this vulnerability, humans have long engaged in the act of nourishing the coastline - placing sand, typically from offshore sources, onto the beach to widen the beach and increase the height of dunes. As humans alter natural coastal dynamics by nourishing, the altered natural dynamics then influence future beach management decisions. In this way human-occupied coastlines are a strongly coupled dynamical system and because of this coupling, the act of nourishment has become an intrinsic part of the economic value of a coastline. Predictions of increased rates of sea level rise and changing storminess suggest that coastal vulnerability is likely to increase. The evolving vulnerability of the coast has already caused changes to occur in the way humans manage the coastline. For example, the federal government has recently reduced subsidies to help coastal communities nourish their beaches. With a future of changing environmental forcing from sea level and storms, the prospect of changes in nourishment cost could have profound consequences on coastal value and sustainability. We utilize two modeling approaches to investigate how disappearing nourishment subsidies reduce coastal property value and to explore the potential for a bubble and subsequent crash in coastal property value as subsidies dwindle and vulnerability rises. The first model is an optimal control model that couples a cost benefit analysis to coastline dynamics. In the second model, we couple a numerical coastline model with an agent-based model for real estate markets. Results from both models suggest the total present value of coastal

  12. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    Science.gov (United States)

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  13. The impact of waves and sea spray on modeling storm track and development

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-01-01

    parameterisation were applied to anatmospherewave coupled model to study the mid-latitude storm development of six storm cases. Comparedwith measurements from the FINO1 platform in the North Sea, the new wind stress parameterisation canreduce wind speed simulation errors in the high wind speed range. Considering......In high wind speed conditions, sea spray generated by intensely breaking waves greatly influences the windstress and heat fluxes. Measurements indicate that the drag coefficient decreases at high wind speeds. The seaspray generation function (SSGF), an important term of wind stress parameterisation...... at high wind speeds, isusually treated as a function of wind speed/friction velocity. In this study, we introduce a wave-state-dependentSSGF and wave-age-dependent Charnock number into a high wind speedwind stress parameterisation. Thenewly proposed wind stress parameterisation and sea spray heat flux...

  14. Wetland Responses to Sea Level Rise in the Northern Gulf of Mexico

    Science.gov (United States)

    Alizad, K.; Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Morris, J. T.

    2016-12-01

    Coastal regions are vulnerable to flood risk due to climate change, sea level rise, and wetland losses. The Northern Gulf of Mexico (NGOM) is a region in which extreme events are projected to be more intense under climate change and sea level rise scenarios [Wang et al., 2013; Bilskie et al., 2014]. Considering increased frequency and intensity of coastal flooding, wetlands are valuable natural resources that protect shorelines by dissipating waves and storm surges [Costanza et al., 2008]. Therefore, it is critical to investigate the response of salt marsh systems in different estuaries to sea level rise in the NGOM and their effects on storm surges to inform coastal managers to choose effective restoration plans. This research applies the coupled Hydro-MEM model [Alizad et al., 2016] to study three different estuarine systems in the NGOM. The model incorporates both sea level rise rate and feedbacks between physics and biology by coupling a hydrodynamic (ADCIRC) and salt marsh (MEM) model. The results of the model provide tidal hydrodynamics and biomass density change under four sea level rise projections during a 100-year period. The results are used to investigate marsh migration path in the estuarine systems. In addition, this study shows how marsh migration and biomass density change can impact storm surge modeling. The results imply the broader impacts of sea level rise on the estuarine systems in the NGOM. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, P. Bacopoulos, M. V. Bilskie, J. Weishampel, and S. C. Medeiros (2016), A coupled, two-dimensional hydrodynamic-marsh model with biological feedback, Ecological Modeling, 327, 29-43. Bilskie, M. V., S. C. Hagen, S. C. Medeiros, and D. L. Passeri (2014), Dynamics of sea level rise and coastal flooding on a changing landscape, Geophysical Research Letters, 41(3), 927-934. Costanza, R., O. Pérez-Maqueo, M. L. Martinez, P. Sutton, S. J. Anderson, and K. Mulder (2008), The Value of Coastal Wetlands for Hurricane

  15. Sea-Level Allowances along the World Coastlines

    Science.gov (United States)

    Vandewal, R.; Tsitsikas, C.; Reerink, T.; Slangen, A.; de Winter, R.; Muis, S.; Hunter, J. R.

    2017-12-01

    Sea level changes as a result of climate change. For projections we take ocean mass changes and volume changes into account. Including gravitational and rotational fingerprints this provide regional sea level changes. Hence we can calculate sea-level rise patterns based on CMIP5 projections. In order to take the variability around the mean state, which follows from the climate models, into account we use the concept of allowances. The allowance indicates the height a coastal structure needs to be increased to maintain the likelihood of sea-level extremes. Here we use a global reanalysis of storm surges and extreme sea levels based on a global hydrodynamic model in order to calculate allowances. It is shown that the model compares in most regions favourably with tide gauge records from the GESLA data set. Combining the CMIP5 projections and the global hydrodynamical model we calculate sea-level allowances along the global coastlines and expand the number of points with a factor 50 relative to tide gauge based results. Results show that allowances increase gradually along continental margins with largest values near the equator. In general values are lower at midlatitudes both in Northern and Southern Hemisphere. Increased risk for extremes are typically 103-104 for the majority of the coastline under the RCP8.5 scenario at the end of the century. Finally we will show preliminary results of the effect of changing wave heights based on the coordinated ocean wave project.

  16. Sandy berm and beach-ridge formation in relation to extreme sea-levels

    DEFF Research Database (Denmark)

    Bendixen, Mette; Clemmensen, Lars B; Kroon, Aart

    2013-01-01

    The formation of berms and their transformation into beach ridges in a micro-tidal environment is coupled to wave run-up and overtopping during extreme sea levels. A straight-forward comparison between extreme sea levels due to storm-surges and active berm levels is impossible in the semi...... prograding spit on the south-eastern Baltic shores of Zealand, Denmark. The modern, sandy beach at this location consists of a beachface with a shallow incipient berm, a mature berm, and a dune-covered beach ridge. It borders a beach-ridge plain to the west, where more than 20 N–S oriented beach ridges...... and swales are present. Measured water-level data from 1991 to 2012 and topographical observations, carried out during fair weather period and during a storm event, provided the basis for a conceptual model exhibiting berm formation and transformation into the local beach-ridge system. The character...

  17. Storm-surge flooding on the Yukon-Kuskokwim Delta, Alaska

    Science.gov (United States)

    Terenzi, John; Ely, Craig R.; Jorgenson, M. Torre

    2014-01-01

    Coastal regions of Alaska are regularly affected by intense storms of ocean origin, the frequency and intensity of which are expected to increase as a result of global climate change. The Yukon-Kuskokwim Delta (YKD), situated in western Alaska on the eastern edge of the Bering Sea, is one of the largest deltaic systems in North America. Its low relief makes it especially susceptible to storm-driven flood tides and increases in sea level. Little information exists on the extent of flooding caused by storm surges in western Alaska and its effects on salinization, shoreline erosion, permafrost thaw, vegetation, wildlife, and the subsistence-based economy. In this paper, we summarize storm flooding events in the Bering Sea region of western Alaska during 1913 – 2011 and map both the extent of inland flooding caused by autumn storms on the central YKD, using Radarsat-1 and MODIS satellite imagery, and the drift lines, using high-resolution IKONOS satellite imagery and field surveys. The largest storm surges occurred in autumn and were associated with high tides and strong (> 65 km hr-1) southwest winds. Maximum inland extent of flooding from storm surges was 30.3 km in 2005, 27.4 km in 2006, and 32.3 km in 2011, with total flood area covering 47.1%, 32.5%, and 39.4% of the 6730 km2 study area, respectively. Peak stages for the 2005 and 2011 storms were 3.1 m and 3.3 m above mean sea level, respectively—almost as high as the 3.5 m amsl elevation estimated for the largest storm observed (in November 1974). Several historically abandoned village sites lie within the area of inundation of the largest flood events. With projected sea level rise, large storms are expected to become more frequent and cover larger areas, with deleterious effects on freshwater ponds, non-saline habitats, permafrost, and landscapes used by nesting birds and local people.

  18. A Numerical Simulation of Extratropical Storm Surge and Hydrodynamic Response in the Bohai Sea

    OpenAIRE

    Ding, Yumei; Ding, Lei

    2014-01-01

    A hindcast of typical extratropical storm surge occurring in the Bohai Sea in October 2003 is performed using a three-dimensional (3D) Finite Volume Coastal Ocean Model (FVCOM). The storm surge model is forced by 10 m winds obtained from the Weather Research Forecasting (WRF) model simulation. It is shown that the simulated storm surge and tides agree well with the observations. The nonlinear interaction between the surge and astronomical tides, the spatial distribution of the max...

  19. Simulation of coastal floodings during a typhoon event with the consideration of future sea-level rises.

    Science.gov (United States)

    Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai

    2017-04-01

    Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models

  20. XXI century projections of wind-wave conditions and sea-level rise in the Black sea

    Science.gov (United States)

    Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.

    2012-04-01

    Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which

  1. Characterizing uncertain sea-level rise projections to support investment decisions.

    Science.gov (United States)

    Sriver, Ryan L; Lempert, Robert J; Wikman-Svahn, Per; Keller, Klaus

    2018-01-01

    Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments

  2. Assessing coastal flood risk and sea level rise impacts at New York City area airports

    Science.gov (United States)

    Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.

    2014-12-01

    Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ

  3. Vulnerability of marginal seas to sea level rise

    Science.gov (United States)

    Gomis, Damia; Jordà, Gabriel

    2017-04-01

    Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities

  4. A Perspective on Sea Level Rise and Coastal Storm Surge from Southern and Eastern Africa: A Case Study Near Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Derek D. Stretch

    2012-03-01

    Full Text Available Recent coastal storms in southern Africa have highlighted the need for more proactive management of the coastline. Within the southern and eastern African region the availability of coastal information is poor. The greatest gap in information is the likely effects of a combination of severe sea storms and future sea level rise (SLR on the shoreline. This lack of information creates a barrier to informed decision making. This research outlines a practical localized approach to this problem, which can be applied as a first order assessment within the region. In so doing it provides a cost effective and simple decision support tool for the built environment and disaster professionals in development and disaster assessments. In a South African context the newly promulgated Integrated Coastal Management Act requires that all proposed coastal developments take into consideration future SLR, however such information currently does not exist, despite it being vital for informed planning in the coastal zone. This practical approach has been applied to the coastline of Durban, South Africa as a case study. The outputs are presented in a Geographic Information System (GIS based freeware viewer tool enabling ease of access to both professionals and laypersons. This demonstrates that a simple approach can provide valuable information about the current and future risk of flooding and coastal erosion under climate change to buildings, infrastructure as well as natural features along the coast.

  5. A Case Study of Preliminary Cost-Benefit Analysis of Building Levees to Mitigate the Joint Effects of Sea Level Rise and Storm Surge

    Directory of Open Access Journals (Sweden)

    Binbin Peng

    2018-02-01

    Full Text Available Sea-level rise (SLR will magnify the impacts of storm surge; the resulting severe flooding and inundation can cause huge damage to coastal communities. Community leaders are considering implementing adaptation strategies, typically hard engineering projects, to protect coastal assets and resources. It is important to understand the costs and benefits of the proposed project before any decision is made. To mitigate the flooding impact of joint effects of storm surge and SLR, building levee segments is chosen to be a corresponding adaptation strategy to protect the real estate assets in the study area—the City of Miami, FL, USA. This paper uses the classic Cost-Benefit Analysis (CBA to assess the cost efficiency and proposes corresponding improvements in the benefit estimation, by estimating the avoided damages of implementing levee projects. Results show that the city will benefit from implementing levee projects along the Miami River in both a one-time 10 year storm event with SLR and cumulative long-term damage scenarios. This study also suggests that conducting CBA is a critical process before making coastal adaptation planning investment. A more meaningful result of cost effectiveness is estimated by accounting for the appreciation and time value. In addition, a sensitivity analysis is conducted to verify how the choice of discount rate influences the result. Uncertain factors including the rate of SLR, storm intensification, land use changes, and real estate appreciation are further analyzed.

  6. Salt marsh persistence is threatened by predicted sea-level rise

    Science.gov (United States)

    Crosby, Sarah C.; Sax, Dov F.; Palmer, Megan E.; Booth, Harriet S.; Deegan, Linda A.; Bertness, Mark D.; Leslie, Heather M.

    2016-11-01

    Salt marshes buffer coastlines and provide critical ecosystem services from storm protection to food provision. Worldwide, these ecosystems are in danger of disappearing if they cannot increase elevation at rates that match sea-level rise. However, the magnitude of loss to be expected is not known. A synthesis of existing records of salt marsh elevation change was conducted in order to consider the likelihood of their future persistence. This analysis indicates that many salt marshes did not keep pace with sea-level rise in the past century and kept pace even less well over the past two decades. Salt marshes experiencing higher local sea-level rise rates were less likely to be keeping pace. These results suggest that sea-level rise will overwhelm most salt marshes' capacity to maintain elevation. Under the most optimistic IPCC emissions pathway, 60% of the salt marshes studied will be gaining elevation at a rate insufficient to keep pace with sea-level rise by 2100. Without mitigation of greenhouse gas emissions this potential loss could exceed 90%, which will have substantial ecological, economic, and human health consequences.

  7. Contribution of Deformation to Sea Ice Mass Balance: A Case Study From an N-ICE2015 Storm

    Science.gov (United States)

    Itkin, Polona; Spreen, Gunnar; Hvidegaard, Sine Munk; Skourup, Henriette; Wilkinson, Jeremy; Gerland, Sebastian; Granskog, Mats A.

    2018-01-01

    The fastest and most efficient process of gaining sea ice volume is through the mechanical redistribution of mass as a consequence of deformation events. During the ice growth season divergent motion produces leads where new ice grows thermodynamically, while convergent motion fractures the ice and either piles the resultant ice blocks into ridges or rafts one floe under the other. Here we present an exceptionally detailed airborne data set from a 9 km2 area of first year and second year ice in the Transpolar Drift north of Svalbard that allowed us to estimate the redistribution of mass from an observed deformation event. To achieve this level of detail we analyzed changes in sea ice freeboard acquired from two airborne laser scanner surveys just before and right after a deformation event brought on by a passing low-pressure system. A linear regression model based on divergence during this storm can explain 64% of freeboard variability. Over the survey region we estimated that about 1.3% of level sea ice volume was pressed together into deformed ice and the new ice formed in leads in a week after the deformation event would increase the sea ice volume by 0.5%. As the region is impacted by about 15 storms each winter, a simple linear extrapolation would result in about 7% volume increase and 20% deformed ice fraction at the end of the season.

  8. Application of a Coupled Vegetation Competition and Groundwater Simulation Model to Study Effects of Sea Level Rise and Storm Surges on Coastal Vegetation

    Directory of Open Access Journals (Sweden)

    Su Yean Teh

    2015-09-01

    Full Text Available Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM is integrated into the USGS groundwater model (SUTRA to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.

  9. Strategy to evaluate persistent contaminant hazards resulting from sea-level rise and storm-derived disturbances—Study design and methodology for station prioritization

    Science.gov (United States)

    Reilly, Timothy J.; Jones, Daniel K.; Focazio, Michael J.; Aquino, Kimberly C.; Carbo, Chelsea L.; Kaufhold, Erika E.; Zinecker, Elizabeth K.; Benzel, William M.; Fisher, Shawn C.; Griffin, Dale W.; Iwanowicz, Luke R.; Loftin, Keith A.; Schill, William B.

    2015-10-26

    Coastal communities are uniquely vulnerable to sea-level rise (SLR) and severe storms such as hurricanes. These events enhance the dispersion and concentration of natural and anthropogenic chemicals and pathogenic microorganisms that could adversely affect the health and resilience of coastal communities and ecosystems in coming years. The U.S. Geological Survey has developed a strategy to define baseline and post-event sediment-bound environmental health (EH) stressors (hereafter referred to as the Sediment-Bound Contaminant Resiliency and Response [SCoRR] strategy). A tiered, multimetric approach will be used to (1) identify and map contaminant sources and potential exposure pathways for human and ecological receptors, (2) define the baseline mixtures of EH stressors present in sediments and correlations of relevance, (3) document post-event changes in EH stressors present in sediments, and (4) establish and apply metrics to quantify changes in coastal resilience associated with sediment-bound contaminants. Integration of this information provides a means to improve assessment of the baseline status of a complex system and the significance of changes in contaminant hazards due to storm-induced (episodic) and SLR (incremental) disturbances. This report describes the purpose and design of the SCoRR strategy and the methods used to construct a decision support tool to identify candidate sampling stations vulnerable to contaminants that may be mobilized by coastal storms.

  10. Joint Projections of US East Coast Sea Level and Storm Surge

    Science.gov (United States)

    Little, Christopher M.; Horton, Radley M.; Kopp, Robert E.; Oppenheimer, Michael; Vecchi, Gabriel A.; Villarini, Gabriele

    2015-01-01

    Future coastal flood risk will be strongly influenced by sea-level rise (SLR) and changes in the frequency and intensity of tropical cyclones. These two factors are generally considered independently. Here, we assess twenty-first century changes in the coastal hazard for the US East Coast using a flood index (FI) that accounts for changes in flood duration and magnitude driven by SLR and changes in power dissipation index (PDI, an integrated measure of tropical cyclone intensity, frequency and duration). Sea-level rise and PDI are derived from representative concentration pathway (RCP) simulations of 15 atmosphere- ocean general circulation models (AOGCMs). By 2080-2099, projected changes in the FI relative to 1986-2005 are substantial and positively skewed: a 10th-90th percentile range 4-75 times higher for RCP 2.6 and 35-350 times higher for RCP 8.5. High-end Fl projections are driven by three AOGCMs that project the largest increases in SLR, PDI and upper ocean temperatures. Changes in PDI are particularly influential if their intra-model correlation with SLR is included, increasing the RCP 8.5 90th percentile FI by a further 25%. Sea-level rise from other, possibly correlated, climate processes (for example, ice sheet and glacier mass changes) will further increase coastal flood risk and should be accounted for in comprehensive assessments.

  11. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    Science.gov (United States)

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  12. GPRS based real-time reporting and internet accessible sea level gauge for monitoring storm surge and tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Dabholkar, N.; Mehra, P.; Gouveia, A.D.; Tengali, S.; VijayKumar, K.; Parab, A.

    graphical illustration of the predicted fair-weather sea level, the current sea level, and the residual sea level (i.e., measured minus predicted fair-weather sea level). Thus, a cost-effective and easily maintainable platform is realized for real...

  13. Identification of Transportation Infrastructure at Risk Due To Sea-Level Rise and Subsidence of Land In Coastal Louisiana

    Science.gov (United States)

    Tewari, S.; Palmer, W.; Manning, F.

    2017-12-01

    Climate change can affect coastal areas in a variety of ways. Coasts are sensitive to sea level rise, changes in the frequency/intensity of storms, increase in precipitation and storm surges. The resilience of transportation infrastructure located in Louisiana's coastal zone, against storm surges and climatic sea-level rise is critical. The net change in sea-level is affected by the increase in global sea level as well as land movement up or down. There are many places in coastal Louisiana that have a high subsidence rate. The subsidence could be related to excess extraction activities of oil and water, natural and/or human induced compaction, and tectonic movement. Where the land is sinking, the rate of relative sea level rise is larger than the global rate. Some of the fastest rates of relative sea level rise in the United States are occurring in areas where the land is sinking, including parts of the Gulf Coast. For example, coastal Louisiana has seen its relative sea level rise by eight inches or more in the last 50 years, which is about twice the global rate. Subsiding land in the Gulf area worsens the effects of relative sea level rise, increasing the risk of flooding in cities, inhabited islands, and tidal wetlands. The research team is investigating the trends for sea-level rise and land subsidence in coastal region of Louisiana. The variability in storm surges and its potential implication on the transportation infrastructure in the region is the focus of the study. The spatial maps will be created for spatial trends. This is extremely useful in being prepared for long-term natural hazards. The results of this study will be helpful to LADOTD and infrastructure managers and officials who are tasked with resiliency planning and management. Research results will also directly benefit university researchers in the state, Coastal Protection and Restoration Authority and LADOTD/LTRC through collaborative activity which will educate both professionals and the

  14. Rising sea levels and small island states

    International Nuclear Information System (INIS)

    Leatherman, S.P.

    1994-01-01

    A review is given of the problems small island nations face with respect to sea level rise caused by global warming. Many small island nations are very vulnerable to sea level rise. Particularly at risk are coral reef atolls, which are generally quite small, lie within three metres of current sea levels, and have no land at higher elevations to relocate populations and economic activity. Volcanic islands in the Pacific have high ground, but it is largely rugged, high relief and soil-poor. The most vulnerable islands are those that consist entirely of atolls and reef islands, such as Kirabai, Maldives, Tokelau and Tuvalu. Small island states, which by themselves have little power or influence in world affairs, have banded together to form the Strategic Alliance of Small Island States (AOSIS). This alliance had grown to include 42 states by the time of the 1992 U.N. Earth Summit. Although the greenhouse effect is mainly caused by industrial nations, developing countries will suffer the most from it. Choices of response strategy will depend on environmental, economic and social factors. Most small island nations do not have the resources to fight sea level rise in the way that the Dutch have. Retreat can occur as a gradual process or as catastrophic abandonment. Prohibiting construction close to the water's edge is a good approach. Sea level histories for each island state should be compiled and updated, island geomorphology and settlement patterns should be surveyed to determine risk areas, storm regimes should be determined, and information on coastal impacts of sea level rise should be disseminated to the public

  15. Sea-Level Rise Implications for Coastal Protection from Southern Mediterranean to the U.S.A. Atlantic Coast

    Science.gov (United States)

    Ismail, Nabil; Williams, Jeffress

    2013-04-01

    This paper presents an assessment of global sea level rise and the need to incorporate projections of rise into management plans for coastal adaptation. It also discusses the performance of a shoreline revetment; M. Ali Seawall, placed to protect the land against flooding and overtopping at coastal site, within Abu Qir Bay, East of Alexandria, Egypt along the Nile Delta coast. The assessment is conducted to examine the adequacy of the seawall under the current and progressive effects of climate change demonstrated by the anticipated sea level rise during this century. The Intergovernmental Panel on Climate Change (IPCC, 2007) predicts that the Mediterranean will rise 30 cm to 1 meter this century. Coastal zone management of the bay coastline is of utmost significance to the protection of the low agricultural land and the industrial complex located in the rear side of the seawall. Moreover this joint research work highlights the similarity of the nature of current and anticipated coastal zone problems, at several locations around the world, and required adaptation and protection measures. For example many barrier islands in the world such as that in the Atlantic and Gulf of Mexico coasts of the U.S., lowland and deltas such as in Italy and the Nile Delta, and many islands are also experiencing significant levels of erosion and flooding that are exacerbated by sea level rise. Global Climatic Changes: At a global scale, an example of the effects of accelerated climate changes was demonstrated. In recent years, the impacts of natural disasters are more and more severe on coastal lowland areas. With the threats of climate change, sea level rise storm surge, progressive storm and hurricane activities and potential subsidence, the reduction of natural disasters in coastal lowland areas receives increased attention. Yet many of their inhabitants are becoming increasingly vulnerable to flooding, and conversions of land to open ocean. These global changes were recently

  16. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    Science.gov (United States)

    Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason

    2016-05-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically

  17. Barrier island response to an elevated sea-level anomaly: Onslow Beach, North Carolina, USA

    Science.gov (United States)

    Theuerkauf, E. J.; Rodriguez, A. B.; Fegley, S. R.; Luettich, R.

    2012-12-01

    anomaly. No significant increase in wave height was observed during this period, suggesting that the increase in beach erosion resulted from the sea-level anomaly. The sites that were strongly impacted by the sea-level anomaly did not fully recover from the beach erosion and consequently experienced large amounts of erosion in response to Hurricane Irene in 2011. These results suggest that long duration (weeks to months) high water levels cause changes to the beach similar to those generally thought to occur only during large storms. Dune erosion from higher sea levels weakens a beaches defense to storms, leading to increased beach erosion and overwash if a storm occurs before the beach can recover. It is likely that similar high water events will increase in duration and magnitude with future climate change, leading to increased "fair-weather" beach erosion and priming the system for devastating hurricane impacts.

  18. Multivariate Hybrid Modelling of Future Wave-Storms at the Northwestern Black Sea

    Directory of Open Access Journals (Sweden)

    Jue Lin-Ye

    2018-02-01

    Full Text Available The characterization of future wave-storms and their relationship to large-scale climate can provide useful information for environmental or urban planning at coastal areas. A hybrid methodology (process-based and statistical was used to characterize the extreme wave-climate at the northwestern Black Sea. The Simulating WAve Nearshore spectral wave-model was employed to produce wave-climate projections, forced with wind-fields projections for two climate change scenarios: Representative Concentration Pathways (RCPs 4.5 and 8.5. A non-stationary multivariate statistical model was built, considering significant wave-height and peak-wave-period at the peak of the wave-storm, as well as storm total energy and storm-duration. The climate indices of the North Atlantic Oscillation, East Atlantic Pattern, and Scandinavian Pattern have been used as covariates to link to storminess, wave-storm threshold, and wave-storm components in the statistical model. The results show that, first, under both RCP scenarios, the mean values of significant wave-height and peak-wave-period at the peak of the wave-storm remain fairly constant over the 21st century. Second, the mean value of storm total energy is more markedly increasing in the RCP4.5 scenario than in the RCP8.5 scenario. Third, the mean value of storm-duration is increasing in the RCP4.5 scenario, as opposed to the constant trend in the RCP8.5 scenario. The variance of each wave-storm component increases when the corresponding mean value increases under both RCP scenarios. During the 21st century, the East Atlantic Pattern and changes in its pattern have a special influence on wave-storm conditions. Apart from the individual characteristics of each wave-storm component, wave-storms with both extreme energy and duration can be expected in the 21st century. The dependence between all the wave-storm components is moderate, but grows with time and, in general, the severe emission scenario of RCP8.5 presents

  19. Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Chapter 13

    Science.gov (United States)

    Gornitz, Vivien; Horton, Radley; Bader, Daniel A.; Orton, Philip; Rosenzweig, Cynthia

    2017-01-01

    The 837 km New York City shoreline is lined by significant economic assets and dense population vulnerable to sea level rise and coastal flooding. After Hurricane Sandy in 2012, New York City developed a comprehensive plan to mitigate future climate risks, drawing upon the scientific expertise of the New York City Panel on Climate Change (NPCC), a special advisory group comprised of university and private-sector experts. This paper highlights current NPCC findings regarding sea level rise and coastal flooding, with some of the City's ongoing and planned responses. Twentieth century sea level rise in New York City (2.8 cm/decade) exceeded the global average (1.7 cm/decade), underscoring the enhanced regional risk to coastal hazards. NPCC (2015) projects future sea level rise at the Battery of 28 - 53 cm by the 2050s and 46 - 99 cm by the 2080s, relative to 2000 - 2004 (mid-range, 25th - 75th percentile). High-end SLR estimates (90th percentile) reach 76 cm by the 2050s, and 1.9 m by 2100. Combining these projections with updated FEMA flood return period curves, assuming static flood dynamics and storm behavior, flood heights for the 100-year storm (excluding waves) attain 3.9-4.5 m (mid-range), relative to the NAVD88 tidal datum, and 4.9 m (high end) by the 2080s, up from 3.4 m in the 2000s. Flood heights with a 1% annual chance of occurrence in the 2000s increase to 2.0 - 5.4% (mid-range) and 12.7% per year (high-end), by the 2080s. Guided by NPCC (2013, 2015) findings, New York City has embarked on a suite of initiatives to strengthen coastal defenses, employing various approaches tailored to specific neighborhood needs. NPCC continues its collaboration with the city to investigate vulnerability to extreme climate events, including heat waves, inland floods and coastal storms. Current research entails higher-resolution neighborhood-level coastal flood mapping, changes in storm characteristics, surge height interactions with sea level rise, and stronger engagement

  20. Revised paleoenvironmental analysis of the Holocene portion of the Barbados sea-level record: Cobbler's Reef revisited

    Science.gov (United States)

    Toscano, Marguerite A.

    2016-06-01

    Sample elevations corrected for tectonic uplift and assessed relative to local modeled sea levels provide a new perspective on paleoenvironmental history at Cobbler's Reef, Barbados. Previously, 14C-dated surface samples of fragmented Acropora palmata plotted above paleo sea level based on their present (uplifted) elevations, suggesting supratidal rubble deposited during a period of extreme storms (4500-3000 cal BP), precipitating reef demise. At several sites, however, A. palmata persisted, existing until ~370 cal BP. Uplift-corrected A. palmata sample elevations lie below the western Atlantic sea-level curve, and ~2 m below ICE-6G-modeled paleo sea level, under slow rates of sea-level rise, negating the possibility that Cobbler's Reef is a supratidal storm ridge. Most sites show limited age ranges from corals likely damaged/killed on the reef crest, not the mixed ages of rubble ridges, strongly suggesting the reef framework died off in stages over 6500 yr. Reef crest death assemblages invoke multiple paleohistoric causes, from ubiquitous hurricanes to anthropogenic impacts. Comparison of death assemblage ages to dated regional paleotempestological sequences, proxy-based paleotemperatures, recorded hurricanes, tsunamis, European settlement, deforestation, and resulting turbidity, reveals many possible factors inimical to the survival of A. palmata along Cobbler's Reef.

  1. Characterizing uncertain sea-level rise projections to support investment decisions

    Science.gov (United States)

    Lempert, Robert J.; Wikman-Svahn, Per; Keller, Klaus

    2018-01-01

    Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments

  2. Characterizing uncertain sea-level rise projections to support investment decisions.

    Directory of Open Access Journals (Sweden)

    Ryan L Sriver

    Full Text Available Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1 Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2 Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making

  3. Sea-level rise: towards understanding local vulnerability

    Science.gov (United States)

    Rahmstorf, Stefan

    2012-06-01

    , South Carolina; coastal cities across Florida, especially its southeast and the Tampa area; New Orleans; the San Francisco Bay Area and San Joaquin Delta; and greater Los Angeles. Overall, 3.7 million people across the US are estimated to live within 1 m of the present high-tide line. The second paper, by Tebaldi et al, specifically looks at storm surges and how their frequency is expected to change along the US coastline in the coming four decades due to rising sea levels. They first estimate future local sea-level rise relative to the land by combining the observed local trend of the past fifty years with a future acceleration due to global warming as estimated by a semi-empirical model (Vermeer and Rahmstorf 2009). Then they use past storm surge statistics for many different locations and shift the return level curves according to the projected sea-level rise. The authors find that by mid-century, in some locations what is now a once-per-century flooding event could become an annual event. Those are exceptional places—but at about a third of the sites investigated, a century flood could become a once-per-decade flood. Of course, many of these events need not have dramatic impacts: in fact, locations where rare floods are quite small in amplitude (and hence presumably modest in their impacts) are precisely those where the return period decreases most dramatically. In a place where the once-per-century flood is only 50 cm higher than the annual flood, a typical 30 cm rise in sea level makes a bigger difference than one in a place where the century flood is 2 m higher than the annual flood. Nevertheless, the expected large changes in return periods and return levels of storm surges clearly demonstrate that accounting for accelerating sea-level rise is vital in the planning and design of coastal infrastructure. But most importantly, these studies highlight the fact that the modern world, with many millions of people living right by the coast, is highly vulnerable to

  4. Understanding extreme sea levels for coastal impact and adaptation analysis

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.

    2016-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter

  5. The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015

    Science.gov (United States)

    Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.

    2017-12-01

    The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.

  6. Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades.

    Science.gov (United States)

    Sun, Jingru; Oey, Leo; Xu, F-H; Lin, Y-C

    2017-08-07

    Each year, a number of typhoons in the western North Pacific pass through the Luzon Strait into South China Sea (SCS). Although the storms remain above a warm open sea, the majority of them weaken due to atmospheric and oceanic environments unfavorable for typhoon intensification in SCS, which therefore serves as a natural buffer that shields the surrounding coasts from potentially more powerful storms. This study examines how this buffer has changed over inter-decadal and longer time scales. We show that the buffer weakens (i.e. greater potential for more powerful typhoons) in negative Pacific Decadal Oscillation (PDO) years, as well as with sea-level-rise and surface warming, caused primarily by the deepening of the ocean's 26 °C isotherm Z 26 . A new Intensity Change Index is proposed to describe the typhoon intensity change as a function of Z 26 and other environmental variables. In SCS, the new index accounts for as high as 75% of the total variance of typhoon intensity change.

  7. Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment

    Science.gov (United States)

    Lin, N.; Shullman, E.; Xian, S.; Feng, K.

    2017-12-01

    Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).

  8. Regional Risk Assessment for the analysis of the risks related to storm surge extreme events in the coastal area of the North Adriatic Sea.

    Science.gov (United States)

    Rizzi, Jonathan; Torresan, Silvia; Gallina, Valentina; Critto, Andrea; Marcomini, Antonio

    2013-04-01

    Europe's coast faces a variety of climate change threats from extreme high tides, storm surges and rising sea levels. In particular, it is very likely that mean sea level rise will contribute to upward trends in extreme coastal high water levels, thus posing higher risks to coastal locations currently experiencing coastal erosion and inundation processes. In 2007 the European Commission approved the Flood Directive (2007/60/EC), which has the main purpose to establish a framework for the assessment and management of flood risks for inland and coastal areas, thus reducing the adverse consequences for human health, the environment, cultural heritage and economic activities. Improvements in scientific understanding are thus needed to inform decision-making about the best strategies for mitigating and managing storm surge risks in coastal areas. The CLIMDAT project is aimed at improving the understanding of the risks related to extreme storm surge events in the coastal area of the North Adriatic Sea (Italy), considering potential climate change scenarios. The project implements a Regional Risk Assessment (RRA) methodology developed in the FP7 KULTURisk project for the assessment of physical/environmental impacts posed by flood hazards and employs the DEcision support SYstem for Coastal climate change impact assessment (DESYCO) for the application of the methodology to the case study area. The proposed RRA methodology is aimed at the identification and prioritization of targets and areas at risk from water-related natural hazards in the considered region at the meso-scale. To this aim, it integrates information about extreme storm surges with bio-geophysical and socio-economic information (e.g. vegetation cover, slope, soil type, population density) of the analyzed receptors (i.e. people, economic activities, cultural heritages, natural and semi-natural systems). Extreme storm surge hazard scenarios are defined using tide gauge time series coming from 28 tide gauge

  9. Overview and Design Considerations of Storm Surge Barriers

    NARCIS (Netherlands)

    Mooyaart, L.F.; Jonkman, S.N.

    2017-01-01

    The risk of flooding in coastal zones is expected to increase due to sea level rise and economic development. In larger bays, estuaries, and coastal waterways, storm surge barriers can be constructed to temporarily close off these systems during storm surges to provide coastal flood protection.

  10. Toward an integrated storm surge application: ESA Storm Surge project

    Science.gov (United States)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www

  11. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico

    Science.gov (United States)

    Bilskie, Matthew V.; Hagen, S.C.; Alizad, K.A.; Medeiros, S.C.; Passeri, Davina L.; Needham, H.F.; Cox, A.

    2016-01-01

    This work outlines a dynamic modeling framework to examine the effects of global climate change, and sea level rise (SLR) in particular, on tropical cyclone-driven storm surge inundation. The methodology, applied across the northern Gulf of Mexico, adapts a present day large-domain, high resolution, tide, wind-wave, and hurricane storm surge model to characterize the potential outlook of the coastal landscape under four SLR scenarios for the year 2100. The modifications include shoreline and barrier island morphology, marsh migration, and land use land cover change. Hydrodynamics of 10 historic hurricanes were simulated through each of the five model configurations (present day and four SLR scenarios). Under SLR, the total inundated land area increased by 87% and developed and agricultural lands by 138% and 189%, respectively. Peak surge increased by as much as 1 m above the applied SLR in some areas, and other regions were subject to a reduction in peak surge, with respect to the applied SLR, indicating a nonlinear response. Analysis of time-series water surface elevation suggests the interaction between SLR and storm surge is nonlinear in time; SLR increased the time of inundation and caused an earlier arrival of the peak surge, which cannot be addressed using a static (“bathtub”) modeling framework. This work supports the paradigm shift to using a dynamic modeling framework to examine the effects of global climate change on coastal inundation. The outcomes have broad implications and ultimately support a better holistic understanding of the coastal system and aid restoration and long-term coastal sustainability.

  12. Trends in Intense Typhoon Minimum Sea Level Pressure

    Directory of Open Access Journals (Sweden)

    Stephen L. Durden

    2012-01-01

    Full Text Available A number of recent publications have examined trends in the maximum wind speed of tropical cyclones in various basins. In this communication, the author focuses on typhoons in the western North Pacific. Rather than maximum wind speed, the intensity of the storms is measured by their lifetime minimum sea level pressure (MSLP. Quantile regression is used to test for trends in storms of extreme intensity. The results indicate that there is a trend of decreasing intensity in the most intense storms as measured by MSLP over the period 1951–2010. However, when the data are broken into intervals 1951–1987 and 1987–2010, neither interval has a significant trend, but the intensity quantiles for the two periods differ. Reasons for this are discussed, including the cessation of aircraft reconnaissance in 1987. The author also finds that the average typhoon intensity is greater in El Nino years, while the intensity of the strongest typhoons shows no significant relation to El Nino Southern Oscillation.

  13. Evaluation of sea level rise in Bohai Bay and associated responses

    Directory of Open Access Journals (Sweden)

    Ke-Xiu LIU

    2017-03-01

    Full Text Available Tide gauge data from 1950 to 2015 are used to analyze sea level change, tidal change, return levels, and design tide levels under rising sea level scenarios in Bohai Bay. Results show the following: 1 Since 1950 sea levels in Bohai Bay show a significant rising trend of 3.3 mm per year. The speed has been particularly rapid in 1980–2015 at a rate of 4.7 mm per year. 2 Astronomical tides showed a clear long-term trend in 1950–2015. The amplitude and phase lag of the M2 tide constituent decreased at a rate of 0.21 cm per year and 0.11° per year, respectively and the phase lag of K1 decreased at a rate of 0.09° per year, whereas there was little change in its amplitude. The mean high and low tides increased at a rate of 0.08 and 0.52 cm per year, respectively, whereas the mean tidal range decreased at a rate of 0.44 cm per year. Results from numerical experiments show that local sea level rise plays an important role in the tidal dynamics change in Bohai Bay. 3 It is considered that the sea level return periods will decrease owing to the influence of sea level rise and land subsidence, therefore design tide level will change in relation to sea level rise. Therefore, the ability of seawalls to withstand water will diminish, and storm surge disasters will become more serious in the future.

  14. Response of wave-dominated and mixed-energy barriers to storms

    NARCIS (Netherlands)

    Masselink, G.; Heteren, S. van

    2014-01-01

    Wave-dominated and mixed-energy barriers are extremely dynamic landforms, responding to processes operating over a spectrum of time scales, ranging from daily-to-monthly fluctuations related to storm and post-storm conditions, to century-to-millennium-scale evolution driven by relative sea-level

  15. Sea level trends in South East Asian Seas (SEAS)

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2014-10-01

    Southeast Asian Seas (SEAS) span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian Oceans. The SEAS regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost two decades. Initial comparisons of global sea level reconstructions find that 17 year sea level trends over the past 60 years exhibit good agreement in areas and at times of strong signal to noise associated decadal variability forced by low frequency variations in Pacific trade winds. The SEAS region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer time scales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past twenty years, the rate of sea level rise is greatly reduced in the SEAS region. As a result of the influence of the PDO, the SEAS regional sea level trends during 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the SEAS will continue to be affected by GMSL rise occurring now and in the future.

  16. Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam

    Science.gov (United States)

    Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.

    2010-01-01

    Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.

  17. Adaptation to Sea Level Rise in Coastal Units of the National Park Service (Invited)

    Science.gov (United States)

    Beavers, R. L.

    2010-12-01

    83 National Park Service (NPS) units contain nearly 12,000 miles of coastal, estuarine and Great Lakes shoreline and their associated resources. Iconic natural features exist along active shorelines in NPS units, including, e.g., Cape Cod, Padre Island, Hawaii Volcanoes, and the Everglades. Iconic cultural resources managed by NPS include the Cape Hatteras Lighthouse, Fort Sumter, the Golden Gate, and heiaus and fish traps along the coast of Hawaii. Impacts anticipated from sea level rise include inundation and flooding of beaches and low lying marshes, shoreline erosion of coastal areas, and saltwater intrusion into the water table. These impacts and other coastal hazards will threaten park beaches, marshes, and other resources and values; alter the viability of coastal roads; and require the NPS to re-evaluate the financial, safety, and environmental implications of maintaining current projects and implementing future projects in ocean and coastal parks in the context of sea level rise. Coastal erosion will increase as sea levels rise. Barrier islands along the coast of Louisiana and North Carolina may have already passed the threshold for maintaining island integrity in any scenario of sea level rise (U.S. Climate Change Science Program Synthesis and Assessment Program Report 4.1). Consequently, sea level rise is expected to hasten the disappearance of historic coastal villages, coastal wetlands, forests, and beaches, and threaten coastal roads, homes, and businesses. While sea level is rising in most coastal parks, some parks are experiencing lower water levels due to isostatic rebound and lower lake levels. NPS funded a Coastal Vulnerability Project to evaluate the physical and geologic factors affecting 25 coastal parks. The USGS Open File Reports for each park are available at http://woodshole.er.usgs.gov/project-pages/. These reports were designed to inform park planning efforts. NPS conducted a Storm Vulnerability Project to provide ocean and coastal

  18. Sea level report

    International Nuclear Information System (INIS)

    Schwartz, M.L.

    1979-01-01

    Study of Cenozoic Era sea levels shows a continual lowering of sea level through the Tertiary Period. This overall drop in sea level accompanied the Pleistocene Epoch glacio-eustatic fluctuations. The considerable change of Pleistocene Epoch sea level is most directly attributable to the glacio-eustatic factor, with a time span of 10 5 years and an amplitude or range of approximately 200 m. The lowering of sea level since the end of the Cretaceous Period is attributed to subsidence and mid-ocean ridges. The maximum rate for sea level change is 4 cm/y. At present, mean sea level is rising at about 3 to 4 mm/y. Glacio-eustacy and tectono-eustacy are the parameters for predicting sea level changes in the next 1 my. Glacio-eustatic sea level changes may be projected on the basis of the Milankovitch Theory. Predictions about tectono-eustatic sea level changes, however, involve predictions about future tectonic activity and are therefore somewhat difficult to make. Coastal erosion and sedimentation are affected by changes in sea level. Erosion rates for soft sediments may be as much as 50 m/y. The maximum sedimentation accumulation rate is 20 m/100 y

  19. Abnormal storm waves in the winter East/Japan Sea: generation process and hindcasting using an atmosphere-wind wave modelling system

    Directory of Open Access Journals (Sweden)

    H. S. Lee

    2010-04-01

    Full Text Available Abnormal storm waves cause coastal disasters along the coasts of Korean Peninsula and Japan in the East/Japan Sea (EJS in winter, arising due to developed low pressures during the East Asia winter monsoon. The generation of these abnormal storm waves during rough sea states were studied and hindcast using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions that generate these waves are classified into three patterns based on past literature that describes historical events as well as on numerical modelling. In hindcasting the abnormal storm waves, a bogussing scheme originally designed to simulate a tropical storm in a mesoscale meteorological model was introduced into the modelling system to enhance the resolution of developed low pressures. The modelling results with a bogussing scheme showed improvements in terms of resolved low pressure, surface wind field, and wave characteristics obtained with the wind field as an input.

  20. Sinking ships: conservation options for endemic taxa threatened by sea level rise

    Science.gov (United States)

    Joyce Maschinski; Michael S. Ross; Hong Liu; Joe O' Brien; Erick J. von Wettberg; Kristin E. Haskins

    2011-01-01

    Low-elevation islands face threats from sea level rise (SLR) and increased storm intensity. Evidence of endangered species’ population declines and shifts in vegetation communities are already underway in the Florida Keys. SLR predictions indicate large areas of these habitats may be eliminated in the next century. Using the Florida Keys as a model system, we present a...

  1. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    Storm surges are a major concern for many coastal communities, and rising levels of surges is a key concern in relation to climate change. The sea level of a statistical 100-year or 1000-year storm surge event and similar statistical measures are used for spatial planning and emergency preparedness...

  2. In the Eye of the Storm: A Participatory Course on Coastal Storms

    Science.gov (United States)

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  3. Sea level change

    Digital Repository Service at National Institute of Oceanography (India)

    Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; Payne, A.J.; Pfeffer, W.T.; Stammer, D.; Unnikrishnan, A.S.

    This chapter considers changes in global mean sea level, regional sea level, sea level extremes, and waves. Confidence in projections of global mean sea level rise has increased since the Fourth Assessment Report (AR4) because of the improved...

  4. Sea level trends in Southeast Asian seas

    Science.gov (United States)

    Strassburg, M. W.; Hamlington, B. D.; Leben, R. R.; Manurung, P.; Lumban Gaol, J.; Nababan, B.; Vignudelli, S.; Kim, K.-Y.

    2015-05-01

    Southeast Asian seas span the largest archipelago in the global ocean and provide a complex oceanic pathway connecting the Pacific and Indian oceans. The Southeast Asian sea regional sea level trends are some of the highest observed in the modern satellite altimeter record that now spans almost 2 decades. Initial comparisons of global sea level reconstructions find that 17-year sea level trends over the past 60 years exhibit good agreement with decadal variability associated with the Pacific Decadal Oscillation and related fluctuations of trade winds in the region. The Southeast Asian sea region exhibits sea level trends that vary dramatically over the studied time period. This historical variation suggests that the strong regional sea level trends observed during the modern satellite altimeter record will abate as trade winds fluctuate on decadal and longer timescales. Furthermore, after removing the contribution of the Pacific Decadal Oscillation (PDO) to sea level trends in the past 20 years, the rate of sea level rise is greatly reduced in the Southeast Asian sea region. As a result of the influence of the PDO, the Southeast Asian sea regional sea level trends during the 2010s and 2020s are likely to be less than the global mean sea level (GMSL) trend if the observed oscillations in wind forcing and sea level persist. Nevertheless, long-term sea level trends in the Southeast Asian seas will continue to be affected by GMSL rise occurring now and in the future.

  5. Responding to Sea Level Rise: Does Short-Term Risk Reduction Inhibit Successful Long-Term Adaptation?

    Science.gov (United States)

    Keeler, A. G.; McNamara, D. E.; Irish, J. L.

    2018-04-01

    Most existing coastal climate-adaptation planning processes, and the research supporting them, tightly focus on how to use land use planning, policy tools, and infrastructure spending to reduce risks from rising seas and changing storm conditions. While central to community response to sea level rise, we argue that the exclusive nature of this focus biases against and delays decisions to take more discontinuous, yet proactive, actions to adapt—for example, relocation and aggressive individual protection investments. Public policies should anticipate real estate market responses to risk reduction to avoid large costs—social and financial—when and if sea level rise and other climate-related factors elevate the risks to such high levels that discontinuous responses become the least bad alternative.

  6. Sea-level rise impacts on the temporal and spatial variability of extreme water levels: A case study for St. Peter-Ording, Germany

    Science.gov (United States)

    Santamaria-Aguilar, S.; Arns, A.; Vafeidis, A. T.

    2017-04-01

    Both the temporal and spatial variability of storm surge water level (WL) curves are usually not taken into account in flood risk assessments as observational data are often scarce. In addition, sea-level rise (SLR) can further affect the variability of WLs. We analyze the temporal and spatial variability of the WL curve of 75 historical storm surge events that have been numerically simulated for St. Peter-Ording at the German North Sea coast, considering the effects induced by three SLR scenarios (RCP 4.5, RCP 8.5, and a RCP 8.5 high end scenario). We assess potential impacts of these scenarios on two parameters related to flooding: overflow volumes and fullness. Our results indicate that due to both the temporal and spatial variability of those events the resulting overflow volume can be two or even three times greater. We observe a steepening of the WL curve with an increase of the tidal range under the three SLR scenarios, although SLR induced effects are relatively higher for the RCP 4.5. The steepening of the WL curve with SLR produces a reduction of the fullness, but the changes in overflow volumes also depend on the magnitude of the storm surge event.

  7. Response of internal solitary waves to tropical storm Washi in the northwestern South China Sea

    Directory of Open Access Journals (Sweden)

    Z. H. Xu

    2011-11-01

    Full Text Available Based on in-situ time series data from an array of temperature sensors and an acoustic Doppler current profiler on the continental shelf of the northwestern South China Sea, a sequence of internal solitary waves (ISWs were observed during the passage of tropical storm Washi in the summer of 2005, which provided a unique opportunity to investigate the ISW response to the tropical cyclone. The passing tropical storm is found to play an important role in affecting the stratification structure of the water column, and consequently leading to significant variability in the propagating features of the ISWs, such as the polarity reversal and amplitude variations of the waves. The response of the ISWs to Washi can be divided into two stages, direct forcing by the strong wind (during the arrival of Washi and remote forcing via the near-inertial internal waves induced by the tropical storm (after the passage of Washi. The field observations as well as a theoretical analysis suggest that the variations of the ISWs closely coincide with the changing stratification structure and shear currents in accompanied by the typhoon wind and near-inertial waves. This study presents the first observations and analysis of the ISW response to the tropical cyclone in the South China Sea.

  8. Observing Storm Surges from Space: A New Opportunity

    Science.gov (United States)

    Han, Guoqi; Ma, Zhimin; Chen, Dake; de Young, Brad; Chen, Nancy

    2013-04-01

    Coastal tide gauges can be used to monitor variations of a storm surge along the coast, but not in the cross-shelf direction. As a result, the cross-shelf structure of a storm surge has rarely been observed. In this study we focus on Hurricane Igor-induced storm surge off Newfoundland, Canada. Altimetric observations at about 2:30, September 22, 2010 UTC (hours after the passage of Hurricane Igor) reveal prominent cross-shelf variation of sea surface height during the storm passage, including a large nearshore slope and a mid-shelf depression. A significant coastal surge of 1 m derived from satellite altimetry is found to be consistent with tide-gauge measurements at nearby St. John's station. The post-storm sea level variations at St. John's and Argentia are argued to be associated with free equatorward-propagating continental shelf waves (with phase speeds of 11-13 m/s), generated along the northeast Newfoundland coast hours after the storm moved away from St. John's. The cross-shelf e-folding scale of the shelf wave was estimated to be ~100 km. We further show approximate agreement of altimetric and tide-gauge observations in the Gulf of Mexico during Hurricane Katrina (2005) and Isaac (2012). The study for the first time in the literature shows the robustness of satellite altimetry to observe storm surges, complementing tide-gauge observations for the analysis of storm surge characteristics and for the validation and improvement of storm surge models.

  9. Real-time reporting and internet-accessible cellular based coastal sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Mehra, P.; Dabholkar, N.; Parab, A.; Gouveia, A.D.; Tengali, S.

    as on the receiving- side. This adds to the hardware cost as well as software overheads on the receiving- side to check the data integrity for transmission errors. The main benefit of cellular connectivity with GPRS technology is that it utilizes radio resources only...-level data communication systems for the benefit the coastal communities and the local administrators (Joseph and Prabhudesai, 2005). Further, real-time sea-level data would form an important input to storm-surge predictive models and warning systems. Given...

  10. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea

    Science.gov (United States)

    Murakami, Hiroyuki; Vecchi, Gabriel A.; Underwood, Seth

    2017-12-01

    In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s-1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.

  11. Sea level changes along the Indian coast: Observations and projections

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; Kumar, K.R.; Fernandes, S.E.; Michael, G.S.; Patwardhan, S.K.

    : CLIMATE CHANGE AND INDIA CURRE NT SCIENCE, VOL. 90, NO. 3, 10 FEBRUARY 2006 *For correspondence. (e - mail: unni@darya.nio.org ) Sea level changes along the Indian coast: Observ a tions and projections A. S. Unnikrishnan 1, *, K. Rupa Kumar... with the occu r rence of tropical cyclones in the Bay of Bengal and associated storm surges in a future climate scenario. Projections for the future are needed for decision making by planners and policy makers. Future pr o jecti ons are made for different...

  12. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    Directory of Open Access Journals (Sweden)

    Thomas Prime

    Full Text Available Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  13. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities.

    Science.gov (United States)

    Prime, Thomas; Brown, Jennifer M; Plater, Andrew J

    2015-01-01

    Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.

  14. Challenges in Projecting Sea Level Rise impacts on the Coastal Environment of South Florida (Invited)

    Science.gov (United States)

    Obeysekera, J.; Park, J.; Irizarry-Ortiz, M. M.; Barnes, J. A.; Trimble, P.; Said, W.

    2010-12-01

    Due to flat topography, a highly transmissive groundwater aquifer, and a growing population with the associated infrastructure, South Florida’s coastal environment is one of the most vulnerable areas to sea level rise. Current projections of sea level rise and the associated storm surges will have direct impacts on coastal beaches and infrastructure, flood protection, freshwater aquifers, and both the isolated and regional wetlands. Uncertainties in current projections have made it difficult for regional and local governments to develop adaptation strategies as such measures will depend heavily on the temporal and spatial patterns of sea level rise in the coming decades. We demonstrate the vulnerability of both the built and natural environments of the coastal region and present the current efforts to understand and predict the sea level rise estimate that management agencies could employ in planning of adaptation strategies. In particular, the potential vulnerabilities of the flood control system as well as the threat to the water supply wellfields in the coastal belt will be presented. In an effort to understand the historical variability of sea level rise, we present linkages to natural phenomena such as Atlantic Multi-Decadal Oscillation, and the analytical methods we have developed to provide probabilistic projections of both mean sea level rise and the extremes.

  15. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  16. Giant boulders and Last Interglacial storm intensity in the North Atlantic

    Science.gov (United States)

    Rovere, Alessio; Casella, Elisa; Harris, Daniel L.; Lorscheid, Thomas; Nandasena, Napayalage A. K.; Dyer, Blake; Sandstrom, Michael R.; Stocchi, Paolo; D'Andrea, William J.; Raymo, Maureen E.

    2017-11-01

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ˜128–116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past “superstorms,” they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

  17. Giant boulders and Last Interglacial storm intensity in the North Atlantic.

    Science.gov (United States)

    Rovere, Alessio; Casella, Elisa; Harris, Daniel L; Lorscheid, Thomas; Nandasena, Napayalage A K; Dyer, Blake; Sandstrom, Michael R; Stocchi, Paolo; D'Andrea, William J; Raymo, Maureen E

    2017-11-14

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

  18. The Future of GLOSS Sea Level Data Archaeology

    Science.gov (United States)

    Jevrejeva, S.; Bradshaw, E.; Tamisiea, M. E.; Aarup, T.

    2014-12-01

    Long term climate records are rare, consisting of unique and unrepeatable measurements. However, data do exist in analogue form in archives, libraries and other repositories around the world. The Global Sea Level Observing System (GLOSS) Group of Experts aims to provide advice on locating hidden tide gauge data, scanning and digitising records and quality controlling the resulting data. Long sea level data time series are used in Intergovernmental Panel on Climate Change (IPCC) assessment reports and climate studies, in oceanography to study changes in ocean currents, tides and storm surges, in geodesy to establish national datum and in geography and geology to monitor coastal land movement. GLOSS has carried out a number of data archaeology activities over the past decade, which have mainly involved sending member organisations questionnaires on their repositories. The Group of Experts is now looking at future developments in sea level data archaeology and how new technologies coming on line could be used by member organisations to make data digitisation and transcription more efficient. Analogue tide data comes in two forms charts, which record the continuous measurements made by an instrument, usually via a pen trace on paper ledgers containing written values of observations The GLOSS data archaeology web pages will provide a list of software that member organisations have reported to be suitable for the automatic digitisation of tide gauge charts. Transcribing of ledgers has so far proved more labour intensive and is usually conducted by people entering numbers by hand. GLOSS is exploring using Citizen Science techniques, such as those employed by the Old Weather project, to improve the efficiency of transcribing ledgers. The Group of Experts is also looking at recent advances in Handwritten Text Recognition (HTR) technology, which mainly relies on patterns in the written word, but could be adapted to work with the patterns inherent in sea level data.

  19. Examples of storm impacts on barrier islands: Chapter 4

    Science.gov (United States)

    Plant, Nathaniel G.; Doran, Kara; Stockdon, Hilary F.

    2017-01-01

    This chapter focuses on the morphologic variability of barrier islands and on the differences in storm response. It describes different types of barrier island response to individual storms, as well as the integrated response of barrier islands to many storms. The chapter considers case study on the Chandeleur Island chain, where a decadal time series of island elevation measurements have documented a wide range of barrier island responses to storms and long-term processes that are representative of barrier island behaviour at many other locations. These islands are low elevation, extremely vulnerable to storms and exhibit a diversity of storm responses. Additionally, this location experiences a moderately high rate of relative sea-level rise, increasing its vulnerability to the combined impacts of storms and long-term erosional processes. Understanding how natural processes, including storm impacts and intervening recovery periods interact with man-made restoration processes is also broadly relevant to understand the natural and human response to future storms.

  20. Muon Excess at Sea Level during the Progress of a Geomagnetic Storm and High-Speed Stream Impact Near the Time of Earth's Heliospheric Sheet Crossing

    Science.gov (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Kopenkin, V.; Sinzi, T.

    2017-08-01

    In this article we present results of studying the association between the muon flux variation at ground level, registered by the New-Tupi muon telescopes (22° 53'00'' S, 43° 06'13' W; 3 m above sea level), and the geomagnetic storm on 25 - 29 August 2015 that has raged for several days as a result of a coronal mass ejection (CME) impact on Earth's magnetosphere. A sequence of events started with an M3.5 X-ray class flare on 22 August 2015 at 21:19 UTC. The New-Tupi muon telescopes observed a Forbush decrease (FD) triggered by this geomagnetic storm, which began on 26 August 2015. After Earth crossed the heliospheric current sheet (HCS), an increase in particle flux was observed on 28 August 2015 by spacecraft and ground-level detectors. The observed peak was in temporal coincidence with the impact of a high-speed stream (HSS). We study this increase, which has been observed with a significance above 1.5% by ground-level detectors in different rigidity regimes. We also estimate the lower limit of the energy fluence injected on Earth. In addition, we consider the origin of this increase, such as acceleration of particles by shock waves at the front of the HSS and the focusing effect of the HCS crossing. Our results show possible evidence of a prolonged energetic (up to GeV energies) particle injection within the Earth atmosphere system, driven by the HSS. In most cases, these injected particles are directed to the polar regions. However, the particles from the high-energy tail of the spectrum can reach mid-latitudes, and this could have consequences for the atmospheric chemistry. For instance, the creation of NOx species may be enhanced, and this can lead to increased ozone depletion. This topic requires further study.

  1. Contribution of deformation to sea-ice mass balance: a case study from an N-ICE2015 storm

    DEFF Research Database (Denmark)

    Itkin, Polona; Spreen, Gunnar; Hvidegaard, Sine Munk

    2018-01-01

    The fastest and most efficient process of gaining sea ice volume is through the mechanical redistribution of mass as a consequence of deformation events. During the ice growth season divergent motion produces leads where new ice grows thermodynamically, while convergent motion fractures the ice...... and either piles the resultant ice blocks into ridges or rafts one floe under the other. Here we present an exceptionally detailed airborne dataset from a 9km2 area of first and second year ice in the Transpolar Drift north of Svalbard that allowed us to estimate the redistribution of mass from an observed...... deformation event. To achieve this level of detail we analyzed changes in sea ice freeboard acquired from two airborne laser scanner surveys just before and right after a deformation event brought on by a passing low pressure system. A linear regression model based on divergence during this storm can explain...

  2. Sensitivity of Estuaries to Coastal Morphological Change Induced by Sea Level Rise

    Science.gov (United States)

    Alizad, K.; Hagen, S. C.; Bilskie, M. V.; Mariotti, G.

    2017-12-01

    Coastal wetlands play a critical role by providing food and habitat for a variety of species and by dissipating wave and storm surge. These regions are also vulnerable to climate change and specifically rising sea levels. Projections show that coastal marshes across the Northern Gulf of Mexico are threatened by a higher risk of losing their productivity through increased inundation depth and time [Alizad et al., 2016a]. Individual estuaries will respond differently to stressors based on local conditions such as tidal range, creek geometry, and sediment sources, among others. In addition, morphological changes in estuaries are functions of both physical processes such as hydrodynamics and wind waves as well as biological mechanisms. To investigate the sensitivity of storm surge to bio-geomorphological changes associated with climate change within an estuary, the Hydro-MEM model [Alizad et al., 2016b] and first-order bathymetric changes were applied for a set of sea level rise (SLR) scenarios. Morphologic change in the form of marsh platform accretion and enhanced bay bathymetry through time was employed in an ADvanced CIRCulation (ADCIRC) shallow-water equation model. The model was used to run synthetic storm simulations for an intermediate-low (0.5 m), intermediate-high (1.2 m), and high (2.0 m) SLR scenarios in Grand Bay, MS (marine dominated) and Weeks Bay, AL (mixed) estuaries. Results including with and without morphologic changes applied will be discussed. Future steps for incorporating morphological effects including channel widening and wave erosion processes into the Hydro-MEM model is to couple morphologic and hydrodynamic models [Mariotti and Canestrelli, 2017] in the Hydro-MEM time step framework. ReferencesAlizad, K., S. C. Hagen, J. T. Morris, S. C. Medeiros, M. V. Bilskie, and J. F. Weishampel (2016a), Coastal wetland response to sea-level rise in a fluvial estuarine system, Earth's Future, 4(11), 483-497. Alizad, K., S. C. Hagen, J. T. Morris, P

  3. IInvestigations of space-time variability of the sea level in the Barents Sea and the White Sea by satellite altimetry data and results of hydrodynamic modelling

    Science.gov (United States)

    Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.

    2003-04-01

    The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).

  4. Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level

    Science.gov (United States)

    Ezer, Tal; Atkinson, Larry P.; Tuleya, Robert

    2017-12-01

    In October 7-9, 2016, Hurricane Matthew moved along the southeastern coast of the U.S., causing major flooding and significant damage, even to locations farther north well away from the storm's winds. Various observations, such as tide gauge data, cable measurements of the Florida Current (FC) transport, satellite altimeter data and high-frequency radar data, were analyzed to evaluate the impact of the storm. The data show a dramatic decline in the FC flow and increased coastal sea level along the U.S. coast. Weakening of the Gulf Stream (GS) downstream from the storm's area contributed to high coastal sea levels farther north. Analyses of simulations of an operational hurricane-ocean coupled model reveal the disruption that the hurricane caused to the GS flow, including a decline in transport of ∼20 Sv (1 Sv = 106 m3 s-1). In comparison, the observed FC reached a maximum transport of ∼40 Sv before the storm on September 10 and a minimum of ∼20 Sv after the storm on October 12. The hurricane impacts both the geostrophic part of the GS and the wind-driven currents, generating inertial oscillations with velocities of up to ±1 m s-1. Analysis of the observed FC transport since 1982 indicated that the magnitude of the current weakening in October 2016 was quite rare (outside 3 standard deviations from the mean). Such a large FC weakening in the past occurred more often in October and November, but is extremely rare in June-August. Similar impacts on the FC from past tropical storms and hurricanes suggest that storms may contribute to seasonal and interannual variations in the FC. The results also demonstrated the extended range of coastal impacts that remote storms can cause through their influence on ocean currents.

  5. Multivariate return periods of sea storms for coastal erosion risk assessment

    Directory of Open Access Journals (Sweden)

    S. Corbella

    2012-08-01

    Full Text Available The erosion of a beach depends on various storm characteristics. Ideally, the risk associated with a storm would be described by a single multivariate return period that is also representative of the erosion risk, i.e. a 100 yr multivariate storm return period would cause a 100 yr erosion return period. Unfortunately, a specific probability level may be associated with numerous combinations of storm characteristics. These combinations, despite having the same multivariate probability, may cause very different erosion outcomes. This paper explores this ambiguity problem in the context of copula based multivariate return periods and using a case study at Durban on the east coast of South Africa. Simulations were used to correlate multivariate return periods of historical events to return periods of estimated storm induced erosion volumes. In addition, the relationship of the most-likely design event (Salvadori et al., 2011 to coastal erosion was investigated. It was found that the multivariate return periods for wave height and duration had the highest correlation to erosion return periods. The most-likely design event was found to be an inadequate design method in its current form. We explore the inclusion of conditions based on the physical realizability of wave events and the use of multivariate linear regression to relate storm parameters to erosion computed from a process based model. Establishing a link between storm statistics and erosion consequences can resolve the ambiguity between multivariate storm return periods and associated erosion return periods.

  6. Sea level hazards: Altimetric monitoring of tsunamis and sea level rise

    Science.gov (United States)

    Hamlington, Benjamin Dillon

    Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.

  7. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

    Directory of Open Access Journals (Sweden)

    Ron Karl Hoeke

    2015-09-01

    Full Text Available Wind-wave contributions to tropical cyclone (TC-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR, particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

  8. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    Science.gov (United States)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  9. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    Science.gov (United States)

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  10. Rates and limits of climatic change: Discussion of possible targets; Rates and limits of temperature, precipitation, and sea-level changes

    Energy Technology Data Exchange (ETDEWEB)

    Gleick, P H [Pacific Inst. for SiDES, Berkeley, CA (US); Sassin, W [Landl (AT)

    1990-10-01

    The rate of sea-level rise over the next century is likely to accelerate rapidly and exceed rates of rise experienced over the last several thousand years. Under these conditions, adverse effects on natural ecosystems such as coastal marshes and coral reef islands would be widely observable by 2050, and would be noticeable in vulnerable ecosystems by the year 2000, even under low sea-level rise scenario. Non-linearities and sudden events such as storm surges and a change in storm frequency and intensity could lead to damages even earlier. Similarly, change in temperature and precipitation patterns far greater than those experienced in the last 10000to 100000 years seem likely unless strong actions are taken soon. Rates of change in temperature, precipitation, and sea level over geologic time have often exceeded the rates expected over the next century from global warming. These large excursions, however, were often accompanied by dramatic changes in ecosystems and by large species extinctions, and they occurred when no human infrastructure existed. The adaptive abilities of natural ecosystems can be used to define targets of maximum rates of rise. For coral reef islands and coastal marshes, the maximum rate of accretion of materials is 10 to 15 mm/yr. At this rate, however, many reefs and marshes that accrete materials at slower rates will be inundated and destroyed. Average rates of accretion for marshes are lower - between 2 and 5 mm/yr, and between 5 and 10 mm/yr for coral reefs. Even at these lower rates, some ecosystem losses are to be expected. This information leads to a recommended target for the rate of sea-level rise of between 20 and 50 mm per decade, and a target for absolute sea-level rise of between 0.2 and 0.5 above the 1990 global mean sea level. (authors).

  11. Perceptions of Climate Change, Sea Level Rise, and Possible Consequences Relate Mainly to Self-Valuation of Science Knowledge.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Pittfield, Taryn; Jeitner, Christian

    2016-05-01

    This study examines perceptions of climate change and sea level rise in New Jersey residents in 2012 and 2014. Different surveys have shown declines in interest and concern about climate change and sea level rise. Climate change and increasing temperatures have an anthropogenic cause, which relates to energy use, making it important to examine whether people believe that it is occurring. In late 2012 New Jersey experienced Super storm Sandy, one of the worst hurricanes in its history, followed by public discussion and media coverage of stronger more frequent storms due to climate change. Using structured interviews, we tested the null hypotheses that there were no differences in perceptions of 1260 interviewees as a function of year of the survey, age, gender, years of education, and self-evaluation of science knowledge (on a scale of 1 to 5). In 2012 460 of 639 (72%) rated "global warming occurring" as "certain" (#4) or "very certain" (#5) compared with 453 of 621 (73%) in 2014. For "due to human activities" the numbers of "certain" or "very certain" were 71% in 2012, and 67% in 2014 and for sea level rise the numbers were 64% and 70%. There were some inconsistent between-year differences with higher ratings in 2012 for 3 outcomes and higher ratings in 2014 for 5 outcomes. However, for 25 questions relative to climate change, sea level rise, and the personal and ecological effects of sea level rise, self-evaluation of science knowledge, independent of years of education, was the factor that entered 23 of the models, accounting for the most variability in ratings. People who believed they had a "high knowledge" (#4) or "very high knowledge" (#5) of science rated all issues as more important than did those people who rated their own scientific knowledge as average or below average.

  12. Resilience of Infrastructure Systems to Sea-Level Rise in Coastal Areas: Impacts, Adaptation Measures, and Implementation Challenges

    Directory of Open Access Journals (Sweden)

    Beatriz Azevedo de Almeida

    2016-11-01

    Full Text Available Expansive areas of low elevation in many densely populated coastal areas are at elevated risk of storm surges and flooding due to torrential precipitation, as a result of sea level rise. These phenomena could have catastrophic impacts on coastal communities and result in the destruction of critical infrastructure, disruption of economic activities and salt water contamination of the water supply. The objective of the study presented in this paper was to identify various impacts of sea level rise on civil infrastructures in coastal areas and examine the adaptation measures suggested in the existing literature. To this end, a systemic review of the existing literature was conducted in order to identify a repository of studies addressing sea level rise impacts and adaptation measures in the context of infrastructure systems. The study focused on three infrastructure sectors: water and wastewater, energy, and road transportation. The collected information was then analyzed in order to identify different categories of sea level rise impacts and corresponding adaptation measures. The findings of the study are threefold: (1 the major categories of sea level rise impacts on different infrastructure systems; (2 measures for protection, accommodation, and retreat in response to sea level rise impacts; and (3 challenges related to implementing adaptation measures.

  13. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    Science.gov (United States)

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  14. Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.

    Science.gov (United States)

    Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E

    2017-09-11

    Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

  15. Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai.

    Science.gov (United States)

    Wang, Jun; Yi, Si; Li, Mengya; Wang, Lei; Song, Chengcheng

    2018-04-15

    We compared the effects of three key environmental factors of coastal flooding: sea level rise (SLR), land subsidence (LS) and bathymetric change (BC) in the coastal areas of Shanghai. We use the hydrological simulation model MIKE 21 to simulate flood magnitudes under multiple scenarios created from combinations of the key environmental factors projected to year 2030 and 2050. Historical typhoons (TC9711, TC8114, TC0012, TC0205 and TC1109), which caused extremely high surges and considerable losses, were selected as reference tracks to generate potential typhoon events that would make landfalls in Shanghai (SHLD), in the north of Zhejiang (ZNLD) and moving northwards in the offshore area of Shanghai (MNS) under those scenarios. The model results provided assessment of impact of single and compound effects of the three factors (SLR, LS and BC) on coastal flooding in Shanghai for the next few decades. Model simulation showed that by the year 2030, the magnitude of storm flooding will increase due to the environmental changes defined by SLR, LS, and BC. Particularly, the compound scenario of the three factors will generate coastal floods that are 3.1, 2.7, and 1.9 times greater than the single factor change scenarios by, respectively, SLR, LS, and BC. Even more drastically, in 2050, the compound impact of the three factors would be 8.5, 7.5, and 23.4 times of the single factors. It indicates that the impact of environmental changes is not simple addition of the effects from individual factors, but rather multiple times greater of that when the projection time is longer. We also found for short-term scenarios, the bathymetry change is the most important factor for the changes in coastal flooding; and for long-term scenarios, sea level rise and land subsidence are the major factors that coastal flood prevention and management should address. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Coastal Marsh Longevity, Ecological Succession, and Organic Carbon Dynamics During Early Holocene Sea-Level Rise

    Science.gov (United States)

    Vetter, L.; Schreiner, K. M.; Rosenheim, B. E.; Tornqvist, T. E.

    2016-02-01

    Coastal marsh environments perform essential ecosystem services, including nutrient filtering, soil organic matter storage, and storm surge abatement, yet much is still unknown about their formation and fate under periods of sea-level change. During the early Holocene (7-10 ka), rapid sea-level rise in coastal Louisiana was one of the primary controls over marsh development and longevity. Here, we investigate plant community composition and succession and soil organic matter storage in early Holocene coastal marshes in Louisiana using bulk elemental ratios, lignin phenol biomarkers and stable isotopes from peat layers. Sediment cores were collected in southeastern Louisiana and contain a record of an early Holocene transgressive sea-level sequence 16-25 m below present sea-level. The sedimentary record consists of an immature paleosol overlain by basal peat that accumulated in an estuarine marsh, overlain by marine lagoonal muds. A re-established marsh peat is present 1-4 m above the initial transition to marine conditions, indicating a sequence of marsh development, sea-level rise and onset of marine conditions, and then further marsh development as the rate of relative sea-level rise decelerated. Plant community composition in coastal marshes was determined through cupric oxide oxidation and lignin-phenol and non-lignin-phenol biomarker abundances. The degradation state of soil organic matter and the specific source of stabilized organic matter within the sedimentary peats were determined through lignin-phenol biomarker ratios. Organic matter sources ranged from terrestrial to marine over the course of sea-level rise, and different sites showed different amounts of marine organic matter influence and different levels of terrestrial organic matter degradation. These results have important implications for reconstructing the response of coastal marshes and their plant communities to accelerated rates of sea-level rise projected through 2100.

  17. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland)

    Science.gov (United States)

    Kirillov, Sergei; Dmitrenko, Igor; Rysgaard, Søren; Babb, David; Toudal Pedersen, Leif; Ehn, Jens; Bendtsen, Jørgen; Barber, David

    2017-11-01

    In April 2015, an ice-tethered conductivity-temperature-depth (CTD) profiler and a down-looking acoustic Doppler current profiler (ADCP) were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22-24 April, when northerly winds exceeded 15 m s-1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0-40 m) layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ˜ 4 days. Although current velocities did not exceed 5 cm s-1, the enhanced circulation during the storm caused cold turbid intrusions at 75-95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ˜ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf-basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  18. Storm-induced water dynamics and thermohaline structure at the tidewater Flade Isblink Glacier outlet to the Wandel Sea (NE Greenland

    Directory of Open Access Journals (Sweden)

    S. Kirillov

    2017-11-01

    Full Text Available In April 2015, an ice-tethered conductivity–temperature–depth (CTD profiler and a down-looking acoustic Doppler current profiler (ADCP were deployed from the landfast ice near the tidewater glacier terminus of the Flade Isblink Glacier in the Wandel Sea, NE Greenland. The 3-week time series showed that water dynamics and the thermohaline structure were modified considerably during a storm event on 22–24 April, when northerly winds exceeded 15 m s−1. The storm initiated downwelling-like water dynamics characterized by on-shore water transport in the surface (0–40 m layer and compensating offshore flow at intermediate depths. After the storm, currents reversed in both layers, and the relaxation phase of downwelling lasted ∼ 4 days. Although current velocities did not exceed 5 cm s−1, the enhanced circulation during the storm caused cold turbid intrusions at 75–95 m depth, which are likely attributable to subglacial water from the Flade Isblink Ice Cap. It was also found that the semidiurnal periodicities in the temperature and salinity time series were associated with the lunar semidiurnal tidal flow. The vertical structure of tidal currents corresponded to the first baroclinic mode of the internal tide with a velocity minimum at ∼ 40 m. The tidal ellipses rotate in opposite directions above and below this depth and cause a divergence of tidal flow, which was observed to induce semidiurnal internal waves of about 3 m height at the front of the glacier terminus. Our findings provide evidence that shelf–basin interaction and tidal forcing can potentially modify coastal Wandel Sea waters even though they are isolated from the atmosphere by landfast sea ice almost year-round. The northerly storms over the continental slope cause an enhanced circulation facilitating a release of cold and turbid subglacial water to the shelf. The tidal flow may contribute to the removal of such water from the glacial terminus.

  19. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  20. Sea level ~400 000 years ago (MIS 11: analogue for present and future sea-level?

    Directory of Open Access Journals (Sweden)

    D. Q. Bowen

    2010-01-01

    Full Text Available Comparison of the sea-level today with that of 400 000 years ago (MIS 11, when the Earth's orbital characteristics were similar may provide, under conditions of natural variability, indications of future sea-level during the present interglacial. Then, as now, orbital eccentricity was low and precession dampened. Evidence for MIS 11 sea-level occurs on uplifting coastlines where shorelines with geochronological ages have been preserved. The sea-level term and the uplift term may be separated with an "uplift correction" formula. This discovers the original sea-level at which the now uplifted shoreline was fashioned. Estimates are based on average uplift rates of the "last interglacial" sea-level (MIS 5.5 using a range of estimates for sea-level and age at that time at different locations. These, with varying secular tectonic regimes in different ocean basins, provide a band of estimates for the MIS 11 sea-level. They do not support the hypothesis of an MIS 11 sea-level at ~20 m, and instead show that it was closer to its present level.

  1. Numerical modelling of tides and storm surges in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sindhu, B.

    were done. A storm surge model was developed to simulate total water levels and derived surges caused by low pressure systems identified during the past 27 years (1974-2000) in the Bay of Bengal. Study also estimated the return levels of extreme sea...

  2. Using Bayesian Network as a tool for coastal storm flood impact prediction at Varna Bay (Bulgaria, Western Black Sea)

    Science.gov (United States)

    Valchev, Nikolay; Eftimova, Petya; Andreeva, Nataliya; Prodanov, Bogdan

    2017-04-01

    Coastal zone is among the fastest evolving areas worldwide. Ever increasing population inhabiting coastal settlements develops often conflicting economic and societal activities. The existing imbalance between the expansion of these activities, on one hand, and the potential to accommodate them in a sustainable manner, on the other, becomes a critical problem. Concurrently, coasts are affected by various hydro-meteorological phenomena such as storm surges, heavy seas, strong winds and flash floods, which intensities and occurrence frequency is likely to increase due to the climate change. This implies elaboration of tools capable of quick prediction of impact of those phenomena on the coast and providing solutions in terms of disaster risk reduction measures. One such tool is Bayesian network. Proposed paper describes the set-up of such network for Varna Bay (Bulgaria, Western Black Sea). It relates near-shore storm conditions to their onshore flood potential and ultimately to relevant impact as relative damage on coastal and manmade environment. Methodology for set-up and training of the Bayesian network was developed within RISC-KIT project (Resilience-Increasing Strategies for Coasts - toolKIT). Proposed BN reflects the interaction between boundary conditions, receptors, hazard, and consequences. Storm boundary conditions - maximum significant wave height and peak surge level, were determined on the basis of their historical and projected occurrence. The only hazard considered in this study is flooding characterized by maximum inundation depth. BN was trained with synthetic events created by combining estimated boundary conditions. Flood impact was modeled with the process-based morphodynamical model XBeach. Restaurants, sport and leisure facilities, administrative buildings, and car parks were introduced in the network as receptors. Consequences (impact) are estimated in terms of relative damage caused by given inundation depth. National depth

  3. Intermittent sea-level acceleration

    Science.gov (United States)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  4. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model

    Directory of Open Access Journals (Sweden)

    L. Fita

    2007-01-01

    Full Text Available Tropical-like storms on the Mediterranean Sea are occasionally observed on satellite images, often with a clear eye surrounded by an axysimmetric cloud structure. These storms sometimes attain hurricane intensity and can severely affect coastal lands. A deep, cut-off, cold-core low is usually observed at mid-upper tropospheric levels in association with the development of these tropical-like systems. In this study we attempt to apply some tools previously used in studies of tropical hurricanes to characterise the environments in which seven known Mediterranean events developed. In particular, an axisymmetric, nonhydrostatic, cloud resolving model is applied to simulate the tropical-like storm genesis and evolution. Results are compared to surface observations when landfall occurred and with satellite microwave derived wind speed measurements over the sea. Finally, sensitivities of the numerical simulations to different factors (e.g. sea surface temperature, vertical humidity profile and size of the initial precursor of the storm are examined.

  5. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

    Science.gov (United States)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M.

    2015-07-01

    Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June-September) of the years 2001-2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model

  6. Effects of wave-induced forcing on a circulation model of the North Sea

    Science.gov (United States)

    Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian

    2017-04-01

    The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.

  7. The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild

    2016-04-01

    Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control

  8. The 2015 Summer Solstice Storm: One of the Major Geomagnetic Storms of Solar Cycle 24 Observed at Ground Level

    Science.gov (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Raulin, J. P.; Tueros, E.; de Mendonça, R. R. S.; Fauth, A. C.; Vieira de Souza, H.; Kopenkin, V.; Sinzi, T.

    2018-05-01

    We report on the 22 - 23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth's magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22 - 23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured {˜} 56° degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun-Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton

  9. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    Science.gov (United States)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  10. Predicting Impacts of tropical cyclones and sea-Level rise on beach mouse habitat

    Science.gov (United States)

    Chen, Qin; Wang, Hongqing; Wang, Lixia; Tawes, Robert; Rollman, Drew

    2014-01-01

    Alabama beach mouse (ABM) (Peromyscus polionotus ammobates) is an important component of the coastal dune ecosystem along the Gulf of Mexico. Due to habitat loss and degradation, ABM is federally listed as an endangered species. In this study, we examined the impacts of storm surge and wind waves, which are induced by hurricanes and sea-level rise (SLR), on the ABM habitat on Fort Morgan Peninsula, Alabama, using advanced storm surge and wind wave models and spatial analysis tools in geographic information systems (GIS). Statistical analyses of the long-term historical data enabled us to predict the extreme values of winds, wind waves, and water levels in the study area at different return periods. We developed a series of nested domains for both wave and surge modeling and validated the models using field observations of surge hydrographs and high watermarks of Hurricane Ivan (2004). We then developed wave atlases and flood maps corresponding to the extreme wind, surge and waves without SLR and with a 0.5 m of SLR by coupling the wave and surge prediction models. The flood maps were then merged with a map of ABM habitat to determine the extent and location of habitat impacted by the 100-year storm with and without SLR. Simulation results indicate that more than 82% of ABM habitat would be inundated in such an extreme storm event, especially under SLR, making ABM populations more vulnerable to future storm damage. These results have aided biologists, community planners, and other stakeholders in the identification, restoration and protection of key beach mouse habitat in Alabama. Methods outlined in this paper could also be used to assist in the conservation and recovery of imperiled coastal species elsewhere.

  11. Contemporary sea level rise.

    Science.gov (United States)

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.

  12. Building with Nature: in search of resilient storm surge protection strategies

    NARCIS (Netherlands)

    Slobbe, van E.J.J.; Vriend, de H.J.; Aarninkhof, S.G.J.; Lulofs, K.; Vries, de M.; Dircke, P.

    2013-01-01

    Low-lying, densely populated coastal areas worldwide are under threat, requiring coastal managers to develop new strategies to cope with land subsidence, sea-level rise and the increasing risk of storm-surge-induced floods. Traditional engineering approaches optimizing for safety are often

  13. Development and implementation of cellular-based real-time reporting and internet accessible coastal sea-level gauge - A vital tool for monitoring storm surge and tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Dabholkar, N.; Mehra, P.; Gouveia, A.D.; Tengali, S.; VijayKumar, K.; Parab, A.

    illustration of the predicted fair-weather sea-level, current sea-level, and residual sea-level (i.e. measured minus predicted fairweather sea-level), which can be monitored via Internet from any part of the world. This system provides a cost...

  14. Global projections of extreme sea levels in view of climate change

    Science.gov (United States)

    Vousdoukas, M. I.; Feyen, L.; Voukouvalas, E.; Mentaschi, L.; Verlaan, M.; Jevrejeva, S.; Jackson, L. P.

    2017-12-01

    Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world's coasts. The present contribution aims to present global ESL projections obtained by combining dynamic simulations of all the major ESL components during the present century, considering the latest CMIP5 projections for RCP4.5 and RCP8.5. Baseline values are obtained combining global re-analyses of tides, waves, and storm surges, including the effects of tropical cyclones. The global average RSLR is projected around 20 and 24 cm by the 2050s under RCP4.5 and RCP8.5, respectively and is projected to reach 46 and 67 cm by the year 2100. The largest increases in MSL are projected along the South Pacific, Australia and West Africa, while the smaller RSLR is projected around East North America, and Europe. Contributions from waves and storm surges show a very weak increasing global trend, which becomes statistically significant only towards the end of the century and under RCP8.5. However, for areas like the East China Sea, Sea of Japan, Alaska, East Bering Sea, as well as the Southern Ocean, climate extremes could increase up to 15%. By the end of this century the 100-year event ESL along the world's coastlines will on average increase by 48 cm for RCP4.5 and 75 cm for RCP8.5. The strongest rise is projected along the Southern Ocean exceeding 1 m under RCP8.5 by the end of the century. Increase exceeding 80 cm is projected for East Asia, West North America, East South America, and the North Indian Ocean. Considering always the business as usual and the year 2100, the lowest increase in ESL100 is projected along the East North America and Europe (below 50 cm). The present findings indicate that, under both RCPs, by the year 2050 the present day 100-year event will occur every 5 years along a large part of the tropics, rendering coastal zones exposed to intermittent flood hazard.

  15. On Multidisciplinary Investigations of Dangerous Natural Phenomena in the Azov–Black Sea Basin

    Directory of Open Access Journals (Sweden)

    V.N. Belokopytov

    2017-06-01

    Full Text Available Certain results of investigating dangerous phenomena and potential natural disasters in the Azov–Black Sea basin are represented. The decrease of storm activity in the Black Sea observed in the end of the XX century is due to diminution of total amount and intensity of the passing cyclones. According to long-term tendencies of the North Atlantic Oscillation and the East Atlantic Oscillation atmosphere indices, future increase of the storm amount in the Black Sea would be expected. The effective sources of storm surges in the Sea of Azov are the atmospheric cyclones spreading with the 20–40 km/h velocity. The decrease of a cyclone movement velocity results in a storm surge intensification in the Gulf of Taganrog and increase of the flooded area in the Don delta. When the Don discharge becomes lower than the threshold value ~1600 m3/s, the wind surge exerts a blocking impact upon the river water that promotes the sea level rise in the branches and the delta lowland. The highest potential tsunami hazard for the Black Sea northern coast is represented by the earthquake epicenters located in the Crimea – Caucasus seismic zone. Noticeable sea level oscillations can arise in some locations of the Crimea Southern Coast as a result of the trapped waves propagating to the northwest, north and northeast from the seismic centers nearby the southern coast of the sea.

  16. Storm Surge and Tide Interaction: A Complete Paradigm

    Science.gov (United States)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  17. Design and skill assessment of an Operational Forecasting System for currents and sea level variability to the Santos Estuarine System - Brazil

    Science.gov (United States)

    Godoi Rezende Costa, C.; Castro, B. M.; Blumberg, A. F.; Leite, J. R. B., Sr.

    2017-12-01

    Santos City is subject to an average of 12 storm tide events per year. Such events bring coastal flooding able to threat human life and damage coastal infrastructure. Severe events have forced the interruption of ferry boat services and ship traffic through Santos Harbor, causing great impacts to Santos Port, the largest in South America, activities. Several studies have focused on the hydrodynamics of storm tide events but only a few of those studies have pursued an operational initiative to predict short term (operational forecasting system built to predict sea surface elevation and currents in the Santos Estuarine System and (ii) to evaluate model performance in simulating observed sea surface elevation. The Santos Operational Forecasting System (SOFS) hydrodynamic module is based on the Stevens Institute Estuarine and Coastal Ocean Model (sECOM). The fully automated SOFS is designed to provide up to 71 h forecast of sea surface elevations and currents every day. The system automatically collects results from global models to run the SOFS nested into another sECOM based model for the South Brazil Bight (SBB). Global forecasting results used to force both models come from Mercator Ocean, released by Copernicus Marine Service, and from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) stablished by the Center for Weather Forecasts and Climate Studies (with Portuguese acronym CPTEC). The complete routines task take about 8 hours of run time to finish. SOFS was able to hindcast a severe storm tide event that took place in Santos on August 21-22, 2016. Comparisons with observed sea level provided skills of 0.92 and maximum root mean square errors of 25 cm. The good agreement with observed data shows the potential of the designed system to predict storm tides and to support both human and assets protection.

  18. Giant boulders and Last Interglacial storm intensity in the North Atlantic

    NARCIS (Netherlands)

    Rovere, A.; Casella, E.; Harris, D.L.; Lorscheid, T; Nandasena, N.A.K.; Dyer, B.; Sandstrom, M.R.; Stocchi, P.; D’Andrea, W.J.; Raymo, M.E.

    2017-01-01

    As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that

  19. The Barbados Sea Level Record

    Science.gov (United States)

    Fairbanks, R. G.; Mortlock, R. A.; Abdul, N. A.; Wright, J. D.; Cao, L.; Mey, J. L.

    2013-12-01

    Additional offshore drill cores, nearly 100 new radiometric dates, and more than 1000 kilometers of Multibeam mapping greatly enhance the Barbados Sea Level record. Extensive Multibeam mapping around the entire island covers approximately 2650 km2 of the sea bottom and now integrates the offshore reef topography and Barbados Sea Level Record with the unparalleled onshore core collection, digital elevation maps, and Pleistocene sea level record spanning the past one million years. The reef crest coral, Acropora palmata, remains the stalwart indicator of sea level for many reasons that are validated by our redundant sea level records and redundant dating via Th/U and Pa/U analyses. Microanalysis and densitometry studies better explain why Acropora palmata is so well preserved in the Pleistocene reef records and therefore why it is the species of choice for sea level reconstructions and radiometric dating. New drill cores into reefs that formed during Marine Isotope Stage 3 lead us to a model of diagenesis that allows us to better prospect for unaltered coral samples in older reefs that may be suitable for Th/U dating. Equally important, our diagenesis model reinforces our rigorous sample quality criteria in a more quantitative manner. The Barbados Sea Level record has a sampling resolution of better than 100 years throughout much of the last deglaciation showing unprecedented detail in redundant drill cores. The Melt Water Pulses (MWP1A and MWP1B) are well resolved and the intervening interval that includes the Younger Dryas reveals sea level changes in new detail that are consistent with the terrestrial records of ice margins (see Abdul et al., this section). More than 100 paired Th/U and radiocarbon ages place the Barbados Sea Level Record unambiguously on the radiocarbon time scale for direct comparisons with the terrestrial records of ice margin changes.

  20. Caribbean Sea Level Network

    Science.gov (United States)

    von Hillebrandt-Andrade, C.; Crespo Jones, H.

    2012-12-01

    Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other

  1. A study on Sea Level Change for Coast of Korean Peninsular from Global Warming and Its Influences I

    Energy Technology Data Exchange (ETDEWEB)

    Cho, K.W.; Kim, J.H. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    The Third Assessment Report(2001) of the Intergovernmental Panel on Climate Change(IPCC) concluded that the global warming will be accelerated during the 21st century due to the human activities. The projected warming will increase the steric sea level rise which have large adverse effects on the natural and human systems in the coastal zone. This study intends to assess the sea level change and potential impacts of the future sea level rise on the coastal zone of the Korean Peninsula in which much socioeconomic activities have been already occurred. The contents of the present study include reviews on climate change and its impact, assessments of the current and future sea level change in the global scale and seas ne,ar Korea, and impact assessment methodology. The second year study(2002) will be focused on the impact assessment on the coastal zone of the Korea, especially on the inundation problem on human dimension due to the steric sea level rise, storm surge, and tide. Based on the tide gauge data, IPCC(2001) assessed the global average sea level rise during the 20th century is in the range of 10{approx}20cm, which is higher than that of 19th century. The contributing elements to the sea level rise are in the order of ocean thermal expansion, melting of glacier, mass balance change of the Greenland and Antarctic ice sheets, and surface and ground water storage and permafrost change. The satellite altimeter data during l990s shows higher trend than the mean trend of tide gauge data during 20th century. The recent high trend of the sea level rise by the altimetry is not clear whether it represents the recent acceleration of the global sea level the differences of the two observation methods, or short observation period of altimetry. In the 21st century, the global mean sea level is projected to increase much due to the acceleration of the warming. Based on the 35 IPCC emission scenarios, the sea level rise in the 21st century will be in the range of 9{approx}88

  2. Observing storm surges in the Bay of Bengal from satellite altimetry

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, C.; Testut, L.; Unnikrishnan, A.S.

    with the large tidal ranges give rise to extreme sea level in the head bay and surrounding regions. Moreover, low-lying nature of the coast and the dense population in the region make the coasts of the northern Bay of Bengal highly vulnerable to storm surges...-gauge data during the passage of the hurricane Igor that crossed Newfoundland in 2010. For this event, St. John’s tide gauge recorded a maximum surge of 94 cm and Jason-2 (the track located 89 km away from the tide-gauge station) showed positive sea-level...

  3. Sea Level Rise Data Discovery

    Science.gov (United States)

    Quach, N.; Huang, T.; Boening, C.; Gill, K. M.

    2016-12-01

    Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.

  4. New technology and tool prepared for communication against storm surges.

    Science.gov (United States)

    Letkiewicz, Beata

    2010-05-01

    The aim of the presentation is description of the new technology and tool prepared for communication, information and issue of warnings against storm surges. The Maritime Branch of the Institute of Meteorology and Water Management is responsible for preparing the forecast as warning, where the end users are Government Officials and Public. The Maritime Branch carry out the project "Strengthening the administrative capacity in order to improve the management of Polish coastal zone environment" (supported by a grant from Norway through the Norwegian Financial Mechanism). The expected final result of the project is web site www.baltyk.pogodynka.pl. One of the activities of the project is - set up of information website www.baltyk.pogodynka.pl, giving public access to the complied data. Information on web site: - meta data - marine data (on-line measurement: sea level, water temperature, salinity, oxygen concentration); - data bases of mathematical model outputs - forecast data (sea level, currents); - ice conditions of the Baltic Sea, - instructions, information materials with information of polish coastal zone. The aim of set up of the portal is development of communication between users of the system, exchange of the knowledge of marine environment and natural hazards such as storm surges, improving the ability of the region in the scope of the data management about the sea environment and the coastal zone.

  5. ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER

    Directory of Open Access Journals (Sweden)

    A. I. A. Hamid

    2016-09-01

    Full Text Available Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS. Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  6. Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter

    Science.gov (United States)

    Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.

    2016-09-01

    Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.

  7. Self-organization and forcing templates in coastal barrier response to storms

    Science.gov (United States)

    Lazarus, E.

    2015-12-01

    When a storm event pushes water up and over a coastal barrier, cross-shore flow transports sediment from the barrier face to the back-barrier environment. This natural physical process is called "overwash", and "washover" is the sedimentary deposit it forms. Overwash and washover support critical coastal habitats, and enable barriers to maintain their height and width relative to rising sea level. On developed barrier coasts, overwash constitutes a natural hazard, which sea-level rise will exacerbate. Overwash is also a prerequisite for barrier breaching and coastal flooding. Predicting occurrence and characteristics of overwash and washover has significant societal value. Hazard models typically assume that pre-storm barrier morphology determines how the barrier changes during a storm. However, classic work has documented the absence of a relationship between pre/post-storm topography in some cases, and has also identified rhythmic patterns in washover alongshore. Previous explanations for these spatial patterns have looked to forcing templates, forms that get imprinted in the barrier shape. An alternative explanation is that washover patterns self-organize, emerging from feedbacks between water flow and sediment transport. Self-organization and forcing templates are often framed as mutually exclusive, but patterns likely form across a continuum of conditions. Here, I use data from a new physical experiment to suggest that spatial patterns in washover can self-organize within the limit of a forcing template of some critical "strength", beyond which pre/post-storm morphologies are highly correlated. Quantifying spatial patterns in washover deposits opens exciting questions regarding coastal morphodynamic response to storms. Measurement of relative template strength over extended spatial (and temporal) scales has the potential to improve hazard assessment and prediction, particularly where template strength is low and self-organization dominates barrier change.

  8. Extreme sea-levels, coastal risks and climate changes: lost in translation

    Science.gov (United States)

    Marone, Eduardo; Castro Carneiro, Juliane; Cintra, Márcio; Ribeiro, Andréa; Cardoso, Denis; Stellfeld, Carol

    2014-05-01

    Occurring commonly in Brazilian coastal (and continental) areas, floods are probably the most devastating natural hazards our local society faces nowadays. With the expected sea-level rise and tropical storms becoming stronger and more frequents, the scenarios of local impacts of sea-level rise and storm surges; causing loss of lives, environmental damages and socio-economic stress; need to be addressed and properly communicated. We present results related to the sea-level setups accordingly to IPCC's scenarios and the expected coastal floods in the Paraná State, Southern Brazil. The outcomes are displayed in scientific language accompanied by "translations" with the objective of showing the need of a different language approach to communicate with the players affected by coastal hazards. To create the "translation" of the "scientific" text we used the Up-Goer Five Text Editor, which allows writing texts using only the ten hundred most used English words. We allowed ourselves to use a maximum of five other words per box not present at this dictionary, not considering geographical names or units in the count, provided there were simple. That was necessary because words as sea, beach, sand, storm, etc., are not among the one thousand present at the Up-Goer, and they are simple enough anyhow. On the other hand, the not scientific public we targeted speaks Portuguese, not English, and we do not have an Up-Goer tool for that language. Anyhow, each Box was also produced in Portuguese, as much simple as possible, to disseminate our results to the local community. To illustrate the need of "translation", it is worthy to mention a real case of a troublesome misunderstanding caused by us, scientists, in our coastal society. Some years ago, one of our colleagues at the university, a much-respected scientist, informed through a press release that, on a given day, "we will experience the highest astronomical tide of the century". That statement (scientifically true and

  9. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    Science.gov (United States)

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively.

  10. The effect of severe storms on the ice cover of the northern Tatarskiy Strait

    Science.gov (United States)

    Martin, Seelye; Munoz, Esther; Drucker, Robert

    1992-01-01

    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  11. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge

    OpenAIRE

    Łabuz, Tomasz A.

    2014-01-01

    The Polish coast is a non-tidal area; its shores are affected mainly by autumn-winter storm surges. Those of 6 and 14 January 2012 are representative of the forces driving the erosion of normally accumulative sections of coastal dunes, monitored by the author since 1997. The sea level maximum during these two storm surges reached 1.2 to 1.5 m amsl along the Polish coast. Land forms up to 3 m amsl were inundated. Beaches and low parts of the coast up to this height were rebuilt by sea waves at...

  12. Numerical Modelling of Extreme Natural Hazards in the Russian Seas

    Science.gov (United States)

    Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav; Surkova, Galina

    2017-04-01

    Storm surges and extreme waves are severe natural sea hazards. Due to the almost complete lack of natural observations of these phenomena in the Russian seas (Caspian, Black, Azov, Baltic, White, Barents, Okhotsk, Kara), especially about their formation, development and destruction, they have been studied using numerical simulation. To calculate the parameters of wind waves for the seas listed above, except the Barents Sea, the spectral model SWAN was applied. For the Barents and Kara seas we used WAVEWATCH III model. Formation and development of storm surges were studied using ADCIRC model. The input data for models - bottom topography, wind, atmospheric pressure and ice cover. In modeling of surges in the White and Barents seas tidal level fluctuations were used. They have been calculated from 16 harmonic constant obtained from global atlas tides FES2004. Wind, atmospheric pressure and ice cover was taken from the NCEP/NCAR reanalysis for the period from 1948 to 2010, and NCEP/CFSR reanalysis for the period from 1979 to 2015. In modeling we used both regular and unstructured grid. The wave climate of the Caspian, Black, Azov, Baltic and White seas was obtained. Also the extreme wave height possible once in 100 years has been calculated. The statistics of storm surges for the White, Barents and Azov Seas were evaluated. The contribution of wind and atmospheric pressure in the formation of surges was estimated. The technique of climatic forecast frequency of storm synoptic situations was developed and applied for every sea. The research was carried out with financial support of the RFBR (grant 16-08-00829).

  13. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term

  14. Dynamic interactions between coastal storms and salt marshes: A review

    Science.gov (United States)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental

  15. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise

    Science.gov (United States)

    Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.

    2017-01-01

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  16. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise.

    Science.gov (United States)

    Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E

    2017-04-21

    Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

  17. Impacts on coralligenous outcrop biodiversity of a dramatic coastal storm.

    Directory of Open Access Journals (Sweden)

    Núria Teixidó

    Full Text Available Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006-2008 and after the impact (2009-2010 at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change.

  18. PM10 concentration levels at an urban and background site in Cyprus: the impact of urban sources and dust storms.

    Science.gov (United States)

    Achilleos, Souzana; Evans, John S; Yiallouros, Panayiotis K; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros

    2014-12-01

    paper examines PM10 concentrations in Nicosia, Cyprus, from 1993 to 2008. The decrease in PM10 levels in Nicosia suggests that the implementation of traffic emission control policies in Cyprus has been effective. However, particle levels still exceeded the European Uion annual standard, and dust storms were responsible for a small fraction of the daily PM10 limit exceedances. Other natural particles that are not assessed in this study, such as resuspended soil and sea salt, may be responsible in part for the hig particle levels.

  19. Effects of sea level rise on the formation and drowning of shoreface-connected sand ridges, a model study

    Science.gov (United States)

    Nnafie, A.; de Swart, H. E.; Calvete, D.; Garnier, R.

    2014-06-01

    Shoreface-connected sand ridges occur on many storm-dominated inner shelves. These rhythmic features have an along-shelf spacing of 2-10 km, a height of 1-12 m, they evolve on timescales of centuries and they migrate several meters per year. An idealized model is used to study the impact of sea level rise on the characteristics of the sand ridges during their initial and long-term evolution. Different scenarios (rates of sea level rise, geometry of inner shelf) are examined. Results show that with increasing sea level the height of sand ridges increases and their migration decreases until they eventually drown. This latter occurs when the near-bed wave orbital velocity drops below the critical velocity for erosion of sediment. In contrast, in the absence of sea level rise, the model simulates shoreface-connected sand ridges with constant heights and migration rates. Model results furthermore indicate that sand ridges do not form if the rate of sea level rise is too high, or if the initial depth of the inner shelf is too small. A larger transverse bottom slope enhances growth and height of sand ridges and they drown quicker. When shoreface retreat due to sea level rise is considered, new ridges form in the landward part of the inner shelf, while ridges on the antecedent part of the shelf become less active and ultimately drown. Only if sea level rise is accounted for, merging of ridges is reduced such that multiple ridges occur in the end state, thereby yielding a better agreement with observations. The physical mechanisms responsible for these findings are also explained.

  20. Sea Level Changes: Determination and Effects

    Science.gov (United States)

    Woodworth, P. L.; Pugh, D. T.; DeRonde, J. G.; Warrick, R. G.; Hannah, J.

    The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for océanographie and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wroblewski and by Pasaric and Orlic, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El- Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.

  1. Probabilistic storm surge inundation maps for Metro Manila based on Philippine public storm warning signals

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2015-03-01

    A storm surge is the sudden rise of sea water over the astronomical tides, generated by an approaching storm. This event poses a major threat to the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013. This hydro-meteorological hazard is one of the main reasons for the high number of casualties due to the typhoon, with 6300 deaths. It became evident that the need to develop a storm surge inundation map is of utmost importance. To develop these maps, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. The Japan Meteorological Agency storm surge model was used to simulate storm surge heights. The frequency distribution of the maximum storm surge heights was calculated using simulation results of tropical cyclones under a specific public storm warning signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of inundation for a specific PSWS using the probability of exceedance derived from the frequency distribution. Buildings and other structures were assigned a probability of exceedance depending on their occupancy category, i.e., 1% probability of exceedance for critical facilities, 10% probability of exceedance for special occupancy structures, and 25% for standard occupancy and miscellaneous structures. The maps produced show the storm-surge-vulnerable areas in Metro Manila, illustrated by the flood depth of up to 4 m and extent of up to 6.5 km from the coastline. This information can help local government units in developing early warning systems, disaster preparedness and mitigation plans, vulnerability assessments, risk-sensitive land use plans, shoreline

  2. Spatial analysis of landfills in respect to flood events and sea-level rise using ArcGIS Pro

    OpenAIRE

    Taylor, Benjamin S; Fei, Songlin

    2017-01-01

    "Recently in the news, media coverage of flood events has garnered attention due to tropical storms like Hurricane Harvey and the costly damages that resulted. Under climate change, events like sea-level rise (SLR) and flooding are projected to increase which threaten infrastructure, making it necessary for proper planning before, during, and after installation of landfills to mitigate risk. Studies in Austria and the UK have revealed that many landfills are located in flood zones in addition...

  3. Noninvasive monitoring of stress hormone levels in a female steller sea lion (Eumetopias jubatus) pup undergoing rehabilitation.

    Science.gov (United States)

    Petrauskas, L; Tuomi, P; Atkinson, S

    2006-03-01

    Steller sea lions (Eumetopias jubatus) rarely strand in areas monitored by humans, and there is little published data on the diseases, parasites, nutritional state, and stress levels of Steller sea lions in the wild. In May 2002, a female Steller sea lion pup (EJS-02-01) was sighted separated from her mother after strong storms in Southeast Alaska. After 5 days of observations, EJS-02-01 was transferred to the Alaska SeaLife Center (ASLC) in Seward, Alaska. During 11 mo of rehabilitation at ASLC, body weight was monitored and opportunistic fecal samples (n = 86) were analyzed for corticosterone concentrations. Fecal corticosterone concentrations ranged from 15 to 3,805 ng/ g for EJS-02-01. Peak corticosterone values reflected responses to acute stressors during rehabilitation. EJS-02-01 was successfully released at Gran Point, Alaska, in April 2003. Fecal corticosterone assay monitoring provided a valuable tool to monitor various stressors and is useful in monitoring long-term situations like rehabilitation.

  4. Contributions of internal climate variability to mitigation of projected future regional sea level rise

    Science.gov (United States)

    Hu, A.; Bates, S. C.

    2017-12-01

    Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.

  5. Do we have to take an acceleration of sea level rise into account?

    Science.gov (United States)

    Dillingh, D.; Baart, F.; de Ronde, J.

    2012-04-01

    , particularly for the high scenario. Dutch design levels for coastal water defence structures (dikes and dunes) are based on extreme value statistics of long time series of high water levels. These design levels have typically return periods of 2000, 4000 and 10.000 years, depending on the importance of the protected dike ring. The last statistical analysis for the update of the design levels refers to the sea level situation of 1985. According to the Water Act Dutch design levels must be tested periodically (every 6 years). Due to sea level rise and tidal changes the design levels are corrected for the rise of the mean high waters from 1985 until the end of the testing period under consideration. This demands a tailoring approach for different regions or locations instead of a national average as for coastal preservation. Runs with climate models and coupled hydrodynamic models in the framework of the Essence project and the Delta Committee 2008 showed no indication for a change in the statistics of extreme storm surge levels. For the estimation of sea level rise over the last 120 years a linear regression gives the most robust estimate. Showing decadal variability needs more sophisticated models. For the last update of the design levels the elegant Whittaker smoother has been applied. Dutch policy prescribes to account for a future sea level rise of 60 cm per century for the design of new dikes or dike reinforcements and 85 cm per century for the long term (200 years) allocation of space for future reinforcements, in agreement with the KNMI'06 scenario's for sea level rise (central value and upper limit).

  6. Impact of sea-level rise on Everglades carbon storage capacity in the Holocene

    Science.gov (United States)

    Jones, M.; Bernhardt, C. E.; Wingard, G. L. L.; Keller, K.; Stackhouse, B.; Landacre, B.

    2017-12-01

    Sea-level rise (SLR) and climate have driven environmental changes in South Florida over time. Florida Bay, a shallow carbonate bay located to the south of the Florida Peninsula, contains carbonate islands and mudbanks that formed over the last few thousand years and once comprised the freshwater Everglades. The islands, often ringed with mangroves, provide wildlife habitat, physical barriers to storm surge, tidal flux, and wave development along South Florida's coastline. Because most of South Florida is only 1-2 m above mean sea level, and IPCC AR5 projections of 0.26 to 0.98 m of SLR by 2100, vertical accommodation space could outpace sediment accretion in the southern freshwater Everglades and Florida Bay islands, impacting carbon (C) storage, as well as wildlife habitat and the ability to protect shorelines from coastal storms. We analyzed sediment cores that reached the Plio-Pleistocene limestone bedrock from four islands in Florida Bay to determine how floral and faunal communities and source C change in response to Holocene sea level transgression. We used pollen and mollusk assemblages, δ13C, and C/N ratios, along with radiometric dating, bulk density, and organic C content to calculate changes in C accumulation rates (CAR) over the last 4 ka, as deposition transitioned from freshwater peat to estuarine carbonate mud, to mangrove peat and ultimately to the hyper-saline playa-like carbonate sediments deposited today. Results show that CAR are more than twice as high in the basal freshwater Everglades peat than in the overlying estuarine sediments and slightly greater than the short-lived period of Rhizophora (red mangrove) peat accumulation. Avicennia (black mangrove) and playa-like environments have similar CAR as the estuarine carbonate mud and hypersaline carbonate sediments but accretion rates are less than the current rate of SLR. These results suggest that with current rates of accretion and SLR, these islands could disappear in <200 years, and the C

  7. Eustatic and Relative Sea Level Changes

    NARCIS (Netherlands)

    Rovere, A.; Stocchi, P.; Vacchi, M.

    2016-01-01

    Sea level changes can be driven by either variationsin the masses or volume of the oceans, or bychanges of the land with respect to the sea surface. Inthe first case, a sea level change is defined ‘eustatic’;otherwise, it is defined ‘relative’. Several techniques canbe used to observe changes in sea

  8. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    Data.gov (United States)

    National Aeronautics and Space Administration — A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY...

  9. Perceptions of severe storms, climate change, ecological structures and resiliency three years post-hurricane Sandy in New Jersey.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2017-12-01

    Global warming is leading to increased frequency and severity of storms that are associated with flooding, increasing the risk to urban, coastal populations. This study examined perceptions of the relationship between severe storms, sea level rise, climate change and ecological barriers by a vulnerable environmental justice population in New Jersey. Patients using New Jersey's Federally Qualified Health Centers were interviewed after Hurricane [Superstorm] Sandy because it is essential to understand the perceptions of uninsured, underinsured, and economically challenged people to better develop a resiliency strategy for the most vulnerable people. Patients ( N = 355) using 6 centers were interviewed using a structured interview form. Patients were interviewed in the order they entered the reception area, in either English or Spanish. Respondents were asked to rate their agreement with environmental statements. Respondents 1) agreed with experts that "severe storms were due to climate change", "storms will come more often", and that "flooding was due to sea level rise", 2) did not agree as strongly that "climate change was due to human activity", 3) were neutral for statements that " Sandy damages were due to loss of dunes or salt marshes". 4) did not differ as a function of ethnic/racial categories, and 5) showed few gender differences. It is imperative that the public understand that climate change and sea level rise are occurring so that they support community programs (and funding) to prepare for increased frequency of storms and coastal flooding. The lack of high ratings for the role of dunes and marshes in preventing flooding indicates a lack of understanding that ecological structures protect coasts, and suggests a lack of support for management actions to restore dunes as part of a coastal preparedness strategy. Perceptions that do not support a public policy of coastal zone management to protect coastlines can lead to increased flooding, extensive property

  10. Monitoring sea level and sea surface temperature trends from ERS satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Beckley, B.

    2002-01-01

    Data from the two ESA satellites ERS-1 and ERS-2 are used in global and regional analysis of sea level and sea surface temperature trends over the last, 7.8 years. T he ERS satellites and in the future the ENVISAT satellite provide unique opportunity for monitoring both changes in sea level and sea...

  11. Artificial Neural Network forecasting of storm surge water levels at major estuarine ports to supplement national tide-surge models and improve port resilience planning

    Science.gov (United States)

    French, Jon; Mawdsley, Robert; Fujiyama, Taku; Achuthan, Kamal

    2017-04-01

    Effective prediction of tidal storm surge is of considerable importance for operators of major ports, since much of their infrastructure is necessarily located close to sea level. Storm surge inundation can damage critical elements of this infrastructure and significantly disrupt port operations and downstream supply chains. The risk of surge inundation is typically approached using extreme value analysis, while short-term forecasting generally relies on coastal shelf-scale tide and surge models. However, extreme value analysis does not provide information on the duration of a surge event and can be sensitive to the assumptions made and the historic data available. Also, whilst regional tide and surge models perform well along open coasts, their fairly coarse spatial resolution means that they do not always provide accurate predictions for estuarine ports. As part of a NERC Environmental Risks to Infrastructure Innovation Programme project, we have developed a tool that is specifically designed to forecast the North Sea storm surges on major ports along the east coast of the UK. Of particular interest is the Port of Immingham, Humber estuary, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. A tidal surge in December 2013, with an estimated return period of 760 years, partly flooded the port, damaged infrastructure and disrupted operations for several weeks. This and other recent surge events highlight the need for additional tools to supplement the national UK Storm Tide Warning Service. Port operators are also keen to have access to less computationally expensive forecasting tools for scenario planning and to improve their resilience to actual events. In this paper, we demonstrate the potential of machine learning methods based on Artificial Neural Networks (ANNs) to generate accurate short-term forecasts of extreme water levels at estuarine North Sea ports such as Immingham. An ANN is

  12. Sea-level rise along the Emilia-Romagna coast (Northern Italy) in 2100: scenarios and impacts

    Science.gov (United States)

    Perini, Luisa; Calabrese, Lorenzo; Luciani, Paolo; Olivieri, Marco; Galassi, Gaia; Spada, Giorgio

    2017-12-01

    As a consequence of climate change and land subsidence, coastal zones are directly impacted by sea-level rise. In some particular areas, the effects on the ecosystem and urbanisation are particularly enhanced. We focus on the Emilia-Romagna (E-R) coastal plain in Northern Italy, bounded by the Po river mouth to the north and by the Apennines to the south. The plain is ˜ 130 km long and is characterised by wide areas below mean sea level, in part made up of reclaimed wetlands. In this context, several morphodynamic factors make the shore and back shore unstable. During next decades, the combined effects of land subsidence and of the sea-level rise as a result of climate change are expected to enhance the shoreline instability, leading to further retreat. The consequent loss of beaches would impact the economy of the region, which is tightly connected with tourism infrastructures. Furthermore, the loss of wetlands and dunes would threaten the ecosystem, which is crucial for the preservation of life and the environment. These specific conditions show the importance of a precise definition of the possible local impacts of the ongoing and future climate variations. The aim of this work is the characterisation of vulnerability in different sectors of the coastal plain and the recognition of the areas in which human intervention is urgently required. The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) sea-level scenarios are merged with new high-resolution terrain models, current data for local subsidence and predictions of the flooding model in_CoastFlood in order to develop different scenarios for the impact of sea-level rise projected to year 2100. First, the potential land loss due to the combined effect of subsidence and sea-level rise is extrapolated. Second, the increase in floodable areas as a result of storm surges is quantitatively determined. The results are expected to support the regional mitigation and adaptation strategies

  13. Recent Extreme Marine Events at Southern Coast of Black Sea

    Science.gov (United States)

    Ozyurt Tarakcioglu, Gulizar; Cevdet Yalciner, Ahmet; Kirezci, Cagil; Baykal, Cuneyt; Gokhan Guler, Hasan; Erol, Onur; Zaytsev, Andrey; Kurkin, Andrey

    2015-04-01

    The utilization at the coastal areas of Black Sea basin has increased in the recent years with the projects such as large commercial ports, international transportation hubs, gas and petrol pipelines, touristic and recreational infrastructures both along surrounding shoreline. Although Black Sea is a closed basin, extreme storms and storm surges have also been observed with an increasing frequency in the recent years. Among those events, February 1999, March 2013 and September 2014 storms impacted Southern coast of Black sea have clearly shown that the increasing economic value at the coastal areas caused the increasing cost of damages and loss of property by natural hazards. The storm occurred on February 19-20, 1999 is one of the most destructive storm in the last decades. The 1999 event (1999 Southern Black sea storm) caused destruction at all harbors and coastal protection structures along the Black Sea coast of Turkey. The complete damage of the breakwater of Giresun Harbor and damage on the harbor structures and cargo handling equipment were the major impacts of the 1999 Southern Black sea storm. Similar coastal impact have also been observed during the September 24, 2014 storm at 500m East of Giresun harbor. Although there are considerable number of destructive storms observed at southern coast of Black sea recently, data on these events are limited and vastly scattered. In this study the list of recent extreme marine events at South coast of the Black sea compiled and related data such as wind speed, wave height, period, and type of damages are cataloged. Particular attention is focused on the 1999 and 2014 storm events. The meteorological and morphological characteristics which may be considered as the reasons of the generation and coastal amplification of these storms are discussed. ACKNOWLEDGEMENTS: This study is partly supported by Turkish Russian Joint Research Grant Program by TUBITAK (Turkey) and RFBR (Russia), and TUBITAK 213M534 Research Project.

  14. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments

    Science.gov (United States)

    Small, R. Justin; Msadek, Rym; Kwon, Young-Oh; Booth, James F.; Zarzycki, Colin

    2018-05-01

    It has been hypothesized that the ocean mesoscale (particularly ocean fronts) can affect the strength and location of the overlying extratropical atmospheric storm track. In this paper, we examine whether resolving ocean fronts in global climate models indeed leads to significant improvement in the simulated storm track, defined using low level meridional wind. Two main sets of experiments are used: (i) global climate model Community Earth System Model version 1 with non-eddy-resolving standard resolution or with ocean eddy-resolving resolution, and (ii) the same but with the GFDL Climate Model version 2. In case (i), it is found that higher ocean resolution leads to a reduction of a very warm sea surface temperature (SST) bias at the east coasts of the U.S. and Japan seen in standard resolution models. This in turn leads to a reduction of storm track strength near the coastlines, by up to 20%, and a better location of the storm track maxima, over the western boundary currents as observed. In case (ii), the change in absolute SST bias in these regions is less notable, and there are modest (10% or less) increases in surface storm track, and smaller changes in the free troposphere. In contrast, in the southern Indian Ocean, case (ii) shows most sensitivity to ocean resolution, and this coincides with a larger change in mean SST as ocean resolution is changed. Where the ocean resolution does make a difference, it consistently brings the storm track closer in appearance to that seen in ERA-Interim Reanalysis data. Overall, for the range of ocean model resolutions used here (1° versus 0.1°) we find that the differences in SST gradient have a small effect on the storm track strength whilst changes in absolute SST between experiments can have a larger effect. The latter affects the land-sea contrast, air-sea stability, surface latent heat flux, and the boundary layer baroclinicity in such a way as to reduce storm track activity adjacent to the western boundary in the N

  15. Causes for contemporary regional sea level changes.

    Science.gov (United States)

    Stammer, Detlef; Cazenave, Anny; Ponte, Rui M; Tamisiea, Mark E

    2013-01-01

    Regional sea level changes can deviate substantially from those of the global mean, can vary on a broad range of timescales, and in some regions can even lead to a reversal of long-term global mean sea level trends. The underlying causes are associated with dynamic variations in the ocean circulation as part of climate modes of variability and with an isostatic adjustment of Earth's crust to past and ongoing changes in polar ice masses and continental water storage. Relative to the coastline, sea level is also affected by processes such as earthquakes and anthropogenically induced subsidence. Present-day regional sea level changes appear to be caused primarily by natural climate variability. However, the imprint of anthropogenic effects on regional sea level-whether due to changes in the atmospheric forcing or to mass variations in the system-will grow with time as climate change progresses, and toward the end of the twenty-first century, regional sea level patterns will be a superposition of climate variability modes and natural and anthropogenically induced static sea level patterns. Attribution and predictions of ongoing and future sea level changes require an expanded and sustained climate observing system.

  16. Lake St. Clair: Storm Wave and Water Level Modeling

    Science.gov (United States)

    2013-06-01

    R. A. Luettich, C. Dawson, V. J. Cardone , A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts. 2010. A high resolution coupled riverine flow...Storm Wave and Water Level Modeling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyler J. Hesser

  17. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    Science.gov (United States)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    provide reliable probabilities of surge levels for the entire Atlantic basin. References Demuth, J., DeMaria, M., and Knaff, J.A. (2006). Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. Journal of Applied Meteorology., 45, pp. 1573-1581. Emanuel, K., Ravela, S., Vivant, E. and Risi, C. (2006). A statistical deterministic approach to hurricane risk assessment. Bulletin of the American Meteorological Society, 87(3), pp.299-314. Holland, G.J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8), pp.1212-1218. Lin, N. and D. Chavas (2012). On hurricane parametric wind and applications in storm surge modeling. Journal of Geophysical Research - Atmospheres. 117. doi:10.1029/2011jd017126. Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. J. H., & Ward, P. J. (2016). A global reanalysis of storm surge and extreme sea levels. Nature Communications, 7(7:11969), 1-11.

  18. Spring Dust Storm Smothers Beijing

    Science.gov (United States)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  19. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    Science.gov (United States)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  20. Interplanetary radio storms. II - Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J.-L.; Fainberg, J.; Stone, R. G.

    1984-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetary medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the sun. Using a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the III storm burst radio emission at the harmonic of the local plasma frequency.

  1. Sea level and climate variations

    NARCIS (Netherlands)

    Oerlemans, J.

    1985-01-01

    Review paper, ESA Symposium on Application of Satellite Data to Climate Modelling. Alpbach (Austria) Sea level is an essential component of the climate system, on which many human activities in the coastal zone depend. Climate variations leading to changes in relative sea level are

  2. Sea-level variability over five glacial cycles.

    Science.gov (United States)

    Grant, K M; Rohling, E J; Ramsey, C Bronk; Cheng, H; Edwards, R L; Florindo, F; Heslop, D; Marra, F; Roberts, A P; Tamisiea, M E; Williams, F

    2014-09-25

    Research on global ice-volume changes during Pleistocene glacial cycles is hindered by a lack of detailed sea-level records for time intervals older than the last interglacial. Here we present the first robustly dated, continuous and highly resolved records of Red Sea sea level and rates of sea-level change over the last 500,000 years, based on tight synchronization to an Asian monsoon record. We observe maximum 'natural' (pre-anthropogenic forcing) sea-level rise rates below 2 m per century following periods with up to twice present-day ice volumes, and substantially higher rise rates for greater ice volumes. We also find that maximum sea-level rise rates were attained within 2 kyr of the onset of deglaciations, for 85% of such events. Finally, multivariate regressions of orbital parameters, sea-level and monsoon records suggest that major meltwater pulses account for millennial-scale variability and insolation-lagged responses in Asian monsoon records.

  3. Extending the Instrumental Record of Sea-Level Change: A 1300-Year Sea-Level Record From Eastern Connecticut

    Science.gov (United States)

    Donnelly, J. P.; Cleary, P.

    2002-12-01

    The instrumental record of sea-level change in the northeastern United States extends back to the early 20th century and at New York City (NYC) extends back to 1856. These tide gauge records indicate that sea level has risen at a rate of 2.5 to 4 mm/year over the last 100-150 years. Geologic evidence of sea-level change in the region over the last 2,000 years indicates rates of sea-level rise of about 1 mm/year or less. The discordance between the instrumental and geologic records is frequently cited as potentially providing evidence that anthropogenic warming of the climate system has resulted in an increase in the rate of sea-level rise. In order to begin to test the hypothesis that acceleration in the rate of sea-level rise has occurred in the last 150 years due to anthropogenic climate warming, accurate and precise information on the timing of the apparent acceleration in sea-level rise are needed. Here we construct a high-resolution relative sea-level record for the past 1350 years by dating basal salt marsh peat samples above a glacial erratic in a western Connecticut salt marsh. Preservation of marsh vegetation remains in the sediment record that has a narrow vertical habitat range at the upper end of the tidal range provides information on past sea levels. { \\it Spartina patens} (marsh hay) and { \\it Juncus gerardi} (black rush) dominate both the modern marsh and their remains are the major constituent of the marsh sediments and occur in the modern marsh between mean high water (MHW) and mean highest high water. We use the elevation distribution of modern plant communities to estimate the relationship of sediment samples to paleo-mean high water. The chronology is based on 15 radiocarbon ages, supplemented by age estimates derived from the horizons of industrial Pb pollution and pollen indicative of European land clearance. Thirteen of the radiocarbon ages and the Pb and pollen data come from samples taken along a contact between marsh peat and a glacial

  4. Sea-level Variation Along the Suez Canal

    Science.gov (United States)

    Eid, F. M.; Sharaf El-Din, S. H.; Alam El-Din, K. A.

    1997-05-01

    The variation of sea level at 11 stations distributed along the Suez Canal was studied during the period from 1980 to 1986. The ranges of variation in daily mean sea level at Port Said and Port Tawfik are about 60 and 120 cm, respectively. The minimum range of daily variation is at Kantara (47 cm). The fluctuations of the monthly mean sea level between the two ends of the Suez Canal vary from one season to another. From July to December, the sea level at Port Said is higher than that at Port Tawfik, with the maximum difference (10·5 cm) in September. During the rest of the year, the mean sea level at Port Tawfik is higher than that at Port Said, with the maximum difference (31·5 cm) in March. The long-term variations of the annual mean sea level at both Port Said and Port Tawfik for the period from 1923 to 1986 showed a positive trend. The sea level at Port Said increased by about 27·8 cm century -1while it increased by only 9·1 cm century -1at Port Tawfik. This indicates that the difference between sea level at Port Said and Port Tawfik has decreased with time.

  5. Ecological Effects of Sea Level Rise: Advancing coastal management through integrated research and engagement

    Science.gov (United States)

    Kidwell, D. M.

    2012-12-01

    Rising sea level represents a significant threat to coastal communities and ecosystems through land loss, altered habitats, and increased vulnerability to coastal storms and inundation. This threat is exemplified in the northern Gulf of Mexico where low topography, expansive marshes, and a prevalence of tropical storms have already resulted in extensive coastal impacts. The development of robust predictive capabilities that incorporate complex biological processes with physical dynamics are critical for informed planning and restoration efforts for coastal ecosystems. Looking to build upon existing predictive modeling capabilities and allow for use of multiple model (i.e., ensemble) approaches, NOAA initiated the Ecological Effects of Sea Level Rise program in 2010 to advance physical/biological integrative modeling capabilities in the region with a goal to provide user friendly predictive tools for coastal ecosystem management. Focused on the northern Gulf of Mexico, this multi-disciplinary project led by the University of Central Florida will use in situ field studies to parameterize physical and biological models. These field studies will also result in a predictive capability for overland sediment delivery and transport that will further enhance marsh, oyster, and submerged aquatic vegetation models. Results from this integrated modeling effort are envisioned to inform management strategies for reducing risk, restoration and breakwater guidelines, and resource sustainability for project planning, among other uses. In addition to the science components, this project incorporates significant engagement of the management community through a management applications principle investigator and an advisory management committee. Routine engagement between the science team and the management committee, including annual workshops, are focused on ensuring the development of applicable, relevant, and useable products and tools at the conclusion of this project. Particular

  6. Groundwater movement on a Low-lying Carbonate Atoll Island and its Response to Climatic and Sea-level Fluctuations: Roi Namur, Republic of the Marshall Islands

    Science.gov (United States)

    Oberle, F. J.; Swarzenski, P. W.; Storlazzi, C. D.

    2017-12-01

    Atoll islands, most of which only average 1-2 meters above today's sea level, provide a tremendous natural laboratory in which to study and better understand the intensifying impacts of high rates of sea-level rise on tropical reef-lined islands. These islands are unique and on the frontline of negative societal impacts due to their geologic structure and limited water supply. Groundwater resources on atolls are typically minimal due to the low elevation and small surface area of the islands and are also subject to recurring droughts, and more frequent, storm-driven seawater overwash events. Although groundwater is the principal means of freshwater storage on atoll islands and is a major factor in determining the overall sustainability of island settlements, hydrological data on how an aquifer will response to changes in sea-level rise or storm-driven overwash remain limited. Here we present high-resolution time series hydrogeological and geochemical data from a 16 month study to determine the role of an atoll's carbonate geology, land use, and atmospheric and oceanographic forcing in driving coastal groundwater exchange including submarine groundwater discharge on the island of Roi-Namur on Kwajalein Atoll in the Republic of the Marshall Islands. This information can provide new estimates on the recovery and resilience of coastal groundwater resources on similar islands that are expected to experience climate change-driven perturbations.

  7. Continuous sea-level reconstructions beyond the Pleistocene: improving the Mediterranean sea-level method

    Science.gov (United States)

    Grant, K.; Rohling, E. J.; Amies, J.

    2017-12-01

    Sea-level (SL) reconstructions over glacial-interglacial timeframes are critical for understanding the equilibrium response of ice sheets to sustained warming. In particular, continuous and high-resolution SL records are essential for accurately quantifying `natural' rates of SL rise. Global SL changes are well-constrained since the last glacial maximum ( 20,000 years ago, ky) by radiometrically-dated corals and paleoshoreline data, and fairly well-constrained over the last glacial cycle ( 150 ky). Prior to that, however, studies of ice-volume:SL relationships tend to rely on benthic δ18O, as geomorphological evidence is far more sparse and less reliably dated. An alternative SL reconstruction method (the `marginal basin' approach) was developed for the Red Sea over 500 ky, and recently attempted for the Mediterranean over 5 My (Rohling et al., 2014, Nature). This method exploits the strong sensitivity of seawater δ18O in these basins to SL changes in the relatively narrow and shallow straits which connect the basins with the open ocean. However, the initial Mediterranean SL method did not resolve sea-level highstands during Northern Hemisphere insolation maxima, when African monsoon run-off - strongly depleted in δ18O - reached the Mediterranean. Here, we present improvements to the `marginal basin' sea-level reconstruction method. These include a new `Med-Red SL stack', which combines new probabilistic Mediterranean and Red Sea sea-level stacks spanning the last 500 ky. We also show how a box model-data comparison of water-column δ18O changes over a monsoon interval allows us to quantify the monsoon versus SL δ18O imprint on Mediterranean foraminiferal carbonate δ18O records. This paves the way for a more accurate and fully continuous SL reconstruction extending back through the Pliocene.

  8. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    Science.gov (United States)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  9. Storm surges-An option for Hamburg, Germany, to mitigate expected future aggravation of risk

    International Nuclear Information System (INIS)

    Storch, Hans von; Goennert, Gabriele; Meine, Manfred

    2008-01-01

    Summary: Rising sea level together with regionally increased storm activity, caused by elevated and increasing levels of greenhouse gases in the atmosphere will in many parts of the world increase the risk of storm surges significantly. Reducing the emissions of greenhouse gases into the atmosphere may mitigate the increasing risks somewhat, but the major task for regional and local stakeholders will be to prepare for appropriate adaptation. In most cases, possible strategies include intensification of coastal defense measures, in particular strengthening dykes, and adaptation to intermittent flooding. In case of Hamburg and the tidal Elbe river a third option seems to be available, which aims at mitigating storm surge risks by applying estuary engineering constructions. This option is sketched in this paper. The option has the potential to significantly reduce the expected future increases of local surge heights

  10. Thyroid storm with multiple organ failure, disseminated intravascular coagulation, and stroke with a normal serum FT3 level.

    Science.gov (United States)

    Harada, Yuko; Akiyama, Hisanao; Yoshimoto, Tatsuji; Urao, Yasuko; Ryuzaki, Munekazu; Handa, Michiko

    2012-01-01

    Thyroid storm is a rare disorder with a sudden onset, rapid progression and high mortality. We experienced a case of thyroid storm which had a devastating course, including multiple organ failure (MOF), severe hypoglycemia, disseminated intravascular coagulation (DIC), and stroke. It was difficult to make a diagnosis of thyroid storm in the present patient, because she did not have a history of thyroid disease and her serum FT3 level was normal. Clinicians should be aware that thyroid storm can occur even when there is an almost normal level of thyroid hormones, and that intensive anticoagulation is required for patients with atrial fibrillation to prevent stroke after thyroid storm.

  11. Violent storms within the sea: Dense water formation episodes in the Mediterranean.

    Science.gov (United States)

    Salat, J.

    2009-09-01

    The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers

  12. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  13. Remote-sensing-based analysis of landscape change in the desiccated seabed of the Aral Sea--a potential tool for assessing the hazard degree of dust and salt storms.

    Science.gov (United States)

    Löw, F; Navratil, P; Kotte, K; Schöler, H F; Bubenzer, O

    2013-10-01

    With the recession of the Aral Sea in Central Asia, once the world's fourth largest lake, a huge new saline desert emerged which is nowadays called the Aralkum. Saline soils in the Aralkum are a major source for dust and salt storms in the region. The aim of this study was to analyze the spatio-temporal land cover change dynamics in the Aralkum and discuss potential implications for the recent and future dust and salt storm activity in the region. MODIS satellite time series were classified from 2000-2008 and change of land cover was quantified. The Aral Sea desiccation accelerated between 2004 and 2008. The area of sandy surfaces and salt soils, which bear the greatest dust and salt storm generation potential increased by more than 36 %. In parts of the Aralkum desalinization of soils was found to take place within 4-8 years. The implication of the ongoing regression of the Aral Sea is that the expansion of saline surfaces will continue. Knowing the spatio-temporal dynamics of both the location and the surface characteristics of the source areas for dust and salt storms allows drawing conclusions about the potential hazard degree of the dust load. The remote-sensing-based land cover assessment presented in this study could be coupled with existing knowledge on the location of source areas for an early estimation of trends in shifting dust composition. Opportunities, limits, and requirements of satellite-based land cover classification and change detection in the Aralkum are discussed.

  14. Assessing the impact of sea-level rise on a vulnerable coastal community in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Kwasi Appeaning Addo

    2013-08-01

    Full Text Available Climate change and its associated sea-level rise are expected to significantly affect vulnerable coastal communities. Although the extent of the impact will be localised, its assessment will adopt a monitoring approach that applies globally. The topography of the beach, the type of geological material and the level of human intervention will determine the extent of the area to be flooded and the rate at which the shoreline will move inland. Gleefe, a coastal community in Ghana, has experienced frequent flooding in recent times due to the increasing occurrence of storm surge and sea-level rise. This study used available geospatial data and field measurements to determine how the beach topography has contributed to the incidence of flooding at Gleefe. The topography is generally low-lying. Sections of the beach have elevations of around 1 m, which allows seawater to move inland during very high tide. Accelerated sea-level rise as predicted by the Intergovernmental Panel on Climate Change (IPCC will destroy homes of the inhabitants and inundate the Densu wetlands behind the beach. Destruction of infrastructure will render the inhabitants homeless, whilst flooding of the wetlands will destroy the habitats of migratory birds and some endangered wildlife species such as marine turtle. Effective adaptation measures should be adopted to protect this very important coastal environment, the ecology of the wetlands and the livelihoods of the community dwellers.

  15. Barrier response to Holocene sea-level rise

    DEFF Research Database (Denmark)

    Pejrup, Morten; Andersen, Thorbjørn Joest; Johannessen, Peter N

    Normally it is believed that sea-level rise causes coastal barrier retreat. However, sea-level is only one of the parameters determining the long term coastal development of barrier coasts. Sediment supply is an equally important determinant and may overshadow the effects of sea-level rise....... Conceptually this has been known for a long time but for the first time we can show the relative effect of these two parameters. We have studied three neighboring barrier islands in the Wadden Sea, and described their 3D morphological evolution during the last 8000 years. It appears that the barrier islands...... a much stronger component of sea-level control. The distance between the islands is only 50 km, and therefore our study shows that prediction of barrier development during a period of rising sea level may be more complicated than formerly believed....

  16. Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE; Version 1.0): web-based tools to assess the impact of sea level rise in south Florida

    Science.gov (United States)

    Hearn, Paul; Strong, David; Swain, Eric; Decker, Jeremy

    2013-01-01

    South Florida's Greater Everglades area is particularly vulnerable to sea level rise, due to its rich endowment of animal and plant species and its heavily populated urban areas along the coast. Rising sea levels are expected to have substantial impacts on inland flooding, the depth and extent of surge from coastal storms, the degradation of water supplies by saltwater intrusion, and the integrity of plant and animal habitats. Planners and managers responsible for mitigating these impacts require advanced tools to help them more effectively identify areas at risk. The U.S. Geological Survey's (USGS) Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE) Web site has been developed to address these needs by providing more convenient access to projections from models that forecast the effects of sea level rise on surface water and groundwater, the extent of surge and resulting economic losses from coastal storms, and the distribution of habitats. IMMAGE not only provides an advanced geographic information system (GIS) interface to support decision making, but also includes topic-based modules that explain and illustrate key concepts for nontechnical users. The purpose of this report is to familiarize both technical and nontechnical users with the IMMAGE Web site and its various applications.

  17. Flood Losses Associated with Winter Storms in the U.S. Northeast

    Science.gov (United States)

    Ting, M.; Shimkus, C.

    2015-12-01

    Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.

  18. Application of STORMTOOLS's simplified flood inundation model with sea level rise to assess impacts to RI coastal areas

    Science.gov (United States)

    Spaulding, M. L.

    2015-12-01

    The vision for STORMTOOLS is to provide access to a suite of coastal planning tools (numerical models et al), available as a web service, that allows wide spread accessibly and applicability at high resolution for user selected coastal areas of interest. The first product developed under this framework were flood inundation maps, with and without sea level rise, for varying return periods for RI coastal waters. The flood mapping methodology is based on using the water level vs return periods at a primary NOAA water level gauging station and then spatially scaling the values, based on the predictions of high resolution, storm and wave simulations performed by Army Corp of Engineers, North Atlantic Comprehensive Coastal Study (NACCS) for tropical and extratropical storms on an unstructured grid, to estimate inundation levels for varying return periods. The scaling for the RI application used Newport, RI water levels as the reference point. Predictions are provided for once in 25, 50, and 100 yr return periods (at the upper 95% confidence level), with sea level rises of 1, 2, 3, and 5 ft. Simulations have also been performed for historical hurricane events including 1938, Carol (1954), Bob (1991), and Sandy (2012) and nuisance flooding events with return periods of 1, 3, 5, and 10 yr. Access to the flooding maps is via a web based, map viewer that seamlessly covers all coastal waters of the state at one meter resolution. The GIS structure of the map viewer allows overlays of additional relevant data sets (roads and highways, wastewater treatment facilities, schools, hospitals, emergency evacuation routes, etc.) as desired by the user. The simplified flooding maps are publically available and are now being implemented for state and community resilience planning and vulnerability assessment activities in response to climate change impacts.

  19. Improvements of Storm Surge Modelling in the Gulf of Venice with Satellite Data: The ESA Due Esurge-Venice Project

    Science.gov (United States)

    De Biasio, F.; Bajo, M.; Vignudelli, S.; Papa, A.; della Valle, A.; Umgiesser, G.; Donlon, C.; Zecchetto, S.

    2016-08-01

    Among the most detrimental natural phenomena, storm surges heavily endanger the environment, the economy and the everyday life of sea-side countries and coastal zones. Considering that 120.000.000 people live in the Mediterranean area, with additional 200.000.000 presences in Summer for tourism purposes, the correct prediction of storm surges is crucial to avoid fatalities and economic losses. Earth Observation (EO) can play an important role in operational storm surge forecasting, yet it is not widely diffused in the storm surge community. In 2011 the European Space Agency (ESA), through its Data User Element (DUE) programme, financed two projects aimed at encouraging the uptake of EO data in this sector: eSurge and eSurge-Venice (eSV). The former was intended to address the issues of a wider users' community, while the latter was focused on a restricted geographical area: the northern Adriatic Sea and the Gulf of Venice. Among the objectives of the two projects there were a number of storm surge hindcast experiments using satellite data, to demonstrate the improvements on the surge forecast brought by EO. We report here the results of the hindcast experiments of the eSV project. They were aimed to test the sensitivity of a storm surge model to a forcing wind field modified with scatterometer data in order to reduce the bias between simulated and observed winds. Hindcast experiments were also performed to test the response of the storm surge model to the assimilation, with a dual 4D-Var system, of satellite altimetry observations as model errors of the initial state of the sea surface level. Remarkable improvements on the storm surge forecast have been obtained for what concerns the modified model wind forcing. Encouraging results have been obtained also in the assimilation experiments.

  20. Hindicast and forecast of the Parsifal storm

    Energy Technology Data Exchange (ETDEWEB)

    Bertotti, L.; Cavaleri, L. [Istituto Studio Dinamica Grandi Masse, Venice (Italy); De girolamo, P.; Magnaldi, S. [Rome, Univ. `La Sapienza` (Italy). Dip. di Idraulica, Trasporti e Strade; Franco, L. [Rome, III Univ. (Italy). Dip. di Scienze dell`Ingegneria Civile

    1998-05-01

    On 2 November 1995 a Mistral storm in the Gulf of Lions sank the 16 metre yacht Parsifal claiming six lives out of the nine member crew. The authors analyse the storm with different meteorological and wave models, verifying the results against the available buoy and satellite measurements. Then the authors consider the accuracy of the storm forecasts and the information available the days before the accident. The limitations related to the resolution of the meteorological models are explored by hind casting the storm also with the winds produced by some limited area models. Finally, the authors discuss the present situation of wind and wave hind cast and forecast in the Mediterranean Sea, and the distribution of these results to the public.

  1. The Caribbean conundrum of Holocene sea level.

    Science.gov (United States)

    Jackson, Luke; Mound, Jon

    2014-05-01

    In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.

  2. High-resolution reconstruction of extreme storm events over the North Sea during the Late Holocene: inferences from aeolian sand influx in coastal mires, Western Denmark.

    Science.gov (United States)

    Goslin, Jerome; Clemmensen, Lars B.

    2017-04-01

    Possessing long and accurate archives of storm events worldwide is the key for a better understanding of the atmospheric patterns driving these events and of the response of the coastal systems to storms. To be adequately addressed, the ongoing and potential future changes in wind regimes (including in particular the frequency and magnitude of storm events) have to be replaced in the context of long-time records of past storminess, i.e. longer than the century-scale records of instrumental weather data which do not allow the calculation of reliable return periods. During the last decade, several Holocene storminess chronologies have been based on storm-traces left by aeolian processes within coastal lakes, mires and peat bogs, (e.g. Björck and Clemmensen, 2004; De Jong et al., 2006; Clemmensen et al., 2009; Nielsen et al.; 2016; Orme et al., 2016). These data have shown to adequately complement the records which can be derived from the study of records related to wave-induced processes including e.g. washover deposits. Previous works along the west coast of Jutland, Denmark have revealed four main periods of dune building during the last 4200 yrs (Clemmensen et al., 2001; 2009). These were shown to be in phase with periods of climate deterioration (cold periods) recognized elsewhere in Europe and the North Atlantic region and suggest periods of increased aeolian activity. Yet, doubts remain on whether these periods where characterized by several big short-lived storm events or rather by an overall increase in wind energy. This study aims at constructing a high-resolution (centennial to multi-decadal) history of past storminess over the North Sea for the last millenaries. Plurimeter sequences of peat and gyttja have been retrieved from two coastal mires and were analyzed for their sand content. The quartz grains were systematically counted within centimetric slices (Aeolian Sand Influx method, Björck & Clemmensen, 2004), while the palaeo-environmental context and

  3. Storm surge and wave simulations in the Gulf of Mexico using a consistent drag relation for atmospheric and storm surge models

    Directory of Open Access Journals (Sweden)

    D. Vatvani

    2012-07-01

    Full Text Available To simulate winds and water levels, numerical weather prediction (NWP and storm surge models generally use the traditional bulk relation for wind stress, which is characterized by a wind drag coefficient. A still commonly used drag coefficient in those models, some of them were developed in the past, is based on a relation, according to which the magnitude of the coefficient is either constant or increases monotonically with increasing surface wind speed (Bender, 2007; Kim et al., 2008; Kohno and Higaki, 2006. The NWP and surge models are often tuned independently from each other in order to obtain good results. Observations have indicated that the magnitude of the drag coefficient levels off at a wind speed of about 30 m s−1, and then decreases with further increase of the wind speed. Above a wind speed of approximately 30 m s−1, the stress above the air-sea interface starts to saturate. To represent the reducing and levelling off of the drag coefficient, the original Charnock drag formulation has been extended with a correction term.

    In line with the above, the Delft3D storm surge model is tested using both Charnock's and improved Makin's wind drag parameterization to evaluate the improvements on the storm surge model results, with and without inclusion of the wave effects. The effect of waves on storm surge is included by simultaneously simulating waves with the SWAN model on identical model grids in a coupled mode. However, the results presented here will focus on the storm surge results that include the wave effects.

    The runs were carried out in the Gulf of Mexico for Katrina and Ivan hurricane events. The storm surge model was initially forced with H*wind data (Powell et al., 2010 to test the effect of the Makin's wind drag parameterization on the storm surge model separately. The computed wind, water levels and waves are subsequently compared with observation data. Based on the good

  4. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea).

    Science.gov (United States)

    Dumas, C; Aubert, D; Durrieu de Madron, X; Ludwig, W; Heussner, S; Delsaut, N; Menniti, C; Sotin, C; Buscail, R

    2014-10-01

    In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77%), they do not reflect severe enrichment (EFs rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deep-sea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.

  5. Present-day sea level rise: a synthesis

    International Nuclear Information System (INIS)

    Cazenave, A.; Llovel, W.; Lombard, A.

    2008-01-01

    Measuring sea level change and understanding its causes have improved considerably in the recent years, essentially because new in situ and remote sensing data sets have become available. Here we report on the current knowledge of present-day sea level change. We briefly present observational results on sea level change from satellite altimetry since 1993 and tide gauges for the past century. We next discuss recent progress made in quantifying the processes causing sea level change on time scales ranging from years to decades, i.e., thermal expansion, land ice mass loss and land water storage change. For the 1993-2003 decade, the sum of climate-related contributions agree well (within the error bars) with the altimetry-based sea level, half of the observed rate of rise being due to ocean thermal expansion, land ice plus land waters explaining the other half. Since about 2003, thermal expansion increase has stopped, whereas the sea level continues to rise, although at a reduced rate compared to the previous decade (2.5 mm/yr versus 3.1 mm/yr). Recent increases in glacier melting and ice mass loss from the ice sheets appear able to account alone for the rise in sea level reported over the last five years. (authors)

  6. SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.

    Science.gov (United States)

    Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E

    2015-07-10

    Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.

  7. Understanding Variability in Beach Slope to Improve Forecasts of Storm-induced Water Levels

    Science.gov (United States)

    Doran, K. S.; Stockdon, H. F.; Long, J.

    2014-12-01

    The National Assessment of Hurricane-Induced Coastal Erosion Hazards combines measurements of beach morphology with storm hydrodynamics to produce forecasts of coastal change during storms for the Gulf of Mexico and Atlantic coastlines of the United States. Wave-induced water levels are estimated using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon et al. (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. Seasonal and storm-induced changes in beach slope can lead to differences on the order of a meter in wave runup elevation, making accurate specification of this parameter essential to skillful forecasts of coastal change. Spatial variation in beach slope is accounted for through alongshore averaging, but temporal variability in beach slope is not included in the final computation of the likelihood of coastal change. Additionally, input morphology may be years old and potentially very different than the conditions present during forecast storm. In order to improve our forecasts of hurricane-induced coastal erosion hazards, the temporal variability of beach slope must be included in the final uncertainty of modeled wave-induced water levels. Frequently collected field measurements of lidar-based beach morphology are examined for study sites in Duck, North Carolina, Treasure Island, Florida, Assateague Island, Virginia, and Dauphin Island, Alabama, with some records extending over a period of 15 years. Understanding the variability of slopes at these sites will help provide estimates of associated water level uncertainty which can then be applied to other areas where lidar observations are infrequent, and improve the overall skill of future forecasts of storm-induced coastal change. Stockdon, H. F., Holman, R. A., Howd, P. A., and Sallenger Jr, A. H. (2006). Empirical parameterization of setup

  8. A 500 kyr record of global sea-level oscillations in the Gulf of Lion, Mediterranean Sea: new insights into MIS 3 sea-level variability

    Directory of Open Access Journals (Sweden)

    J. Frigola

    2012-06-01

    Full Text Available Borehole PRGL1-4 drilled in the upper slope of the Gulf of Lion provides an exceptional record to investigate the impact of late Pleistocene orbitally-driven glacio-eustatic sea-level oscillations on the sedimentary outbuilding of a river fed continental margin. High-resolution grain-size and geochemical records supported by oxygen isotope chronostratigraphy allow reinterpreting the last 500 ka upper slope seismostratigraphy of the Gulf of Lion. Five main sequences, stacked during the sea-level lowering phases of the last five glacial-interglacial 100-kyr cycles, form the upper stratigraphic outbuilding of the continental margin. The high sensitivity of the grain-size record down the borehole to sea-level oscillations can be explained by the great width of the Gulf of Lion continental shelf. Sea level driven changes in accommodation space over the shelf cyclically modified the depositional mode of the entire margin. PRGL1-4 data also illustrate the imprint of sea-level oscillations at millennial time-scale, as shown for Marine Isotopic Stage 3, and provide unambiguous evidence of relative high sea-levels at the onset of each Dansgaard-Oeschger Greenland warm interstadial. The PRGL1-4 grain-size record represents the first evidence for a one-to-one coupling of millennial time-scale sea-level oscillations associated with each Dansgaard-Oeschger cycle.

  9. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    Science.gov (United States)

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.

    2016-01-04

    This report documents the development of statistical tools used to quantify the hazard presented by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circulation. A hazard is a physical process (or processes) that, when combined with vulnerability (or susceptibility to the hazard), results in risk. This study presents the development and comparison of new and existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using synthetic time series, and when appropriate, synthesis of the application of the method to observed sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal articles where it is not always possible to provide the level of detail that might be necessary to fully support or recreate published results.

  10. Using MSG to monitor the evolution of severe convective storms over East Mediterranean Sea and Israel, and its response to aerosol loading

    Directory of Open Access Journals (Sweden)

    I. M. Lensky

    2007-08-01

    Full Text Available Convective storms over East Mediterranean sea and Israel were tracked by METEOSAT Second Generation (MSG. The MSG data was used to retrieve time series of the precipitation formation processes in the clouds, the temperature of onset of precipitation, and an indication to aerosol loading over the sea. Strong correlation was found between the aerosol loading and the depth above cloud base required for the initialization of effective precipitation processes (indicated by the effective radius = 15 µm threshold. It seems from the data presented here that the clouds' response to the aerosol loading is very short.

  11. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor; Jakobsson, Martin

    2017-09-01

    Deglacial (12.8-10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM; ˜ 24 kiloannum or ka) minimum sea level of ˜ 125-130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ˜ 400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42-47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  12. Present day sea level changes: observation and causes

    International Nuclear Information System (INIS)

    Lombard, A.

    2005-11-01

    Whereas sea level has changed little over the last 2000 years, it has risen at a rate of about 2 mm/year during the 20. century. This unexpected sea level rise has been attributed to the anthropogenic global warming, recorded over several decades. Sea level variations have been measured globally and precisely for about 12 years due to satellite altimeter missions Topex/Poseidon and Jason-1. These observations indicate a global mean sea level rise of about 3 mm/year since 1993, a value significantly larger than observed during previous decades. Recent observations have allowed us to quantify the various climatic factors contributing to observed sea level change: thermal expansion of sea water due to ocean warming, melting of mountain glaciers and ice sheets, and changes in the land water reservoirs. A water budget based on these new observations allows us to partly explain the observed sea level rise. In particular, we show that the thermal expansion explains only 25% of the secular sea level rise as recorded by tide-gauges over the last 50 years, while it contributes about 50% of sea level rise observed over the last decade. Meanwhile, recent studies show that glacier and ice sheet melting could contribute the equivalent of 1 mm/year in sea level rise over the last decade. In addition, the high regional variability of sea level trends revealed by satellite altimetry is mainly due to thermal expansion. There is also an important decadal spatio-temporal variability in the ocean thermal expansion over the last 50 years, which seems to be controlled by natural climate fluctuations. We question for the first time the link between the decadal fluctuations in the ocean thermal expansion and in the land reservoirs, and indeed their climatic contribution to sea level change. Finally a preliminary analysis of GRACE spatial gravimetric observations over the oceans allows us to estimate the seasonal variations in mean sea level due to ocean water mass balance variations

  13. Is sea-level rising?

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.

    correction in the estimation of trends obtained for tide gauge records. The altimeter data permits to prepare spatial maps of sea-level rise trends. We present a map prepared for the Indian Ocean (Figure 4) north of 10oS , which shows a fairly uniform... drawn information from research papers published by the author and report of the IPCC AR5 WG1 Chapter 13: Sea Level Changes, in which the author has served as a ‘Lead Author’. Figure1 is prepared using data from the University of Colorado. Nerem, R...

  14. Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008

    Science.gov (United States)

    2008-01-01

    Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred. It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate. Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water. The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer. In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat. This image of sea level trend also reveals a significant

  15. Sea level rise and the geoid: factor analysis approach

    Directory of Open Access Journals (Sweden)

    Alexey Sadovski

    2013-08-01

    Full Text Available Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical approach by using factor analysis of regional sea level rates of change. Unlike physical models and semi-empirical models that attempt to approach how much and how fast sea levels are changing, this methodology allows for a discussion of the factor(s that statistically affects sea level rates of change, and seeks patterns to explain spatial correlations.

  16. Arctic Sea Level During the Satellite Altimetry Era

    DEFF Research Database (Denmark)

    Carret, A.; Johannessen, J. A.; Andersen, Ole Baltazar

    2017-01-01

    Results of the sea-level budget in the high latitudes (up to 80°N) and the Arctic Ocean during the satellite altimetry era. We investigate the closure of the sea-level budget since 2002 using two altimetry sea-level datasets based on the Envisat waveform retracking: temperature and salinity data....... However, in terms of regional average over the region ranging from 66°N to 80°N, the steric component contributes little to the observed sea-level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree well with the altimetry......-based sea-level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus, we estimated the mass contribution from the difference between the altimetry-based sea level and the steric component. We also investigate the coastal sea level with tide gauge records. Twenty coupled...

  17. Translating Uncertain Sea Level Projections Into Infrastructure Impacts Using a Bayesian Framework

    Science.gov (United States)

    Moftakhari, Hamed; AghaKouchak, Amir; Sanders, Brett F.; Matthew, Richard A.; Mazdiyasni, Omid

    2017-12-01

    Climate change may affect ocean-driven coastal flooding regimes by both raising the mean sea level (msl) and altering ocean-atmosphere interactions. For reliable projections of coastal flood risk, information provided by different climate models must be considered in addition to associated uncertainties. In this paper, we propose a framework to project future coastal water levels and quantify the resulting flooding hazard to infrastructure. We use Bayesian Model Averaging to generate a weighted ensemble of storm surge predictions from eight climate models for two coastal counties in California. The resulting ensembles combined with msl projections, and predicted astronomical tides are then used to quantify changes in the likelihood of road flooding under representative concentration pathways 4.5 and 8.5 in the near-future (1998-2063) and mid-future (2018-2083). The results show that road flooding rates will be significantly higher in the near-future and mid-future compared to the recent past (1950-2015) if adaptation measures are not implemented.

  18. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  19. Wave processes and geologic responses on the floor of the Yellow Sea

    Science.gov (United States)

    Booth, James S.; Winters, William J.

    1991-01-01

    The floor of the Yellow Sea is a geologically mundane surface: it is nearly horizontal, lacks relief, and, with few exceptions, is devoid of conspicuous geomorphologic features. However, it is the principal repository for the prodigious sediment load of the Huanghe (Yellow River); and, due to its inherent shallowness (average depth is 40 m), it is frequently stressed by waves generated by winter storms and typhoons. Analyses of mass physical properties of cores representing the upper few meters of sediment in the central and north-central Yellow Sea (near the Shandong Peninsula), in conjunction with analyses of slope stability, failure modes, and erodibility, permit an assessment of the likelihood and effect of dynamic, transient geologic events on the seabed.Vane shear-strength profiles along with consolidation test data indicate that the present surface of the seabed is in a depositional mode and is compacting normally. in addition, liquid-limit profiles imply that in the study area these neritic sediments have been accumulating in an environment that probably has not been modified significantly since sea level reached its current level. There is no geotechnical evidence in the nine cores recovered that slope failures have occurred, and clasts, sand lenses or other manifestations of mass movements, including flows, also are absent. These observations support previous interpretations of seismic records. Moreover, slope stability analysis for static conditions shows that the sea floor is quite stable.Regardless, shear-stress levels generated by cyclic loading during major storms may approach the sediment shear strengths, and, when coupled with concomitant excess pore pressures, could cause slope failure. Unless the failed beds collapsed or flowed, however, there probably would be little conspicuous evidence of such a failure. in fact, evaluation of the potential of these sediments for disintegrative behavior suggests that they are not prone to either collapse or

  20. Coastal Sea Levels, Impacts, and Adaptation

    Directory of Open Access Journals (Sweden)

    Thomas Wahl

    2018-02-01

    Full Text Available Sea-level rise (SLR poses a great threat to approximately 10% of the world’s population residing in low-elevation coastal zones (i.e., land located up to 10 m of present-day mean sea-level (MSL[...

  1. Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities

    Science.gov (United States)

    Kulp, S. A.; Strauss, B.

    2015-12-01

    Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.

  2. Ice Melt, Sea Level Rise and Superstorms: Evidence from Paleoclimate Data, Climate Modeling, and Modern Observations that 2C Global Warming Could Be Dangerous

    Science.gov (United States)

    Hansen, J.; Sato, Makiko; Hearty, Paul; Ruedy, Reto; Kelley, Maxwell; Masson-Delmotte, Valerie; Russell, Gary; Tselioudis, George; Cao, Junji; Rignot, Eric; hide

    2016-01-01

    We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10-40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500-2000-year) timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to C6-9m with evidence of extreme storms while Earth was less than 1 C

  3. Experiments in Reconstructing Twentieth-Century Sea Levels

    Science.gov (United States)

    Ray, Richard D.; Douglas, Bruce C.

    2011-01-01

    One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.

  4. A new Arctic 25-year Altimetric Sea-level Record (1992-2016) and Initial look at Arctic Sea Level Budget Closure

    OpenAIRE

    Andersen O.B., Passaro M., Benveniste J., Piccioni G.

    2016-01-01

    A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reproce...

  5. Coastal flooding: impact of waves on storm surge during extremes – a case study for the German Bight

    Directory of Open Access Journals (Sweden)

    J. Staneva

    2016-11-01

    Full Text Available This study addresses the impact of wind, waves, tidal forcing and baroclinicity on the sea level of the German Bight during extreme storm events. The role of wave-induced processes, tides and baroclinicity is quantified, and the results are compared with in situ measurements and satellite data. A coupled high-resolution modelling system is used to simulate wind waves, the water level and the three-dimensional hydrodynamics. The models used are the wave model WAM and the circulation model GETM. The two-way coupling is performed via the OASIS3-MCT coupler. The effects of wind waves on sea level variability are studied, accounting for wave-dependent stress, wave-breaking parameterization and wave-induced effects on vertical mixing. The analyses of the coupled model results reveal a closer match with observations than for the stand-alone circulation model, especially during the extreme storm Xaver in December 2013. The predicted surge of the coupled model is significantly enhanced during extreme storm events when considering wave–current interaction processes. This wave-dependent approach yields a contribution of more than 30 % in some coastal areas during extreme storm events. The contribution of a fully three-dimensional model compared with a two-dimensional barotropic model showed up to 20 % differences in the water level of the coastal areas of the German Bight during Xaver. The improved skill resulting from the new developments justifies further use of the coupled-wave and three-dimensional circulation models in coastal flooding predictions.

  6. Coastal Adaptation Planning for Sea Level Rise and Extremes: A Global Model for Adaptation Decision-making at the Local Level Given Uncertain Climate Projections

    Science.gov (United States)

    Turner, D.

    2014-12-01

    Understanding the potential economic and physical impacts of climate change on coastal resources involves evaluating a number of distinct adaptive responses. This paper presents a tool for such analysis, a spatially-disaggregated optimization model for adaptation to sea level rise (SLR) and storm surge, the Coastal Impact and Adaptation Model (CIAM). This decision-making framework fills a gap between very detailed studies of specific locations and overly aggregate global analyses. While CIAM is global in scope, the optimal adaptation strategy is determined at the local level, evaluating over 12,000 coastal segments as described in the DIVA database (Vafeidis et al. 2006). The decision to pursue a given adaptation measure depends on local socioeconomic factors like income, population, and land values and how they develop over time, relative to the magnitude of potential coastal impacts, based on geophysical attributes like inundation zones and storm surge. For example, the model's decision to protect or retreat considers the costs of constructing and maintaining coastal defenses versus those of relocating people and capital to minimize damages from land inundation and coastal storms. Uncertain storm surge events are modeled with a generalized extreme value distribution calibrated to data on local surge extremes. Adaptation is optimized for the near-term outlook, in an "act then learn then act" framework that is repeated over the model time horizon. This framework allows the adaptation strategy to be flexibly updated, reflecting the process of iterative risk management. CIAM provides new estimates of the economic costs of SLR; moreover, these detailed results can be compactly represented in a set of adaptation and damage functions for use in integrated assessment models. Alongside the optimal result, CIAM evaluates suboptimal cases and finds that global costs could increase by an order of magnitude, illustrating the importance of adaptive capacity and coastal policy.

  7. Sea level rise and the geoid: factor analysis approach

    OpenAIRE

    Song, Hongzhi; Sadovski, Alexey; Jeffress, Gary

    2013-01-01

    Sea levels are rising around the world, and this is a particular concern along most of the coasts of the United States. A 1989 EPA report shows that sea levels rose 5-6 inches more than the global average along the Mid-Atlantic and Gulf Coasts in the last century. The main reason for this is coastal land subsidence. This sea level rise is considered more as relative sea level rise than global sea level rise. Thus, instead of studying sea level rise globally, this paper describes a statistical...

  8. Analysis of Sea Level Rise in Singapore Strait

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung

    2013-04-01

    Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.

  9. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    Science.gov (United States)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  10. Indo-Pacific sea level variability during recent decades

    Science.gov (United States)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  11. Anthropogenic forcing dominates sea level rise since 1850

    DEFF Research Database (Denmark)

    Jevrejeva, Svetlana; Grinsted, Aslak; Moore, John

    2009-01-01

    The rate of sea level rise and its causes are topics of active debate. Here we use a delayed response statistical model to attribute the past 1000 years of sea level variability to various natural (volcanic and solar radiative) and anthropogenic (greenhouse gases and aerosols) forcings. We show...... that until 1800 the main drivers of sea level change are volcanic and solar radiative forcings. For the past 200 years sea level rise is mostly associated with anthropogenic factors. Only 4 ± 1.5 cm (25% of total sea level rise) during the 20th century is attributed to natural forcings, the remaining 14 ± 1...

  12. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Science.gov (United States)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor

    2017-01-01

    Deglacial (12.8–10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka) minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  13. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    Directory of Open Access Journals (Sweden)

    T. M. Cronin

    2017-09-01

    Full Text Available Deglacial (12.8–10.7 ka sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1 and multicore SWERUS-L2-4-MC1 (4-MC1, and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1. Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.. Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1 followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  14. Projecting the risk of damage to reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    OpenAIRE

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2017-01-01

    Tropical cyclones (TCs), sea level rise (SLR), and storm surges cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater able to reduce the risks of natural disasters to coastal communities. However, projections of change ...

  15. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm....../y for the region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  16. Sea level rise and variability around Peninsular Malaysia

    Science.gov (United States)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single

  17. The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions

    Science.gov (United States)

    Gildor, H.; Biton, E.; Peltier, W. R.

    2006-12-01

    The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).

  18. On the impact of wind on the development of wave field during storm Britta

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Du, Jianting; Bolaños, Rodolfo

    2017-01-01

    The observation of extreme waves at FINO 1 during storm Britta on the 1st November 2006 has initiated a series of research studies regarding the mechanisms behind. The roles of stability and the presence of the open cell structures have been previously investigated but not conclusive. To improve...... our understanding of these processes, which are essential for a good forecast of similarly important events offshore, this study revisits the development of storm Britta using an atmospheric and wave coupled modeling system, wind and wave measurements from ten stations across the North Sea, cloud...... images and Synthetic Aperture Radar (SAR) data. It is found here that a standard state-of-the-art model is capable of capturing the important characteristics of a major storm like Britta, including the storm path, storm peak wind speed, the open cells, and peak significant wave height (H s ) for open sea...

  19. Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous

    Directory of Open Access Journals (Sweden)

    J. Hansen

    2016-03-01

    Full Text Available We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurface ocean warming and ice shelf melting. Cold meltwater and induced dynamical effects cause ocean surface cooling in the Southern Ocean and North Atlantic, thus increasing Earth's energy imbalance and heat flux into most of the global ocean's surface. Southern Ocean surface cooling, while lower latitudes are warming, increases precipitation on the Southern Ocean, increasing ocean stratification, slowing deepwater formation, and increasing ice sheet mass loss. These feedbacks make ice sheets in contact with the ocean vulnerable to accelerating disintegration. We hypothesize that ice mass loss from the most vulnerable ice, sufficient to raise sea level several meters, is better approximated as exponential than by a more linear response. Doubling times of 10, 20 or 40 years yield multi-meter sea level rise in about 50, 100 or 200 years. Recent ice melt doubling times are near the lower end of the 10–40-year range, but the record is too short to confirm the nature of the response. The feedbacks, including subsurface ocean warming, help explain paleoclimate data and point to a dominant Southern Ocean role in controlling atmospheric CO2, which in turn exercised tight control on global temperature and sea level. The millennial (500–2000-year timescale of deep-ocean ventilation affects the timescale for natural CO2 change and thus the timescale for paleo-global climate, ice sheet, and sea level changes, but this paleo-millennial timescale should not be misinterpreted as the timescale for ice sheet response to a rapid, large, human-made climate forcing. These climate feedbacks aid interpretation of events late in the prior interglacial, when sea level rose to +6–9 m with evidence of extreme storms

  20. Sea level monitoring in Africa | Woodworth | African Journal of ...

    African Journals Online (AJOL)

    Information Network for Africa (ODINAfrica) programme are described and a survey of currently existing and planned sea level stations in Africa is presented, together with information on where data for existing stations may be found. Keywords: sea level data applications, sea level data telemetry, sea level networks. African ...

  1. Sea level change: lessons from the geologic record

    Science.gov (United States)

    ,

    1995-01-01

    Rising sea level is potentially one of the most serious impacts of climatic change. Even a small sea level rise would have serious economic consequences because it would cause extensive damage to the world's coastal regions. Sea level can rise in the future because the ocean surface can expand due to warming and because polar ice sheets and mountain glaciers can melt, increasing the ocean's volume of water. Today, ice caps on Antarctica and Greenland contain 91 and 8 percent of the world's ice, respectively. The world's mountain glaciers together contain only about 1 percent. Melting all this ice would raise sea level about 80 meters. Although this extreme scenario is not expected, geologists know that sea level can rise and fall rapidly due to changing volume of ice on continents. For example, during the last ice age, about 18,000 years ago, continental ice sheets contained more than double the modem volume of ice. As ice sheets melted, sea level rose 2 to 3 meters per century, and possibly faster during certain times. During periods in which global climate was very warm, polar ice was reduced and sea level was higher than today.

  2. Developing an early warning system for storm surge inundation in the Philippines

    Science.gov (United States)

    Tablazon, J.; Caro, C. V.; Lagmay, A. M. F.; Briones, J. B. L.; Dasallas, L.; Lapidez, J. P.; Santiago, J.; Suarez, J. K.; Ladiero, C.; Gonzalo, L. A.; Mungcal, M. T. F.; Malano, V.

    2014-10-01

    A storm surge is the sudden rise of sea water generated by an approaching storm, over and above the astronomical tides. This event imposes a major threat in the Philippine coastal areas, as manifested by Typhoon Haiyan on 8 November 2013 where more than 6000 people lost their lives. It has become evident that the need to develop an early warning system for storm surges is of utmost importance. To provide forecasts of the possible storm surge heights of an approaching typhoon, the Nationwide Operational Assessment of Hazards under the Department of Science and Technology (DOST-Project NOAH) simulated historical tropical cyclones that entered the Philippine Area of Responsibility. Bathymetric data, storm track, central atmospheric pressure, and maximum wind speed were used as parameters for the Japan Meteorological Agency Storm Surge Model. The researchers calculated the frequency distribution of maximum storm surge heights of all typhoons under a specific Public Storm Warning Signal (PSWS) that passed through a particular coastal area. This determines the storm surge height corresponding to a given probability of occurrence. The storm surge heights from the model were added to the maximum astronomical tide data from WXTide software. The team then created maps of probable area inundation and flood levels of storm surges along coastal areas for a specific PSWS using the results of the frequency distribution. These maps were developed from the time series data of the storm tide at 10 min intervals of all observation points in the Philippines. This information will be beneficial in developing early warnings systems, static maps, disaster mitigation and preparedness plans, vulnerability assessments, risk-sensitive land use plans, shoreline defense efforts, and coastal protection measures. Moreover, these will support the local government units' mandate to raise public awareness, disseminate information about storm surge hazards, and implement appropriate counter

  3. Sea level rise : A literature survey

    NARCIS (Netherlands)

    Oude Essink, G.H.P.

    1992-01-01

    In order to assess the impact of sea level rise on Water Management, it is useful to understand the mechanisrns that determine the level of the sea. In this study, a literature survey is executed to analyze these mechanisms. Climate plays a centra! role in these mechanisms, Climate mainly changes

  4. Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change

    NARCIS (Netherlands)

    Slangen, A.B.A.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.M.; Marzeion, B.; Melet, A.; Palmer, M.D.; Richter, K.; Roberts, C.D.; Spada, G.

    2017-01-01

    Sea level change is one of the major consequences of climate change and is projected to affect coastal communities around the world. Here, global mean sea level (GMSL) change estimated by 12 climate models from phase 5 of the World Climate Research Programme’s Climate Model Intercomparison Project

  5. Holocene sea level, a semi-empirical contemplation

    Science.gov (United States)

    Bittermann, K.; Kemp, A.; Vermeer, M.; Rahmstorf, S.

    2017-12-01

    Holocene eustatic sea level from approximately -10,000-1800 CE was characterized by an increase of about 60m, with the rate progressively slowing down until sea level almost stabilizes between 500-1800 CE. Global and northern-hemisphere temperatures rose from the last glacial termination until the `Holocene Optimum'. From ­­there, up to the start of the recent anthropogenic rise, they almost steadily decline. How are the sea-level and temperature evolutions linked? We investigate this with semi-empirical sea-level models. We found that, due to the nature of Milankovitch forcing, northern-hemisphere temperature (we used the Greenland temperature by Vinther et al., 2009) is a better model driver than global mean temperature because the evolving mass of northern-hemisphere land ice was the dominant cause of Holocene global sea-level trends. The adjustment timescale for this contribution is 1200 years (900-1500 years; 90% confidence interval). To fit the observed sea-level history, the model requires a small additional constant rate (Bittermann 2016). This rate turns out to be of the same order of magnitude as reconstructions of Antarctic sea-level contributions (Briggs et al. 2014, Golledge et al. 2014). In reality this contribution is unlikely to be constant but rather has a dominant timescale that is large compared to the time considered. We thus propose that Holocene sea level can be described by a linear combination of a temperature driven rate, which becomes negative in the late Holocene (as Northern Hemisphere ice masses are diminished), and a positive, approximately constant term (possibly from Antarctica), which starts to dominate from the middle of the Holocene until the start of industrialization. Bibliography: Bittermann, K. 2016. Semi-empirical sea-level modelling. PhD Thesis University of Potsdam. Briggs, R.D., et al. 2014. A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quaternary science reviews, 103, 91

  6. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    DEFF Research Database (Denmark)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt

    2014-01-01

    the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative...... sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest...... Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality...

  7. The multimillennial sea-level commitment of global warming.

    Science.gov (United States)

    Levermann, Anders; Clark, Peter U; Marzeion, Ben; Milne, Glenn A; Pollard, David; Radic, Valentina; Robinson, Alexander

    2013-08-20

    Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.

  8. Impacts of representing sea-level rise uncertainty on future flood risks: An example from San Francisco Bay.

    Science.gov (United States)

    Ruckert, Kelsey L; Oddo, Perry C; Keller, Klaus

    2017-01-01

    Rising sea levels increase the probability of future coastal flooding. Many decision-makers use risk analyses to inform the design of sea-level rise (SLR) adaptation strategies. These analyses are often silent on potentially relevant uncertainties. For example, some previous risk analyses use the expected, best, or large quantile (i.e., 90%) estimate of future SLR. Here, we use a case study to quantify and illustrate how neglecting SLR uncertainties can bias risk projections. Specifically, we focus on the future 100-yr (1% annual exceedance probability) coastal flood height (storm surge including SLR) in the year 2100 in the San Francisco Bay area. We find that accounting for uncertainty in future SLR increases the return level (the height associated with a probability of occurrence) by half a meter from roughly 2.2 to 2.7 m, compared to using the mean sea-level projection. Accounting for this uncertainty also changes the shape of the relationship between the return period (the inverse probability that an event of interest will occur) and the return level. For instance, incorporating uncertainties shortens the return period associated with the 2.2 m return level from a 100-yr to roughly a 7-yr return period (∼15% probability). Additionally, accounting for this uncertainty doubles the area at risk of flooding (the area to be flooded under a certain height; e.g., the 100-yr flood height) in San Francisco. These results indicate that the method of accounting for future SLR can have considerable impacts on the design of flood risk management strategies.

  9. Impacts of representing sea-level rise uncertainty on future flood risks: An example from San Francisco Bay.

    Directory of Open Access Journals (Sweden)

    Kelsey L Ruckert

    Full Text Available Rising sea levels increase the probability of future coastal flooding. Many decision-makers use risk analyses to inform the design of sea-level rise (SLR adaptation strategies. These analyses are often silent on potentially relevant uncertainties. For example, some previous risk analyses use the expected, best, or large quantile (i.e., 90% estimate of future SLR. Here, we use a case study to quantify and illustrate how neglecting SLR uncertainties can bias risk projections. Specifically, we focus on the future 100-yr (1% annual exceedance probability coastal flood height (storm surge including SLR in the year 2100 in the San Francisco Bay area. We find that accounting for uncertainty in future SLR increases the return level (the height associated with a probability of occurrence by half a meter from roughly 2.2 to 2.7 m, compared to using the mean sea-level projection. Accounting for this uncertainty also changes the shape of the relationship between the return period (the inverse probability that an event of interest will occur and the return level. For instance, incorporating uncertainties shortens the return period associated with the 2.2 m return level from a 100-yr to roughly a 7-yr return period (∼15% probability. Additionally, accounting for this uncertainty doubles the area at risk of flooding (the area to be flooded under a certain height; e.g., the 100-yr flood height in San Francisco. These results indicate that the method of accounting for future SLR can have considerable impacts on the design of flood risk management strategies.

  10. Coupling of sea level and tidal range changes, with implications for future water levels.

    Science.gov (United States)

    Devlin, Adam T; Jay, David A; Talke, Stefan A; Zaron, Edward D; Pan, Jiayi; Lin, Hui

    2017-12-05

    Are perturbations to ocean tides correlated with changing sea-level and climate, and how will this affect high water levels? Here, we survey 152 tide gauges in the Pacific Ocean and South China Sea and statistically evaluate how the sum of the four largest tidal constituents, a proxy for the highest astronomical tide (HAT), changes over seasonal and interannual time scales. We find that the variability in HAT is significantly correlated with sea-level variability; approximately 35% of stations exhibit a greater than ±50 mm tidal change per meter sea-level fluctuation. Focusing on a subset of three stations with long records, probability density function (PDF) analyses of the 95% percentile exceedance of total sea level (TSL) show long-term changes of this high-water metric. At Hong Kong, the increase in tides significantly amplifies the risk caused by sea-level rise. Regions of tidal decrease and/or amplification highlight the non-linear response to sea-level variations, with the potential to amplify or mitigate against the increased flood risk caused by sea-level rise. Overall, our analysis suggests that in many regions, local flood level determinations should consider the joint effects of non-stationary tides and mean sea level (MSL) at multiple time scales.

  11. Upper Limit for Regional Sea Level Projections

    Science.gov (United States)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  12. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    Science.gov (United States)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  13. Development of the Coastal Storm Modeling System (CoSMoS) for predicting the impact of storms on high-energy, active-margin coasts

    Science.gov (United States)

    Barnard, Patrick; Maarten van Ormondt,; Erikson, Li H.; Jodi Eshleman,; Hapke, Cheryl J.; Peter Ruggiero,; Peter Adams,; Foxgrover, Amy C.

    2014-01-01

    The Coastal Storm Modeling System (CoSMoS) applies a predominantly deterministic framework to make detailed predictions (meter scale) of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales (100s of kilometers). CoSMoS was developed for hindcast studies, operational applications (i.e., nowcasts and multiday forecasts), and future climate scenarios (i.e., sea-level rise + storms) to provide emergency responders and coastal planners with critical storm hazards information that may be used to increase public safety, mitigate physical damages, and more effectively manage and allocate resources within complex coastal settings. The prototype system, developed for the California coast, uses the global WAVEWATCH III wave model, the TOPEX/Poseidon satellite altimetry-based global tide model, and atmospheric-forcing data from either the US National Weather Service (operational mode) or Global Climate Models (future climate mode), to determine regional wave and water-level boundary conditions. These physical processes are dynamically downscaled using a series of nested Delft3D-WAVE (SWAN) and Delft3D-FLOW (FLOW) models and linked at the coast to tightly spaced XBeach (eXtreme Beach) cross-shore profile models and a Bayesian probabilistic cliff failure model. Hindcast testing demonstrates that, despite uncertainties in preexisting beach morphology over the ~500 km alongshore extent of the pilot study area, CoSMoS effectively identifies discrete sections of the coast (100s of meters) that are vulnerable to coastal hazards under a range of current and future oceanographic forcing conditions, and is therefore an effective tool for operational and future climate scenario planning.

  14. Sea-level rise risks to coastal cities

    Science.gov (United States)

    Nicholls, Robert J.

    2017-04-01

    Understanding the consequence of sea-level rise for coastal cities has long lead times and huge political implications. Civilisation has emerged and developed during a period of several thousand years during which in geological terms sea level has been unusually stable. We have now moved out of this period and the challenge will be to develop a long-term proactive assessment approach to manage this challenge. In 2005 there were 136 coastal cities with a population exceeding one million people and a collective population of 400 million people. All these coastal cities are threatened by flooding from the sea to varying degrees and these risks are increasing due to growing exposure (people and assets), rising sea levels due to climate change, and in some cities, significant coastal subsidence due to human agency (drainage and groundwater withdrawals from susceptible soils). In these cities we wish to avoid major flood events, with associated damage and potentially deaths and ultimately decline of the cities. Flood risks grow with sea-level rise as it raises extreme sea levels. As sea levels continue to rise, protection will have to be progressively upgraded. Even with this, the magnitude of losses when flood events do occur would increase as coastal cities expand, and water depths and hence unit damage increase with sea-level rise/subsidence. This makes it critical to also prepare for larger coastal flood disasters than we experience today and raises questions on the limits to adaptation. There is not an extensive literature or significant empirical information on the limits to adaptation in coastal cities. These limits are not predictable in a formal sense - while the rise in mean sea level raises the likelihood of a catastrophic flood, extreme events are what cause damage and trigger a response, be it abandonment, a defence upgrade or something else. There are several types of potential limits that could be categorised into three broad types: • Physical

  15. A socioeconomic assessment of climate change-enhanced coastal storm hazards in the U.S. Pacific Northwest

    Science.gov (United States)

    Baron, H. M.; Ruggiero, P.; Harris, E.

    2010-12-01

    Every winter, coastal communities in the U.S. Pacific Northwest are at risk to coastal change hazards caused by extreme storm events. These storms have the potential to erode large portions of the primary foredune that may be a community’s only barrier from the ocean. Furthermore, the frequency and magnitude of significant erosion events appears to be increasing, likely due to climate-related processes such as sea level rise and increases in storm wave heights. To reduce risks posed by winter storms, it is not only important to determine the impending physical impacts but it is also necessary to explore the vulnerability of the social-ecological system in the context of these hazards. Here we assess the exposure to both annually occurring and extreme storm events at various planning timelines using a methodology that incorporates the effect of a variable and changing climate on future total water levels. To do this, we have developed a suite of climate change scenarios involving a range of projections for the wave climate, global sea level rise, and the occurrence of El Niño events through 2100. Simple geometric models are then used to conservatively determine the extent of erosion that may occur for a given combination of these climatic factors. We integrate the physical hazards with socioeconomic data using a geographic information system (GIS) in order to quantify societal vulnerability, characterized by the exposure and sensitivity of a community, which is based on the distribution of people, property, and resources. Here we focus on a 14 km stretch of dune-backed coast in northwest Oregon, from Cascade Head to Cape Kiwanda—the location of two communities that, historically, have experienced problematic storm-induced coastal change, Pacific City and Neskowin. Although both of these communities have similar exposure to coastal change hazards at the present, Neskowin is more than twice as sensitive to erosion because almost all of its residents and community

  16. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh

    Science.gov (United States)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-08-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.

  17. Sea level rise in the Arctic Ocean

    OpenAIRE

    Proshutinsky, Andrey; Pavlov, Vladimir; Bourke, Robert H.

    2001-01-01

    The article of record as published may be found at http://dx.doi.org/10.1029/2000GL012760 About 60 tide-gauge stations in the Kara, Laptev, East-Siberian and Chukchi Seas have recorded the sea level change from the 1950s through 1990s. Over this 40-year period, most of these stations show a significant sea level rise (SLR). In light of global change, this SLR could be a manifestation of warming in the Artic coupled with a decrease of sea ice extent, warming of Atlantic waters, changes in...

  18. Storm impacts on small barrier islands

    DEFF Research Database (Denmark)

    Kroon, Aart; Fruergaard, Mikkel

    The shorelines of the Baltic Sea and the inner coastal waters in Denmark consist of many barrier islands. These sandy barrier islands were mainly formed in the Holocene and are still very dynamic. The present day changes in the morphology are dominantly governed by storm waves and associated high...

  19. Tide-surge historical assessment of extreme water levels for the St. Johns River: 1928-2017

    Science.gov (United States)

    Bacopoulos, Peter

    2017-10-01

    An historical storm population is developed for the St. Johns River, located in northeast Florida-US east coast, via extreme value assessment of an 89-year-long record of hourly water-level data. Storm surge extrema and the corresponding (independent) storm systems are extracted from the historical record as well as the linear and nonlinear trends of mean sea level. Peaks-over-threshold analysis reveals the top 16 most-impactful (storm surge) systems in the general return-period range of 1-100 years. Hurricane Matthew (2016) broke the record with a new absolute maximum water level of 1.56 m, although the peak surge occurred during slack tide level (0.00 m). Hurricanes and tropical systems contribute to return periods of 10-100 years with water levels in the approximate range of 1.3-1.55 m. Extratropical systems and nor'easters contribute to the historical storm population (in the general return-period range of 1-10 years) and are capable of producing extreme storm surges (in the approximate range of 1.15-1.3 m) on par with those generated by hurricanes and tropical systems. The highest astronomical tide is 1.02 m, which by evaluation of the historical record can contribute as much as 94% to the total storm-tide water level. Statically, a hypothetical scenario of Hurricane Matthew's peak surge coinciding with the highest astronomical tide would yield an overall storm-tide water level of 2.58 m, corresponding to an approximate 1000-year return period by historical comparison. Sea-level trends (linear and nonlinear) impact water-level return periods and constitute additional risk hazard for coastal engineering designs.

  20. Future extreme sea level seesaws in the tropical Pacific.

    Science.gov (United States)

    Widlansky, Matthew J; Timmermann, Axel; Cai, Wenju

    2015-09-01

    Global mean sea levels are projected to gradually rise in response to greenhouse warming. However, on shorter time scales, modes of natural climate variability in the Pacific, such as the El Niño-Southern Oscillation (ENSO), can affect regional sea level variability and extremes, with considerable impacts on coastal ecosystems and island nations. How these shorter-term sea level fluctuations will change in association with a projected increase in extreme El Niño and its atmospheric variability remains unknown. Using present-generation coupled climate models forced with increasing greenhouse gas concentrations and subtracting the effect of global mean sea level rise, we find that climate change will enhance El Niño-related sea level extremes, especially in the tropical southwestern Pacific, where very low sea level events, locally known as Taimasa, are projected to double in occurrence. Additionally, and throughout the tropical Pacific, prolonged interannual sea level inundations are also found to become more likely with greenhouse warming and increased frequency of extreme La Niña events, thus exacerbating the coastal impacts of the projected global mean sea level rise.

  1. Global change and the measurement of absolute sea-level

    Science.gov (United States)

    Diamante, John M.; Pyle, Thomas E.; Carter, William E.; Scherer, Wolfgang

    To quantify properly the long-term response of sea-level to climate change, land motions must be separated from the apparent or relative sea-level change recorded by conventional tide/sea-level gauges. Here we present a concept for global measurement of the true or “absolute” sea-level change, which combines recent advances in space-based geodetic techniques with plans for a global sea-level network under the World Climate Research Programme (WCRP). Data from initial feasibility tests show that land motion, due to global (plate tectonic), regional (glacial rebound), or local (fluid withdrawal) effects, can probably be measured to ±1cm (on a single measurement basis) by an innovative combination of Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) tevhniques. By making repeated observations of position at a number of tide gauges using portable, economical GPS receivers in a differential mode relative to the fewer, more stable, but more expensive VLBI observatories, it will be possible to subtract land motion from the relative sea-level signal. Decadal to century scale trends at the 1-2mm y -1 level will be resolvable in the sea-level and vertical land motion time series within about a decade. Detection of subsidence or uplift at specific gauges will allow correction for land motion or deletion of bad data when computing regional or global, i.e. eustatic, sea-level changes. In addition to their applications in oceanography and climate studies, such data will test models by Peltier and other that relate mantle viscosity and deglaciation history to present rates of crustal subsidence or uplift. If the predicted crustal motions are confirmed, we can also have more confidence in the use of historical tide/sea-level gauge records in retrospective studies of sea-level change related to climate variability on decadal or longer time scales. It is concluded that as few as one-third (about 100) of the total number of tide/sea-level gauges (250

  2. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    Directory of Open Access Journals (Sweden)

    Kathryn Lane

    2013-01-01

    Full Text Available Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  3. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment.

    Science.gov (United States)

    Lane, Kathryn; Charles-Guzman, Kizzy; Wheeler, Katherine; Abid, Zaynah; Graber, Nathan; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events.

  4. Sea level trend and variability around Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2015-08-01

    Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5-25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian-Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian-western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Nino-Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Nino events and positive phases of IOD, whilst rises are correlated with La Nina episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986-2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr-1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr-1), their corresponding geocentric sea level rise rates

  5. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    Science.gov (United States)

    Yi, Liang; Chen, Yanping

    2013-04-01

    Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of

  6. Determining Storm Surge Return Periods: The Use of Evidence of Historic Events

    DEFF Research Database (Denmark)

    Madsen, Kristine S.; Sørensen, Carlo Sass; Schmith, Torben

    for tide gauge measurements, with 120 years of data available for the calculations. However, the oldest of these tide gauge stations was set up after a major storm surge in 1872, and no events of similar severity have occurred since. Including the evidence of the historic events from the 18th century...... changes the return period statistics, with a best estimate of a 100 year event changing from 1.5 meters (Sørensen et al. 2013) to 2.6 [2.2 – 2.8] meters (present study) in Køge just south of Copenhagen. Thus, with the tide gauge-based statistics, the storm surge on January 4 2017 was a 100 year event......, but with the revised statistics using historic evidence, much larger events can be expected. Further, we assess the very large impact of sea level rise on the storm surge statistics. As an example, according to the official statistics of southern Copenhagen, the flooding of a present day 100 year event...

  7. Changing Sea Levels

    Science.gov (United States)

    Pugh, David

    2004-04-01

    Flooding of coastal communities is one of the major causes of environmental disasters world-wide. This textbook explains how sea levels are affected by astronomical tides, weather effects, ocean circulation and climate trends. Based on courses taught by the author in the U.K. and the U.S., it is aimed at undergraduate students at all levels, with non-basic mathematics being confined to Appendices and a website http://publishing.cambridge.org/resources/0521532183/.

  8. Variability in the correlation between Asian dust storms and chlorophyll a concentration from the North to Equatorial Pacific.

    Directory of Open Access Journals (Sweden)

    Sai-Chun Tan

    Full Text Available A long-term record of Asian dust storms showed seven high-occurrence-frequency centers in China. The intrusion of Asian dust into the downwind seas, including the China seas, the Sea of Japan, the subarctic North Pacific, the North Pacific subtropical gyre, and the western and eastern Equatorial Pacific, has been shown to add nutrients to ocean ecosystems and enhance their biological activities. To explore the relationship between the transported dust from various sources to the six seas and oceanic biological activities with different nutrient conditions, the correlation between monthly chlorophyll a concentration in each sea and monthly dust storm occurrence frequencies reaching the sea during 1997-2007 was examined in this study. No correlations were observed between dust and chlorophyll a concentration in the 50 m China seas and the North Pacific subtropical gyre, the correlation coefficients were in the range 0.32-0.57. The correlation coefficients for the western and eastern Equatorial Pacific were relatively low (<0.36. These correlation coefficients were further interpreted in terms of the geographical distributions of dust sources, the transport pathways, the dust deposition, the nutrient conditions of oceans, and the probability of dust storms reaching the seas.

  9. The social values at risk from sea-level rise

    International Nuclear Information System (INIS)

    Graham, Sonia; Barnett, Jon; Fincher, Ruth; Hurlimann, Anna; Mortreux, Colette; Waters, Elissa

    2013-01-01

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies

  10. The social values at risk from sea-level rise

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Sonia, E-mail: sonia.graham@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Barnett, Jon, E-mail: jbarn@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Fincher, Ruth, E-mail: r.fincher@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Hurlimann, Anna, E-mail: anna.hurlimann@unimelb.edu.au [Faculty of Architecture, Building and Planning, The University of Melbourne, Architecture and Planning Building, Parkville, Victoria 3010 (Australia); Mortreux, Colette, E-mail: colettem@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia); Waters, Elissa, E-mail: elissa.waters@unimelb.edu.au [Department of Resource Management and Geography, The University of Melbourne, 221 Bouverie St., Carlton, Victoria 3053 (Australia)

    2013-07-15

    Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values from within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.

  11. Sea level change since 2005: importance of salinity

    Science.gov (United States)

    Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.

    2017-12-01

    Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.

  12. Sea level oscillations over minute timescales: a global perspective

    Science.gov (United States)

    Vilibic, Ivica; Sepic, Jadranka

    2016-04-01

    Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.

  13. New morphological and molecular evidence confirm the presence of the Norwegian skate Dipturus nidarosiensis (Storm, 1881) in the Mediterranean Sea and extend its distribution to the western basin

    OpenAIRE

    RAMÍREZ-AMARO, S.; ORDINES, F.; ÁNGEL PUERTO, M.; GARCÍA, C.; RAMON, C.; TERRASA, B.; MASSUTÍ, E.

    2017-01-01

    The present study confirms the presence of the Norwegian skate Dipturus nidarosiensis (Storm, 1881) in the Mediterranean Sea, by means of morphological traits and molecular markers providing the first record of this species in the Alboran Sea. Cannas et al. (2010) reported D. nidarosiensis for the first time in the Mediterranean from specimens captured in the central western basin, but Ebert & Stehmann (2013) and Stehmann et al. (2015) considered these records "likely refer to the smaller mor...

  14. Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network

    Science.gov (United States)

    Plant, Nathaniel G.

    2016-01-01

    Predictions of coastal evolution driven by episodic and persistent processes associated with storms and relative sea-level rise (SLR) are required to test our understanding, evaluate our predictive capability, and to provide guidance for coastal management decisions. Previous work demonstrated that the spatial variability of long-term shoreline change can be predicted using observed SLR rates, tide range, wave height, coastal slope, and a characterization of the geomorphic setting. The shoreline is not suf- ficient to indicate which processes are important in causing shoreline change, such as overwash that depends on coastal dune elevations. Predicting dune height is intrinsically important to assess future storm vulnerability. Here, we enhance shoreline-change predictions by including dune height as a vari- able in a statistical modeling approach. Dune height can also be used as an input variable, but it does not improve the shoreline-change prediction skill. Dune-height input does help to reduce prediction uncer- tainty. That is, by including dune height, the prediction is more precise but not more accurate. Comparing hindcast evaluations, better predictive skill was found when predicting dune height (0.8) compared with shoreline change (0.6). The skill depends on the level of detail of the model and we identify an optimized model that has high skill and minimal overfitting. The predictive model can be implemented with a range of forecast scenarios, and we illustrate the impacts of a higher future sea-level. This scenario shows that the shoreline change becomes increasingly erosional and more uncertain. Predicted dune heights are lower and the dune height uncertainty decreases.

  15. Monitoring and simulation of salinity changes in response to tide and storm surges in a sandy coastal aquifer system

    NARCIS (Netherlands)

    Huizer, S.; Karaoulis, M.C.; Oude Essink, G.H.P.; Bierkens, M.F.P.

    Tidal dynamics and especially storm surges can have an extensive impact on coastal fresh groundwater resources. Combined with the prospect of sea-level rise and the reliance of many people on these resources, this demonstrates the need to assess the vulnerability of coastal areas to these threats.

  16. A Late Pleistocene sea level stack

    OpenAIRE

    Spratt Rachel M; Lisiecki Lorraine E

    2016-01-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal componen...

  17. Effect of hurricanes and violent storms on salt marsh

    Science.gov (United States)

    Leonardi, N.; Ganju, N. K.; Fagherazzi, S.

    2016-12-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  18. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser

    2015-04-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an \\'intermediate\\' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  19. The Influence of Wind and Basin Eddies in Controlling Sea Level Variations in the Coastal Red Sea

    KAUST Repository

    Abualnaja, Yasser; Churchill, James H.; Nellayaputhenpeedika, Mohammedali; Limeburner, Richard

    2015-01-01

    Sea level variations in the central Red Sea coastal zone span a range of roughly 1.2 m. Though relatively small, these water level changes can significantly impact the environment over the shallow reef tops prevalent in the central Red Sea, altering the water depth by a factor or two or more. Roughly half of the coastal sea level variance in central Red Sea is due to elevation changes in an 'intermediate' frequency band, with periods between 2 days and 1 month. We examined the sea level signal in this band using the data from pressure sensors maintained for more than five years at a number of locations in Saudi Arabian coastal waters between 20.1 and 23.5 oN. We find that the intermediate-band sea level variations are strongly correlated with the local wind stress measured at a meteorological buoy. The maximum pressure-wind correlation occurs at wind direction closely aligned with the alongshore orientation and at a lag (wind leading) of 45 hr, which is consistent with the expected response of the coastal sea level to local wind forcing. However, less than half of the sea level variance in the intermediate band is related, through linear correlation, with local wind forcing. Our analysis indicates that the residual coastal sea level signal, not associated with wind forcing, is largely driven remotely by the passage of mesoscale eddies, revealed by satellite altimeter-derived sea level anomaly fields of the central Red Sea. These eddy-driven coastal sea level changes occur on time scales of 10-30 days. They span a range of 0.5 m, and thus constitute an import component of the sea level signal in the coastal Red Sea.

  20. Modeling storm waves

    International Nuclear Information System (INIS)

    Benoit, M.; Marcos, F.; Teisson, Ch.

    1999-01-01

    Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)

  1. Killer storms from the seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    The author has discussed the distruction taking place due to cyclone in the Indian subcontinent of formation which is said to be the result of thermal fronts in the atmosphere and sea interaction of different air masses is discussed in detailed...

  2. Use of historical information in extreme storm surges frequency analysis

    Science.gov (United States)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    use of historical information (to the Brest tide gauge located in the French Atlantic coast). In addition, the present work contributes to addressing the problem of the presence of outliers in data sets. Historical data are generally imprecise, and their inaccuracy should be properly accounted for in the analysis. However, as several authors believe, even with substantial uncertainty in the data, the use of historical information is a viable mean to improve estimates of rare events related to extreme environmental conditions. The preliminary results of this study suggest that the use of historical information increases the representativity of an outlier in the systematic data. It is also shown that the use of historical information, specifically the perception sea water level, can be considered as a reliable solution for the optimal planning and design of facilities to withstand extreme environmental conditions, which will occur during its lifetime, with an appropriate optimum of risk level. Findings are of practical relevance for applications in storm surge risk analysis and flood management.

  3. SLR-induced changes on storm flooding in coastal areas: the role of accommodation space

    Science.gov (United States)

    Jiménez, Jose A.; Dockx, Stijn; Monbaliu, Jaak

    2015-04-01

    Most of existing predictions of climate-induce changes in coastal storminess in the Mediterranean indicate the absence of any significant increasing trend in neither wave height nor surge. However, this does not mean that magnitude and/or frequency of storm-induced coastal hazards will not be affected by climate change. Thus, sea level rise will induce a series of long-term changes in coastal areas that although not directly affecting storminess will interact with storm-induced processes and, thus, changing coastal storm risks. A typical approach to account SLR-induced effects on coastal inundation by storms is to modify present water level extreme climate by adding expected MWL increase. This implies to consider the coast as a static and passive system to SLR maintaining its configuration from actual to projected (rised) sea level and, as a result of this, the frequency of flood events should increase and, the magnitude of flooding associated to a probability of occurrence will also increase. This will only be realistic for really passive or rigid coasts. However, sandy coastlines will response to SLR and, thus, this approach should undervalue coastal resilience. Within this context, the main aim of this work is to propose a method to assess the effects of SLR on the magnitude of storm-induced coastal flooding on sandy coastlines taking into account their capacity of response. It combines the use of a inundation model (LISFLOOD-FP) for delineating the flood-prone area for given storm conditions and, a coastal module to account for SLR-induced changes in the coastal fringe. The method assumes an equilibrium-type coastal response to SLR which, ideally, implies that the beach profile will be reconstructed under the new higher water level, in such a way that the relative beach configuration will be the same. However, this should only be possible provided there is enough accommodation space in the hinterland. In most of developed coasts, the existence of human built

  4. Sea Levels Online: Sea Level Variations of the United States Derived from National Water Level Observation Network Stations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water level records are a combination of the fluctuations of the ocean and the vertical land motion at the location of the station. Monthly mean sea level (MSL)...

  5. Adapting to Rising Sea Level: A Florida Perspective

    Science.gov (United States)

    Parkinson, Randall W.

    2009-07-01

    Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.

  6. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium

    Science.gov (United States)

    Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio

    2018-04-01

    Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.

  7. An Exploration of Wind Stress Calculation Techniques in Hurricane Storm Surge Modeling

    Directory of Open Access Journals (Sweden)

    Kyra M. Bryant

    2016-09-01

    Full Text Available As hurricanes continue to threaten coastal communities, accurate storm surge forecasting remains a global priority. Achieving a reliable storm surge prediction necessitates accurate hurricane intensity and wind field information. The wind field must be converted to wind stress, which represents the air-sea momentum flux component required in storm surge and other oceanic models. This conversion requires a multiplicative drag coefficient for the air density and wind speed to represent the air-sea momentum exchange at a given location. Air density is a known parameter and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a century. This review paper examines the lineage of drag coefficient correlations and their acceptance among scientists.

  8. Detection and monitoring of two dust storm events by multispectral modis images.

    Digital Repository Service at National Institute of Oceanography (India)

    Mehta P.S.; Kunte, P.D.

    of Oman, over Arabian Sea to the coast of Pakistan. The dust storm lasted over the Arabian Sea till 30th March. MODIS sensors on both Terra and Aqua Satellites captured images of both events. From the difference in emissive/transmissive nature...

  9. Spatial sea-level reconstruction in the Baltic Sea and in the Pacific Ocean from tide gauges observations

    Directory of Open Access Journals (Sweden)

    Marco Olivieri

    2016-07-01

    Full Text Available Exploiting the Delaunay interpolation, we present a newly implemented 2-D sea-level reconstruction from coastal sea-level observations to open seas, with the aim of characterizing the spatial variability of the rate of sea-level change. To test the strengths and weaknesses of this method and to determine its usefulness in sea-level interpolation, we consider the case studies of the Baltic Sea and of the Pacific Ocean. In the Baltic Sea, a small basin well sampled by tide gauges, our reconstructions are successfully compared with absolute sea-level observations from altimetry during 1993-2011. The regional variability of absolute sea level observed across the Pacific Ocean, however, cannot be reproduced. We interpret this result as the effect of the uneven and sparse tide gauge data set and of the composite vertical land movements in and around the region. Useful considerations arise that can serve as a basis for developing sophisticated approaches.

  10. Effects of wave-current interaction on storm surge in the Taiwan Strait: Insights from Typhoon Morakot

    Science.gov (United States)

    Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin

    2017-08-01

    The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.

  11. Greenhouse warming and changes in sea level

    NARCIS (Netherlands)

    Oerlemans, J.

    1989-01-01

    It is likely that the anticipated warming due to the effect of increasing concentration of carbon dioxide and other greenhouse gases will lead to a further and faster rise in world mean sea level. There are many processes in the climate system controlling sea level, but the most important

  12. Resiliency of the Chesapeake Bay to Pollution Levels Following Storms and Based on Land-Use

    Science.gov (United States)

    Hasan, M.; Pavelsky, T.

    2015-12-01

    As pollution levels, transformations in land use, and ecological loss continue to increase in the Chesapeake Bay, questions arise as to whether this estuary, the largest in North America, will experience a change in the duration and levels of storm-related sediment and nutrient spikes. We use a combination of satellite data and previously-collected field measurements to study this question. We compare same-day and same-pixel NASA MODIS satellite data to in situ observations of sediment and nutrient concentrations over 20 years, and found that for at least 6 tributaries, the r2 value for a linear regression between the satellite reflectance and fieldwork measures of nitrogen, phosphorus, or suspended sediment concentrations exceeded 0.7, while for at least 12 tributaries, the r2 value exceeded 0.5. We took advantage of this relationship to estimate sediment and nutrient concentrations in the Chesapeake following major storm events, even in the absence of continuous in situ data. We studied sediment/nutrient levels daily following the storm, for every date on which a cloud-free MODIS image was available, for a month. The storms included 2003's Hurricane Isabel, 2011's Hurricane Irene, and 2012's Superstorm Sandy. The tributaries we focused on were the York and Piankatank Rivers of southern Virginia (heavily forested), the Potomac River (heavily urban), and the Nanticoke River of the Eastern Shore (heavily farmed). Results show that in the Potomac River, which over the last 15 years has experience a signifiant increase in urbanization, sediments and nutrients persist for longer periods and at higher levels compared to less urbanized rivers.

  13. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    Science.gov (United States)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  14. Predicting the Storm Surge Threat of Hurricane Sandy with the National Weather Service SLOSH Model

    Directory of Open Access Journals (Sweden)

    Cristina Forbes

    2014-05-01

    Full Text Available Numerical simulations of the storm tide that flooded the US Atlantic coastline during Hurricane Sandy (2012 are carried out using the National Weather Service (NWS Sea Lakes and Overland Surges from Hurricanes (SLOSH storm surge prediction model to quantify its ability to replicate the height, timing, evolution and extent of the water that was driven ashore by this large, destructive storm. Recent upgrades to the numerical model, including the incorporation of astronomical tides, are described and simulations with and without these upgrades are contrasted to assess their contributions to the increase in forecast accuracy. It is shown, through comprehensive verifications of SLOSH simulation results against peak water surface elevations measured at the National Oceanic and Atmospheric Administration (NOAA tide gauge stations, by storm surge sensors deployed and hundreds of high water marks collected by the U.S. Geological Survey (USGS, that the SLOSH-simulated water levels at 71% (89% of the data measurement locations have less than 20% (30% relative error. The RMS error between observed and modeled peak water levels is 0.47 m. In addition, the model’s extreme computational efficiency enables it to run large, automated ensembles of predictions in real-time to account for the high variability that can occur in tropical cyclone forecasts, thus furnishing a range of values for the predicted storm surge and inundation threat.

  15. Climate related sea-level variations over the past two millennia.

    Science.gov (United States)

    Kemp, Andrew C; Horton, Benjamin P; Donnelly, Jeffrey P; Mann, Michael E; Vermeer, Martin; Rahmstorf, Stefan

    2011-07-05

    We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.

  16. Evolution of marine storminess in the Belgian part of the North Sea

    Directory of Open Access Journals (Sweden)

    D. Van den Eynde

    2012-02-01

    Full Text Available Severe storms have affected European coast lines in the past but knowledge on changes in storminess for the last decades is still sparse. Climate change is assumed to be a main driving factor with the potential to induce changes on the intensity, duration and frequency of powerful marine storms, including a long-term influence on peak wind speeds, surges and waves. It is, therefore, important to investigate whether in the last decades changes in the magnitude of storms, their duration and frequency could be observed. Understanding trends in storminess in the last decades will help to better prepare coastal managers for future events, taking into account potential changes on storm occurrence and magnitude to improve planning of mitigation and adaptation strategies. The purpose of this study was to focus on the evolution of extreme wind conditions, wave height and storm surge levels in the North Sea Region, especially in the Belgian part of the North Sea (BPNS. Based on the analysis performed it is concluded that no clear trend can be observed for the occurrence of significant increasing extreme wind speeds over the BPNS. Furthermore, one can conclude that not enough scientific evidence is available to support scenarios with increased wave height or storminess.

  17. Predicting severe winter coastal storm damage

    International Nuclear Information System (INIS)

    Hondula, David M; Dolan, Robert

    2010-01-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North

  18. Predicting severe winter coastal storm damage

    Energy Technology Data Exchange (ETDEWEB)

    Hondula, David M; Dolan, Robert, E-mail: hondula@virginia.edu [Department of Environmental Sciences, University of Virginia, PO Box 400123, Charlottesville, VA 22903 (United States)

    2010-07-15

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'-such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989-are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the

  19. Predicting severe winter coastal storm damage

    Science.gov (United States)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the

  20. Changing statistics of storms in the North Atlantic?

    International Nuclear Information System (INIS)

    Storch, H. von; Guddal, J.; Iden, K.A.; Jonsson, T.; Perlwitz, J.; Reistad, M.; Ronde, J. de; Schmidt, H.; Zorita, E.

    1993-01-01

    Problems in the present discussion about increasing storminess in the North Atlantic area are discusesd. Observational data so far available do not indicate a change in the storm statistics. Output from climate models points to an itensified storm track in the North Atlantic, but because of the limited skill of present-day climate models in simulating high-frequency variability and regional details any such 'forecast' has to be considered with caution. A downscaling procedure which relates large-scale time-mean aspects of the state of the atmosphere and ocean to the local statistics of storms is proposed to reconstruct past variations of high-frequency variability in the atmosphere (storminess) and in the sea state (wave statistics). First results are presented. (orig.)

  1. Projecting Future Sea Level Rise for Water Resources Planning in California

    Science.gov (United States)

    Anderson, J.; Kao, K.; Chung, F.

    2008-12-01

    Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise

  2. Sea level: measuring the bounding surfaces of the ocean

    Science.gov (United States)

    Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.

    2014-01-01

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196

  3. Potential of sea level rise impact on South China Sea: a preliminary ...

    African Journals Online (AJOL)

    The effect of the sea level rise was involved the existence of sea water intrusion and coastal erosion phenomenon in the coastal of Terengganu. This study aim to determine fluctuation of high and low tides of the South China Sea in their relation to water quality value of Marang and Paka Rivers as well as from wells ...

  4. Climate And Sea Level: It's In Our Hands Now

    Science.gov (United States)

    Turrin, M.; Bell, R. E.; Ryan, W. B. F.

    2014-12-01

    Changes in sea level are measurable on both a local and a global scale providing an accessible way to connect climate to education, yet engaging teachers and students with the complex science that is behind the change in sea level can be a challenge. Deciding how much should be included and just how it should be introduced in any single classroom subject area can be an obstacle for a teacher. The Sea Level Rise Polar Explorer App developed through the PoLAR CCEP grant offers a guided tour through the many layers of science that impact sea level rise. This map-based data-rich app is framed around a series of questions that move the user through map layers with just the level of complexity they chose to explore. For a quick look teachers and students can review a 3 or 4 sentence introduction on how the given map links to sea level and then launch straight into the interactive touchable map. For a little more in depth look they can listen to (or read) a one-minute recorded background on the data displayed in the map prior to launching in. For those who want more in depth understanding they can click to a one page background piece on the topic with links to further visualizations, videos and data. Regardless of the level of complexity selected each map is composed of clickable data allowing the user to fully explore the science. The different options for diving in allow teachers to differentiate the learning for either the subject being taught or the user level of the student group. The map layers also include a range of complexities. Basic questions like "What is sea level?" talk about shorelines, past sea levels and elevations beneath the sea. Questions like "Why does sea level change?" includes slightly more complex issues like the role of ocean temperature, and how that differs from ocean heat content. And what is the role of the warming atmosphere in sea level change? Questions about "What about sea level in the past?" can bring challenges for students who have

  5. Anthropogenic sea level rise and adaptation in the Yangtze estuary

    Science.gov (United States)

    Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.

    2016-02-01

    Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021

  6. Precise mean sea level measurements using the Global Positioning System

    Science.gov (United States)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  7. Ensemble-based evaluation of extreme water levels for the eastern Baltic Sea

    Science.gov (United States)

    Eelsalu, Maris; Soomere, Tarmo

    2016-04-01

    The risks and damages associated with coastal flooding that are naturally associated with an increase in the magnitude of extreme storm surges are one of the largest concerns of countries with extensive low-lying nearshore areas. The relevant risks are even more contrast for semi-enclosed water bodies such as the Baltic Sea where subtidal (weekly-scale) variations in the water volume of the sea substantially contribute to the water level and lead to large spreading of projections of future extreme water levels. We explore the options for using large ensembles of projections to more reliably evaluate return periods of extreme water levels. Single projections of the ensemble are constructed by means of fitting several sets of block maxima with various extreme value distributions. The ensemble is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. A hindcast by the Rossby Centre Ocean model is sampled with a resolution of 6 h and a similar hindcast by the circulation model NEMO with a resolution of 1 h. As the annual maxima of water levels in the Baltic Sea are not always uncorrelated, we employ maxima for calendar years and for stormy seasons. As the shape parameter of the Generalised Extreme Value distribution changes its sign and substantially varies in magnitude along the eastern coast of the Baltic Sea, the use of a single distribution for the entire coast is inappropriate. The ensemble involves projections based on the Generalised Extreme Value, Gumbel and Weibull distributions. The parameters of these distributions are evaluated using three different ways: maximum likelihood method and method of moments based on both biased and unbiased estimates. The total number of projections in the ensemble is 40. As some of the resulting estimates contain limited additional information, the members of pairs of projections that are highly correlated are assigned weights 0.6. A comparison of the ensemble-based projection of

  8. Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission

    Science.gov (United States)

    Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.

    2017-12-01

    The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex

  9. Influence of sea ice on Arctic coasts

    Science.gov (United States)

    Barnhart, K. R.; Kay, J. E.; Overeem, I.; Anderson, R. S.

    2017-12-01

    Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a focal point for population, infrastructure, biodiversity, and ecosystem services. A key difference between Arctic and temperate coasts is the presence of sea ice. Changes in sea ice cover can influence the coast because (1) the length of the sea ice-free season controls the time over which nearshore water can interact with the land, and (2) the location of the sea ice edge controls the fetch over which storm winds can interact with open ocean water, which in turn governs nearshore water level and wave field. We first focus on the interaction of sea ice and ice-rich coasts. We combine satellite records of sea ice with a model for wind-driven storm surge and waves to estimate how changes in the sea ice-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort Sea Coast for the period 1979-2012. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic: the median length of the open-water season has expanded by 90 percent, while coastal erosion rates have more than doubled from 8.7 to 19 m yr-1. At Drew Point, NW winds increase shoreline water levels that control the incision of a submarine notch, the rate-limiting step of coastal retreat. The maximum water-level setup at Drew Point has increased consistently with increasing fetch. We extend our analysis to the entire Arctic using both satellite-based observations and global coupled climate model output from the Community Earth System Model Large Ensemble (CESM-LE) project. This 30-member ensemble employs a 1-degree version of the CESM-CAM5 historical forcing for the period 1920-2005, and RCP 8.5 forcing from 2005-2100. A control model run with constant pre-industrial (1850) forcing characterizes internal variability in a constant climate. Finally, we compare observations and model results to

  10. Sea Level Data Archaeology for the Global Sea Level Observing System (GLOSS)

    Science.gov (United States)

    Bradshaw, Elizabeth; Matthews, Andy; Rickards, Lesley; Jevrejeva, Svetlana

    2015-04-01

    The Global Sea Level Observing System (GLOSS) was set up in 1985 to collect long term tide gauge observations and has carried out a number of data archaeology activities over the past decade, including sending member organisations questionnaires to report on their repositories. The GLOSS Group of Experts (GLOSS GE) is looking to future developments in sea level data archaeology and will provide its user community with guidance on finding, digitising, quality controlling and distributing historic records. Many records may not be held in organisational archives and may instead by in national libraries, archives and other collections. GLOSS will promote a Citizen Science approach to discovering long term records by providing tools for volunteers to report data. Tide gauge data come in two different formats, charts and hand-written ledgers. Charts are paper analogue records generated by the mechanical instrument driving a pen trace. Several GLOSS members have developed software to automatically digitise these charts and the various methods were reported in a paper on automated techniques for the digitization of archived mareograms, delivered to the GLOSS GE 13th meeting. GLOSS is creating a repository of software for scanning analogue charts. NUNIEAU is the only publically available software for digitising tide gauge charts but other organisations have developed their own tide gauge digitising software that is available internally. There are several other freely available software packages that convert image data to numerical values. GLOSS could coordinate a comparison study of the various different digitising software programs by: Sending the same charts to each organisation and asking everyone to digitise them using their own procedures Comparing the digitised data Providing recommendations to the GLOSS community The other major form of analogue sea level data is handwritten ledgers, which are usually observations of high and low waters, but sometimes contain higher

  11. Sea level trend and variability around the Peninsular Malaysia

    Science.gov (United States)

    Luu, Q. H.; Tkalich, P.; Tay, T. W.

    2014-06-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. Resulting sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); while long-term sea level trend is related to global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability around the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 1.6 mm yr-1 and 2.7 ± 1.0 mm yr-1, respectively. Allowing for corresponding vertical land movements (VLM; 0.8 ± 2.6 mm yr-1 and 0.9 ± 2.2 mm yr-1), their absolute SLR rates are 3.2 ± 4.2 mm yr-1 and 3.6 ± 3.2 mm yr-1, respectively. For the common period 1993-2009, absolute SLR rates obtained from both tide gauge and satellite altimetry in Peninsular Malaysia are similar; and they are slightly higher than the global tendency. It further underlines that VLM should be taken into account to get better estimates of SLR observations. At interannual scale, ENSO affects sea level over the Malaysian coast in the range of ±5 cm with a very high correlation. Meanwhile, IOD modulates sea level anomalies mainly in the Malacca Strait in the range of ±2 cm with a high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index

  12. Impact of storms on coastlines: preparing for the future without forgetting the past? Examples from European coastlines using a Storm Impact Database

    Science.gov (United States)

    Ciavola, Paolo; Garnier, Emmanuel; Ferreira, Oscar; Spencer, Thomas; Armaroli, Clara

    2017-04-01

    Severe storms have historically affected many European coastlines but the impact of each storm has been evaluated in different ways in different countries, often using local socio-economic impact criteria (e.g. loss of lives and damage to properties). Although the Xynthia (2010) storm, Atlantic coast of France, was the largest coastal disaster of the last 50 years, similar events have previously impacted Europe. The 1953 storm surge in the southern North Sea, resulted in over 2000 deaths and extensive flooding and was the catalyst for post WWII improvements in flood defences and storm early warning systems. On a longer timescale, the very extreme storm of 1634 AD re-configured Wadden Sea coastlines, accompanied by thousands of deaths. Establishing patterns of coastal risk and vulnerability is greatly helped by the use of historical sources, as these allow the development of more complete time series of storm events and their impacts. The work to be presented was supported by the EU RISC-KIT (Resilience-Increasing Strategies for Coasts - toolKIT) Project. RISC-KIT (http://www.risckit.eu/np4/home.html) is a EU FP7 Collaborative project that has developed methods, tools and management approaches to reduce risk and increase resilience to low frequency, high-impact hydro-meteorological events in the coastal zone. These products will enhance forecasting, prediction and early warning capabilities, improve the assessment of long-term coastal risk and optimize the mix of prevention, mitigation and preparedness measures. We analyse historical large-scale events occurred from The Middle Ages to the 1960s at the case study sites of North Norfolk Coast (UK), the Charente-Maritime and Vendée coast (France), the Cinque Terre-Liguria (Italy), the Emilia-Romagna coast (Italy), and the Ria Formosa coast (Portugal). The work presented here uses a database of events built by the project, examining records for the last 300 years, including the characteristics of the storms as well as

  13. Coastal Flooding Hazards due to storm surges and subsidence

    DEFF Research Database (Denmark)

    Sørensen, Carlo; Knudsen, Per; Andersen, Ole B.

    Flooding hazard and risk mapping are major topics in low-lying coastal areas before even considering the adverse effects of sea level rise (SLR) due to climate change. While permanent inundation may be a prevalent issue, more often floods related to extreme events (storm surges) have the largest...... damage potential.Challenges are amplified in some areas due to subsidence from natural and/or anthropogenic causes. Subsidence of even a few mm/y may over time greatly impair the safety against flooding of coastal communities and must be accounted for in order to accomplish the economically most viable...

  14. Coastal Hazards Maps: Actionable Information for Communities Facing Sea-Level Rise (Invited)

    Science.gov (United States)

    Gibeaut, J. C.; Barraza, E.

    2010-12-01

    Barrier islands along the U.S. Gulf coast remain under increasing pressure from development. This development and redevelopment is occurring despite recent hurricanes, ongoing erosion, and sea-level rise. To lessen the impacts of these hazards, local governments need information in a form that is useful for informing the public, making policy, and enforcing development rules. We recently completed the Galveston Island Geohazards Map for the city of Galveston, Texas and are currently developing maps for the Mustang and South Padre Island communities. The maps show areas that vary in their susceptibility to, and function for, mitigating the effects of geological processes, including sea-level rise, land subsidence, erosion and storm-surge flooding and washover. The current wetlands, beaches and dunes are mapped as having the highest geohazard potential both in terms of their exposure to hazardous conditions and their mitigating effects of those hazards for the rest of the island. These existing “critical environments” are generally protected under existing regulations. Importantly, however, the mapping recognizes that sea-level rise and shoreline retreat are changing the island; therefore, 60-year model projections of the effects of these changes are incorporated into the map. The areas that we project will become wetlands, beaches and dunes in the next 60 years are not protected. These areas are the most difficult to deal with from a policy point of view, yet we must address what happens there if real progress is to be made in how we live with sea-level rise. The geohazards maps draw on decades of geological knowledge of how barrier islands behave and put it in a form that is intuitive to the public and directly useful to planners. Some of the “messages” in the map include: leave salt marshes alone and give them room to migrate inland as sea level rises; set back and move development away from the shoreline to provide space for beaches and protective dunes

  15. Analysis of different atmospheric physical parameterizations in COAWST modeling system for the Tropical Storm Nock-ten application

    DEFF Research Database (Denmark)

    Ren, Danqin; Du, Jianting; Hua, Feng

    2016-01-01

    the storm center area. As a result, using Kain–Fritsch cumulus scheme, Goddard shortwave radiation scheme and RRTM longwave radiation scheme in WRF may lead to much larger wind intensity, significant wave height, current intensity, as well as lower SST and sea surface pressure. Thus......A coupled ocean–atmosphere–wave–sediment transport modeling system was applied to study the atmosphere and ocean dynamics during Tropical Storm Nock-ten. Different atmospheric physical parameterizations in WRF model were investigated through ten groups of numerical experiments. Results...... of atmosphere, ocean wave and current features were compared with storm observations, ERA-Interim data, NOAA sea surface temperature data, AVISO current data and HYCOM data, respectively. It was found that the storm track and intensity are sensitive to the cumulus and radiation schemes in WRF, especially around...

  16. The rise of sea level. To understand and to anticipate

    International Nuclear Information System (INIS)

    2013-03-01

    By proposing and briefly commenting graphs and drawings, this publication propose brief presentations of the main issues related to sea level rise: global warming and climate disturbance, description of the phenomenon of sea level rise (difference between sea ice and ground ice, melting of glaciers), increase of sea level rise during the twentieth century, territories at risk (examples of Greenland, Tuvalu, Shanghai), acceleration of ice melting during the twenty first century with many coastal areas at risk, already noticed and possible future impacts in France (glaciers runoff, threatened coasts, example of the Xynthia tempest), how to be united and to anticipate (a threat for millions of people, adaptation to sea level rise, limitation of global warming to limit sea level rise)

  17. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    Science.gov (United States)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as

  18. The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world

    NARCIS (Netherlands)

    Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T; Stocchi, P.; Gómez-Pujolf, L.; Harris, D.L.; Casella, E.; O'Leary, M.J.; Hearty, P.J.

    2016-01-01

    The Last Interglacial (MIS 5e, 128–116 ka) is among the most studied past periods in Earth's history. The climate at that time was warmer than today, primarily due to different orbital conditions, with smaller ice sheets and higher sea-level. Field evidence for MIS 5e sea-level was reported from

  19. Simulating storm surge inundation and damage potential within complex port facilities

    Science.gov (United States)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  20. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    Science.gov (United States)

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  1. Sele coastal plain flood risk due to wave storm and river flow interaction

    Science.gov (United States)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  2. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Science.gov (United States)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  3. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    Directory of Open Access Journals (Sweden)

    J. P. Lapidez

    2015-07-01

    Full Text Available Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH which is the flagship disaster mitigation program of the Department of Science and Technology (DOST of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948–2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  4. Predicting the Extent of Inundation due to Sea-Level Rise: Al Hamra Development, Ras Al Khaimah, UAE. A Pilot Project

    Directory of Open Access Journals (Sweden)

    Arthur Robert M.

    2016-06-01

    Full Text Available As new information is received, predictions of sea-level rise resulting from global warming continue to be revised upwards. Measurements indicate that the rise in sea-level is continuing at, or close to, the worst case forecasts (Kellet et al. 2014. Coastal areas are coming under increasing risk of inundation and flooding as storms are predicted to increase in frequency and severity, adding to the risk of inundation due to higher sea levels. Stakeholders, government agencies, developers and land owners require accurate, up to date information to be able to protect coastal areas. Geographic Information Systems (GIS along with accurate remote sensing technologies such as LiDAR provides the best means for delivering this information. Using these technologies, this paper predicts the risk posed to a large multi-use development in the emirate of Ras Al Khaimah, UAE. This development, Al Hamra Village, is situated on the coast of the Arabian Gulf. Al Hamra’s physical relationship to the Gulf is in common with other developments in Ras Al Khaimah in its and for this reason has been used as a pilot project. The resulting GIS model shows that Al Hamra is indeed at risk from predicted flood events. How this information can be used as a planning tool for numerous strategies is discussed in this paper.

  5. Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.

    Science.gov (United States)

    Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo

    2016-12-08

    The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.

  6. Separating decadal global water cycle variability from sea level rise.

    Science.gov (United States)

    Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R

    2017-04-20

    Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.

  7. Timescales for detecting a significant acceleration in sea level rise.

    Science.gov (United States)

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-04-14

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  8. Sea level: measuring the bounding surfaces of the ocean.

    Science.gov (United States)

    Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M

    2014-09-28

    The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Storm Damage Reduction Project Design for Wallops Island, Virginia, Version 1.01

    Science.gov (United States)

    2011-10-01

    photograph. Figure 2-4 shows the erosion and storm damage to the Wallops Island Association Clubhouse at the north end of the island in May 1949. Figure 2...uncertainty in what future rates will be. By the Bruun rule (Bruun 1962), small changes in sea level can be expected to have dramatic effects on shoreline...known. What is clear is that the north end of Wallops Island is accreting. Therefore, more sand is being delivered to this area than is leaving. 9.2

  10. Generalized Cauchy model of sea level fluctuations with long-range dependence

    Science.gov (United States)

    Li, Ming; Li, Jia-Yue

    2017-10-01

    This article suggests the contributions with two highlights. One is to propose a novel model of sea level fluctuations (sea level for short), which is called the generalized Cauchy (GC) process. It provides a new outlook for the description of local and global behaviors of sea level from a view of fractal in that the fractal dimension D that measures the local behavior of sea level and the Hurst parameter H which characterizes the global behavior of sea level are independent of each other. The other is to show that sea level appears multi-fractal in both spatial and time. Such a meaning of multi-fractal is new in the sense that a pair of fractal parameters (D, H) of sea level is varying with measurement sites and time. This research exhibits that the ranges of D and H of sea level, in general, are 1 ≤ D sea level, we shall show that H > 0 . 96 for all data records at all measurement sites, implying that strong LRD may be a general phenomenon of sea level. On the other side, regarding with the local behavior, we will reveal that there appears D = 1 or D ≈ 1 for data records at a few stations and at some time, but D > 0 . 96 at most stations and at most time, meaning that sea level may appear highly local irregularity more frequently than weak local one.

  11. Global mapping of nonseismic sea level oscillations at tsunami timescales.

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka

    2017-01-18

    Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at tsunami timescales over limited regions, may also locally dominate sea level extremes. Here, we show that nonseismic sea level oscillations at tsunami timescales (sea level extremes, up to 50% in low-tidal basins. The intensity of these oscillations is zonally correlated with mid-tropospheric winds at the 99% significance level, with the variance doubling from the tropics and subtropics to the mid-latitudes. Specific atmospheric patterns are found during strong events at selected locations in the World Ocean, indicating a globally predominant generation mechanism. Our analysis suggests that these oscillations should be considered in sea level hazard assessment studies. Establishing a strong correlation between nonseismic sea level oscillations at tsunami timescales and atmospheric synoptic patterns would allow for forecasting of nonseismic sea level oscillations for operational use, as well as hindcasting and projection of their effects under past, present and future climates.

  12. Analyzing extreme sea levels for broad-scale impact and adaptation studies

    Science.gov (United States)

    Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.

    2017-12-01

    Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels (ESL), because increasing damage due to extreme events is one of the major consequences of sea-level rise (SLR) and climate change. Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future SLR; different scenarios were developed with process-based or semi-empirical models and used for coastal impact studies at various temporal and spatial scales to guide coastal management and adaptation efforts. Uncertainties in future SLR are typically accounted for by analyzing the impacts associated with a range of scenarios and model ensembles. ESL distributions are then displaced vertically according to the SLR scenarios under the inherent assumption that we have perfect knowledge on the statistics of extremes. However, there is still a limited understanding of present-day ESL which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of storm surge water levels, and (2) statistical models used for determining present-day ESL exceedance probabilities. There is no universally accepted approach to obtain such values for broad-scale flood risk assessments and while substantial research has explored SLR uncertainties, we quantify, for the first time globally, key uncertainties in ESL estimates. We find that contemporary ESL uncertainties exceed those from SLR projections and, assuming that we meet the Paris agreement, the projected SLR itself by the end of the century. Our results highlight the necessity to further improve our understanding of uncertainties in ESL estimates through (1) continued improvement of numerical and statistical models to simulate and analyze coastal water levels and (2) exploit the rich observational database and continue data archeology to obtain longer time series and remove model bias

  13. Radioactivity levels in some sediment samples from Red Sea and Baltic Sea

    International Nuclear Information System (INIS)

    Salahel Din, K.; Vesterbacka, P.

    2012-01-01

    Levels of 226, 228 Ra, 232 Th, 210 Pb, 210 Po and 40 K in sediments from four monitoring areas, El Hamraween and Ras El Behar (Red Sea (Egypt)) and LL3A and JML (Baltic Sea (Finland)), have been investigated using alpha and gamma spectrometry. The average activity concentrations were 238±4 Bq kg -1 ( 226 Ra), 215±11 Bq kg -1 ( 210 Pb) and 311±18 Bq kg -1 ( 210 Po) for El Hamraween area. In Ras El Behar area, the corresponding values were 16±0.4, 18±1 and 20±5 Bq kg -1 , respectively. The activity concentrations for 226 Ra, 210 Pb and 210 Po (uranium series) in El Hamraween bottom sediment are much high compared with those in Ras El Behar area, which indicates the enhanced levels due to the activities of phosphate mining and shipment operations in El Hamraween area. Excluding the influence of phosphate mining activities, it can be concluded that the levels of radioactivity in Baltic Sea sediments are higher than those in Red Sea sediments. (authors)

  14. Millennial, centennial and decadal sea- level change in Florida, USA

    Science.gov (United States)

    Kemp, A.; Hawkes, A. D.; Donnelly, J. P.; Horton, B. P.

    2012-12-01

    Reconstructions of relative sea-level changes on millennial timescales provide data against which to test and calibrate Earth-Ice models. On the U.S. mid-Atlantic coast they constrain the geometry of the Laurentide Ice Sheet's collapsing forebulge. Sea -level data from southeastern Atlantic coast additionally constrain ice-equivalent meltwater input. Here we produce the first Holocene sea-level curve for Florida and Georgia from the St. Mary's River using agglutinated foraminifera preserved in radiocarbon-dated brackish and salt-marsh sediment. The use of foraminfera as sea-level indicators was underpinned by local and regional datasets describing the modern distribution of assemblages that are analogues for those preserved in buried sediment. This approach produced 25 index points that record 5.2 m of relative sea level rise over the last 8000 years with no evidence of a mid Holocene high stand. These reconstructions indicate that existing GIA models do not replicate proxy reconstructions and that northern Florida is subsiding in response to ongoing forebulge collapse at an estimated rate of approximately 0.3 mm/yr. Over multi decadal time scales, detailed sea level reconstructions provide an appropriate geological context for modern rates of sea-level rise. Reconstructions spanning the last 2000 years of known climate variability are important for developing models with predictive capacity that link climate and sea level changes. A reconstruction of sea-level changes since 2000 years BP was developed using a core of brackish marsh sediment from the Nassau River in Florida. Foraminifera estimated the elevation of former sea level with an uncertainty of ± 10 cm. Consistent downcore assemblages indicate that the marsh maintained its tidal elevation for 2000 years. An age depth model was developed for the core results from radiocarbon dating, 210Pb and 137Cs. The resulting relative sea level record was adjusted for the contribution made by glacio

  15. Holocene sea-level changes in the Falkland Islands

    Science.gov (United States)

    Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike

    2014-05-01

    In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above

  16. Lessons derived from two high-frequency sea level events in the Atlantic: implications for coastal risk analysis and tsunami detection

    Directory of Open Access Journals (Sweden)

    Begoña Pérez-Gómez

    2016-11-01

    Full Text Available The upgrade and enhancement of sea level networks worldwide for integration in sea level hazard warning systems have significantly increased the possibilities for measuring and analyzing high frequency sea level oscillations, with typical periods ranging from a few minutes to a few hours. Many tide gauges now afford 1 min or more frequent sampling and have shown such events to be a common occurrence. Their origins and spatial distribution are diverse and must be well understood in order to correctly design and interpret, for example, the automatic detection algorithms used by tsunami warning centers. Two events recorded recently in European Atlantic waters are analyzed here: possible wave-induced seiches that occurred along the North coast of Spain during the storms of January and February of 2014, and oscillations detected after an earthquake in the mid-Atlantic the 13th of February of 2015. The former caused significant flooding in towns and villages and a huge increase in wave-induced coastal damage that was reported in the media for weeks. The second was a smaller signal present in several tide gauges along the Atlantic coast that, that coincided with the occurrence of this earthquake, leading to a debate on the potential detection of a very small tsunami and how it might yield significant information for tsunami wave modelers and for the development of tsunami detection software. These kinds of events inform us about the limitations of automatic algorithms for tsunami warning and help to improve the information provided to tsunami warning centers, whilst also emphasizing the importance of other forcings in generating extreme sea levels and their associated potential for causing damage to infrastructure.

  17. Typhoon Haiyan-Induced Storm Surge Simulation in Metro Manila Using High-Resolution LiDAR Topographic Data

    Science.gov (United States)

    Santiago, J. T.

    2015-12-01

    Storm surge is the abnormal rise in sea water over and above astronomical tides due to a forthcoming storm. Developing an early warning system for storm surges is vital due to the high level of hazard they might cause. On 08 November 2013, Typhoon Haiyan generated storm surges that killed over 6,000 people in the central part of the Philippines. The Nationwide Operational Assessment of Hazards under the Department of Science and Technology was tasked to create storm surge hazard maps for the country's coastal areas. The research project aims to generate storm surge hazard maps that can be used for disaster mitigation and planning. As part of the research, the team explored a scenario wherein a tropical cyclone hits the Metro Manila with strength as strong as Typhoon Haiyan. The area was chosen primarily for its political, economic and cultural significance as the country's capital. Using Japan Meteorological Agency Storm Surge model, FLO2D flooding software, LiDAR topographic data, and GIS technology, the effects of a Haiyan-induced tropical cyclone passing through Metro Manila was examined. The population affected, number of affected critical facilities, and potential evacuation sites were identified. The outputs of this study can be used by the authorities as basis for policies that involve disaster risk reduction and management.

  18. Comparison of two recent storm surge events based on results of field surveys

    Science.gov (United States)

    Nakamura, Ryota; Shibayama, Tomoya; Mikami, Takahito; Esteban, Miguel; Takagi, Hiroshi; Maell, Martin; Iwamoto, Takumu

    2017-10-01

    This paper compares two different types of storm surge disaster based on field surveys. Two cases: a severe storm surge flood with its height of over 5 m due to Typhoon Haiyan (2013) in Philippine, and inundation of storm surge around Nemuro city in Hokkaido of Japan with its maximum surge height of 2.8 m caused by extra-tropical cyclone are taken as examples. For the case of the Typhoon Haiyan, buildings located in coastal region were severely affected due to a rapidly increase in ocean surface. The non-engineering buildings were partially or completely destroyed due to their debris transported to an inner bay region. In fact, several previous reports indicated two unique features, bore-like wave and remarkably high speed currents. These characteristics of the storm surge may contribute to a wide-spread corruption for the buildings around the affected region. Furthermore, in the region where the surge height was nearly 3 m, the wooden houses were completely or partially destroyed. On the other hand, in Nemuro city, a degree of suffering in human and facility caused by the storm surge is minor. There was almost no partially destroyed residential houses even though the height of storm surge reached nearly 2.8 m. An observation in the tide station in Nemuro indicated that this was a usual type of storm surge, which showed a gradual increase of sea level height in several hours without possessing the unique characteristics like Typhoon Haiyan. As a result, not only the height of storm surge but also the robustness of the buildings and characteristics of storm surge, such as bore like wave and strong currents, determined the existent of devastation in coastal regions.

  19. Projecting twenty-first century regional sea-level changes

    NARCIS (Netherlands)

    Slangen, A.B.A.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D.

    2014-01-01

    We present regional sea-level projections and associated uncertainty estimates for the end of the 21 (st) century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined

  20. A numerical storm surge forecast model with Kalman filter

    Institute of Scientific and Technical Information of China (English)

    Yu Fujiang; Zhang Zhanhai; Lin Yihua

    2001-01-01

    Kalman filter data assimilation technique is incorporated into a standard two-dimensional linear storm surge model. Imperfect model equation and imperfect meteorological forcimg are accounted for by adding noise terms to the momentum equations. The deterministic model output is corrected by using the available tidal gauge station data. The stationary Kalman filter algorithm for the model domain is calculated by an iterative procedure using specified information on the inaccuracies in the momentum equations and specified error information for the observations. An application to a real storm surge that occurred in the summer of 1956 in the East China Sea is performed by means of this data assimilation technique. The result shows that Kalman filter is useful for storm surge forecast and hindcast.

  1. Modelling regional sea-level changes in recent past and future

    NARCIS (Netherlands)

    Slangen, A.B.A.

    2012-01-01

    Sea-level change is one of the most important consequences of a warming climate, affecting many densely populated coastal communities. To improve coastal management and the planning of flood defences, information on the future development of sea-level rise is needed. However, sea-level rise is not

  2. Holocene sea-level fluctuation in the southern hemisphere

    Science.gov (United States)

    Isla, Federico Ignacio

    If rising sea levels dominate in the northern hemisphere (NH), falling or fluctuating sea levels predominate in the southern hemisphere (SH). Endogenic processes (tectonics, isostasy or geoidal changes) could explain local or regional mean sea level (MSL) fluctuations but not an hemispherical one. Evidence from South America, Africa, Antarctica, Australia and the Pacific and Indian Oceans suggest that the Holocene transgression rose above the present MSL, in higher latitudes before the tropics. By plotting latitude against the age of MSL arrival at present coasts, good correlation is observed. Oceanic salinity mixing has been already proposed to explain this mid-Holocene sea-level fluctuation. Climate could be the only factor responsible for this hemisphere-wide behavior of MSL. It has been suggested previously that the climate of the SH precedes that of the NH by 3000 years. The climatic optimum, or maximum warmth, occurred predominantly about 6000 BP in the NH, but about 10-9000 BP in the SH. Short-term climatic effects on the sea level (monsoons, southern oscillation/El Niño phenomena) should have significant occurrences during the past in the windiest oceanic hemisphere. This latitudinal trend in former MSL should be considered when using shorelines as reference points for measuring vertical crustal movements.

  3. Amplification of flood frequencies with local sea level rise and emerging flood regimes

    Science.gov (United States)

    Buchanan, Maya K.; Oppenheimer, Michael; Kopp, Robert E.

    2017-06-01

    The amplification of flood frequencies by sea level rise (SLR) is expected to become one of the most economically damaging impacts of climate change for many coastal locations. Understanding the magnitude and pattern by which the frequency of current flood levels increase is important for developing more resilient coastal settlements, particularly since flood risk management (e.g. infrastructure, insurance, communications) is often tied to estimates of flood return periods. The Intergovernmental Panel on Climate Change’s Fifth Assessment Report characterized the multiplication factor by which the frequency of flooding of a given height increases (referred to here as an amplification factor; AF). However, this characterization neither rigorously considered uncertainty in SLR nor distinguished between the amplification of different flooding levels (such as the 10% versus 0.2% annual chance floods); therefore, it may be seriously misleading. Because both historical flood frequency and projected SLR are uncertain, we combine joint probability distributions of the two to calculate AFs and their uncertainties over time. Under probabilistic relative sea level projections, while maintaining storm frequency fixed, we estimate a median 40-fold increase (ranging from 1- to 1314-fold) in the expected annual number of local 100-year floods for tide-gauge locations along the contiguous US coastline by 2050. While some places can expect disproportionate amplification of higher frequency events and thus primarily a greater number of historically precedented floods, others face amplification of lower frequency events and thus a particularly fast growing risk of historically unprecedented flooding. For example, with 50 cm of SLR, the 10%, 1%, and 0.2% annual chance floods are expected respectively to recur 108, 335, and 814 times as often in Seattle, but 148, 16, and 4 times as often in Charleston, SC.

  4. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-12-01

    Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.

  5. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    Science.gov (United States)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  6. Effects of sea level rise on the formation and drowning of shoreface-connected sand ridges, a model study

    NARCIS (Netherlands)

    Nnafie, A.|info:eu-repo/dai/nl/37551127X; de Swart, Huib|info:eu-repo/dai/nl/073449725; Calvete, D.|info:eu-repo/dai/nl/304846317; Garnier, R.

    2014-01-01

    Shoreface-connected sand ridges occur on many storm-dominated inner shelves. These rhythmic features have an along-shelf spacing of 2-10. km, a height of 1-12. m, they evolve on timescales of centuries and they migrate several meters per year. An idealized model is used to study the impact of sea

  7. Model simulation of storm surge potential for Andaman islands

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, V.S.; RameshBabu, V.; Babu, M.T.; Dhinakaran, G.; Rajamanickam, G.V.

    Hydraulics and Oceanography, the Hydrodynamics Module Reference Manual. DHI Water and Environment, Horsholm, Denmark, 58 p. Dube, S.K., Sinha, P C , Rao, A.D., and Rao, G.S., 1985. Numerical modeling of storm surges in the Arabian Sea, Appl. Math Modelling, 9...

  8. Course of sea-level change

    Science.gov (United States)

    Carlowicz, Michael

    This summer, the Environment and Climate Program of the European Union will offer an advanced study course on “sea-level changes on micro to macro timescales: measurements, modeling, interpretation, and application.” The short course will be taught from July 1-12 at the Aesclepon Conference Center on the island of Kos, Greece.The interdisciplinary course is designed to bring together at least 40 students from different disciplines in an attempt to share and disseminate fundamental ideas about sea level change, focusing particularly on changes influenced by anthropogenic factors. Participants will be selected by a scientific panel; the European Union will conduct the course free of charge and will provide free lodging. Students must pay for their own travel expenses and food.

  9. Natural and Human-Induced Variability in Barrier-Island Response to Sea Level Rise

    Science.gov (United States)

    Miselis, Jennifer L.; Lorenzo-Trueba, Jorge

    2017-12-01

    Storm-driven sediment fluxes onto and behind barrier islands help coastal barrier systems keep pace with sea level rise (SLR). Understanding what controls cross-shore sediment flux magnitudes is critical for making accurate forecasts of barrier response to increased SLR rates. Here, using an existing morphodynamic model for barrier island evolution, observations are used to constrain model parameters and explore potential variability in future barrier behavior. Using modeled drowning outcomes as a proxy for vulnerability to SLR, 0%, 28%, and 100% of the barrier is vulnerable to SLR rates of 4, 7, and 10 mm/yr, respectively. When only overwash fluxes are increased in the model, drowning vulnerability increases for the same rates of SLR, suggesting that future increases in storminess may increase island vulnerability particularly where sediment resources are limited. Developed sites are more vulnerable to SLR, indicating that anthropogenic changes to overwash fluxes and estuary depths could profoundly affect future barrier response to SLR.

  10. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    Science.gov (United States)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  11. Chronology of Fluctuating Sea Levels since the Triassic

    Science.gov (United States)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  12. Mechanisms of long-term mean sea level variability in the North Sea

    Science.gov (United States)

    Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen

    2015-04-01

    We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.

  13. Past sea level changes along the western continental margins of India: Evidences from morphology of the sea bed

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.

    -wide have been affected to a considerable extent by Pleistocene glaciations (Emery, 1968). The rate of sea-level rise has varied frequently and the sea-level still stands produced wave-cut terraces and platforms. In other words, the surface of a terrace... Merh (1992) while reviewing Quaternary sea level changes along India’s coasts observed that the Last Glacial Stage was a period of regression when the sea level went down to almost -150 m. With the advent of the Holocene, the sea started rising...

  14. Flooded! An Investigation of Sea-Level Rise in a Changing Climate

    Science.gov (United States)

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…

  15. Probabilistic 21st and 22nd Century Sea-Level Projections at a Global Network of Tide-Gauge Sites

    Science.gov (United States)

    Kopp, Robert E.; Horton, Radley M.; Little, Christopher M.; Mitrovica, Jerry X.; Oppenheimer, Michael; Rasmussen, D. J.; Strauss, Benjamin H.; Tebaldi, Claudia

    2014-01-01

    Sea-level rise due to both climate change and non-climatic factors threatens coastal settlements, infrastructure, and ecosystems. Projections of mean global sea-level (GSL) rise provide insufficient information to plan adaptive responses; local decisions require local projections that accommodate different risk tolerances and time frames and that can be linked to storm surge projections. Here we present a global set of local sea-level (LSL) projections to inform decisions on timescales ranging from the coming decades through the 22nd century. We provide complete probability distributions, informed by a combination of expert community assessment, expert elicitation, and process modeling. Between the years 2000 and 2100, we project a very likely (90% probability) GSL rise of 0.5–1.2?m under representative concentration pathway (RCP) 8.5, 0.4–0.9?m under RCP 4.5, and 0.3–0.8?m under RCP 2.6. Site-to-site differences in LSL projections are due to varying non-climatic background uplift or subsidence, oceanographic effects, and spatially variable responses of the geoid and the lithosphere to shrinking land ice. The Antarctic ice sheet (AIS) constitutes a growing share of variance in GSL and LSL projections. In the global average and at many locations, it is the dominant source of variance in late 21st century projections, though at some sites oceanographic processes contribute the largest share throughout the century. LSL rise dramatically reshapes flood risk, greatly increasing the expected number of “1-in-10” and “1-in-100” year events.

  16. Sea-level trend in the South China Sea observed from 20 years of along-track satellite altimetric data

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Xu, Qing; Andersen, Ole Baltazar

    2014-01-01

    The sea-level trend in the South China Sea (SCS) is investigated based on 20 years of along-track data from TOPEX and Jason-1/2 satellite altimetry. The average sea-level rise over all the regions in the study area is observed to have a rate of 5.1 ± 0.8 mm year-1 for the period from 1993 to 2012....... The steric sea level contributes 45% to the observed sea-level trend. These results are consistent with previous studies. In addition, the results demonstrate that the maximum sea-level rise rate of 8.4 mm year-1 is occurring off the east coast of Vietnam and eastern part of SCS. During 2010-2011, the La...... Niña event was highly correlated with the dramatic sea-level rise in the SCS; La Niña events were also associated with the maximum rate of sea rise off the east coast of Vietnam, which occurred during 1993 and 2012. We also evaluated the trends in the geophysical (e.g. dynamical atmospheric correction...

  17. Revisiting global mean sea level budget closure : Preliminary results from an integrative study within ESA's Climate Change Initiative -Sea level Budget Closure-Climate Change Initiative

    Science.gov (United States)

    Palanisamy, H.; Cazenave, A. A.

    2017-12-01

    The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan

  18. Sea level and turbidity controls on mangrove soil surface elevation change

    Science.gov (United States)

    Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.

    2015-01-01

    Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.

  19. The anticipated spatial loss of microtidal beaches in the next 100 years due to sea level rise.

    Science.gov (United States)

    Alexandrakis, G.; Poulos, S.

    2012-04-01

    The anticipated sea level rise is expected to influence on a global scale the earth coast in the near future and it is considered to be a main factor related to coastal retreat, with beach zones being among the most vulnerable coastal landforms. Records for the period 1890-1990 have shown that sea level has already risen by 18cm (min: +10cm, max: +25cm), while the projected to 2100 sea level rise has estimated to be 20 to 50cm (IPCC, 2007). It has to be highlighted that a small rise of few tens of meters would cause shoreline retreat of a few to tens meters in the case of low lying coasts, i.e. beach zones (e.g. Bruun 1962, Nichol and Letherman, 1995, Ciavola and Corbau, 2002). Within the concept of climate change, sea level rise could also being related, in regional scale, to changes of meteorological factors such as intensity, duration and direction of the onshore blowing winds, variation in atmospheric pressure. In the microtidal Greek waters temporary changes in sea level exceeds the 1 m (HHS, 2004) This work investigates the impact of sea level rise to sixteen beach zones along the Greek coast. More specifically, shoreline retreat has been estimated for time periods of 10, 20, 50 and 100 years for the corresponding sea level rise of 0,038, 0,076m, 0,19m and 0,38m, according to the A1B scenario of IPCC (2007) and utilizing Dean's (1991) equation; the latter includes in the calculations both the effects of the anticipated sea level rise and the associated storm surge The appropriate morphodynamic and sedimentological data used for the estimation of beach retreat has been deduced from field measurements. Finally, the percentage of the sub-aerial area lost for each beach zone, under investigation, has been estimated. The results show that coastline retreat follows a liner increase in the case of eleven out of the 16 beach zones, for a time period of 100 years. Santava beach zone (inner Messiniakos Gulf) undergoes most of erosion in the first period of 20 years

  20. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  1. 60-year Nordic and arctic sea level reconstruction based on a reprocessed two decade altimetric sea level record and tide gauges

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Due to the sparsity and often poor quality of data, reconstructing Arctic sea level is highly challenging. We present a reconstruction of Arctic sea level covering 1950 to 2010, using the approaches from Church et al. (2004) and Ray and Douglas (2011). This involves decomposition of an altimetry...

  2. Sea Legs

    Science.gov (United States)

    Macdonald, Kenneth C.

    Forty-foot, storm-swept seas, Spitzbergen polar bears roaming vast expanses of Arctic ice, furtive exchanges of forbidden manuscripts in Cold War Moscow, the New York city fashion scene, diving in mini-subs to the sea floor hot srings, life with the astronauts, romance and heartbreak, and invading the last bastions of male exclusivity: all are present in this fast-moving, non-fiction account of one woman' fascinating adventures in the world of marine geology and oceanography.

  3. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  4. Sea level change along the Black Sea coast from satellite altimetry, tide gauge and GPS observations

    Directory of Open Access Journals (Sweden)

    Nevin B. Avsar

    2016-01-01

    Full Text Available Sea level change affects human living conditions, particularly ocean coasts. However, sea level change is still unclear along the Black Sea coast due to lack of in-situ measurements and low resolution satellite data. In this paper, sea level change along the Black Sea coast is investigated from joint satellite altimetry, tide gauge (TG and Global Positioning System (GPS observations. The linear trend and seasonal components of sea level change are estimated at 8 TG stations (Amasra, Igneada, Trabzon-II, Sinop, Sile, Poti, Tuapse, and Batumi located along the Black Sea coast, which are compared with Satellite Altimetry and GPS. At the tide gauge stations with long-term records such as Poti (about 21 years and Tuapse (about 19 years, the results obtained from the satellite altimetry and tide gauge observations show a remarkably good agreement. While some big differences are existed between Satellite Altimetry and TG at other stations, after adding vertical motion from GPS, correlation coefficients of the trend have been greatly improved from 0.37 to 0.99 at 3 co-located GPS and TG stations (Trabzon-II, Sinop and Sile.

  5. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  6. What caused the rise of water level in the battle of Luermen bay in 1661? Tsunami, Storm surge, or Tide?

    Science.gov (United States)

    Wu, Tso-Ren; Wu, Han; Tsai, Yu-Lin

    2016-04-01

    In 1661, Chinese navy led by General Zheng Chenggong at the end of Ming Dynasty had a naval battle against Netherlands. This battle was not only the first official sea warfare that China confronted the Western world, but also the only naval battle won by Chinese Navy so far. This event was important because it changed the fate of Taiwan until today. One of the critical points that General Zheng won the battle was entering Luermen bay unexpected. Luermen bay was and is an extreme shallow bay with a 2.1m maximum water depth during the high tide, which was not possible for a fleet of 20,000 marines to across. Therefore, no defense was deployed from the Netherlands side. However, plenty of historical literatures mentioned a strange phenomenon that helped Chinese warships entered the Luermen bay, the rise of water level. In this study, we will discuss the possible causes that might rise the water level, e.g. Tsunami, storm surge, and high tide. We analyzed it based on the knowledge of hydrodynamics. We performed the newly developed Impact Intensify Analysis (IIA) for finding the potential tsunami sources, and the COMCOT tsunami model was adopted for the nonlinear scenario simulations, associated with the high resolution bathymetry data. Both earthquake and mudslide tsunamis were inspected. Other than that, we also collected the information of tide and weather for identifying the effects form high tide and storm surge. After the thorough study, a scenario that satisfy most of the descriptions in the historical literatures will be presented. The results will explain the cause of mysterious event that changed the destiny of Taiwan.

  7. Advancing Sentinel-1 use in Coastal Climate Impact Assessments and Adaptation – A Case Study from the Danish North Sea

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Marinkovic, Petar; Larsen, Yngvar

    Low-lying coastal communities face increasing challenges from rise in sea level, more extreme storm surge levels and floods. In addition, changing groundwater levels and precipitation patterns may further exacerbate the water-related impacts of climate change on society. Approximately 40,000 km2 ...

  8. Tracking multidecadal trends in sea level using coral microatolls

    Science.gov (United States)

    Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David

    2015-04-01

    Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated

  9. Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion

    Directory of Open Access Journals (Sweden)

    Cláudia Klose Parise

    2009-09-01

    Full Text Available The region under study is regularly subject to the occurrence of storms associated with frontal systems and extratropical cyclones, since it is located near one of the cyclogenetic regions in South America. These storms can generate storm surges that cause anomalous high sea level rises on Cassino Beach. The use of reanalysis data along with an efficient technique for the location of the cyclone, using a vorticity threshold, has provided a new classification based upon the trajectories of events that produce positive sea level variation. Three patterns have been identified: 1 Cyclogenesis to the south of Argentina with displacement to the east and a trajectory between 47.5ºS and 57.5ºS; 2 Cyclogenesis to the south of Uruguay with displacement to the east and a trajectory between 35ºS and 42.5ºS; and 3 Cyclogenesis to the south of Uruguay with displacement to the southeast and a trajectory between 35ºS and 57.5ºS. Maximum water level elevation above the mean sea level and beach erosion were associated, respectively, with winter and summer storms. Cassino beach displayed a seasonal morphological behavior, with short periods of episodic erosion associated with winter storm events followed by long periods of accretion characterized by the dominance of fair weather conditions.Marés meteorológicas que geram sobre-elevações do nível do mar são freqüentes na costa do Rio Grande do Sul e respondem às variações ocorridas na atmosfera. Torna-se importante, dessa maneira, definir padrões meteorológicos sinóticos responsáveis por gerar eventos de marés meteorológicas intensas na Praia do Cassino como objetivo desse trabalho. O uso de dados de reanálise associados a uma técnica eficiente de localização do ciclone, aplicando o conceito de vorticidade, permitiu definir uma nova classificação com base na trajetória de ciclones extratropicais responsáveis pela subida do nível do mar. Três padrões de trajetórias foram

  10. Future sea level rise constrained by observations and long-term commitment

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-01-01

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648

  11. Future sea level rise constrained by observations and long-term commitment.

    Science.gov (United States)

    Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda

    2016-03-08

    Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.

  12. Sea-level rise caused by climate change and its implications for society

    Science.gov (United States)

    MIMURA, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609

  13. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    Science.gov (United States)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be

  14. ENSO-induced inter-annual sea level variability in the Singapore strait

    Digital Repository Service at National Institute of Oceanography (India)

    Soumya, M.; Vethamony, P.; Tkalich, P.

    Sea level data from four tide gauge stations in the SS (Tanjong Pagar, Sultan Shoal, Sembawang and Raffles Lighthouse) for the period 1970-2012 were extracted to study the ENSO-induced interannual sea level variability Sea level during this period...

  15. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    Science.gov (United States)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  16. Late mid-Holocene sea-level oscillation: A possible cause

    Science.gov (United States)

    Scott, D. B.; Collins, E. S.

    Sea level oscillated between 5500 and 3500 years ago at Murrells Inlet, South Carolina, Chezzetcook and Baie Verte, Nova Scotia and Montmagny, Quebec. The oscillation is well constrained by foraminiferal marsh zonations in three locations and by diatoms in the fourth one. The implications are: (1) there was a eustatic sea-level oscillation of about 2-10 m in the late mid-Holocene on the southeast coast of North America (South Carolina to Quebec) that is not predicted by present geophysical models of relative sea-level change; (2) this oscillation coincides with oceanographic cooling on the east coast of Canada that we associate with melting ice; and (3) this sea- level oscillation/climatic event coincides exactly with the end of pyramid building in Egypt which is suggested to have resulted from a climate change (i.e. drought, cooling). This sea-level/climatic change is a prime example of feedback where climatic warming in the mid-Holocene promoted ice melt in the Arctic which subsequently caused climatic cooling by opening up Arctic channels releasing cold water into the Inner Labrador Current that continued to intensify until 4000 years ago. This sea-level event may also be the best way of measuring when the final ice melted since most estimates of the ages of the last melting are based on end moraine dates in the Arctic which may not coincide with when the last ice actually melted out, since there is no way of dating the final ice positions.

  17. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    Science.gov (United States)

    Luu, Q.; Tkalich, P.

    2013-12-01

    The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient

  18. Recent Arctic sea level variations from satellites

    OpenAIRE

    Ole Baltazar Andersen; Gaia ePiccioni

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher...

  19. Late Quaternary sea level and environmental changes from relic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Late Quaternary sea level; western margin of India; subsidence; uplift; depositional environment. ...... sea level rise by about 80m (between 12,000 and. 7,000 yr BP) or, .... from the Florida Keys; Palaentology 28 189–206. Carballo ...

  20. Sea-level changes on multiple spatial scales: estimates and contributing processes

    NARCIS (Netherlands)

    Frederikse, T.

    2018-01-01

    Being one of the major consequences of anthropogenic climate change, sea level rise forms a threat for many coastal areas and their inhabitants. Because all processes that cause sea-level changes have a spatially-varying fingerprint, local sea-level changes deviate substantially from the global

  1. Human Impacts On The Bengal Delta's Response To Rapid Climate And Sea-Level Changes: Who Threatens Whom? (Invited)

    Science.gov (United States)

    Goodbred, S. L.

    2009-12-01

    The densely populated country of Bangladesh is often cited as being severely threatened by predicted changes in climate and accelerated sea-level rise. Justification for this grave assessment is founded in part on the low-lying nation's frequent inundation by river floods and storm surges, which affect millions of people annually. Indeed, nearly 50% of the delta system lies natural environment it speaks more to a healthful future than decline. Here I present field-based observations of sediment dispersal in the modern Bengal delta, which demonstrate how the system may remain relatively stable over the next century. However, this potentially acceptable outcome becomes increasingly unlikely if human interferences are considered. For example, short-term strategies to mitigate flooding would likely involve artificial leveeing of the river and the diking of coastal lowlands, both of which would limit sedimentation and diminish relative elevation of the delta surface. Threats upstream of the delta also include river damming to address demands for hydroelectric power and water resources in India, with a resulting decline in sediment discharge to the coast. Ultimately, it may be the impacts of such direct human-modification to the Bengal delta and river systems that outpace - in time and severity - those resulting from climate and sea-level changes alone.

  2. Sea-Level Rise and Flood Potential along the California Coast

    Science.gov (United States)

    Delepine, Q.; Leung, C.

    2013-12-01

    Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future

  3. Sea-level rise caused by climate change and its implications for society.

    Science.gov (United States)

    Mimura, Nobuo

    2013-01-01

    Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).

  4. Long-term variability of extreme waves in the Caspian, Black, Azov and Baltic Seas

    Science.gov (United States)

    Arkhipkin, Victor; Dobroliubov, Sergey

    2013-04-01

    In order to study extreme storm waves in the Caspian, Black, Azov and Baltic Sea we used the spectral wave model SWAN. Significant wave height, swell and sea height, direction of propagation, their length and period were calculated with the NCEP/NCAR (1,9°x1,9°, 4-daily) reanalysis wind forcing from 1948 to 2010 in the Caspian, Black and Baltic Seas and with the NCEP/CFSR (0,3°x0,3°, 1 hour) for the period from 1979 to 2010 in the Azov Sea. The calculations were performed on supercomputers of Lomonosov Moscow State University (MSU). The spatial resolution of the numerical grid was of order 5 km for the Caspian, Baltic and Black Seas, 2 km for the Azov Sea. These model wave hindcasts were used to calculate interannual and seasonal variability of the storm frequency, location and duration. The Initial Distribution Method and Annual Maxima Series Methods were used to study probable waves of a century reoccurrence. The long-term variability of extreme waves revealed different trends in the investigated seas. The Caspian and Azov seas decreased the storm activity, while in the Baltic Sea the number of storm cases increased and the Black Sea showed no significant trend. The of more than 12 m were observed in two centers in the middle part of the Caspian Sea and in the center of the Baltic Sea. In the Black Sea the extreme waves of the same probability of more than 14 m were found in the region to the south of the Crimean peninsula. In the Azov Sea the highest waves of a century reoccurrence do not exceed 5 m. The work was done in Natural Risk Assessment Laboratory, MSU under contract G.34.31.0007.

  5. The Impact of Sea Level Rise on Florida's Everglades

    Science.gov (United States)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  6. Land Sea Level Difference Impacts on Socio-Hydrological System.

    Science.gov (United States)

    Sung, K.; Yu, D. J.; Oh, W. S.; Sangwan, N.

    2016-12-01

    Allowing moderate shocks can be a new solution that helps to build adaptive capacity in society is a rising issue. In Social-Ecological field, Carpenter et al. (2015) suggested that exposure to short-term variability leads to long term resilience by enlarging safe operating space (SOS). The SOS refers to the boundary of favorable state that ecosystem can maintain resilience without imposing certain conditions (Carpenter et al. 2015). Our work is motivated by defining SOS in socio-hydrological system(SHS) because it can be an alternative way for flood management beyond optimized or robust flood control. In this context, large flood events that make system to cross the SOS should be fully managed, but frequent small floods need to be allowed if the system is located in SOS. Especially, land sea level change is critical factor to change flood resilience since it is one of the most substantial disturbance that changes the entire boundary of SOS. In order to have broader perspective of vulnerability and resilience of the coastal region, it is crucial to understand the land sea level dynamics changed with human activities and natural variances.The risk of land sea level change has been researched , but most of these researches have focused on explain cause and effect of land sea level change, paying little attention to its dynamics interacts with human activities. Thus, an objective of this research is to study dynamics of human work, land sea level change and resilience to flood with SOS approach. Especially, we focus on the case in Ganges-Brahmaputra, Bangladesh where has high vulnerability to flood, and is faced with relatively rapid land sea level change problem. To acheive the goal, this study will develop a stylized model by extending the human - flood interaction model combined with relative sea level difference equation. The model describes the dynamics of flood protection system which is changed by SHS and land sea level chage. we will focus on the aggradation

  7. A heuristic evaluation of long-term global sea level acceleration

    Science.gov (United States)

    Spada, Giorgio; Olivieri, Marco; Galassi, Gaia

    2015-05-01

    In view of the scientific and social implications, the global mean sea level rise (GMSLR) and its possible causes and future trend have been a challenge for so long. For the twentieth century, reconstructions generally indicate a rate of GMSLR in the range of 1.5 to 2.0 mm yr-1. However, the existence of nonlinear trends is still debated, and current estimates of the secular acceleration are subject to ample uncertainties. Here we use various GMSLR estimates published on scholarly journals since the 1940s for a heuristic assessment of global sea level acceleration. The approach, alternative to sea level reconstructions, is based on simple statistical methods and exploits the principles of meta-analysis. Our results point to a global sea level acceleration of 0.54 ± 0.27 mm/yr/century (1σ) between 1898 and 1975. This supports independent estimates and suggests that a sea level acceleration since the early 1900s is more likely than currently believed.

  8. Integrative study of the mean sea level and its components

    CERN Document Server

    Champollion, Nicolas; Paul, Frank; Benveniste, Jérôme

    2017-01-01

    This volume presents the most recent results of global mean sea level variations over the satellite altimetry era (starting in the early 1990s) and associated contributions, such as glaciers and ice sheets mass loss, ocean thermal expansion, and land water storage changes. Sea level is one of the best indicators of global climate changes as it integrates the response of several components of the climate system to external forcing factors (including anthropogenic forcing) and internal climate variability. Providing long, accurate records of the sea level at global and regional scales and of the various components causing sea level changes is of crucial importance to improve our understanding of climate processes at work and to validate the climate models used for future projections. The Climate Change Initiative project of the European Space Agency has provided a first attempt to produce consistent and continuous space-based records for several climate parameters observable from space, among them sea level. Th...

  9. Building more effective sea level rise models for coastal management

    Science.gov (United States)

    Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.

    2017-12-01

    For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.

  10. Roles of Sea Level and Climate Change in the Development of Holocene Deltaic Sequences in the Yellow Sea

    Science.gov (United States)

    Liu, J.; Milliman, J. D.

    2002-12-01

    Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.

  11. The storm tracks and the energy cycle of the Southern Hemisphere: sensitivity to sea-ice boundary conditions

    Directory of Open Access Journals (Sweden)

    C. G. Menéndez

    1999-11-01

    Full Text Available The effect of sea-ice on various aspects of the Southern Hemisphere (SH extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control. In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker.Key words. Air-sea interactions · Meteorology and atmospheric dynamics (climatology; ocean · atmosphere interactions

  12. The storm tracks and the energy cycle of the Southern Hemisphere: sensitivity to sea-ice boundary conditions

    Directory of Open Access Journals (Sweden)

    C. G. Menéndez

    Full Text Available The effect of sea-ice