WorldWideScience

Sample records for scn5a mutation c1850s

  1. Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome

    DEFF Research Database (Denmark)

    Petitprez, Séverine; Jespersen, Thomas; Pruvot, Etienne

    2008-01-01

    S SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C......AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel Br....... The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant...

  2. SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction.

    Science.gov (United States)

    Boehringer, Tim; Bugert, Peter; Borggrefe, Martin; Elmas, Elif

    2014-10-01

    Mutations in the SCN5A gene encoding the Nav1.5 channel α-subunit are known to be risk factors of arrhythmia, including Brugada Syndrome and Long QT syndrome subtype 3. The present study focused on the role of SCN5A variants in the development of ventricular fibrillation (VF) during acute myocardial infarction (AMI). Since VF during AMI is the major cause of sudden death in the Western world, SCN5A mutations represent genetic risk factors for sudden death. By exon re-sequencing, the entire coding region and flanking intron regions were sequenced in 46 AMI/VF+ patients. In total, nine single nucleotide variants were identified of which four represented common single nucleotide polymorphisms (SNPs; 87G>A, 1673A>G, IVS16‑6C>T and 5457T>A). Only five rare variants were identified, each in only one patient. Only two of the rare variants represented missense mutations (3578G>A and 4786T>A). The common SNPs and the missense mutations were also genotyped using polymerase chain reaction methods in 79 AMI/VF‑ patients and 480 healthy controls. The SNPs did not demonstrate significant differences in allele and genotype frequencies between the study groups. The 3578G>A mutation was identified in one out of the 480 controls, whereas the 4786T>A mutation was not present in AMI/VF- patients and controls. In conclusion, the majority of AMI/VF+ patients demonstrated a wild type sequence or common SNPs in SCN5A. Only two out of 46 (4.3%) AMI/VF+ patients revealed mutations that may be involved in Nav1.5 dysfunction and VF. However, this requires further functional validation.

  3. Epidural Analgesia with Ropivacaine during Labour in a Patient with a SCN5A Gene Mutation

    Directory of Open Access Journals (Sweden)

    A. L. M. J. van der Knijff-van Dortmont

    2016-01-01

    Full Text Available SCN5A gene mutations can lead to ion channel defects which can cause cardiac conduction disturbances. In the presence of specific ECG characteristics, this mutation is called Brugada syndrome. Many drugs are associated with adverse events, making anesthesia in patients with SCN5A gene mutations or Brugada syndrome challenging. In this case report, we describe a pregnant patient with this mutation who received epidural analgesia using low dose ropivacaine and sufentanil during labour.

  4. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    Full Text Available Brugada syndrome (BrS is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5. To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q localized in the fourth segment of domain IV region (DIV-S4 in a Chinese Han family. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Co-expression of Wild-type (WT or R1629Q Nav1.5 channel and hβ1 subunit were achieved in human embryonic kidney cells by transient transfection. Sodium currents were recorded using whole cell patch-clamp protocols. No significant changes between WT and R1629Q currents were observed in current density or steady-state activation. However, hyperpolarized shift of steady-state inactivation curve was identified in cells expressing R1629Q channel (WT: V1/2 = -81.1 ± 1.3 mV, n = 13; R1629Q: V1/2 = -101.7 ± 1.2 mV, n = 18. Moreover, R1629Q channel showed enhanced intermediate inactivation and prolonged recovery time from inactivation. In summary, this study reveals that R1629Q mutation causes a distinct loss-of-function of the channel due to alter its electrophysiological characteristics, and facilitates our understanding of biophysical mechanisms of BrS.

  5. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation

    DEFF Research Database (Denmark)

    Holst, Anders G; Liang, Bo; Jespersen, Thomas

    2010-01-01

    father carried the same mutation, but had a milder phenotype, presenting with progressive cardiac conduction later in life. The mutation was found to result in a loss-of-function in the sodium current. In conclusion, the same SCN5A mutation can result in a wide array of clinical phenotypes and perhaps......Mutations in the cardiac sodium channel encoded by the gene SCN5A can result in a wide array of phenotypes. We report a case of a young male with a novel SCN5A mutation (R121W) afflicted by sick sinus syndrome, progressive cardiac conduction disorder, atrial flutter and ventricular tachycardia. His...

  6. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation.

    Science.gov (United States)

    Yuan, Junhui; Matsuura, Eiji; Higuchi, Yujiro; Hashiguchi, Akihiro; Nakamura, Tomonori; Nozuma, Satoshi; Sakiyama, Yusuke; Yoshimura, Akiko; Izumo, Shuji; Takashima, Hiroshi

    2013-04-30

    To identify the clinical features of Japanese patients with suspected hereditary sensory and autonomic neuropathy (HSAN) on the basis of genetic diagnoses. On the basis of clinical, in vivo electrophysiologic, and pathologic findings, 9 Japanese patients with sensory and autonomic nervous dysfunctions were selected. Eleven known HSAN disease-causing genes and 5 related genes were screened using a next-generation sequencer. A homozygous mutation, c.3993delGinsTT, was identified in exon 22 of SCN9A from 2 patients/families. The clinical phenotype was characterized by adolescent or congenital onset with loss of pain and temperature sensation, autonomic nervous dysfunctions, hearing loss, and hyposmia. Subsequently, this mutation was discovered in one of patient 1's sisters, who also exhibited sensory and autonomic nervous system dysfunctions, with recurrent fractures being the most predominant feature. Nerve conduction studies revealed definite asymmetric sensory nerve involvement in patient 1. In addition, sural nerve pathologic findings showed loss of large myelinated fibers in patient 1, whereas the younger patient showed normal sural nerve pathology. We identified a novel homozygous mutation in SCN9A from 2 Japanese families with autosomal recessive HSAN. This loss-of-function SCN9A mutation results in disturbances in the sensory, olfactory, and autonomic nervous systems. We propose that SCN9A mutation results in the new entity of HSAN type IID, with additional symptoms including hyposmia, hearing loss, bone dysplasia, and hypogeusia.

  7. Autosomal dominant SCN8A mutation with an unusually mild phenotype.

    Science.gov (United States)

    Anand, G; Collett-White, F; Orsini, A; Thomas, S; Jayapal, S; Trump, N; Zaiwalla, Z; Jayawant, S

    2016-09-01

    Mutations in SCN8A, coding for the voltage-gated sodium channel Nav 1.6, have been described in relation to infantile onset epilepsy with developmental delay and cognitive impairment, in particular early onset epileptic encephalopathy (EIEE) type 13. Here we report an infant and his father with early onset focal epileptic seizures but without cognitive or neurological impairment in whom next generation sequence analysis identified a heterozygous mutation (c.5630A > G, p. (Asn1877Ser)) in the SCN8A gene. This mutation, confirmed by Sanger sequence analysis, affects a highly conserved amino acid and in silico tools predicts that it may be pathogenic. The reported infant has a normal developmental profile at 16-month follow-up. His father also had normal development and has no cognitive impairment at 42 years. This is the second known SCN8A mutation associated with a phenotype of benign familial infantile epilepsy. Good seizure control was achieved in our patients with sodium channel blockers. Based on our proband and a recently described group of families with benign familial infantile epilepsy and SCN8A variant we suggest expanding testing to patients with infantile epilepsy and no cognitive impairment. In addition, the same SCN8A variant (c.5630A > G, p. (Asn1877Ser)) is also found in patients with epilepsy and developmental delay highlighting the phenotypic variability and the possible role of other protective genetic factors. Copyright © 2016. Published by Elsevier Ltd.

  8. A case of recurrent encephalopathy with SCN2A missense mutation.

    Science.gov (United States)

    Fukasawa, Tatsuya; Kubota, Tetsuo; Negoro, Tamiko; Saitoh, Makiko; Mizuguchi, Masashi; Ihara, Yukiko; Ishii, Atsushi; Hirose, Shinichi

    2015-06-01

    Voltage-gated sodium channels regulate neuronal excitability, as well as survival and the patterning of neuronal connectivity during development. Mutations in SCN2A, which encodes the Na(+) channel Nav1.2, cause epilepsy syndromes and predispose children to acute encephalopathy. Here, we report the case of a young male with recurrent acute encephalopathy who carried a novel missense mutation in the SCN2A gene. He was born by normal delivery and developed repetitive apneic episodes at 2days of age. Diffusion-weighted imaging revealed high-intensity areas in diffuse subcortical white matter, bilateral thalami, and basal nuclei. His symptoms improved gradually without any specific treatment, but he exhibited a motor milestone delay after the episode. At the age of 10months, he developed acute cerebellopathy associated with a respiratory syncytial viral infection. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy and seemed to have no obvious sequelae after the episode. He then developed severe diffuse encephalopathy associated with gastroenteritis at the age of 14months. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy but was left with severe neurological sequelae. PCR-based analysis revealed a novel de novo missense mutation, c.4979T>G (p.Leu1660Trp), in the SCN2A gene. This case suggests that SCN2A mutations might predispose children to repetitive encephalopathy with variable clinical and imaging findings. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    Science.gov (United States)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  10. Reduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    T. Robyns, MD.

    2014-05-01

    Full Text Available Mutations in the SCN5A gene are responsible for multiple phenotypical presentations including Brugada syndrome, long QT syndrome, progressive familial heart block, sick sinus syndrome, dilated cardiomyopathy, lone atrial fibrillation and multiple overlap syndromes. These different phenotypic expressions of a mutation in a single gene can be explained by variable expression and reduced penetrance. One of the possible explanations of these phenomena is the co-inheritance of genetic variants. We describe a family where the individuals exhibit a compound heterozygosity in the SCN5A gene including a mutation (R1632H and a new variant (M858L. Individuals with both the mutation and new variant present with a more severe phenotype including spontaneous atrial tachyarrhythmia at young age. We give an overview of the different phenotypes of "SCN5A disease" and discuss the importance of co-inherited genetic variants in the expression of SCN5A disease.

  11. Flecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A

    DEFF Research Database (Denmark)

    Kanters, Jørgen K.; Yuan, Lei; Hedley, Paula L

    2014-01-01

    BACKGROUND: Mutations in SCN5A can result in both long QT type 3 (LQT3) and Brugada syndrome (BrS), and a few mutations have been found to have an overlapping phenotype. Long QT syndrome is characterized by prolonged QT interval, and a prerequisite for a BrS diagnosis is ST elevation in the right...... interval. The proband presented with an aborted cardiac arrest, and his mother died suddenly and unexpectedly at the age of 65. Flecainide treatment revealed coved ST elevation in all mutation carriers. Electrophysiological investigations of the mutant in HEK293 cells indicated a reduced peak current...

  12. Large-scale structural alteration of brain in epileptic children with SCN1A mutation.

    Science.gov (United States)

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS +) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic children with SCN1A mutation compared to healthy control subjects. We obtained cortical morphology (thickness, and surface area) and brain volume (global, subcortical, and regional) measurements using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu) and compared measurements of children with epilepsy and SCN1A gene mutation ( n  = 21) with those of age and gender matched healthy controls ( n  = 42). Compared to the healthy control group, children with epilepsy and SCN1A gene mutation exhibited smaller total brain, total gray matter and white matter, cerebellar white matter, and subcortical volumes, as well as mean surface area and mean cortical thickness. A regional analysis revealed significantly reduced gray matter volume in the patient group in the bilateral inferior parietal, left lateral orbitofrontal, left precentral, right postcentral, right isthmus cingulate, right middle temporal area with smaller surface area and white matter volume in some of these areas. However, the regional cortical thickness was not significantly different in two groups. This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  13. Identification of SCN1A and PCDH19 mutations in Chinese children with Dravet syndrome.

    Directory of Open Access Journals (Sweden)

    Anna Ka-Yee Kwong

    Full Text Available BACKGROUND: Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study. OBJECTIVE: The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome. METHODS: A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations. RESULTS: Eighteen patients (9 males, 9 females were diagnosed to have Dravet syndrome. Among them, 83% (15/18 had SCN1A mutations including truncating (7, splice site (2 and missense mutations (6. The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05. During the progression of disease, 73% (11/15 had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15 had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant. CONCLUSION: A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense

  14. Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3

    Czech Academy of Sciences Publication Activity Database

    Christé, G.; Chahine, M.; Chevalier, P.; Pásek, Michal

    2008-01-01

    Roč. 96, - (2008), s. 281-293 ISSN 0079-6107 Institutional research plan: CEZ:AV0Z20760514 Keywords : cardiac cell * SCN5A mutation * Long QT syndrome * quantitative modelling Subject RIV: BO - Biophysics Impact factor: 6.388, year: 2008

  15. Brugada syndrome with a novel missense mutation in SCN5A gene: A case report from Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Zahidus Sayeed

    2014-01-01

    Full Text Available Brugada syndrome is an inherited cardiac arrhythmia that follows autosomal dominant transmission and can cause sudden death. We report a case of Brugada syndrome in a 55-year-old male patient presented with recurrent palpitation, atypical chest pain and presyncope. ECG changes were consistent with type 1 Brugada. Gene analysis revealed a novel missense mutation in SCN5A gene with a genetic variation of D785N and a nucleotide change at 2353G-A. One of his children also had the same mutation. To our knowledge this is the first genetically proved case of Brugada syndrome in Bangladesh.

  16. β1-C121W Is Down But Not Out: Epilepsy-Associated Scn1b-C121W Results in a Deleterious Gain-of-Function

    Science.gov (United States)

    Kruger, Larisa C.; O'Malley, Heather A.; Hull, Jacob M.; Kleeman, Amanda; Patino, Gustavo A.

    2016-01-01

    Voltage-gated sodium channel (VGSC) β subunits signal through multiple pathways on multiple time scales. In addition to modulating sodium and potassium currents, β subunits play nonconducting roles as cell adhesion molecules, which allow them to function in cell–cell communication, neuronal migration, neurite outgrowth, neuronal pathfinding, and axonal fasciculation. Mutations in SCN1B, encoding VGSC β1 and β1B, are associated with epilepsy. Autosomal-dominant SCN1B-C121W, the first epilepsy-associated VGSC mutation identified, results in genetic epilepsy with febrile seizures plus (GEFS+). This mutation has been shown to disrupt both the sodium-current-modulatory and cell-adhesive functions of β1 subunits expressed in heterologous systems. The goal of this study was to compare mice heterozygous for Scn1b-C121W (Scn1b+/W) with mice heterozygous for the Scn1b-null allele (Scn1b+/−) to determine whether the C121W mutation results in loss-of-function in vivo. We found that Scn1b+/W mice were more susceptible than Scn1b+/− and Scn1b+/+ mice to hyperthermia-induced convulsions, a model of pediatric febrile seizures. β1-C121W subunits are expressed at the neuronal cell surface in vivo. However, despite this, β1-C121W polypeptides are incompletely glycosylated and do not associate with VGSC α subunits in the brain. β1-C121W subcellular localization is restricted to neuronal cell bodies and is not detected at axon initial segments in the cortex or cerebellum or at optic nerve nodes of Ranvier of Scn1bW/W mice. These data, together with our previous results showing that β1-C121W cannot participate in trans-homophilic cell adhesion, lead to the hypothesis that SCN1B-C121W confers a deleterious gain-of-function in human GEFS+ patients. SIGNIFICANCE STATEMENT The mechanisms underlying genetic epilepsy syndromes are poorly understood. Closing this gap in knowledge is essential to the development of new medicines to treat epilepsy. We have used mouse models to

  17. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death

    DEFF Research Database (Denmark)

    Bezzina, Connie; Barc, Julien; Mizusawa, Yuka

    2013-01-01

    Brugada syndrome is a rare cardiac arrhythmia disorder, causally related to SCN5A mutations in around 20% of cases. Through a genome-wide association study of 312 individuals with Brugada syndrome and 1,115 controls, we detected 2 significant association signals at the SCN10A locus (rs10428132) a...

  18. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Lee

    2017-01-01

    Significance: This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  19. Mutations in sodium channel {beta}-subunit SCN3B are associated with early-onset lone atrial fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten Salling; Jespersen, Thomas; Nielsen, Jonas Bille

    2011-01-01

    AIMS: Atrial fibrillation (AF) is the most frequent arrhythmia. Screening of SCN5A-the gene encoding the a-subunit of the cardiac sodium channel-has indicated that disturbances of the sodium current may play a central role in the mechanism of lone AF. We tested the hypothesis that lone AF in young...... across species. Electrophysiological studies on the SCN3B mutation were carried out and all three SCN3B mutations caused a functionally reduced sodium channel current. One synonymous variant was found in SCN4B. CONCLUSION: In 192 young lone AF patients, we found three patients with suspected disease...

  20. SCN8A encephalopathy: Research progress and prospects.

    Science.gov (United States)

    Meisler, Miriam H; Helman, Guy; Hammer, Michael F; Fureman, Brandy E; Gaillard, William D; Goldin, Alan L; Hirose, Shinichi; Ishii, Atsushi; Kroner, Barbara L; Lossin, Christoph; Mefford, Heather C; Parent, Jack M; Patel, Manoj; Schreiber, John; Stewart, Randall; Whittemore, Vicky; Wilcox, Karen; Wagnon, Jacy L; Pearl, Phillip L; Vanderver, Adeline; Scheffer, Ingrid E

    2016-07-01

    On April 21, 2015, the first SCN8A Encephalopathy Research Group convened in Washington, DC, to assess current research into clinical and pathogenic features of the disorder and prepare an agenda for future research collaborations. The group comprised clinical and basic scientists and representatives of patient advocacy groups. SCN8A encephalopathy is a rare disorder caused by de novo missense mutations of the sodium channel gene SCN8A, which encodes the neuronal sodium channel Nav 1.6. Since the initial description in 2012, approximately 140 affected individuals have been reported in publications or by SCN8A family groups. As a result, an understanding of the severe impact of SCN8A mutations is beginning to emerge. Defining a genetic epilepsy syndrome goes beyond identification of molecular etiology. Topics discussed at this meeting included (1) comparison between mutations of SCN8A and the SCN1A mutations in Dravet syndrome, (2) biophysical properties of the Nav 1.6 channel, (3) electrophysiologic effects of patient mutations on channel properties, (4) cell and animal models of SCN8A encephalopathy, (5) drug screening strategies, (6) the phenotypic spectrum of SCN8A encephalopathy, and (7) efforts to develop a bioregistry. A panel discussion of gaps in bioregistry, biobanking, and clinical outcomes data was followed by a planning session for improved integration of clinical and basic science research. Although SCN8A encephalopathy was identified only recently, there has been rapid progress in functional analysis and phenotypic classification. The focus is now shifting from identification of the underlying molecular cause to the development of strategies for drug screening and prioritized patient care. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  1. Large-scale structural alteration of brain in epileptic children with SCN1A mutation

    OpenAIRE

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Objective: Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic chil...

  2. Pitfalls in genetic testing: the story of missed SCN1A mutations

    OpenAIRE

    Jennings, Lawrence J.; Kirschmann, Dawn

    2016-01-01

    Investigators from the EuroEPINOMICS rare epilepsy syndromes Dravet working group performed whole-exome sequencing on 31 trios that had been reported negative for SCN1A mutations by Sanger sequencing.

  3. Pitfalls in genetic testing: the story of missed SCN1A mutations

    OpenAIRE

    Djémié, T.; Weckhuysen, S.; von Spiczak, S.; Carvill, G. L.; Jaehn, J.; Anttonen, A-K; Brilstra, E.; Caglayan, H. S.; de Kovel, C. G.; Depienne, C.; Gaily, E.; Gennaro, E.; Giraldez, B. G.; Gormley, P.; Guerrero-López, R.

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated ...

  4. Pitfalls in genetic testing : the story of missed SCN1A mutations

    OpenAIRE

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated ...

  5. Linkage between increased nociception and olfaction via a SCN9A haplotype.

    Directory of Open Access Journals (Sweden)

    Dirk Heimann

    Full Text Available BACKGROUND AND AIMS: Mutations reducing the function of Nav1.7 sodium channels entail diminished pain perception and olfactory acuity, suggesting a link between nociception and olfaction at ion channel level. We hypothesized that if such link exists, it should work in both directions and gain-of-function Nav1.7 mutations known to be associated with increased pain perception should also increase olfactory acuity. METHODS: SCN9A variants were assessed known to enhance pain perception and found more frequently in the average population. Specifically, carriers of SCN9A variants rs41268673C>A (P610T; n = 14 or rs6746030C>T (R1150W; n = 21 were compared with non-carriers (n = 40. Olfactory function was quantified by assessing odor threshold, odor discrimination and odor identification using an established olfactory test. Nociception was assessed by measuring pain thresholds to experimental nociceptive stimuli (punctate and blunt mechanical pressure, heat and electrical stimuli. RESULTS: The number of carried alleles of the non-mutated SCN9A haplotype rs41268673C/rs6746030C was significantly associated with the comparatively highest olfactory threshold (0 alleles: threshold at phenylethylethanol dilution step 12 of 16 (n = 1, 1 allele: 10.6±2.6 (n = 34, 2 alleles: 9.5±2.1 (n = 40. The same SCN9A haplotype determined the pain threshold to blunt pressure stimuli (0 alleles: 21.1 N/m(2, 1 allele: 29.8±10.4 N/m(2, 2 alleles: 33.5±10.2 N/m(2. CONCLUSIONS: The findings established a working link between nociception and olfaction via Nav1.7 in the gain-of-function direction. Hence, together with the known reduced olfaction and pain in loss-of-function mutations, a bidirectional genetic functional association between nociception and olfaction exists at Nav1.7 level.

  6. A clinical case of epilepsy in a female patient with double mutations in the SCN2A and PCDH19 genes

    Directory of Open Access Journals (Sweden)

    M. B. Mironov

    2017-01-01

    Full Text Available The paper describes a 6-year-old female patient with epilepsy caused by mutations in the SCN2A and PCDH19 genes, which clinically appears as epileptic seizures, drug-resistant epilepsy, secondary microcephaly, mental retardation, and autism. It reviews the literature regarding both mutations. World literature lacks publications on a combination of two SCN2A and PCDH19 mutations in one female patient with epileptic encephalopathies.

  7. The phenotypic spectrum of SCN8A> encephalopathy

    DEFF Research Database (Denmark)

    Larsen, Jan; Carvill, Gemma L; Gardella, Elena

    2015-01-01

    OBJECTIVE: SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. METHODS: We used high-throughput sequence analysis of t...

  8. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4 phenotype

    Directory of Open Access Journals (Sweden)

    Fernandez Bridget A

    2012-11-01

    Full Text Available Abstract Background Severe congenital neutropenia type 4 (SCN4 is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3. Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4 is caused by autosomal recessive mutations in SLC45A2. Methods We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. Results The siblings’ phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with “partial OCA” in childhood. Conclusions This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.

  9. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system

    NARCIS (Netherlands)

    Bezzina, Connie R.; Rook, Martin B.; Groenewegen, W. Antoinette; Herfst, Lucas J.; van der Wal, Allard C.; Lam, Jan; Jongsma, Habo J.; Wilde, Arthur A. M.; Mannens, Marcel M. A. M.

    2003-01-01

    Cardiac conduction defects associate with mutations in SCN5A, the gene encoding the cardiac Na+ channel. In the present study, we characterized a family in which the proband was born in severe distress with irregular wide complex tachycardia. His older sister died at 1 year of age from severe

  10. High Prevalence of Long QT Syndrome Associated SCN5A Variants in Patients with Early-Onset Lone Atrial Fibrillation

    DEFF Research Database (Denmark)

    Olesen, Morten S; Yuan, Lei; Liang, Bo

    2012-01-01

    a mechanistic overlap between LQTS3 and early-onset lone AF. In 9 of 10 identified mutations and rare variants, we observed compromised biophysical properties affecting the transient peak current. CONCLUSIONS: In a cohort of patients with early-onset lone AF, we identified a high prevalence of SCN5A mutations...

  11. Sodium channel SCN8A (Nav1.6: properties and de novo mutations in epileptic encephalopathy and intellectual disability

    Directory of Open Access Journals (Sweden)

    Janelle Elizabeth O'Brien

    2013-10-01

    Full Text Available The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 years. Only within the past year has the role of SCN8A in human disease become apparent from whole exome and genome sequences of patients with sporadic disease. Unique features of Nav1.6 include its contribution to persistent current, resurgent current, repetitive neuronal firing, and subcellular localization at the axon initial segment and nodes of Ranvier. Loss of Nav1.6 activity results in reduced neuronal excitability, while gain-of-function mutations can increase neuronal excitability. Mouse Scn8a (med mutants exhibit movement disorders including ataxia, tremor and dystonia. Thus far, more than ten human de novo mutations have been identified in patients with two types of disorders, epileptic encephalopathy and intellectual disability. We review these human mutations as well as the unique features of Nav1.6 that contribute to its role in determining neuronal excitability in vivo. A supplemental figure illustrating the positions of amino acid residues within the 4 domains and 24 transmembrane segments of Nav1.6 is provided to facilitate the location of novel mutations within the channel protein.

  12. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with SCN5A deficiency: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Christopher L-H Huang

    2012-07-01

    Full Text Available Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na+ channel (SCN5A abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We describe loss of Na+ channel function and fibrotic changes associated with both loss and gain-of-function Na+ channel mutations. Recent reports further relate the progressive fibrotic changes to upregulation of TGF-β1 production and the transcription factors, Atf3, a stress-inducible gene, and Egr1, to the presence of heterozygous Scn5a inactivation. Both changes are thus directly implicated in the clinically observed disruptions in sino-atrial node pacemaker function, and sino-atrial and ventricular conduction, and their progression with age. Murine systems with genetic modifications in Scn5a thus prove a useful tool to address questions concerning roles of genetic and environmental modifiers on human SCN5A disease phenotypes.

  13. 5 CFR 1850.140 - Employment.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Employment. 1850.140 Section 1850.140... PROGRAMS OR ACTIVITIES CONDUCTED BY THE OFFICE OF SPECIAL COUNSEL § 1850.140 Employment. No qualified individual with handicaps shall, on the basis of handicap, be subject to discrimination in employment under...

  14. Vibrational Analysis of (SCN)2 and the Transient (SCN)2

    DEFF Research Database (Denmark)

    Jensen, N. H.; Wilbrandt, Robert Walter; Pagsberg, Palle Bjørn

    1979-01-01

    The vibrational spectra of thiocyanogen and the transient radical anion (SCN)2− are interpreted in detail through molecular orbital and normal coordinate calculations. The results support the assignment of (SCN)2− to the anion of thiocyanogen and indicate a substantial weakening of the S–S and C......≡N bonds in going from the parent molecule to its radical anion....

  15. The genetic basis of Brugada syndrome: a mutation update

    DEFF Research Database (Denmark)

    Hedley, Paula L; Jørgensen, Poul; Schlamowitz, Sarah

    2009-01-01

    of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss-of-function mutations in SCN5A, which encodes the alpha-subunit of the Na(v)1.5 sodium ion channel conducting the depolarizing I(Na) current, causes 15-20% of Br......S cases. A few mutations have been described in GPD1L, which encodes glycerol-3-phosphate dehydrogenase-1 like protein; CACNA1C, which encodes the alpha-subunit of the Ca(v)1.2 ion channel conducting the depolarizing I(L,Ca) current; CACNB2, which encodes the stimulating beta2-subunit of the Ca(v)1.2 ion...

  16. A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response.

    Directory of Open Access Journals (Sweden)

    John R Bankston

    2007-12-01

    Full Text Available SCN5A encodes the alpha-subunit (Na(v1.5 of the principle Na(+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS variant 3 (LQT-3 in adults by disrupting inactivation of the Na(v1.5 channel. Pharmacological targeting of mutation-altered Na(+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+ channel blockers flecainide and mexiletine. Our goal was to determine the Na(+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C and a common variant in KCNH2 (K897T. Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.The results of our study provide further evidence of the grave vulnerability of newborns to Na(+ channel defects and suggest that both genetic background and age are

  17. Contrast between the mechanisms for dissociative electron attachment to CH3SCN and CH3NCS

    Science.gov (United States)

    Miller, Thomas M.; Viggiano, Albert A.; Shuman, Nicholas S.

    2018-05-01

    The kinetics of thermal electron attachment to methyl thiocyanate (CH3SCN), methyl isothiocyanate (CH3NCS), and ethyl thiocyanate (C2H5SCN) were measured using flowing afterglow-Langmuir probe apparatuses at temperatures between 300 and 1000 K. CH3SCN and C2H5SCN undergo inefficient dissociative attachment to yield primarily SCN- at 300 K (k = 2 × 10-10 cm3 s-1), with increasing efficiency as temperature increases. The increase is well described by activation energies of 0.17 eV (CH3SCN) and 0.14 eV (C2H5SCN). CN- product is formed at product but at a rate at 300 K that is below our detection threshold (k differentiating the two mechanisms. The kinetic modeling reproduces the CH3NCS data only if dissociation through the transient anion is considered.

  18. A new sodium channel {alpha}-subunit gene (Scn9a) from Schwann cells maps to the Scn1a, Scn2a, Scn3a cluster of mouse chromosome 2

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, M.C.; Ernst, E.; Gros, P. [McGill Univ., Montreal (Canada)

    1996-08-15

    We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2. 17 refs., 1 fig., 3 tabs.

  19. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.

    Science.gov (United States)

    Lal, Dennis; Reinthaler, Eva M; Dejanovic, Borislav; May, Patrick; Thiele, Holger; Lehesjoki, Anna-Elina; Schwarz, Günter; Riesch, Erik; Ikram, M Arfan; van Duijn, Cornelia M; Uitterlinden, Andre G; Hofman, Albert; Steinböck, Hannelore; Gruber-Sedlmayr, Ursula; Neophytou, Birgit; Zara, Federico; Hahn, Andreas; Gormley, Padhraig; Becker, Felicitas; Weber, Yvonne G; Cilio, Maria Roberta; Kunz, Wolfram S; Krause, Roland; Zimprich, Fritz; Lemke, Johannes R; Nürnberg, Peter; Sander, Thomas; Lerche, Holger; Neubauer, Bernd A

    2016-01-01

    The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%). Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1) are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10-4; OR = 0.32, fishers exact test), previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.

  20. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation

    DEFF Research Database (Denmark)

    Gardella, Elena; Becker, Felicitas; Møller, Rikke S

    2016-01-01

    by stretching, motor initiation or by emotional stimuli. In one case, we recorded typical PKD spells by video-EEG-polygraphy, documenting a cortical involvement. INTERPRETATION: Our study establishes SCN8A as a novel gene in which a recurrent mutation causes BFIS/ICCA, expanding the clinical-genetic spectrum...... patient had seizures only at school age. All patients stayed otherwise seizure-free, most without medication. Interictal EEG was normal in all cases but two. Five/16 patients developed additional brief paroxysmal episodes in puberty, either dystonic/dyskinetic or "shivering" attacks, triggered...... identified as the major gene in all three conditions, found to be mutated in 80-90% of familial and 30-35% of sporadic cases. METHODS: We searched for the genetic defect in PRRT2-negative, unrelated families with BFIS or ICCA using whole exome or targeted gene panel sequencing, and performed a detailed...

  1. Thyrotoxic periodic paralysis associated with a mutation in the sodium channel gene SCN4A.

    Science.gov (United States)

    Lane, Andrew H; Markarian, Katherine; Braziunene, Ieva

    2004-12-01

    Thyrotoxic hypokalemic periodic paralysis (THypoKPP) is an uncommon disorder with an unknown etiology. We describe a family in which the proband presented with paralysis and thyrotoxicosis. Because of similarities between familial hypokalemic periodic paralysis (FHypoKPP) and THypoKPP, we sequenced exon 12 of the SCN4A gene, which is known to be mutated in FHypoKPP. We identified an Arg672Ser mutation in the proband and his affected father, as well as the proband's brother. As the brother has paralysis without thyrotoxicosis, our finding suggests that the genetic spectrum of FHypoKPP and THypoKPP overlap. We speculate that thyroid hormone may exert a threshold or permissive effect in hypokalemic periodic paralysis. Non-thyrotoxic family members of individuals with THypoKPP may have an unrecognized risk for paralysis.

  2. A Novel SCN5A Mutation in a Patient with Coexistence of Brugada Syndrome Traits and Ischaemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Anders G. Holst

    2009-01-01

    Full Text Available Brugada syndrome (BrS is a primary electrical heart disease, which can lead to sudden cardiac death. In older patients with BrS, the disease may coexist with ischaemic heart disease (IHD and recent studies support a synergistic proarrhythmic effect of the two disease entities. We report a case that illustrates this. The index patient was a middle-aged patient with BrS traits, IHD, and aborted sudden cardiac death. Mutation analysis discovered a novel mutation P468L in the NaV1.5 sodium channel. Surprisingly, voltage-clamp experiments on the wild-type and mutant NaV1.5 channels expressed in HEK cells revealed no functional effect of the mutation. In a patient like ours, the distinction between IHD and BrS as the cause of an aborted sudden cardiac death is hard to establish and mounting evidence shows that coexistence of the two may have a synergistic proarrhythmic effect.

  3. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes.

    Directory of Open Access Journals (Sweden)

    Dennis Lal

    Full Text Available The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic.We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients.We identified 8 known missense mutations, previously reported as pathogenic, in a total of 17 unrelated epilepsy patients (17/448; 3.80%. Our re-evaluation indicates that 7 out of these 8 variants (p.R27T; p.R28C; p.R542Q; p.R604H; p.T1250M; p.E1308D; p.R1928G; NP_001159435.1 are not pathogenic. Only the p.T1174S mutation may be considered as a genetic risk factor for epilepsy of small effect size based on the enrichment in patients (P = 6.60 x 10-4; OR = 0.32, fishers exact test, previous functional studies but incomplete penetrance. Thus, incorporation of previous studies in genetic counseling of SCN1A sequencing results is challenging and may produce incorrect conclusions.

  4. A comprehensive approach to identifying repurposed drugs to treat SCN8A epilepsy.

    Science.gov (United States)

    Atkin, Talia A; Maher, Chani M; Gerlach, Aaron C; Gay, Bryant C; Antonio, Brett M; Santos, Sonia C; Padilla, Karen M; Rader, JulieAnn; Krafte, Douglas S; Fox, Matthew A; Stewart, Gregory R; Petrovski, Slavé; Devinsky, Orrin; Might, Matthew; Petrou, Steven; Goldstein, David B

    2018-04-01

    Many previous studies of drug repurposing have relied on literature review followed by evaluation of a limited number of candidate compounds. Here, we demonstrate the feasibility of a more comprehensive approach using high-throughput screening to identify inhibitors of a gain-of-function mutation in the SCN8A gene associated with severe pediatric epilepsy. We developed cellular models expressing wild-type or an R1872Q mutation in the Na v 1.6 sodium channel encoded by SCN8A. Voltage clamp experiments in HEK-293 cells expressing the SCN8A R1872Q mutation demonstrated a leftward shift in sodium channel activation as well as delayed inactivation; both changes are consistent with a gain-of-function mutation. We next developed a fluorescence-based, sodium flux assay and used it to assess an extensive library of approved drugs, including a panel of antiepileptic drugs, for inhibitory activity in the mutated cell line. Lead candidates were evaluated in follow-on studies to generate concentration-response curves for inhibiting sodium influx. Select compounds of clinical interest were evaluated by electrophysiology to further characterize drug effects on wild-type and mutant sodium channel functions. The screen identified 90 drugs that significantly inhibited sodium influx in the R1872Q cell line. Four drugs of potential clinical interest-amitriptyline, carvedilol, nilvadipine, and carbamazepine-were further investigated and demonstrated concentration-dependent inhibition of sodium channel currents. A comprehensive drug repurposing screen identified potential new candidates for the treatment of epilepsy caused by the R1872Q mutation in the SCN8A gene. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  5. CDKL5 and ARX mutations are not responsible for early onset severe myoclonic epilepsy in infancy.

    Science.gov (United States)

    Nabbout, Rima; Depienne, Christel; Chipaux, Mathilde; Girard, Benoit; Souville, Isabelle; Trouillard, Oriane; Dulac, Olivier; Chelly, Jamel; Afenjar, Alexandra; Héron, Delphine; Leguern, Eric; Beldjord, Cherif; Bienvenu, Thierry; Bahi-Buisson, Nadia

    2009-11-01

    Severe myoclonic epilepsy of infancy (SMEI) or Dravet syndrome (DS) is a distinctive epilepsy syndrome often associated with de novo mutations in the SCN1A gene. However, 25-30% patients with SMEI/DS are negative for SCN1A mutation screening, suggesting that other molecular mechanisms may account for these disorders. Given the overlapping and heterogeneous clinical features of CDKL5- and ARX-related epilepsies and SMEI/DS, we postulated that CDKL5 mutations in females and ARX mutations gene in males may be associated with early onset seizures forms of SMEI/DS. Twenty-eight patients with early onset SMEI/DS before 6 months negative for SCN1A mutational screening were selected and screened for mutations in the ARX gene in males (n=14) or the CDKL5 gene in females (n=14). No mutations in either gene were found except one intronic variation of uncertain pathogenicity in the CDKL5 gene. All patients started seizures at mean age of 3.48 months. Thirteen patients had familial history of epilepsy or febrile seizures. Patients evolved toward refractory epilepsy with generalized tonic clonic seizures (18/28) and myoclonia (23/28) and severe neurological impairment with autistic features (13/28), ataxia (14/28) and spasticity (5/28). No patient ever exhibited infantile spasms, dystonia, or Rett-like features. Our results illustrate that mutation screening of ARX and CDKL5 is not effective in patients selected on the basis of clinical signs associated to early onset SMEI/DS. In addition, they might reflect that other phenotypic features associated with CDKL5 mutations (Rett-like features, infantile spasm) or ARX mutations (dystonia, spasticity) are more distinctive. 2009 Elsevier B.V. All rights reserved.

  6. Ab initio study of structural, electronic and optical properties of MnHg(SCN)4 and FeHg(SCN)4

    International Nuclear Information System (INIS)

    He, K.H.; Zheng, G.; Chen, G.; Lue, T.; Wan, M.; Ji, G.F.

    2007-01-01

    The structural, electronic and optical properties of MnHg(SCN) 4 and FeHg(SCN) 4 were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN) 4 have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN) 4 . The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN) 4 lag behind those of MnHg(SCN) 4 and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena

  7. Functional analysis of the novel TBX5 c.1333delC mutation resulting in an extended TBX5 protein

    Directory of Open Access Journals (Sweden)

    Ekman-Joelsson Britt-Marie

    2008-10-01

    Full Text Available Abstract Background Autosomal dominant Holt-Oram syndrome (HOS is caused by mutations in the TBX5 gene and is characterized by congenital heart and preaxial radial ray upper limb defects. Most of the TBX5 mutations found in patients with HOS cause premature truncation of the primary TBX5 transcript. TBX5 missense mutations alter the three-dimensional structure of the protein and result in failed nuclear localization or reduced binding to target DNA. In this study we present our functional analyses of the novel and unusual c.1333delC mutation found in a patient with classical HOS. Methods The functional impact of this novel mutation was assessed by investigating the intracellular localization of the resulting TBX5 protein and its ability to activate the expression of its downstream target ANF. Results The deletion of the cytosine is the first TBX5 frameshift mutation predicted to result in an elongated TBX5 protein with 74 miscoding amino acids and 62 supernumerary C-terminal amino acids. The c.1333delC mutation affects neither the nuclear localization, nor its colocalization with SALL4, but severely affects the activation of the ANF promoter. Conclusion The mutation c.1333delC does not locate within functional domains, but impairs the activation of the downstream target. This suggests that misfolding of the protein prevents its biological function.

  8. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique

    Science.gov (United States)

    Chen, Wanjuan; Liu, Jingxin; Zhang, Longmei; Xu, Huijuan; Guo, Xiaogang; Deng, Sihao; Liu, Lipeng; Yu, Daiguan; Chen, Yonglong; Li, Zhiyuan

    2014-06-01

    Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.

  9. Ab initio study of structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    He, K.H. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: he23981006@126.com; Zheng, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: gzheng25@yahoo.com; Chen, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Lue, T. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Wan, M. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Ji, G.F. [Laboratory for Shock Wave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2007-03-01

    The structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4} were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN){sub 4} have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN){sub 4}. The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN){sub 4} lag behind those of MnHg(SCN){sub 4} and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena.

  10. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures

    Science.gov (United States)

    Mantegazza, Massimo; Gambardella, Antonio; Rusconi, Raffaella; Schiavon, Emanuele; Annesi, Ferdinanda; Cassulini, Rita Restano; Labate, Angelo; Carrideo, Sara; Chifari, Rosanna; Canevini, Maria Paola; Canger, Raffaele; Franceschetti, Silvana; Annesi, Grazia; Wanke, Enzo; Quattrone, Aldo

    2005-01-01

    Febrile seizures (FS) affect 5–12% of infants and children up to 6 years of age. There is now epidemiological evidence that FS are associated with subsequent afebrile and unprovoked seizures in ≈7% of patients, which is 10 times more than in the general population. Extensive genetic studies have demonstrated that various loci are responsible for familial FS, and the FEB3 autosomal-dominant locus has been identified on chromosome 2q23–24, where the SCN1A gene is mapped. However, gene mutations causing simple FS have not been found yet. Here we show that the M145T mutation of a well conserved amino acid in the first transmembrane segment of domain I of the human Nav1.1 channel α-subunit cosegregates in all 12 individuals of a large Italian family affected by simple FS. Functional studies in mammalian cells demonstrate that the mutation causes a 60% reduction of current density and a 10-mV positive shift of the activation curve. Thus, M145T is a loss-of-function mutant. These results show that monogenic FS should also be considered a channelopathy. PMID:16326807

  11. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy.

    Science.gov (United States)

    Ma, Chun-Lai; Wu, Xun-Yi; Jiao, Zheng; Hong, Zhen; Wu, Zhi-Yuan; Zhong, Ming-Kang

    2015-01-01

    Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p GA > AA. SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.

  12. Prevalence of SCN1A-related dravet syndrome among children reported with seizures following vaccination: a population-based ten-year cohort study.

    Directory of Open Access Journals (Sweden)

    Nienke E Verbeek

    Full Text Available OBJECTIVES: To determine the prevalence of Dravet syndrome, an epileptic encephalopathy caused by SCN1A-mutations, often with seizure onset after vaccination, among infants reported with seizures following vaccination. To determine differences in characteristics of reported seizures after vaccination in children with and without SCN1A-related Dravet syndrome. METHODS: Data were reviewed of 1,269 children with seizures following immunization in the first two years of life, reported to the safety surveillance system of the Dutch national immunization program between 1 January 1997 and 31 December 2006. Selective, prospective follow-up was performed of children with clinical characteristics compatible with a diagnosis of Dravet syndrome. RESULTS: In 21.9% (n = 279 of children, a diagnosis of Dravet syndrome could not be excluded based on available clinical data (median age at follow-up 16 months. Additional follow-up data were obtained in 83.9% (n = 234 of these children (median age 8.5 years. 15 (1.2% of 1,269; 95%CI:0.6 to 1.8% children were diagnosed with SCN1A-related Dravet syndrome. Of all reported seizures following vaccinations in the first year of life, 2.5% (95%CI:1.3 to 3.6% were due to SCN1A-related Dravet syndrome, as were 5.9% of reported seizures (95%CI:3.1 to 8.7% after 2(nd or 3(rd DTP-IPV-Hib vaccination. Seizures in children with SCN1A-related Dravet syndrome occurred more often with a body temperature below 38.5°C (57.9% vs. 32.6%, p = 0.020 and reoccurred more often after following vaccinations (26.7% vs. 4.0%, p = 0.003, than in children without a diagnosis of SCN1A-related Dravet Syndrome. CONCLUSIONS: Although Dravet syndrome is a rare genetic epilepsy syndrome, 2.5% of reported seizures following vaccinations in the first year of life in our cohort occurred in children with this disorder. Knowledge on the specific characteristics of vaccination-related seizures in this syndrome might promote early diagnosis

  13. Compound Heterozygosity for Hb Alperton (HBB: c.407C>T) and IVS-I-5 (G>C) (HBB: c.92+5G>C) Mutations Presenting as a Moderate Anemia in an Indian Family.

    Science.gov (United States)

    Godbole, Koumudi G; Ramachandran, Angelina; Karkamkar, Ashwini S; Dalal, Ashwin B

    2018-04-13

    While knowledge of HBB gene mutations is necessary for offering prenatal diagnosis (PND) of β-thalassemia (β-thal), a genotype-phenotype correlation may not always be available for rare variants. We present for the first time, genotype-phenotype correlation for a compound heterozygous status with IVS-I-5 (G>C) (HBB: c.92+5G>C) and HBB: c.407C>T (Hb Alperton) mutations on the HBB gene in an Indian family. Hb Alperton is a very rare hemoglobin (Hb) variant with scant published information about its clinical presentation, especially when accompanied with another HBB gene mutation. Here we provide biochemical as well as clinical details of this variant.

  14. Genetic mutation in Korean patients of sudden cardiac arrest as a surrogating marker of idiopathic ventricular arrhythmia.

    Science.gov (United States)

    Son, Myoung Kyun; Ki, Chang-Seok; Park, Seung-Jung; Huh, June; Kim, June Soo; On, Young Keun

    2013-07-01

    Mutation or common intronic variants in cardiac ion channel genes have been suggested to be associated with sudden cardiac death caused by idiopathic ventricular tachyarrhythmia. This study aimed to find mutations in cardiac ion channel genes of Korean sudden cardiac arrest patients with structurally normal heart and to verify association between common genetic variation in cardiac ion channel and sudden cardiac arrest by idiopathic ventricular tachyarrhythmia in Koreans. Study participants were Korean survivors of sudden cardiac arrest caused by idiopathic ventricular tachycardia or fibrillation. All coding exons of the SCN5A, KCNQ1, and KCNH2 genes were analyzed by Sanger sequencing. Fifteen survivors of sudden cardiac arrest were included. Three male patients had mutations in SCN5A gene and none in KCNQ1 and KCNH2 genes. Intronic variant (rs2283222) in KCNQ1 gene showed significant association with sudden cardiac arrest (OR 4.05). Four male sudden cardiac arrest survivors had intronic variant (rs11720524) in SCN5A gene. None of female survivors of sudden cardiac arrest had SCN5A gene mutations despite similar frequencies of intronic variants between males and females in 55 normal controls. Common intronic variant in KCNQ1 gene is associated with sudden cardiac arrest caused by idiopathic ventricular tachyarrhythmia in Koreans.

  15. Relationship between ELA2 gene mutations, clinical and laboratory parameters in severe congenital and cyclic neutropenia

    Directory of Open Access Journals (Sweden)

    Farhoodi A

    2007-09-01

    Full Text Available   Background: Mutations of ELA2, the gene encoding neutrophil elastase (NE are known to be associated with cyclic neutropenia (CN and severe congenital neutropenia (SCN. However, high variability of these mutations has been reported. This study was designed to describe the analysis of the ELA2 gene, clinical manifestations and demographic characteristics in patients with CN and SCN.Methods: A series of 21 patients with CN or SCN were selected, based on SCINR criteria, from the immunology ward of the Pediatric Medicine Center, Tehran, Iran, from March 2004 to August 2005. The ELA2 gene, isolated from blood samples, was analyzed using RT-PCR and automated capillary sequencing. Informed consent was obtained under the tenets of the Helsinki Declaration and the Ethical Committee of the Tehran University of Medical Sciences.Results: Kostmann's syndrome and CN was diagnosed in three and 18 patients respectively. Of all the patients, one or two mutations were found in 18 cases (85.7%, including all three patients with SCN and 15 of the patients with CN. Exons two and four had the most mutations (eight and seven cases, respectively. Seven patients had double mutations in two distinct exons. Overall, 16 different mutations were found. At the time of presentation, the mean age of patients was 13.4 ±17.6 months, ranging from one month to seven years. Overall, 61.9% of patients had consanguineous parents. The mean absolute neutrophil count was 830.5 ±419.4 (150-2000/mm3. On average, each patient had been admitted to the hospital 2.2 ±1.6 times. The neutrophil counts of the SCN patients were significantly higher than those of the CN patients. However, there was no significant difference in the neutrophil counts between patients with mutations and those without mutations. All patients with SCN had two or more infectious complications, although the prevalence of infectious or non-infectious complications did not correlate with ELA2 mutations or the

  16. Synthesis and characterizations of AgSCN nanospheres using AgCl as the precursor

    International Nuclear Information System (INIS)

    Yang Ming; Ma Jing

    2009-01-01

    Nanospheres of AgSCN with an average radius of 30-80 nm have been prepared by a simple reaction between AgCl suspension and KSCN in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of SCN - ions to AgCl surfaces and coagulation of the growing AgSCN in producing the spherical AgSCN nanoparticles. The products were characterized by X-ray powder diffraction, transmission electron microscopy and X-ray photoelectron spectra techniques. The electrical conductivity of thin films of as-prepared AgSCN nanoparticles and polyethylene oxide (PEO) at room temperature was measured. The maximum value of electrical conductivity of as-prepared AgSCN-PEO was 1.53 x 10 -5 S cm -1 .

  17. Multiple loss-of-function mechanisms contribute to SCN5A-related familial sick sinus syndrome.

    Directory of Open Access Journals (Sweden)

    Junhong Gui

    2010-06-01

    Full Text Available To identify molecular mechanisms underlying SCN5A-related sick sinus syndrome (SSS, a rare type of SSS, in parallel experiments we elucidated the electrophysiological properties and the cell surface localization of thirteen human Na(v1.5 (hNa(v1.5 mutant channels previously linked to this disease.Mutant hNa(v1.5 channels expressed by HEK293 cells and Xenopus oocytes were investigated by whole-cell patch clamp and two-microelectrode voltage clamp, respectively. HEK293 cell surface biotinylation experiments quantified the fraction of correctly targeted channel proteins. Our data suggested three distinct mutant channel subtypes: Group 1 mutants (L212P, P1298L, DelF1617, R1632H gave peak current densities and cell surface targeting indistinguishable from wild-type hNa(v1.5. Loss-of-function of these mutants resulted from altered channel kinetics, including a negative shift of steady-state inactivation and a reduced voltage dependency of open-state inactivation. Group 2 mutants (E161K, T220I, D1275N gave significantly reduced whole-cell currents due to impaired cell surface localization (D1275N, altered channel properties at unchanged cell surface localization (T220I, or a combination of both (E161K. Group 3 mutant channels were non-functional, due to an almost complete lack of protein at the plasma membrane (T187I, W1421X, K1578fs/52, R1623X or a probable gating/permeation defect with normal surface localisation (R878C, G1408R.This study indicates that multiple molecular mechanisms, including gating abnormalities, trafficking defects, or a combination of both, are responsible for SCN5A-related familial SSS.

  18. Ela2 mutations and clinical manifestations in familial congenital neutropenia.

    Science.gov (United States)

    Shiohara, Masaaki; Shigemura, Tomonari; Saito, Shoji; Tanaka, Miyuki; Yanagisawa, Ryu; Sakashita, Kazuo; Asada, Hiroshi; Ishii, Eizaburo; Koike, Kazutoshi; Chin, Motoaki; Kobayashi, Masao; Koike, Kenichi

    2009-05-01

    Three familial cases of each of severe congenital neutropenia (SCN) and cyclic neutropenia (CN) in addition to 3 sporadic cases of SCN were analyzed for neutrophil elastase (Ela2) gene mutation. The contents of the neutrophil-specific granule proteins cathelicidin antimicrobial peptide and neutrophil gelatinase-associated lipocalin were also analyzed in SCN. Genomic DNA was extracted from the patients' peripheral blood or bone marrow, and the coding sequence of the Ela2 gene was amplified by polymerase chain reaction and subjected to direct sequencing. The contents of antimicrobial peptides were analyzed by flow cytometry. Three cases of familial SCN (P13L, R52P, and S97L), 2 of familial CN (W212stop and P110L), and 1 of sporadic SCN (V72M) were shown to have heterozygous mutations in the Ela2 gene. W212stop found in a familial CN case was a novel mutation of Ela2. Prophylactic treatment for growth factors or antibiotic prophylaxis against bacterial infection was useful for lowering the frequency of infectious episodes. Adult patients tended to have less frequent infections compared with minors in the same family. The contents of both cathelicidin antimicrobial peptide and neutrophil gelatinase-associated lipocalin were significantly reduced in SCN compared with healthy controls. Prophylaxis by growth factor or antibiotics is useful for decreasing risks of bacterial infections in SCN and CN. Adults were likely to have less frequent infections than children in familial cases of SCN and CN with the same mutation of Ela2.

  19. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions.

    Science.gov (United States)

    Lin, Guo-Wang; Lu, Ping; Zeng, Tao; Tang, Hui-Ling; Chen, Yong-Hong; Liu, Shu-Jing; Gao, Mei-Mei; Zhao, Qi-Hua; Yi, Yong-Hong; Long, Yue-Sheng

    2017-02-01

    Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mutation of the S and 3c genes in genomes of feline coronaviruses.

    Science.gov (United States)

    Oguma, Keisuke; Ohno, Megumi; Yoshida, Mayuko; Sentsui, Hiroshi

    2018-05-17

    Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments.

  1. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    NARCIS (Netherlands)

    Wolff, Markus; Johannesen, Katrine M; Hedrich, Ulrike B S; Masnada, Silvia; Rubboli, Guido; Gardella, Elena; Lesca, Gaetan; Ville, Dorothée; Milh, Mathieu; Villard, Laurent; Afenjar, Alexandra; Chantot-Bastaraud, Sandra; Mignot, Cyril; Lardennois, Caroline; Nava, Caroline; Schwarz, Niklas; Gérard, Marion; Perrin, Laurence; Doummar, Diane; Auvin, Stéphane; Miranda, Maria J; Hempel, Maja; Brilstra, Eva; Knoers, Nine; Verbeek, Nienke; van Kempen, Marjan; Braun, Kees P; Mancini, Grazia; Biskup, Saskia; Hörtnagel, Konstanze; Döcker, Miriam; Bast, Thomas; Loddenkemper, Tobias; Wong-Kisiel, Lily; Baumeister, Friedrich M; Fazeli, Walid; Striano, Pasquale; Dilena, Robertino; Fontana, Elena; Zara, Federico; Kurlemann, Gerhard; Klepper, Joerg; Thoene, Jess G; Arndt, Daniel H; Deconinck, Nicolas; Schmitt-Mechelke, Thomas; Maier, Oliver; Muhle, Hiltrud; Wical, Beverly; Finetti, Claudio; Brückner, Reinhard; Pietz, Joachim; Golla, Günther; Jillella, Dinesh; Linnet, Karen M; Charles, Perrine; Moog, Ute; Õiglane-Shlik, Eve; Mantovani, John F; Park, Kristen; Deprez, Marie; Lederer, Damien; Mary, Sandrine; Scalais, Emmanuel; Selim, Laila; Van Coster, Rudy; Lagae, Lieven; Nikanorova, Marina; Hjalgrim, Helle; Korenke, G Christoph; Trivisano, Marina; Specchio, Nicola; Ceulemans, Berten; Dorn, Thomas; Helbig, Katherine L; Hardies, Katia; Stamberger, Hannah; de Jonghe, Peter; Weckhuysen, Sarah; Lemke, Johannes R; Krägeloh-Mann, Ingeborg; Helbig, Ingo; Kluger, Gerhard; Lerche, Holger; Møller, Rikke S

    2017-01-01

    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with

  2. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    Science.gov (United States)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  3. HFE gene C282Y, H63D and S65C mutations frequency in the Transylvania region, Romania.

    Science.gov (United States)

    Trifa, Adrian P; Popp, Radu A; Militaru, Mariela S; Farcaş, Marius F; Crişan, Tania O; Gana, Ionuţ; Cucuianu, Andrei; Pop, Ioan V

    2012-06-01

    HFE-associated haemochromatosis is one of the most frequent autosomal recessive disorders in the Caucasian population. Although most of the cases are homozygous individuals for the C282Y mutation, another two mutations, H63D and S65C, have been reported to be associated with milder forms of the disease. This study was a first attempt to evaluate the distribution of these HFE gene mutations in the Transylvania region. Two-hundred and twenty-five healthy, unrelated volunteers originating from the Transylvania region, Romania, were screened for the HFE gene C282Y, H63D and S65C mutations, using molecular genetics assays (Polymerase Chain Reaction-Restriction Fragments Length Polymorphism). For the C282Y mutation, 7 heterozygotes (3.1%) were found, but no homozygous individual. In the case of the H63D mutation, 40 heterozygotes (17.8%) and 4 homozygotes (1.75%) for the mutant allele were evidenced. We found a compound heterozygous genotype (C282Y/H63D) in one individual (0.45%). Thus, the allele frequencies of the C282Y and H63D were 1.75% and 10.9%, respectively. Three individuals (1.3%) were found to harbour the S65C mutation in a heterozygous state, but none in a homozygous state: the allele frequency of the mutant allele was 0.75%. The distribution of the HFE gene C282Y, H63D and S65C mutations found in our group matches the tendencies observed in other European countries: a decreasing gradient from Northern to Southern Europe for the C282Y mutation; high frequency for the H63D mutation, and low frequency for the S65C mutation in most of the countries.

  4. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    DEFF Research Database (Denmark)

    Wolff, Markus; Johannesen, Katrine M.; Hedrich, Ulrike B. S.

    2017-01-01

    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infa...

  5. The somatic FAH C.1061C>A change counteracts the frequent FAH c.1062+5G>A mutation and permits U1snRNA-based splicing correction.

    Science.gov (United States)

    Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario

    2018-05-01

    In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.

  6. Inherited biallelic CSF3R mutations in severe congenital neutropenia.

    Science.gov (United States)

    Triot, Alexa; Järvinen, Päivi M; Arostegui, Juan I; Murugan, Dhaarini; Kohistani, Naschla; Dapena Díaz, José Luis; Racek, Tomas; Puchałka, Jacek; Gertz, E Michael; Schäffer, Alejandro A; Kotlarz, Daniel; Pfeifer, Dietmar; Díaz de Heredia Rubio, Cristina; Ozdemir, Mehmet Akif; Patiroglu, Turkan; Karakukcu, Musa; Sánchez de Toledo Codina, José; Yagüe, Jordi; Touw, Ivo P; Unal, Ekrem; Klein, Christoph

    2014-06-12

    Severe congenital neutropenia (SCN) is characterized by low numbers of peripheral neutrophil granulocytes and a predisposition to life-threatening bacterial infections. We describe a novel genetic SCN type in 2 unrelated families associated with recessively inherited loss-of-function mutations in CSF3R, encoding the granulocyte colony-stimulating factor (G-CSF) receptor. Family A, with 3 affected children, carried a homozygous missense mutation (NM_000760.3:c.922C>T, NP_000751.1:p.Arg308Cys), which resulted in perturbed N-glycosylation and aberrant localization to the cell surface. Family B, with 1 affected infant, carried compound heterozygous deletions provoking frameshifts and premature stop codons (NM_000760.3:c.948_963del, NP_000751.1:p.Gly316fsTer322 and NM_000760.3:c.1245del, NP_000751.1:p.Gly415fsTer432). Despite peripheral SCN, all patients had morphologic evidence of full myeloid cell maturation in bone marrow. None of the patients responded to treatment with recombinant human G-CSF. Our study highlights the genetic and morphologic SCN variability and provides evidence both for functional importance and redundancy of G-CSF receptor-mediated signaling in human granulopoiesis. © 2014 by The American Society of Hematology.

  7. Copper diffusion in In2S3 and charge separation at In2S3/CuSCN and TiO2/In2S3 interfaces

    International Nuclear Information System (INIS)

    Juma, Albert Owino

    2013-01-01

    The concept of inorganic nanostructured solar cells consists of a very thin absorber layer sandwiched between highly structured electron and hole conductors. When a TiO 2 /In 2 S 3 /CuSCN nanocomposite heterostructure is illuminated with light, photo-generated electrons in In 2 S 3 can be injected into the conduction band of TiO 2 and holes into the valence band of CuSCN. Charge transfer at the interfaces is limited by the deposition parameters, band alignment and diffusion of Cu from CuSCN into In 2 S 3 , which was the focus of this work. TiO 2 nanoparticles were screen printed onto SnO 2 :F (FTO)-coated glass substrates to give a layer of nanoporous (np) TiO 2 . In 2 S 3 layers were deposited by thermal evaporation or ion layer gas reaction (ILGAR) methods producing Cl-free (In(acac) 3 precursor) and Cl-containing (InCl 3 precursor) layers. A spray-spin method was developed for deposition of CuSCN onto In 2 S 3 . Diffusion of Cu into In 2 S 3 layers was investigated by Rutherford backscattering spectrometry (RBS) while charge transport mechanisms were studied with surface photovoltage (SPV) technique in the fixed capacitor configuration. The activation energy (Ea) for Cu diffusion in thermally evaporated and Cl-free ILGAR In 2 S 3 layers was 0.30 and 0.24 eV, respectively but increased to between 0.72 and 0.78 eV for Cl-containing In 2 S 3 with residual Cl concentrations of 7.8 - 13.8 at.%. The diffusion prefactor (D 0 ) was six orders of magnitude higher for Cl-containing compared to Cl-free layers. The relationship between E a and D 0 was described by the Meyer-Neldel rule with a Meyer-Neldel energy of 40 meV. The presence of Cl has no significant influence on the structural properties of In 2 S 3 but resulted in a modified diffusion mechanism for Cu diffusion. The photovoltage of In 2 S 3 /CuSCN samples decreased after annealing for longer than 2 min at 200 C. A defect band was formed near the interface where holes accumulated and electrons tunneled through

  8. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion

    Science.gov (United States)

    House, Carrie D.; Vaske, Charles J.; Schwartz, Arnold M.; Obias, Vincent; Frank, Bryan; Luu, Truong; Sarvazyan, Narine; Irby, Rosalyn; Strausberg, Robert L.; Hales, Tim G.; Stuart, Joshua M.; Lee, Norman H.

    2010-01-01

    Voltage-gated Na+ channels (VGSCs) have been implicated in the metastatic potential of human breast, prostate and lung cancer cells. Specifically, the SCN5A gene encoding the VGSC isotype Nav1.5 has been defined as a key driver of human cancer cell invasion. In this study, we examined the expression and function of VGSCs in a panel of colon cancer cell lines by electrophysiological recordings. Na+ channel activity and invasive potential were inhibited pharmacologically by tetrodotoxin or genetically by siRNAs specifically targeting SCN5A. Clinical relevance was established by immunohistochemistry of patient biopsies, where there was strong Nav1.5 protein staining in colon cancer specimens but little to no staining in matched-paired normal colon tissues. We explored the mechanism of VGSC-mediated invasive potential on the basis of reported links between VGSC activity and gene expression in excitable cells. Probabilistic modeling of loss-of-function screens and microarray data established an unequivocal role of VGSC SCN5A as a high level regulator of a colon cancer invasion network, involving genes that encompass Wnt signaling, cell migration, ectoderm development, response to biotic stimulus, steroid metabolic process and cell cycle control. siRNA-mediated knockdown of predicted downstream network components caused a loss of invasive behavior, demonstrating network connectivity and its function in driving colon cancer invasion. PMID:20651255

  9. Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant

    Directory of Open Access Journals (Sweden)

    Slat Emily A

    2007-07-01

    Full Text Available Abstract Background Voltage-gated Na+ channel β1 (Scn1b subunits are multi-functional proteins that play roles in current modulation, channel cell surface expression, cell adhesion, cell migration, and neurite outgrowth. We have shown previously that β1 modulates electrical excitability in vivo using a mouse model. Scn1b null mice exhibit spontaneous seizures and ataxia, slowed action potential conduction, decreased numbers of nodes of Ranvier in myelinated axons, alterations in nodal architecture, and differences in Na+ channel α subunit localization. The early death of these mice at postnatal day 19, however, make them a challenging model system to study. As a first step toward development of an alternative model to investigate the physiological roles of β1 subunits in vivo we cloned two β1-like subunit cDNAs from D. rerio. Results Two β1-like subunit mRNAs from zebrafish, scn1ba_tv1 and scn1ba_tv2, arise from alternative splicing of scn1ba. The deduced amino acid sequences of Scn1ba_tv1 and Scn1ba_tv2 are identical except for their C-terminal domains. The C-terminus of Scn1ba_tv1 contains a tyrosine residue similar to that found to be critical for ankyrin association and Na+ channel modulation in mammalian β1. In contrast, Scn1ba_tv2 contains a unique, species-specific C-terminal domain that does not contain a tyrosine. Immunohistochemical analysis shows that, while the expression patterns of Scn1ba_tv1 and Scn1ba_tv2 overlap in some areas of the brain, retina, spinal cord, and skeletal muscle, only Scn1ba_tv1 is expressed in optic nerve where its staining pattern suggests nodal expression. Both scn1ba splice forms modulate Na+ currents expressed by zebrafish scn8aa, resulting in shifts in channel gating mode, increased current amplitude, negative shifts in the voltage dependence of current activation and inactivation, and increases in the rate of recovery from inactivation, similar to the function of mammalian β1 subunits. In

  10. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    Science.gov (United States)

    Parsons, Michael J.; Brancaccio, Marco; Sethi, Siddharth; Maywood, Elizabeth S.; Satija, Rahul; Edwards, Jessica K.; Jagannath, Aarti; Couch, Yvonne; Finelli, Mattéa J.; Smyllie, Nicola J.; Esapa, Christopher; Butler, Rachel; Barnard, Alun R.; Chesham, Johanna E.; Saito, Shoko; Joynson, Greg; Wells, Sara; Foster, Russell G.; Oliver, Peter L.; Simon, Michelle M.; Mallon, Ann-Marie; Hastings, Michael H.; Nolan, Patrick M.

    2015-01-01

    Summary We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms. PMID:26232227

  11. Posterior microphthalmia and nanophthalmia in Tunisia caused by a founder c.1059_1066insC mutation of the PRSS56 gene.

    Science.gov (United States)

    Said, Mariem Ben; Chouchène, Ebtissem; Salem, Salma Ben; Daoud, Kods; Largueche, Leila; Bouassida, Walid; Benzina, Zeineb; Ayadi, Hammadi; Söderkvist, Peter; Matri, Leila; Hmani-Aifa, Mounira

    2013-10-10

    Congenital microphthalmia (CMIC) is a common developmental ocular disorder characterized by a small, and sometimes malformed, eye. Posterior microphthalmia (PM) and nanophthalmia are two rare subtypes of isolated CMIC characterized by extreme hyperopia due to short axial length and elevated lens/eye volume ratio. While nanophthalmia is associated with a reduced size in both anterior and posterior segments, PM involves a normal-size anterior chamber but a small posterior segment. Several genes encoding transcription and non-transcription regulators have been identified in different forms of CMIC. MFRP gene mutations have, for instance, been associated with nanophthalmia, and mutations in the recently identified PRSS56 gene have been linked to PM. So far, these two forms of CMIC have been associated with 9 mutations in PRSS56. Of particular interest, a c.1059_1066insC mutation has recently been reported in four Tunisian families with isolated PM and one Tunisian family with nanophthalmia. Here, we performed a genome-wide scan using a high density single nucleotide polymorphism (SNP) array 50 K in a large consanguineous Tunisian family (PM7) affected with PM and identified the same causative disease mutation. A total of 24 polymorphic markers spanning the PRSS56 gene in 6 families originating from different regions of Tunisia were analyzed to investigate the origin of the c.1059_1066insC mutation and to determine whether it arose in a common ancestor. A highly significant disease-associated haplotype, spanning across the 146 kb of the 2q37.1 chromosome, was conserved in those families, suggesting that c.1059_1066insC arose from a common founder. The age of the mutation in this haplotype was estimated to be around 1,850 years. The identification of such 'founder effects' may greatly simplify diagnostic genetic screening and lead to better prognostic counseling. © 2013 Elsevier B.V. All rights reserved.

  12. Hot-spot KIF5A mutations cause familial ALS.

    Science.gov (United States)

    Brenner, David; Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Sendtner, Michael; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H

    2018-01-12

    frequency = 3.40%; P = 1.28 × 10-7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

  13. Investigação de variantes gênicas de canais iônicos em pacientes com síndrome do QT longo Investigación de variantes génicas de canales iónicos en pacientes con síndrome del QT largo Investigation of ion channel gene variants in patients with long QT syndrome

    Directory of Open Access Journals (Sweden)

    Ernesto Curty

    2011-03-01

    ético y mejor manejo de la enfermedad. OBJETIVO: Investigación molecular y análisis computacional de variantes génicas de KCNQ1, KCNH2 y SCN5A asociadas a la SQTL en familias portadoras de la enfermedad. MÉTODOS: Las regiones codificantes de los genes KCNQ1, KCNH2 y SCN5A de pacientes con SQTL y familiares fueron secuenciadas y analizadas utilizando el software Geneious Pro®. RESULTADOS: Fueron investigadas dos familias con criterios clínicos para SQTL. La probanda de la Familia A presentaba QT C = 562 ms, Escore de Schwartz = 5,5. El genotipaje identificó la mutación G1714A en el gen KCNH2. Fue observado QT C = 521 ± 42 ms en los familiares portadores de la mutación contra QT C = 391 ± 21 ms de no portadores. La probanda de la Familia B presentaba QT C = 551 ms, Escore de Schwartz = 5. El genotipaje identificó la mutación G1600T, en el mismo gen. El análisis de los familiares reveló QT C = 497 ± 42 ms en los portadores de la mutación, contra QT C = 404 ± 29 ms en los no portadores. CONCLUSIÓN: Fueron encontradas dos variantes génicas previamente asociadas a la SQTL en dos familias con diagnóstico clínico de SQTL. En todos los familiares portadores de las mutaciones fue observada la prolongación del intervalo QT. Fue desarrollada una estrategia para identificación de variantes de los genes KCNQ1, KCNH2 y SCN5A, posibilitando el entrenamiento de personal técnico para futura aplicación en la rutina diagnóstica.BACKGROUND: The long QT syndrome (LQTS is an inherited arrhythmia syndrome with increased QT interval and risk of sudden death. Mutations in genes KCNQ1, KCNH2 and SCN5A account for 90% of cases with genotype determined, and genotyping is informative for genetic counseling and better disease management. OBJECTIVE: Molecular investigation and computational analysis of gene variants of KCNQ1, KCNH2 and SCN5A associated with LQTS, in families with the disease. METHODS: The coding regions of genes KCNQ1, KCNH2 and SCN5A in patients with LQTS and

  14. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, H. L.; Bink-Boelkens, M. T.; Bezzina, C. R.; Viswanathan, P. C.; Beaufort-Krol, G. C.; van Tintelen, P. J.; van den Berg, M. P.; Wilde, A. A.; Balser, J. R.

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening; however, a

  15. Religious conversion and the problem of commitment in Livland province, 1850s-1860s / Daniel C. Ryan

    Index Scriptorium Estoniae

    Ryan, Daniel C. 1972-

    2007-01-01

    Vene õigeusust taganemisest Liivimaal 1850.-1860. aastail. Preestrite raportid kõrgemalseisvatele organitele kujundasid võimude teadmised õigeusu kiriku positsioonist ja Balti provintside talurahva olukorrast vahetult enne venestusperioodi algust

  16. The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000

    DEFF Research Database (Denmark)

    Bayat, Allan; Hjalgrim, Helle; Møller, Rikke S.

    2015-01-01

    Dravet syndrome is a severe infantile-onset epileptic encephalopathy associated with mutations in the sodium channel alpha-1 subunit gene SCN1A. We aimed to describe the incidence of Dravet syndrome in the Danish population. Based on a 6-year birth cohort from 2004 to 2009, we propose an incidenc...

  17. Prevalence of H63D, S65C and C282Y hereditary hemochromatosis gene mutations in Slovenian population by an improved high-throughput genotyping assay

    Directory of Open Access Journals (Sweden)

    Rupreht Ruth

    2007-11-01

    Full Text Available Abstract Background Hereditary hemochromatosis (HH is a common genetic disease characterized by excessive iron overload that leads to multi-organ failure. Although the most prevalent genotype in HH is homozygosity for C282Y mutation of the HFE gene, two additional mutations, H63D and S65C, appear to be associated with a milder form of HH. The aim of this study was to develop a high-throughput assay for HFE mutations screening based on TaqMan technology and to determine the frequencies of HFE mutations in the Slovenian population. Methods Altogether, 1282 randomly selected blood donors from different Slovenian regions and 21 HH patients were analyzed for the presence of HFE mutations by an in-house developed real-time PCR assay based on TaqMan technology using shorter non-interfering fluorescent single nucleotide polymorphism (SNP-specific MGB probes. The assay was validated by RFLP analysis and DNA sequencing. Results The genotyping assay of the H63D, S65C and C282Y mutations in the HFE gene, based on TaqMan technology proved to be fast, reliable, with a high-throughput capability and 100% concordant with genotypes obtained by RFLP and DNA sequencing. The observed frequency of C282Y homozygotes in the group of HH patients was only 48%, others were of the heterogeneous HFE genotype. Among 1282 blood donors tested, the observed H63D, S65C and C282Y allele frequency were 12.8% (95% confidence interval (CI 11.5 – 14.2%, 1.8% (95% CI 1.4 – 2.5% and 3.6% (95% CI 3.0 – 4.5%, respectively. Approximately 33% of the tested subjects had at least one of the three HH mutations, and 1% of them were C282Y homozygotes or compound heterozygotes C282Y/H63D or C282Y/S65C, presenting an increased risk for iron overload disease. A significant variation in H63D allele frequency was observed for one of the Slovenian regions. Conclusion The improved real-time PCR assay for H63D, S65C and C282Y mutations detection is accurate, fast, cost-efficient and ready for

  18. A sodium-channel mutation causes isolated cardiac conduction disease

    NARCIS (Netherlands)

    Tan, HL; Bink-Boelkens, MTE; Bezzina, CR; Viswanathan, PC; Beaufort-Krol, GCM; van Tintelen, PJ; van den Berg, MP; Wilde, AAM; Balser, [No Value

    2001-01-01

    Cardiac conduction disorders slow the heart rhythm and cause disability in millions of people worldwide. Inherited mutations in SCN5A, the gene encoding the human cardiac sodium (Na+) channel, have been associated with rapid heart rhythms that occur suddenly and are life-threatening(1-3); however, a

  19. Analysis of mutations in 7 genes associated with neuronal excitability and synaptic transmission in a cohort of children with non-syndromic infantile epileptic encephalopathy.

    Directory of Open Access Journals (Sweden)

    Anna Ka-Yee Kwong

    Full Text Available Epileptic Encephalopathy (EE is a heterogeneous condition in which cognitive, sensory and/or motor functions deteriorate as a consequence of epileptic activity, which consists of frequent seizures and/or major interictal paroxysmal activity. There are various causes of EE and they may occur at any age in early childhood. Genetic mutations have been identified to contribute to an increasing number of children with early onset EE which had been previously considered as cryptogenic. We identified 26 patients with Infantile Epileptic Encephalopathy (IEE of unknown etiology despite extensive workup and without any specific epilepsy syndromic phenotypes. We performed genetic analysis on a panel of 7 genes (ARX, CDKL5, KCNQ2, PCDH19, SCN1A, SCN2A, STXBP1 and identified 10 point mutations [ARX (1, CDKL5 (3, KCNQ2 (2, PCDH19 (1, SCN1A (1, STXBP1 (2] as well as one microdeletion involving both SCN1A and SCN2A. The high rate (42% of mutations suggested that genetic testing of this IEE panel of genes is recommended for cryptogenic IEE with no etiology identified. These 7 genes are associated with channelopathies or synaptic transmission and we recommend early genetic testing if possible to guide the treatment strategy.

  20. Mutations in the C-terminus of CDKL5: proceed with caution.

    Science.gov (United States)

    Diebold, Bertrand; Delépine, Chloé; Gataullina, Svetlana; Delahaye, Andrée; Nectoux, Juliette; Bienvenu, Thierry

    2014-02-01

    Mutations in the cyclin-dependent kinase-like 5 (CDKL5) gene have been described in girls with Rett-like features and early-onset epileptic encephalopathy including infantile spasms. Milder phenotypes have been associated with sequence variations in the 3'-end of the CDKL5 gene. Identification of novel CDKL5 transcripts coding isoforms characterized by an altered C-terminal region strongly questions the eventual pathogenicity of sequence variations located in the 3'-end of the gene. We investigated a group of 30 female patients with a clinically heterogeneous phenotype ranging from nonspecific intellectual disability to a severe neonatal encephalopathy and identified two heterozygous CDKL5 missense mutations, the previously reported p.Val999Met and the novel mutation p.Pro944Thr. However, these mutations have also been detected in their healthy father. Considering our results and all data from the literature, we suggest that genetic variations beyond the codon 938 in human CDKL5115 protein may have minor or no significance. It is probable that screening of exons 19-21 of the CDKL5 gene is not useful in practical molecular diagnosis of atypical Rett syndrome.

  1. Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c1 -xM gxN

    Science.gov (United States)

    Saha, Bivas; Perez-Taborda, Jaime Andres; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Sands, Timothy D.

    2018-02-01

    Scandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n -type semiconductors and exhibit a large thermoelectric power factor of ˜3.5 ×10-3W /m -K2 at 600-800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type S c1 -xM gxN thin film alloys with low M gxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type S c1 -xM gxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type S c1 -xM gxN thin film alloys exhibit a maximum thermoelectric power factor of ˜0.8 ×10-3W /m -K2 at 850 K. The thermoelectric properties are tunable by adjusting the M gxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n -type ScN to inside the valence band in highly hole-doped p -type S c1 -xM gxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of S c1 -xM gxN thin-film alloys, without affecting

  2. Crystal structure, NMR study, dc-conductivity and dielectric relaxation studies of a new compound [C2H10N2]Cd(SCN2Cl2

    Directory of Open Access Journals (Sweden)

    Gargouri M.

    2012-06-01

    Full Text Available The crystal structure, the solid NMR spectroscopy and the complex impedance study have been carried out on [C2H10N2]CdCl2(SCN2. Characterization by single crystal X-ray crystallography shows that the cadmium atoms have à 2N2S2Cl hexa-coordination sphere, exhibiting pseudo-octahedral geometry. The cadmium atoms are bridged by two thiocyanate ions generating 1-D polymeric-chains. These chains are themselves interconnected by means of N-H…Cl(NCS hydrogen bonds originating from the organic cation [(NH32(CH22]2+. 111Cd isotropic chemical shifts span a range of 268ppm. The cadmium atom exhibits multiplets that result from 111Cd-14N spin-spin coupling. Examination of 111Cd and 13C MAS line shapes shows direct measurement of the indirect spin-spin coupling constant 2J(111Cd, 14N = 105Hz and the dipolar coupling constant of 1381Hz . Impedance spectroscopy measurements of [C2H10N2]CdCl2(SCN2 have been studied from 209Hz to 5 MHz over the temperature range 300-370 K. The Cole-Cole (Z” versus Z’ plots are fitted to two equivalent circuits models. The formalism of complex permittivity and impedance were employed to analyze the experimental data. The dc conductivity follows the Arrhenius relation with an activation energy Ea = 0.54 (3 eV.

  3. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes

    DEFF Research Database (Denmark)

    Schubert, J.; Siekierska, A.; Langlois, M.

    2014-01-01

    Febrile seizures affect 2-4% of all children(1) and have a strong genetic component(2). Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2)(3-5) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding...... syntaxin-1B(6), that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees(7,8) identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations...... and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature...

  4. Prevalence of C282Y, H63D, and S65C mutations in hereditary HFE-hemochromatosis gene in Lithuanian population.

    Science.gov (United States)

    Kucinskas, Laimutis; Juzenas, Simonas; Sventoraityte, Jurgita; Cedaviciute, Ruta; Vitkauskiene, Astra; Kalibatas, Vytenis; Kondrackiene, Jurate; Kupcinskas, Limas

    2012-04-01

    HFE-hemochromatosis is a common autosomal recessive disease caused by HFE gene mutations and characterized as iron overload and failure of different organs. The aim of this study was to determine the prevalence of C282Y (c.845 G>A), H63D (c.187 C>G), and S65C (c.193A>T) alleles of HFE gene in the Lithuanian population. One thousand and eleven healthy blood donors of Lithuanian nationality were examined in four different ethnic Lithuanian regions to determine HFE gene alleles and genotype frequencies. The samples of DNA were analyzed for the presence of restriction fragment length polymorphism and validated by DNA sequencing. Among 1,011 blood donors tested, the frequency of C282Y, H63D, and S65C alleles were 2.6%, 15.9%, and 1.9%, respectively. One third of the tested subjects (n = 336) had at least one of the C282Y or H63D HFE gene mutations. The screening of Lithuanian blood donors has detected 13 (1.3%) subjects with a genotype C282Y/C282Y or C282Y/H63D responsible for the development of HFE-hemochromatosis. The prevalence of C282Y mutation was significantly higher among the inhabitants of Zemaitija (Somogitia) at the Baltic Sea area (5.9%) in comparison to the regions of continental part of Lithuania (2.4% in Dzukija, 2.3% in Aukstaitija, and 2% in Suvalkija, p HFE gene mutations in ethnic Lithuanians showed that the frequencies of H63D, C282Y, and S65C of HFE gene alleles are similar to the other North-Eastern Europeans, especially in the Baltic region (Estonia, Latvia), Poland, and part of Russia (Moscow region).

  5. Infantile Pain Episodes Associated with Novel Nav1.9 Mutations in Familial Episodic Pain Syndrome in Japanese Families.

    Science.gov (United States)

    Okuda, Hiroko; Noguchi, Atsuko; Kobayashi, Hatasu; Kondo, Daiki; Harada, Kouji H; Youssefian, Shohab; Shioi, Hirotomo; Kabata, Risako; Domon, Yuki; Kubota, Kazufumi; Kitano, Yutaka; Takayama, Yasunori; Hitomi, Toshiaki; Ohno, Kousaku; Saito, Yoshiaki; Asano, Takeshi; Tominaga, Makoto; Takahashi, Tsutomu; Koizumi, Akio

    2016-01-01

    Painful peripheral neuropathy has been correlated with various voltage-gated sodium channel mutations in sensory neurons. Recently Nav1.9, a voltage-gated sodium channel subtype, has been established as a genetic influence for certain peripheral pain syndromes. In this study, we performed a genetic study in six unrelated multigenerational Japanese families with episodic pain syndrome. Affected participants (n = 23) were characterized by infantile recurrent pain episodes with spontaneous mitigation around adolescence. This unique phenotype was inherited in an autosomal-dominant mode. Linkage analysis was performed for two families with 12 affected and nine unaffected members, and a single locus was identified on 3p22 (LOD score 4.32). Exome analysis (n = 14) was performed for affected and unaffected members in these two families and an additional family. Two missense variants were identified: R222H and R222S in SCN11A. Next, we generated a knock-in mouse model harboring one of the mutations (R222S). Behavioral tests (Hargreaves test and cold plate test) using R222S and wild-type C57BL/6 (WT) mice, young (8-9 weeks old; n = 10-12 for each group) and mature (36-38 weeks old; n = 5-6 for each group), showed that R222S mice were significantly (p pain. The mouse model developed here will be useful for drug screening for familial episodic pain syndrome associated with SCN11A mutations.

  6. Thermoelectric properties of epitaxial ScN films deposited by reactive magnetron sputtering onto MgO(001) substrates

    Science.gov (United States)

    Burmistrova, Polina V.; Maassen, Jesse; Favaloro, Tela; Saha, Bivas; Salamat, Shuaib; Rui Koh, Yee; Lundstrom, Mark S.; Shakouri, Ali; Sands, Timothy D.

    2013-04-01

    Epitaxial ScN(001) thin films were grown on MgO(001) substrates by dc reactive magnetron sputtering. The deposition was performed in an Ar/N2 atmosphere at 2 × 10-3 Torr at a substrate temperature of 850 °C in a high vacuum chamber with a base pressure of 10-8 Torr. In spite of oxygen contamination of 1.6 ± 1 at. %, the electrical resistivity, electron mobility, and carrier concentration obtained from a typical film grown under these conditions by room temperature Hall measurements are 0.22 mΩ cm, 106 cm2 V-1 s-1, and 2.5 × 1020 cm-3, respectively. These films exhibit remarkable thermoelectric power factors of 3.3-3.5 × 10-3 W/mK2 in the temperature range of 600 K to 840 K. The cross-plane thermal conductivity is 8.3 W/mK at 800 K yielding an estimated ZT of 0.3. Theoretical modeling of the thermoelectric properties of ScN calculated using a mean-free-path of 23 nm at 300 K is in very good agreement with the experiment. These results also demonstrate that further optimization of the power factor of ScN is possible. First-principles density functional theory combined with the site occupancy disorder technique was used to investigate the effect of oxygen contamination on the electronic structure and thermoelectric properties of ScN. The computational results suggest that oxygen atoms in ScN mix uniformly on the N site forming a homogeneous solid solution alloy. Behaving as an n-type donor, oxygen causes a shift of the Fermi level in ScN into the conduction band without altering the band structure and the density of states.

  7. A CTRP5 gene S163R mutation knock-in mouse model for late-onset retinal degeneration.

    Science.gov (United States)

    Chavali, Venkata R M; Khan, Naheed W; Cukras, Catherine A; Bartsch, Dirk-Uwe; Jablonski, Monica M; Ayyagari, Radha

    2011-05-15

    Late-onset retinal macular degeneration (L-ORD) is an autosomal dominant inherited disorder caused by a single missense mutation (S163R) in the CTRP5/C1QTNF5 protein. Early phenotypic features of L-ORD include: dark adaptation abnormalities, nyctalopia, and drusen deposits in the peripheral macular region. Apart from posterior segment abnormalities, these patients also develop abnormally long anterior lens zonules. In the sixth decade of life the rod and cone function declines, accompanied by electroretinogram (ERG) abnormalities. Some patients also develop choroidal neovascularization and glaucoma. In order to understand the disease pathology and mechanisms involved in retinal dystrophy, we generated a knock-in (Ctrp5(+/-)) mouse model carrying the disease-associated mutation in the mouse Ctrp5/C1QTNF5 gene. These mice develop slower rod-b wave recovery consistent with early dark adaptation abnormalities, accumulation of hyperautofluorescence spots, retinal pigment epithelium abnormalities, drusen, Bruch's membrane abnormalities, loss of photoreceptors, and retinal vascular leakage. The Ctrp5(+/-) mice, which have most of the pathological features of age-related macular degeneration, are unique and may serve as a valuable model both to understand the molecular pathology of late-onset retinal degeneration and to evaluate therapies.

  8. Complement factor 5 (C5) p.A252T mutation is prevalent in, but not restricted to, sub-Saharan Africa: implications for the susceptibility to meningococcal disease.

    Science.gov (United States)

    Franco-Jarava, C; Comas, D; Orren, A; Hernández-González, M; Colobran, R

    2017-08-01

    Complement C5 deficiency (C5D) is a rare primary immunodeficiency associated with recurrent infections, particularly meningitis, by Neisseria species. To date, studies to elucidate the molecular basis of hereditary C5D have included fewer than 40 families, and most C5 mutations (13 of 17) have been found in single families. However, the recently described C5 p.A252T mutation is reported to be associated with approximately 7% of meningococcal disease cases in South Africa. This finding raises the question of whether the mutation may be prevalent in other parts of Africa or other continental regions. The aim of this study was to investigate the prevalence of C5 p.A252T in Africa and other regions and discuss the implications for prophylaxis against meningococcal disease. In total, 2710 samples from healthy donors within various populations worldwide were analysed by quantitative polymerase chain reaction (qPCR) assay to detect the C5 p.A252T mutation. Eleven samples were found to be heterozygous for p.A252T, and nine of these samples were from sub-Saharan African populations (allele frequency 0·94%). Interestingly, two other heterozygous samples were from individuals in populations outside Africa (Israel and Pakistan). These findings, together with data from genomic variation databases, indicate a5-2% prevalence of the C5 p.A252T mutation in heterozygosity in sub-Saharan Africa. Therefore, this mutation may have a relevant role in meningococcal disease susceptibility in this geographical area. © 2017 British Society for Immunology.

  9. Cognitive performance as a zeitgeber: cognitive oscillators and cholinergic modulation of the SCN entrain circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Howard J Gritton

    Full Text Available The suprachiasmatic nucleus (SCN is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior.

  10. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yong Shee Meng, Alvin [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia); Zainal, Norzaini, E-mail: norzaini@usm.my [Nano Optoelectronics Research and Laboratory, Universiti Sains Malaysia, sains@usm, Persiaran Bukit Jambul, 11900, Bayan Lepas, Penang (Malaysia); Hassan, Zainuriah; Ibrahim, Kamarulazizi [Institute of Nano Optoelectronics Research and Technology (INOR), sains@usm, Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang (Malaysia)

    2015-12-30

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH{sub 3} annealing thermal has been successfully demonstrated. • NH{sub 3} annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH{sub 3}) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  11. Formation of scandium nitride (ScN) layer on gallium arsenide (GaAs) substrate using a combined technique of e-beam evaporator and ammonia annealing treatment

    International Nuclear Information System (INIS)

    Yong Shee Meng, Alvin; Zainal, Norzaini; Hassan, Zainuriah; Ibrahim, Kamarulazizi

    2015-01-01

    Graphical abstract: - Highlights: • Forming ScN layer using electron e-beam evaporator with successive NH_3 annealing thermal has been successfully demonstrated. • NH_3 annealing played the role in changing the grain structure of the ScN layer. • The existence of Sc−N bonds was confirmed by XPS measurement. • The 900 °C annealed ScN layer showed the best structural and optical characteristics. • ScN layer annealed at 980 °C exhibited poor structural and optical characteristics. - Abstract: A demonstration on a new technique of growing ScN using electron beam (e-beam) evaporator, coupled with successive ammonia (NH_3) annealing treatment is presented in this paper. The annealing temperature was varied at 750, 800, 850, 900 and 980 °C in order to obtain the best ScN layer. It was found that as the annealing temperature increased, the surface morphology of the ScN layer changed and ScN grains formed abundantly on the surface. The best surface of ScN layer was found in the 900 °C annealed sample. However, the roughness of the ScN increased with temperature. The photoluminescence (PL) peak of the near-to-band-edge (NBE) of ScN was observable in all samples and its intensity was the highest in the 900 °C annealed sample. Note that when the annealing treatment was conducted at 980 °C, the GaN PL peak is observable. Raman peaks of TO(X) of ScN were much evident at the annealing temperature above 900 °C. The formation of Sc−N bonds was confirmed by X-ray spectroscopy (XPS) measurement. In the end of this work, we propose that the formation of ScN using the above techniques was successful, with thermal annealing at the temperature of 900 °C.

  12. Novel TGM5 mutations in acral peeling skin syndrome.

    Science.gov (United States)

    van der Velden, Jaap J A J; van Geel, Michel; Nellen, Ruud G L; Jonkman, Marcel F; McGrath, John A; Nanda, Arti; Sprecher, Eli; van Steensel, Maurice A M; McLean, W H Irwin; Cassidy, Andrew J

    2015-04-01

    Acral peeling skin syndrome (APSS, MIM #609796) is a rare autosomal recessive disorder characterized by superficial exfoliation and blistering of the volar and dorsal aspects of hands and feet. The level of separation is at the junction of the stratum granulosum and stratum corneum. APSS is caused by mutations in the TGM5 gene encoding transglutaminase-5, which is important for structural integrity of the outermost epidermal layers. The majority of patients originate from Europe and carry a p.(Gly113Cys) mutation in TGM5. In this study, we report both European and non-European families carrying other mutations in the TGM5 gene. In 5 patients, we found 3 novel mutations: c.1001+2_1001+3del, c.1171G>A and c.1498C>T. To confirm their pathogenicity, we performed functional analyses with a transglutaminase activity assay, determined alternative splicing by reverse-transcribed PCR analysis and used databases and in silico prediction tools. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Altered Gene-Regulatory Function of KDM5C by a Novel Mutation Associated With Autism and Intellectual Disability.

    Science.gov (United States)

    Vallianatos, Christina N; Farrehi, Clara; Friez, Michael J; Burmeister, Margit; Keegan, Catherine E; Iwase, Shigeki

    2018-01-01

    Intellectual disability (ID) affects up to 2% of the population world-wide and often coincides with other neurological conditions such as autism spectrum disorders. Mutations in KDM5C cause Mental Retardation, X-linked, Syndromic, Claes-Jensen type (MRXSCJ, OMIM #300534) and are one of the most common causes of X-linked ID. KDM5C encodes a histone demethylase for di- and tri-methylated histone H3 lysine 4 (H3K4me2/3), which are enriched in transcriptionally engaged promoter regions. KDM5C regulates gene transcription; however, it remains unknown whether removal of H3K4me is fully responsible for KDM5C-mediated gene regulation. Most mutations functionally tested to date result in reduced enzymatic activity of KDM5C, indicating loss of demethylase function as the primary mechanism underlying MRXSCJ. Here, we report a novel KDM5C mutation, R1115H, identified in an individual displaying MRXSCJ-like symptoms. The carrier mother's cells exhibited a highly skewed X-inactivation pattern. The KDM5C-R1115H substitution does not have an impact on enzymatic activity nor protein stability. However, when overexpressed in post-mitotic neurons, KDM5C-R1115H failed to fully suppress expression of target genes, while the mutant also affected expression of a distinct set of genes compared to KDM5C-wildtype. These results suggest that KDM5C may have non-enzymatic roles in gene regulation, and alteration of these roles contributes to MRXSCJ in this patient.

  14. IFITM5 mutations and osteogenesis imperfecta.

    Science.gov (United States)

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  15. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS) Gene.

    Science.gov (United States)

    Nakajima, Yoko; Meijer, Judith; Zhang, Chunhua; Wang, Xu; Kondo, Tomomi; Ito, Tetsuya; Dobritzsch, Doreen; Van Kuilenburg, André B P

    2016-01-12

    Dihydropyrimidinase (DHP) deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R) in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  16. Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression.

    Science.gov (United States)

    Kwan, Patrick; Poon, Wai Sang; Ng, Ho-Keung; Kang, David E; Wong, Virginia; Ng, Ping Wing; Lui, Colin H T; Sin, Ngai Chuen; Wong, Ka S; Baum, Larry

    2008-11-01

    Many antiepileptic drugs (AEDs) prevent seizures by blocking voltage-gated brain sodium channels. However, treatment is ineffective in 30% of epilepsy patients, which might, at least in part, result from polymorphisms of the sodium channel genes. We investigated the association of AED responsiveness with genetic polymorphisms and correlated any association with mRNA expression of the neuronal sodium channels. We performed genotyping of tagging and candidate single nucleotide polymorphisms (SNPs) of SCN1A, 2A, and 3A in 471 Chinese epilepsy patients (272 drug responsive and 199 drug resistant). A total of 27 SNPs were selected based on the HapMap database. Genotype distributions in drug-responsive and drug-resistant patients were compared. SCN2A mRNA was quantified by real-time PCR in 24 brain and 57 blood samples. Its level was compared between patients with different genotypes of an SCN2A SNP found to be associated with drug responsiveness. SCN2A IVS7-32A>G (rs2304016) A alleles were associated with drug resistance (odds ratio = 2.1, 95% confidence interval: 1.2-3.7, P=0.007). Haplotypes containing the IVS7-32A>G allele A were also associated with drug resistance. IVS7-32A>G is located within the putative splicing branch site for splicing exons 7 and 9. PCR of reverse-transcribed RNA from blood or brain of patients with different IVS7-32A>G genotypes using primers in exons 7 and 9 showed no skipping of exon 8, and real-time PCR showed no difference in SCN2A mRNA levels among genotypes. Results of this study suggest an association between SCN2A IVS7-32A>G and AED responsiveness, without evidence of an effect on splicing or mRNA expression.

  17. Cell culture-adaptive mutations of NS5A affect replication of hepatitis C virus differentially depending on the viral genotypes.

    Science.gov (United States)

    Chung, Aeri; Jin, Bora; Han, Kwang-Hyub; Ahn, Sang Hoon; Kim, Seungtaek

    2017-01-01

    Most of HCV RNAs require cell culture-adaptive mutations for efficient replication in cell culture and a number of such mutations have been described including a well-known S2204I substitution mutation in NS5A protein. In contrast, the replication of genotype 2a JFH1 RNA in cell culture does not require any cell culture-adaptive mutation. Rather, the presence of S2204I mutation impaired the JFH1 RNA replication. In this study, we examined the effect of reversions and substitutions of NS5A cell culture-adaptive mutations on virus replication in different genotypic backgrounds after either placing genotype 1a NS5A in the genotype 2a JFH1 or vice versa. The results from this investigation suggest that the S2204I mutation affects HCV RNA replication differentially depending on the viral genotypes but that the effect was not simply explained by the genotypic background. Perhaps, the effect of the S2204I mutation on HCV replication reflects both intra- and intergenic interactions of NS5A protein. J. Med. Virol. 89:146-152, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Min [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Guan, Minqiang [Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhao, Fuxing; Zhou, Xiangtian [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Yuan, Meixia [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Tong, Yi [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005 (China); Yang, Li [Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States); Wei, Qi-Ping; Sun, Yan-Hong [Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine and Pharmacology, Beijing 100078 (China); Lu, Fan [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Qu, Jia, E-mail: jqu@wzmc.net [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); and others

    2009-06-05

    We report here the clinical, genetic and molecular characterization of four Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age-of-onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T3394C (Y30H) mutation, which localized at a highly conserved tyrosine at position 30 of ND1, and distinct sets of mtDNA polymorphisms belonging to haplogroups D4b and M9a. The occurrence of T3394C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. However, there was the absence of functionally significant mtDNA mutations in these four Chinese pedigrees carrying the T3394C mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated T3394C mutation.

  19. (1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid.

    Science.gov (United States)

    Spielberg, Eike T; Edengeiser, Eugen; Mallick, Bert; Havenith, Martina; Mudring, Anja-Verena

    2014-04-25

    The compound (C4C1py)[Cu(SCN)2], (C4C1py = 1-Butyl-4-methyl-pyridinium), which can be obtained from CuSCN and the ionic liquid (C4C1py)(SCN), turns out to be a new organic-inorganic hybrid material as it qualifies both, as a coordination polymer and an ionic liquid. It features linked [Cu(SCN)2](-) units, in which the thiocyanates bridge the copper ions in a μ1,3-fashion. The resulting one-dimensional chains run along the a axis, separated by the C4C1py counterions. Powder X-ray diffraction not only confirms the single-crystal X-ray structure solution but proves the reformation of the coordination polymer from an isotropic melt. However, the materials shows a complex thermal behavior often encountered for ionic liquids such as a strong tendency to form a supercooled melt. At a relatively high cooling rate, glass formation is observed. When heating this melt in differential scanning calorimetry (DSC) and temperature-dependent polarizing optical microscopy (POM), investigations reveal the existence of a less thermodynamically stable crystalline polymorph. Raman measurements conducted at 10 and 100 °C point towards the formation of polyanionic chain fragments in the melt. Solid-state UV/Vis spectroscopy shows a broad absorption band around 18,870 cm(-1) (530 nm) and another strong one below 20,000 cm(-1) (<500 nm). The latter is attributed to the d(Cu(I))→π*(SCN)-MLCT (metal-to-ligand charge transfer) transition within the coordination polymer yielding an energy gap of 2.4 eV. At room temperature and upon irradiation with UV light, the material shows a weak fluorescence band at 15,870 cm(-1) (630 nm) with a quantum efficiency of 0.90(2) % and a lifetime of 131(2) ns. Upon lowering the temperature, the luminescence intensity strongly increases. Simultaneously, the band around 450 nm in the excitation spectrum decreases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Altered Pre-mRNA Splicing Caused by a Novel Intronic Mutation c.1443+5G>A in the Dihydropyrimidinase (DPYS Gene

    Directory of Open Access Journals (Sweden)

    Yoko Nakajima

    2016-01-01

    Full Text Available Dihydropyrimidinase (DHP deficiency is an autosomal recessive disease caused by mutations in the DPYS gene. Patients present with highly elevated levels of dihydrouracil and dihydrothymine in their urine, blood and cerebrospinal fluid. The analysis of the effect of mutations in DPYS on pre-mRNA splicing is hampered by the fact that DHP is primarily expressed in liver and kidney cells. The minigene approach can detect mRNA splicing aberrations using cells that do not express the endogenous mRNA. We have used a minigene-based approach to analyze the effects of a presumptive pre-mRNA splicing mutation in two newly identified Chinese pediatric patients with DHP deficiency. Mutation analysis of DPYS showed that both patients were compound heterozygous for a novel intronic mutation c.1443+5G>A in intron 8 and a previously described missense mutation c.1001A>G (p.Q334R in exon 6. Wild-type and the mutated minigene constructs, containing exons 7, 8 and 9 of DPYS, yielded different splicing products after expression in HEK293 cells. The c.1443+5G>A mutation resulted in altered pre-mRNA splicing of the DPYS minigene construct with full skipping of exon 8. Analysis of the DHP crystal structure showed that the deletion of exon 8 severely affects folding, stability and homooligomerization of the enzyme as well as disruption of the catalytic site. Thus, the analysis suggests that the c.1443+5G>A mutation results in aberrant splicing of the pre-mRNA encoding DHP, underlying the DHP deficiency in two unrelated Chinese patients.

  1. THE ECONOMIC ACTIVITIES OF A GLOBAL MERCHANT -BANKER IN CHILE: HUTH & CO. OF LONDON, 1820S-1850S

    Directory of Open Access Journals (Sweden)

    MANUEL LLORCA-JAÑA

    2012-12-01

    Full Text Available This article deals with Huth & Co.'s activities in Chile during the 1820s-1850s. Huth was the only London merchant-banker that decided to go global before 1850, and also the only one to open a branch in Chile. The analysis of how his branches operated should take this into account, yet Huth's activities in Chile have only previously been examined using a bilateral approach to examine the economic relations between Chile and Britain. This situation was mainly due to the fact that the richest collection of primary material on Huth & Co. (the Huth papers at University College London had been ignored by scholars working on Anglo-Chilean economic relations during the first half of the nineteenth-century. The main focus of this paper is on the information that we were made unaware of due to this restricted investigative approach. Among them are the connections established between Huth's branches in Chile and the USA, Asia, continental Europe and the rest of Latin America; and the important trade in Spanish quicksilver.El presente artículo trata sobre las actividades económicas en Chile de Huth & Co. durante el período 1820-1850. Huth & Co. fue el único mercader banquero de Londres que decidió tener una empresa global antes de 1850 y el único también en abrir una oficina en Chile. Por lo tanto, las actividades de la sucursal en Chile deben ser analizadas considerando estos dos importantes hechos. Sin embargo, antes de este estudio, las actividades de Huth en el país fueron examinadas usando un enfoque estrictamente bilateral de las relaciones entre Chile y Gran Bretaña. Esta visión restrictiva se debió en gran parte al desconocimiento de los historiadores interesados en las relaciones anglo-chilenas de una importante fuente de información: los archivos de Huth disponibles en el University College London. Debido a este desconocimiento, la historiografía no ha dado cuenta de importantes hechos tratado en este artículo. Por ejemplo, de las

  2. Efficacy of sodium channel blockers in SCN2A early infantile epileptic encephalopathy.

    Science.gov (United States)

    Dilena, Robertino; Striano, Pasquale; Gennaro, Elena; Bassi, Laura; Olivotto, Sara; Tadini, Laura; Mosca, Fabio; Barbieri, Sergio; Zara, Federico; Fumagalli, Monica

    2017-04-01

    Recent clinical evidence supports a targeted therapeutic approach for genetic epileptic encephalopathies based on the molecular dysfunction. A 2-day-old male infant presented with epileptic encephalopathy characterized by burst-suppression EEG background and tonic-clonic migrating partial seizures. The condition was refractory to phenobarbital, pyridoxine, pyridoxal phosphate and levetiracetam, but a dramatic response to an intravenous loading dose of phenytoin was documented by video-EEG monitoring. Over weeks phenytoin was successfully switched to carbamazepine to prevent seizure relapses associated with difficulty in maintaining proper blood levels of phenytoin. Genetic analysis identified a novel de novo heterozygous mutation (c.[4633A>G]p.[Met1545Val]) in SCN2A. At two years and three months of age the patient is still seizure-free on carbamazepine, although a developmental delay is evident. Sodium channel blockers represent the first-line treatment for confirmed or suspected SCN2A-related epileptic encephalopathies. In severe cases with compatible electro-clinical features we propose a treatment algorithm based on a test trial with high dose intravenous phenytoin followed in case of a positive response by carbamazepine, more suitable for long-term maintenance treatment. Because of their rarity, collaborative studies are needed to delineate shared therapeutic protocols for EIEE based on the electro-clinical features and the presumed underlying genetic substrate. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Epilepsy caused by CDKL5 mutations.

    Science.gov (United States)

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Hot-spot KIF5A mutations cause familial ALS

    Science.gov (United States)

    Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Weyen, Ute; Hermann, Andreas; Hagenacker, Tim; Koch, Jan Christoph; Lingor, Paul; Göricke, Bettina; Zierz, Stephan; Baum, Petra; Wolf, Joachim; Winkler, Andrea; Young, Peter; Bogdahn, Ulrich; Prudlo, Johannes; Kassubek., Jan

    2018-01-01

    Abstract Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10−3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor

  5. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  6. Leber's hereditary optic neuropathy is associated with mitochondrial ND6 T14502C mutation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fuxin [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Guan, Minqiang [Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhou, Xiangtian [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Yuan, Meixia; Liang, Ming [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Liu, Qi [Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Liu, Yan; Zhang, Yongmei [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Yang, Li [Division of Human Genetics, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH 45229 (United States); Tong, Yi [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005 (China); Wei, Qi-Ping; Sun, Yan-Hong [Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine and Pharmacology, Beijing 100078 (China); Qu, Jia, E-mail: jqu@wzmc.net [School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003 (China); and others

    2009-11-20

    We report here the clinical, genetic, and molecular characterization of three Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age of onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T14502C (I58V) mutation, which localized at a highly conserved isoleucine at position 58 of ND6, and distinct sets of mtDNA polymorphisms belonging to haplogroups M10a, F1a1, and H2. The occurrence of T14502C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Here, mtDNA variants I187T in the ND1, A122V in CO1, S99A in the A6, and V254I in CO3 exhibited an evolutionary conservation, indicating a potential modifying role in the development of visual impairment associated with T14502C mutation in those families. Furthermore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic manifestation of the LHON-associated T14502C mutation in these Chinese families.

  7. High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface

    KAUST Repository

    Sit, Wai-Yu

    2018-02-02

    Fullerenes and their derivatives are widely used as electron acceptors in bulk-heterojunction organic solar cells as they combine high electron mobility with good solubility and miscibility with relevant semiconducting polymers. However, studies on the use of fullerenes as the sole photogeneration and charge-carrier material are scarce. Here, a new type of solution-processed small-molecule solar cell based on the two most commonly used methanofullerenes, namely [6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) and [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM), as the light absorbing materials, is reported. First, it is shown that both fullerene derivatives exhibit excellent ambipolar charge transport with balanced hole and electron mobilities. When the two derivatives are spin-coated over the wide bandgap p-type semiconductor copper (I) thiocyanate (CuSCN), cells with power conversion efficiency (PCE) of ≈1%, are obtained. Blending the CuSCN with PC70BM is shown to increase the performance further yielding cells with an open-circuit voltage of ≈0.93 V and a PCE of 5.4%. Microstructural analysis reveals that the key to this success is the spontaneous formation of a unique mesostructured p–n-like heterointerface between CuSCN and PC70BM. The findings pave the way to an exciting new class of single photoactive material based solar cells.

  8. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission.

    Science.gov (United States)

    Han, Sung; Tai, Chao; Westenbroek, Ruth E; Yu, Frank H; Cheah, Christine S; Potter, Gregory B; Rubenstein, John L; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A

    2012-09-20

    Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a(+/-) mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na(V)1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA(A) receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet's syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na(V)1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome.

  9. Different clinical phenotypes in familial severe congenital neutropenia cases with same mutation of the ELANE gene.

    Science.gov (United States)

    Cho, Hye-Kyung; Jeon, In Sang

    2014-03-01

    Severe congenital neutropenia (SCN) is a heterogeneous group of disorders with a defect in granulopoiesis causing marked neutropenia and severe bacterial infections. A 17-month-old girl (patient 1) was admitted due to cervical lymphadenitis caused by methicillin-resistant Staphylococcus aureus, with neutropenia. She had Pseudomonas aeruginosa sepsis and peritonitis with perforated appendicitis at 8-month of age. Her sister, a 37-month-old girl (patient 2), had recurrent stomatitis with profound neutropenia, and her mother, a 32-yr-old woman (patient 3), had had recurrent stomatitis until her early 20s with neutropenia. We found an ELANE gene mutation (c.597+1G > A) from them in direct DNA sequencing analysis. Patients 1 and 2 did not respond to granulocyte colony stimulating factor and patient 1 was treated with prolonged antibiotics and excision. We demonstrated inherited SCN cases showing different severity even with the same mutation of the ELANE gene in a family.

  10. Re-determination of succinonitrile (SCN) camphor phase diagram

    Science.gov (United States)

    Teng, Jing; Liu, Shan

    2006-04-01

    Low-melting temperature transparent organic materials have been extensively used to study the pattern formation and microstructure evolution. It proves to be very challenging to accurately determine the phase diagram since there is no viable way to measure the composition microscopically. In this paper, we presented the detailed experimental characterization of the phase diagram of succinonitrile (SCN)-camphor binary system. Differential scanning calorimetry, a ring-heater, and the directional solidification technique have been combined to determine the details of the phase diagram by using the purified materials. The advantages and disadvantages have been discussed for the different experimental techniques. SCN and camphor constitute a simple binary eutectic system with the eutectic composition at 23.6 wt% camphor and eutectic temperature at 37.65 °C. The solidus and the solubility of the SCN base solid solution have been precisely determined for the first time in this binary system.

  11. A Homozygous Missense Mutation in TGM5 Abolishes Epidermal Transglutaminase 5 Activity and Causes Acral Peeling Skin Syndrome

    Science.gov (United States)

    Cassidy, Andrew J.; van Steensel, Maurice A. M.; Steijlen, Peter M.; van Geel, Michel; Velden, Jaap van der; Morley, Susan M.; Terrinoni, Alessandro; Melino, Gerry; Candi, Eleonora; McLean, W. H. Irwin

    2005-01-01

    Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis. PMID:16380904

  12. Progress in Understanding and Treating SCN2A-Mediated Disorders

    DEFF Research Database (Denmark)

    Sanders, Stephan J.; Campbell, Arthur J.; Cottrell, Jeffrey R.

    2018-01-01

    Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between...... of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders....

  13. Reduction of the thermal conductivity of the thermoelectric material ScN by Nb alloying

    DEFF Research Database (Denmark)

    Tureson, Nina; Van Nong, Ngo; Fournier, Daniele

    2017-01-01

    ) orientation. The crystal structure, morphology, thermal conductivity, and thermoelectric and electrical properties were investigated. The ScN reference film exhibited a Seebeck coefficient of −45 μV/K and a power factor of 6 × 10−4 W/m K2 at 750 K. Estimated from room temperature Hall measurements, all...... samples exhibit a high carrier density of the order of 1021 cm−3. Inclusion of heavy transition metals into ScN enables the reduction in thermal conductivity by an increase in phonon scattering. The Nb inserted ScN thin films exhibited a thermal conductivity lower than the value of the ScN reference (10.......5 W m−1 K−1) down to a minimum value of 2.2 Wm−1 K−1. Insertion of Nb into ScN thus resulted in a reduction in thermal conductivity by a factor of ∼5 due to the mass contrast in ScN, which increases the phonon scattering in the material....

  14. A novel CDKL5 mutation in a Japanese patient with atypical Rett syndrome.

    Science.gov (United States)

    Christianto, Antonius; Katayama, Syouichi; Kameshita, Isamu; Inazu, Tetsuya

    2016-08-01

    Rett syndrome (RTT) is a severe X-linked dominant inheritance disorder with a wide spectrum of clinical manifestations. Mutations in Methyl CpG binding protein 2 (MECP2), Cyclin dependent kinase-like 5 (CDKL5) and Forkhead box G1 (FOXG1) have been associated with classic and/or variant RTT. This study was conducted to identify the responsible gene(s) in atypical RTT patient, and to examine the effect of the mutation on protein function. DNA sequence analysis showed a novel heterozygous mutation in CDKL5 identified as c.530A>G which resulted in an amino acid substitution at position 177, from tyrosine to cysteine. Genotyping analysis indicated that the mutation was not merely a single nucleotide polymorphism (SNP). We also revealed that patient's blood lymphocytes had random X-chromosome inactivation (XCI) pattern. Further examination by bioinformatics analysis demonstrated the mutation caused damage or deleterious in its protein. In addition, we demonstrated in vitro kinase assay of mutant protein showed impairment of its activity. Taken together, the results suggested the mutant CDKL5 was responsible for the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Elena eIlina

    2013-07-01

    Full Text Available Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant ribosomal protein S5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation (ca. 10-5 CFUs indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer.

  16. Four novel ELANE mutations in patients with congenital neutropenia.

    Science.gov (United States)

    Kurnikova, Maria; Maschan, Michael; Dinova, Evgeniya; Shagina, Irina; Finogenova, Natalia; Mamedova, Elena; Polovtseva, Tatyana; Shagin, Dmitry; Shcherbina, Anna

    2011-08-01

    Congenital neutropenia is a heterogeneous bone marrow failure syndrome characterized by a maturation arrest of myelopoesis at the promyelocyte/myelocyte stage. Cyclic neutropenia (CyN) and severe congenital neutropenia (SCN) are two main forms of congenital neutropenia. Genetic analysis has shown that heterozygous mutations in the ELANE gene encoding the neutrophil elastase are the major cause of these disorders. We investigated the prevalence of ELANE mutations in a group of 16 patients from 14 families with congenital neutropenia. Five patients had typical manifestations of CyN, and 11 patients had SCN. Seven different heterozygous ELANE mutations were found, including four novel mutations. Copyright © 2011 Wiley-Liss, Inc.

  17. Pseudohalide (SCN(-))-Doped MAPbI3 Perovskites: A Few Surprises.

    Science.gov (United States)

    Halder, Ansuman; Chulliyil, Ramya; Subbiah, Anand S; Khan, Tuhin; Chattoraj, Shyamtanu; Chowdhury, Arindam; Sarkar, Shaibal K

    2015-09-03

    Pseudohalide thiocyanate anion (SCN(-)) has been used as a dopant in a methylammonium lead tri-iodide (MAPbI3) framework, aiming for its use as an absorber layer for photovoltaic applications. The substitution of SCN(-) pseudohalide anion, as verified using Fourier transform infrared (FT-IR) spectroscopy, results in a comprehensive effect on the optical properties of the original material. Photoluminescence measurements at room temperature reveal a significant enhancement in the emission quantum yield of MAPbI3-x(SCN)x as compared to MAPbI3, suggestive of suppression of nonradiative channels. This increased intensity is attributed to a highly edge specific emission from MAPbI3-x(SCN)x microcrystals as revealed by photoluminescence microscopy. Fluoresence lifetime imaging measurements further established contrasting carrier recombination dynamics for grain boundaries and the bulk of the doped material. Spatially resolved emission spectroscopy on individual microcrystals of MAPbI3-x(SCN)x reveals that the optical bandgap and density of states at various (local) nanodomains are also nonuniform. Surprisingly, several (local) emissive regions within MAPbI3-x(SCN)x microcrystals are found to be optically unstable under photoirradiation, and display unambiguous temporal intermittency in emission (blinking), which is extremely unusual and intriguing. We find diverse blinking behaviors for the undoped MAPbI3 crystals as well, which leads us to speculate that blinking may be a common phenomenon for most hybrid perovskite materials.

  18. Two Siblings With a CDKL5 Mutation: Genotype and Phenotype Evaluation.

    Science.gov (United States)

    Hagebeuk, Eveline E O; Marcelis, Carlo L; Alders, Mariëlle; Kaspers, Ageeth; de Weerd, Al W

    2015-10-01

    This is the second report of a family with a recurrence of a CDKL5 mutation (c. 283-3_290del) in 2 sisters. Both parents tested negative for the mutation in all tissues, but germline mosaicism is likely. Clinically CDKL5 patients resemble those with Rett syndrome, caused by a MECP2 mutation, who experience a regression, after an initial normal development. Even though both siblings showed a typical CDKL5 phenotype, their presentation is different. From birth, the oldest daughter had a severe developmental delay, feeding problems, and hypotonia and experienced daily refractory seizures. The youngest daughter appeared to be normal until age 3 months. At that age seizures started, deterioration and regression became evident, and an epileptic encephalopathy developed. This report of familial recurrence, with suspected germline mosaicism in a healthy parent, has important consequences for genetic counseling. Although it is not possible to predict an exact recurrence risk, it is likely to be increased. © The Author(s) 2015.

  19. Patients with acephalic spermatozoa syndrome linked to SUN5 mutations have a favorable pregnancy outcome from ICSI.

    Science.gov (United States)

    Fang, Jianzheng; Zhang, Jingjing; Zhu, Fuxi; Yang, Xiaoyu; Cui, Yugui; Liu, Jiayin

    2018-01-10

    Are Sad1 and UNC84 domain containing 5 (SUN5) mutations associated with the outcomes of ICSI in patients with acephalic spermatozoa syndrome (ASS)? Despite highly abnormal sperm morphology, ASS patients with SUN5 mutations have a favorable pregnancy outcome following ICSI. ASS is a rare cause of infertility characterized by the production of a majority of headless spermatozoa, along with a small proportion of intact spermatozoa with an abnormal head-tail junction. Previous studies have demonstrated that SUN5 mutations may cause ASS. Several studies showed that ICSI could help patients with ASS father children. This retrospective cohort study included 11 infertile ASS males with SUN5 mutations. Five of them underwent five ICSI cycles. Their ICSI results were compared to men with ASS without SUN5 mutations (n = 3) and to men with multiple morphological abnormalities of the sperm flagella (MMAF) (n = 9). All ICSI treatments were completed between Jan 2011 and May 2017. Sanger DNA sequencing was used to detect mutations in SUN5. Clinical and biological data were collected from patients at the fertility center. Sanger sequencing validated 11 patients with SUN5 mutations. Three novel mutations in SUN5 (c.829C>T [p.Q277*]; c.1067G>A [p.R356H]; c.211+1 insGT [p.S71Cfs11*]) were identified in three patients. The rates of fertilization, good-quality embryos and pregnancy for five patients with SUN5 mutations following ICSI were 81.5%, 81.8% and 100%, respectively. The rates of fertilization and good-quality embryos in patients with MMAF were significantly lower compared with ASS patients (65.6 versus 82.4%, P = 0.039 and 53.6 versus 85.2%, P = 0.031, respectively). There were no differences in ICSI results between ASS patients with and without SUN5 mutations. Only a small number patients with SUN5 mutations was available because of its rare incidence. Patients with ASS can be effectively treated with ICSI. SUN5 mutations may be one of the genetic causes of ASS. This study

  20. C239S mutation in the β-tubulin of Phytophthora sojae confers resistance to zoxamide

    Directory of Open Access Journals (Sweden)

    Meng eCai

    2016-05-01

    Full Text Available Zoxamide is the sole β-tubulin inhibitor registered for the control of oomycete pathogens. The current study investigated the activity of zoxamide against Phytophthora sojae and a baseline sensitivity was established with a mean EC50 of 0.048 μg/ml. Three stable resistant mutants with a high resistance level were obtained by selection on zoxamide amended media. Although the development of resistance occurred at a low frequency, there were no apparent fitness penalty in the acquired mutants in terms of growth rate, sporulation, germination and pathogenicity. Based on the biological profiles and mutagenesis rate, the resistance risk of P. sojae to zoxamide can be estimated as low to medium. Further investigation revealed all the zoxamide-resistant mutants had a point mutation of C239S in their β-tubulin. Zoxamide also exhibited high activity against most species from the genus Pythium in which only Py. aphanidermatum was found resistant to zoxamide and harboring the natural point mutation S239 in the beta-tubulin. Back-transformation in P. sojae with the mutated allele (S239 confirmed the C239S mutation induced resistance to zoxamide, and the resistance level was positively related to the expression level of the mutated gene. In contrast, the overexpression of the wild type gene was unable to cause zoxamide resistance. It is the first report on the resistance molecular mechanism of zoxamide in oomycetes. Based on our study, C239 is supposed to be a key target site of zoxamide, which distinguishes zoxamide from benzimidazoles and accounts for its low resistance risk. The result can provide advice on the design of new β-tubulin inhibitors in future.

  1. Two Siblings With a CDKL5 Mutation: Genotype and Phenotype Evaluation

    NARCIS (Netherlands)

    Hagebeuk, Eveline E. O.; Marcelis, Carlo L.; Alders, Mariëlle; Kaspers, Ageeth; de Weerd, Al W.

    2015-01-01

    This is the second report of a family with a recurrence of a CDKL5 mutation (c. 283-3_290del) in 2 sisters. Both parents tested negative for the mutation in all tissues, but germline mosaicism is likely. Clinically CDKL5 patients resemble those with Rett syndrome, caused by a MECP2 mutation, who

  2. Role of common and rare variants in SCN10A

    DEFF Research Database (Denmark)

    Behr, Elijah R.; Savio-Galimberti, Eleonora; Barc, Julien

    2015-01-01

    AIMS: Brugada syndrome (BrS) remains genetically heterogeneous and is associated with slowed cardiac conduction. We aimed to identify genetic variation in BrS cases at loci associated with QRS duration. METHODS AND RESULTS: A multi-centre study sequenced seven candidate genes (SCN10A, HAND1, PLN,...

  3. Resonance Raman Spectrum of the Transient (SCN)2 Free Radical Anion

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1979-01-01

    The resonance Raman spectrum of the transient species (λmax = 475 nm, τ½ = 1.6 μs) formed by pulse radiolysis of aqueous solutions of thiocyanate, SCN2−, is reported. The spectrum is discussed in terms of the previous assignment of this transient to the radical anion, (SCN)−2. The observed...... vibrational frequencies of the radical anion are consistent with substantial weakening of the S---S and the Ctriple bond; length as m-dashN bonds are compared with neutral thiocyanogen....

  4. Frequency of the hemochromatosis HFE mutations C282Y, H63D, and S65C in blood donors in the Faroe Islands

    DEFF Research Database (Denmark)

    Milman, Nils; á Steig, Torkil; Koefoed, Pernille

    2004-01-01

    on the HFE gene was assessed by genotyping using the polymerase chain reaction (PCR) technique and calculated from direct allele counting. We found no C282Y homozygous subjects; 28 (14.0%) subjects were C282Y heterozygous and four subjects were C282Y/H63D compound heterozygous (2.0%). The C282Y allele......The aim of the study was to assess the frequencies of the hereditary hemochromatosis HFE mutations C282Y, H63D, and S65C in the population in the Faroe Islands. The series comprised 200 randomly selected blood donors of Faroese heritage. The frequency of the C282Y, H63D, and S65C mutations.......6%. Screening of larger groups of the Faroese population for HFE mutations especially C282Y should be considered in order to establish the penetrance....

  5. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1

    DEFF Research Database (Denmark)

    Carvill, Gemma L; Heavin, Sinéad B; Yendle, Simone C

    2013-01-01

    Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify...... CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies...

  6. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders.

    Science.gov (United States)

    Wolff, Markus; Johannesen, Katrine M; Hedrich, Ulrike B S; Masnada, Silvia; Rubboli, Guido; Gardella, Elena; Lesca, Gaetan; Ville, Dorothée; Milh, Mathieu; Villard, Laurent; Afenjar, Alexandra; Chantot-Bastaraud, Sandra; Mignot, Cyril; Lardennois, Caroline; Nava, Caroline; Schwarz, Niklas; Gérard, Marion; Perrin, Laurence; Doummar, Diane; Auvin, Stéphane; Miranda, Maria J; Hempel, Maja; Brilstra, Eva; Knoers, Nine; Verbeek, Nienke; van Kempen, Marjan; Braun, Kees P; Mancini, Grazia; Biskup, Saskia; Hörtnagel, Konstanze; Döcker, Miriam; Bast, Thomas; Loddenkemper, Tobias; Wong-Kisiel, Lily; Baumeister, Friedrich M; Fazeli, Walid; Striano, Pasquale; Dilena, Robertino; Fontana, Elena; Zara, Federico; Kurlemann, Gerhard; Klepper, Joerg; Thoene, Jess G; Arndt, Daniel H; Deconinck, Nicolas; Schmitt-Mechelke, Thomas; Maier, Oliver; Muhle, Hiltrud; Wical, Beverly; Finetti, Claudio; Brückner, Reinhard; Pietz, Joachim; Golla, Günther; Jillella, Dinesh; Linnet, Karen M; Charles, Perrine; Moog, Ute; Õiglane-Shlik, Eve; Mantovani, John F; Park, Kristen; Deprez, Marie; Lederer, Damien; Mary, Sandrine; Scalais, Emmanuel; Selim, Laila; Van Coster, Rudy; Lagae, Lieven; Nikanorova, Marina; Hjalgrim, Helle; Korenke, G Christoph; Trivisano, Marina; Specchio, Nicola; Ceulemans, Berten; Dorn, Thomas; Helbig, Katherine L; Hardies, Katia; Stamberger, Hannah; de Jonghe, Peter; Weckhuysen, Sarah; Lemke, Johannes R; Krägeloh-Mann, Ingeborg; Helbig, Ingo; Kluger, Gerhard; Lerche, Holger; Møller, Rikke S

    2017-05-01

    Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that

  7. Sodium Overload Due To a Persistent Current That Attenuates The Arrhythmogenic Potential of a Novel LQT3 Mutation

    Directory of Open Access Journals (Sweden)

    Adrien eMoreau

    2013-10-01

    Full Text Available Long QT syndrome (LQTS is a congenital abnormality of cardiac repolarization that manifests as a prolonged QT interval on 12-lead electrocardiograms. The syndrome may lead to syncope and sudden death from ventricular tachyarrhythmias known as torsades de pointes. An increased persistent Na+ current is known to cause a Ca2+ overload in case of ischemia for example. Such increased Na+ persistent current is also usually associated to the LQT3 syndrome. The purpose of this study was to investigate the pathological consequences of a novel mutation in a family affected by LQTS. The impact of biophysical defects on cellular homeostasis are also investigated.Genomic DNA was extracted from blood samples, and a combination of PCR and DNA sequencing of several LQTS-linked genes was used to identify mutations. The mutation was reproduced in vitro and was characterized using the patch clamp technique and in silico quantitative analysis.A novel mutation (Q1476R was identified on the SCN5A gene encoding the cardiac Na+ channel. Cells expressing the Q1476R mutation exhibited biophysical alterations, including a shift of SS inactivation and a significant increase in the persistent Na+ current. The in silico analysis confirmed the arrhythmogenic character of the Q1476R mutation. It further revealed that the increase in persistent Na+ current causes a frequency-dependent Na+ overload in cardiomyocytes co-expressing WT and mutant Nav1.5 channels, that, in turn, exerts a moderating effect on the lengthening of the action potential duration caused by the mutation.The Q1476R mutation in SCN5A results in a three-fold increase in the window current and a persistent inward Na+ current. These biophysical defects may expose the carrier of the mutation to arrhythmias that occur preferentially in the patient at rest or during tachycardia. However, the Na+ overload counterbalances the gain-of-function of the mutation and is beneficial in that it prevents severe arrhythmias at

  8. Development of Field-Controlled Smart Optic Materials (ScN, AlN) with Rare Earth Dopants

    Science.gov (United States)

    Kim, Hyun-Jung; Park, Yeonjoon; King, Glen C.; Choi, Sang H.

    2012-01-01

    The purpose of this investigation is to develop the fundamental materials and fabrication technology for field-controlled spectrally active optics that are essential for industry, NASA, and DOD applications such as: membrane optics, filters for LIDARs, windows for sensors, telescopes, spectroscopes, cameras, flat-panel displays, etc. ScN and AlN thin films were fabricated on c-axis Sapphire (0001) or quartz substrate with the RF and DC magnetron sputtering. The crystal structure of AlN in fcc (rocksalt) and hcp (wurtzite) were controlled. Advanced electrical characterizations were performed, including I-V and Hall Effect Measurement. ScN film has a free carrier density of 5.8 x 10(exp 20)/per cubic centimeter and a conductivity of 1.1 x 10(exp 3) per centimeter. The background ntype conductivity of as-grown ScN has enough free electrons that can readily interact with the photons. The high density of free electrons and relatively low mobility indicate that these films contain a high level of shallow donors as well as deep levels. Also, the UV-Vis spectrum of ScN and AlN thin films with rare earth elements (Er or Ho) were measured at room temperature. Their optical band gaps were estimated to be about 2.33eV and 2.24eV, respectively, which are obviously smaller than that of undoped thin film ScN (2.4eV). The red-shifted absorption onset gives direct evidence for the decrease of band gap (Eg) and the energy broadening of valence band states are attributable to the doping. As the doped elements enter the ScN crystal lattices, the localized band edge states form at the doped sites with a reduction of Eg. Using a variable angle spectroscopic ellipsometer, the decrease in refractive index with applied field is observed with a smaller shift in absorption coefficient.

  9. The Novel SCN''- Ion-selective Electrode Based on the 1-Benzyl-3-(4-nitrophenyl) thio-urea Ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Mi; Kang, Dong Hyeon; Choe, Ju Eun; You, Jung Min; Go, Min Jeong; Lee, Jung Seong; Jeon, Seung Won [Chungnam National University, Daejeon (Korea, Republic of)

    2014-09-15

    A potentiometric sensor based on the 1-benzyl-3-(4-nitrophenyl) thio-urea was synthesized and tested as an ionophore in PVC based membrane sensor towards SCN - ions. This membrane exhibits a linear stable response over a wide concentration range (1.0 × 10''-5 to 1.0 × 10''-2 M) with a slope of -59.2 mV/dec., a detection limit of log[SCN''- ] = -5.05, and a selectivity coefficient for thiocyanate against perchlorate anion of logK{sub s}cn''pot = -0.133. The selectivity series of the membrane is as follows: SCN''- > ClO{sub 4}''- > I''- >NO{sub 3}''- >HSO{sub 3}''- > Cl''-HSO{sub '}'-''4 > F''- > CH{sub 3}COO''- > HCO''-''3 > Br''- > H{sub 2}PO{sub 4}''- > SO{sub 3}''-''2 > SO{sub 4}''-''2 > CO{sub 3}''-''2. The proposed electrode showed good selectivity and a good response for the SCN''- ion over a wide variety of other anions in pH 6.0 buffer solutions and has a fast response time of about < 5s.. The influences of the membrane by pH, ionophore, and plasticizer were studied.

  10. The coexistence of mitochondrial ND6 T14484C and 12S rRNA A1555G mutations in a Chinese family with Leber's hereditary optic neuropathy and hearing loss

    International Nuclear Information System (INIS)

    Wei Qiping; Zhou Xiangtian; Yang Li; Sun Yanhong; Zhou Jian; Li Guang; Jiang, Robert; Lu Fan; Qu Jia; Guan Minxin

    2007-01-01

    We report here the clinical, genetic and molecular characterization of one three-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON) and hearing loss. Four of 14 matrilineal relatives exhibited the moderate central vision loss at the average age of 12.5 years. Of these, one subject exhibited both LHON and mild hearing impairment. Sequence analysis of the complete mitochondrial genomes in the pedigree showed the presence of homoplasmic LHON-associated ND6 T14484C mutation, deafness-associated 12S rRNA A1555 mutation and 47 other variants belonging to Eastern Asian haplogroup H2. None of other mitochondrial variants was evolutionarily conserved and functional significance. Therefore, the coexistence of the A1555G mutation and T14484C mutations in this Chinese family indicate that the A1555G mutation may play a synergistic role in the phenotypic manifestation of LHON associated ND6 T14484C mutation. However, the incomplete penetrance of vision and hearing loss suggests the involvement of nuclear modifier genes and environmental factors in the phenotypic expression of these mtDNA mutations

  11. Historical cropland expansion and abandonment in the continental U.S. during 1850 to 2016

    Science.gov (United States)

    Yu, Z.; Lu, C.

    2017-12-01

    Land use and land cover changes (LCLUC) are among the most important driving forces that alter terrestrial ecosystem functions and their feedbacks to climate system, but reliable spatially explicit dataset over century long period is still lacking for fine-scale earth system modeling. In this study, by harmonizing multiple sources of inventory data and high-resolution satellite images, we reconstructed cropland density maps to depict the annual percentage and distribution pattern of cultivated land (excluding summer idle/fallow, cropland pasture) in the conterminous U.S. during 1850 to 2016. We further examined the cropland expansion and abandonment in the U.S. using the newly-developed LCLUC data. In total, national cropland expansion is 104 million hectares (Mha) from 1850 to 2016 and peaked at about 127 Mha in 1920. Forests and shrublands were the dominant land cover types that croplands were converted from during 1850-1880, which may be primarily attributed to agriculture development in Northeast region. Croplands began to expand into grasslands since 1870 and the encroached area dramatically increased, mainly due to cultivation development in the Great Plain and Midwestern area. In comparison, the abandoned cropland in the U.S. is 65 Mha (34% of the maximum crop density) during the study period. We found cropland abandonment mostly occurred in the Central and Southeast U.S., while cropland expansion centered in the Midwestern states, the Central California, and the Mississippi Alluvial Plain. National cultivated lands have shifted from the Eastern to Midwestern U.S., which contributed to the increasingly important role of Midwest in the rise of food and biofuel productions, enhanced GHGs emission, and intensive nitrogen loads into the Gulf of Mexico. Our study provides a reliable database of historical cropland distribution, which is essential for modeling assessments of LCLUC impacts, crop production estimation, and social-economic analysis.

  12. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%

    Science.gov (United States)

    Arora, Neha; Dar, M. Ibrahim; Hinderhofer, Alexander; Pellet, Norman; Schreiber, Frank; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2017-11-01

    Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carrier extraction and collection. The PSCs showed high thermal stability under long-term heating, although their operational stability was poor. This instability originated from potential-induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours under full solar intensity at 60°C. Under both continuous full-sun illumination and thermal stress, CuSCN-based devices surpassed the stability of spiro-OMeTAD-based PSCs.

  13. Neuroimaging findings in Joubert syndrome with C5orf42 gene mutations: A milder form of molar tooth sign and vermian hypoplasia.

    Science.gov (United States)

    Enokizono, Mikako; Aida, Noriko; Niwa, Tetsu; Osaka, Hitoshi; Naruto, Takuya; Kurosawa, Kenji; Ohba, Chihiro; Suzuki, Toshifumi; Saitsu, Hirotomo; Goto, Tomohide; Matsumoto, Naomichi

    2017-05-15

    Little is known regarding neuroimaging-genotype correlations in Joubert syndrome (JBTS). To elucidate one of these correlations, we investigated the neuroimaging findings of JBTS patients with C5orf42 mutations. Neuroimaging findings in five JBTS patients with C5orf42 mutations were retrospectively assessed with regard to the infratentorial and supratentorial structures on T1-magnetization prepared rapid gradient echo (MPRAGE), T2-weighted images, and color-coded fractional anisotropy (FA) maps; the findings were compared to those in four JBTS patients with mutations in other genes (including three with AHI1 and one with TMEM67 mutations). In C5orf42-mutant patients, the infratentorial magnetic resonance (MR) images showed normal or minimally thickened and minimally elongated superior cerebellar peduncles (SCP), normal or minimally deepened interpeduncular fossa (IF), and mild vermian hypoplasia (VH). However, in other patients, all had severe abnormalities in the SCP and IF, and moderate to marked VH. Supratentorial abnormalities were found in one individual in other JBTS. In JBTS with all mutations, color-coded FA maps showed the absence of decussation of the SCP (DSCP). The morphological neuroimaging findings in C5orf42-mutant JBTS were distinctly mild and made diagnosis difficult. However, the absence of DSCP on color-coded FA maps may facilitate the diagnosis of JBTS. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mild iron overload in patients carrying the HFE S65C gene mutation: a retrospective study in patients with suspected iron overload and healthy controls

    OpenAIRE

    Holmström, P; Marmur, J; Eggertsen, G; Gåfvels, M; Stål, P

    2002-01-01

    Background and aims: The role of the HFE S65C mutation in the development of hepatic iron overload is unknown. The aim of the present study was: (A) to determine the HFE S65C frequency in a Northern European population; and (B) to evaluate whether the presence of the HFE S65C mutation would result in a significant hepatic iron overload.

  15. Mutations in the ELA2 gene encoding neutrophil elastase are present in most patients with sporadic severe congenital neutropenia but only in some patients with the familial form of the disease.

    Science.gov (United States)

    Ancliff, P J; Gale, R E; Liesner, R; Hann, I M; Linch, D C

    2001-11-01

    Severe congenital neutropenia (SCN) was originally described as an autosomal recessive disorder. Subsequently, autosomal dominant and sporadic forms of the disease have been recognized. All forms are manifest by persistent severe neutropenia and recurrent bacterial infection. In contrast, cyclical hematopoiesis is characterized by periodic neutropenia inter-spaced with (near) normal neutrophil counts. Recently, linkage analysis on 13 affected pedigrees identified chromosome 19p13.3 as the likely position for mutations in cyclical hematopoiesis. Heterozygous mutations in the ELA2 gene encoding neutrophil elastase were detected in all families studied. Further work also demonstrated mutations in ELA2 in sporadic and autosomal dominant SCN. However, all mutations described to date are heterozygous and thus appear to act in a dominant fashion, which is inconsistent with an autosomal recessive disease. Therefore, the current study investigated whether mutations in ELA2 could account for the disease phenotype in classical autosomal recessive SCN and in the sporadic and autosomal dominant types. All 5 exons of ELA2 and their flanking introns were studied in 18 patients (3 autosomal recessive, 5 autosomal dominant [from 3 kindreds], and 10 sporadic) using direct automated sequencing. No mutations were found in the autosomal recessive families. A point mutation was identified in 1 of 3 autosomal dominant families, and a base substitution was identified in 8 of 10 patients with the sporadic form, though 1 was subsequently shown to be a low-frequency polymorphism. These results suggest that mutations in ELA2 are not responsible for classical autosomal recessive Kostmann syndrome but provide further evidence for the role of ELA2 in SCN.

  16. Molecular analysis of HEXA gene in Argentinean patients affected with Tay-Sachs disease: possible common origin of the prevalent c.459+5A>G mutation.

    Science.gov (United States)

    Zampieri, Stefania; Montalvo, Annalisa; Blanco, Mariana; Zanin, Irene; Amartino, Hernan; Vlahovicek, Kristian; Szlago, Marina; Schenone, Andrea; Pittis, Gabriela; Bembi, Bruno; Dardis, Andrea

    2012-05-15

    Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships.

    Science.gov (United States)

    Bahi-Buisson, Nadia; Villeneuve, Nathalie; Caietta, Emilie; Jacquette, Aurélia; Maurey, Helene; Matthijs, Gert; Van Esch, Hilde; Delahaye, Andrée; Moncla, Anne; Milh, Mathieu; Zufferey, Flore; Diebold, Bertrand; Bienvenu, Thierry

    2012-07-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been described in epileptic encephalopathies in females with infantile spasms with features that overlap with Rett syndrome. With more than 80 reported patients, the phenotype of CDKL5-related encephalopathy is well-defined. The main features consist of seizures starting before 6 months of age, severe intellectual disability with absent speech and hand stereotypies and deceleration of head growth, which resembles Rett syndrome. However, some clinical discrepancies suggested the influence of genetics and/or environmental factors. No genotype-phenotype correlation has been defined and thus there is a need to examine individual mutations. In this study, we analyzed eight recurrent CDKL5 mutations to test whether the clinical phenotype of patients with the same mutation is similar and whether patients with specific CDKL5 mutations have a milder phenotype than those with other CDKL5 mutations. Patients bearing missense mutations in the ATP binding site such as the p.Ala40Val mutation typically walked unaided, had normocephaly, better hand use ability, and less frequent refractory epilepsy when compared to girls with other CDKL5 mutations. In contrast, patients with mutations in the kinase domain (such as p.Arg59X, p.Arg134X, p.Arg178Trp/Pro/Gln, or c.145 + 2T > C) and frameshift mutations in the C-terminal region (such as c.2635_2636delCT) had a more severe phenotype with infantile spasms, refractory epileptic encephalopathy, absolute microcephaly, and inability to walk. It is important for clinicians to have this information when such patients are diagnosed. Copyright © 2012 Wiley Periodicals, Inc.

  18. Electronic structure and physical properties of ScN in pressure: density-functional theory calculations

    International Nuclear Information System (INIS)

    Guan Pengfei; Wang Chongyu; Yu Tao

    2008-01-01

    Local density functional is investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method for ScN in the hexagonal structure and the rocksalt structure and for hexagonal structures linking a layered hexagonal phase with wurtzite structure along a homogeneous strain transition path. It is found that the wurtzite ScN is unstable and the layered hexagonal phase, labelled as h o , in which atoms are approximately fivefold coordinated, is metastable, and the rocksalt ScN is stable. The electronic structure, the physical properties of the intermediate structures and the energy band structure along the transition are presented. It is found that the band gaps change from 4.0 to 1.0 eV continuously when c/a value varies from 1.68 to 1.26. It is noticeable that the study of ScN provides an opportunity to apply this kind of material (in wurtzite[h]-derived phase). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. El cólera morbus en cinco municipios del Estado de México, en 1850

    OpenAIRE

    María del Pilar Iracheta; Hilda Lagunas

    1998-01-01

    El artículo pretende hacer un análisis sobre los efectos del cólera morbus en cinco municipios del Estado de México (Toluca, Temoaya, Calimaya, Otzolotepec y Capulhuac) durante los meses de junio y julio de 1850, aunque la enfermedad se manifestó hasta noviembre de ese año. Asimismo, se trata de señalar algunos elementos que permitieron la propagación del cólera. También se trata de medir los efectos de la enfermedad en los municipios referidos, tomando como base...

  20. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    International Nuclear Information System (INIS)

    Wang Chengye; Kong Qingpeng; Yao Yonggang; Zhang Yaping

    2006-01-01

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To test this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL

  1. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females.

    Directory of Open Access Journals (Sweden)

    Christel Depienne

    2009-02-01

    Full Text Available Dravet syndrome (DS is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism.

  2. Clinical features and gene mutational spectrum of CDKL5-related diseases in a cohort of Chinese patients.

    Science.gov (United States)

    Zhao, Ying; Zhang, Xiaoying; Bao, Xinhua; Zhang, Qingping; Zhang, Jingjing; Cao, Guangna; Zhang, Jie; Li, Jiarui; Wei, Liping; Pan, Hong; Wu, Xiru

    2014-02-25

    Mutations in the cyclin-dependent kinase-like 5 (CDKL5) (NM_003159.2) gene have been associated with early-onset epileptic encephalopathies or Hanefeld variants of RTT(Rett syndrome). In order to clarify the CDKL5 genotype-phenotype correlations in Chinese patients, CDKL5 mutational screening in cases with early-onset epileptic encephalopathies and RTT without MECP2 mutation were performed. The detailed clinical information including clinical manifestation, electroencephalogram (EEG), magnetic resonance imaging (MRI), blood, urine amino acid and organic acid screening of 102 Chinese patients with early-onset epileptic encephalopathies and RTT were collected. CDKL5 gene mutations were analyzed by PCR, direct sequencing and multiplex ligation-dependent probe amplification (MLPA). The patterns of X-chromosome inactivation (XCI) were studied in the female patients with CDKL5 gene mutation. De novo CDKL5 gene mutations were found in ten patients including one missense mutation (c.533G > A, p.R178Q) which had been reported, two splicing mutations (ISV6 + 1A > G, ISV13 + 1A > G), three micro-deletions (c.1111delC, c.2360delA, c.234delA), two insertions (c.1791 ins G, c.891_892 ins TT in a pair of twins) and one nonsense mutation (c.1375C > T, p.Q459X). Out of ten patients, 7 of 9 females with Hanefeld variants of RTT and the remaining 2 females with early onset epileptic encephalopathy, were detected while only one male with infantile spasms was detected. The common features of all female patients with CDKL5 gene mutations included refractory seizures starting before 4 months of age, severe psychomotor retardation, Rett-like features such as hand stereotypies, deceleration of head growth after birth and poor prognosis. In contrast, the only one male patient with CDKL5 mutation showed no obvious Rett-like features as females in our cohort. The X-chromosome inactivation patterns of all the female patients were random. Mutations in CDKL5 gene are responsible for 7 with

  3. Pacemaker implantation in a patient with brugada and sick sinus syndrome

    DEFF Research Database (Denmark)

    Risgaard, Bjarke; Bundgaard, Henning; Jabbari, Reza

    2013-01-01

    Brugada syndrome (BrS) is a rare and inherited primary arrhythmic syndrome characterized by ST-segment elevations in the right precordial leads (V1-V3) with an increased risk of sudden cardiac death (SCD). Arrhythmias in BrS are often nocturne, and brady-arrhythmias are often seen in patients...... (ICD) after aborted SCD. A mutation screening revealed a SCN5A [S231CfsX251 (c.692-693delCA)] loss-of-function mutation not previously reported, and as a part of the cascade screening in relatives she was therefore referred to our clinic. In the 7 year period after PM implantation she had experienced...

  4. Common and rare variants in SCN10A modulate the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Jabbari, Javad; Olesen, Morten S; Yuan, Lei

    2015-01-01

    BACKGROUND: Genome-wide association studies have shown that the common single nucleotide polymorphism rs6800541 located in SCN10A, encoding the voltage-gated Nav1.8 sodium channel, is associated with PR-interval prolongation and atrial fibrillation (AF). Single nucleotide polymorphism rs6800541...... is in high linkage disequilibrium with the nonsynonymous variant in SCN10A, rs6795970 (V1073A, r(2)=0.933). We therefore sought to determine whether common and rare SCN10A variants are associated with early onset AF. METHODS AND RESULTS: SCN10A was sequenced in 225 AF patients in whom there was no evidence...... of other cardiovascular disease or dysfunction (lone AF). In an association study of the rs6795970 single nucleotide polymorphism variant, we included 515 AF patients and 2 control cohorts of 730 individuals free of AF and 6161 randomly sampled individuals. Functional characterization of SCN10A variants...

  5. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    Science.gov (United States)

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martín-Campos, Jesús M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  6. Naturally occurring resistance mutations within the core and NS5B regions in hepatitis C genotypes, particularly genotype 5a, in South Africa.

    Science.gov (United States)

    Prabdial-Sing, N; Blackard, J T; Puren, A J; Mahomed, A; Abuelhassan, W; Mahlangu, J; Vermeulen, M; Bowyer, S M

    2016-03-01

    Approximately 1 million South Africans are infected with Hepatitis C virus (HCV). The standard of care (SOC) in South Africa is combination therapy (pegylated interferon and ribavirin). HCV genotypes and/or mutations in the core/non-structural regions have been associated with response to therapy and/or disease progression. This study examines mutations in the core (29-280 amino acids, including ∼ 90 E1 amino acids) and NS5B (241-306 amino acids) regions on pre-treatment isolates from patients attending Johannesburg hospitals or asymptomatic South African blood donors. Diversity within known CD4+ and CD8+ T-cell epitopes was also explored. Samples grouped into subtypes 1a(N = 10) 1b(N = 12), 3a(N = 5), 4a(N = 3) and 5a(N = 61). Two mutations, associated with interferon resistance-R70Q and T110N-were present in 29 genotype 5a core sequences. No resistance mutation to NS5B nucleotide inhibitors, sofosbuvir was found. Six putative CD8+ and one CD4+ T-cell epitope sequence in the core region showed binding scores of <300 IC50nM to HLA alleles frequently observed in the South African population. No known CD8+ and CD4+ T-cell epitopes were mapped in the NS5B region. The analysis begs the question whether those infected with genotype 5a will benefit better on interferon-free combination therapies. This study provides new insight into one of the lesser studied HCV genotypes and compares the diversity seen in a large pre-treatment cohort with other subtypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations.

    Science.gov (United States)

    Matta, Andrés Jenuer; Zambrano, Diana Carolina; Pazos, Alvaro Jairo

    2018-04-14

    To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori ( H. pylori ) and determine their association with therapeutic failure. PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori ( κ = 0.71). The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori .

  8. CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy.

    Science.gov (United States)

    Elia, M; Falco, M; Ferri, R; Spalletta, A; Bottitta, M; Calabrese, G; Carotenuto, M; Musumeci, S A; Lo Giudice, M; Fichera, M

    2008-09-23

    To search for CDKL5 gene mutations in boys presenting with severe early-onset encephalopathy and intractable epilepsy, a clinical picture very similar to that already described in girls with CDKL5 mutations. Eight boys (age range 3-16 years, mean age 8.5 years, SD 4.38) with severe or profound mental retardation and early-onset intractable seizures were selected for CDKL5 gene mutation screening by denaturing high-performance liquid chromatography analysis. We found three unrelated boys carrying three different missense mutations of the CDKL5 gene: c.872G>A (p.C291Y), c.863C>T (p.T288I), and c.533G>C (p.R178P). They presented early-onset, polymorphous, and drug-resistant seizures, mostly myoclonic and tonic or spasms. EEG showed epileptiform abnormalities which were multifocal during wakefulness, and pseudoperiodic bisynchronous during sleep. This study describes three boys carrying CDKL5 missense mutations and their detailed clinical and EEG data, and indicates that CDKL5 gene mutations may represent a cause of severe or profound mental retardation and early-onset intractable seizures, also in boys. Screening for CDKL5 mutations is strongly recommended in individuals with these clinical features.

  9. Long QT Syndrome–Associated Mutations in Intrauterine Fetal Death

    Science.gov (United States)

    Crotti, Lia; Tester, David J.; White, Wendy M.; Bartos, Daniel C.; Insolia, Roberto; Besana, Alessandra; Kunic, Jennifer D.; Will, Melissa L.; Velasco, Ellyn J.; Bair, Jennifer J.; Ghidoni, Alice; Cetin, Irene; Van Dyke, Daniel L.; Wick, Myra J.; Brost, Brian; Delisle, Brian P.; Facchinetti, Fabio; George, Alfred L.; Schwartz, Peter J.; Ackerman, Michael J.

    2013-01-01

    Importance Intrauterine fetal death or stillbirth occurs in approximately 1 out of every 160 pregnancies and accounts for 50% of all perinatal deaths. Postmortem evaluation fails to elucidate an underlying cause in many cases. Long QT syndrome (LQTS) may contribute to this problem. Objective To determine the spectrum and prevalence of mutations in the 3 most common LQTS susceptible genes (KCNQ1, KCNH2, and SCN5A) for a cohort of unexplained cases. Design, Setting, and Patients In this case series, retrospective postmortem genetic testing was conducted on a convenience sample of 91 unexplained intrauterine fetal deaths (mean [SD] estimated gestational age at fetal death, 26.3 [8.7] weeks) that were collected from 2006-2012 by the Mayo Clinic, Rochester, Minnesota, or the Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. More than 1300 ostensibly healthy individuals served as controls. In addition, publicly available exome databases were assessed for the general population frequency of identified genetic variants. Main Outcomes and Measures Comprehensive mutational analyses of KCNQ1 (KV7.1, LQTS type 1), KCNH2 (HERG/KV11.1, LQTS type 2), and SCN5A (NaV1.5, LQTS type 3) were performed using denaturing high-performance liquid chromatography and direct DNA sequencing on genomic DNA extracted from decedent tissue. Functional analyses of novel mutations were performed using heterologous expression and patch-clamp recording. Results The 3 putative LQTS susceptibility missense mutations (KCNQ1, p.A283T; KCNQ1, p.R397W; and KCNH2[1b], p.R25W), with a heterozygous frequency of less than 0.05% in more than 10000 publicly available exomes and absent in more than 1000 ethnically similar control patients, were discovered in 3 intrauterine fetal deaths (3.3% [95% CI, 0.68%-9.3%]). Both KV7.1-A283T (16-week male) and KV7.1-R397W (16-week female) mutations were associated with marked KV7.1 loss-of-function consistent with in utero LQTS type 1, whereas the HERG1b-R25W mutation

  10. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  11. Clinical phenotype of 5 females with a CDKL5 mutation.

    Science.gov (United States)

    Stalpers, Xenia L; Spruijt, Liesbeth; Yntema, Helger G; Verrips, Aad

    2012-01-01

    Mutations in the X-linked cyclin dependent kinase like 5 (CDKL5) gene have been reported in approximately 80 patients since the first description in 2003. The clinical presentation partly corresponds with Rett syndrome, considering clinical features as intellectual disability, hypotonia, and poor visual, language, and motor development. However, these patients do not meet the consensus criteria for Rett syndrome since they lack the clear period of regression. Furthermore, in contrast to Rett syndrome, patients with CDKL5 mutations, have seizures or infantile spasms starting in the first weeks of life. We present clinical phenotype of 5 girls having a mutation in the CDKL5 gene. All mutations are novel and are pathogenic since they either lead to a frameshift in the reading frame or affect a consensus splice site. Four of the mutations are detected de novo in the affected girl.

  12. El cólera morbus en cinco municipios del Estado de México, en 1850

    Directory of Open Access Journals (Sweden)

    María del Pilar Iracheta

    1998-01-01

    Full Text Available El artículo pretende hacer un análisis sobre los efectos del cólera morbus en cinco municipios del Estado de México (Toluca, Temoaya, Calimaya, Otzolotepec y Capulhuac durante los meses de junio y julio de 1850, aunque la enfermedad se manifestó hasta noviembre de ese año. Asimismo, se trata de señalar algunos elementos que permitieron la propagación del cólera. También se trata de medir los efectos de la enfermedad en los municipios referidos, tomando como base los factores como la edad y el sexo.

  13. El cólera morbus en cinco municipios del Estado de México, en 1850

    OpenAIRE

    María del Pilar Iracheta

    1998-01-01

    El artículo pretende hacer un análisis sobre los efectos del cólera morbus en cinco municipios del Estado de México (Toluca, Temoaya, Calimaya, Otzolotepec y Capulhuac) durante los meses de junio y julio de 1850, aunque la enfermedad se manifestó hasta noviembre de ese año. Asimismo, se trata de señalar algunos elementos que permitieron la propagación del cólera. También se trata de medir los efectos de la enfermedad en los municipios referidos, tomando como base los factores como la edad y e...

  14. Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Mohamed-Yassine eAMAROUCH

    2015-02-01

    Full Text Available Voltage-gated sodium channels (Nav are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the voltage-gated sodium channels. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the voltage-gated sodium channels by shifting the voltage-dependence of steady state activation towards more negative potentials.

  15. Frequency of Tabagism and N34S and P55S Mutations of Serine Peptidase Inhibitor, Kazal Type 1 (SPINK1) and R254W Mutation of Chymotrypsin C (CTRC) in Patients With Chronic Pancreatitis and Controls.

    Science.gov (United States)

    da Costa, Marianges Zadrozny Gouvêa; Pires, Júlia Glória Lucatelli; Nasser, Paulo Dominguez; Ferreira, Camila da Silva; Teixeira, Ana Cristina de Sá; Paranaguá-Vezozzo, Denise Cerqueira; Guarita, Dulce Reis; Carrilho, Flair José; Ono, Suzane Kioko

    2016-10-01

    This study aimed to investigate the association between chronic pancreatitis and smoking or genetic mutations. The study sample comprised 148 patients with chronic pancreatitis, 110 chronic alcoholic subjects without pancreatic disease, and 297 volunteer blood donors. Of the patients with chronic pancreatitis, 74% had alcoholic etiology and 26% had idiopathic pancreatitis. The frequency of smoking was 91.4% in patients with alcoholic pancreatitis, higher than 73.3% in alcoholic subjects without pancreatitis (P pancreatitis and blood donors. The N34S mutation of serine peptidase inhibitor, Kazal type 1 (SPINK1) was found in 2.7% of patients with chronic alcoholic pancreatitis, in 5.3% of patients with idiopathic pancreatitis, and in 0.4% of blood donors (P = 0.02). The P55S mutation of SPINK1 was found in 2.7% of patients with alcoholic pancreatitis and in 0.7% of blood donors (P = 0.12). The R254W mutation of chymotrypsin C was found in 0.9% of patients with alcoholic pancreatitis, in 0.9% of chronic alcoholic subjects without pancreatitis, and in 0.4% of blood donors (P = 0.75). In all cases, the mutations were heterozygous. Smoking and the N34S mutation of SPINK1 were positively correlated with chronic pancreatitis.

  16. A sun-crown-sensor model and adapted C-correction logic for topographic correction of high resolution forest imagery

    Science.gov (United States)

    Fan, Yuanchao; Koukal, Tatjana; Weisberg, Peter J.

    2014-10-01

    Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun-canopy-sensor (SCS) model significantly improved over those based on the sun-terrain-sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun-crown-sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun-crown-sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model

  17. Severe myoclonic epilepsy of infancy (Dravet syndrome: Clinical and genetic features of nine Turkish patients

    Directory of Open Access Journals (Sweden)

    Meral Özmen

    2011-01-01

    Full Text Available Purpose: Mutations of the a-1 subunit sodium channel gene (SCN1A cause severe myoclonic epilepsy of infancy (SMEI. To date, over 300 mutations related to SMEI have been described. In the present study, we report new SCN1A mutations and the clinical features of SMEI cases. Materials and Methods: We studied the clinical and genetic features of nine patients diagnosed with SMEI at the Pediatric Neurology Department of Istanbul Medical Faculty. Results: Five patients had nonsense mutations, two had missense mutations, one had a splice site mutation and one had a deletion mutation of the SCN1A gene. Mutations at c.3705+5G splice site, p.trip153X nonsense mutation and deletion at c.2416_2946 have not been previously described. The seizures started following whole cell pertussis vaccination in all patients. The seizures ceased in one patient and continued in the other eight patients. Developmental regression was severe in three patients, with frequent status epilepticus. The type of mutation was not predictive for the severity of the disease. Two of the three patients with severe regression had nonsense and missense mutations. Conclusions : Dravet syndrome can be result of several different types of mutation in SCN1A gene. Onset of the seizures after pertussis vaccination is an important clue for the diagnosis and neuro- developmental delay should be expected in all patients.

  18. Novel Compound Heterozygous CLCNKB Gene Mutations (c.1755A>G/ c.848_850delTCT) Cause Classic Bartter Syndrome.

    Science.gov (United States)

    Wang, Chunli; Chen, Ying; Zheng, Bixia; Zhu, Mengshu; Fan, Jia; Wang, Juejin; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2018-02-14

    Inactivated variants in CLCNKB gene encoding the basolateral chloride channel ClC-Kb cause classic Bartter syndrome characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here we identified two cBS siblings presenting hypokalemia in a Chinese family due to novel compound heterozygous CLCNKB mutations (c.848_850delTCT/c.1755A>G). Compound heterozygosity was confirmed by amplifying and sequencing the patient's genomic DNA. The synonymous mutation c.1755A>G (Thr585Thr) was located at +2bp from the 5' splice donor site in exon 15, further transcript analysis demonstrated that this single nucleotide mutation causes exclusion of exon 15 in the cDNA from the proband and his mother. Furthermore, we investigated the expression and protein trafficking change of c.848_850delTCT (TCT) and exon 15 deletion(E15)mutation in vitro. The E15 mutation markedly decreased the expression of ClC-Kb and resulted in a low-molecular-weight band (~55kD) trapping in the endoplasmic reticulum, while the TCT mutant only decreased the total and plasma membrane ClC-Kb protein expression but did not affect the subcellular localization. Finally, we studied the physiological functions of mutations by using whole-cell patch clamp and found that E15 or TCT mutation decreased the current of ClC-Kb/barttin channel. These results suggested that the compound defective mutations of CLCNKB gene are the molecular mechanism of the two cBS siblings.

  19. Novel mutations in the TBX5 gene in patients with Holt-Oram Syndrome

    Directory of Open Access Journals (Sweden)

    Marianna P.R. Porto

    2010-01-01

    Full Text Available The Holt-Oram syndrome (HOS is an autosomal dominant condition characterized by upper limb and cardiac malformations. Mutations in the TBX5 gene cause HOS and have also been associated with isolated heart and arm defects. Interactions between the TBX5, GATA4 and NKX2.5 proteins have been reported in humans. We screened the TBX5, GATA4, and NKX2.5 genes for mutations, by direct sequencing, in 32 unrelated patients presenting classical (8 or atypical HOS (1, isolated congenital heart defects (16 or isolated upper-limb malformations (7. Pathogenic mutations in the TBX5 gene were found in four HOS patients, including two new mutations (c.374delG; c.678G > T in typical patients, and the hotspot mutation c.835C > T in two patients, one of them with an atypical HOS phenotype involving lower-limb malformations. Two new mutations in the GATA4 gene were found in association with isolated upper-limb malformations, but their clinical significance remains to be established. A previously described possibly pathogenic mutation in the NKX2.5 gene (c.73C > 7 was detected in a patient with isolated heart malformations and also in his clinically normal father.

  20. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-01-01

    AIM To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). METHODS The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. RESULTS The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of

  1. Polymorphisms and resistance mutations of hepatitis C virus on sequences in the European hepatitis C virus database.

    Science.gov (United States)

    Kliemann, Dimas Alexandre; Tovo, Cristiane Valle; da Veiga, Ana Beatriz Gorini; de Mattos, Angelo Alves; Wood, Charles

    2016-10-28

    To evaluate the occurrence of resistant mutations in treatment-naïve hepatitis C virus (HCV) sequences deposited in the European hepatitis C virus database (euHCVdb). The sequences were downloaded from the euHCVdb (https://euhcvdb.ibcp.fr/euHCVdb/). The search was performed for full-length NS3 protease, NS5A and NS5B polymerase sequences of HCV, separated by genotypes 1a, 1b, 2a, 2b and 3a, and resulted in 798 NS3, 708 NS5A and 535 NS5B sequences from HCV genotypes 1a, 1b, 2a, 2b and 3a, after the exclusion of sequences containing errors and/or gaps or incomplete sequences, and sequences from patients previously treated with direct antiviral agents (DAA). The sequence alignment was performed with MEGA 6.06 MAC and the resulting protein sequences were then analyzed using the BioEdit 7.2.5. for mutations associated with resistance. Only positions that have been described as being associated with failure in treatment in in vivo studies, and/or as conferring a more than 2-fold change in replication in comparison to the wildtype reference strain in in vitro phenotypic assays were included in the analysis. The Q80K variant in the NS3 gene was the most prevalent mutation, being found in 44.66% of subtype 1a and 0.25% of subtype 1b. Other frequent mutations observed in more than 2% of the NS3 sequences were: I170V (3.21%) in genotype 1a, and Y56F (15.93%), V132I (23.28%) and I170V (65.20%) in genotype 1b. For the NS5A, 2.21% of the genotype 1a sequences have the P58S mutation, 5.95% of genotype 1b sequences have the R30Q mutation, 15.79% of subtypes 2a sequences have the Q30R mutation, 23.08% of subtype 2b sequences have a L31M mutation, and in subtype 3a sequences, 23.08% have the M31L resistant variants. For the NS5B, the V321L RAV was identified in 0.60% of genotype 1a and in 0.32% of genotype 1b sequences, and the N142T variant was observed in 0.32% of subtype 1b sequences. The C316Y, S556G, D559N RAV were identified in 0.33%, 7.82% and 0.32% of genotype 1b sequences

  2. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  3. TGM5 mutations impact epidermal differentiation in acral peeling skin syndrome.

    Science.gov (United States)

    Pigors, Manuela; Kiritsi, Dimitra; Cobzaru, Cristina; Schwieger-Briel, Agnes; Suárez, Jose; Faletra, Flavio; Aho, Heikki; Mäkelä, Leeni; Kern, Johannes S; Bruckner-Tuderman, Leena; Has, Cristina

    2012-10-01

    Acral peeling skin syndrome (APSS) is an autosomal recessive skin disorder characterized by acral blistering and peeling of the outermost layers of the epidermis. It is caused by mutations in the gene for transglutaminase 5, TGM5. Here, we report on clinical and molecular findings in 11 patients and extend the TGM5 mutation database by four, to our knowledge, previously unreported mutations: p.M1T, p.L41P, p.L214CfsX15, and p.S604IfsX9. The recurrent mutation p.G113C was found in 9 patients, but also in 3 of 100 control individuals in a heterozygous state, indicating that APSS might be more widespread than hitherto expected. Using quantitative real-time PCR, immunoblotting, and immunofluorescence analysis, we demonstrate that expression and distribution of several epidermal differentiation markers and corneodesmosin (CDSN) is altered in APSS keratinocytes and skin. Although the expression of transglutaminases 1 and 3 was not changed, we found an upregulation of keratin 1, keratin 10, involucrin, loricrin, and CDSN, probably as compensatory mechanisms for stabilization of the epidermal barrier. Our results give insights into the consequences of TGM5 mutations on terminal epidermal differentiation.

  4. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells

    KAUST Repository

    Wijeyasinghe, Nilushi

    2017-07-28

    This study reports the development of copper(I) thiocyanate (CuSCN) hole-transport layers (HTLs) processed from aqueous ammonia as a novel alternative to conventional n-alkyl sulfide solvents. Wide bandgap (3.4–3.9 eV) and ultrathin (3–5 nm) layers of CuSCN are formed when the aqueous CuSCN–ammine complex solution is spin-cast in air and annealed at 100 °C. X-ray photoelectron spectroscopy confirms the high compositional purity of the formed CuSCN layers, while the high-resolution valence band spectra agree with first-principles calculations. Study of the hole-transport properties using field-effect transistor measurements reveals that the aqueous-processed CuSCN layers exhibit a fivefold higher hole mobility than films processed from diethyl sulfide solutions with the maximum values approaching 0.1 cm2 V−1 s−1. A further interesting characteristic is the low surface roughness of the resulting CuSCN layers, which in the case of solar cells helps to planarize the indium tin oxide anode. Organic bulk heterojunction and planar organometal halide perovskite solar cells based on aqueous-processed CuSCN HTLs yield power conversion efficiency of 10.7% and 17.5%, respectively. Importantly, aqueous-processed CuSCN-based cells consistently outperform devices based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate HTLs. This is the first report on CuSCN films and devices processed via an aqueous-based synthetic route that is compatible with high-throughput manufacturing and paves the way for further developments.

  5. Measurement and correlation of vapour pressures of pyridine and thiophene with [EMIM][SCN] ionic liquid

    International Nuclear Information System (INIS)

    Khelassi-Sefaoui, Asma; Mutelet, Fabrice; Mokbel, Ilham; Jose, Jacques; Negadi, Latifa

    2014-01-01

    Highlights: • VLE of (pyridine + [EMIM][SCN]), or (thiophene + [EMIM][SCN]) binary mixtures were measured. • The investigated temperatures are 273 K to 363 K. • The PC-SAFT equation of state has been used to correlate the vapour pressures of the binary systems. - Abstract: In this work (vapour + liquid) equilibrium (VLE) measurements were performed on binary systems of the ionic liquid 1-ethyl-3-methylimidazolium thiocynate [EMIM][SCN] with thiophene or pyridine at pressures close to the atmospheric pressure using a static device at temperatures between 273 K and 363 K. Experimental data were correlated by the PC-SAFT EoS. The binary interaction parameters k ij were optimised on experimental VLE data. The results obtained for the two binary mixtures studied in this paper indicate that the PC-SAFT EoS can be used to represent systems containing ionic liquids

  6. A SCN9A gene-encoded dorsal root ganglia sodium channel polymorphism associated with severe fibromyalgia

    Directory of Open Access Journals (Sweden)

    Vargas-Alarcon Gilberto

    2012-02-01

    Full Text Available Abstract Background A consistent line of investigation suggests that autonomic nervous system dysfunction may explain the multi-system features of fibromyalgia (FM; and that FM is a sympathetically maintained neuropathic pain syndrome. Dorsal root ganglia (DRG are key sympathetic-nociceptive short-circuit sites. Sodium channels located in DRG (particularly Nav1.7 act as molecular gatekeepers for pain detection. Nav1.7 is encoded in gene SCN9A of chromosome 2q24.3 and is predominantly expressed in the DRG pain-sensing neurons and sympathetic ganglia neurons. Several SCN9A sodium channelopathies have been recognized as the cause of rare painful dysautonomic syndromes such as paroxysmal extreme pain disorder and primary erythromelalgia. The aim of this study was to search for an association between fibromyalgia and several SCN9A sodium channels gene polymorphisms. Methods We studied 73 Mexican women suffering from FM and 48 age-matched women who considered themselves healthy. All participants filled out the Fibromyalgia Impact Questionnaire (FIQ. Genomic DNA from whole blood containing EDTA was extracted by standard techniques. The following SCN9A single-nucleotide polymorphisms (SNP were determined by 5' exonuclease TaqMan assays: rs4371369; rs4387806; rs4453709; rs4597545; rs6746030; rs6754031; rs7607967; rs12620053; rs12994338; and rs13017637. Results The frequency of the rs6754031 polymorphism was significantly different in both groups (P = 0.036 mostly due to an absence of the GG genotype in controls. Interestingly; patients with this rs6754031 GG genotype had higher FIQ scores (median = 80; percentile 25/75 = 69/88 than patients with the GT genotype (median = 63; percentile 25/75 = 58/73; P = 0.002 and the TT genotype (median = 71; percentile 25/75 = 64/77; P = 0.001. Conclusion In this ethnic group; a disabling form of FM is associated to a particular SCN9A sodium channel gene variant. These preliminary results raise the possibility that

  7. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling.

    Science.gov (United States)

    Hashimoto, Yuichi; Toyama, Yuka; Kusakari, Shinya; Nawa, Mikiro; Matsuoka, Masaaki

    2016-06-03

    A missense mutation (T835M) in the uncoordinated-5C (UNC5C) netrin receptor gene increases the risk of late-onset Alzheimer disease (AD) and also the vulnerability of neurons harboring the mutation to various insults. The molecular mechanisms underlying T835M-UNC5C-induced death remain to be elucidated. In this study, we show that overexpression of wild-type UNC5C causes low-grade death, which is intensified by an AD-linked mutation T835M. An AD-linked survival factor, calmodulin-like skin protein (CLSP), and a natural ligand of UNC5C, netrin1, inhibit this death. T835M-UNC5C-induced neuronal cell death is mediated by an intracellular death-signaling cascade, consisting of death-associated protein kinase 1/protein kinase D/apoptosis signal-regulating kinase 1 (ASK1)/JNK/NADPH oxidase/caspases, which merges at ASK1 with a death-signaling cascade, mediated by amyloid β precursor protein (APP). Notably, netrin1 also binds to APP and partially inhibits the death-signaling cascade, induced by APP. These results may provide new insight into the amyloid β-independent pathomechanism of AD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh

    2013-03-01

    Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for

  9. A novel ATP1A2 gene mutation in an Irish familial hemiplegic migraine kindred.

    LENUS (Irish Health Repository)

    Fernandez, Desiree M

    2012-02-03

    OBJECTIVE: We studied a large Irish Caucasian pedigree with familial hemiplegic migraine (FHM) with the aim of finding the causative gene mutation. BACKGROUND: FHM is a rare autosomal-dominant subtype of migraine with aura, which is linked to 4 loci on chromosomes 19p13, 1q23, 2q24, and 1q31. The mutations responsible for hemiplegic migraine have been described in the CACNA1A gene (chromosome 19p13), ATP1A2 gene (chromosome 1q23), and SCN1A gene (chromosome 2q24). METHODS: We performed linkage analyses in this family for chromosome 1q23 and performed mutation analysis of the ATP1A2 gene. RESULTS: Linkage to the FHM2 locus on chromosome 1 was demonstrated. Mutation screening of the ATP1A2 gene revealed a G to C substitution in exon 22 resulting in a novel protein variant, D999H, which co-segregates with FHM within this pedigree and is absent in 50 unaffected individuals. This residue is also highly conserved across species. CONCLUSIONS: We propose that D999H is a novel FHM ATP1A2 mutation.

  10. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    Science.gov (United States)

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  11. Late-Onset Glycogen Storage Disease Type II (Pompe’s Disease with a Novel Mutation: A Malaysian Experience

    Directory of Open Access Journals (Sweden)

    Hiew Fu Liong

    2014-01-01

    Full Text Available Pompe’s disease (acid maltase deficiency, glycogen storage disease type II is an autosomal recessive disorder caused by a deficiency of lysosomal acid α-1,4-glucosidase, resulting in excessive accumulation of glycogen in the lysosomes and cytoplasm of all tissues, most notably in skeletal muscles. We present a case of adult-onset Pompe’s disease with progressive proximal muscles weakness over 5 years and respiratory failure on admission, requiring prolonged mechanical ventilation. Electromyography showed evidence of myopathic process with small amplitudes, polyphasic motor unit action potentials, and presence of pseudomyotonic discharges. Muscle biopsy showed glycogen-containing vacuoles in the muscle fibers consistent with glycogen storage disease. Genetic analysis revealed two compound heterozygous mutations at c.444C>G (p.Tyr148* in exon 2 and c.2238G>C (p.Trp746Cys in exon 16, with the former being a novel mutation. This mutation has not been reported before, to our knowledge. The patient was treated with high protein diet during the admission and subsequently showed good clinical response to enzyme replacement therapy with survival now to the eighth year. Conclusion. In patients with late-onset adult Pompe’s disease, careful evaluation and early identification of the disease and its treatment with high protein diet and enzyme replacement therapy improve muscle function and have beneficial impact on long term survival.

  12. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNASer(UCN) G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Yuan Huijun; Chen Jing; Liu Xin; Cheng Jing; Wang Xinjian; Yang Li; Yang Shuzhi; Cao Juyang; Kang Dongyang; Dai Pu; Zha, Suoqiang; Han Dongyi; Young Wieyen; Guan Minxin

    2007-01-01

    Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA Ser(UCN) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA Ser(UCN) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families

  13. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host.

    Science.gov (United States)

    Czudai-Matwich, Volker; Otte, Anna; Matrosovich, Mikhail; Gabriel, Gülsah; Klenk, Hans-Dieter

    2014-08-01

    Mutation D701N in the PB2 protein is known to play a prominent role in the adaptation of avian influenza A viruses to mammalian hosts. In contrast, little is known about the nearby mutations S714I and S714R, which have been observed in some avian influenza viruses highly pathogenic for mammals. We have generated recombinant H5N1 viruses with PB2 displaying the avian signature 701D or the mammalian signature 701N and serine, isoleucine, and arginine at position 714 and compared them for polymerase activity and virus growth in avian and mammalian cells, as well as for pathogenicity in mice. Mutation D701N led to an increase in polymerase activity and replication efficiency in mammalian cells and in mouse pathogenicity, and this increase was significantly enhanced when mutation D701N was combined with mutation S714R. Stimulation by mutation S714I was less distinct. These observations indicate that PB2 mutation S714R, in combination with the mammalian signature at position 701, has the potential to promote the adaptation of an H5N1 virus to a mammalian host. Influenza A/H5N1 viruses are avian pathogens that have pandemic potential, since they are spread over large parts of Asia, Africa, and Europe and are occasionally transmitted to humans. It is therefore of high scientific interest to understand the mechanisms that determine the host specificity and pathogenicity of these viruses. It is well known that the PB2 subunit of the viral polymerase is an important host range determinant and that PB2 mutation D701N plays an important role in virus adaptation to mammalian cells. In the present study, we show that mutation S714R is also involved in adaptation and that it cooperates with D701N in exposing a nuclear localization signal that mediates importin-α binding and entry of PB2 into the nucleus, where virus replication and transcription take place. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes

    DEFF Research Database (Denmark)

    Lal, Dennis; Reinthaler, Eva M; Dejanovic, Borislav

    2016-01-01

    OBJECTIVE: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are...

  15. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy.

    Science.gov (United States)

    Corbett, Mark A; Bellows, Susannah T; Li, Melody; Carroll, Renée; Micallef, Silvana; Carvill, Gemma L; Myers, Candace T; Howell, Katherine B; Maljevic, Snezana; Lerche, Holger; Gazina, Elena V; Mefford, Heather C; Bahlo, Melanie; Berkovic, Samuel F; Petrou, Steven; Scheffer, Ingrid E; Gecz, Jozef

    2016-11-08

    To identify the genetic basis of a family segregating episodic ataxia, infantile seizures, and heterogeneous epilepsies and to study the phenotypic spectrum of KCNA2 mutations. A family with 7 affected individuals over 3 generations underwent detailed phenotyping. Whole genome sequencing was performed on a mildly affected grandmother and her grandson with epileptic encephalopathy (EE). Segregating variants were filtered and prioritized based on functional annotations. The effects of the mutation on channel function were analyzed in vitro by voltage clamp assay and in silico by molecular modeling. KCNA2 was sequenced in 35 probands with heterogeneous phenotypes. The 7 family members had episodic ataxia (5), self-limited infantile seizures (5), evolving to genetic generalized epilepsy (4), focal seizures (2), and EE (1). They had a segregating novel mutation in the shaker type voltage-gated potassium channel KCNA2 (CCDS_827.1: c.765_773del; p.255_257del). A rare missense SCN2A (rs200884216) variant was also found in 2 affected siblings and their unaffected mother. The p.255_257del mutation caused dominant negative loss of channel function. Molecular modeling predicted repositioning of critical arginine residues in the voltage-sensing domain. KCNA2 sequencing revealed 1 de novo mutation (CCDS_827.1: c.890G>A; p.Arg297Gln) in a girl with EE, ataxia, and tremor. A KCNA2 mutation caused dominantly inherited episodic ataxia, mild infantile-onset seizures, and later generalized and focal epilepsies in the setting of normal intellect. This observation expands the KCNA2 phenotypic spectrum from EE often associated with chronic ataxia, reflecting the marked variation in severity observed in many ion channel disorders. © 2016 American Academy of Neurology.

  16. Fatal Cerebral Edema With Status Epilepticus in Children With Dravet Syndrome: Report of 5 Cases.

    Science.gov (United States)

    Myers, Kenneth A; McMahon, Jacinta M; Mandelstam, Simone A; Mackay, Mark T; Kalnins, Renate M; Leventer, Richard J; Scheffer, Ingrid E

    2017-04-01

    Dravet syndrome (DS) is a well-recognized developmental and epileptic encephalopathy associated with SCN1A mutations and 15% mortality by 20 years. Although over half of cases succumb to sudden unexpected death in epilepsy, the cause of death in the remainder is poorly defined. We describe the clinical, radiologic, and pathologic characteristics of a cohort of children with DS and SCN1A mutations who developed fatal cerebral edema causing mass effect after fever-associated status epilepticus. Cases were identified from a review of children with DS enrolled in the Epilepsy Genetics Research Program at The University of Melbourne, Austin Health, who died after fever-associated status epilepticus. Five children were identified, all of whom presented with fever-associated convulsive status epilepticus, developed severe brain swelling, and died. All had de novo SCN1A mutations. Fever of 40°C or greater was measured in all cases. Signs of brainstem dysfunction, indicating cerebral herniation, were first noted 3 to 5 days after initial presentation in 4 patients, though were apparent as early as 24 hours in 1 case. When MRI was performed early in a patient's course, focal regions of cortical diffusion restriction were noted. Later MRI studies demonstrated diffuse cytotoxic edema, with severe cerebral herniation. Postmortem studies revealed diffuse brain edema and widespread neuronal damage. Laminar necrosis was seen in 1 case. Cerebral edema leading to fatal brain herniation is an important, previously unreported sequela of status epilepticus in children with DS. This potentially remediable complication may be a significant contributor to the early mortality of DS. Copyright © 2017 by the American Academy of Pediatrics.

  17. A Novel Missense Mutation in SLC5A5 Gene in a Sudanese Family with Congenital Hypothyroidism.

    Science.gov (United States)

    Watanabe, Yui; Ebrhim, Reham Shareef; Abdullah, Mohamed A; Weiss, Roy E

    2018-05-15

    Thyroid hormone synthesis requires the presence of iodide. The sodium iodide symporter (NIS) is a glycoprotein which mediates the active uptake of iodide from the blood stream into the thyroid grand. NIS defects due to SLC5A5 gene mutations are known to cause congenital hypothyroidism (CH). The proposita is a 28-year-old female whose origin is the North Sudan where neonatal screening for CH is not available. She presented with severe constipation and a goiter at the age of 40 days. Laboratory testing confirmed CH and she was started on levothyroxine (L-T4). Presumably due to the delayed treatment the patient developed mental retardation. Her younger sister presented with a goiter, tongue protrusion and umbilical hernia and the youngest brother was also diagnosed with CH based on the TSH >100 µIU/mL at the age of 22 days and 8 days, respectively. Two siblings were treated with L-T4 and had normal development. Their consanguineous parents had no history of thyroid disorders. We performed whole exome sequencing (WES) on the proposita. WES identified a novel homozygous missense mutation in the SLC5A5 gene: c.1042T>G, p.Tyr348Asp, which was subsequently confirmed by Sanger sequencing. All affected children were homozygous for the same mutation and their unaffected mother was heterozygous. The NIS protein is composed of 13 transmembrane segments (TMS), an extracellular amino-terminus and an intracellular carboxyl terminus. The mutation is located in the TMS IX which has the most β-OH group-containing amino acids (serine and threonine) which is implicated in Na+ binding and translocation. In conclusion, a novel homozygous missense mutation in the SLC5A5 gene was identified in the Sudanese family with CH. The mutation is located in the TMS IX of the NIS protein which is essential for NIS function. Low iodine intake in Sudan is considered to affect severity of hypothyroidism in the patients.

  18. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D. [Univ. of Bonn (Germany)] [and others

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  19. Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1).

    Science.gov (United States)

    Li, Jinqian; Feng, Shengjun; Liu, Xi; Guo, Mingzhe; Chen, Mingxiao; Chen, Yiyi; Rong, Liang; Xia, Jinyu; Zhou, Yuanping; Zhong, Jin; Li, Yi-Ping

    2018-05-01

    Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Mutations in CDK5RAP2 cause Seckel syndrome.

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-09-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.

  1. Mutations in CDK5RAP2 cause Seckel syndrome

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-01-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152. PMID:26436113

  2. Flow-injection spectrophotometric determination of captopril in pharmaceutical formulations using a new solid-phase reactor containing AgSCN immobilized in a polyurethane resin

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Vicentini

    2012-06-01

    Full Text Available A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 × 10-4 mol L-1 to 1.1 × 10-3 mol L-1 with a detection limit of 8.0 × 10-5 mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 × 10-4 mol L-1 captopril (n = 12 were obtained. The sample throughput was 40 h-1 and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.Um procedimento simples de análise por injeção em fluxo foi desenvolvido para a determinação de captopril em formulações farmacêuticas empregando um novo reator em fase sólida contendo tiocianato de prata imobilizado em resina poliuretana obtida a partir de óleo de mamona. O método foi baseado na formação de um mercapto composto de prata, no reator em fase sólida, obtido entre o captopril e Ag (I imobilizada. Durante a reação, íons SCN- eram liberados e reagiam com Fe3+, gerando o complexo FeSCN2+, que foi continuamente monitorado em 480 nm. A curva analítica foi linear no intervalo de concentração de captopril entre 3,0 × 10-4 a 1,1 × 10-3 mol L-1 com um limite de detecção de 8,0 × 10-5 mol L-1. Recuperações entre 97,5-103% e desvio padrão relativo de 2% para uma solução contendo 6,0 × 10-4 mol L-1 de captopril (n = 12 foram obtidos. A frequência de amostragem foi de 40 h-1 e os resultados

  3. Identification of two novel KIF5A mutations in hereditary spastic paraplegia associated with mild peripheral neuropathy.

    Science.gov (United States)

    López, Eva; Casasnovas, Carlos; Giménez, Javier; Santamaría, Raúl; Terrazas, Jesús M; Volpini, Víctor

    2015-11-15

    Spastic paraplegia type 10 (SPG10) is a rare form of autosomal dominant hereditary spastic paraplegia (AD-HSP) due to mutations in KIF5A, a gene encoding the neuronal kinesin heavy-chain involved in axonal transport. KIF5A mutations have been associated with a wide clinical spectrum, ranging from pure HSP to isolated peripheral nerve involvement or complicated HSP phenotypes. Most KIF5A mutations are clustered in the motor domain of the protein that is necessary for microtubule interaction. Here we describe two Spanish families with an adult onset complicated AD-HSP in which neurological studies revealed a mild sensory neuropathy. Intention tremor was also present in both families. Molecular genetic analysis identified two novel mutations c.773 C>T and c.833 C>T in the KIF5A gene resulting in the P258L and P278L substitutions respectively. Both were located in the highly conserved kinesin motor domain of the protein which has previously been identified as a hot spot for KIF5A mutations. This study adds to the evidence associating the known occurrence of mild peripheral neuropathy in the adult onset SPG10 type of AD-HSP. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Effects of mutation on the downfield proton nuclear magnetic resonance spectrum of the 5S RNA of Escherichia coli

    International Nuclear Information System (INIS)

    Gewirth, D.T.; Moore, P.B.

    1987-01-01

    The imino proton spectra of several mutants of the 5S RNA of Escherichia coli are compared with that of the wild type. Three of the variants discussed are point mutations, and the fourth is a deletion mutant lacking bases 11-69 of the parent sequence, all obtained by site-directed mutagenesis techniques. The spectroscopic effects of mutation are limited in all cases, and the differences between normal and mutant spectra can be used to make or confirm the assignments of resonances. Several new assignments in the 5S spectrum are reported. Spectroscopic differences due to sequence differences permit the products of single genes within the 5S gene family to be distinguished and their fates followed by NMR

  5. [Association between homozygous c.318A>GT mutation in exon 2 of the EIF2B5 gene and the infantile form of vanishing white matter leukoencephalopathy].

    Science.gov (United States)

    Esmer, Carmen; Blanco Hernández, Gabriela; Saavedra Alanís, Víctor; Reyes Vaca, Jorge Guillermo; Bravo Oro, Antonio

    Vanishing white matter disease is one of the most frequent leukodystrophies in childhood with an autosomal recessive inheritance. A mutation in one of the genes encoding the five subunits of the eukaryotic initiation factor 2 (EIF2B5) is present in 90% of the cases. The diagnosis can be accomplished by the clinical and neuroradiological findings and molecular tests. We describe a thirteen-month-old male with previous normal neurodevelopment, who was hospitalized for vomiting, hyperthermia and irritability. On examination, cephalic perimeter and cranial pairs were normal. Hypotonia, increased muscle stretching reflexes, generalized white matter hypodensity on cranial tomography were found. Fifteen days after discharge, he suffered minor head trauma presenting drowsiness and focal seizures. Magnetic resonance showed generalized hypointensity of white matter. Vanishing white matter disease was suspected, and confirmed by sequencing of the EIF2B5 gene, revealing a homozygous c.318A> T mutation in exon 2. Subsequently, visual acuity was lost and cognitive and motor deterioration was evident. The patient died at six years of age due to severe pneumonia. This case contributes to the knowledge of the mutational spectrum present in Mexican patients and allows to extend the phenotype associated to this mutation. Copyright © 2017. Publicado por Masson Doyma México S.A.

  6. Long QT interval in Turner syndrome--a high prevalence of LQTS gene mutations.

    Directory of Open Access Journals (Sweden)

    Christian Trolle

    Full Text Available QT-interval prolongation of unknown aetiology is common in Turner syndrome. This study set out to explore the presence of known long QT mutations in Turner syndrome and to examine the corrected QT-interval (QTc over time and relate the findings to the Turner syndrome phenotype.Adult women with Turner syndrome (n = 88 were examined thrice and 68 age-matched healthy controls were examined once. QTc was measured by one blinded reader (intra-reader variability: 0.7%, and adjusted for influence of heart rate by Bazett's (bQTc and Hodges's formula (hQTc. The prevalence of mutations in genes related to Long QT syndrome was determined in women with Turner syndrome and a QTc >432.0 milliseconds (ms. Echocardiographic assessment of aortic valve morphology, 24-hour blood pressures and blood samples were done.The mean hQTc in women with Turner syndrome (414.0 ± 25.5 ms compared to controls (390.4 ± 17.8 ms was prolonged (p432 ms, 7 had mutations in major Long QT syndrome genes (SCN5A and KCNH2 and one in a minor Long QT syndrome gene (KCNE2.There is a high prevalence of mutations in the major LQTS genes in women with TS and prolonged QTc. It remains to be settled, whether these findings are related to the unexplained excess mortality in Turner women.NCT00624949. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol/sid/S0001FLI/selectaction/View/ts/3/uid/U000099E.

  7. Parkinson-Related LRRK2 Mutation R1628P Enables Cdk5 Phosphorylation of LRRK2 and Upregulates Its Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Yang Shu

    Full Text Available Recent studies have linked certain single nucleotide polymorphisms in the leucine-rich repeat kinase 2 (LRRK2 gene with Parkinson's disease (PD. Among the mutations, LRRK2 c.4883G>C (R1628P variant was identified to have a significant association with the risk of PD in ethnic Han-Chinese populations. But the molecular pathological mechanisms of R1628P mutation in PD is still unknown.Unlike other LRRK2 mutants in the Roc-COR-Kinase domain, the R1628P mutation didn't alter the LRRK2 kinase activity and promote neuronal death directly. LRRK2 R1628P mutation increased the binding affinity of LRRK2 with Cyclin-dependent kinase 5 (Cdk5. Interestingly, R1628P mutation turned its adjacent amino acid residue S1627 on LRRK2 protein to a novel phosphorylation site of Cdk5, which could be defined as a typical type II (+ phosphorylation-related single nucleotide polymorphism. Importantly, we showed that the phosphorylation of S1627 by Cdk5 could activate the LRRK2 kinase, and neurons ectopically expressing R1628P displayed a higher sensitivity to 1-methyl-4-phenylpyridinium, a bioactive metabolite of environmental toxin MPTP, in a Cdk5-dependent manner.Our data indicate that Parkinson-related LRRK2 mutation R1628P leads to Cdk5 phosphorylation of LRRK2 at S1627, which would upregulate the kinase activity of LRRK2 and consequently cause neuronal death.

  8. Naturally occurring mutations in large surface genes related to occult infection of hepatitis B virus genotype C.

    Directory of Open Access Journals (Sweden)

    Hong Kim

    Full Text Available Molecular mechanisms related to occult hepatitis B virus (HBV infection, particularly those based on genotype C infection, have rarely been determined thus far in the ongoing efforts to determine infection mechanisms. Therefore, we aim to elucidate the mutation patterns in the surface open reading frame (S ORF underlying occult infections of HBV genotype C in the present study. Nested PCRs were applied to 624 HBV surface antigen (HBsAg negative Korean subjects. Cloning and sequencing of the S ORF gene was applied to 41 occult cases and 40 control chronic carriers. Forty-one (6.6% of the 624 Korean adults with HBsAg-negative serostatus were found to be positive for DNA according to nested PCR tests. Mutation frequencies in the three regions labeled here as preS1, preS2, and S were significantly higher in the occult subjects compared to the carriers in all cases. A total of two types of deletions, preS1 deletions in the start codon and preS2 deletions as well as nine types of point mutations were significantly implicated in the occult infection cases. Mutations within the "a" determinant region in HBsAg were found more frequently in the occult subjects than in the carriers. Mutations leading to premature termination of S ORF were found in 16 occult subjects (39.0% but only in one subject from among the carriers (2.5%. In conclusion, our data suggest that preS deletions, the premature termination of S ORF, and "a" determinant mutations are associated with occult infections of HBV genotype C among a HBsAg-negative population. The novel mutation patterns related to occult infection introduced in the present study can help to broaden our understanding of HBV occult infections.

  9. Long QT interval in Turner syndrome--a high prevalence of LQTS gene mutations.

    Science.gov (United States)

    Trolle, Christian; Mortensen, Kristian H; Pedersen, Lisbeth N; Berglund, Agnethe; Jensen, Henrik K; Andersen, Niels H; Gravholt, Claus H

    2013-01-01

    QT-interval prolongation of unknown aetiology is common in Turner syndrome. This study set out to explore the presence of known long QT mutations in Turner syndrome and to examine the corrected QT-interval (QTc) over time and relate the findings to the Turner syndrome phenotype. Adult women with Turner syndrome (n = 88) were examined thrice and 68 age-matched healthy controls were examined once. QTc was measured by one blinded reader (intra-reader variability: 0.7%), and adjusted for influence of heart rate by Bazett's (bQTc) and Hodges's formula (hQTc). The prevalence of mutations in genes related to Long QT syndrome was determined in women with Turner syndrome and a QTc >432.0 milliseconds (ms). Echocardiographic assessment of aortic valve morphology, 24-hour blood pressures and blood samples were done. The mean hQTc in women with Turner syndrome (414.0 ± 25.5 ms) compared to controls (390.4 ± 17.8 ms) was prolonged (pTurner syndrome karyotypes (418.2 ± 24.8 vs. 407.6 ± 25.5 ms; p = 0.055). In women with Turner syndrome and a bQTc >432 ms, 7 had mutations in major Long QT syndrome genes (SCN5A and KCNH2) and one in a minor Long QT syndrome gene (KCNE2). There is a high prevalence of mutations in the major LQTS genes in women with TS and prolonged QTc. It remains to be settled, whether these findings are related to the unexplained excess mortality in Turner women. NCT00624949. https://register.clinicaltrials.gov/prs/app/action/SelectProtocol/sid/S0001FLI/selectaction/View/ts/3/uid/U000099E.

  10. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    Science.gov (United States)

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  11. EPILEPSY CAUSED BY PCDH19 GENE MUTATION: A REVIEW OF LITERATURE AND THE AUTHORS’ OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    K. Yu. Mukhin

    2016-01-01

    Full Text Available Mutation in the PCDH19 gene was first described by L.M. Dibbens et al. in 2008. Mutations in this gene are associated with epilepsy and mental retardation limited to females. The clinical manifestations that are observed in some patients with PCDH19 mutation and Dravet syndrome that is caused by mutation in the SCN1A gene include the onset of febrile and afebrile seizures in infancy, serial seizures during fever, and regression in development after the onset of seizures. Due to the fact that the two diseases have common clinical signs, it is best to test for PCDH19 mutation in patients with the clinical picture of Dravet syndrome and a negative test for SCN1A. In general, the number of scientific papers devoted to analysis and recommendations for the choice of therapy in patients with rare genetic pathology is small now. We analyzed the specific features of clinical signs and therapy in our two observed female patients aged 4 and 11 years with verified PCDH19 mutation. Both patients were noted to have severe epilepsy with febrile convulsions with the development of status epilepticus and to be unresponsive to antiepileptic therapy. The use of different antiepileptic drugs (valproate, oxcarbazepine, phenobarbital, topiramate, levetiracetam at different combinations failed to control the course of epilepsy in the 4-year-old patient whereas the 11-year-old patient who took a combination of valproic acid and benzodiazepines achieved a positive effect.

  12. Resistance to cyclosporin A derives from mutations in hepatitis C virus nonstructural proteins.

    Science.gov (United States)

    Arai, Masaaki; Tsukiyama-Kohara, Kyoko; Takagi, Asako; Tobita, Yoshimi; Inoue, Kazuaki; Kohara, Michinori

    2014-05-23

    Cyclosporine A (CsA) is an immunosuppressive drug that targets cyclophilins, cellular cofactors that regulate the immune system. Replication of hepatitis C virus (HCV) is suppressed by CsA, but the molecular basis of this suppression is still not fully understood. To investigate this suppression, we cultured HCV replicon cells (Con1, HCV genotype 1b, FLR-N cell) in the presence of CsA and obtained nine CsA-resistant FLR-N cell lines. We determined full-length HCV sequences for all nine clones, and chose two (clones #6 and #7) of the nine clones that have high replication activity in the presence of CsA for further analysis. Both clones showed two consensus mutations, one in NS3 (T1280V) and the other in NS5A (D2292E). Characterization of various mutants indicated that the D2292E mutation conferred resistance to high concentrations of CsA (up to 2 μM). In addition, the missense mutation T1280V contributed to the recovery of colony formation activity. The effects of these mutations are also evident in two established HCV replicon cell lines-HCV-RMT ([1], genotype 1a) and JFH1 (genotype 2a). Moreover, three other missense mutations in NS5A-D2303H, S2362G, and E2414K-enhanced the resistance to CsA conferred by D2292E; these double or all quadruple mutants could resist approximately 8- to 25-fold higher concentrations of CsA than could wild-type Con1. These four mutations, either as single or combinations, also made Con1 strain resistant to two other cyclophilin inhibitors, N-methyl-4-isoleucine-cyclosporin (NIM811) or Debio-025. Interestingly, the changes in IC50 values that resulted from each of these mutations were the lowest in the Debio-025-treated cells, indicating its highest resistant activity against the adaptive mutation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Zero lattice mismatch and twin-free single crystalline ScN buffer layers for GaN growth on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lupina, L.; Zoellner, M. H.; Dietrich, B.; Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); Niermann, T.; Lehmann, M. [Technische Universität Berlin, Institut für Optik und Atomare Physik, Straße des 17. Juni 135, 10623 Berlin (Germany); Thapa, S. B.; Haeberlen, M.; Storck, P. [SILTRONIC AG, Hanns-Seidel-Platz 4, 81737 München (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt, Oder (Germany); BTU Cottbus, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2015-11-16

    We report the growth of thin ScN layers deposited by plasma-assisted molecular beam epitaxy on Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/Si(111) substrates. Using x-ray diffraction, Raman spectroscopy, and transmission electron microscopy, we find that ScN films grown at 600 °C are single crystalline, twin-free with rock-salt crystal structure, and exhibit a direct optical band gap of 2.2 eV. A high degree of crystalline perfection and a very good lattice matching between ScN and GaN (misfit < 0.1%) makes the ScN/Sc{sub 2}O{sub 3}/Y{sub 2}O{sub 3} buffer system a very promising template for the growth of high quality GaN layers on silicon.

  14. Prevalence of H63D, S65C, and C282Y hereditary hemochromatosis gene variants in Madeira Island (Portugal).

    Science.gov (United States)

    Spínola, Carla; Brehm, António; Spínola, Hélder

    2011-01-01

    Hereditary HFE Hemochromatosis is an inherited disorder of iron metabolism that results from mutations in the HFE gene. Almost all patients with hereditary hemochromatosis show a C282Y mutation in homozygosity or in compound heterozygosity with H63D. Also, the mutation S65C has been shown to be associated to a milder iron overload. Since allele and genotype frequencies of these three variants of the HFE gene vary between populations, the determination of their prevalence in Madeira Island will clarify the population susceptibility to hereditary hemochromatosis. One hundred and fifty-four samples from Madeira Island were genotyped for the three most common HFE gene mutations, H63D, C282Y, and S65C, by polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results have shown a prevalence of 20.5%, 0.33%, and 1% for H63D, C282Y, and S65C, respectively. Accordingly to our estimates, both genotypes associated to hereditary hemochromatosis, C282Y homozygotes and C282/H63D compound heterozygotes, could be present in Madeira Island population in 1,648 individuals, which represents 0.65% of the total population.

  15. Efficient Culture Adaptation of Hepatitis C Virus Recombinants with Genotype-Specific Core-NS2 by Using Previously Identified Mutations

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith M; Carlsen, Thomas H R

    2011-01-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, and interferon-based therapy cures only 40 to 80% of patients, depending on HCV genotype. Research was accelerated by genotype 2a (strain JFH1) infectious cell culture systems. We previously developed viable JFH1-based...... (HC-TN and DH6), 1b (DH1 and DH5), and 3a (DBN) isolates, using previously identified adaptive mutations. Introduction of mutations from isolates of the same subtype either led to immediate efficient virus production or accelerated culture adaptation. The DH6 and DH5 recombinants without introduced...... mutations did not adapt to culture. Universal adaptive effects of mutations in NS3 (Q1247L, I1312V, K1398Q, R1408W, and Q1496L) and NS5A (V2418L) were investigated for JFH1-based genotype 1 to 5 core-NS2 recombinants; several mutations conferred adaptation to H77C (1a), J4 (1b), S52 (3a), and SA13 (5a...

  16. Ionic liquid promoted one pot approach for the synthesis of pyrido[1,2-c][1,3,5]thiadiazin-4-ones and thiazolo[3,2-c][1,3,5]thiadiazin-4-ones in water

    Directory of Open Access Journals (Sweden)

    I.R. Siddiqui

    2018-02-01

    Full Text Available A novel three component one pot methodology for rapid access to pyrido[1,2-c][1,3,5]thiadiazin-4-ones and thiazolo[3,2-c][1,3,5]thiadiazin-4-ones has been developed. A task specific ionic liquid [bmIm]SCN has been used as thiocyanating reagent. The reaction provides high yields of the product and proceeds at ambient reaction conditions in water. The use of water as the reaction medium and easy recyclability of the ionic liquid used as a reagent as well as promoter of the reaction endows the reaction with green aspects.

  17. Atom-transfer radical polymerization of methyl methacrylate (MMA) using CuSCN as the catalyst

    NARCIS (Netherlands)

    Singha, N.K.; Klumperman, B.

    2000-01-01

    The effect of CuSCN as a catalyst in atom-transfer radical polymerization (ATRP) was investigated. CuSCN can successfully be used for the ATRP of MMA. Substituted bipyridines as well as imines can be used to stabilize the copper complex in solution. CuSCN induces faster polymerization compared to

  18. The pentasulfates A{sub 2}[S{sub 5}O{sub 16}] (A = Li, Na, Cs, Ag). Rare species by reactions in SO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Lisa Verena; Struckmann, Mona; Becker, Anna; Wickleder, Mathias S. [Institute of Inorganic and Analytical Chemistry, Justus Liebig University of Giessen (Germany)

    2017-02-03

    The reaction of various sulfate salts A{sub 2}SO{sub 4} (A = Li, Na, Ag, Cs) with neat SO{sub 3} led to the respective pentasulfates A{sub 2}[S{sub 5}O{sub 16}] {Li_2[S_5O_1_6]: monoclinic, C2/c, Z = 4, a = 1850.71(7) pm, b = 665.45(2) pm, c = 992.80(4) pm, β = 106.764(2) , V = 1170.72(7) x 10"6 pm"3; Na_2[S_5O_1_6]: orthorhombic, Pbcn, Z = 4, a = 880.17(3) pm, b = 1039.88(4) pm, c = 1348.58(5) pm, V = 1234.32(8) x 10"6 pm"3; Ag_2[S_5O_1_6]: orthorhombic, Pbcn, Z = 4, a = 884.34(4) pm, b = 1043.19(5) pm, c = 1381.83(7) pm, V = 1274.8(1) x 10"6 pm"3; Cs_2[S_5O_1_6]: monoclinic, P2_1, Z = 4, a = 892.96(3) pm, b = 859.72(3) pm, c = 978.30(4) pm, β = 101.443(2) , V = 736.11(5) x 10"6 pm"3}. All four compounds are colorless and extremely moisture-sensitive substances. They all contain the pentasulfate anion [S{sub 5}O{sub 16}]{sup 2-} that has, until now, only been reported once. This comparative study of polysulfate salts with the same polysulfate anion, but varying countercations, is a crucial step in comprehending this very basic and, nevertheless, poorly investigated class of materials. Raman spectroscopy and powder diffraction complete the structural investigations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene.

    Science.gov (United States)

    Middleton, Steven J; Kneller, Emily M; Chen, Shuo; Ogiwara, Ikuo; Montal, Mauricio; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-06-04

    An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.

  20. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome

    DEFF Research Database (Denmark)

    Suls, Arvid; Jaehn, Johanna A; Kecskés, Angela

    2013-01-01

    Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet...

  1. Presence of c.3956delC mutation in familial adenomatous polyposis patients from Brazil.

    Science.gov (United States)

    Moreira-Nunes, Caroline Aquino; Alcântara, Diego di Felipe Ávila; Lima-Júnior, Sérgio Figueiredo; Cavalléro, Sandro Roberto de Araújo; Rey, Juan Antonio; Pinto, Giovanny Rebouças; de Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez

    2015-08-21

    To characterize APC gene mutations and correlate them with patient phenotypes in individuals diagnosed with familial adenomatous polyposis (FAP) in northern Brazil. A total of 15 individuals diagnosed with FAP from 5 different families from the north of Brazil were analyzed in this study. In addition to patients with histopathological diagnosis of FAP, family members who had not developed the disease were also tested in order to identify mutations and for possible genetic counseling. All analyzed patients or their guardians signed a consent form approved by the Research Ethics Committee of the João de Barros Barreto University Hospital (Belem, Brazil). DNA extracted from the peripheral blood of a member of each of the affected families was subjected to direct sequencing. The proband of each family was sequenced to identify germline mutations using the Ion Torrent platform. To validate the detected mutations, Sanger sequencing was also performed. The samples from all patients were also tested for the identification of mutations by real-time quantitative polymerase chain reaction using the amplification refractory mutation system. Through interviews with relatives and a search of medical records, it was possible to construct genograms for three of the five families included in the study. All 15 patients from the five families with FAP exhibited mutations in the APC gene, and all mutations were detected in exon 15 of the APC gene. In addition to the patients with a histological diagnosis of FAP, family members without disease symptoms showed the mutation in the APC gene. In the present study, we detected two of the three most frequent germline mutations in the literature: the mutation at codon 1309 and the mutation at codon 1061. The presence of c.3956delC mutation was found in all families from this study, and suggests that this mutation was introduced in the population of the State of Pará through ancestor immigration (i.e., a de novo mutation that arose in one

  2. Hemochromatosis C282Y gene mutation as a potential susceptibility ...

    African Journals Online (AJOL)

    G.M. Mokhtar

    2017-08-12

    Aug 12, 2017 ... Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene's mutation especially the C282Y mutation. The interaction between hemoglo- bin chain synthesis' disorders and the C282Y mutation may worsen the clinical picture of beta-.

  3. Are c.436G>A mutations less severe forms of Lafora disease? A case report

    Directory of Open Access Journals (Sweden)

    Hélène-Marie Lanoiselée

    2014-01-01

    Full Text Available Lafora disease is a form of progressive myoclonic epilepsy with autosomal recessive transmission. Two genes have been identified so far: EPM2A and NHLRC1, and a third gene, concerning a pediatric onset subform, has been recently proposed. We report the case of a 23-year-old woman of Turkish origin with an unusual disease course. Clinical onset was at the age of 19 years with tonic–clonic seizures, followed by cognitive impairment; EEG was in favor of Lafora disease, and the mutation c.436G>A (a missense mutation substituting aspartic acid in asparagine in the NHLRC1 gene confirmed this diagnosis. After 5 years of evolution, the patient only has moderate cognitive impairment. Some NHLRC1 mutations, particularly c.436G>A, are associated with a slower clinical course, but there are conflicting data in the literature. This case strengthens the hypothesis that the c.436G>A mutation in the NHLRC1 gene leads to less severe phenotypes and late-onset disease.

  4. F104S c-Mpl responds to a transmembrane domain-binding thrombopoietin receptor agonist: proof of concept that selected receptor mutations in congenital amegakaryocytic thrombocytopenia can be stimulated with alternative thrombopoietic agents.

    Science.gov (United States)

    Fox, Norma E; Lim, Jihyang; Chen, Rose; Geddis, Amy E

    2010-05-01

    To determine whether specific c-Mpl mutations might respond to thrombopoietin receptor agonists. We created cell line models of type II c-Mpl mutations identified in congenital amegakaryocytic thrombocytopenia. We selected F104S c-Mpl for further study because it exhibited surface expression of the receptor. We measured proliferation of cell lines expressing wild-type or F104S c-Mpl in response to thrombopoietin receptor agonists targeting the extracellular (m-AMP4) or transmembrane (LGD-4665) domains of the receptor by 1-methyltetrazole-5-thiol assay. We measured thrombopoietin binding to the mutant receptor using an in vitro thrombopoietin uptake assay and identified F104 as a potentially critical residue for the interaction between the receptor and its ligand by aligning thrombopoietin and erythropoietin receptors from multiple species. Cells expressing F104S c-Mpl proliferated in response to LGD-4665, but not thrombopoietin or m-AMP4. Compared to thrombopoietin, LGD-4665 stimulates signaling with delayed kinetics in both wild-type and F104S c-Mpl-expressing cells. Although F104S c-Mpl is expressed on the cell surface in our BaF3 cell line model, the mutant receptor does not bind thrombopoietin. Comparison to the erythropoietin receptor suggests that F104 engages in hydrogen-bonding interactions that are critical for binding to thrombopoietin. These findings suggest that a small subset of patients with congenital amegakaryocytic thrombocytopenia might respond to treatment with thrombopoietin receptor agonists, but that responsiveness will depend on the type of mutation and agonist used. We postulate that F104 is critical for thrombopoietin binding. The kinetics of signaling in response to a transmembrane domain-binding agonist are delayed in comparison to thrombopoietin. 2010 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  5. 17 CFR 259.5s - Form U5S, for annual reports filed under section 5(c) of the Act.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Form U5S, for annual reports filed under section 5(c) of the Act. 259.5s Section 259.5s Commodity and Securities Exchanges SECURITIES... 1935 Forms for Registration and Annual Supplements § 259.5s Form U5S, for annual reports filed under...

  6. Mutation analysis of the candidate genes -, , and in patients with arrhythmogenic right ventricular cardiomyopathy

    DEFF Research Database (Denmark)

    Refsgaard, Lena; Olesen, Morten Salling; Møller, Daniel Vega

    2012-01-01

    INTRODUCTION: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart disease characterized by fibrofatty infiltrations in the myocardium, right and/or left ventricular involvement, and ventricular tachyarrhythmias. Although ten genes have been associated with ARVC......, only about 40% of the patients have an identifiable disease-causing mutation. In the present study we aimed at investigating the involvement of the genes SCN1B-SCN4B, FHL1, and LMNA in the pathogenesis of ARVC. METHODS: Sixty-five unrelated patients (55 fulfilling ARVC criteria and 10 borderline cases...... of the variants was non-synonymous. No disease-causing mutations were identified. CONCLUSIONS: In our limited sized cohort the six studied candidate genes were not associated with ARVC....

  7. Brugada syndrome unmasked by accidental inhalation of gasoline vapors.

    Science.gov (United States)

    Kranjcec, Darko; Bergovec, Mijo; Rougier, Jean-Sébastien; Raguz, Miroslav; Pavlovic, Sonja; Jespersen, Thomas; Castella, Vincent; Keller, Dagmar I; Abriel, Hugues

    2007-10-01

    Loss-of-function mutations in the gene SCN5A can cause Brugada syndrome (BrS), which is an inherited form of idiopathic ventricular fibrillation. We report the case of a 46-year-old patient, with no previous medical history, who had ventricular fibrillation after accidental inhalation of gasoline vapors. His electrocardiogram (ECG) showed a typical type-1 BrS pattern that persisted after the acute event. Genetic investigations allowed the identification of a novel SCN5A mutation leading to a frame-shift and early termination of the channel protein. Biochemical and cellular electrophysiology experiments confirmed the loss-of-function of the mutant allele. The patient was implanted with a cardioverter/defibrillator.

  8. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene

    International Nuclear Information System (INIS)

    Romeo, G.; Hassan, H.J.; Staempfli, S.

    1987-01-01

    The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelated patients showed a variant restriction pattern after Pvu II or BamHi digestion, due to mutations in the last exon: analysis of their pedigrees, including three or seven heterozygotes, respectively, with ∼50% reduction of both enzymatic and antigen level, showed the abnormal restriction pattern in all heterozygous individuals, but not in normal relatives. Cloning of protein C gene and sequencing of the last exon allowed the authors to identify a nonsense and a missense mutation, respectively. In the first case, codon 306 (CGA, arginine) is mutated to an inframe stop codon, thus generating a new Pvu II recognition site. In the second case, a missense mutation in the BamHI palindrome (GGATCC → GCATCC) leads to substitution of a key amino acid (a tryptophan to cysteine substitution at position 402), invariantly conserved in eukaryotic serine proteases. These point mutations may explain the protein C-deficiency phenotype of heterozygotes in the two pedigrees

  9. Characterization of phospholipase C gamma enzymes with gain-of-function mutations.

    Science.gov (United States)

    Everett, Katy L; Bunney, Tom D; Yoon, Youngdae; Rodrigues-Lima, Fernando; Harris, Richard; Driscoll, Paul C; Abe, Koichiro; Fuchs, Helmut; de Angelis, Martin Hrabé; Yu, Philipp; Cho, Wohnwa; Katan, Matilda

    2009-08-21

    Phospholipase C gamma isozymes (PLC gamma 1 and PLC gamma 2) have a crucial role in the regulation of a variety of cellular functions. Both enzymes have also been implicated in signaling events underlying aberrant cellular responses. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we have recently identified single point mutations in murine PLC gamma 2 that lead to spontaneous inflammation and autoimmunity. Here we describe further, mechanistic characterization of two gain-of-function mutations, D993G and Y495C, designated as ALI5 and ALI14. The residue Asp-993, mutated in ALI5, is a conserved residue in the catalytic domain of PLC enzymes. Analysis of PLC gamma 1 and PLC gamma 2 with point mutations of this residue showed that removal of the negative charge enhanced PLC activity in response to EGF stimulation or activation by Rac. Measurements of PLC activity in vitro and analysis of membrane binding have suggested that ALI5-type mutations facilitate membrane interactions without compromising substrate binding and hydrolysis. The residue mutated in ALI14 (Tyr-495) is within the spPH domain. Replacement of this residue had no effect on folding of the domain and enhanced Rac activation of PLC gamma 2 without increasing Rac binding. Importantly, the activation of the ALI14-PLC gamma 2 and corresponding PLC gamma 1 variants was enhanced in response to EGF stimulation and bypassed the requirement for phosphorylation of critical tyrosine residues. ALI5- and ALI14-type mutations affected basal activity only slightly; however, their combination resulted in a constitutively active PLC. Based on these data, we suggest that each mutation could compromise auto-inhibition in the inactive PLC, facilitating the activation process; in addition, ALI5-type mutations could enhance membrane interaction in the activated state.

  10. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir

    2017-11-28

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  11. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir; Georgiadou, Dimitra G; Semple, James; Anthopoulos, Thomas D.

    2017-01-01

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  12. Novel mutations in the USH1C gene in Usher syndrome patients.

    Science.gov (United States)

    Aparisi, María José; García-García, Gema; Jaijo, Teresa; Rodrigo, Regina; Graziano, Claudio; Seri, Marco; Simsek, Tulay; Simsek, Enver; Bernal, Sara; Baiget, Montserrat; Pérez-Garrigues, Herminio; Aller, Elena; Millán, José María

    2010-12-31

    Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by severe-profound sensorineural hearing loss, retinitis pigmentosa, and vestibular areflexia. To date, five USH1 genes have been identified. One of these genes is Usher syndrome 1C (USH1C), which encodes a protein, harmonin, containing PDZ domains. The aim of the present work was the mutation screening of the USH1C gene in a cohort of 33 Usher syndrome patients, to identify the genetic cause of the disease and to determine the relative involvement of this gene in USH1 pathogenesis in the Spanish population. Thirty-three patients were screened for mutations in the USH1C gene by direct sequencing. Some had already been screened for mutations in the other known USH1 genes (myosin VIIA [MYO7A], cadherin-related 23 [CDH23], protocadherin-related 15 [PCDH15], and Usher syndrome 1G [USH1G]), but no mutation was found. Two novel mutations were found in the USH1C gene: a non-sense mutation (p.C224X) and a frame-shift mutation (p.D124TfsX7). These mutations were found in a homozygous state in two unrelated USH1 patients. In the present study, we detected two novel pathogenic mutations in the USH1C gene. Our results suggest that mutations in USH1C are responsible for 1.5% of USH1 disease in patients of Spanish origin (considering the total cohort of 65 Spanish USH1 patients since 2005), indicating that USH1C is a rare form of USH in this population.

  13. Embryo genome profiling by single-cell sequencing for successful preimplantation genetic diagnosis in a family harboring COL4A1 c.1537G>A; p.G513S mutation

    Directory of Open Access Journals (Sweden)

    Nayana H Patel

    2016-01-01

    Full Text Available CONTEXT: Genetic profiling of embryos (also known as preimplantation genetic diagnosis before implantation has dramatically enhanced the success quotient of in vitro fertilization (IVF in recent times. The technology helps in avoiding selective pregnancy termination since the baby is likely to be free of the disease under consideration. AIM: Screening of embryos free from c.1537G>A; p.G513S mutation within the COL4A1 gene for which the father was known in before be in heterozygous condition. SUBJECTS AND METHODS: Processing of trophectoderm biopsies was done from twelve embryos for c.1537G>A; p.G513S mutation within the COL4A1 gene. DNA extracted from isolated cells were subjected to whole genome amplification using an isothermal amplification and strand displacement technology. Oligonucleotide primers bracketing the mutation were synthesized and used to amplify 162 base pairs (bp polymerase chain reaction amplicons originating from each embryo which were subsequently sequenced to detect the presence or absence of the single base polymorphism. RESULTS: Three out of 12 embryos interrogated in this study were found to be normal while 9 were found to harbor the mutation in heterozygous condition. Implantation of one of the normal embryos following by chorionic villus sampling at 11 th week of pregnancy indicated that the baby was free from c.1537G>A; p.G513S mutation within the COL4A1 gene. CONCLUSIONS: Single-cell sequencing is a helpful tool for preimplantation embryo profiling. This is the first report from India describing the birth of a normal child through IVF procedure where a potential pathogenic COL4A1 allele was avoided using this technology.

  14. Immunohistochemical loss of 5-hydroxymethylcytosine expression in acute myeloid leukaemia: relationship to somatic gene mutations affecting epigenetic pathways.

    Science.gov (United States)

    Magotra, Minoti; Sakhdari, Ali; Lee, Paul J; Tomaszewicz, Keith; Dresser, Karen; Hutchinson, Lloyd M; Woda, Bruce A; Chen, Benjamin J

    2016-12-01

    Genes affecting epigenetic pathways are frequently mutated in myeloid malignancies, including acute myeloid leukaemia (AML). The genes encoding TET2, IDH1 and IDH2 are among the most commonly mutated genes, and cause defective conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), impairing demethylation of DNA, and presumably serving as driver mutations in leukaemogenesis. The aim of this study was to correlate 5hmC immunohistochemical loss with the mutation status of genes involved in epigenetic pathways in AML. Immunohistochemical staining with an anti-5hmC antibody was performed on 41 decalcified, formalin-fixed paraffin-embedded (FFPE) bone marrow biopsies from patients with AML. Archived DNA was subjected to next-generation sequencing for analysis of a panel of genes, including TET2, IDH1, IDH2, WT1 and DNMT3A. TET2, IDH1, IDH2, WT1 and DNMT3A mutations were found in 46% (19/41) of the cases. Ten of 15 cases (67%) with TET2, IDH1, IDH2 or WT1 mutations showed deficient 5hmC staining, whereas nine of 26 cases (35%) without a mutation in these genes showed loss of 5hmC. It is of note that all four cases with TET2 mutations showed deficient 5hmC staining. Overall, somatic mutations in TET2, IDH1, IDH2, WT1 and DNMT3A were common in our cohort of AML cases. Immunohistochemical staining for 5hmC was lost in the majority of cases harbouring mutations in these genes, reflecting the proposed relationship between dysfunctional epigenetic pathways and leukaemogenesis. © 2016 John Wiley & Sons Ltd.

  15. Generación de un modelo knock-out del gen SCN1A en Drosophila melanogaster para el estudio del síndrome de Dravet.

    OpenAIRE

    PLANELLS CÁRCEL, ANDRÉS

    2017-01-01

    [ES] El Síndrome de Dravet (SD) es una enfermedad rara infantil que se manifiesta en crisis epilépticas a temprana edad y provoca un deterioro cognitivo y conductual. Esta enfermedad es causada por mutaciones dominantes en el gen SCN1A. Este trabajo se centra en la generación de un modelo knock-out (KO) del gen paralytic en Drosophila melanogaster, homólogo al gen SCN1A en humanos, para su aplicación en el estudio del SD. A la vez se ha estudiado la conducta de cepas sensibles ...

  16. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation

    International Nuclear Information System (INIS)

    Liang, Min; Guan, Minqiang; Zhao, Fuxing; Zhou, Xiangtian; Yuan, Meixia; Tong, Yi; Yang, Li; Wei, Qi-Ping; Sun, Yan-Hong; Lu, Fan; Qu, Jia

    2009-01-01

    We report here the clinical, genetic and molecular characterization of four Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age-of-onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T3394C (Y30H) mutation, which localized at a highly conserved tyrosine at position 30 of ND1, and distinct sets of mtDNA polymorphisms belonging to haplogroups D4b and M9a. The occurrence of T3394C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. However, there was the absence of functionally significant mtDNA mutations in these four Chinese pedigrees carrying the T3394C mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated T3394C mutation.

  17. Novel bandlike signal abnormality suggestive of heterotopia in patient with a KCNQ1 frameshift mutation.

    Science.gov (United States)

    Sabharwal, Priyanka; Devinsky, Orrin; M Shepherd, Timothy

    2017-12-01

    Malformations of cortical development are associated with epilepsy and cognitive dysfunction, and can occur in patients with SCN1A ion channel mutations. We report a novel and subtle bandlike subcortical heterotopia on integrated positron emission tomography-magnetic resonance imaging ( PET-MRI) in a patient with treatment-resistant epilepsy due to a de novo KCNQ1 frameshift mutation. Our case highlights the potential for other channel mutations to cause both epilepsy and cortical malformations. Further scrutiny of high contrast resolution MRI studies is warranted for patients with KCNQ1 and other epilepsy genes to further define their extended phenotype.

  18. Novel mutations of endothelin-B receptor gene in Pakistani patients with Waardenburg syndrome.

    Science.gov (United States)

    Jabeen, Raheela; Babar, Masroor Ellahi; Ahmad, Jamil; Awan, Ali Raza

    2012-01-01

    Mutations in EDNRB gene have been reported to cause Waardenburg-Shah syndrome (WS4) in humans. We investigated 17 patients with WS4 for identification of mutations in EDNRB gene using PCR and direct sequencing technique. Four genomic mutations were detected in four patients; a G to C transversion in codon 335 (S335C) in exon 5 and a transition of T to C in codon (S361L) in exon 5, a transition of A to G in codon 277 (L277L) in exon 4, a non coding transversion of T to A at -30 nucleotide position of exon 5. None of these mutations were found in controls. One of the patients harbored two novel mutations (S335C, S361L) in exon 5 and one in Intronic region (-30exon5 A>G). All of the mutations were homozygous and novel except the mutation observed in exon 4. In this study, we have identified 3 novel mutations in EDNRB gene associated with WS4 in Pakistani patients.

  19. Advantages of a single-cycle production assay to study cell culture-adaptive mutations of hepatitis C virus

    DEFF Research Database (Denmark)

    Russell, Rodney S; Meunier, Jean-Christophe; Takikawa, Shingo

    2008-01-01

    mutations that were selected during serial passage in Huh-7.5 cells were studied. Recombinant genomes containing all five mutations produced 3-4 logs more infectious virions than did wild type. Neither a coding mutation in NS5A nor a silent mutation in E2 was adaptive, whereas coding mutations in E2, p7......The JFH1 strain of hepatitis C virus (HCV) is unique among HCV isolates, in that the wild-type virus can traverse the entire replication cycle in cultured cells. However, without adaptive mutations, only low levels of infectious virus are produced. In the present study, the effects of five...

  20. Mutation at the Human D1S80 Minisatellite Locus

    Directory of Open Access Journals (Sweden)

    Kuppareddi Balamurugan

    2012-01-01

    Full Text Available Little is known about the general biology of minisatellites. The purpose of this study is to examine repeat mutations from the D1S80 minisatellite locus by sequence analysis to elucidate the mutational process at this locus. This is a highly polymorphic minisatellite locus, located in the subtelomeric region of chromosome 1. We have analyzed 90,000 human germline transmission events and found seven (7 mutations at this locus. The D1S80 alleles of the parentage trio, the child, mother, and the alleged father were sequenced and the origin of the mutation was determined. Using American Association of Blood Banks (AABB guidelines, we found a male mutation rate of 1.04×10-4 and a female mutation rate of 5.18×10-5 with an overall mutation rate of approximately 7.77×10-5. Also, in this study, we found that the identified mutations are in close proximity to the center of the repeat array rather than at the ends of the repeat array. Several studies have examined the mutational mechanisms of the minisatellites according to infinite allele model (IAM and the one-step stepwise mutation model (SMM. In this study, we found that this locus fits into the one-step mutation model (SMM mechanism in six out of seven instances similar to STR loci.

  1. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya

    2012-12-27

    The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    Science.gov (United States)

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  3. Nephrolithiasis, kidney failure and bone disorders in Dent disease patients with and without CLCN5 mutations.

    Science.gov (United States)

    Anglani, Franca; D'Angelo, Angela; Bertizzolo, Luisa Maria; Tosetto, Enrica; Ceol, Monica; Cremasco, Daniela; Bonfante, Luciana; Addis, Maria Antonietta; Del Prete, Dorella

    2015-01-01

    Dent disease (DD) is a rare X-linked recessive renal tubulopathy characterised by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis and/or nephrolithiasis. DD is caused by mutations in both the CLCN5 and OCRL genes. CLCN5 encodes the electrogenic chloride/proton exchanger ClC-5 which is involved in the tubular reabsorption of albumin and LMW proteins, OCRL encodes the inositol polyphosphate 5-phosphatase, and was initially associated with Lowe syndrome. In approximately 25 % of patients, no CLCN5 and OCRL mutations were detected. The aim of our study was to evaluate whether calcium phosphate metabolism disorders and their clinical complications are differently distributed among DD patients with and without CLCN5 mutations. Sixty-four male subjects were studied and classified into three groups: Group I (with CLCN5 mutations), Group II (without CLCN5 mutations) and Group III (family members with the same CLCN5 mutation). LMWP, hypercalciuria and phosphaturic tubulopathy and the consequent clinical complications nephrocalcinosis, nephrolithiasis, bone disorders, and chronic kidney disease (CKD) were considered present or absent in each patient. We found that the distribution of nephrolithiasis, bone disorders and CKD differs among patients with and without CLCN5 mutations. Only in patients harbouring CLCN5 mutations was age-independent nephrolithiasis associated with hypercalciuria, suggesting that nephrolithiasis is linked to altered proximal tubular function caused by a loss of ClC-5 function, in agreement with ClC-5 KO animal models. Similarly, only in patients harbouring CLCN5 mutations was age-independent kidney failure associated with nephrocalcinosis, suggesting that kidney failure is the consequence of a ClC-5 dysfunction, as in ClC-5 KO animal models. Bone disorders are a relevant feature of DD phenotype, as patients were mainly young males and this complication occurred independently of age. The triad of symptoms, LMWP

  4. Characterisation of Neutropenia-Associated Neutrophil Elastase Mutations in a Murine Differentiation Model In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Michael Wiesmeier

    Full Text Available Severe congenital neutropenia (SCN is characterised by a differentiation block in the bone marrow and low neutrophil numbers in the peripheral blood, which correlates with increased risk of bacterial infections. Several underlying gene defects have been identified in SCN patients. Mutations in the neutrophil elastase (ELANE gene are frequently found in SCN and cyclic neutropenia. Both mislocalization and misfolding of mutant neutrophil elastase protein resulting in ER stress and subsequent induction of the unfolded protein response (UPR have been proposed to be responsible for neutrophil survival and maturation defects. However, the detailed molecular mechanisms still remain unclear, in part due to the lack of appropriate in vitro and in vivo models. Here we used a system of neutrophil differentiation from immortalised progenitor lines by conditional expression of Hoxb8, permitting the generation of mature near-primary neutrophils in vitro and in vivo. NE-deficient Hoxb8 progenitors were reconstituted with murine and human forms of typical NE mutants representative of SCN and cyclic neutropenia, and differentiation of the cells was analysed in vitro and in vivo. ER stress induction by NE mutations could be recapitulated during neutrophil differentiation in all NE mutant-reconstituted Hoxb8 cells. Despite ER stress induction, no change in survival, maturation or function of differentiating cells expressing either murine or human NE mutants was observed. Further analysis of in vivo differentiation of Hoxb8 cells in a murine model of adoptive transfer did not reveal any defects in survival or differentiation in the mouse. Although the Hoxb8 system has been found to be useful for dissection of defects in neutrophil development, our findings indicate that the use of murine systems for analysis of NE-mutation-associated pathogenesis is complicated by differences between humans and mice in the physiology of granulopoiesis, which may go beyond possible

  5. Mesotrypsin Signature Mutation in a Chymotrypsin C (CTRC) Variant Associated with Chronic Pancreatitis.

    Science.gov (United States)

    Szabó, András; Ludwig, Maren; Hegyi, Eszter; Szépeová, Renata; Witt, Heiko; Sahin-Tóth, Miklós

    2015-07-10

    Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. 21 CFR 864.1850 - Dye and chemical solution stains.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dye and chemical solution stains. 864.1850 Section 864.1850 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Biological Stains § 864.1850 Dye and chemical...

  7. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Science.gov (United States)

    2010-07-01

    ... methods for protecting against such risk, into a Material Safety Data Sheet (MSDS) as described in § 721... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... or method of manufacture, import, or processing associated with any use of this substance without...

  8. Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.

    Science.gov (United States)

    Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa

    2007-09-01

    Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.

  9. Global biofuel use, 1850-2000

    Science.gov (United States)

    Fernandes, Suneeta D.; Trautmann, Nina M.; Streets, David G.; Roden, Christoph A.; Bond, Tami C.

    2007-06-01

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, ˜220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, ˜180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at ˜1200 ± 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  10. Identification of novel splice site mutation IVS9 + 1(G > A) and novel complex allele G355R/R359X in Type 1 Gaucher patients heterozygous for mutation N370S.

    Science.gov (United States)

    Hoitsema, Kourtnee; Amato, Dominick; Khan, Aneal; Sirrs, Sandra; Choy, Francis Y M

    2016-09-01

    Gaucher disease is an autosomal recessive lysosomal storage disorder resulting from deficient glucocerebrosidase activity. More than 350 mutations that cause Gaucher disease have been described to date. Novel mutations can potentially provide insight into the glucocerebrosidase structure-function relationship and biochemical basis of the disease. Here, we report the identification of two novel mutations in two unrelated patients with type I (non-neuronopathic) Gaucher disease: 1) a splice site mutation IVS9 + 1G > A; and (2) a complex allele (cis) G355R/R359X. Both patients have a common N370S mutation in the other allele. The splice site mutation results from an intronic base substitution (G to A, c.1328 + 1, g.5005) at the donor splice site of exon and intron 9. The complex allele results from two point mutations in exon 8 of glucocerebrosidase (G to C at c.1180, g.4396, and T to C at c. 1192, g.4408) substituting glycine by arginine (G355R) and arginine by a premature termination (R359X), respectively. In order to demonstrate that G355R/R359X are in cis arrangement, PCR-amplified glucocerebrosidase exon 8 genomic DNA from the patient was cloned into the vector pJET1.2 in Escherichia coli TOP10® strain. Out of the 15 clones that were sequence analyzed, 10 contained the normal allele sequence and 5 contained the complex allele G355R/R359X sequence showing both mutations in cis arrangement. Restriction fragment length polymorphism analysis using Hph1 restriction endonuclease digest was established for the IVS9 + 1G > A mutation for confirmation and efficient identification of this mutation in future patients. Past literature suggests that mutations affecting splicing patterns of the glucocerebrosidase transcript as well as mutations in Gaucher complex alleles are detrimental to enzyme activity. However, compound heterozygosity with N370S, a mild mutation, will lead to a mild phenotype. The cases reported here support these past findings.

  11. Facile synthesis of silver/silver thiocyanate (Ag@AgSCN plasmonic nanostructures with enhanced photocatalytic performance

    Directory of Open Access Journals (Sweden)

    Xinfu Zhao

    2017-12-01

    Full Text Available A nanostructured plasmonic photocatalyst, silver/silver thiocyanate (Ag@AgSCN, has been prepared by a simple precipitation method followed by UV-light-induced reduction. The ratio of Ag to silver thiocyanate (AgSCN can be controlled by simply adjusting the photo-induced reduction time. The formation mechanism of the product was investigated based on the time-dependent experiments. Further experiments indicated that the prepared Ag@AgSCN nanostructures with an atomic ratio of Ag/AgSCN = 0.0463 exhibited high photocatalytic activity and long-term stability for the degradation of oxytetracycline (84% under visible-light irradiation. In addition to the microstructure and high specific surface area, the enhanced photocatalytic activity was mainly caused by the surface plasmon resonance of Ag nanoparticles, and the high stability of AgSCN resulted in the long-term stability of the photocatalyst product.

  12. BAP1 missense mutation c.2054 A>T (p.E685V completely disrupts normal splicing through creation of a novel 5' splice site in a human mesothelioma cell line.

    Directory of Open Access Journals (Sweden)

    Arianne Morrison

    Full Text Available BAP1 is a tumor suppressor gene that is lost or deleted in diverse cancers, including uveal mela¬noma, malignant pleural mesothelioma (MPM, clear cell renal carcinoma, and cholangiocarcinoma. Recently, BAP1 germline mutations have been reported in families with combinations of these same cancers. A particular challenge for mutation screening is the classification of non-truncating BAP1 sequence variants because it is not known whether these subtle changes can affect the protein function sufficiently to predispose to cancer development. Here we report mRNA splicing analysis on a homozygous substitution mutation, BAP1 c. 2054 A&T (p.Glu685Val, identified in an MPM cell line derived from a mesothelioma patient. The mutation occurred at the 3rd nucleotide from the 3' end of exon 16. RT-PCR, cloning and subsequent sequencing revealed several aberrant splicing products not observed in the controls: 1 a 4 bp deletion at the end of exon 16 in all clones derived from the major splicing product. The BAP1 c. 2054 A&T mutation introduced a new 5' splice site (GU, which resulted in the deletion of 4 base pairs and presumably protein truncation; 2 a variety of alternative splicing products that led to retention of different introns: introns 14-16; introns 15-16; intron 14 and intron 16; 3 partial intron 14 and 15 retentions caused by activation of alternative 3' splice acceptor sites (AG in the introns. Taken together, we were unable to detect any correctly spliced mRNA transcripts in this cell line. These results suggest that aberrant splicing caused by this mutation is quite efficient as it completely abolishes normal splicing through creation of a novel 5' splice site and activation of cryptic splice sites. These data support the conclusion that BAP1 c.2054 A&T (p.E685V variant is a pathogenic mutation and contributes to MPM through disruption of normal splicing.

  13. Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Ndjawa, Guy Olivier Ngongang; Zhao, Kui; Chou, Kang Wei; Yaacobi-Gross, Nir; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2013-01-01

    The optical, structural and charge transport properties of solution-processed films of copper(i) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ∼20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.1 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  14. Association Between IL1B and SCN1A Polymorphism and Febrile Seizures in Children in Siberia

    Directory of Open Access Journals (Sweden)

    Maria A. Stroganova

    2017-06-01

    Full Text Available Background: Febrile seizures (FS are a benign, age-dependent, genetically determined state, in which the child’s brain is susceptible to epileptic seizures occurring in response to hyperthermia. We assessed whether polymorphisms of IL1B and SCN1A genes, encoding the proinflammatory cytokine IL1B and SCN1A, respectively, could help to predict FS development and find a new way to treat FS. Methods: We examined 121 children with FS and 30 children with HTS aged from 3 to 36 months. SNPs rs1143634 and rs16944 of IL1B gene, and rs3812718 and rs16851603 of SCN1A gene were determined by quantitative real-time PCR. Results: The analysis for rs1143634 revealed an association between the CC genotype and increased risk of FS development (OR 6.56; P=0.0008 against the background of acute respiratory viral infection. The same result was obtained for rs16944 (OR 3.13; P=0.04 and an association of two homozygous genotypes CC/CC. For rs3812718, the carriage of heterozygous genotype CT demonstrated a direct relationship with FS development (OR 44.95; P=0.000. Conclusion: Children with high FS risk need preventive treatment and joint observation of a pediatrician, pediatric infectionist, and a neurologist-epileptologist.

  15. Allelic heterogeneity of FGF5 mutations causes the long-hair phenotype in dogs.

    Science.gov (United States)

    Dierks, C; Mömke, S; Philipp, U; Distl, O

    2013-08-01

    Hitherto, the only known mutant gene leading to the long-hair phenotype in mammals is the fibroblast growth factor 5 (FGF5). In many dog breeds, the previously discovered FGF5:p.Cys95Phe mutation appeared completely concordant with the long-hair phenotype, but for some breeds, the long-hair phenotype could not be resolved. First, we studied the role of the FGF5:p.Cys95Phe and FGF5:g.145_150dupACCAGC mutations in 268 dogs descending from 27 breeds and seven wolves. As these mutations did not explain all the long-hair phenotypes, all exons and their neighbouring regions of FGF5 were re-sequenced. We detected three novel mutations in the coding sequence and one novel non-coding splice-site mutation in FGF5 associated with the long-hair phenotype. The FGF5:p.Ala193Val polymorphism was perfectly consistent with long hair in Akitas and probably in Siberian huskies, too. Dogs of the long-hair breed Samoyed were either homozygous or compound heterozygous for the FGF5:p.Ala193Val or the FGF5:p.Cys95Phe polymorphisms respectively. The two newly detected polymorphisms FGF5:c.559_560dupGG and FGF5:g.8193T>A and the known mutation FGF5:p.Cys95Phe explained the long-hair phenotype of all Afghan hounds analysed. An FGF5:c.556_571del16 mutation was found in one longhaired Eurasier. All long-hair-associated mutations follow a recessive mode of inheritance, and allelic heterogeneity was a common finding in breeds other than Akita. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  16. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome.

    Science.gov (United States)

    Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao

    2018-02-05

    Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this

  17. Pitfalls in genetic testing : the story of missed SCN1A mutations

    NARCIS (Netherlands)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying

  18. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP.

    Science.gov (United States)

    Hu, Qi; Shokat, Kevan M

    2018-05-17

    The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Functional characterization of c-Mpl ectodomain mutations that underlie congenital amegakaryocytic thrombocytopenia.

    Science.gov (United States)

    Varghese, Leila N; Zhang, Jian-Guo; Young, Samuel N; Willson, Tracy A; Alexander, Warren S; Nicola, Nicos A; Babon, Jeffrey J; Murphy, James M

    2014-02-01

    Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.

  20. Leber's hereditary optic neuropathy is associated with mitochondrial ND6 T14502C mutation

    International Nuclear Information System (INIS)

    Zhao, Fuxin; Guan, Minqiang; Zhou, Xiangtian; Yuan, Meixia; Liang, Ming; Liu, Qi; Liu, Yan; Zhang, Yongmei; Yang, Li; Tong, Yi; Wei, Qi-Ping; Sun, Yan-Hong; Qu, Jia

    2009-01-01

    We report here the clinical, genetic, and molecular characterization of three Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age of onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T14502C (I58V) mutation, which localized at a highly conserved isoleucine at position 58 of ND6, and distinct sets of mtDNA polymorphisms belonging to haplogroups M10a, F1a1, and H2. The occurrence of T14502C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Here, mtDNA variants I187T in the ND1, A122V in CO1, S99A in the A6, and V254I in CO3 exhibited an evolutionary conservation, indicating a potential modifying role in the development of visual impairment associated with T14502C mutation in those families. Furthermore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic manifestation of the LHON-associated T14502C mutation in these Chinese families.

  1. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.

    Science.gov (United States)

    Wang, Hong-Gang; Zhu, Wandi; Kanter, Ronald J; Silva, Jonathan R; Honeywell, Christina; Gow, Robert M; Pitt, Geoffrey S

    2016-03-01

    Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Physiological and pathophysiological insights of Nav1.4 and Nav1.5 comparison

    Directory of Open Access Journals (Sweden)

    Gildas eLoussouarn

    2016-01-01

    Full Text Available Mutations in Nav1.4 and Nav1.5 α-subunits have been associated with muscular and cardiac channelopathies, respectively. Despite intense research on the structure and function of these channels, a lot of information is still missing to delineate the various physiological and pathophysiological processes underlying their activity at the molecular level. Nav1.4 and Nav1.5 sequences are similar, suggesting structural and functional homologies between the two orthologous channels. This also suggests that any characteristics described for one channel subunit may shed light on the properties of the counterpart channel subunit. In this review article, after a brief clinical description of the muscular and cardiac channelopathies related to Nav1.4 and Nav1.5 mutations, respectively, we compare the knowledge accumulated in different aspects of the expression and function of Nav1.4 and Nav1.5 α-subunits: the regulation of the two encoding genes (SCN4A and SCN5A, the associated/regulatory proteins and at last, the functional effect of the same missense mutations detected in Nav1.4 and Nav1.5. First, it appears that more is known on Nav1.5 expression and accessory proteins. Because of the high homologies of Nav1.5 binding sites and equivalent Nav1.4 sites, Nav1.5-related results may guide future investigations on Nav1.4. Second, the analysis of the same missense mutations in Nav1.4 and Nav1.5 revealed intriguing similarities regarding their effects on membrane excitability and alteration in channel biophysics. We believe that such comparison may bring new cues to the physiopathology of cardiac and muscular diseases.

  3. Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy

    NARCIS (Netherlands)

    van der Kooi, A. J.; Bonne, G.; Eymard, B.; Duboc, D.; Talim, B.; van der Valk, M.; Reiss, P.; Richard, P.; Demay, L.; Merlini, L.; Schwartz, K.; Busch, H. F. M.; de Visser, M.

    2002-01-01

    Mutations in the lamin A/C gene are found in Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy with cardiac conduction disturbances, dilated cardiomyopathy with conduction system disease, and familial partial lipodystrophy. Cases with lamin A/C mutations presenting with lipodystrophy

  4. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    Science.gov (United States)

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency.

    Science.gov (United States)

    Bogdanović, Radovan; Draaken, Markus; Toromanović, Alma; Dordević, Maja; Stajić, Natasa; Ludwig, Michael

    2010-11-01

    Dent disease is an X-linked recessive disorder affecting the proximal tubule and is characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrocalcinosis/nephrolithiasis with a variable number of features of Fanconi syndrome. It is most often associated with mutations in CLCN5, which encodes the endosomal electrogenic chloride/proton exchanger ClC-5. Renal acidification abnormalities are only rarely seen in Dent disease, whereas the hypokalemic metabolic alkalosis associated with hyperreninemic hyperaldosteronism (Bartter-like syndrome) has been reported in only one patient so far. We report on a 5-year-old boy with Dent disease caused by mutation in CLCN5 gene, c.1073G>A, who presented with hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism persisting over the entire follow-up. No mutations were found in NKCC2, ROMK, NCCT, or ClC-Kb genes. In addition, the patient exhibited growth failure associated with partial growth hormone (GH) deficiency. Coexistence of Bartter-like syndrome features with LMWP should prompt a clinician to search for Dent disease. The Bartter syndrome phenotype seen in Dent disease patients may represent a distinct form of Bartter syndrome, the exact mechanism of which has yet to be fully elucidated. Growth delay that persists in spite of appropriate therapy should raise suspicion of other causes, such as GH deficiency.

  7. Estudo das mutações C282Y, H63D e S65C do gene HFE em doentes brasileiros com sobrecarga de ferro Study of C282Y, H63D and S65C mutations in the HFE gene in Brazilian patients with iron overload

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Cançado

    2007-12-01

    Full Text Available Hemocromatose é uma das doenças genéticas mais freqüentes no ser humano e uma das causas mais importantes de sobrecarga de ferro. Os objetivos deste estudo foram determinar a freqüência das mutações C282Y, H63D e S65C do gene HFE em doentes brasileiros com sobrecarga de ferro, verificar a coexistência de anemia hemolítica hereditária, hepatite C e consumo excessivo de bebida alcoólica nestes doentes e avaliar a influência destas variáveis sobre os depósitos de ferro do organismo. Saturação da transferrina, ferritina sérica e análise das mutações C282Y, H63D e S65C do gene HFE, pelo método da PCR, foram determinadas em cinqüenta doentes com sobrecarga de ferro atendidos no Hemocentro da Santa Casa de São Paulo entre janeiro de 2000 e maio de 2004. A freqüência de mutação do gene HFE nos doentes com sobrecarga de ferro foi de 76,0% (38/50. Saturação da transferrina e ferritina foram significativamente maiores nos doentes homozigotos para a mutação C282Y confirmando a correlação entre genótipo C282Y/C282Y e maior risco de sobrecarga de ferro. A coexistência de hepatite C, consumo excessivo de bebida alcoólica ou anemia hemolítica hereditária estão implicados em aumento dos estoques de ferro e constituem fator de risco adicional em pacientes com mutação do gene HFE para a condição de sobrecarga de ferro.Hemochromatosis is one of the most frequent genetic diseases in humans and one of the most important causes of iron overload. The aims of this study were to determine the frequency of C282Y, H63D and S65C mutations of the HFE gene in Brazilian patients with iron overload, to verify the coexistence of chronic hemolytic anemia, hepatitis C and excessive alcohol consumption and to evaluate the influence of these variables on body iron deposits. Transferrin saturation, serum ferritin and C282Y, H63D and S65C HFE gene mutations (by PCR method were determined in 50 patients with iron overload in the Hemocentro da

  8. Opbrud i medicinen fra 1750 - 1850

    DEFF Research Database (Denmark)

    Larsen, Kristian

    2012-01-01

    Transformation in Medicine, 1750 – 1850: Positions, Struggles, Science and Practice in the Medical Field. How was the medical field constituted and changed from the Hippocratic medicine to the modern classificatory and pathological medicine from 1750-1850? The article summarizes empirical insight...... occupied by physiologists, surgeons, empiricists and pharmacists are struggling, applying strategies like ‘aggressive interventions’, ‘alliances with the state’ or ‘alliances with pastors and teachers’....

  9. Mutation in an alternative transcript of CDKL5 in a boy with early-onset seizures.

    Science.gov (United States)

    Bodian, Dale L; Schreiber, John M; Vilboux, Thierry; Khromykh, Alina; Hauser, Natalie S

    2018-06-01

    Infantile-onset epilepsies are a set of severe, heterogeneous disorders for which clinical genetic testing yields causative mutations in ∼20%-50% of affected individuals. We report the case of a boy presenting with intractable seizures at 2 wk of age, for whom gene panel testing was unrevealing. Research-based whole-genome sequencing of the proband and four unaffected family members identified a de novo mutation, NM_001323289.1:c.2828_2829delGA in CDKL5, a gene associated with X-linked early infantile epileptic encephalopathy 2. CDKL5 has multiple alternative transcripts, and the mutation lies in an exon in the brain-expressed forms. The mutation was undetected by gene panel sequencing because of its intronic location in the CDKL5 transcript typically used to define the exons of this gene for clinical exon-based tests (NM_003159). This is the first report of a patient with a mutation in an alternative transcript of CDKL5 This finding suggests that incorporating alternative transcripts into the design and variant interpretation of exon-based tests, including gene panel and exome sequencing, could improve the diagnostic yield. © 2018 Bodian et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Global sulfur emissions from 1850 to 2000.

    Science.gov (United States)

    Stern, David I

    2005-01-01

    The ASL database provides continuous time-series of sulfur emissions for most countries in the World from 1850 to 1990, but academic and official estimates for the 1990s either do not cover all years or countries. This paper develops continuous time series of sulfur emissions by country for the period 1850-2000 with a particular focus on developments in the 1990s. Global estimates for 1996-2000 are the first that are based on actual observed data. Raw estimates are obtained in two ways. For countries and years with existing published data I compile and integrate that data. Previously published data covers the majority of emissions and almost all countries have published emissions for at least 1995. For the remaining countries and for missing years for countries with some published data, I interpolate or extrapolate estimates using either an econometric emissions frontier model, an environmental Kuznets curve model, or a simple extrapolation, depending on the availability of data. Finally, I discuss the main movements in global and regional emissions in the 1990s and earlier decades and compare the results to other studies. Global emissions peaked in 1989 and declined rapidly thereafter. The locus of emissions shifted towards East and South Asia, but even this region peaked in 1996. My estimates for the 1990s show a much more rapid decline than other global studies, reflecting the view that technological progress in reducing sulfur based pollution has been rapid and is beginning to diffuse worldwide.

  11. The first pseudo-ternary thiocyanate containing two alkali metals. Synthesis and single-crystal structure of LiK{sub 2}[SCN]{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.

    2016-04-01

    A procedure was empirically developed to prepare the compound LiK{sub 2}[SCN]{sub 3}, which forms colorless, transparent, very fragile, and extremely hygroscopic thin rectangular plates. Its unique crystal structure was determined by single-crystal X-ray diffraction. LiK{sub 2}[SCN]{sub 3} adopts the orthorhombic space group Pna2{sub 1} (no. 33, Z = 4) with the cell parameters a = 1209.32(9), b = 950.85(9), and c = 849.95(6) pm.

  12. Systematic screening for mutations in the promoter and the coding region of the 5-HT{sub 1A} gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Shimron-Abarbanell, D.; Cichon, S. [Univ. of Bonn (Germany)] [and others

    1995-10-09

    In the present study we sought to identify genetic variation in the 5-HT{sub 1A} receptor gene which through alteration of protein function or level of expression might contribute to the genetic predisposition to neuropsychiatric diseases. Genomic DNA samples from 159 unrelated subjects (including 45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 healthy controls) were investigated by single-strand conformation analysis. Overlapping PCR (polymerase chain reaction) fragments covered the whole coding sequence as well as the 5{prime} untranslated region of the 5-HT{sub 1A} gene. The region upstream to the coding sequence we investigated contains a functional promoter. We found two rare nucleotide sequence variants. Both mutations are located in the coding region of the gene: a coding mutation (A{yields}G) in nucleotide position 82 which leads to an amino acid exchange (Ile{yields}Val) in position 28 of the receptor protein and a silent mutation (C{yields}T) in nucleotide position 549. The occurrence of the Ile-28-Val substitution was studied in an extended sample of patients (n = 352) and controls (n = 210) but was found in similar frequencies in all groups. Thus, this mutation is unlikely to play a significant role in the genetic predisposition to the diseases investigated. In conclusion, our study does not provide evidence that the 5-HT{sub 1A} gene plays either a major or a minor role in the genetic predisposition to schizophrenia, bipolar affective disorder, or Tourette`s syndrome. 29 refs., 4 figs., 1 tab.

  13. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation

    International Nuclear Information System (INIS)

    Wang Qiuju; Li Qingzhong; Han Dongyi; Zhao Yali; Zhao Lidong; Qian Yaping; Yuan Hu; Li Ronghua; Zhai Suoqiang; Young Wieyen; Guan Minxin

    2006-01-01

    We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family

  14. Tradition et modernité: un demi-siècle de sociabilité à Piura (1850-1900

    Directory of Open Access Journals (Sweden)

    1994-01-01

    Full Text Available L’auteur aborde ici un thème encore peu étudié par les historiens latino-américanistes : la sociabilité urbaine au XIXe siècle. Il dresse un panorama général de la vie collective - et plus particulièrement de la vie associative - à Piura entre 1850 et 1900, en se basant sur une série quasi continue de périodiques publiés localement à cette même époque, qui permettent de définir les principaux domaines d’activités publiques ainsi que les préoccupations majeures des citoyens de la ville (pratiques spirituelles entraide et bienfaisance lieux de réunion et de divertissement civisme et patriotisme vie politique. L’analyse de ces sources montre que si certaines formes de sociabilité trouvent leur origine dans la période coloniale et illustrent une relative continuité dans la tradition, d’autres correspondent à une capitale régionale en pleine mutation. En effet, à partir du milieu du XIXe siècle Piura reçoit de plus en plus de modèles extérieurs et s’adapte pour maintenir un certain équilibre entre les aspirations - parfois contradictoires - de ses habitants et la nécessité de répondre aux changements sociaux, culturels et économiques auxquels la collectivité est confrontée. Cette dernière n’est bien sûr pas constituée d’un bloc uniforme, et si presque tous les groupes sociaux paraissent représentés à travers ces associations et lieux de sociabilité, les différentes réponses apportées à une même préoccupation (l’entraide et la bienfaisance, par exemple peuvent varier considérablement selon le groupe considéré. En outre cette étude met en lumière les connexions et les interactions constatées entre des manifestations de sociabilité correspondant pourtant à des activités théoriquement distinctes. De même, elle souligne le rôle de cohésion sociale joué par certaines de ces manifestations (fête nationale cérémonies patriotiques meetings politiques célébrations religieuses

  15. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer

    International Nuclear Information System (INIS)

    Szybka, Malgorzata; Kordek, Radzislaw; Zakrzewska, Magdalena; Rieske, Piotr; Pasz-Walczak, Grazyna; Kulczycka-Wojdala, Dominika; Zawlik, Izabela; Stawski, Robert; Jesionek-Kupnicka, Dorota; Liberski, Pawel P

    2009-01-01

    Recently published data showed discrepancies beteween P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis

  16. Functional Na(V)1.8 Channels in Intracardiac Neurons The Link Between SCN10A and Cardiac Electrophysiology

    NARCIS (Netherlands)

    Verkerk, Arie O.; Remme, Carol Ann; Schumacher, Cees A.; Scicluna, Brendon P.; Wolswinkel, Rianne; de Jonge, Berend; Bezzina, Connie R.; Veldkamp, Marieke W.

    2012-01-01

    Rationale: The SCN10A gene encodes the neuronal sodium channel isoform Na(V)1.8. Several recent genome-wide association studies have linked SCN10A to PR interval and QRS duration, strongly suggesting an as-yet unknown role for Na(V)1.8 in cardiac electrophysiology. Objective: To demonstrate the

  17. Identification of a novel BRCA1 nucleotide 4803delCC/c.4684delCC mutation and a nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in two Greenlandic Inuit families

    DEFF Research Database (Denmark)

    Hansen, Thomas van Overeem; Jønson, Lars; Albrechtsen, Anders

    2010-01-01

    Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We have recently identified a Greenlandic Inuit BRCA1 nucleotide 234T>G/c.115T>G (p.Cys39Gly) founder mutation, which at that time was the only disease-causing BRCA1/BRCA2 mutation...... identified in this population. Here, we describe the identification of a novel disease-causing BRCA1 nucleotide 4803delCC/c.4684delCC mutation in a Greenlandic Inuit with ovarian cancer. The mutation introduces a frameshift and a premature stop at codon 1572. We have also identified a BRCA1 nucleotide 249T......>A/c.130T>A (p.Cys44Ser) mutation in another Greenlandic individual with ovarian cancer. This patient share a 1-2 Mb genomic fragment, containing the BRCA1 gene, with four Danish families harbouring the same mutation, suggesting that the 249T>A/c.130T>A (p.Cys44Ser) mutation originates from a Danish...

  18. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome.

    Science.gov (United States)

    Khateb, Samer; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Ayuso, Carmen; Koenekoop, Robert K; Laxer, Uri; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2014-07-01

    Usher syndrome (USH) is a heterogeneous group of inherited retinitis pigmentosa (RP) and sensorineural hearing loss (SNHL) caused by mutations in at least 12 genes. Our aim is to identify additional USH-related genes. Clinical examination included visual acuity test, funduscopy and electroretinography. Genetic analysis included homozygosity mapping and whole exome sequencing (WES). A combination of homozygosity mapping and WES in a large consanguineous family of Iranian Jewish origin revealed nonsense mutations in two ciliary genes: c.3289C>T (p.Q1097*) in C2orf71 and c.3463C>T (p.R1155*) in centrosome-associated protein CEP250 (C-Nap1). The latter has not been associated with any inherited disease and the c.3463C>T mutation was absent in control chromosomes. Patients who were double homozygotes had SNHL accompanied by early-onset and severe RP, while patients who were homozygous for the CEP250 mutation and carried a single mutant C2orf71 allele had SNHL with mild retinal degeneration. No ciliary structural abnormalities in the respiratory system were evident by electron microscopy analysis. CEP250 expression analysis of the mutant allele revealed the generation of a truncated protein lacking the NEK2-phosphorylation region. A homozygous nonsense CEP250 mutation, in combination with a heterozygous C2orf71 nonsense mutation, causes an atypical form of USH, characterised by early-onset SNHL and a relatively mild RP. The severe retinal involvement in the double homozygotes indicates an additive effect caused by nonsense mutations in genes encoding ciliary proteins. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Anthropogenic sulfur dioxide emissions: 1850–2005

    Directory of Open Access Journals (Sweden)

    S. J. Smith

    2011-02-01

    Full Text Available Sulfur aerosols impact human health, ecosystems, agriculture, and global and regional climate. A new annual estimate of anthropogenic global and regional sulfur dioxide emissions has been constructed spanning the period 1850–2005 using a bottom-up mass balance method, calibrated to country-level inventory data. Global emissions peaked in the early 1970s and decreased until 2000, with an increase in recent years due to increased emissions in China, international shipping, and developing countries in general. An uncertainty analysis was conducted including both random and systemic uncertainties. The overall global uncertainty in sulfur dioxide emissions is relatively small, but regional uncertainties ranged up to 30%. The largest contributors to uncertainty at present are emissions from China and international shipping. Emissions were distributed on a 0.5° grid by sector for use in coordinated climate model experiments.

  20. [Analysis of gene mutation of early onset epileptic spasm with unknown reason].

    Science.gov (United States)

    Yang, X; Pan, G; Li, W H; Zhang, L M; Wu, B B; Wang, H J; Zhang, P; Zhou, S Z

    2017-11-02

    Objective: To summarize the gene mutation of early onset epileptic spasm with unknown reason. Method: In this prospective study, data of patients with early onset epileptic spasm with unknown reason were collected from neurological department of Children's Hospital of Fudan University between March 2016 and December 2016. Patients with known disorders such as infection, metabolic, structural, immunological problems and known genetic mutations were excluded. Patients with genetic disease that can be diagnosed by clinical manifestations and phenotypic characteristics were also excluded. Genetic research methods included nervous system panel containing 1 427 epilepsy genes, whole exome sequencing (WES), analysis of copy number variation (CNV) and karyotype analysis of chromosome. The basic information, phenotypes, genetic results and the antiepileptic treatment of patients were analyzed. Result: Nine of the 17 cases with early onset epileptic spasm were boys and eight were girls. Patients' age at first seizure onset ranged from 1 day after birth to 8 months (median age of 3 months). The first hospital visit age ranged from 1 month to 2 years (median age of 4.5 months). The time of following-up ranged from 8 months to 3 years and 10 months. All the 17 patients had early onset epileptic spasm. Video electroencephalogram was used to monitor the spasm seizure. Five patients had Ohtahara syndrome, 10 had West syndrome, two had unclear classification. In 17 cases, 10 of them had detected pathogenic genes. Nine cases had point mutations, involving SCN2A, ARX, UNC80, KCNQ2, and GABRB3. Except one case of mutations in GABRB3 gene have been reported, all the other cases had new mutations. One patient had deletion mutation in CDKL5 gene. One CNV case had 6q 22.31 5.5MB repeats. Ten cases out of 17 were using 2-3 antiepileptic drugs (AEDs) and the drugs had no effect. Seven cases used adrenocorticotropic hormone (ACTH) and prednisone besides AEDs (a total course for 8 weeks

  1. EGFR mutations in patients with lung adenocarcinoma in southwest China: are G719S/A and L861Q more likely detected in tumors derived from smokers?

    Directory of Open Access Journals (Sweden)

    Wang QS

    2013-07-01

    Full Text Available Qiushi Wang,1 Jianghong Mou,1 Xin Yang,1 Yong He,2 Zengpeng Li,1 Qingya Luo,1 Yanqing Li,1 Li Lin,1 Yu Ma,1 Hualiang Xiao11Department of Pathology, 2Department of Respiration, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of ChinaBackground: The clinical characteristics of epidermal growth factor receptor (EGFR hotspot mutations, such as deletions in exon 19, substitution of L858R in exon 21, and mutations in exon 20, have been widely reported in nonsmall cell lung cancer. However, the clinical features of other low frequency EGFR mutations in these four exons (especially the relationship with smoking history, eg, substitutions of G719S/A/C in exon 18 and L861Q in exon 21, remain unclear. This study investigated the relationship between G719S/A/C and L861Q mutations (in exon 18 and 21 and smoking history.Methods: Specimens from 194 patients with lung adenocarcinoma were analyzed for EGFR mutations in exons 18–21 by high-resolution melting curve analysis and amplification refractory mutation technology to establish the relationship between G719S/A/C and L861Q mutations and smoking history.Results: Ninety-six of 194 tumors (49.5% were confirmed to be EGFR mutation-positive. Among these mutations, 71 of 104 (68.3% were from never smokers, six of 17 (35.3% were from former smokers, and 19 of 73 (26.0% were from current smokers (P < 0.001. The mutation rate in heavy smokers (5/23, 21.7% was significantly lower than in light smokers (20/67, 29.9% and never smokers (71/104, 68.3%, P < 0.001. Seven low frequency EGFR mutations (four substitutions of G719S, and G719 A, respectively, and three of L861Q in exon 21 were identified. Five of these mutations were derived from smokers (one former light smoker, one current heavy smoker, and three current light smokers. Four of these patients had been treated with tyrosine kinase inhibitors and all had a partial response, with median overall

  2. Novel phenotypes of pyridox(am)ine-5'-phosphate oxidase deficiency and high prevalence of c.445_448del mutation in Chinese patients.

    Science.gov (United States)

    Xue, Jiao; Chang, Xingzhi; Zhang, Yuehua; Yang, Zhixian

    2017-08-01

    To analyze the clinical and genetic characteristics of Chinese patients with pyridox(am)ine-5'-phosphate oxidase (PNPO) deficiency. The clinical presentations and the responses to treatments were analyzed in 4 patients. Blood and urinary metabolic screenings, electroencephalogram (EEG), brain magnetic resonance imaging (MRI) and epilepsy-related genes detection were performed in all patients. Patient 1 and 2 were identical twin brothers, who were born at 35 +5 w gestation with a sign of encephalopathy. Their seizures started within the first day and could not be controlled by pyridoxine or pyridoxal-5'-phosphate (PLP) completely. Patient 3 presented seizures at 5 months, responding well to pyridoxine. Seizures in patient 4 began at 40 days after birth and were controlled by valproic acid and topiramate. EEG showed atypical hypsarrhythmia or multifocal epileptiform discharges in 3 patients, and showed normality in patient 4. MRI showed nonspecific abnormality or normality. Blood metabolic screening showed multiple amino acids level abnormalities in all cases. Urinary metabolic screening showed vanillactic acid prominently elevated in 3 patients. Genetic analysis revealed 5 mutations of PNPO, three of which were novel. The mutation c.445_448del was carried by the twins and patient 3. Assessment of psychomotor development indicated severe delay in 3 patients and borderline to mild delay in patient 3. This is the first time to report patients with PNPO deficiency diagnosed by gene analysis in China. The novel clinical characteristics and novel mutations found here expanded the phenotypes and genotypes of this disease. Further, the frameshift mutation c.445_448del might be high prevalence in PNPO deficiency in Chinese patients.

  3. The 5C Concept and 5S Principles in Inflammatory Bowel Disease Management.

    Science.gov (United States)

    Hibi, Toshifumi; Panaccione, Remo; Katafuchi, Miiko; Yokoyama, Kaoru; Watanabe, Kenji; Matsui, Toshiyuki; Matsumoto, Takayuki; Travis, Simon; Suzuki, Yasuo

    2017-10-27

    The international Inflammatory Bowel Disease [IBD] Expert Alliance initiative [2012-2015] served as a platform to define and support areas of best practice in IBD management to help improve outcomes for all patients with IBD. During the programme, IBD specialists from around the world established by consensus two best practice charters: the 5S Principles and the 5C Concept. The 5S Principles were conceived to provide health care providers with key guidance for improving clinical practice based on best management approaches. They comprise the following categories: Stage the disease; Stratify patients; Set treatment goals; Select appropriate treatment; and Supervise therapy. Optimised management of patients with IBD based on the 5S Principles can be achieved most effectively within an optimised clinical care environment. Guidance on optimising the clinical care setting in IBD management is provided through the 5C Concept, which encompasses: Comprehensive IBD care; Collaboration; Communication; Clinical nurse specialists; and Care pathways. Together, the 5C Concept and 5S Principles provide structured recommendations on organising the clinical care setting and developing best-practice approaches in IBD management. Consideration and application of these two dimensions could help health care providers optimise their IBD centres and collaborate more effectively with their multidisciplinary team colleagues and patients, to provide improved IBD care in daily clinical practice. Ultimately, this could lead to improved outcomes for patients with IBD. Copyright © 2017 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  4. British business in Brazil: maturity and demise (1850-1950

    Directory of Open Access Journals (Sweden)

    Marcelo de Paiva Abreu

    2000-12-01

    Full Text Available This paper analyses the long-term trends of ''British business'' in Brazil since 1850. It covers investment and other manifestations of the British presence such as those related to trade as well as financial intermediation. Primary interest is in British involvement in Brazilian private sector activities, whether by direct investment or by the flotation of sterling securities for firms operating in Brazil. The article also considers the role of London as a financial market where Brazilian public loans were floated, the relevance of Britain as a market for Brazilian commodities and as a supplier to Brazil, and British intermediation in Brazilian trade with third countries. It is divided in chronological sections: imperial years (1850-1889; stagnation and boom (1889-1914; first signs of decline (1914-1930, and the divestment period (1930 to the mid-1950's. The final section presents the conclusions and mentions post-1950 trends.Este artigo considera as tendências de longo prazo das relações econômicas e financeiras britânicas com o Brasil desde 1850. Abrange investimentos e outas manifestações da presença britânica no Brasil, tais como as relacionadas a comércio e intermediação financeira. O interesse fundamental é no envolvimento britânico com as atividades do setor privado no Brasil, seja através de investimento direto, seja na intermediação financeira em benefício de firmas privadas que operavam no Brasil. O artigo também menciona o papel de Londres como centro financeiro no qual eram lançados empréstimos públicos brasileiros, a relevância do Reino Unido como mercado para as exportações brasileiras e como supridor de importações para o Brasil, e a intermediação britânica no comércio brasileiro com terceiros países. O artigo é dividido em seções cronológicas: os anos imperiais (1850-1889; estagnação e boom (1889-1914; primeiros sinais de declínio (1914-1930; os anos de redução de investimentos (1930

  5. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1].

    Science.gov (United States)

    Şanlıdağ, Tamer; Sayan, Murat; Akçalı, Sinem; Kasap, Elmas; Buran, Tahir; Arıkan, Ayşe

    2017-04-01

    Direct-acting antiviral agents (DAA) such as NS3 protease inhibitors is the first class of drugs used for chronic hepatitis C (CHC) treatment. NS3 inhibitors (PI) with low genetic barrier have been approved to be used in the CHC genotype 1 infections, and in the treatment of compensated liver disease including cirrhosis together with pegile interferon and ribavirin. Consequently, the development of drug resistance during DAA treatment of CHC is a major problem. NS3 resistant variants can be detected before treatment as they can occurnaturally. The aim of this study was to investigate new and old generation NS3 inhibitors resistance mutations before DAA treatment in hepatitis C virus (HCV) that were isolated from CHC. The present study was conducted in 2015 and included 97 naive DAA patients infected with HCV genotype 1, who were diagnosed in Manisa and Kocaeli cities of Turkey. Magnetic particle based HCV RNA extraction and than RNA detection and quantification were performed using commercial real-time PCR assay QIASypmhony + Rotorgene Q/ArtusHCV QS-RGQ and COBAS Ampliprep/COBAS TaqMan HCV Tests. HCV NS3 viral protease genome region was amplified with PCR and mutation analysis was performed by Sanger dideoxy sequencing technique of NS3 protease codons (codon 32-185). HCV NS3 protease inhibitors; asunaprevir, boceprevir, faldaprevir, grazoprevir, pariteprevir, simeprevir and telaprevir were analysed for resistant mutations by Geno2pheno-HCV resistance tool. HCV was genotyped in all patients and 88 patients (n= 88/97, 91%) had genotype 1. Eight (n= 8/97, 8.2%) and 80 (n= 80/97, 82.4%) HCC patients were subgenotyped as 1a and 1b, respectively. Many aminoacid substitutions and resistance mutations were determined in 39/88 (44%) patients in the study group. Q80L, S122C/N, S138W were defined as potential substitutions (6/88 patients; 7%); R109K, R117C, S122G, I132V, I170V, N174S were described as potential resistance (34/88 patients; 39%); V36L, T54S, V55A, Q80H were

  6. Streptococcal 5'-Nucleotidase A (S5nA), a Novel Streptococcus pyogenes Virulence Factor That Facilitates Immune Evasion.

    Science.gov (United States)

    Zheng, Lisa; Khemlani, Adrina; Lorenz, Natalie; Loh, Jacelyn M S; Langley, Ries J; Proft, Thomas

    2015-12-25

    Streptococcus pyogenes is an important human pathogen that causes a wide range of diseases. Using bioinformatics analysis of the complete S. pyogenes strain SF370 genome, we have identified a novel S. pyogenes virulence factor, which we termed streptococcal 5'-nucleotidase A (S5nA). A recombinant form of S5nA hydrolyzed AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. Michaelis-Menten kinetics revealed a Km of 169 μm and a Vmax of 7550 nmol/mg/min for the substrate AMP. Furthermore, recombinant S5nA acted synergistically with S. pyogenes nuclease A to generate macrophage-toxic deoxyadenosine from DNA. The enzyme showed optimal activity between pH 5 and pH 6.5 and between 37 and 47 °C. Like other 5'-nucleotidases, S5nA requires divalent cations and was active in the presence of Mg(2+), Ca(2+), or Mn(2+). However, Zn(2+) inhibited the enzymatic activity. Structural modeling combined with mutational analysis revealed a highly conserved catalytic dyad as well as conserved substrate and cation-binding sites. Recombinant S5nA significantly increased the survival of the non-pathogenic bacterium Lactococcus lactis during a human whole blood killing assay in a dose-dependent manner, suggesting a role as an S. pyogenes virulence factor. In conclusion, we have identified a novel S. pyogenes enzyme with 5'-nucleotidase activity and immune evasion properties. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    Directory of Open Access Journals (Sweden)

    Anna Tarocco

    2015-01-01

    Full Text Available Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  8. Double-target Antisense U1snRNAs Correct Mis-splicing Due to c.639+861C>T and c.639+919G>A GLA Deep Intronic Mutations

    Directory of Open Access Journals (Sweden)

    Lorenzo Ferri

    2016-01-01

    Full Text Available Fabry disease is a rare X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (α-Gal A enzyme, which is encoded by the GLA gene. GLA transcription in humans produces a major mRNA encoding α-Gal A and a minor mRNA of unknown function, which retains a 57-nucleotide-long cryptic exon between exons 4 and 5, bearing a premature termination codon. NM_000169.2:c.639+861C>T and NM_000169.2:c.639+919G>A GLA deep intronic mutations have been described to cause Fabry disease by inducing overexpression of the alternatively spliced mRNA, along with a dramatic decrease in the major one. Here, we built a wild-type GLA minigene and two minigenes that carry mutations c.639+861C>T and c.639+919G>A. Once transfected into cells, the minigenes recapitulate the molecular patterns observed in patients, at the mRNA, protein, and enzymatic level. We constructed a set of specific double-target U1asRNAs to correct c.639+861C>T and c.639+919G>A GLA mutations. Efficacy of U1asRNAs in inducing the skipping of the cryptic exon was evaluated upon their transient co-transfection with the minigenes in COS-1 cells, by real-time polymerase chain reaction (PCR, western blot analysis, and α-Gal A enzyme assay. We identified a set of U1asRNAs that efficiently restored α-Gal A enzyme activity and the correct splicing pathways in reporter minigenes. We also identified a unique U1asRNA correcting both mutations as efficently as the mutation-specific U1asRNAs. Our study proves that an exon skipping-based approach recovering α-Gal A activity in the c.639+861C>T and c.639+919G>A GLA mutations is active.

  9. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations

    Directory of Open Access Journals (Sweden)

    Colombo Elisa A

    2012-01-01

    Full Text Available Abstract Background Poikiloderma with Neutropenia (PN is a rare autosomal recessive genodermatosis caused by C16orf57 mutations. To date 17 mutations have been identified in 31 PN patients. Results We characterize six PN patients expanding the clinical phenotype of the syndrome and the mutational repertoire of the gene. We detect the two novel C16orf57 mutations, c.232C>T and c.265+2T>G, as well as the already reported c.179delC, c.531delA and c.693+1G>T mutations. cDNA analysis evidences the presence of aberrant transcripts, and bioinformatic prediction of C16orf57 protein structure gauges the mutations effects on the folded protein chain. Computational analysis of the C16orf57 protein shows two conserved H-X-S/T-X tetrapeptide motifs marking the active site of a two-fold pseudosymmetric structure recalling the 2H phosphoesterase superfamily. Based on this model C16orf57 is likely a 2H-active site enzyme functioning in RNA processing, as a presumptive RNA ligase. According to bioinformatic prediction, all known C16orf57 mutations, including the novel mutations herein described, impair the protein structure by either removing one or both tetrapeptide motifs or by destroying the symmetry of the native folding. Finally, we analyse the geographical distribution of the recurrent mutations that depicts clusters featuring a founder effect. Conclusions In cohorts of patients clinically affected by genodermatoses with overlapping symptoms, the molecular screening of C16orf57 gene seems the proper way to address the correct diagnosis of PN, enabling the syndrome-specific oncosurveillance. The bioinformatic prediction of the C16orf57 protein structure denotes a very basic enzymatic function consistent with a housekeeping function. Detection of aberrant transcripts, also in cells from PN patients carrying early truncated mutations, suggests they might be translatable. Tissue-specific sensitivity to the lack of functionally correct protein accounts for the

  10. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    Science.gov (United States)

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  11. Common Β- Thalassaemia Mutations in

    Directory of Open Access Journals (Sweden)

    P Azarfam

    2005-01-01

    Full Text Available Introduction: β –Thalassaemia was first explained by Thomas Cooly as Cooly’s anaemia in 1925. The β- thalassaemias are hereditary autosomal disorders with decreased or absent β-globin chain synthesis. The most common genetic defects in β-thalassaemias are caused by point mutations, micro deletions or insertions within the β-globin gene. Material and Methods: In this research , 142 blood samples (64 from childrens hospital of Tabriz , 15 samples from Shahid Gazi hospital of Tabriz , 18 from Urumia and 45 samples from Aliasghar hospital of Ardebil were taken from thalassaemic patients (who were previously diagnosed .Then 117 non-familial samples were selected . The DNA of the lymphocytes of blood samples was extracted by boiling and Proteinase K- SDS procedure, and mutations were detected by ARMS-PCR methods. Results: From the results obtained, eleven most common mutations,most of which were Mediterranean mutations were detected as follows; IVS-I-110(G-A, IVS-I-1(G-A ،IVS-I-5(G-C ,Frameshift Codon 44 (-C,( codon5(-CT,IVS-1-6(T-C, IVS-I-25(-25bp del ,Frameshift 8.9 (+G ,IVS-II-1(G-A ,Codon 39(C-T, Codon 30(G-C the mutations of the samples were defined. The results showed that Frameshift 8.9 (+G, IVS-I-110 (G-A ,IVS-II-I(G-A, IVS-I-5(G-C, IVS-I-1(G-A , Frameshift Codon 44(-C , codon5(-CT , IVS-1-6(T-C , IVS-I-25(-25bp del with a frequency of 29.9%, 25.47%,17.83%, 7.00%, 6.36% , 6.63% , 3.8% , 2.5% , 0.63% represented the most common mutations in North - west Iran. No mutations in Codon 39(C-T and Codon 30(G-C were detected. Cunclusion: The frequency of the same mutations in patients from North - West of Iran seems to be different as compared to other regions like Turkey, Pakistan, Lebanon and Fars province of Iran. The pattern of mutations in this region is more or less the same as in the Mediterranean region, but different from South west Asia and East Asia.

  12. Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation.

    Science.gov (United States)

    von Salomé, Jenny; Liu, Tao; Keihäs, Markku; Morak, Moni; Holinski-Feder, Elke; Berry, Ian R; Moilanen, Jukka S; Baert-Desurmont, Stéphanie; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-12-29

    Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

  13. Characterization of an apparently synonymous F5 mutation causing aberrant splicing and factor V deficiency.

    Science.gov (United States)

    Nuzzo, F; Bulato, C; Nielsen, B I; Lee, K; Wielders, S J; Simioni, P; Key, N S; Castoldi, E

    2015-03-01

    Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. We investigated a patient with severe FV deficiency (FV:C mutation in exon 4 (c.578G>C, p.Cys193Ser), predicting the abolition of a conserved disulphide bridge, and an apparently synonymous variant in exon 8 (c.1281C>G). The observation that half of the patient's F5 mRNA lacked the last 18 nucleotides of exon 8 prompted us to re-evaluate the c.1281C>G variant for its possible effects on splicing. Bioinformatics sequence analysis predicted that this transversion would activate a cryptic donor splice site and abolish an exonic splicing enhancer. Characterization in a F5 minigene model confirmed that the c.1281C>G variant was responsible for the patient's splicing defect, which could be partially corrected by a mutation-specific morpholino antisense oligonucleotide. The aberrantly spliced F5 mRNA, whose stability was similar to that of the normal mRNA, encoded a putative FV mutant lacking amino acids 427-432. Expression in COS-1 cells indicated that the mutant protein is poorly secreted and not functional. In conclusion, the c.1281C>G mutation, which was predicted to be translationally silent and hence neutral, causes FV deficiency by impairing pre-mRNA splicing. This finding underscores the importance of cDNA analysis for the correct assessment of exonic mutations. © 2014 John Wiley & Sons Ltd.

  14. 22 CFR 212.42 - Exemption from 5 U.S.C. 552.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Exemption from 5 U.S.C. 552. 212.42 Section 212.42 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT PUBLIC INFORMATION Exemptions From Disclosure § 212.42 Exemption from 5 U.S.C. 552. Whenever a request is made which involves access to records...

  15. Naturally occurring hepatitis C virus protease inhibitors resistance-associated mutations among chronic hepatitis C genotype 1b patients with or without HIV co-infection.

    Science.gov (United States)

    Cao, Ying; Zhang, Yu; Bao, Yi; Zhang, Renwen; Zhang, Xiaxia; Xia, Wei; Wu, Hao; Xu, Xiaoyuan

    2016-05-01

    The aim of this study was to measure the frequency of natural mutations in hepatitis C virus (HCV) mono-infected and HIV/HCV co-infected protease inhibitor (PI)-naive patients. Population sequence of the non-structural (NS)3 protease gene was evaluated in 90 HCV mono-infected and 96 HIV/HCV co-infected PI treatment-naive patients. The natural prevalence of PI resistance mutations in both groups was compared. Complete HCV genotype 1b NS3 sequence information was obtained for 152 (81.72%) samples. Seven sequences (8.33%) of the 84 HCV mono-infected patients and 21 sequences (30.88%) of the 68 HIV/HCV co-infected patients showed amino acid substitutions associated with HCV PI resistance. There was a significant difference in the natural prevalence of PI resistance mutations between these two groups (P = 0.000). The mutations T54S, R117H and N174F were observed in 1.19%, 5.95% and 1.19% of HCV mono-infected patients. The mutations F43S, T54S, Q80K/R, R155K, A156G/V, D168A/E/G and V170A were found in 1.47%, 4.41%, 1.47%/1.47%, 2.94%, 23.53%/1.47%, 1.47%/1.47%/1.47% and 1.47% of HIV/HCV co-infected patients, respectively. In addition, the combination mutations in the NS3 region were detected only in HIV/HCV genotype 1b co-infected patients. Naturally occurring HCV PI resistance mutations existed in HCV mono-infected and HIV/HCV co-infected genotype 1b PI-naive patients. HIV co-infection was associated with a greater frequency of PI resistance mutations. The impact of HIV infection on baseline HCV PI resistance mutations and treatment outcome in chronic hepatitis C (CHC) patients should be further analyzed. © 2015 The Japan Society of Hepatology.

  16. Identification of a c.544C>T mutation in WDR34 as a deleterious recessive allele of short rib-polydactyly syndrome

    Directory of Open Access Journals (Sweden)

    Shu-Han You

    2017-12-01

    Conclusion: This study was the first to identify c.544C > T [p.Arg182Trp] mutation in WDR34 in a patient with SRPS. According to the database, the homozygous mutation of c.544C > T in WDR34 was deleterious and the prevalence of heterozygous mutation was relatively higher in Asian population. More studies of this mutation in patients with SRPS are required.

  17. Molecular characterization of the llama FGF5 gene and identification of putative loss of function mutations.

    Science.gov (United States)

    Daverio, M S; Vidal-Rioja, L; Frank, E N; Di Rocco, F

    2017-12-01

    Llama, the most numerous domestic camelid in Argentina, has good fiber-production ability. Although a few genes related to other productive traits have been characterized, the molecular genetic basis of fiber growth control in camelids is still poorly understood. Fibroblast growth factor 5 (FGF5) is a secreted signaling protein that controls hair growth in humans and other mammals. Mutations in the FGF5 gene have been associated with long-hair phenotypes in several species. Here, we sequenced the llama FGF5 gene, which consists of three exons encoding 813 bp. cDNA analysis from hair follicles revealed the expression of two FGF5 alternative spliced transcripts, in one of which exon 2 is absent. DNA variation analysis showed four polymorphisms in the coding region: a synonymous SNP (c.210A>G), a single base deletion (c.348delA), a 12-bp insertion (c.351_352insCATATAACATAG) and a non-sense mutation (c.499C>T). The deletion was always found together with the insertion forming a haplotype and producing a putative truncated protein of 123 amino acids. The c.499C>T mutation also leads to a premature stop codon at position 168. In both cases, critical functional domains of FGF5, including one heparin binding site, are lost. All animals analyzed were homozygous for one of the deleterious mutations or compound heterozygous for both (i.e. c.348delA, c.351_352insCATATAACATAG/c.499T). Sequencing of guanaco samples showed that the FGF5 gene encodes a full-length 270-amino acid protein. These results suggest that FGF5 is likely functional in short-haired wild species and non-functional in the domestic fiber-producing species, the llama. © 2017 Stichting International Foundation for Animal Genetics.

  18. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Shah, S.; Schrader, K.A.; Waanders, E.; Timms, A.E.; Vijai, J.; Miething, C.; Wechsler, J.; Yang, J.; Hayes, J.; Klein, R.J.; Zhang, J.; Wei, L.; Wu, G.; Rusch, M.; Nagahawatte, P.; Ma, J; Chen, S.C.; Song, G.; Cheng, J.; Meyers, P.; Bhojwani, D.; Jhanwar, S.; Maslak, P.; Fleisher, M.; Littman, J.; Offit, L.; Rau-Murthy, R.; Fleischut, M.H.; Corines, M.; Murali, R.; Gao, X.; Manschreck, C.; Kitzing, T.; Murty, V.V.; Raimondi, S.C.; Kuiper, R.P.; Simons, A.; Schiffman, J.D.; Onel, K.; Plon, S.E.; Wheeler, D.A.; Ritter, D.; Ziegler, D.S.; Tucker, K.; Sutton, R.; Chenevix-Trench, G.; Li, J.; Huntsman, D.G.; Hansford, S.; Senz, J.; Walsh, T.; Lee (Helen Dowling Instituut), M. van der; Hahn, C.N.; Roberts, K.G.; King, M.C.; Lo, S.M.; Levine, R.L.; Viale, A.; Socci, N.D.; Nathanson, K.L.; Scott, H.S.; Daly, M.; Lipkin, S.M.; Lowe, S.W.; Downing, J.R.; Altshuler, D.; Sandlund, J.T.; Horwitz, M.S.; Mullighan, C.G.; Offit, K.

    2013-01-01

    Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A

  19. Clinical phenotype of 5 females with a CDKL5 mutation

    NARCIS (Netherlands)

    Stalpers, X.L.; Spruijt, L.; Yntema, H.G.; Verrips, A.

    2012-01-01

    Mutations in the X-linked cyclin dependent kinase like 5 (CDKL5) gene have been reported in approximately 80 patients since the first description in 2003. The clinical presentation partly corresponds with Rett syndrome, considering clinical features as intellectual disability, hypotonia, and poor

  20. Assembly and Regulation of the Membrane Attack Complex Based on Structures of C5b6 and sC5b9

    Directory of Open Access Journals (Sweden)

    Michael A. Hadders

    2012-03-01

    Full Text Available Activation of the complement system results in formation of membrane attack complexes (MACs, pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.

  1. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia.

    Science.gov (United States)

    Beam, Teresa A; Loudermilk, Emily F; Kisor, David F

    2017-02-01

    A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca 2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace. Copyright © 2017 the American Physiological Society.

  2. New contribution on the LRRK2 G2019S mutation associated to ...

    African Journals Online (AJOL)

    ... generations ago. Conclusion: Our conclusion is that the G2019S mutation of the LRRK2 gene originates 3,840 (95% CI 3,210-5,400) years ago in parkinsonian Moroccan Berbers patients. Key words: Parkinson's disease (PD), Leucine-rich repeat kinase 2 (LRRK2) gene, G2019S mutation, Haplotype, Founding mutation.

  3. (1750-1850

    Directory of Open Access Journals (Sweden)

    Christian Edward Cyril Lynch

    2007-01-01

    Full Text Available This article intends to focus the concept of liberalism in Brazil between 1750 and 1850, pointing out some differences of the Brazilian speeches towards Europe and Spanish America. Besides, the concept of liberalism is considered in its immediate conceptual neighborhood (liberals, representative government, constitution and its contra-concepts (absolutism, despotism, hunchbackism in the context of the debates of independence and the practice of party system during the first half of the nineteenth century.

  4. The TMEM43 Newfoundland mutation p.S358L causing ARVC-5 was imported from Europe and increases the stiffness of the cell nucleus.

    Science.gov (United States)

    Milting, Hendrik; Klauke, Bärbel; Christensen, Alex Hoerby; Müsebeck, Jörg; Walhorn, Volker; Grannemann, Sören; Münnich, Tamara; Šarić, Tomo; Rasmussen, Torsten Bloch; Jensen, Henrik Kjærulf; Mogensen, Jens; Baecker, Carolin; Romaker, Elena; Laser, Kai Thorsten; zu Knyphausen, Edzard; Kassner, Astrid; Gummert, Jan; Judge, Daniel P; Connors, Sean; Hodgkinson, Kathy; Young, Terry-L; van der Zwaag, Paul A; van Tintelen, J Peter; Anselmetti, Dario

    2015-04-07

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare genetic condition caused predominantly by mutations within desmosomal genes. The mutation leading to ARVC-5 was recently identified on the island of Newfoundland and caused by the fully penetrant missense mutation p.S358L in TMEM43. Although TMEM43-p.S358L mutation carriers were also found in the USA, Germany, and Denmark, the genetic relationship between North American and European patients and the disease mechanism of this mutation remained to be clarified. We screened 22 unrelated ARVC patients without mutations in desmosomal genes and identified the TMEM43-p.S358L mutation in a German ARVC family. We excluded TMEM43-p.S358L in 22 unrelated patients with dilated cardiomyopathy. The German family shares a common haplotype with those from Newfoundland, USA, and Denmark, suggesting that the mutation originated from a common founder. Examination of 40 control chromosomes revealed an estimated age of 1300-1500 years for the mutation, which proves the European origin of the Newfoundland mutation. Skin fibroblasts from a female and two male mutation carriers were analysed in cell culture using atomic force microscopy and revealed that the cell nuclei exhibit an increased stiffness compared with TMEM43 wild-type controls. The German family is not affected by a de novo TMEM43 mutation. It is therefore expected that an unknown number of European families may be affected by the TMEM43-p.S358L founder mutation. Due to its deleterious clinical phenotype, this mutation should be checked in any case of ARVC-related genotyping. It appears that the increased stiffness of the cell nucleus might be related to the massive loss of cardiomyocytes, which is typically found in ventricles of ARVC hearts. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  5. Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants.

    Science.gov (United States)

    Abdelsayed, Mena; Baruteau, Alban-Elouen; Gibbs, Karen; Sanatani, Shubhayan; Krahn, Andrew D; Probst, Vincent; Ruben, Peter C

    2017-09-15

    SCN5a mutations may express gain-of-function (Long QT Syndrome-3), loss-of-function (Brugada Syndrome 1) or both (mixed syndromes), depending on the mutation and environmental triggers. One such trigger may be an increase in cytosolic calcium, accompanying exercise. Many mixed syndromes mutants, including ∆KPQ, E1784K, 1795insD and Q1909R, are found in calcium-sensitive regions. Elevated cytosolic calcium attenuates gain-of-function properties in ∆KPQ, 1795insD and Q1909R, but not in E1784K. By contrast, elevated cytosolic calcium further exacerbates gain-of-function in E1784K by destabilizing slow inactivation. Action potential modelling, using a modified O'Hara Rudy model, suggests that elevated heart rate rescues action potential duration in ∆KPQ, 1795insD and Q1909R, but not in E1784K. Action potential simulations suggest that E1784K carriers have an increased intracellular sodium-to-calcium ratio under bradycardia and tachycardia conditions. Elevated cytosolic calcium, which is common during high heart rates, ameliorates or exacerbates the mixed syndrome phenotype depending on the genetic signature. Inherited arrhythmias may arise from mutations in the gene for SCN5a, which encodes the cardiac voltage-gated sodium channel, Na V 1.5. Mutants in Na V 1.5 result in Brugada Syndrome (BrS1), Long-QT Syndrome (LQT3) or mixed syndromes (an overlap of BrS1/LQT3). Exercise is a potential arrhythmogenic trigger in mixed syndromes. We aimed to determine the effects of elevated cytosolic calcium, which is common during exercise, in mixed syndrome Na V 1.5 mutants. We used whole-cell patch clamp to assess the biophysical properties of Na V 1.5 wild-type (WT), ∆KPQ, E1784K, 1795insD and Q1909R mutants in human embryonic kidney 293 cells transiently transfected with the Na V 1.5 α subunit (WT or mutants), β1 subunit and enhanced green fluorescent protein. Voltage-dependence and kinetics were measured at cytosolic calcium levels of approximately 0, 500 and 2500

  6. Depolarized Inactivation Overcomes Impaired Activation to Produce DRG Neuron Hyperexcitability in a Nav1.7 Mutation in a Patient with Distal Limb Pain

    NARCIS (Netherlands)

    Huang, J.; Yang, Y; Dib-Hajj, S.D.; Es, M. van; Zhao, P.; Salomon, J.; Drenth, J.P.; Waxman, S.G.

    2014-01-01

    Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject

  7. A low-pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene.

    Science.gov (United States)

    Park, Young-Jun; Nishikawa, Tomotaro; Minami, Mineo; Nemoto, Kazuhiro; Iwasaki, Tomohiro; Matsushima, Kenichi

    2015-12-01

    The purpose of this study was to identify the genetic mechanism underlying capsinoid biosynthesis in S3212, a low-pungency genotype of Capsicum frutescens. Screening of C. frutescens accessions for capsaicinoid and capsiate contents by high-performance liquid chromatography revealed that low-pungency S3212 contained high levels of capsiate but no capsaicin. Comparison of DNA coding sequences of pungent (T1 and Bird Eye) and low-pungency (S3212) genotypes uncovered a significant 12-bp deletion mutation in exon 7 of the p-AMT gene of S3212. In addition, p-AMT gene transcript levels in placental tissue were positively correlated with the degree of pungency. S3212, the low-pungency genotype, exhibited no significant p-AMT transcript levels, whereas T1, one of the pungent genotypes, displayed high transcript levels of this gene. We therefore conclude that the deletion mutation in the p-AMT gene is related to the loss of pungency in placental tissue and has given rise to the low-pungency S3212 C. frutescens genotype. C. frutescens S3212 represents a good natural source of capsinoids. Finally, our basic characterization of the uncovered p-AMT gene mutation should contribute to future studies of capsinoid biosynthesis in Capsicum.

  8. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN

    Science.gov (United States)

    Ono, Daisuke; Honma, Sato; Honma, Ken-ichi

    2016-01-01

    The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2−/−). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2−/− SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period. PMID:27626074

  9. Phenotypic Variability of Osteogenesis Imperfecta Type V Caused by an IFITM5 Mutation

    Science.gov (United States)

    Shapiro, Jay R; Lietman, Caressa; Grover, Monica; Lu, James T; Nagamani, Sandesh CS; Dawson, Brian C; Baldridge, Dustin M; Bainbridge, Matthew N; Cohn, Dan H; Blazo, Maria; Roberts, Timothy T; Brennen, Feng-Shu; Wu, Yimei; Gibbs, Richard A; Melvin, Pamela; Campeau, Philippe M; Lee, Brendan H

    2013-01-01

    In a large cohort of osteogenesis imperfecta type V (OI type V) patients (17 individuals from 12 families), we identified the same mutation in the 5′ untranslated region (5′UTR) of the interferon-induced transmembrane protein 5 (IFITM5) gene by whole exome and Sanger sequencing (IFITM5 c.–14C > T) and provide a detailed description of their phenotype. This mutation leads to the creation of a novel start codon adding five residues to IFITM5 and was recently reported in several other OI type V families. The variability of the phenotype was quite large even within families. Whereas some patients presented with the typical calcification of the forearm interosseous membrane, radial head dislocation and hyperplastic callus (HPC) formation following fractures, others had only some of the typical OI type V findings. Thirteen had calcification of interosseous membranes, 14 had radial head dislocations, 10 had HPC, 9 had long bone bowing, 11 could ambulate without assistance, and 1 had mild unilateral mixed hearing loss. The bone mineral density varied greatly, even within families. Our study thus highlights the phenotypic variability of OI type V caused by the IFITM5 mutation. PMID:23408678

  10. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5.

    Directory of Open Access Journals (Sweden)

    Nellie Y Loh

    Full Text Available Hypercalciuria is a major cause of nephrolithiasis, and is a common and complex disorder involving genetic and environmental factors. Identification of genetic factors for monogenic forms of hypercalciuria is hampered by the limited availability of large families, and to facilitate such studies, we screened for hypercalciuria in mice from an N-ethyl-N-nitrosourea mutagenesis programme. We identified a mouse with autosomal dominant hypercalciuria (HCALC1. Linkage studies mapped the Hcalc1 locus to a 11.94 Mb region on chromosome 6 containing the transient receptor potential cation channel, subfamily V, members 5 (Trpv5 and 6 (Trpv6 genes. DNA sequence analysis of coding regions, intron-exon boundaries and promoters of Trpv5 and Trpv6 identified a novel T to C transition in codon 682 of TRPV5, mutating a conserved serine to a proline (S682P. Compared to wild-type littermates, heterozygous (Trpv5(682P/+ and homozygous (Trpv5(682P/682P mutant mice had hypercalciuria, polyuria, hyperphosphaturia and a more acidic urine, and ∼10% of males developed tubulointerstitial nephritis. Trpv5(682P/682P mice also had normal plasma parathyroid hormone but increased 1,25-dihydroxyvitamin D(3 concentrations without increased bone resorption, consistent with a renal defect for the hypercalciuria. Expression of the S682P mutation in human embryonic kidney cells revealed that TRPV5-S682P-expressing cells had a lower baseline intracellular calcium concentration than wild-type TRPV5-expressing cells, suggesting an altered calcium permeability. Immunohistological studies revealed a selective decrease in TRPV5-expression from the renal distal convoluted tubules of Trpv5(682P/+ and Trpv5(682P/682P mice consistent with a trafficking defect. In addition, Trpv5(682P/682P mice had a reduction in renal expression of the intracellular calcium-binding protein, calbindin-D(28K, consistent with a specific defect in TRPV5-mediated renal calcium reabsorption. Thus, our findings

  11. John Stuart Mill, Harriet Taylor, and Women's Rights in America, 1850-1873.

    Science.gov (United States)

    Pugh, Evelyn L.

    1978-01-01

    Examines John Stuart Mill's writings on women with respect to their reception in and their application to the American scene from 1850 to the 1870s. Concludes that the implications were accepted by a significant portion of American society in the 1970s, a full century after Mill's publication. Journal availability: see SO 507 179. (Author/DB)

  12. A New Nonsense Mutation in CDKL5 Gene in a Male Patient with Early Onset Refractory Epilepsy: a Case Report

    Directory of Open Access Journals (Sweden)

    Soudeh Ghafouri-Fard

    2016-02-01

    Full Text Available Background The X-linked cyclin-dependent kinase like 5 (CDKL5/STK9 gene has been shown to be responsible for a severe encephalopathy condition characterized by early onset of epilepsy and severe developmental delay. CDKL5 mutations have been shown to be more frequent among female patients. Results Here we report a 6- month male patient, second child of a healthy non consanguineous in the Iranian population. He has been affected by early onset epileptic refractory seizures and developmental delay. Whole-exome sequencing (WES has revealed a base substitution c.173T>A in CDKL5 gene, resulting in the formation of stop codon p.L58X. This mutation resides in the catalytic domain of the corresponding protein and is expected to result in premature RNA break down with no CDKL5 resulting protein. Conclusion   The present report highlights the importance of CDKL5 mutation analysis in male patients affected with early onset refractory epilepsy.

  13. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family.

    Science.gov (United States)

    Zhai, Wei; Jin, Xin; Gong, Yan; Qu, Ling-Hui; Zhao, Chen; Li, Zhao-Hui

    2015-01-01

    To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2). The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH) genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR) and Sanger sequencing. The patient in the family occurred hearing loss (HL) and retinitis pigmentosa (RP) without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls. We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  14. Chinese translation of English textbooks on internal medicine from the 1850s to the 1940s.

    Science.gov (United States)

    Hong, Chuang-Ye; Wang, Fu-Mei

    2014-06-01

    During the 100 years from 1850 to 1949, six English textbooks on internal medicine were translated into Chinese and published. Publication of these books was a response to the increased demand for Chinese textbooks after the opening of several Western-style hospitals and medical schools in China where the instruction was in Chinese. Throughout this period, textbooks translated from English were regarded as symbols of mainstream and authority within medical communities in China. There was a shift of translators from British and American medical missionaries to Chinese medical elites. Publishers also changed from missionary hospitals or missionary organizations to the Chinese Medical Association, which was led by ethnic Chinese. After the 1950s, translation activity continued in Taiwan, but it was halted in China until after the Cultural Revolution. This paper provides bibliographic information about these books. The transition of medical authority in China during this 100-year period is also reviewed through the successive publication of translated textbooks on internal medicine. Copyright © 2014. Published by Elsevier B.V.

  15. Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA.

    Science.gov (United States)

    Gao, Pu; Ascano, Manuel; Zillinger, Thomas; Wang, Weiyi; Dai, Peihong; Serganov, Artem A; Gaffney, Barbara L; Shuman, Stewart; Jones, Roger A; Deng, Liang; Hartmann, Gunther; Barchet, Winfried; Tuschl, Thomas; Patel, Dinshaw J

    2013-08-15

    Binding of dsDNA by cyclic GMP-AMP (cGAMP) synthase (cGAS) triggers formation of the metazoan second messenger c[G(2',5')pA(3',5')p], which binds the signaling protein STING with subsequent activation of the interferon (IFN) pathway. We show that human hSTING(H232) adopts a "closed" conformation upon binding c[G(2',5')pA(3',5')p] and its linkage isomer c[G(2',5')pA(2',5')p], as does mouse mSting(R231) on binding c[G(2',5')pA(3',5')p], c[G(3',5')pA(3',5')p] and the antiviral agent DMXAA, leading to similar "closed" conformations. Comparing hSTING to mSting, 2',5'-linkage-containing cGAMP isomers were more specific triggers of the IFN pathway compared to the all-3',5'-linkage isomer. Guided by structural information, we identified a unique point mutation (S162A) placed within the cyclic-dinucleotide-binding site of hSTING that rendered it sensitive to the otherwise mouse-specific drug DMXAA, a conclusion validated by binding studies. Our structural and functional analysis highlights the unexpected versatility of STING in the recognition of natural and synthetic ligands within a small-molecule pocket created by the dimerization of STING. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Prognostic implications of c-Ki-ras2 mutations in patients with advanced colorectal cancer treated with 5-fluorouracil and interferon: a study of the eastern cooperative oncology group (EST 2292)

    Science.gov (United States)

    Wadler, S; Bajaj, R; Neuberg, D; Agarwal, V; Haynes, H; Benson, A B

    1997-01-01

    Mutations in c-Ki-ras2 (ras) occur in about 40% of patients with colorectal cancers and occur early in the pathogenesis of this disease. To evaluate the prognostic value of mutations in ras, the Eastern Cooperative Oncology Group (ECOG) conducted a retrospective study (EST 2292) to determine the frequency of mutations in patients with advanced colorectal cancer, and to determine whether ras mutations were associated with altered response to therapy and survival. Patients were enrolled from four studies: P-Z289, an ECOG phase II trial of 5-fluorouracil (5-FU) and interferon (IFN) in patients with advanced colorectal cancer; P-Z991, an ECOG phase I trial of 5-FU and IFN in patients with advanced malignancies; and two trials from the Albert Einstein College of Medicine in patients with advanced colorectal cancer treated with 5-FU and either IFN-alpha or IFN-beta. All patients had advanced colorectal carcinoma and had sufficient histologic material available for analysis for the presence and type of ras, using polymerase chain reaction and dot-blot analysis with sets of probes sufficient to detect all the common mutations of ras at codons 12, 13, and 61. Seventy-two patients were enrolled in this trial. Mutations in ras were detected in 25 (35%), including 17 (23%) in codon 12, four (6%) in codon 13, and four (6%) in codon 61. There was no correlation between the presence of a ras mutation and age, sex, Dukes' stage, histology, or tumor markers. Thirty-one of 72 patients (43%) responded to therapy with 5-FU and IFN, and 10 of 31 responders (32%) and 15 of 41 nonresponders (37%) had mutations in ras. There was no difference in response rates or overall survival between the groups with and without ras mutations. It is unlikely that ras mutations will have significant prognostic value for either response to therapy or survival in patients with colorectal carcinomas treated with 5-FU and IFN.

  17. c.376G>A mutation in WFS1 gene causes Wolfram syndrome without deafness.

    Science.gov (United States)

    Safarpour Lima, Behnam; Ghaedi, Hamid; Daftarian, Narsis; Ahmadieh, Hamid; Jamshidi, Javad; Khorrami, Mehdi; Noroozi, Rezvan; Sohrabifar, Nasim; Assarzadegan, Farhad; Hesami, Omid; Taghavi, Shaghayegh; Ahmadifard, Azadeh; Atakhorrami, Minoo; Rahimi-Aliabadi, Simin; Shahmohammadibeni, Neda; Alehabib, Elham; Andarva, Monavvar; Darvish, Hossein; Emamalizadeh, Babak

    2016-02-01

    Wolfram syndrome is one of the rare autosomal recessive, progressive, neurodegenerative disorders, characterized by diabetes mellitus and optic atrophy. Several other features are observed in patients including deafness, ataxia, and peripheral neuropathy. A gene called WFS1 is identified on chromosome 4p, responsible for Wolfram syndrome. We investigated a family consisted of parents and 8 children, which 5 of them have been diagnosed for Wolfram syndrome. WFS1 gene in all family members was sequenced for causative mutations. A mutation (c.376G>A, p.A126T) was found in all affected members in homozygous state and in both parents in heterozygous state. The bioinformatics analysis showed the deleterious effects of this nucleotide change on the structure and function of the protein product. As all of the patients in the family showed the homozygote mutation, and parents were both heterozygote, this mutation is probably the cause of the disease. We identified this mutation in homozygous state for the first time as Wolfram syndrome causation. We also showed that this mutation probably doesn't cause deafness in affected individuals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Effects of the umuC36 mutation on ultraviolet-radiation-induced base-change and frameshift mutations in Escherichia coli

    International Nuclear Information System (INIS)

    Kato, T.; Nakano, E.

    1981-01-01

    The effects of the umuC36 mutation on the induction of base-change and frameshift mutations were studied. An active umuC gene was necessary in either the uvr + or uvr - strains of Escherichia coli K12 for UV- and X-ray-induced mutations to His + , ColE and Spc, which are presumably base-change mutations, but it was not essential for ethyl methanesulphonate or N-methyl-N'-nitro-N-nitrosoguanidine-induced His + mutations. In contrast, only 1 out of 13 trp - frameshift mutations examined was UV reversible, and the process of mutagenesis was umuC + -dependent, whereas a potent frameshift mutagen, ICR191, effectively induced Trp + mutations in most of the strains regardless of the umu + or umuC genetic background. These results suggest that base substitutions are a major mutational type derived from the umuC + -dependent pathway of error-prone repair. (orig.)

  19. 677C to T mutation in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene and plasma homocyst(e)ine levels in patients with TIA or minor stroke.

    Science.gov (United States)

    Lalouschek, W; Aull, S; Korninger, L; Mannhalter, C; Pabinger-Fasching, I; Schmid, R W; Schnider, P; Zeiler, K

    1998-03-05

    It was the aim of this study to determine the associations of clinical and laboratory data with plasma homocyst(e)ine levels in patients with transient ischemic attack (TIA) or minor stroke (MS), with special reference to their 677C to T mutation status in the 5,10-methylenetetrahydrofolate reductase (5,10-MTHFR) gene. Seventy-six patients with TIA or MS were investigated at least 3 months after their (last) clinical event. By means of univariate analysis, significant correlations of homocyst(e)ine levels with male gender (Pine levels. After adjustment for age, creatinine levels and homocyst(e)ine levels remained significantly correlated to each other (Pine levels was no longer significant (P=0.10). Mutation-positive patients exhibited moderately and statistically non-significantly higher homocyst(e)ine levels than mutation-negative patients, particularly those who were homozygous positive. Homocyst(e)ine levels were closely correlated with creatinine levels (Pine levels in patients with TIA or MS are dependent on the 5,10-MTHFR mutation status. Significant correlations between these variables were found only in mutation-positive but not in mutation-negative patients.

  20. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism.

    Science.gov (United States)

    Grønskov, Karen; Dooley, Christopher M; Østergaard, Elsebet; Kelsh, Robert N; Hansen, Lars; Levesque, Mitchell P; Vilhelmsen, Kaj; Møllgård, Kjeld; Stemple, Derek L; Rosenberg, Thomas

    2013-03-07

    Autosomal-recessive albinism is a hypopigmentation disorder with a broad phenotypic range. A substantial fraction of individuals with albinism remain genetically unresolved, and it has been hypothesized that more genes are to be identified. By using homozygosity mapping of an inbred Faroese family, we identified a 3.5 Mb homozygous region (10q22.2-q22.3) on chromosome 10. The region contains five protein-coding genes, and sequencing of one of these, C10orf11, revealed a nonsense mutation that segregated with the disease and showed a recessive inheritance pattern. Investigation of additional albinism-affected individuals from the Faroe Islands revealed that five out of eight unrelated affected persons had the nonsense mutation in C10orf11. Screening of a cohort of autosomal-recessive-albinism-affected individuals residing in Denmark showed a homozygous 1 bp duplication in C10orf11 in an individual originating from Lithuania. Immunohistochemistry showed localization of C10orf11 in melanoblasts and melanocytes in human fetal tissue, but no localization was seen in retinal pigment epithelial cells. Knockdown of the zebrafish (Danio rerio) homolog with the use of morpholinos resulted in substantially decreased pigmentation and a reduction of the apparent number of pigmented melanocytes. The morphant phenotype was rescued by wild-type C10orf11, but not by mutant C10orf11. In conclusion, we have identified a melanocyte-differentiation gene, C10orf11, which when mutated causes autosomal-recessive albinism in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Reversible optic neuropathy with OPA1 exon 5b mutation

    DEFF Research Database (Denmark)

    Cornille, K.; Milea, D.; Amati-Bonneau, P.

    2008-01-01

    A new c.740G>A (R247H) mutation in OPA1 alternate spliced exon 5b was found in a patient presenting with bilateral optic neuropathy followed by partial, spontaneous visual recovery. R247H fibroblasts from the patient and his unaffected father presented unusual highly tubular mitochondrial network......, significant increased susceptibility to apoptosis, oxidative phosphorylation uncoupling, and altered OPA1 protein profile, supporting the pathogenicity of this mutation. These results suggest that the clinical spectrum of the OPA1-associated optic neuropathies may be larger than previously described...

  2. Mutational spectrum analysis of umuC-independent and umuC-dependent γ-radiation mutagenesis in Escherichia coli

    International Nuclear Information System (INIS)

    Sargentini, N.J.; Smith, K.C.

    1989-01-01

    γ-radiation mutagenesis Escherichia coli K-12. Mutagenesis (argE3(OC) A rg + ) was blocked in a δ(recA-srlR)306 strain at the same doses that induced mutations in umuC122::Tn5 and wild-type strains, indicating that both umuC-independent and umuC-dependent mechanisms function within recA-dependent misrepair. Analyses of various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777 reversion were performed on umuC and wild-type cells irradiated in the presence and absence of oxygen. While the umuC strain showed the γ-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but non all oxygen-dependent frameshift mutagenesis. For anoxically irradiated cells, the yields of GC T and AT GC transitions were essentially umuC independent, while the yields of (AT or GC) TA transversions were heavily umuC dependent. These data suggest new concepts about the nature of the DNA lesions and the mutagenic mechanisms that lead to γ-radiation mutagenesis. (author). 48 refs.; 1 tab.; 6 refs

  3. Shouting in a Desert: Dutch missionary encounters with Javanese Islam, 1850-1910 : Dutch missionary encounters with Javanese Islam, 1850-1910

    NARCIS (Netherlands)

    M.J. Kruithof (Maryse)

    2014-01-01

    markdownabstract__Abstract__ ‘‘Shouting in a desert’ Dutch missionary encounters with Javanese Islam’ concentrates on the shifts and developments in the Dutch mission discourse within the period from 1850 to 1910. It explores the Dutch missionary encounter with local communities and is conducted

  4. Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome.

    Science.gov (United States)

    Millat, G; Chevalier, P; Restier-Miron, L; Da Costa, A; Bouvagnet, P; Kugener, B; Fayol, L; Gonzàlez Armengod, C; Oddou, B; Chanavat, V; Froidefond, E; Perraudin, R; Rousson, R; Rodriguez-Lafrasse, C

    2006-09-01

    Long QT syndrome (LQTS) is a rare and clinically heterogeneous inherited disorder characterized by a long QT interval on the electrocardiogram, increased risk of syncope and sudden death caused by arrhythmias. This syndrome is mostly caused by mutations in genes encoding various cardiac ion channels. The clinical heterogeneity is usually attributed to variable penetrance. One of the reasons for this variability in expression could be the coexistence of common single nucleotide polymorphisms (SNPs) on LQTS-causing genes and/or unknown genes. Some synonymous and nonsynonymous exonic SNPs identified in LQTS-causing genes may have an effect on the cardiac repolarization process and modulate the clinical expression of a latent LQTS pathogenic mutation. We report the molecular pattern of 44 unrelated patients with LQTS using denaturing high-performance liquid chromatography analysis of the KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 genes. Forty-five disease-causing mutations (including 24 novel ones) were identified in this cohort. Most of our patients (84%) showed complex molecular pattern with one mutation (and even two for four patients) associated with several SNPs located in several LQTS genes.

  5. Efficient and stable CH3NH3PbI3-x(SCN)x planar perovskite solar cells fabricated in ambient air with low-temperature process

    Science.gov (United States)

    Zhang, Zongbao; Zhou, Yang; Cai, Yangyang; Liu, Hui; Qin, Qiqi; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Wu, Sujuan; Liu, Jun-Ming

    2018-02-01

    Planar perovskite solar cells (PSCs) based on CH3NH3PbI3-x(SCN)x (SCN: thiocyanate) active layer and low-temperature processed TiO2 films are fabricated by a sequential two-step method in ambient air. Here, alkali thiocyanates (NaSCN, KSCN) are added into Pb(SCN)2 precursor to improve the microstructure of CH3NH3PbI3-x(SCN)x perovskite layers and performance of the as-prepared PSCs. At the optimum concentrations of alkali thiocyanates as additives, the as-prepared NaSCN-modified and KSCN-modified PSCs demonstrate the efficiencies of 16.59% and 15.63% respectively, being much higher than 12.73% of the reference PSCs without additives. This improvement is primarily ascribed to the enhanced electron transport, reduced recombination rates and much improved microstructures with large grain size and low defect density at grain boundaries. Importantly, it is revealed that the modified PSCs at the optimized concentrations of alkali thiocyanates additives exhibit remarkably improved stability than the reference PSCs against humid circumstance, and a continuous exposure to humid air without encapsulation over 45 days only records about 5% degradation of the efficiency. These findings provide a facile approach to fabricate efficient and stable PSCs by low processing temperature in ambient air, both of which are highly preferred for future practical applications of PSCs.

  6. A novel mutation in the albumin gene (c.1A>C) resulting in analbuminemia.

    Science.gov (United States)

    Caridi, Gianluca; Dagnino, Monica; Lugani, Francesca; Shalev, Stavit A; Campagnoli, Monica; Galliano, Monica; Spiegel, Ronen; Minchiotti, Lorenzo

    2013-01-01

    Analbuminemia (OMIM # 103600) is a rare autosomal recessive disorder manifested by the absence or severe reduction of circulating serum albumin in homozygous or compound heterozygous subjects. The trait is caused by a variety of mutations within the albumin gene. We report here the clinical and molecular characterisation of two new cases of congenital analbuminemia diagnosed in two members of the Druze population living in a Galilean village (Northern Israel) on the basis of their low level of circulating albumin. The albumin gene was screened by single-strand conformation polymorphism and heteroduplex analysis, and the mutated region was submitted to DNA sequencing. Both the analbuminemic subjects resulted homozygous for a previously unreported c.1 A>C transversion, for which we suggest the name Afula from the hospital where the two cases were investigated. This mutation causes the loss of the primary start codon ATG for Met1, which is replaced by a - then untranslated - triplet CTG for Leu. (p.Met1Leu). The use of an alternative downstream ATG codon would probably give rise to a completely aberrant polypeptide chain, leading to a misrouted intracellular transport and a premature degradation. The discovery of this new ALB mutation, probably inherited from a common ancestor, sheds light on the molecular mechanism underlying the analbuminemic trait and may serve in the development of a rapid genetic test for the identification of a-symptomatic heterozygous carriers in the Druze population in the Galilee. © 2012 The Authors. European Journal of Clinical Investigation © 2012 Stichting European Society for Clinical Investigation Journal Foundation.

  7. G673 could be a novel mutational hot spot for intragenic suppressors of pheS5 lesion in Escherichia coli.

    Science.gov (United States)

    Ponmani, Thangaraj; Munavar, M Hussain

    2014-06-01

    The pheS5 Ts mutant of Escherichia coli defined by a G293 → A293 transition, which is responsible for thermosensitive Phenylalanyl-tRNA synthetase has been well studied at both biochemical and molecular level but genetic analyses pertaining to suppressors of pheS5 were hard to come by. Here we have systematically analyzed a spectrum of Temperature-insensitive derivatives isolated from pheS5 Ts mutant and identified two intragenic suppressors affecting the same base pair coordinate G673 (pheS19 defines G673 → T673 ; Gly225 → Cys225 and pheS28 defines G673 → C673 ; Gly225 → Arg225). In fact in the third derivative, the intragenic suppressor originally named pheS43 (G673 → C673 transversion) is virtually same as pheS28. In the fourth case, the very pheS5 lesion itself has got changed from A293 → T293 (named pheS40). Cloning of pheS(+), pheS5, pheS5-pheS19, pheS5-pheS28 alleles into pBR322 and introduction of these clones into pheS5 mutant revealed that excess of double mutant protein is not at all good for the survival of cells at 42°C. These results clearly indicate a pivotal role for Gly225 in the structural/functional integrity of alpha subunit of E. coli PheRS enzyme and it is proposed that G673 might define a hot spot for intragenic suppressors of pheS5. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    Science.gov (United States)

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  9. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients

    Science.gov (United States)

    Sun, Yishan; Paşca, Sergiu P; Portmann, Thomas; Goold, Carleton; Worringer, Kathleen A; Guan, Wendy; Chan, Karen C; Gai, Hui; Vogt, Daniel; Chen, Ying-Jiun J; Mao, Rong; Chan, Karrie; Rubenstein, John LR; Madison, Daniel V; Hallmayer, Joachim; Froehlich-Santino, Wendy M; Bernstein, Jonathan A; Dolmetsch, Ricardo E

    2016-01-01

    Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI: http://dx.doi.org/10.7554/eLife.13073.001 PMID:27458797

  10. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

    Science.gov (United States)

    Friso, Simonetta; Choi, Sang-Woon; Girelli, Domenico; Mason, Joel B.; Dolnikowski, Gregory G.; Bagley, Pamela J.; Olivieri, Oliviero; Jacques, Paul F.; Rosenberg, Irwin H.; Corrocher, Roberto; Selhub, Jacob

    2002-01-01

    DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status. PMID:11929966

  11. Contrasting oxygen-effects in the inactivation of ribonuclease A by N3, (SCN)-2 and OH radicals

    International Nuclear Information System (INIS)

    Pruetz, W.A.

    1979-01-01

    N 3 exhibits higher efficiency than OH in the inactivation of RNase in de-acerated (neutral) aqueous solution. In O 2 -saturated solution the OH-induced inactivation is enhanced, but N 3 and (SCN) - 2 become remarkably inefficient. Our results suggest that semi-oxidized tyrosine, the predominant initial defect induced by N 3 and (SCN) - 2 but not by OH, can be re-reduced upon reaction with O - 2 or cysteine. (orig.) [de

  12. A novel CDKL5 mutation in a 47,XXY boy with the early-onset seizure variant of Rett syndrome.

    Science.gov (United States)

    Sartori, Stefano; Di Rosa, Gabriella; Polli, Roberta; Bettella, Elisa; Tricomi, Giovanni; Tortorella, Gaetano; Murgia, Alessandra

    2009-02-01

    Mutations of the cyclin-dependent kinase-like 5 gene (CDKL5), reported almost exclusively in female subjects, have been recently found to be the cause of a phenotype overlapping Rett syndrome with early-onset epileptic encephalopathy. We describe the first CDKL5 mutation detected in a male individual with 47,XXY karyotype. This previously unreported, de novo, mutation truncates the large CDKL5 COOH-terminal region, thought to be crucial for the proper sub-cellular localization of the CDKL5 protein. The resulting phenotype is characterized by a severe early-onset epileptic encephalopathy, global developmental delay, and profound intellectual and motor impairment with features reminiscent of Rett syndrome. In light of the data presented we discuss the possible phenotypic modulatory effects of the supernumerary wild type X allele and pattern of X chromosome inactivation and stress the importance of considering the causal involvement of CDKL5 in developmentally delayed males with early-onset seizures. (c) 2009 Wiley-Liss, Inc.

  13. (3R,6S,7aS-3-Phenyl-6-(phenylsulfanylperhydropyrrolo[1,2-c]oxazol-5-one

    Directory of Open Access Journals (Sweden)

    Anthony D. Woolhouse

    2009-05-01

    Full Text Available Molecules of the title compound [systematic name: (2R,5S,7S-2-phenyl-7-phenylsulfanyl-1-aza-3-oxabicyclo[3.3.0]octan-8-one], C18H17NO2S, form high quality crystals even though they are only packed using C—H...O(carbonyl and weak C—H...S interactions. The dihedral angle between the aromatic rings is 85.53 (5°. The fused rings adopt envelope and twist conformations.

  14. An intronic mutation c.6430-3C>G in the F8 gene causes splicing efficiency and premature termination in hemophilia A.

    Science.gov (United States)

    Xia, Zunjing; Lin, Jie; Lu, Lingping; Kim, Chol; Yu, Ping; Qi, Ming

    2018-06-01

    : Hemophilia A is a bleeding disorder caused by coagulation factor VIII protein deficiency or dysfunction, which is classified into severe, moderate, and mild according to factor clotting activity. An overwhelming majority of missense and nonsense mutations occur in exons of F8 gene, whereas mutations in introns can also be pathogenic. This study aimed to investigate the effect of an intronic mutation, c.6430-3C>G (IVS22-3C>G), on pre-mRNA splicing of the F8 gene. We applied DNA and cDNA sequencing in a Chinese boy with hemophilia A to search if any pathogenic mutation in the F8 gene. Functional analysis was performed to investigate the effect of an intronic mutation at the transcriptional level. Human Splicing Finder and PyMol were also used to predict its effect. We found the mutation c.6430-3C>G (IVS22-3C>G) in the F8 gene in the affected boy, with his mother being a carrier. cDNA from the mother and pSPL3 splicing assay showed that the mutation IVS22-3C>G results in a two-nucleotide AG inclusion at the 3' end of intron 22 and leads to a truncated coagulation factor VIII protein, with partial loss of the C1 domain and complete loss of the C2 domain. The in-silico tool predicted that the mutation induces altered pre-mRNA splicing by using a cryptic acceptor site in intron 22. The IVS22-3C>G mutation was confirmed to affect pre-mRNA splicing and produce a truncated protein, which reduces the stability of binding between the F8 protein and von Willebrand factor carrier protein due to the loss of an interaction domain.

  15. Delineation of Ehlers-Danlos syndrome phenotype due to the c.934C>T, p.(Arg312Cys) mutation in COL1A1: Report on a three-generation family without cardiovascular events, and literature review.

    Science.gov (United States)

    Colombi, Marina; Dordoni, Chiara; Venturini, Marina; Zanca, Arianna; Calzavara-Pinton, Piergiacomo; Ritelli, Marco

    2017-02-01

    Classical Ehlers-Danlos syndrome (cEDS) is a rare connective tissue disorder primarily characterized by hyperextensible skin, defective wound healing, abnormal scars, easy bruising, and generalized joint hypermobility; arterial dissections are rarely observed. Mutations in COL5A1 and COL5A2 encoding type V collagen account for more than 90% of the patients so far characterized. In addition, cEDS phenotype was reported in a small number of patients carrying the c.934C>T mutation in COL1A1 that results in an uncommon substitution of a non-glycine residue in one Gly-Xaa-Yaa repeat of the pro-α1(I)-chain p.(Arg312Cys), which leads to disturbed collagen fibrillogenesis due to delayed removal of the type I procollagen N-propeptide. This specific mutation has been associated with propensity to arterial rupture in early adulthood; indeed, in literature the individuals harboring this mutation are also referred to as "(classic) vascular-like" EDS patients. Herein, we describe a three-generation cEDS family with six adults carrying the p.(Arg312Cys) substitution, which show a variable and prevalent cutaneous involvement without any major vascular event. These data, together with those available in literature, suggest that vascular events are not a diagnostic handle to differentiate patients with the p.(Arg312Cys) COL1A1 mutation from those with COL5A1 and COL5A2 defects, and highlight that during the diagnostic process the presence of at least the p.(Arg312Cys) substitution in COL1A1 should be investigated in cEDS patients without type V collagen mutations. Nevertheless, for these patients, as well as for those affected with cEDS, a periodical vascular surveillance should be carried out together with cardiovascular risk factors monitoring. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. A novel mutation in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene associated with a severe Rett phenotype.

    Science.gov (United States)

    Sprovieri, T; Conforti, F L; Fiumara, A; Mazzei, R; Ungaro, C; Citrigno, L; Muglia, M; Arena, A; Quattrone, A

    2009-02-15

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have recently been reported in patients with severe neurodevelopmental disorder characterized by early-onset seizures, infantile spasms, severe psychomotor impairment and very recently, in patients with Rett syndrome (RTT)-like phenotype. Although the involvement of CDKL5 in specific biological pathways and its neurodevelopmental role have not been completely elucidated, the CDKL5 appears to be physiologically related to the MECP2 gene. Here we report on the clinical and CDKL5 molecular investigation in a very unusual RTT case, with severe, early-neurological involvement in which we have shown in a previous report, a novel P388S MECP2 mutation [Conforti et al. (2003); Am J Med Genet A 117A: 184-187]. The patient has had severe psychomotor delay since the first month of life and infantile spasms since age 5 months. Moreover, at age 5 years the patient suddenly presented with renal failure. The severe pattern of symptoms in our patient, similar to a CDKL5 phenotype, prompted us to perform an analysis of the CDKL5, which revealed a novel missense mutation never previously described. The X-inactivation assay was non-informative. In conclusion, this report reinforces the observation that the CDKL5 phenotype overlaps with RTT and that CDKL5 analysis is recommended in patients with a seizure disorder commencing during the first months of life.

  17. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family

    Directory of Open Access Journals (Sweden)

    Wei Zhai

    2015-08-01

    Full Text Available AIM:To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2.METHODS:The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR and Sanger sequencing.RESULTS:The patient in the family occurred hearing loss (HL and retinitis pigmentosa (RP without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls.CONCLUSION:We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  18. Mutagenesis Analysis Reveals Distinct Amino Acids of the Human Serotonin 5-HT2C Receptor Underlying the Pharmacology of Distinct Ligands.

    Science.gov (United States)

    Liu, Yue; Canal, Clinton E; Cordova-Sintjago, Tania C; Zhu, Wanying; Booth, Raymond G

    2017-01-18

    While exploring the structure-activity relationship of 4-phenyl-2-dimethylaminotetralins (PATs) at serotonin 5-HT 2C receptors, we discovered that relatively minor modification of PAT chemistry impacts function at 5-HT 2C receptors. In HEK293 cells expressing human 5-HT 2C-INI receptors, for example, (-)-trans-3'-Br-PAT and (-)-trans-3'-Cl-PAT are agonists regarding Gα q -inositol phosphate signaling, whereas (-)-trans-3'-CF 3 -PAT is an inverse agonist. To investigate the ligand-receptor interactions that govern this change in function, we performed site-directed mutagenesis of 14 amino acids of the 5-HT 2C receptor based on molecular modeling and reported G protein-coupled receptor crystal structures, followed by molecular pharmacology studies. We found that S3.36, T3.37, and F5.47 in the orthosteric binding pocket are critical for affinity (K i ) of all PATs tested, we also found that F6.44, M6.47, C7.45, and S7.46 are primarily involved in regulating EC/IC 50 functional potencies of PATs. We discovered that when residue S5.43, N6.55, or both are mutated to alanine, (-)-trans-3'-CF 3 -PAT switches from inverse agonist to agonist function, and when N6.55 is mutated to leucine, (-)-trans-3'-Br-PAT switches from agonist to inverse agonist function. Notably, most point-mutations that affected PAT pharmacology did not significantly alter affinity (K D ) of the antagonist radioligand [ 3 H]mesulergine, but every mutation tested negatively impacted serotonin binding. Also, amino acid mutations differentially affected the pharmacology of other commercially available 5-HT 2C ligands tested. Collectively, the data show that functional outcomes shared by different ligands are mediated by different amino acids and that some 5-HT 2C receptor residues important for pharmacology of one ligand are not necessarily important for another ligand.

  19. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Directory of Open Access Journals (Sweden)

    Bhatt Rajendra M

    2010-05-01

    Full Text Available Abstract Background Knockdown resistance in insects resulting from mutation(s in the voltage gated Na+ channel (VGSC is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common kdr mutation in insects, was reported in Anopheles culicifacies-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an An. culicifacies population from Malkangiri district of Orissa, India. Methods Anopheles culicifacies sensu lato (s.l. samples, collected from a population of Malkangiri district of Orissa (India, were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR was developed for the detection of the new mutation L1014S. The An. culicifacies population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing. Results DNA sequencing of An. culicifacies individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA-to-Phe (TTT or -Ser (TCA changes, respectively. A third and novel substitution, Val (GTG-to-Leu (TTG or CTG, was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the

  20. A Comparative History of Gender and Factory Labour in Ottoman Bursa and Colonial Bombay, c.1850-1910

    OpenAIRE

    Yildiz, Hatice

    2017-01-01

    This thesis explores the gendered dynamics of industrialisation in the late Ottoman Empire and British India. It examines the ways in which gendered notions of skill, waged work, domesticity and technology shaped employment patterns, labour processes and politics in silk factories in Bursa and cotton mills in Bombay between 1850 and 1910. The project undermines the notion that women's labour was incidental to the development of large-scale factory enterprise in Ottoman and Indian lands. I arg...

  1. Mutations of CDKL5 Cause a Severe Neurodevelopmental Disorder with Infantile Spasms and Mental Retardation

    Science.gov (United States)

    Weaving, Linda S.; Christodoulou, John; Williamson, Sarah L.; Friend, Kathie L.; McKenzie, Olivia L. D.; Archer, Hayley; Evans, Julie; Clarke, Angus; Pelka, Gregory J.; Tam, Patrick P. L.; Watson, Catherine; Lahooti, Hooshang; Ellaway, Carolyn J.; Bennetts, Bruce; Leonard, Helen; Gécz, Jozef

    2004-01-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused, in most classic cases, by mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2). A large degree of phenotypic variation has been observed in patients with RTT, both those with and without MECP2 mutations. We describe a family consisting of a proband with a phenotype that showed considerable overlap with that of RTT, her identical twin sister with autistic disorder and mild-to-moderate intellectual disability, and a brother with profound intellectual disability and seizures. No pathogenic MECP2 mutations were found in this family, and the Xq28 region that contains the MECP2 gene was not shared by the affected siblings. Three other candidate regions were identified by microsatellite mapping, including 10.3 Mb at Xp22.31-pter between Xpter and DXS1135, 19.7 Mb at Xp22.12-p22.11 between DXS1135 and DXS1214, and 16.4 Mb at Xq21.33 between DXS1196 and DXS1191. The ARX and CDKL5 genes, both of which are located within the Xp22 region, were sequenced in the affected family members, and a deletion of nucleotide 183 of the coding sequence (c.183delT) was identified in CDKL5 in the affected family members. In a screen of 44 RTT cases, a single splice-site mutation, IVS13-1G→A, was identified in a girl with a severe phenotype overlapping RTT. In the mouse brain, Cdkl5 expression overlaps—but is not identical to—that of Mecp2, and its expression is unaffected by the loss of Mecp2. These findings confirm CDKL5 as another locus associated with epilepsy and X-linked mental retardation. These results also suggest that mutations in CDKL5 can lead to a clinical phenotype that overlaps RTT. However, it remains to be determined whether CDKL5 mutations are more prevalent in specific clinical subgroups of RTT or in other clinical presentations. PMID:15492925

  2. A novel lamin A/C mutation in a Dutch family with premature atherosclerosis.

    Science.gov (United States)

    Weterings, A A W; van Rijsingen, I A W; Plomp, A S; Zwinderman, A H; Lekanne Deprez, R H; Mannens, M M; van den Bergh Weerman, M A; van der Wal, A C; Pinto-Sietsma, S J

    2013-07-01

    We report a novel lamin A/C (LMNA) mutation, p.Glu223Lys, in a family with extensive atherosclerosis, diabetes mellitus and steatosis hepatis. Sequence analysis of LMNA (using Alamut version 2.2), co-segregation analysis, electron microscopy, extensive phenotypic evaluation of the mutation carriers and literature comparison were used to determine the loss of function of this mutation. The father of three siblings died at the age of 45 years. The three siblings and the brother and sister of the father were referred to the cardiovascular genetics department, because of the premature atherosclerosis and dysmorphic characteristics observed in the father at autopsy. The novel LMNA mutation, p.Glu223Lys, was identified in the proband and his two sons. Clinical evaluation revealed atherosclerosis, insulin resistance and hypertension in the proband and dyslipidemia and hepatic steatosis in all the patients with the mutation. Based on the facts that in silico analysis predicts a possibly pathogenic mutation, the mutation co-segregates with the disease, only fibroblasts from mutation carriers show nuclear blebbing and a similar phenotype was reported to be due to missense mutations in LMNA we conclude that we deal with a pathogenic mutation. We conclude that the phenotype is similar to Dunnigan-type familial partial lipodystrophy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Low and fixed dose of hydroxyurea is effective and safe in patients with HbSβ(+) thalassemia with IVS1-5(G→C) mutation.

    Science.gov (United States)

    Dehury, Snehadhini; Purohit, Prasanta; Patel, Siris; Meher, Satyabrata; Kullu, Bipin Kishore; Sahoo, Lulup Kumar; Patel, Nayan Kumar; Mohapatra, Alok Kumar; Das, Kishalaya; Patel, Dilip Kumar

    2015-06-01

    Despite compelling evidence that hydroxyurea is safe and effective in sickle cell disease, it is prescribed sparingly due to several barriers like knowledge gaps in certain genotypes, apprehension about its safety and toxicity, and limited resources. We undertook this study to find out the efficacy and safety of HU in patients with HbSβ(+) -thalassemia with IVS1-5(G→C) mutation. We registered 318 patients with HbSβ(+) -thalassemia with IVS1-5(G→C) mutation. Of these, 203 were enrolled for hydroxyurea treatment at a low and fixed dose of 10 mg/kg/day. One hundred four patients (Group-I: 37 children and Group-II: 67 adults) with ≥2 years of hydroxyurea treatment were studied. The rate of vaso-occlusive crises, requirement of blood transfusion and rate of hospitalization reduced from 3 to 0.5, 1 to 0 and 1 to 0 in Group-I and 3 to 0, 1 to 0 and 0.5 to 0 in Group-II respectively after HU therapy (P hydroxyurea is suitable for treatment of patients with HbSβ(+) -thalassemia in resource poor setting. © 2014 Wiley Periodicals, Inc.

  4. Adaptive mutations enhance assembly and cell-to-cell transmission of a high-titer hepatitis C virus genotype 5a Core-NS2 JFH1-based recombinant

    DEFF Research Database (Denmark)

    Mathiesen, Christian K; Prentoe, Jannick; Meredith, Luke W

    2015-01-01

    UNLABELLED: Recombinant hepatitis C virus (HCV) clones propagated in human hepatoma cell cultures yield relatively low infectivity titers. Here, we adapted the JFH1-based Core-NS2 recombinant SA13/JFH1C3405G,A3696G (termed SA13/JFH1orig), of the poorly characterized genotype 5a, to Huh7.5 cells......-titer production of diverse HCV strains would be advantageous. Our study offers important functional data on how cell culture-adaptive mutations identified in genotype 5a JFH1-based HCVcc permit high-titer culture by affecting HCV genesis through increasing virus assembly and HCV fitness by enhancing the virus...... specific infectivity and cell-to-cell transmission ability, without influencing the biophysical particle properties. High-titer HCVcc like the one described in this study may be pivotal in future vaccine-related studies where large quantities of infectious HCV particles are necessary....

  5. Development of 68Ga-SCN-DOTA-Capsaicin as an Imaging Agent Targeting Apoptosis and Cell Cycle Arrest in Breast Cancer.

    Science.gov (United States)

    Lee, Jun Young; Lee, Sang-Yeun; Kim, Gun Gyun; Hur, Min Goo; Yang, Seung Dae; Park, Jeong-Hoon; Kim, Sang Wook

    2017-06-01

    68 Ga-labeled capsaicin using a DOTA (1,4,7,10-tetraazocyclododecane-N,N',N″,N'″-tetraacetic acid) derivative [ 68 Ga-SCN-Benzyl(Bn)-DOTA-capsaicin] was studied for the diagnosis of breast cancers, such as MCF-7 and SK-BR-3. The standard compound, 69 Ga-SCN-Bn-DOTA-capsaicin, was also prepared and characterized by spectroscopic analysis. The binding affinity of 68 Ga-SCN-Bn-DOTA-capsaicin was evaluated by using breast cancer cell lines (MCF-7, SK-BR-3) and colon cancer cell (CT-26); the biodistribution was carried out by using MCF-7-bearing nude mice, after which the positron emission tomography (PET) images were obtained at different time intervals (15-120 minutes). 68 Ga-SCN-Bn-DOTA-capsaicin showed a cellular uptake of 0.93% Injected Dose (ID) after 30 minutes of incubation, whereas 68 Ga-SCN-Bn-DOTA showed a lower uptake of 0.25% ID. The tumor-to-blood ID/g% ratios increased and were found to be 0.49, 0.22, and 0.77 for 15, 30, and 60 minutes, respectively. The small-animal PET study showed that the uptake of 68 Ga-SCN-Bn-DOTA-capsaicin was higher in the tumor regions even at 30 minutes after injection. These results suggest that 68 Ga-SCN-Bn-DOTA-capsaicin is a potential targeting agent for PET imaging of MCF-7.

  6. Analytical approximations for thermophysical properties of supercritical nitrogen (SCN) to be used in futuristic high temperature superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Ravula, Jeswanth [School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab 144401 (India); Thadela, S. [Department of Mechanical Engineering, Andhra University, Visakhapatnam, Andhra Pradesh (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, P.V.K. Institute of Technology, Anantapur, Andhra Pradesh (India)

    2015-12-15

    Future power transmission applications demand higher efficiency due to the limited resources of energy. In order to meet such demand, a novel method of transmission is being developed using High Temperature Superconducting (HTS) cables. However, these HTS cables need to be cooled below the critical temperature of superconductors used in constructing the cable to retain the superconductivity. With the advent of new superconductors whose critical temperatures having reached up to 134 K (Hg based), a need arises to find a suitable coolant which can accommodate the heating loads on the superconductors. The present work proposes, Supercritical Nitrogen (SCN) to be a feasible coolant to achieve the required cooling. Further, the feasibility of proposed coolant to be used in futuristic HTS cables is investigated by studying the thermophysical properties such as density, viscosity, specific heat and thermal conductivity with respect to temperature (T{sub C} + 10 K) and pressure (P{sub C} + 10 bar). In addition, few temperature dependent analytical functions are developed for thermophysical properties of SCN which are useful in predicting thermohydraulic performance (pressure drop, pumping power and cooling capacity) using numerical or computational techniques. Also, the developed analytical functions are used to calculate the pumping power and the temperature difference between inlet and outlet of HTS cable. These results are compared with those of liquid nitrogen (LN2) and found that the circulating pumping power required to pump SCN is significantly smaller than that to pump LN2. Further, it is found that the temperature difference between the inlet and outlet is smaller as compared to that when LN2 is used, SCN can be preferred to cool long length Hg based HTS cables. - Highlights: • Analytical functions are developed for thermophysical properties of Supercritical Nitrogen. • Error analysis shows extremely low errors in the developed analytical functions.

  7. Lack of integrase inhibitors associated resistance mutations among HIV-1C isolates.

    Science.gov (United States)

    Mulu, Andargachew; Maier, Melanie; Liebert, Uwe Gerd

    2015-12-01

    Although biochemical analysis of HIV-1 integrase enzyme suggested the use of integrase inhibitors (INIs) against HIV-1C, different viral subtypes may favor different mutational pathways potentially leading to varying levels of drug resistance. Thus, the aim of this study was to search for the occurrence and natural evolution of integrase polymorphisms and/or resistance mutations in HIV-1C Ethiopian clinical isolates prior to the introduction of INIs. Plasma samples from chronically infected drug naïve patients (N = 45), of whom the PR and RT sequence was determined previously, were used to generate population based sequences of HIV-1 integrase. HIV-1 subtype was determined using the REGA HIV-1 subtyping tool. Resistance mutations were interpreted according to the Stanford HIV drug resistance database ( http://hivdb.stanford.edu ) and the updated International Antiviral Society (IAS)-USA mutation lists. Moreover, rates of polymorphisms in the current isolates were compared with South African and global HIV-1C isolates. All subjects were infected with HIV-1C concordant to the protease (PR) and reverse transcriptase (RT) regions. Neither major resistance-associated IN mutations (T66I/A/K, E92Q/G, T97A, Y143HCR, S147G, Q148H/R/K, and N155H) nor silent mutations known to change the genetic barrier were observed. Moreover, the DDE-catalytic motif (D64G/D116G/E152 K) and signature HHCC zinc-binding motifs at codon 12, 16, 40 and 43 were found to be highly conserved. However, compared to other South African subtype C isolates, the rate of polymorphism was variable at various positions. Although the sample size is small, the findings suggest that this drug class could be effective in Ethiopia and other southern African countries where HIV-1C is predominantly circulating. The data will contribute to define the importance of integrase polymorphism and to improve resistance interpretation algorithms in HIV-1C isolates.

  8. Fibroblast Growth Factor Receptor 3 (FGFR3–Analyses of the S249C Mutation and Protein Expression in Primary Cervical Carcinomas

    Directory of Open Access Journals (Sweden)

    Haiyan Dai

    2001-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3 seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3 gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS, and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8% samples. Six of the tumours (8.2% revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant. This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.

  9. Protease Inhibitors Drug Resistance Mutations in Turkish Patients with Chronic Hepatitis C.

    Science.gov (United States)

    Sargin Altunok, Elif; Sayan, Murat; Akhan, Sila; Aygen, Bilgehan; Yildiz, Orhan; Tekin Koruk, Suda; Mistik, Resit; Demirturk, Nese; Ural, Onur; Kose, Şükran; Aynioglu, Aynur; Korkmaz, Fatime; Ersoz, Gülden; Tuna, Nazan; Ayaz, Celal; Karakecili, Faruk; Keten, Derya; Inan, Dilara; Yazici, Saadet; Koculu, Safiye; Yildirmak, Taner

    2016-09-01

    Drug resistance development is an expected problem during treatment with protease inhibitors (PIs), this is largely due to the fact that Pls are low-genetic barrier drugs. Resistance-associated variants (RAVs) however may also occur naturally, and prior to treatment with Pls, the clinical impact of this basal resistance remains unknown. In Turkey, there is yet to be an investigation into the hepatitis C (HCV) drug associated resistance to oral antivirals. 178 antiviral-naïve patients infected with HCV genotype 1 were selected from 27 clinical centers of various geographical regions in Turkey and included in the current study. The basal NS3 Pls resistance mutations of these patients were analyzed. In 33 (18.5%) of the patients included in the study, at least one mutation pattern that can cause drug resistance was identified. The most frequently detected mutation pattern was T54S while R109K was the second most frequently detected. Following a more general examination of the patients studied, telaprevir (TVR) resistance in 27 patients (15.2%), boceprevir (BOC) resistance in 26 (14.6%) patients, simeprevir (SMV) resistance in 11 (6.2%) patients and faldaprevir resistance in 13 (7.3%) patients were detected. Our investigation also revealed that rebound developed in the presence of a Q80K mutation and amongst two V55A mutations following treatment with TVR, while no response to treatment was detected in a patient with a R55K mutation. We are of the opinion that drug resistance analyses can be beneficial and necessary in revealing which variants are responsible for pre-treatment natural resistance and which mutations are responsible for the viral breakthrough that may develop during the treatment. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    International Nuclear Information System (INIS)

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai

    2006-01-01

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy

  11. Ectopic expression of AID in a non-B cell line triggers A:T and G:C point mutations in non-replicating episomal vectors.

    Directory of Open Access Journals (Sweden)

    Tihana Jovanic

    Full Text Available Somatic hypermutation (SHM of immunoglobulin genes is currently viewed as a two step process initiated by the deamination of deoxycytidine (C to deoxyuridine (U, catalysed by the activation induced deaminase (AID. Phase 1 mutations arise from DNA replication across the uracil residue or the abasic site, generated by the uracil-DNA glycosylase, yielding transitions or transversions at G:C pairs. Phase 2 mutations result from the recognition of the U:G mismatch by the Msh2/Msh6 complex (MutS Homologue, followed by the excision of the mismatched nucleotide and the repair, by the low fidelity DNA polymerase eta, of the gap generated by the exonuclease I. These mutations are mainly focused at A:T pairs. Whereas in activated B cells both G:C and A:T pairs are equally targeted, ectopic expression of AID was shown to trigger only G:C mutations on a stably integrated reporter gene. Here we show that when using non-replicative episomal vectors containing a GFP gene, inactivated by the introduction of stop codons at various positions, a high level of EGFP positive cells was obtained after transient expression in Jurkat cells constitutively expressing AID. We show that mutations at G:C and A:T pairs are produced. EGFP positive cells are obtained in the absence of vector replication demonstrating that the mutations are dependent only on the mismatch repair (MMR pathway. This implies that the generation of phase 1 mutations is not a prerequisite for the expression of phase 2 mutations.

  12. A high dynamic range programmable CMOS front-end filter with a tuning range from 1850 to 2400 MHz

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais; Lee, Thomas H.; Bruun, Erik

    2005-01-01

    This paper presents a highly programmable front-end filter and amplifier intended to replace SAW filters and low noise amplifiers (LNA) in multi-mode direct conversion radio receivers. The filter has a 42 MHz bandwidth, is tunable from 1850 to 2400 MHz, achieves a 5.8 dB NF, -25 dBm in-band 1-d...

  13. P53, K-RAS, β-CATENIN, C-KIT and BAK mutations in the lung cancer of Chinese and Japanese patients

    International Nuclear Information System (INIS)

    Shuo Xing; Nobotoshi Nawa; Kazuhiro Tanabe; Tadashi Hongyo; Li- Ya Li; Jing-Tian Tang; Mitsunori Ohta

    2005-01-01

    Seventeen Chinese (Beijing) and 24 Japanese (Osaka) lung cancer cases were analyzed for mutations of p53, K-ras, β-catenin, c-kit and bak genes by PCR-SSCP analysis followed by direct sequencing. Significantly higher mutation frequency of p53 gene, one of key genes for radiation sensitivity, was found in Chinese cases (11/17; 64.7 %) than Japanese cases (8/24; 33.3 %) (p< O.O5). Fourteen of the 16 mutations found in the Chinese cases were transitions at exon 4,5 and intron 4. In the Japanese cases, of the total of 11 mutations, 5 were transitions and 5 were transversions and one was deletion. Six β-catenin mutations were found in 6 Chinese cases (35.3 % ) at codon 53 and 58, and 4 were found in 3 Japanese cases (12.5 %). C-kit mutations were detected in 5 Chinese cases (29.4 %), while no mutations were found in Japanese cases (p< O.O5). No K-ras mutation was found in both Chinese and Japanese cases. For the first time, we report on bak mutation in human lung cancer in Chinese (2/17; 11.8% ) and Japanese cases (2/24; 8.3% ). C-kit and bak genes are also definitive factors to radiosensitivity. These data thus suggest that there were apparent differences in frequency and/or mutational types of p53, β-catenin and c-kit? genes between Chinese and Japanese cases. The differences can be attributed to factors such as lifestyles including smoking and racial and/or environmental factors, and also to the prediction of the response to radiotherapy. (author)

  14. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system.

    Science.gov (United States)

    Zhao, Yue; Cao, Hong; Song, Yindi; Feng, Yue; Ding, Xiaoxue; Pang, Mingjie; Zhang, Yunmei; Zhang, Hong; Ding, Jiahuan; Xia, Xueshan

    2016-06-01

    Inherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed. In the present study, the entire coding sequences and flanking regions of 12 major disease (cardiomyopathy)-related genes [namely myosin, heavy chain 7, cardiac muscle, β (MYH7); myosin binding protein C, cardiac (MYBPC3); lamin A/C (LMNA); troponin I type 3 (cardiac) (TNNI3); troponin T type 2 (cardiac) (TNNT2); actin, α, cardiac muscle 1 (ACTC1); tropomyosin 1 (α) (TPM1); sodium channel, voltage gated, type V alpha subunit (SCN5A); myosin, light chain 2, regulatory, cardiac, slow (MYL2); myosin, heavy chain 6, cardiac muscle, α (MYH6); myosin, light chain 3, alkali, ventricular, skeletal, slow (MYL3); and protein kinase, AMP-activated, gamma 2 non-catalytic subunit  (PRKAG2)] in 8 patients with dilated cardiomyopathy (DCM) and in 8 patients with hypertrophic cardiomyopathy (HCM) were amplified and then sequenced using the Ion Torrent Personal Genome Machine (PGM) system. As a result, a novel heterozygous mutation (MYH7, p.Asn885Thr) and a variant of uncertain significance (TNNT2, p.Arg296His) were identified in 2 patients with HCM. These 2 missense mutations, which were absent in the samples obtained from the 200 healthy control subjects, altered the amino acid that was evolutionarily conserved among a number of vertebrate species; this illustrates that these 2 non-synonymous mutations play a role in the pathogenesis of HCM. Moreover, a double heterozygous mutation (PRKAG2, p.Gly100Ser plus MYH7, p.Arg719Trp) was identified in a patient with severe familial HCM, for the first time to the best of our

  15. The first family with Tay-Sachs disease in Cyprus: Genetic analysis reveals a nonsense (c.78G>A) and a silent (c.1305C>T) mutation and allows preimplantation genetic diagnosis.

    Science.gov (United States)

    Georgiou, Theodoros; Christopoulos, George; Anastasiadou, Violetta; Hadjiloizou, Stavros; Cregeen, David; Jackson, Marie; Mavrikiou, Gavriella; Kleanthous, Marina; Drousiotou, Anthi

    2014-12-01

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in β-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple.

  16. Teorias de Negócios Internacionais e a Entrada de Multinacionais no Brasil de 1850 a 2007IB Theory and the entry of MNs in Brazil from 1850 to 2007Teorías de los Negocios Internacionales y la entrada de multinacionales en Brasil desde 1850 hasta 2007

    Directory of Open Access Journals (Sweden)

    AVRICHIR, Ilan

    2008-09-01

    Full Text Available RESUMOEste artigo analisa a aplicabilidade das principais teorias de internacionalização de empresas multinacionais no Brasil, por meio de cinco fases da economia brasileira que vão de 1850 até a atualidade, buscando determinar o poder de explicação de cada teoria diante dos fluxos de investimento direto estrangeiro (IED no país. Conclui-se que existe uma relação de contingência entre as teorias e as fases da economia, e estabelece esta relação através de uma tabela; conclui ainda que a teoria com maior capacidade explicativa no período considerado é o paradigma eclético de Dunning, em particular devido à consideração da Localização. Proposições teóricas são erguidas e têm como corolários contribuições para a pesquisa futura.ABSTRACTThis paper analyses the applicability of the main enterprise internationalization theories to the entry of the multinational corporations into Brazil, throughout five phases of Brazilian economy, from 1850 to nowadays. It seeks to verify the explanation power of each theory over the FDI flows in Brazil. It concludes that there is a contingency relation between the theories and the phases of the economy, and it shows such relationship in a table. In addition, it concludes that the most powerful theory along the researched period was Dunning’s eclectic paradigm, mainly due to the Localization considerations. Theoretical propositions are put forward as a contribution to future research.RESUMENEste artículo analiza la aplicabilidad de las principales teorías de internacionalización de empresas multinacionales en Brasil, a través de cinco ciclos de la economía brasileña, desde 1850 hasta la actualidad y, busca determinar el poder de explicación de cada teoría ante los flujos de inversión directa extranjera (IED en el país. Se concluye que existe una relación de contingencia entre las teorías y los ciclos de la economía, y esta relación se establece mediante una tabla; se

  17. Social class, social mobility and mortality in the Netherlands, 1850-2004

    NARCIS (Netherlands)

    Schenk, N.; van Poppel, F.W.A.

    2011-01-01

    This study uses data from a random sample of births in the Netherlands during the period 1850–1922 to examine the relationships between social class, social mobility and mortality at middle and old age. Population registers and personal cards covering the period from 1850 to 2004 for all Dutch

  18. Identification of a breast cancer family double heterozygote for RAD51C and BRCA2 gene mutations

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Steffensen, Ane Y; Jønson, Lars

    2015-01-01

    for mutations in the RAD51C and BRCA2 genes. The RAD51C missense mutation p.Arg258His has previously been identified in a homozygous state in a patient with Fanconi anemia. This mutation is known to affect the DNA repair function of the RAD51C protein. The BRCA2 p.Leu3216Leu synonymous mutation has not been...

  19. Molecular characteristics of the KCNJ5 mutated aldosterone-producing adenomas.

    Science.gov (United States)

    Murakami, Masanori; Yoshimoto, Takanobu; Nakabayashi, Kazuhiko; Nakano, Yujiro; Fukaishi, Takahiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Okamura, Kohji; Fujii, Yasuhisa; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro

    2017-10-01

    The pathophysiology of aldosterone-producing adenomas (APAs) has been investigated via genetic approaches and the pathogenic significance of a series of somatic mutations, including KCNJ5 , has been uncovered. However, how the mutational status of an APA is associated with its molecular characteristics, including its transcriptome and methylome, has not been fully understood. This study was undertaken to explore the molecular characteristics of APAs, specifically focusing on APAs with KCNJ5 mutations as opposed to those without KCNJ5 mutations, by comparing their transcriptome and methylome status. Cortisol-producing adenomas (CPAs) were used as reference. We conducted transcriptome and methylome analyses of 29 APAs with KCNJ5 mutations, 8 APAs without KCNJ5 mutations and 5 CPAs. Genome-wide gene expression and CpG methylation profiles were obtained from RNA and DNA samples extracted from these 42 adrenal tumors. Cluster analysis of the transcriptome and methylome revealed molecular heterogeneity in APAs depending on their mutational status. DNA hypomethylation and gene expression changes in Wnt signaling and inflammatory response pathways were characteristic of APAs with KCNJ5 mutations. Comparisons between transcriptome data from our APAs and that from normal adrenal cortex obtained from the Gene Expression Omnibus suggested similarities between APAs with KCNJ5 mutations and zona glomerulosa. The present study, which is based on transcriptome and methylome analyses, indicates the molecular heterogeneity of APAs depends on their mutational status. Here, we report the unique characteristics of APAs with KCNJ5 mutations. © 2017 Society for Endocrinology.

  20. Clinical Expression and New SPINK5 Splicing Defects in Netherton Syndrome: Unmasking a Frequent Founder Synonymous Mutation and Unconventional Intronic Mutations

    DEFF Research Database (Denmark)

    Lacroix, Matthieu; Lacaze-Buzy, Laetitia; Furio, Laetitia

    2012-01-01

    a clinical triad suggestive of NS with variations in inter- and intra-familial disease expression. We identified a new and frequent synonymous mutation c.891C>T (p.Cys297Cys) in exon 11 of the 12 NS patients. This mutation disrupts an exonic splicing enhancer sequence and causes out-of-frame skipping of exon...

  1. Hemochromatosis C282Y gene mutation as a potential susceptibility factor for iron-overload in Egyptian beta-thalassemia patients

    Directory of Open Access Journals (Sweden)

    G.M. Mokhtar

    2018-04-01

    Full Text Available Background: Hereditary hemochromatosis is the most frequent cause of primary iron overload that is associated with HFE gene’s mutation especially the C282Y mutation. The interaction between hemoglobin chain synthesis’ disorders and the C282Y mutation may worsen the clinical picture of beta-thalassemia major (β-TM. Aim: To establish the prevalence of the C282Y mutations in Egyptian β-TM patients and to address its adverse effects. Methods: Two-hundred and five β-TM patients were recruited and divided into two groups based on their serum ferritin (SF; group I (N = 125 (SF ≤ 2500 ng/dl and group II (N = 80 (SF > 2500 ng/dl. All patients were subjected to clinical and laboratory assessment with special emphasis on iron overload complications. Genotyping was assessed by polymerase chain reaction for detection of C282Y mutation in HFE gene. Results: The C282Y mutation was not detected in the studied β-TM neither in homozygous nor heterozygous state. There were several iron overload complications including cardiac complication (9.1%, liver disease (36.6%, delayed puberty (56.6%, primary (35.71% and secondary amenorrhea (21.42%, short stature (27.3%, diabetes (3.4%, neutropenia (9.7%, arthralgia (10.2%, gastrointestinal (21.1%, depression (2.9% and others (12.05%. Group I showed a statistically significant lower rate of taking iron-rich diet when compared to group II. Group II showed significant longer mean duration of disease, higher total transfusion rate per life, lower mean HbF% level, higher mean HbA% level, and higher rate of elevated liver enzymes than patients with SF ≤ 2500 ng/dl. Conclusion: The C282Y mutation was not detected in the studied cohort of Egyptian β-TM patients neither in homozygous nor heterozygous state in spite of manifestations of iron overload complications. Keywords: Beta-thalassemia major, Hereditary hemochromatosis, The C282Y mutation, Iron overload complications, Egyptian

  2. Risk prediction of ventricular arrhythmias and myocardial function in Lamin A/C mutation positive subjects

    DEFF Research Database (Denmark)

    Hasselberg, Nina E; Edvardsen, Thor; Petri, Helle

    2014-01-01

    Mutations in the Lamin A/C gene may cause atrioventricular block, supraventricular arrhythmias, ventricular arrhythmias (VA), and dilated cardiomyopathy. We aimed to explore the predictors and the mechanisms of VA in Lamin A/C mutation-positive subjects.METHODS AND RESULTS: We included 41 Lamin A/C...

  3. Mutations in the HFE, TFR2, and SLC40A1 genes in patients with hemochromatosis.

    Science.gov (United States)

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Cuadrado-Grande, Nuria; Alvarez-Sala-Walther, Luis-Antonio; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2012-10-15

    Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype. Copyright © 2012. Published by Elsevier B.V.

  4. Stellar population of NGC 1850 in the LMC

    Science.gov (United States)

    Gilmozzi, Roberto; Panagia, Nino

    1992-01-01

    Observations of the globular cluster NGC 1850 taken with the HST Wide Field Camera are used to constrain the stellar population of this member of the Large Magellanic Cloud. Three exposures were obtained for each band at exposure times of 10, 100, and 1100 seconds, and the longest exposure was halved to minimize the effects of cosmic noise and the saturation of bright objects. A total of about 12,000 stars with magnitudes of 14-24 and masses of 0.8-13 solar mass are measured, and the age of NGC 1850 is given at approximately 25 million years.

  5. Patrón de Brugada tipo II desencadenado por fiebre secundaria a una pielonefritis aguda por Enterobacter aerogenes.

    Directory of Open Access Journals (Sweden)

    Gema García García

    2013-03-01

    Brugada syndrome is a cause of sudden cardiac death in patients without structural heart disease. This syndrome is associated with mutations in the genes encoding the alpha subunit of the sodium channel of the heart. The Brugada syndrome is an autosomal dominant defect in cardiac conduction, which up to one third of patients is caused by mutations in the SCN5A gene. It is characterized by ST segment changes in leads V1-V3 resembling a right bundle branch block and confers high risk for ventricular arrhythmias and death súbita.

  6. A Novel SCN5A Mutation in a Patient with Coexistence of Brugada Syndrome Traits and Ischaemic Heart Disease

    DEFF Research Database (Denmark)

    Holst, Anders G; Calloe, Kirstine; Jespersen, Thomas

    2009-01-01

    Brugada syndrome (BrS) is a primary electrical heart disease, which can lead to sudden cardiac death. In older patients with BrS, the disease may coexist with ischaemic heart disease (IHD) and recent studies support a synergistic proarrhythmic effect of the two disease entities. We report a case...

  7. The 95ΔG mutation in the 5'untranslated region of the norA gene increases efflux activity in Staphylococcus epidermidis isolates.

    Science.gov (United States)

    García-Gómez, Elizabeth; Jaso-Vera, Marcos E; Juárez-Verdayes, Marco A; Alcántar-Curiel, María D; Zenteno, Juan C; Betanzos-Cabrera, Gabriel; Peralta, Humberto; Rodríguez-Martínez, Sandra; Cancino-Díaz, Mario E; Jan-Roblero, Janet; Cancino-Diaz, Juan C

    2017-02-01

    In the Staphylococcus aureus ATCC25923 strain, the flqB mutation in the 5'untranslated region (5'UTR) of the norA gene causes increased norA mRNA expression and high efflux activity (HEA). The involvement of the norA gene 5'UTR in HEA has not been explored in S. epidermidis; therefore, we examined the function of this region in S. epidermidis clinical isolates. The selection of isolates with HEA was performed based on ethidium bromide (EtBr) MIC values and efflux efficiency (EF) using the semi-automated fluorometric method. The function of the 5'UTR was studied by quantifying the levels of norA expression (RT-qPCR) and by identifying 5'UTR mutations by sequence analysis. Only 10 isolates from a total of 165 (6.1%) had HEA (EtBr MIC = 300 μg/ml and EF ranged from 48.4 to 97.2%). Eight of 10 isolates with HEA had the 5'UTR 95 Δ G mutation. Isolates carrying the 95 Δ G mutation had higher levels of norA expression compared with those that did not. To corroborate that the 95 Δ G mutation is involved in HEA, a strain adapted to EtBr was obtained in vitro. This strain also presented the 95 Δ G mutation and had a high level of norA expression and EF, indicating that the 95 Δ G mutation is important for the HEA phenotype. The 95 Δ G mutation produces a different structure in the Shine-Dalgarno region, which may promote better translation of norA mRNA. To our knowledge, this is the first report to demonstrate the participation of the 5'UTR 95 Δ G mutation of the norA gene in the HEA phenotype of S. epidermidis isolates. Here, we propose that the efflux of EtBr is caused by an increment in the transcription and/or translation of the norA gene. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A novel missense mutation of COL5A2 in a patient with Ehlers-Danlos syndrome.

    Science.gov (United States)

    Watanabe, Miki; Nakagawa, Ryuji; Naruto, Takuya; Kohmoto, Tomohiro; Suga, Ken-Ichi; Goji, Aya; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei

    2016-01-01

    Ehlers-Danlos syndrome (EDS) is a group of inherited connective tissue disorders characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. For molecular diagnosis, targeted exome sequencing was performed on a 9-year-old male patient who was clinically suspected to have EDS. The patient presented with progressive kyphoscoliosis, joint hypermobility and hyperextensible skin without scars. Ultimately, classical EDS was diagnosed by identifying a novel, mono-allelic mutation in COL5A2 [NM_000393.3(COL5A2_v001):c.682G>A, p.Gly228Arg].

  9. A novel missense mutation of COL5A2 in a patient with Ehlers–Danlos syndrome

    Science.gov (United States)

    Watanabe, Miki; Nakagawa, Ryuji; Naruto, Takuya; Kohmoto, Tomohiro; Suga, Ken-ichi; Goji, Aya; Kagami, Shoji; Masuda, Kiyoshi; Imoto, Issei

    2016-01-01

    Ehlers–Danlos syndrome (EDS) is a group of inherited connective tissue disorders characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. For molecular diagnosis, targeted exome sequencing was performed on a 9-year-old male patient who was clinically suspected to have EDS. The patient presented with progressive kyphoscoliosis, joint hypermobility and hyperextensible skin without scars. Ultimately, classical EDS was diagnosed by identifying a novel, mono-allelic mutation in COL5A2 [NM_000393.3(COL5A2_v001):c.682G>A, p.Gly228Arg]. PMID:27656288

  10. Founder effect of the RET C611Y mutation in multiple endocrine neoplasia 2A in Denmark

    DEFF Research Database (Denmark)

    Mathiesen, Jes Sloth; Kroustrup, Jens Peter; Vestergaard, Peter

    2017-01-01

    BACKGROUND: Multiple endocrine neoplasia (MEN) 2A and 2B are caused by REarranged during Transfection (RET) germline mutations. In a recent nationwide study we reported of an unusually high prevalence (33%) of families with the C611Y mutation and hypothesized that this might be due to a founder...... effect. We conducted the first nationwide study of haplotypes in MEN2A families aiming to investigate the relatedness and occurrence of de novo mutations among Danish families carrying similar mutations. METHODS: The study included 21 apparently unrelated MEN2A families identified from a nationwide...... Danish RET cohort from 1994 to 2014. Twelve, two, two, three and two families carried the C611Y, C618F, C618Y, C620R and C634R mutation, respectively. Single nucleotide polymorphism chip data and identity by descent analysis were used to assess relatedness. RESULTS: A common founder mutation was found...

  11. Mitochondrial G8292A and C8794T mutations in patients with Niemann-Pick disease type C.

    Science.gov (United States)

    Masserrat, Abbas; Sharifpanah, Fatemeh; Akbari, Leila; Tonekaboni, Seyed Hasan; Karimzadeh, Parvaneh; Asharafi, Mahmood Reza; Mazouei, Safoura; Sauer, Heinrich; Houshmand, Massoud

    2018-07-01

    Niemann-Pick disease type C (NP-C) is a neurovisceral lipid storage disorder. At the cellular level, the disorder is characterized by accumulation of unesterified cholesterol and glycolipids in the lysosomal/late endosomal system. NP-C is transmitted in an autosomal recessive manner and is caused by mutations in either the NPC1 (95% of families) or NPC2 gene. The estimated disease incidence is 1 in 120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. Variants of adenosine triphosphatase (ATPase) subunit 6 and ATPase subunit 8 ( ATPase6/8 ) in mitochondrial DNA (mtDNA) have been reported in different types of genetic diseases including NP-C. In the present study, the blood samples of 22 Iranian patients with NP-C and 150 healthy subjects as a control group were analyzed. The DNA of the blood samples was extracted by the salting out method and analyzed for ATPase6/8 mutations using polymerase chain reaction sequencing. Sequence variations in mitochondrial genome samples were determined via the Mitomap database. Analysis of sequencing data confirmed the existence of 11 different single nucleotide polymorphisms (SNPs) in patients with NP-C1. One of the most prevalent polymorphisms was the A8860G variant, which was observed in both affected and non-affected groups and determined to have no significant association with NP-C incidence. Amongst the 11 polymorphisms, only one was identified in the ATPase8 gene, while 9 including A8860G were observed in the ATPase6 gene. Furthermore, two SNPs, G8292A and C8792A, located in the non-coding region of mtDNA and the ATPase6 gene, respectively, exhibited significantly higher prevalence rates in NP-C1 patients compared with the control group (PC disease. In addition, the mitochondrial SNPs identified maybe pathogenic mutations involved in the development and prevalence of NP-C. Furthermore, these results suggest a higher occurrence of

  12. 1850: un ensayo de historia conceptual

    Directory of Open Access Journals (Sweden)

    Eugenia Roldán Vera

    2007-01-01

    Full Text Available El presente artículo es un análisis del concepto de pueblo en México entre 1750 y 1850, un período marcado por la “doble revolución” de la irrupción de la modernidad y la independencia política. Tras revisar la multiplicidad de significados que este concepto tenía en el siglo XVIII, el artículo se centra en el análisis de cómo estos significados se transformaron en las siguientes décadas, qué nuevos significados surgieron y cómo éstos fueron interactuando con los procesos políticos y sociales del período. Se estudia la transformación de esos significados a través de los usos del concepto de pueblo por distintos actores sociales y se identifican momentos específicos de ruptura semántica – la crisis de la monarquía española, la independencia, la invasión norteamericana– que llevaron a períodos de cambio significativo en esos usos. Se muestra cómo los significados modernos de pueblo –la asociación de individuos iguales ante la ley y el depositario de la soberanía de la nación– coexistieron durante todo el período con significados anteriores del mismo concepto –“el pueblo” como la capa inferior de la sociedad, o “los pueblos” como los detentadores de una noción plural y pactista de la soberanía–. La autora sostiene que esta coexistencia a menudo desembocó en una (inconsciente o deliberada mezcla o sustitución de unos significados por otros, lo cual se articuló estructuralmente en los procesos sociales y políticos a través de los cuales México se conformó como nación moderna.

  13. Netherton syndrome in one Chinese adult with a novel mutation in the SPINK5 gene and immunohistochemical studies of LEKTI

    Directory of Open Access Journals (Sweden)

    Zhang Xi-Bao

    2012-01-01

    Full Text Available Background : Netherton syndrome (NS is a severe autosomal recessive ichthyosis. It is characterized by congenital ichthyosiform erythroderma, trichorrhexis invaginata, ichthyosis linearis circumflexa, atopic diathesis, and frequent bacterial infections. The disease is caused by mutations in the SPINK5 (serine protease inhibitor Kazal-type 5 gene, a new type of serine protease inhibitor involved in the regulation of skin barrier formation and immunity. We report one Chinese adult with NS. The patient had typical manifestation of NS except for trichorrhexis invaginata with an atopic diathesis and recurrent staphylococcal infections since birth. Aims: To evaluate the gene mutation and of its product activity of SPINK5 gene in confirmation of the diagnosis of one Chinese adult with NS. Materials and Methods: To screen mutations in the SPINK5 gene, 33 exons and flanking intron boundaries of SPINK5 were amplified with polymerase chain reaction (PCR and used for direct sequencing. In addition, immunohistochemical staining of LEKTI (lymphoepithelial Kazal-type-related inhibitor with specific antibody was used to confirm the diagnosis of NS. The results were compared with that of healthy individuals (twenty-five blood samples. Results: A G318A mutation was found at exon 5 of patient′s SPINK5 gene which is a novel missense mutation. The PCR amplification products with mutation-specific primer were obtained only from the DNA of the patients and their mother, but not from their father and 25 healthy individuals. Immunohistochemical studies indicated there was no LEKTI expression in NS patient′s skin and there was a strong LEKTI expression in the normal human skin. Conclusion: In this report, we describe heterozygous mutation in the SPINK5 gene and expression of LEKTI in one Chinese with NS. The results indicate that defective expression of LEKTI in the epidermis and mutations of SPINK5 gene are reliable for diagnostic feature of NS with atypical

  14. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.

    Science.gov (United States)

    Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena

    2015-11-01

    Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.

  15. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    Directory of Open Access Journals (Sweden)

    Alison A Williams

    Full Text Available Methyl-CpG binding protein 2 (MeCP2 is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X, a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80 and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2.

  16. A Mayan founder mutation is a common cause of deafness in Guatemala.

    Science.gov (United States)

    Carranza, C; Menendez, I; Herrera, M; Castellanos, P; Amado, C; Maldonado, F; Rosales, L; Escobar, N; Guerra, M; Alvarez, D; Foster, J; Guo, S; Blanton, S H; Bademci, G; Tekin, M

    2015-09-08

    Over 5% of the world's population has varying degrees of hearing loss. Mutations in GJB2 are the most common cause of autosomal recessive non-syndromic hearing loss (ARNHL) in many populations. The frequency and type of mutations are influenced by ethnicity. Guatemala is a multi-ethnic country with four major populations: Maya, Ladino, Xinca, and Garifuna. To determine the mutation profile of GJB2 in a ARNHL population from Guatemala, we sequenced both exons of GJB2 in 133 unrelated families. A total of six pathogenic variants were detected. The most frequent pathogenic variant is c.131G>A (p.Trp44*) detected in 21 of 266 alleles. We show that c.131G>A is associated with a conserved haplotype in Guatemala suggesting a single founder. The majority of Mayan population lives in the west region of the country from where all c.131G>A carriers originated. Further analysis of genome-wide variation of individuals carrying the c.131G>A mutation compared with those of Native American, European, and African populations shows a close match with the Mayan population. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  18. A Switchable Molecular Dielectric with Two Sequential Reversible Phase Transitions: [(CH3)4P]4[Mn(SCN)6].

    Science.gov (United States)

    Li, Qiang; Shi, Ping-Ping; Ye, Qiong; Wang, Hui-Ting; Wu, De-Hong; Ye, Heng-Yun; Fu, Da-Wei; Zhang, Yi

    2015-11-16

    A new organic-inorganic hybrid switchable and tunable dielectric compound, [(CH3)4P]4[Mn(SCN)6] (1), exhibits three distinct dielectric states above room temperature and undergoes two reversible solid-state phase transitions, including a structural phase transition at 330 K and a ferroelastic phase transition with the Aizu notation of mmmF2/m at 352 K. The variable-temperature structural analyses disclose that the origin of the phase transitions and dielectric anomalies can be ascribed to the reorientation or motion of both the [(CH3)4P](+) cations and [Mn(SCN)6](4-) anions in solid-state crystals.

  19. Common and rare variants in SCN10A> modulate the risk of atrial fibrillation

    DEFF Research Database (Denmark)

    Jabbari, Javad; Olesen, Morten S.; Yuan, Lei

    2015-01-01

    Background: Genome-wide assocn. studies have shown that the common single nucleotide polymorphism rs6800541 located in SCN10A, encoding the voltage-gated Nav1.8 sodium channel, is assocd. with PR-interval prolongation and atrial fibrillation (AF). Single nucleotide polymorphism rs6800541 is in hi...

  20. Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella entérica strains with and without quinolone resistance-determining regions gyrA gene mutations

    Directory of Open Access Journals (Sweden)

    Rafaela Gomes Ferrari

    2013-04-01

    Full Text Available Several studies have been conducted in recent years to elucidate the structure, function and significance of AcrB, MarA, SoxS and RamA in Salmonella enterica. In this study, the relative quantification of acrB, soxS, marA and ramA genes expression was evaluated in 14 strains of S. enterica, with or without accompanying mutations in the quinolone resistance-determining regions of the gyrA gene, that were exposed to ciprofloxacin during the exponential growth phase. The presence of ciprofloxacin during the log phase of bacterial growth activated the genes marA, soxS, ramA and acrB in all S. enterica strains analyzed in this study. The highest expression levels for acrB were observed in strains with gyrA mutation, and marA showed the highest expression in the strains without mutation. Considering only the strains with ciprofloxacin minimum inhibitory concentration values 0.125 [1]g/mL (low susceptibility, with and without mutations in gyrA, the most expressed gene was marA. In this study, we observed that strains resistant to nalidixic acid may express genes associated with the efflux pump and the expression of the AcrAB-TolC pump genes seems to occur independently of mutations in gyrA.

  1. Expression of the marA, soxS, acrB and ramA genes related to the AcrAB/TolC efflux pump in Salmonella entérica strains with and without quinolone resistance-determining regions gyrA gene mutations

    Directory of Open Access Journals (Sweden)

    Rafaela Gomes Ferrari

    Full Text Available Several studies have been conducted in recent years to elucidate the structure, function and significance of AcrB, MarA, SoxS and RamA in Salmonella enterica. In this study, the relative quantification of acrB, soxS, marA and ramA genes expression was evaluated in 14 strains of S. enterica, with or without accompanying mutations in the quinolone resistance-determining regions of the gyrA gene, that were exposed to ciprofloxacin during the exponential growth phase. The presence of ciprofloxacin during the log phase of bacterial growth activated the genes marA, soxS, ramA and acrB in all S. enterica strains analyzed in this study. The highest expression levels for acrB were observed in strains with gyrA mutation, and marA showed the highest expression in the strains without mutation. Considering only the strains with ciprofloxacin minimum inhibitory concentration values 0.125 [1]g/mL (low susceptibility, with and without mutations in gyrA, the most expressed gene was marA. In this study, we observed that strains resistant to nalidixic acid may express genes associated with the efflux pump and the expression of the AcrAB-TolC pump genes seems to occur independently of mutations in gyrA.

  2. Stability enhancement of cytochrome c through heme deprotonation and mutations.

    Science.gov (United States)

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.

  3. Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma

    International Nuclear Information System (INIS)

    Zou, Yang; Liu, Fa-Ying; Liu, Huai; Wang, Feng; Li, Wei; Huang, Mei-Zhen; Huang, Yan; Yuan, Xiao-Qun; Xu, Xiao-Yun; Huang, Ou-Ping; He, Ming

    2014-01-01

    The catalytic subunit of DNA polymerase epsilon (POLE1) functions primarily in nuclear DNA replication and repair. Recently, POLE1 mutations were detected frequently in colorectal and endometrial carcinomas while with lower frequency in several other types of cancer, and the p.P286R and p.V411L mutations were the potential mutation hotspots in human cancers. Nevertheless, the mutation frequency of POLE1 in ovarian cancer still remains largely unknown. Here, we screened a total of 251 Chinese samples with distinct subtypes of ovarian carcinoma for the presence of POLE1 hotspot mutations by direct sequencing. A heterozygous somatic POLE1 mutation, p.S297F (c.890C>T), but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was identified in 3 out of 37 (8.1%) patients with ovarian endometrioid carcinoma; this mutation was evolutionarily highly conserved from Homo sapiens to Schizosaccharomyces. Of note, the POLE1 mutation coexisted with mutation in the ovarian cancer-associated PPP2R1A (protein phosphatase 2, regulatory subunit A, α) gene in a 46-year-old patient, who was also diagnosed with ectopic endometriosis in the benign ovary. In addition, a 45-year-old POLE1-mutated ovarian endometrioid carcinoma patient was also diagnosed with uterine leiomyoma while the remaining 52-year-old POLE1-mutated patient showed no additional distinctive clinical manifestation. In contrast to high frequency of POLE1 mutations in ovarian endometrioid carcinoma, no POLE1 mutations were identified in patients with other subtypes of ovarian carcinoma. Our results showed for the first time that the POLE1 p.S297F mutation, but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was frequent in Chinese ovarian endometrioid carcinoma, but absent in other subtypes of ovarian carcinoma. These results implicated that POLE1 p.S297F mutation might be actively involved in the pathogenesis of ovarian endometrioid carcinoma, but might not be actively

  4. Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yang; Liu, Fa-Ying; Liu, Huai; Wang, Feng [Key Laboratory of Women' s Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Li, Wei [Key Laboratory of Women' s Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Mei-Zhen [Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Jiangxi Provincial Cancer Institute, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029 (China); Huang, Yan; Yuan, Xiao-Qun [Key Laboratory of Women' s Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006 (China); Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Xu, Xiao-Yun [Graduate School of Nanchang University, Nanchang, Jiangxi 330031 (China); Jiangxi Provincial Cancer Institute, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029 (China); Huang, Ou-Ping, E-mail: huangouping@gmail.com [Jiangxi Provincial Cancer Institute, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi 330029 (China); He, Ming, E-mail: jxhm56@hotmail.com [Department of Pharmacology and Molecular Therapeutics, Nanchang University School of Pharmaceutical Science, Nanchang 330006 (China)

    2014-03-15

    The catalytic subunit of DNA polymerase epsilon (POLE1) functions primarily in nuclear DNA replication and repair. Recently, POLE1 mutations were detected frequently in colorectal and endometrial carcinomas while with lower frequency in several other types of cancer, and the p.P286R and p.V411L mutations were the potential mutation hotspots in human cancers. Nevertheless, the mutation frequency of POLE1 in ovarian cancer still remains largely unknown. Here, we screened a total of 251 Chinese samples with distinct subtypes of ovarian carcinoma for the presence of POLE1 hotspot mutations by direct sequencing. A heterozygous somatic POLE1 mutation, p.S297F (c.890C>T), but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was identified in 3 out of 37 (8.1%) patients with ovarian endometrioid carcinoma; this mutation was evolutionarily highly conserved from Homo sapiens to Schizosaccharomyces. Of note, the POLE1 mutation coexisted with mutation in the ovarian cancer-associated PPP2R1A (protein phosphatase 2, regulatory subunit A, α) gene in a 46-year-old patient, who was also diagnosed with ectopic endometriosis in the benign ovary. In addition, a 45-year-old POLE1-mutated ovarian endometrioid carcinoma patient was also diagnosed with uterine leiomyoma while the remaining 52-year-old POLE1-mutated patient showed no additional distinctive clinical manifestation. In contrast to high frequency of POLE1 mutations in ovarian endometrioid carcinoma, no POLE1 mutations were identified in patients with other subtypes of ovarian carcinoma. Our results showed for the first time that the POLE1 p.S297F mutation, but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was frequent in Chinese ovarian endometrioid carcinoma, but absent in other subtypes of ovarian carcinoma. These results implicated that POLE1 p.S297F mutation might be actively involved in the pathogenesis of ovarian endometrioid carcinoma, but might not be actively

  5. Kinetics of photocurrent generation and an efficient charge separation of a dye-sensitized n-Cu2O/p-CuSCN junction photoelectrode in a solid-state photovoltaic cell

    International Nuclear Information System (INIS)

    Fernando, C A N; Kumara, N T R N; Gamage, T N

    2010-01-01

    A Cu/n-Cu 2 O/dye/p-CuSCN junction photoelectrode is fabricated to produce a solid-state dye-sensitized photovoltaic cell. Samples are characterized by XRD, SEM and surface resistivity measurements. Photocurrent generation is found due to light absorption of n-Cu 2 O thin film and dye sensitization between p-CuSCN and the dye. Kinetics of the photocurrent generation of the dye sensitization is studied solving the rate equations by the iteration method obtaining a relationship for the photocurrent quantum efficiency (Φ) depending on the surface concentration (D o ) of the dye and the rate constants of the reactions with connection to the dye sensitization process. The solution obtained in the steady state by iteration is found to be of the form Φ = AD o −BD o 2 (A and B are constants related to the reaction rates of the photocurrent generation process and the concentration of the n-Cu 2 O film). The variation of the n-Cu 2 O concentration with photocurrent is presented. A photocurrent enhancement is observed for the Cu/n-Cu 2 O/dye/p-CuSCN photovoltaic cell compared to that of Cu/n-Cu 2 O, Cu/p-CuSCN/dye and Cu/n-Cu 2 O/p-CuSCN photovoltaic cells. Good rectification characteristics are observed for the Cu/n-Cu 2 O/p-CuSCN photoelectrode compared to that of Cu/n-Cu 2 O and Cu/p-CuSCN photoelectrodes. Photocurrent enhancement is found due to the efficient charge separation process at the n–p junction. Energy band structures of the n–p junction are proposed according to the onset potentials which are used to discuss the mechanism of the efficient charge separation suppressing the recombination process

  6. Brugada syndrome unmasked by accidental inhalation of gasoline vapors

    DEFF Research Database (Denmark)

    Kranjcec, Darko; Bergovec, Mijo; Rougier, Jean-Sébastien

    2007-01-01

    Loss-of-function mutations in the gene SCN5A can cause Brugada syndrome (BrS), which is an inherited form of idiopathic ventricular fibrillation. We report the case of a 46-year-old patient, with no previous medical history, who had ventricular fibrillation after accidental inhalation of gasoline...

  7. Investigation on the structure of thiocyanatoruthenate (3) complex by isotopic exchange method in the system [Ru(SCN)6]-3-S14CN-

    International Nuclear Information System (INIS)

    Wajda, S.; Rachlewicz, K.

    1973-01-01

    Because of the discrepancy in the literature data and the difficulties in the synthesis of Ru(3) thiocyanate complexes, an attempt was made to obtain them under different conditions than usual. Our attempts turned out to be successful. This allowed to examine the radioisotopic exchange in the system [Ru(SCN) 6 ] -3 -S 14 CN - . The experimental data indicated that the thiocyanate groups in the complex are nonequivalent and exchange with various rate. The two groups in the axial plane exchange with a rate by two orders higher than the remaining four groups in the equatorial plane. On this ground the electronic structure of the examined complex was discussed and its symmetry was determined. (author)

  8. Apert Syndrome With FGFR2 758 C > G Mutation: A Chinese Case Report

    Directory of Open Access Journals (Sweden)

    Yahong Li

    2018-05-01

    Full Text Available Background: Apert syndrome is considered as one of the most common craniosynostosis syndromes with a prevalence of 1 in 65,000 individuals, and has a close relationship with point mutations in FGFR2 gene.Case report: Here, we described a Apert syndrome case, who was referred to genetic consultation in our hospital with the symptom of craniosynostosis and syndactyly of the hands and feet. Craniosynostosis, midfacial retrusion, steep wide forehead, larger head circumference, marked depression of the nasal bridge, short and wide nose and proptosis could be found obviously, apart from these, ears were mildly low compared with normal children and there was no cleft lip and palate. Mutation was identified by sanger sequencing and a mutation in the exon 7 of FGFR2 gene was detected: p.Pro253Arg (P253R 758 C > G, which was not found in his parents.Conclusion: The baby had Apert syndrome caused by 758 C > G mutation in the exon 7 of FGFR2 gene, considering no this mutation in his parents, it was spontaneous.

  9. Alport Syndrome: De Novo Mutation in the COL4A5 Gene Converting Glycine 1205 to Valine

    Directory of Open Access Journals (Sweden)

    Pilar Antón-Martín

    2012-01-01

    Full Text Available Background Alport syndrome is a primary basement membrane disorder arising from mutations in genes encoding the type IV collagen protein family. It is a genetically heterogeneous disease with different mutations and forms of inheritance that presents with renal affection, hearing loss and eye defects. Several new mutations related to X-linked forms have been previously determined. Methods We report the case of a 12 years old male and his family diagnosed with Alport syndrome after genetic analysis was performed. Result Anew mutation determining a nucleotide change C.3614G > T (p. Gly1205Val in hemizygosis in the COL4A5 gene was found. This molecular defect has not been previously described. Conclusion Molecular biology has helped us to comprehend the mechanisms of pathophysiology in Alport syndrome. Genetic analysis provides the only conclusive diagnosis of the disorder at the moment. Our contribution with a new mutation further supports the need of more sophisticated molecular methods to increase the mutation detection rates with lower costs and less time.

  10. DNA sequence analysis of spontaneous and γ-radiation (anoxic)-induced lacId mutations in Escherichia coli umuC122::Tn5: Differential requirement for umuC at G·C vs. A·T sites and for the production of transversions vs. transitions

    International Nuclear Information System (INIS)

    Sargentini, Neil J.; Smith, Kendric C.

    1994-01-01

    Escherichia coli umuC122::Tn5 cells were γ-irradiated ( 137 Cs, 750 Gy, under N 2 ), and lac-constitutive mutants were produced at 36% of the wild-type level. The specific nature of the umuC strain's partial radiation mutability was determined by sequencing 325 radiation-induced lacI d mutations. The yields of radiation-induced mutation classes in the umuC strain (as a percentage of the wild-type yield) were: 80% for A·T approaches G·C transitions, 70% for multi-base additions, 60% for single-base deletions, 53% for A·T approaches C·G transversions, 36% for G·C approaches A·T transitions, 25% for multi-base deletions, 21% for A·T approaches T·A transversions, 11% for G·C approaches C·G transversions, 9% for G·C approaches T·A transversions, and 0% for multiple mutations. Based on these deficiencies and other factors, it is concluded that the umuC strain is near-normal for A·T approaches G·C transitions, single-base deletions and possibly A·T approaches C·G transversions; is generally deficient for mutagenesis at G·C sites and for transversions, and is grossly deficient in multiple mutations. Damage at G·C sites seems more difficult for translesion DNA synthesis to bypass than damage at A·T sites, and especially when trying to produce a transversion. The yield of G·C approaches A·T transitions in the umuC strain (36% of the wild-type level) argues that abasic sites are involved in no more than 64% of γ-radiation-induced base substitutions in the wild-type strain. Altogether, these data suggest that the UmuC and UmuD' proteins facilitate, rather than being absolutely required for, translesion DNA synthesis; with the degree of facilitation being dependent both on the nature of the non-coding DNA damage, i.e., at G·C vs. A·T sites, and on the nature of the mis-incorporated base, i.e., whether it induces transversions or transitions

  11. Novel CDKL5 Mutations in Czech Patients with Phenotypes of Atypical Rett Syndrome and Early-Onset Epileptic Encephalopathy.

    Science.gov (United States)

    Záhoráková, D; Langová, M; Brožová, K; Laštůvková, J; Kalina, Z; Rennerová, L; Martásek, P

    2016-01-01

    The X-linked CDKL5 gene, which encodes cyclin-dependent kinase-like 5 protein, has been implicated in early-onset encephalopathy and atypical Rett syndrome with early-onset seizures. The CDKL5 protein is a kinase required for neuronal development and morphogenesis, but its precise functions are still largely unexplored. Individuals with CDKL5 mutations present with severe global developmental delay, intractable epilepsy, and Rett-like features. A clear genotype-phenotype correlation has not been established due to an insufficient number of reported cases. The aim of this study was to analyse the CDKL5 gene in Czech patients with early-onset seizures and Rett-like features. We performed mutation screening in a cohort of 83 individuals using high-resolution melting analysis, DNA sequencing and multiplex ligation- dependent probe amplification. Molecular analyses revealed heterozygous pathogenic mutations in three girls with severe intellectual disability and intractable epilepsy starting at the age of two months. All three identified mutations, c.637G>A, c.902_977+29del105, and c.1757_1758delCT, are novel, thus significantly extending the growing spectrum of known pathogenic CDKL5 sequence variants. Our results support the importance of genetic testing of the CDKL5 gene in patients with early-onset epileptic encephalopathy and Rett-like features with early-onset seizures. This is the first study referring to molecular defects of CDKL5 in Czech cases.

  12. Changes in the Asian monsoon climate during 1700-1850 induced by preindustrial cultivation.

    Science.gov (United States)

    Takata, Kumiko; Saito, Kazuyuki; Yasunari, Tetsuzo

    2009-06-16

    Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/use change was the major source of disturbances to the climate during that period. This report will set forward quantitative examination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales.

  13. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    Science.gov (United States)

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  14. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    International Nuclear Information System (INIS)

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin

    2006-01-01

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  15. A point mutation in the [2Fe–2S] cluster binding region of the NAF-1 protein (H114C) dramatically hinders the cluster donor properties

    Energy Technology Data Exchange (ETDEWEB)

    Tamir, Sagi; Eisenberg-Domovich, Yael [The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904 (Israel); Conlan, Andrea R.; Stofleth, Jason T.; Lipper, Colin H.; Paddock, Mark L. [University of California at San Diego, La Jolla, CA 92093 (United States); Mittler, Ron [University of North Texas, Denton, TX 76203 (United States); Jennings, Patricia A. [University of California at San Diego, La Jolla, CA 92093 (United States); Livnah, Oded, E-mail: oded.livnah@huji.ac.il; Nechushtai, Rachel, E-mail: oded.livnah@huji.ac.il [The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 91904 (Israel)

    2014-06-01

    NAF-1 has been shown to be related with human health and disease, is upregulated in epithelial breast cancer and suppression of its expression significantly suppresses tumor growth. It is shown that replacement of the single His ligand with Cys resulted in dramatic changes to the properties of its 2Fe-2S clusters without any global crystal structural changes. NAF-1 is an important [2Fe–2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe–2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe–2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe–2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe–2S] cluster of NAF-1 in vivo.

  16. A point mutation in the [2Fe–2S] cluster binding region of the NAF-1 protein (H114C) dramatically hinders the cluster donor properties

    International Nuclear Information System (INIS)

    Tamir, Sagi; Eisenberg-Domovich, Yael; Conlan, Andrea R.; Stofleth, Jason T.; Lipper, Colin H.; Paddock, Mark L.; Mittler, Ron; Jennings, Patricia A.; Livnah, Oded; Nechushtai, Rachel

    2014-01-01

    NAF-1 has been shown to be related with human health and disease, is upregulated in epithelial breast cancer and suppression of its expression significantly suppresses tumor growth. It is shown that replacement of the single His ligand with Cys resulted in dramatic changes to the properties of its 2Fe-2S clusters without any global crystal structural changes. NAF-1 is an important [2Fe–2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe–2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe–2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe–2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe–2S] cluster of NAF-1 in vivo

  17. Inherited Anti-Thrombin Deficiency in A Malay-Malaysian Family: A Missense Mutation at Nucleotide g.13267C>A aka anti-thrombin Budapest 5 (p.Pro439Thr) of the SERPINC 1 gene.

    Science.gov (United States)

    Norlelawati, A T; Rusmawati, I; Naznin, M; Nur Nadia, O; Rizqan Aizzani, R; Noraziana, A W

    2014-02-01

    Inherited anti-thrombin deficiency is an autosomal dominant disorder which is associated with increased risk for venous thromboembolism (VTE). This condition is very rare in Malaysia and there has been no documented report. Thus, the aim of the present study is to investigate the type of an inherited anti-thrombin deficiency mutation in a 25-year-old Malay woman who presented with deep vein thrombosis in her first pregnancy. DNA was extracted from the patient's blood sample and buccal mucosal swabs from family members. Polymerase chain reaction(PCR) assays were designed to cover all seven exons of the serpin peptidase inhibitor, clade C (antithrombin), member 1 (SERPINC1) gene; and the products were subjected to DNA sequencing. Sequences were referred to NCBI Reference Sequence: NG_012462.1. A heterozygous substitution mutation at nucleotide position 13267 (CCT->ACT) was identified in the patient and two other family members, giving a possible change of codon 439 (Pro→Thr) also known as anti-thrombin Budapest 5. The genotype was absent in 90 healthy controls. The study revealed a heterozygous antithrombin Budapest 5 mutation in SERPINC 1 giving rise to a possible anti-thrombin deficiency in a Malay-Malaysian family.

  18. Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction.

    Science.gov (United States)

    Waters, Stephen M; Brodbeck, Robbin M; Steflik, Jeremy; Yu, Jianying; Baltazar, Carolyn; Peck, Amy E; Severance, Daniel; Zhang, Lu Yan; Currie, Kevin; Chenard, Bertrand L; Hutchison, Alan J; Maynard, George; Krause, James E

    2005-12-09

    Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.

  19. Correlation Between C677T and A1298C Mutations on the MTHFR Gene With Plasma Homocysteine Levels and Venous Thrombosis in Pregnant Women at Risk of Thrombosis

    Directory of Open Access Journals (Sweden)

    Kazem Ghaffari

    2015-12-01

    Full Text Available Background: Deep venous thrombosis (DVT is a common disease with a high morbidity, mortality and increase in miscarriages. Objectives: The purpose of this study was to assessment the correlation between C677T and A1298C mutations on the methylenetetrahydrofolate reductase (MTHFR gene with total plasma homocysteine levels and deep venous thrombosis in pregnant women at risk of thrombosis. Patients and Methods: In this case-control study, 120 pregnant women with risk of DVT and 100 pregnant women without risk of DVT were included in the study. Assay for identification of MTHFR mutations was carried out by PCR-RFLP. Total plasma homocysteine was measured by ELISA method. Results: Homozygous (MM mutations of MTHFR C677T and A1298C were not associated with DVT in pregnant women with and without DVT, respectively. Plasma homocysteine levels were significantly higher in pregnant women with DVT (18.3 ± 5.9 μmol/L than in the pregnant women without DVT (8.9 ± 6.4 μmol/L in C677T and A1298C mutations on the MTHFR gene, respectively (P = 0.021. Conclusions: Our results showed that MTHFR C677T and MTHFR A1289C polymorphisms are not connected with total plasma homocysteine levels in pregnant women with and without DVT. Also, plasma homocysteine levels were significantly higher in pregnant women with DVT.

  20. Mosaicism of an ELANE mutation in an asymptomatic mother in a familial case of cyclic neutropenia.

    Science.gov (United States)

    Hirata, Osamu; Okada, Satoshi; Tsumura, Miyuki; Karakawa, Shuhei; Matsumura, Itaru; Kimura, Yujiro; Maihara, Toshiro; Yasunaga, Shin'ichiro; Takihara, Yoshihiro; Ohara, Osamu; Kobayashi, Masao

    2015-07-01

    To confirm and characterize mosaicism of the cyclic neutropenia (CyN)-related mutation in the ELANE gene identified in the asymptomatic mother of patients with CyN. We identified sibling cases with CyN due to a novel heterozygous splicing site mutation, IVS4 +5SD G>T, in the ELANE gene, resulting in an internal in-frame deletion of 30 nucleotides (corresponding to a ten amino acid deletion, V161-F170). The mutated allele was also detected in their asymptomatic mother but at low frequency. We measured the frequency of the mutant allele from peripheral blood leukocytes (PBLs) by subcloning, and confirmed the allelic frequency of mosaicism in various cell types by massively parallel DNA sequencing (MPS) analysis. In the subcloning analysis, the mutant allele was identified in 21.36 % of PBLs from the asymptomatic mother, compared with 54.72 % of PBLs from the CyN patient. In the MPS analysis, the mutant allele was observed in approximately 30 % of mononuclear cells, CD3(+) T cells, CD14(+) monocytes and the buccal mucosa. Conversely, it was detected in low frequency in polymorphonuclear leukocytes (PLMLs) (3-4 %) and CD16(+) granulocytes (2-3 %). Mosaicism of the ELANE mutation has only previously been identified in one confirmed and one unconfirmed case of SCN. This is the first report of mosaicism of the ELANE mutation in a case of CyN. The MPS results suggest that this de novo mutation occurred during the two-cell stage of embryogenesis. PLMLs expressing the ELANE mutation were found to be actively undergoing apoptosis.

  1. Mitochondrial C4375T mutation might be a molecular risk factor in a maternal Chinese hypertensive family under haplotype C.

    Science.gov (United States)

    Chen, Hong; Sun, Min; Fan, Zhen; Tong, Maoqing; Chen, Guodong; Li, Danhui; Ye, Jihui; Yang, Yumin; Zhu, Yongding; Zhu, Jianhua

    2017-12-04

    Here, we reported a Han Chinese essential hypertensive pedigree based on clinical hereditary and molecular data. To know the molecular basis on this family, mitochondrial genome of one proband from the family was identified through direct sequencing analysis. The age of onset year and affected degree of patients are different in this family. And matrilineal family members carrying C4375T mutation and belong to Eastern Asian halopgroup C. Phylogenetic analysis shows 4375C is highly conservative in 17 species. It is suggested that these mutations might participate in the development of hypertension in this family. And halopgroup C might play a modifying role on the phenotype in this Chinese hypertensive family.

  2. Truncating SLC5A7 mutations underlie a spectrum of dominant hereditary motor neuropathies.

    Science.gov (United States)

    Salter, Claire G; Beijer, Danique; Hardy, Holly; Barwick, Katy E S; Bower, Matthew; Mademan, Ines; De Jonghe, Peter; Deconinck, Tine; Russell, Mark A; McEntagart, Meriel M; Chioza, Barry A; Blakely, Randy D; Chilton, John K; De Bleecker, Jan; Baets, Jonathan; Baple, Emma L; Walk, David; Crosby, Andrew H

    2018-04-01

    To identify the genetic cause of disease in 2 previously unreported families with forms of distal hereditary motor neuropathies (dHMNs). The first family comprises individuals affected by dHMN type V, which lacks the cardinal clinical feature of vocal cord paralysis characteristic of dHMN-VII observed in the second family. Next-generation sequencing was performed on the proband of each family. Variants were annotated and filtered, initially focusing on genes associated with neuropathy. Candidate variants were further investigated and confirmed by dideoxy sequence analysis and cosegregation studies. Thorough patient phenotyping was completed, comprising clinical history, examination, and neurologic investigation. dHMNs are a heterogeneous group of peripheral motor neuron disorders characterized by length-dependent neuropathy and progressive distal limb muscle weakness and wasting. We previously reported a dominant-negative frameshift mutation located in the concluding exon of the SLC5A7 gene encoding the choline transporter (CHT), leading to protein truncation, as the likely cause of dominantly-inherited dHMN-VII in an extended UK family. In this study, our genetic studies identified distinct heterozygous frameshift mutations located in the last coding exon of SLC5A7 , predicted to result in the truncation of the CHT C-terminus, as the likely cause of the condition in each family. This study corroborates C-terminal CHT truncation as a cause of autosomal dominant dHMN, confirming upper limb predominating over lower limb involvement, and broadening the clinical spectrum arising from CHT malfunction.

  3. The relationship between thrombophilic mutations and preeclampsia: a prospective case-control study

    International Nuclear Information System (INIS)

    Yalinkaya, A.; Erdemoglu, M.; Akdeniz, N.; Kale, A.; Kale, E.

    2006-01-01

    Preeclampsia and its association with thrombophillia remain controversial, due to inconsistent results in different studies, which different ethnic groups, selection criteria, and patient numbers. The aim of this study was to determine the relationship between thrombophillia and preeclamptic patients in our region. In a prospective case-control study, we compared 100 consecutive women with preeclampsia and eclampsia (group 1) with 100 normal pregnant women (group 2). All women were tested two months after delivery for mutations of factor V Leiden, methylenetetrahydrofolate reductase (MTHFR), and prothrombin gene mutation mutataion as well as for deficiencies of protein C, protein S, and antithrmbin III. A thrombophilic mutation was found in 42 (42%) and 28(28%) women in group I and group II, respectively (P+0.27, OR 1.5, 95% CI 1.0-2.2). The incidence of Factor V Leiden mutation (heterozygous), prothrombin mutation (heterozygous), prothrombin mutation (homozygous), MTHFR mutation (homozygous) was not statistically significant in group 1 compared with group 2 (P>0.05). Also, deficiencies of protein S, protein c and antithrombin III were not statistically significant in group I com pared with group II (P>0.05). There was no difference in thrombophilic mutations between preeclamptic patients and normal pregnant women in our region. Therefore, we suggest that preeclamptic patients should not be tested for thrombophilia. (author)

  4. Complex phenotype linked to a mutation in exon 11 of the lamin A/C gene: Hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes.

    Science.gov (United States)

    Francisco, Ana Rita G; Santos Gonçalves, Inês; Veiga, Fátima; Mendes Pedro, Mónica; Pinto, Fausto J; Brito, Dulce

    2017-09-01

    The lamin A/C (LMNA) gene encodes lamins A and C, which have an important role in nuclear cohesion and chromatin organization. Mutations in this gene usually lead to the so-called laminopathies, the primary cardiac manifestations of which are dilated cardiomyopathy and intracardiac conduction defects. Some mutations, associated with lipodystrophy but not cardiomyopathy, have been linked to metabolic abnormalities such as diabetes and severe dyslipidemia. Herein we describe a new phenotype associated with a mutation in exon 11 of the LMNA gene: hypertrophic cardiomyopathy, atrioventricular block, severe dyslipidemia and diabetes. A 64-year-old woman with hypertrophic cardiomyopathy and a point mutation in exon 11 of the LMNA gene (c.1718C>T, Ser573Leu) presented with severe symptomatic ventricular hypertrophy and left ventricular outflow tract obstruction. She underwent septal alcohol ablation, followed by Morrow myectomy. The patient was also diagnosed with severe dyslipidemia, diabetes and obesity, and fulfilled diagnostic criteria for metabolic syndrome. No other characteristics of LMNA mutation-related phenotypes were identified. The development of type III atrioventricular block with no apparent cause, and mildly depressed systolic function, prompted referral for cardiac resynchronization therapy. In conclusion, the association between LMNA mutations and different phenotypes is complex and not fully understood, and can present with a broad spectrum of severity. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Precios y crisis en una economía rioplatense. Santa Fe (1790-1850

    Directory of Open Access Journals (Sweden)

    Carina Frid

    2017-05-01

    Full Text Available This study examines price evolution in Santa Fe district (Rio de la Plata since the late years of colonial domination (when Santa Fe’s prices converged with regional prices to mid-nineteenth century. Monastic sources provided information of prices of commodities (cattle, hides, wheat as well as prices of consumption goods (sugar, tobacco, yerba mate, wine, aguardiente, salt, grease, tallow, canvas. Long-term prices and price indexes offer new evidence both of inflationary cycles as well as economic breakdown from 1815 to 1850.

  6. Biochemical and computational analyses of two phenotypically related GALT mutations (S222N and S135L that lead to atypical galactosemia

    Directory of Open Access Journals (Sweden)

    Benjamin Cocanougher

    2015-06-01

    Full Text Available Galactosemia is a metabolic disorder caused by mutations in the GALT gene [1,2]. We encountered a patient heterozygous for a known pathogenic H132Q mutation and a novel S222N variant of unknown significance [3]. Reminiscent of patients with the S135L mutation, our patient had loss of GALT enzyme activity in erythrocytes but a very mild clinical phenotype [3–8]. We performed splicing experiments and computational structural analyses to investigate the role of the novel S222N variant. Alamut software data predicted loss of splicing enhancers for the S222N and S135L mutations [9,10]. A cDNA library was generated from our patient׳s RNA to investigate for splicing errors, but no change in transcript length was seen [3]. In silico structural analysis was performed to investigate enzyme stability and attempt to understand the mechanism of the atypical galactosemia phenotype. Stability results are publicly available in the GALT Protein Database 2.0 [11–14]. Animations were created to give the reader a dynamic view of the enzyme structure and mutation locations. Protein database files and python scripts are included for further investigation.

  7. Lamb–Shaffer syndrome, deferred outside not described by SOX5 mutation

    Directory of Open Access Journals (Sweden)

    I. V. Sharkova

    2018-01-01

    Full Text Available Clinical and genetic characteristics of a patient with Lamb–Shaffer syndrome due to the newly discovered heterozygous missense mutation p.1868A>C in the 14 exon of the SOX5 gene are presented in the next generation sequencing of exom. It is shown that, in contrast to the previously described patients due to the presence of a deletion in the region of the gene or segment of chromosome 12p12.1, in the presence of missense mutation, the intellectual deficit and the dysmorphic features of the structure are not pronounced sharply and there is no anomaly in the development of other organs and systems.

  8. Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis. Identification of a novel c.7006C>T [p.R2317X] mutation and expression of minigenes containing nonsense mutations in exon 7.

    Science.gov (United States)

    Machiavelli, Gloria A; Caputo, Mariela; Rivolta, Carina M; Olcese, María C; Gruñeiro-Papendieck, Laura; Chiesa, Ana; González-Sarmiento, Rogelio; Targovnik, Héctor M

    2010-01-01

    Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects.

  9. Frameshift mutation in the APOA5 gene causing hypertriglyceridemia in a Pakistani family: Management and considerations for cardiovascular risk.

    Science.gov (United States)

    Thériault, Sébastien; Don-Wauchope, Andrew; Chong, Michael; Lali, Ricky; Morrison, Katherine M; Paré, Guillaume

    2016-01-01

    We report a novel homozygous apolipoprotein A5 (APOA5) frameshift mutation (c.G425del-C, p.Arg143AlafsTer57) identified in a 12-year-old boy of Pakistani origin with severe hypertriglyceridemia (up to 35 mmol/L) and type V hyperlipoproteinemia. The patient did not respond to fibrate therapy, but his condition improved under a very low fat diet, although compliance was suboptimal. Heterozygous status was detected in both parents (consanguineous union) and one sibling, all showing moderate hypertriglyceridemia (between 5 and 10 mmol/L). There was a significant family history of premature cardiovascular disease. The index case was also diagnosed with a coronary artery anomaly. Considering the recently reported association of rare mutations in APOA5 with the risk of early myocardial infarction, we discuss the implications of these findings for the young man and his family. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  10. Mutations of the phenylalanine hydroxylase gene in patients with phenylketonuria in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Yong-An Zhou

    2012-01-01

    Full Text Available The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH gene was investigated in 59 children with phenylketonuria (PKU and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%, followed by Ivs7 +2T>A (5.1% and T278I (2.5%. G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.

  11. A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport

    Directory of Open Access Journals (Sweden)

    Brown Anthony

    2010-11-01

    Full Text Available Abstract Background Hereditary spastic paraplegias are a group of neurological disorders characterized by progressive distal degeneration of the longest ascending and descending axons in the spinal cord, leading to lower limb spasticity and weakness. One of the dominantly inherited forms of this disease (spastic gait type 10, or SPG10 is caused by point mutations in kinesin-1A (also known as KIF5A, which is thought to be an anterograde motor for neurofilaments. Results We investigated the effect of an SPG10 mutation in kinesin-1A (N256S-kinesin-1A on neurofilament transport in cultured mouse cortical neurons using live-cell fluorescent imaging. N256S-kinesin-1A decreased both anterograde and retrograde neurofilament transport flux by decreasing the frequency of anterograde and retrograde movements. Anterograde velocity was not affected, whereas retrograde velocity actually increased. Conclusions These data reveal subtle complexities to the functional interdependence of the anterograde and retrograde neurofilament motors and they also raise the possibility that anterograde and retrograde neurofilament transport may be disrupted in patients with SPG10.

  12. CDKL5 and ARX mutations in males with early-onset epilepsy.

    Science.gov (United States)

    Mirzaa, Ghayda M; Paciorkowski, Alex R; Marsh, Eric D; Berry-Kravis, Elizabeth M; Medne, Livija; Alkhateeb, Asem; Grix, Art; Wirrell, Elaine C; Powell, Berkley R; Nickels, Katherine C; Burton, Barbara; Paras, Andrea; Kim, Katherine; Chung, Wendy; Dobyns, William B; Das, Soma

    2013-05-01

    Mutations in CDKL5 and ARX are known causes of early-onset epilepsy and severe developmental delay in males and females. Although numerous males with ARX mutations associated with various phenotypes have been reported in the literature, the majority of CDKL5 mutations have been identified in females with a phenotype characterized by early-onset epilepsy, severe global developmental delay, absent speech, and stereotypic hand movements. To date, only 10 males with CDKL5 mutations have been reported. Our retrospective study reports on the clinical, neuroimaging, and molecular findings of 18 males with early-onset epilepsy caused by either CDKL5 or ARX mutations. These 18 patients include eight new males with CDKL5 mutations and 10 with ARX mutations identified through sequence analysis of 266 and 346 males, respectively, at our molecular diagnostic laboratory. Our large dataset therefore expands on the number of reported males with CDKL5 mutations and highlights that aberrations of CDKL5 and ARX combined are an important consideration in the genetic forms of early-onset epilepsy in boys. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Key clinical features to identify girls with CDKL5 mutations.

    Science.gov (United States)

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydeé; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothée; Afenjar, Alexandra; Rio, Marlène; Héron, Delphine; N'guyen Morel, Marie Ange; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-10-01

    mutations. In conclusion, our report show that search for mutations in CDKL5 is indicated in girls with early onset of a severe intractable seizure disorder or infantile spasms with severe hypotonia, and in girls with RTT-like phenotype and early onset seizures, though, in our cohort, mutations in CDKL5 account for about 10% of the girls affected by these disorders.

  14. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    Science.gov (United States)

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, Resistance variants (resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  15. A Novel Founder Mutation in MYBPC3: Phenotypic Comparison With the Most Prevalent MYBPC3 Mutation in Spain.

    Science.gov (United States)

    Sabater-Molina, María; Saura, Daniel; García-Molina Sáez, Esperanza; González-Carrillo, Josefa; Polo, Luis; Pérez-Sánchez, Inmaculada; Olmo, María Del Carmen; Oliva-Sandoval, María José; Barriales-Villa, Roberto; Carbonell, Pablo; Pascual-Figal, Domigo; Gimeno, Juan R

    2017-02-01

    Mutations in MYBPC3 are the cause of hypertrophic cardiomyopathy (HCM). Although most lead to a truncating protein, the severity of the phenotype differs. We describe the clinical phenotype of a novel MYBPC3 mutation, p.Pro108Alafs*9, present in 13 families from southern Spain and compare it with the most prevalent MYBPC3 mutation in this region (c.2308+1 G>A). We studied 107 relatives of 13 index cases diagnosed as HCM carriers of the p.Pro108Alafs*9 mutation. Pedigree analysis, clinical evaluation, and genotyping were performed. A total of 54 carriers of p.Pro108Alafs*9 were identified, of whom 39 had HCM. There were 5 cases of sudden death in the 13 families. Disease penetrance was greater as age increased and HCM patients were more frequently male and developed disease earlier than female patients. The phenotype was similar in p.Pro108Alafs*9 and in c.2308+1 G>A, but differences were found in several risk factors and in survival. There was a trend toward a higher left ventricular mass in p.Pro108Alafs*9 vs c.2308+1G>A. Cardiac magnetic resonance revealed a similar extent and pattern of fibrosis. The p.Pro108Alafs*9 mutation is associated with HCM, high penetrance, and disease onset in middle age. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Role of Mutations in Dihydrofolate Reductase DfrA (Rv2763c) and Thymidylate Synthase ThyA (Rv2764c) in Mycobacterium tuberculosis Drug Resistance

    KAUST Repository

    Koser, C. U.

    2010-09-17

    We would like to comment on a number of recent reports in this journal (6, 8, 12, 18) concerning Mycobacterium tuberculosis dihydrofolate reductase (DHFR), encoded by dfrA (Rv2763c). Around 36% of phenotypically para-aminosalicylic acid (PAS)-resistant M. tuberculosis strains harbor mutations in thyA (Rv2764c), which encodes a thymidylate synthase (20). In their effort to elucidate the remaining unknown resistance mechanism(s), Mathys et al. extended their sequence analysis to a number of additional genes, including dfrA (12). It was unclear whether the three dfrA mutations they identified in the PAS-resistant strains P-693 and P-3158 could contribute to PAS resistance on their own. Nonetheless, these findings are notable for two reasons. First, isoniazid (INH) has been shown to inhibit M. tuberculosis DHFR in vitro (1). Whether the same holds true for ethionamide, which shares a number of common resistance mechanisms with INH, was not tested (J. Blanchard, personal communication). In any case, the clinical relevance of DHFR-mediated INH resistance remains enigmatic. To date, only Ho et al. have addressed this question, but they did not identify any dfrA mutations in a screen of 127 INH-resistant clinical isolates (8). Consequently, Mathys et al. remain the first to describe mutations in this target (12). However, given that isolates with mutated DHFR are members of a cluster with baseline INH resistance, the importance of these mutations with respect to INH resistance remains unclear. Irrespective of their relevance in INH resistance, these dfrA mutations are noteworthy for a second reason. Contrary to previous wisdom, Forgacs et al. recently showed that M. tuberculosis is sensitive to the drug combination trimethoprim-sulfamethoxazole (TMP-SMX) (6, 18). DHFR is competitively inhibited by TMP, and consequently, mutations therein lead to resistance in a variety of organisms (9, 16, 19). The crystal structures of the wild-type M. tuberculosis DHFR in complex with

  17. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    Science.gov (United States)

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  18. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  19. Kinetics of gene and chromosome mutations induced by UV-C in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Koltovaya, N.; Kokoreva, A.; Senchenko, D.; Shvaneva, N.; Zhuchkina, N.

    2017-01-01

    The systematic study of the kinetics of UV-induced gene and structural mutations in eukaryotic cells was carried out on the basis of model yeast S. cerevisiae. A variety of genetic assays (all types of base pair substitutions, frameshifts, forward mutations canl, chromosomal and plasmid rearrangements) in haploid strains were used. Yeast cells were treated by UV-C light of fluence of energy up to 200 J/m"2. The kinetics of the induced gene and structural mutations is represented by a linear-quadratic and exponential functions. The slope of curves in log-log plots was not constant, had the value 2-4 and depended on the interval of doses. It was suggested that it is the superposition and dynamics of different pathways form the mutagenic responses of eukaryotic cells to UV-C light that cause the high-order curves. [ru

  20. A Stopped-Flow Kinetics Experiment for Advanced Undergraduate Laboratories: Formation of Iron(III) Thiocyannate

    Science.gov (United States)

    Clark, Charles R.

    1997-10-01

    A series of 15 stopped-flow kinetic experiments relating to the formation of iron(III)- thiocyanate at 25.0 °C and I = 1.0 M (NaClO4) is described. A methodology is given whereby solution preparation and data collection are able to be carried out within the time scale of a single laboratory period (3-4 h). Kinetic data are obtained using constant [SCN-], and at three H+ concentrations (0.10, 0.20, 0.30 M) for varying concentrations of Fe3+ (ca. 0.0025 - 0.020 M). Rate data (450 nm) are consistent with rate laws for the forward and reverse reactions: kf = (k1 + k2Ka1/[H+])[Fe3+] and kr = k-1 + k-2Ka2/[H+] respectively, with k1,k-1 corresponding to the rate constants for formation and decay of FeSCN2+, k2, k-2 to the rate constants for formation and decay of the FeSCN(OH)+ ion and Ka1,Ka2 to the acid dissociation constants (coordinated OH2 ionization) of Fe3+ and FeSCN2+. Using literature values for the latter two quantities ( Ka1 = 2.04 x 10-3 M, Ka2 = 6.5 x 10-5 M) allows values for the four rate constants to be obtained. A typical data set is analyzed to give k1 = 109(10) M-1s-1, k-1 = 0.79(0.10) s-1, k2= 8020(800) M-1s-1, k-2 = 2630(230) s-1. Absorbance change data for reaction (DeltaA) follow the expression: DeltaA = Alim.Kf.[Fe3+]/(1 + Kf.[Fe3+]), with Alim corresponding to the absorbance of fully formed FeSCN2+ (i.e. free SCN- absent) and Kf to the formation constant of this complex (value in the example 112(5) M-1, c.f. 138(29) M-1 from the kinetic data).

  1. Mutation effects of C{sup 2+} ion irradiation on the greasy Nitzschia sp

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.N., E-mail: ynyangbuaa@gmail.com [School of Chemistry and Environment, Beihang University, 37th Xueyuan Road, Haidian District, P.O. Box 106, 100191 Beijing (China); Liu, C.L.; Wang, Y.K. [School of Chemistry and Environment, Beihang University, 37th Xueyuan Road, Haidian District, P.O. Box 106, 100191 Beijing (China); Xue, J.M. [State Key Lab of Nuclear Physics and Nuclear Technology, Peking University, 100084 Beijing (China)

    2013-11-15

    Highlights: • The optimal conditions of C{sup 2+} ion irradiation on Nitzschia sp. were discussed. • Get the “saddle type” survival curve. • One mutant whose lipid content improved significantly was selected. • The C{sup 2+} ion irradiation didn’t change the algae's morphology and growth rate. - Abstract: Screening and nurturing algae with high productivity, high lipid content and strong stress resistance are very important in algae industry. In order to increase the lipid content, the Nitzschia sp. was irradiated with a 3 MeV C{sup 2+} beam. The sample pretreatment method was optimized to obtain the best mutagenic condition and the survival ratio curve. The positive mutants with a significant improvement in lipid content were screened and their C{sup 2+} mutagenic effects were analyzed by comparing the greasiness and growth characteristics with the wild type algae. Results showed that when the Nitzschia sp. was cultivated in nutritious medium containing 10% glycerol solution, and dried on the filter for 5 min after centrifugation, the realization of the microalgae heavy ion mutagenesis could be done. The survival ratio curve caused by C{sup 2+} irradiation was proved to be “saddle-shaped”. A positive mutant was screened among 20 survivals after irradiation, the average lipid content of the mutation increased by 9.8% than the wild type after 4 generations. But the growth rate of the screened mutation didn’t change after the heavy ion implantation compared to the wild type algae.

  2. Whole-exome sequencing reveals a recurrent mutation in the cathepsin C gene that causes Papillon–Lefevre syndrome in a Saudi family

    Directory of Open Access Journals (Sweden)

    Yaser Mohammad Alkhiary

    2016-09-01

    Full Text Available Papillon–Lefevre syndrome (PALS is a rare, autosomal recessive disorder characterized by periodontitis and hyperkeratosis over the palms and soles. Mutations in the cathepsin C gene (CTSC have been recognized as the cause of PALS since the late 1990s. More than 75 mutations in CTSC have been identified, and phenotypic variability between different mutations has been described. Next generation sequencing is widely used for efficient molecular diagnostics in various clinical practices. Here we investigated a large consanguineous Saudi family with four affected and four unaffected individuals. All of the affected individuals suffered from hyperkeratosis over the palms and soles and had anomalies of both primary and secondary dentition. For molecular diagnostics, we combined whole-exome sequencing and genome-wide homozygosity mapping procedures, and identified a recurrent homozygous missense mutation (c.899G>A; p.Gly300Asp in exon 7 of CTSC. Validation of all eight family members by Sanger sequencing confirmed co-segregation of the pathogenic variant (c.899G>A with the disease phenotype. This is the first report of whole-exome sequencing performed for molecular diagnosis of PALS in Saudi Arabia. Our findings provide further insights into the genotype–phenotype correlation of CTSC pathogenicity in PALS.

  3. EDAR-induced hypohidrotic ectodermal dysplasia: a clinical study on signs and symptoms in individuals with a heterozygous c.1072C > T mutation

    Science.gov (United States)

    2014-01-01

    Background Mutations in the EDAR-gene cause hypohidrotic ectodermal dysplasia, however, the oral phenotype has been described in a limited number of cases. The aim of the present study was to clinically describe individuals with the c.1072C > T mutation (p. Arg358X) in the EDAR gene with respect to dental signs and saliva secretion, symptoms from other ectodermal structures and to assess orofacial function. Methods Individuals in three families living in Sweden, where some members had a known c.1072C > T mutation in the EDAR gene with an autosomal dominant inheritance (AD), were included in a clinical investigation on oral signs and symptoms and self-reported symptoms from other ectodermal structures (n = 37). Confirmation of the c.1072C > T mutation in the EDAR gene were performed by genomic sequencing. Orofacial function was evaluated with NOT-S. Results The mutation was identified in 17 of 37 family members. The mean number of missing teeth due to agenesis was 10.3 ± 4.1, (range 4–17) in the mutation group and 0.1 ± 0.3, (range 0–1) in the non-mutation group (p  T mutation in the EDAR-gene displayed a typical pattern of congenitally missing teeth in the frontal area with functional consequences. They therefore have a need for special attention in dental care, both with reference to tooth agenesis and low salivary secretion with an increased risk for caries. Sweating problems were the most frequently reported symptom from other ectodermal structures. PMID:24884697

  4. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407

    DEFF Research Database (Denmark)

    Andersen, Niels Møller; Douthwaite, Stephen

    2006-01-01

    generally require specific enzymes, and only one m5C rRNA methyltransferase, RsmB (formerly Fmu) that methylates nucleotide C967, has previously been identified. BLAST searches of the E.coli genome revealed a single gene, yebU, with sufficient similarity to rsmB to encode a putative m5C RNA...... methyltransferase. This suggested that the yebU gene product modifies C1407 and/or C1962. Here, we analysed the E.coli rRNAs by matrix assisted laser desorption/ionization mass spectrometry and show that inactivation of the yebU gene leads to loss of methylation at C1407 in 16 S rRNA, but does not interfere...

  5. Solvothermal synthesis and characterisation of new one-dimensional indium and gallium sulphides: [C1N4H26]0.5[InS2] and [C1N4H26]0.5[GaS2

    International Nuclear Information System (INIS)

    Vaqueiro, Paz

    2006-01-01

    Two new main group metal sulphides, [C 1 N 4 H 26 ] 0.5 [InS 2 ] (1) and [C 1 N 4 H 26 ] 0.5 [GaS 2 ] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P2 1 /n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) A and β=94.410(4) o (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) A and β=94.313(4) o (wR=0.021) for compound (2). The structure of [C 1 N 4 H 26 ] 0.5 [MS 2 ] (M=In,Ga) consists of one-dimensional [MS 2 ] - chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides. -- Graphical abstract: [C 1 N 4 H 26 ] 0.5 [InS 2 ] and [C 1 N 4 H 26 ] 0.5 [GaS 2 ], prepared under solvothermal conditions, consist of one-dimensional [MS 2 ] - chains separated by diprotonated 1,4-bis(3-aminopropyl)piperazine molecules

  6. Arbejderen mellem praksis og ideologisering 1850-2000

    DEFF Research Database (Denmark)

    Nielsen, Niels Jul

    2013-01-01

    amongst workers on the workshop floor at Denmark’s largest enterprise in the period from 1850 to 2000, the author emphasises how complex and diverse the everyday working life of industrialism actually was – and hence, also the relations between workers as well as employers and society as a whole......-being of the labour population was understood as a precondition for societal cohesion. In theoretical terms, the author draws upon the structural state-form and life-mode analysis, where the idea of a ‘wage-earner’ life-mode is understood in its reciprocal relationship to the capitalist mode of production and, hence...... regarded a self-conscious labour class as a means to balance capitalism’s negative aspects, if not simply to overcome them. Based upon this background, the author argues that the common worker has hitherto not been satisfactorily understood as a subject of cultural history. Using detailed investigations...

  7. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

    KAUST Repository

    Patel, Trushar R.; Nikodemus, Denise; Besong, Tabot M.D.; Reuten, Raphael; Meier, Markus; Harding, Stephen E.; Winzor, Donald J.; Koch, Manuel; Stetefeld, Jö rg

    2015-01-01

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1 N), α-5 (hLM α-5 N) and β-3 (hLM β-3 N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  8. Biophysical analysis of a lethal laminin alpha-1 mutation reveals altered self-interaction

    KAUST Repository

    Patel, Trushar R.

    2015-07-26

    Laminins are key basement membrane molecules that influence several biological activities and are linked to a number of diseases. They are secreted as heterotrimeric proteins consisting of one α, one β, and one γ chain, followed by their assembly into a polymer-like sheet at the basement membrane. Using sedimentation velocity, dynamic light scattering, and surface plasmon resonance experiments, we studied self-association of three laminin (LM) N-terminal fragments α-1 (hLM α-1 N), α-5 (hLM α-5 N) and β-3 (hLM β-3 N) originating from the short arms of the human laminin αβγ heterotrimer. Corresponding studies of the hLM α-1 N C49S mutant, equivalent to the larval lethal C56S mutant in zebrafish, have shown that this mutation causes enhanced self-association behavior, an observation that provides a plausible explanation for the inability of laminin bearing this mutation to fulfill functional roles in vivo, and hence for the deleterious pathological consequences of the mutation on lens function.

  9. Mutations in C4orf26, Encoding a Peptide with In Vitro Hydroxyapatite Crystal Nucleation and Growth Activity, Cause Amelogenesis Imperfecta

    Science.gov (United States)

    Parry, David A.; Brookes, Steven J.; Logan, Clare V.; Poulter, James A.; El-Sayed, Walid; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Sayed, Jihad; Raïf, El Mostafa; Shore, Roger C.; Dashash, Mayssoon; Barron, Martin; Morgan, Joanne E.; Carr, Ian M.; Taylor, Graham R.; Johnson, Colin A.; Aldred, Michael J.; Dixon, Michael J.; Wright, J. Tim; Kirkham, Jennifer; Inglehearn, Chris F.; Mighell, Alan J.

    2012-01-01

    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein’s phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis. PMID:22901946

  10. Survey of HFE Gene C282Y Mutation in Turkish Beta-Thalassemia Patients and Healthy Population: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Selma Ünal

    2014-09-01

    Full Text Available OBJECTIVE: This study was planned in order to determine the effect of C282Y mutation in development of secondary hemochromatosis in beta-thalassemia patients and to determine the prevalence and allele frequency of this mutation in a healthy control group. METHODS: Eighty-seven children and young adults (46 males and 41 females; mean age: 15.6±6.1 years, range: 3-30 years with beta-thalassemia major (BTM and 13 beta-thalassemia intermedia (BTI patients (6 males and 7 females; mean age: 19.6±3.5 years, range: 13-26 years were included in the study. The control group comprised 100 healthy blood donors. RESULTS: Neither heterozygous nor homozygous HFE gene C282Y mutation was detected in patients with BTM or BTI, or in control group. CONCLUSION: The C282Y mutation, which is supposed to be responsible for the majority of hereditary hemochromatosis, was not found to have a role in the development of hemochromatosis in beta-thalassemia patients and was not detected in a healthy Turkish population. However, research on larger cohorts of individuals is required in order to determine the exact prevalence of the HFE gene mutation in Turkish populations from diverse ethnic origins and whether it would have an impact on iron loading in thalassemic populations.

  11. A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice.

    Science.gov (United States)

    Roths, J B; Murphy, E D; Eicher, E M

    1984-01-01

    A newly discovered autosomal recessive mutation, generalized lymphoproliferative disease (gld), in the C3H/HeJ strain of mice, determines the development of early onset massive lymphoid hyperplasia with autoimmunity. Significant lymph node enlargement is apparent as early as 12 wk of age. By 20 wk, lymph nodes are 50-fold heavier than those of coisogenic C3H/HeJ-+/+ mice. There is a concomitant increase in the numbers of peripheral blood lymphocytes. Analysis of C3H-gld lymph node lymphocyte subsets by immunofluorescence indicates an increase in numbers of B cells, T cells, and null (Thy-1-, sIg-) lymphocytes by 6-, 15-, and 33-fold compared with congeneic control mice. Serologically, gld/gld mice develop antinuclear antibodies (including anti-dsDNA), thymocyte-binding autoantibody, and hypergammaglobulinemia with major increases in several immunoglobulin isotypes. Mutant gld mice live only one-half as long as normal controls (12 and 23 mo, respectively). Interstitial pneumonitis was found in virtually all C3H-gld mice autopsied when moribund. Although immune complexes were detected in the glomerulus by immunofluorescence techniques, only 14% of the autopsied mice had significant lupus-like nephritis. Vascular disease was not found. The pattern of early onset massive lymph node enlargement, hypergammaglobulinemia, and production of antinuclear autoantibodies resembles the basic abnormal phenotype induced by the lpr (lymphoproliferation) mutation. The mutations gld and lpr are not allelic. Linkage studies indicate that gld is located between Pep-3 and Lp on chromosome 1. This new mutation adds another genetically well-defined model to the list of murine lymphoproliferative/autoimmune disorders that may be exploited to gain a clearer understanding of immunoregulatory defects and for identifying common pathogenetic factors involved in systemic autoimmune diseases.

  12. Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells

    KAUST Repository

    Zhao, Kui

    2015-08-27

    CuSCN is a highly transparent, highly stable, low cost and easy to solution process HTL that is proposed as a low cost replacement to existing organic and inorganic metal oxide hole transporting materials. Here, we demonstrate hybrid organic-inorganic perovskite-based p-i-n planar heterojunction solar cells using a solution-processed copper(I) thiocyanate (CuSCN) bottom hole transporting layer (HTL). CuSCN, with its high workfunction, increases the open circuit voltage (Voc) by 0.23 V to 1.06 V as compared with devices based on the well-known poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (0.83 V), resulting in a superior power conversion efficiency (PCE) of 10.8% without any notable hysteresis. Photoluminescence measurements suggest a similar efficiency of charge transfer at HTL/perovskite interface as PEDOT:PSS. However, we observe more efficient light harvesting in the presence of CuSCN at shorter wavelengths despite PEDOT:PSS being more transparent. Further investigation of the microstructure and morphology reveals differences in the crystallographic texture of the polycrystalline perovskite film, suggesting somewhat modified perovskite growth on the surface of CuSCN. The successful demonstration of the solution-processed inorganic HTL using simple and low temperature processing routes bodes well for the development of reliable and efficient flexible p-i-n perovskite modules or for integration as a front cell in hybrid tandem solar cells.

  13. Mutations in pseudohypoparathyroidism 1a and pseudopseudohypoparathyroidism in ethnic Chinese.

    Directory of Open Access Journals (Sweden)

    Yi-Lei Wu

    Full Text Available An inactivating mutation in the GNAS gene causes either pseudohypoparathyroidism 1a (PHP1A when it is maternally inherited or pseudopseudohypoparathyroidism (PPHP when it is paternally inherited. We investigated clinical manifestations and mutations of the GNAS gene in ethnic Chinese patients with PHP1A or PPHP. Seven patients from 5 families including 4 girls and 2 boys with PHP1A and 1 girl with PPHP were studied. All PHP1A patients had mental retardation. They were treated with calcitriol and CaCO3 with regular monitoring of serum Ca levels, urinary Ca/Cr ratios, and renal sonography. Among them, 5 patients also had primary hypothyroidism suggesting TSH resistance. One female patient had a renal stone which was treated with extracorporeal shockwave lithotripsy. She had an increased urinary Ca/Cr ratio of 0.481 mg/mg when the stone was detected. We detected mutations using PCR and sequencing as well as analysed a splice acceptor site mutation using RT-PCR, sequencing, and minigene construct. We detected 5 mutations: c.85C>T (Q29*, c.103C>T (Q35*, c.840-2A>G (R280Sfs*21, c.1027_1028delGA (D343*, and c.1174G>A (E392K. Mutations c.840-2A>G and c.1027_1028delGA were novel. The c.840-2A>G mutation at the splice acceptor site of intron 10 caused retention of intron 10 in the minigene construct but skipping of exon 11 in the peripheral blood cells. The latter was the most probable mechanism which caused a frameshift, changing Arg to Ser at residue 280 and invoking a premature termination of translation at codon 300 (R280Sfs*21. Five GNAS mutations in ethnic Chinese with PHP1A and PPHP were reported. Two of them were novel. Mutation c.840-2A>G destroyed a spice acceptor site and caused exon skipping. Regular monitoring and adjustment in therapy are mandatory to achieve optimal therapeutic effects and avoid nephrolithiasis in patients with PHP1A.

  14. cDNA analyses of CAPN3 enhance mutation detection and reveal a low prevalence of LGMD2A patients in Denmark

    DEFF Research Database (Denmark)

    Duno, M.; Sveen, M.L.; Schwartz, M.

    2008-01-01

    Calpainopathy or limb-girdle muscular dystrophy type 2A (LGMD2A) is generally recognized as the most prevalent form of recessive LGMD and is caused by mutations in the CAPN3 gene. Out of a cohort of 119 patients fulfilling clinical criteria for LGMD2, referred to our neuromuscular clinic, 46 were....... In three other, only one heterozygous mutation could be identified on the genomic level; however, CAPN3 cDNA analyses demonstrated homozygosity for the mutant allele, indicating the presence of an unidentified allele that somehow compromise correct CAPN3 RNA processing. In the three remaining patients...... origin, indicating a five- to sixfold lower prevalence in Denmark compared to other European countries. A total of 16 different CAPN3 mutations were identified, of which 5 were novel. The present study demonstrates the value of cDNA analysis for CAPN3 in LGMD2A patients and indicates that calpainopathy...

  15. Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.

    Science.gov (United States)

    Dormeyer, Miriam; Lübke, Anastasia L; Müller, Peter; Lentes, Sabine; Reuß, Daniel R; Thürmer, Andrea; Stülke, Jörg; Daniel, Rolf; Brantl, Sabine; Commichau, Fabian M

    2017-06-01

    Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Severe Clinical Course in a Patient with Congenital Amegakaryocytic Thrombocytopenia Due to a Missense Mutation of the c-MPL Gene.

    Science.gov (United States)

    Ok Bozkaya, İkbal; Yaralı, Neşe; Işık, Pamir; Ünsal Saç, Rukiye; Tavil, Betül; Tunç, Bahattin

    2015-06-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) generally begins at birth with severe thrombocytopenia and progresses to pancytopenia. It is caused by mutations in the thrombopoietin receptor gene, the myeloproliferative leukemia virus oncogene (c-MPL). The association between CAMT and c-MPL mutation type has been reported in the literature. Patients with CAMT have been categorized according to their clinical symptoms caused by different mutations. Missense mutations of c-MPL have been classified as type II and these patients have delayed onset of bone marrow failure compared to type I patients. Here we present a girl with severe clinical course of CAMT II having a missense mutation in exon 4 of the c-MPL gene who was admitted to our hospital with intracranial hemorrhage during the newborn period.

  17. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S.

    Directory of Open Access Journals (Sweden)

    Lu Huang

    Full Text Available In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118 have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.

  18. Parkinson's disease-related LRRK2 G2019S mutation results from independent mutational events in humans.

    Science.gov (United States)

    Lesage, Suzanne; Patin, Etienne; Condroyer, Christel; Leutenegger, Anne-Louise; Lohmann, Ebba; Giladi, Nir; Bar-Shira, Anat; Belarbi, Soraya; Hecham, Nassima; Pollak, Pierre; Ouvrard-Hernandez, Anne-Marie; Bardien, Soraya; Carr, Jonathan; Benhassine, Traki; Tomiyama, Hiroyuki; Pirkevi, Caroline; Hamadouche, Tarik; Cazeneuve, Cécile; Basak, A Nazli; Hattori, Nobutaka; Dürr, Alexandra; Tazir, Meriem; Orr-Urtreger, Avi; Quintana-Murci, Lluis; Brice, Alexis

    2010-05-15

    Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene have been identified in families with autosomal dominant Parkinson's disease (PD) and in sporadic cases; the G2019S mutation is the single most frequent. Intriguingly, the frequency of this mutation in PD patients varies greatly among ethnic groups and geographic origins: it is present at <0.1% in East Asia, approximately 2% in European-descent patients and can reach frequencies of up to 15-40% in PD Ashkenazi Jews and North African Arabs. To ascertain the evolutionary dynamics of the G2019S mutation in different populations, we genotyped 74 markers spanning a 16 Mb genomic region around G2019S, in 191 individuals carrying the mutation from 126 families of different origins. Sixty-seven families were of North-African Arab origin, 18 were of North/Western European descent, 37 were of Jewish origin, mostly from Eastern Europe, one was from Japan, one from Turkey and two were of mixed origins. We found the G2019S mutation on three different haplotypes. Network analyses of the three carrier haplotypes showed that G2019S arose independently at least twice in humans. In addition, the population distribution of the intra-allelic diversity of the most widespread carrier haplotype, together with estimations of the age of G2019S determined by two different methods, suggests that one of the founding G2019S mutational events occurred in the Near East at least 4000 years ago.

  19. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep.

    Directory of Open Access Journals (Sweden)

    Hugues Dardente

    Full Text Available In mammals, changing daylength (photoperiod is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN, site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21 and neuropeptides (Vip, Grp and Avp in animals acclimated to a short photoperiod (SP; 8h of light and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light, achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression.

  20. GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells.

    Science.gov (United States)

    Livide, Gabriella; Patriarchi, Tommaso; Amenduni, Mariangela; Amabile, Sonia; Yasui, Dag; Calcagno, Eleonora; Lo Rizzo, Caterina; De Falco, Giulia; Ulivieri, Cristina; Ariani, Francesca; Mari, Francesca; Mencarelli, Maria Antonietta; Hell, Johannes Wilhelm; Renieri, Alessandra; Meloni, Ilaria

    2015-02-01

    Rett syndrome is a monogenic disease due to de novo mutations in either MECP2 or CDKL5 genes. In spite of their involvement in the same disease, a functional interaction between the two genes has not been proven. MeCP2 is a transcriptional regulator; CDKL5 encodes for a kinase protein that might be involved in the regulation of gene expression. Therefore, we hypothesized that mutations affecting the two genes may lead to similar phenotypes by dysregulating the expression of common genes. To test this hypothesis we used induced pluripotent stem (iPS) cells derived from fibroblasts of one Rett patient with a MECP2 mutation (p.Arg306Cys) and two patients with mutations in CDKL5 (p.Gln347Ter and p.Thr288Ile). Expression profiling was performed in CDKL5-mutated cells and genes of interest were confirmed by real-time RT-PCR in both CDKL5- and MECP2-mutated cells. The only major change in gene expression common to MECP2- and CDKL5-mutated cells was for GRID1, encoding for glutamate D1 receptor (GluD1), a member of the δ-family of ionotropic glutamate receptors. GluD1 does not form AMPA or NMDA glutamate receptors. It acts like an adhesion molecule by linking the postsynaptic and presynaptic compartments, preferentially inducing the inhibitory presynaptic differentiation of cortical neurons. Our results demonstrate that GRID1 expression is downregulated in both MECP2- and CDKL5-mutated iPS cells and upregulated in neuronal precursors and mature neurons. These data provide novel insights into disease pathophysiology and identify possible new targets for therapeutic treatment of Rett syndrome.

  1. Evaluation of Lama5 as a candidate for the mouse ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Albrechtsen, R; Chambers, D M

    1998-01-01

    The laminin alpha5 chain is a component of the basement membranes of many developing and adult tissues. The mouse laminin alpha5 chain gene (Lama5) has been mapped close to the locus of the semidominant ragged (Ra) mutation on distal chromosome 2. The cause of the Ra mutation, which is usually...... lethal in the homozygous state, has not been determined. We have investigated whether a defect in Lama5 is responsible for the ragged mutation, using the RaJ strain. No differences in the level of the laminin alpha5 chain transcript were found in placental RNA from homozygous RaJ mutant embryos compared...... to normal littermates. Antiserum raised against a recombinant laminin alpha5 chain polypeptide stained the basement membranes of both normal and homozygous mutant embryos to a similar extent. More precise mapping of Lama5 on an interspecific Ra backcross indicated that Lama5 is proximal to the Ra locus...

  2. Carrier frequency of GJB2 gene mutations c.35delG, c.235delC and c.167delT among the populations of Eurasia.

    Science.gov (United States)

    Dzhemileva, Lilya U; Barashkov, Nikolay A; Posukh, Olga L; Khusainova, Rita I; Akhmetova, Vita L; Kutuev, Ildus A; Gilyazova, Irina R; Tadinova, Vera N; Fedorova, Sardana A; Khidiyatova, Irina M; Lobov, Simeon L; Khusnutdinova, Elza K

    2010-11-01

    Hearing impairment is one of the most common disorders of sensorineural function and the incidence of profound prelingual deafness is about 1 per 1000 at birth. GJB2 gene mutations make the largest contribution to hereditary hearing impairment. The spectrum and prevalence of some GJB2 mutations are known to be dependent on the ethnic origin of the population. This study presents data on the carrier frequencies of major GJB2 mutations, c.35delG, c.167delT and c.235delC, among 2308 healthy persons from 18 various populations of Eurasia: Russians, Bashkirs, Tatars, Chuvashes, Udmurts, Komi-Permyaks and Mordvins (Volga-Ural region of Russia); Belarusians and Ukrainians (East Europe); Abkhazians, Avars, Cherkessians and Ingushes (Caucasus); Kazakhs, Uighurs and Uzbeks (Central Asia); and Yakuts and Altaians (Siberia). The data on c.35delG and c.235delC mutation prevalence in the studied ethnic groups can be used to investigate the prospective founder effect in the origin and prevalence of these mutations in Eurasia and consequently in populations around the world.

  3. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene.

    Directory of Open Access Journals (Sweden)

    Hans U Luder

    Full Text Available Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy and a dental disorder (amelogenesis imperfecta, which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phenotype has obtained less attention. A defective transport of magnesium ions by the photoreceptors of the retina is assumed to account for the progressive visual impairment. Since magnesium is also incorporated in the mineral of dental hard tissues, we hypothesized that magnesium concentrations in defective enamel resulting from mutations in CNNM4 would be abnormal, if a similar deficiency of magnesium transport also accounted for the amelogenesis imperfecta. Thus, a detailed analysis of the dental hard tissues was performed in two boys of Kosovan origin affected by Jalili syndrome. Retinal dystrophy of the patients was diagnosed by a comprehensive eye examination and full-field electroretinography. A mutational analysis revealed a c.1312 dupC homozygous mutation in CNNM4, a genetic defect which had already been identified in other Kosovan families and putatively results in loss-of-function of the protein. The evaluation of six primary teeth using light and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy showed that dental enamel was thin and deficient in mineral, suggesting a hypoplastic/hypomineralized type of amelogenesis imperfecta. The reduced mineral density of enamel was accompanied by decreased amounts of calcium, but significantly elevated levels of magnesium. In dentin, however, a similar mineral deficiency was associated with reduced magnesium and normal calcium levels. It is concluded that the c.1312 dupC mutation of CNNM4 results in mineralization defects of both enamel and dentin, which are associated with significantly abnormal magnesium concentrations. Thus, we could not disprove the hypothesis that a

  4. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    International Nuclear Information System (INIS)

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-01-01

    Highlights: ► The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. ► C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. ► The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  5. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa

    2017-03-17

    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V−1 s−1 and 0.013 cm2 V−1 s−1, respectively, current on/off ratio in the range 102–104, and maximum operating voltages between −3.5 and −10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  6. A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Fendri-Kriaa, Nourhene, E-mail: nourhene.fendri@gmail.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hsairi, Ines [Service de Neurologie Infantile, C.H.U. Hedi Chaker de Sfax (Tunisia); Kifagi, Chamseddine [Laboratoire internationale associe LIA135, Centre de Biotechnologie de Sfax (Tunisia); Ellouze, Emna [Service de Neurologie Infantile, C.H.U. Hedi Chaker de Sfax (Tunisia); Mkaouar-Rebai, Emna [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Triki, Chahnez [Service de Neurologie Infantile, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-06-03

    Highlights: {yields} Sequencing of the MECP2 gene, modeling and comparison of the two variants were performed in a Tunisian classical Rett patient. {yields} A double-mutation: a new and de novo mutation c.535C > T and the common one c.763C > T of the MECP2 gene was identified. {yields} The P179S transition may change local electrostatic properties which may affect the function and stability of the protein MeCP2. -- Abstract: Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 months of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C > T (p.P179S) and the common c.763C > T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.

  7. A case of a Tunisian Rett patient with a novel double-mutation of the MECP2 gene

    International Nuclear Information System (INIS)

    Fendri-Kriaa, Nourhene; Hsairi, Ines; Kifagi, Chamseddine; Ellouze, Emna; Mkaouar-Rebai, Emna; Triki, Chahnez; Fakhfakh, Faiza

    2011-01-01

    Highlights: → Sequencing of the MECP2 gene, modeling and comparison of the two variants were performed in a Tunisian classical Rett patient. → A double-mutation: a new and de novo mutation c.535C > T and the common one c.763C > T of the MECP2 gene was identified. → The P179S transition may change local electrostatic properties which may affect the function and stability of the protein MeCP2. -- Abstract: Rett syndrome is an X-linked dominant disorder caused frequently by mutations in the methyl-CpG-binding protein 2 gene (MECP2). Rett patients present an apparently normal psychomotor development during the first 6-18 months of life. Thereafter, they show a short period of developmental stagnation followed by a rapid regression in language and motor development. The aim of this study was to perform a mutational analysis of the MECP2 gene in a classical Rett patient by sequencing the corresponding gene and modeling the found variants. The results showed the presence of a double-mutation: a new and de novo mutation c.535C > T (p.P179S) and the common c.763C > T (p.R255X) transition of the MECP2 gene. The p.P179S mutation was located in a conserved amino acid in CRIR domain (corepressor interacting region). Modeling results showed that the P179S transition could change local electrostatic properties by adding a negative charge due to serine hydroxyl group of this region of MeCP2 which may affect the function and stability of the protein. The p.R255X mutation is located in TRD-NLS domain (transcription repression domain-nuclear localization signal) of MeCP2 protein.

  8. Colonial Agro-Industrialism : Science, Industry and the State in the Dutch Golden Alkaloid Age, 1850-1950

    NARCIS (Netherlands)

    Roersch van der Hoogte, A.

    2015-01-01

    This thesis is about what I call the Dutch Golden Alkaloid Age between roughly the 1850s and 1950s. I follow the historical trajectory of the production and distribution of the anti-febrifuge cinchona bark tree (Cinchona officinalis Lin.) and its most powerful and therapeutically applied alkaloid in

  9. Advanced Genetic Testing Comes to the Pain Clinic to Make a Diagnosis of Paroxysmal Extreme Pain Disorder

    Directory of Open Access Journals (Sweden)

    Ashley Cannon

    2016-01-01

    Full Text Available Objective. To describe the use of an advanced genetic testing technique, whole exome sequencing, to diagnose a patient and their family with a SCN9A channelopathy. Setting. Academic tertiary care center. Design. Case report. Case Report. A 61-year-old female with a history of acute facial pain, chronic pain, fibromyalgia, and constipation was found to have a gain of function SCN9A mutation by whole exome sequencing. This mutation resulted in an SCN9A channelopathy that is most consistent with a diagnosis of paroxysmal extreme pain disorder. In addition to the patient being diagnosed, four siblings have a clinical diagnosis of SCN9A channelopathy as they have consistent symptoms and a sister with a known mutation. For treatment, gabapentin was ineffective and carbamazepine was not tolerated. Nontraditional therapies improved symptoms and constipation resolved with pelvic floor retraining with biofeedback. Conclusion. Patients with a personal and family history of chronic pain may benefit from a referral to Medical Genetics. Pelvic floor retraining with biofeedback should be considered for patients with a SCN9A channelopathy and constipation.

  10. A novel mutation in KIF5A in a Malian family with spastic paraplegia and sensory loss.

    Science.gov (United States)

    Guinto, Cheick O; Diarra, Salimata; Diallo, Salimata; Cissé, Lassana; Coulibaly, Thomas; Diallo, Seybou H; Taméga, Abdoulaye; Chen, Ke-Lian; Schindler, Alice B; Bagayoko, Koumba; Simaga, Assiatou; Blackstone, Craig; Fischbeck, Kenneth H; Landouré, Guida

    2017-04-01

    Hereditary spastic paraplegias (HSPs) are well-characterized disorders but rarely reported in Africa. We evaluated a Malian family in which three individuals had HSP and distal muscle atrophy and sensory loss. HSP panel testing identified a novel heterozygous missense mutation in KIF5A (c.1086G>C, p.Lys362Asn) that segregated with the disease (SPG10). Lys362 is highly conserved across species and Lys362Asn is predicted to be damaging. This study shows that HSPs are present in sub-Saharan Africa, although likely underdiagnosed. Increasing efficiency and decreasing costs of DNA sequencing will make it more feasible to diagnose HSPs in developing countries.

  11. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    KAUST Repository

    Petti, Luisa; Pattanasattayavong, Pichaya; Lin, Yen-Hung; Mü nzenrieder, Niko; Cantarella, Giuseppe; Yaacobi-Gross, Nir; Yan, Feng; Trö ster, Gerhard; Anthopoulos, Thomas D.

    2017-01-01

    , depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as −3.5 V. Importantly, discrete CuSCN transistors

  12. A novel mutation in the MITF may be digenic with GJB2 mutations in a large Chinese family of Waardenburg syndrome type II.

    Science.gov (United States)

    Yan, Xukun; Zhang, Tianyu; Wang, Zhengmin; Jiang, Yi; Chen, Yan; Wang, Hongyan; Ma, Duan; Wang, Lei; Li, Huawei

    2011-12-20

    Waardenburg syndrome type II (WS2) is associated with syndromic deafness. A subset of WS2, WS2A, accounting for approximately 15% of patients, is attributed to mutations in the microphthalmia-associated transcription factor (MITF) gene. We examined the genetic basis of WS2 in a large Chinese family. All 9 exons of the MITF gene, the single coding exon (exon 2) of the most common hereditary deafness gene GJB2 and the mitochondrial DNA (mtDNA) 12S rRNA were sequenced. A novel heterozygous mutation c.[742_743delAAinsT;746_747delCA] in exon 8 of the MITF gene co-segregates with WS2 in the family. The MITF mutation results in a premature termination codon and a truncated MITF protein with only 247 of the 419 wild type amino acids. The deaf proband had this MITF gene heterozygous mutation as well as a c.[109G>A]+[235delC] compound heterozygous pathogenic mutation in the GJB2 gene. No pathogenic mutation was found in mtDNA 12S rRNA in this family. Thus, a novel compound heterozygous mutation, c.[742_743delAAinsT;746_747delCA] in MITF exon 8 was the key genetic reason for WS2 in this family, and a digenic effect of MITF and GJB2 genes may contribute to deafness of the proband. Copyright © 2011. Published by Elsevier Ltd.

  13. A new experimental system for study on adaptive mutations

    Institute of Scientific and Technical Information of China (English)

    Lü; Zhong; (

    2001-01-01

    [1]Luria, S. E., Delbrück, M., Mutation of bacteria from virus sensitivity to virus resistance, Genetics, 1943, 28: 491.[2]Lederberg, J., Lederberg, E. M., Replica plating and indirect selection of bacteria mutants, J. Bacteriol., 1952, 63: 399.[3]Carins, J., Overbaugh, J., Miller, S., The origin of mutants, Nature, 1988, 355: 142.[4]Foster, P. L., Adaptive mutation: the uses of adversity, Annu. Rev. Microbiol., 1993, 47: 467.[5]Hall, B. G., Adaptive mutagenesis: a process that generates almost exclusively beneficient mutations, Genetica, 1998, 102/103: 109.[6]Kasak, L., Horak, R., Kivisaar, M., Promotor-creating mutations in Psuedmonas putida: A model system for the study of mutation in starving bacteria, PNAS, 1997, 94: 3134.[7]Steele, D. F., Jinks-Robertson, An examination of adaptive reversion in Saccharomyces cerevisiae, Genetics, 1992, 132: 9.[8]Davis, R. W., Botstein, Roth, J. R., Advanced Bacterial Genetics--A Manual for Genetic Engineering, New York: Cold Spring Harbor Laboratory Press, 1980, 13.[9]Miller, J. H., Experiments in Molecular Genetics, New York: Cold Spring Harbor Laboratory Press, 1972, 352.[10] Lea, D. E., Coulson, C. A., The distribution of the numbers of mutants in bacterial populations, J. Genetics, 1949, 49: 264.[11] Hughes, K. T., Roth, J. R., Transitory cis complementation: a method for provided transposition function to defective transposons, Genetics, 1988, 119: 9.[12] Sanderson, K. E., Roth J., Linkage map of Salmonella typhimurium, Microbiol. Rev., 1988, 52: 485.[13] He, B., Shiau, A., Choi, K. Y., Genes of the E. coli pur region are negatively controlled by a repressor-operator interaction, J. Bacteriol., 1990, 172: 4555.[14] Liu, B., Huang, Y., Wang, A. Q., Regulation of purine biosynthetic genes expression in Salmonella typhimurium (IV)--Oc mutation site of purG and its function analysis, Science in China, Ser. C, 1997, 40(3): 238.[15] Tang, H., Qin, J. C., Wang, A. Q

  14. Comparison of Detection Rate and Mutational Pattern of Drug-Resistant Mutations Between a Large Cohort of Genotype B and Genotype C Hepatitis B Virus-Infected Patients in North China.

    Science.gov (United States)

    Li, Xiaodong; Liu, Yan; Xin, Shaojie; Ji, Dong; You, Shaoli; Hu, Jinhua; Zhao, Jun; Wu, Jingjing; Liao, Hao; Zhang, Xin-Xin; Xu, Dongping

    2017-06-01

    The study aimed to investigate the association of prevalent genotypes in China (HBV/C and HBV/B) with HBV drug-resistant mutations. A total of 13,847 nucleos(t)ide analogue (NA)-treated patients with chronic HBV infection from North China were enrolled. HBV genotypes and resistant mutations were determined by direct sequencing and confirmed by clonal sequencing if necessary. HBV/B, HBV/C, and HBV/D occupied 14.3%, 84.9%, and 0.8% across the study population, respectively. NA usage had no significant difference between HBV/B- and HBV/C-infected patients. Lamivudine-resistant mutations were more frequently detected in HBV/C-infected patients, compared with HBV/B-infected patients (31.67% vs. 25.26%, p M250 V/I/L substitution (0.67% vs. 1.46%, p < 0.01). Multidrug-resistant mutations (defined as coexistence of mutation to nucleoside and nucleotide analogues) were detected in 104 patients. HBV/C-infected patients had a higher detection rate of multidrug-resistant mutation than HBV/B-infected patients (0.83% vs. 0.35%, p < 0.05). The study for the first time clarified that HBV/C-infected patients had a higher risk to develop multidrug-resistant mutations, compared with HBV/B-infected patients; and HBV/C- and HBV/B-infected patients had different inclinations in the ETV-resistant mutational pattern.

  15. The effect of tetraethylammonium on intracellular calcium concentration in Alzheimer's disease fibroblasts with APP, S182 and E5-1 missense mutations.

    Science.gov (United States)

    Failli, P; Tesco, G; Ruocco, C; Ginestroni, A; Amaducci, L; Giotti, A; Sorbi, S

    1996-04-26

    It has been proposed that the lack of intracellular calcium concentration ([Ca2+]i) increase induced by the potassium channel blocker tetraethylammonium (TEA) in skin fibroblast cell lines identifies patients with both sporadic and familial Alzheimer's disease (AD). In order to verify this hypothesis, the effect of TEA on [Ca2+]i was studied in single fura-2-loaded skin fibroblast cell lines available in the Tissue Bank of the Italian Research Council. Four out of eight familial AD patients (one patient with S182 mutation, one patient with E5-1 mutation and two patients with 717 Val-->Ile APP mutation) and two out of five sporadic AD patients showed a positive response to TEA, whereas five out of 11 control lines were unresponsive. Our data suggest that the absence of the TEA-induced increase in [Ca2+]i in skin fibroblast cell lines does not identify all AD patients.

  16. An innovative strategy to clone positive modifier genes of defects caused by mtDNA mutations: MRPS18C as suppressor gene of m.3946G>A mutation in MT-ND1 gene.

    Science.gov (United States)

    Rodríguez-García, María Elena; Cotrina-Vinagre, Francisco Javier; Carnicero-Rodríguez, Patricia; Martínez-Azorín, Francisco

    2017-07-01

    We have developed a new functional complementation approach to clone modifier genes which overexpression is able to suppress the biochemical defects caused by mtDNA mutations (suppressor genes). This strategy consists in transferring human genes into respiratory chain-deficient fibroblasts, followed by a metabolic selection in a highly selective medium. We used a normalized expression cDNA library in an episomal vector (pREP4) to transfect the fibroblasts, and a medium with glutamine and devoid of any carbohydrate source to select metabolically. Growing the patient's fibroblasts in this selective medium, the deficient cells rapidly disappear unless they are rescued by the cDNA of a suppressor gene. The use of an episomal vector allows us to carry out several rounds of transfection/selection (cyclical phenotypic rescue) to enrich the rescue with true clones of suppressor genes. Using fibroblasts from a patient with epileptic encephalopathy with the m.3946G>A (p.E214K) mutation in the MT-ND1 gene, several candidate genes were identified and one of them was characterized functionally. Thus, overexpression of MRPS18C gene (that encode for bS18m protein) suppressed the molecular defects produced by this mtDNA mutation, recovering the complex I activity and reducing the ROS produced by this complex to normal levels. We suggest that modulation of bS18m expression may be an effective therapeutic strategy for the patients with this mutation.

  17. Naturally occurring mutations associated with resistance to HCV NS5B polymerase and NS3 protease inhibitors in treatment-naïve patients with chronic hepatitis C.

    Science.gov (United States)

    Costantino, Angela; Spada, Enea; Equestre, Michele; Bruni, Roberto; Tritarelli, Elena; Coppola, Nicola; Sagnelli, Caterina; Sagnelli, Evangelista; Ciccaglione, Anna Rita

    2015-11-14

    The detection of baseline resistance mutations to new direct-acting antivirals (DAAs) in HCV chronically infected treatment-naïve patients could be important for their management and outcome prevision. In this study, we investigated the presence of mutations, which have been previously reported to be associated with resistance to DAAs in HCV polymerase (NS5B) and HCV protease (NS3) regions, in sera of treatment-naïve patients. HCV RNA from 152 naïve patients (84 % Italian and 16 % immigrants from various countries) infected with different HCV genotypes (21,1a; 21, 1b; 2, 2a; 60, 2c; 22, 3a; 25, 4d and 1, 4k) was evaluated for sequence analysis. Amplification and sequencing of fragments in the NS5B (nt 8256-8640) and NS3 (nt 3420-3960) regions of HCV genome were carried out for 152 and 28 patients, respectively. The polymorphism C316N/H in NS5B region, associated with resistance to sofosbuvir, was detected in 9 of the 21 (43 %) analysed sequences from genotype 1b-infected patients. Naturally occurring mutations V36L, and M175L in the NS3 protease region were observed in 100 % of patients infected with subtype 2c and 4. A relevant proportion of treatment naïve genotype 1b infected patients evaluated in this study harboured N316 polymorphism and might poorly respond to sofosbuvir treatment. As sofosbuvir has been approved for treatment of HCV chronic infection in USA and Europe including Italy, pre-treatment testing for N316 polymorphism on genotype 1b naïve patients should be considered for this drug.

  18. Diagnosis of Xeroderma Pigmentosum Groups A and C by Detection of Two Prevalent Mutations in West Algerian Population: A Rapid Genotyping Tool for the Frequent XPC Mutation c.1643_1644delTG.

    Science.gov (United States)

    Bensenouci, Salima; Louhibi, Lotfi; De Verneuil, Hubert; Mahmoudi, Khadidja; Saidi-Mehtar, Nadhira

    2016-01-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder. Considering that XP patients have a defect of the nucleotide excision repair (NER) pathway which enables them to repair DNA damage caused by UV light, they have an increased risk of developing skin and eyes cancers. In the present study, we investigated the involvement of the prevalent XPA and XPC genes mutations-nonsense mutation (c.682C>T, p.Arg228X) and a two-base-pair (2 bp) deletion (c.1643_1644delTG or p.Val548Ala fsX25), respectively-in 19 index cases from 19 unrelated families in the West of Algeria. For the genetic diagnosis of XPA gene, we proceeded to PCR-RFLP. For the XPC gene, we validated a routine analysis which includes a specific amplification of a short region surrounding the 2 bp deletion using a fluorescent primer and fragment sizing (GeneScan size) on a sequencing gel. Among the 19 index cases, there were 17 homozygous patients for the 2 bp deletion in the XPC gene and 2 homozygous patients carrying the nonsense XPA mutation. Finally, XPC appears to be the major disease-causing gene concerning xeroderma pigmentosum in North Africa. The use of fragment sizing is the simplest method to analyze this 2 bp deletion for the DNA samples coming from countries where the mutation c.1643_1644delTG of XPC gene is prevalent.

  19. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability.

    Science.gov (United States)

    Smelter, Dan F; de Lange, Willem J; Cai, Wenxuan; Ge, Ying; Ralphe, J Carter

    2018-06-01

    Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of

  20. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    Science.gov (United States)

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G(alpha)(s

  1. N1303K (c.3909C>G) Mutation and Splicing: Implication of Its c.[744-33GATT(6); 869+11C>T] Complex Allele in CFTR Exon 7 Aberrant Splicing

    Science.gov (United States)

    Farhat, Raëd; Puissesseau, Géraldine; El-Seedy, Ayman; Pasquet, Marie-Claude; Adolphe, Catherine; Corbani, Sandra; Megarbané, André; Kitzis, Alain; Ladeveze, Véronique

    2015-01-01

    Cystic Fibrosis is the most common recessive autosomal rare disease found in Caucasians. It is caused by mutations on the Cystic Fibrosis Transmembrane Conductance Regulator gene (CFTR) that encodes a protein located on the apical membrane of epithelial cells. c.3909C>G (p.Asn1303Lys, old nomenclature: N1303K) is one of the most common worldwide mutations. This mutation has been found at high frequencies in the Mediterranean countries with the highest frequency in the Lebanese population. Therefore, on the genetic level, we conducted a complete CFTR gene screening on c.3909C>G Lebanese patients. The complex allele c.[744-33GATT(6); 869+11C>T] was always associated with the c.3909C>G mutation in cis in the Lebanese population. In cellulo splicing studies, realized by hybrid minigene constructs, revealed no impact of the c.3909C>G mutation on the splicing process, whereas the associated complex allele induces minor exon skipping. PMID:26075213

  2. Characterization of Nucleoside Reverse Transcriptase Inhibitor-Associated Mutations in the RNase H Region of HIV-1 Subtype C Infected Individuals.

    Science.gov (United States)

    Ngcapu, Sinaye; Theys, Kristof; Libin, Pieter; Marconi, Vincent C; Sunpath, Henry; Ndung'u, Thumbi; Gordon, Michelle L

    2017-11-08

    The South African national treatment programme includes nucleoside reverse transcriptase inhibitors (NRTIs) in both first and second line highly active antiretroviral therapy regimens. Mutations in the RNase H domain have been associated with resistance to NRTIs but primarily in HIV-1 subtype B studies. Here, we investigated the prevalence and association of RNase H mutations with NRTI resistance in sequences from HIV-1 subtype C infected individuals. RNase H sequences from 112 NRTI treated but virologically failing individuals and 28 antiretroviral therapy (ART)-naive individuals were generated and analysed. In addition, sequences from 359 subtype C ART-naive sequences were downloaded from Los Alamos database to give a total of 387 sequences from ART-naive individuals for the analysis. Fisher's exact test was used to identify mutations and Bayesian network learning was applied to identify novel NRTI resistance mutation pathways in RNase H domain. The mutations A435L, S468A, T470S, L484I, A508S, Q509L, L517I, Q524E and E529D were more prevalent in sequences from treatment-experienced compared to antiretroviral treatment naive individuals, however, only the E529D mutation remained significant after correction for multiple comparison. Our findings suggest a potential interaction between E529D and NRTI-treatment; however, site-directed mutagenesis is needed to understand the impact of this RNase H mutation.

  3. Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia.

    Science.gov (United States)

    Wuliandari, Juli Rochmijati; Lee, Siu Fai; White, Vanessa Linley; Tantowijoyo, Warsito; Hoffmann, Ary Anthony; Endersby-Harshman, Nancy Margaret

    2015-07-23

    Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations.

  4. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes.

    Directory of Open Access Journals (Sweden)

    Sean M O'Rourke

    2011-03-01

    Full Text Available To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.

  5. Evolución escolar en Cantabria (1750-1850. // Evolution in Catabria School (1750-1850.

    Directory of Open Access Journals (Sweden)

    Clotilde Gutiérrez Gutiérrez

    2012-11-01

    Full Text Available (ES La evolución que se experimenta en los distintos aspectos relacionados con la enseñanza primaria en Cantabria a lo largo de un siglo (1750-1850 es importante. En el siglo XVIII tiene lugar una serie de cambios en lo que se refiere al pensamiento educativo y a la importancia que, desde los poderes públicos, se da a la educación. Se inicia con los Ilustrados y el apoyo de los primeros Borbones en el poder, a los que siguen las reformas liberales del siglo XIX. En Cantabria, esa evolución tiene una progresión ascendente, y va por delante de otras regiones españolas, tanto en la creación de escuelas como en la formación de los maestros y asistencia de niños y niñas a la escuela. //(EN The evolution of the various aspects of primary education in Cantabria for over a century (1750- 1850 is important. In the eighteenth century, they develop some changes in terms of educational thought and the importance that public authorities give to education. It begins with the Enlightenment and the support of the first Bourbons in power, and this is followed by the liberal reforms of the nineteenth century. In Cantabria, this evolution has an upward progression, and is ahead of other Spanish regions, both in the establishment of schools and teacher training as in assistance of children at school.

  6. Live Cell Imaging Reveals Differential Modifications to Cytoplasmic Dynein Properties by Phospho- and Dephospho-mimic Mutations of the Intermediate Chain 2C S84

    Science.gov (United States)

    Blasier, Kiev R.; Humsi, Michael K.; Ha, Junghoon; Ross, Mitchell W.; Smiley, W. Russell; Inamdar, Nirja A.; Mitchell, David J.; Lo, Kevin W.-H.; Pfister, K. Kevin

    2014-01-01

    Cytoplasmic dynein is a multi-subunit motor protein responsible for intracellular cargo transport toward microtubule minus ends. There are multiple isoforms of the dynein intermediate chain (DYNC1I, IC) which is encoded by two genes. One way to regulate cytoplasmic dynein is by IC phosphorylation. The IC-2C isoform is expressed in all cells and the functional significance of phosphorylation on IC-2C serine 84 was investigated using live cell imaging of fluorescent protein-tagged wild type IC-2C (WT) and phospho- and dephospho-mimic mutant isoforms in axonal transport model systems. Both mutations modulated dynein functional properties. The dephospho-mimic mutant IC-2C S84A had greater co-localization with mitochondria than IC-2C wild-type (WT) or the phospho-mimic mutant IC-2C S84D. The dephospho-mimic mutant IC-2C S84A was also more likely to be motile than the phospho-mimic mutant IC-2C S84D or IC-2C WT. In contrast, the phospho-mimic mutant IC-2C S84D mutant was more likely to move in the retrograde direction than was the IC-2C S84A mutant. The phospho-mimic IC-2C S84D was also as likely as IC-2C WT to co-localize with mitochondria. Both the S84D phospho- and S84A, dephospho-mimic mutants were found to be capable of microtubule minus end directed (retrograde) movement in axons. They were also observed to be passively transported in the anterograde direction. These data suggest that the IC-2C S84 has a role in modulating dynein properties. PMID:24798412

  7. Was the C282Y mutation an Irish Gaelic mutation that the Vikings helped disseminate?

    DEFF Research Database (Denmark)

    Olsson, Karl Sigvard; Konar, Jan; Dufva, Inge Hoegh

    2011-01-01

    The HLA-related hemochromatosis mutation C282Y is thought to have originated in Ireland in a person with HLA-A3-B14 and was spread by Vikings. Irish people with two HLA-A3 alleles had a high risk of hemochromatosis. In this study, from west Sweden, we wanted to test these hypotheses.......The HLA-related hemochromatosis mutation C282Y is thought to have originated in Ireland in a person with HLA-A3-B14 and was spread by Vikings. Irish people with two HLA-A3 alleles had a high risk of hemochromatosis. In this study, from west Sweden, we wanted to test these hypotheses....

  8. Ab-initio studies of the Sc adsorption and the ScN thin film formation on the GaN(000-1)-(2 × 2) surface

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Sánchez-Ochoa, F.; Cocoletzi, Gregorio H.; Rivas-Silva, J.F.; Takeuchi, Noboru

    2013-01-01

    First principles total energy calculations have been performed to investigate the initial stages of the Sc adsorption and ScN thin film formation on the GaN(000-1)-(2 × 2) surface. Studies are done within the periodic density functional theory as implemented in the PWscf code of the Quantum ESPRESSO package. The Sc adsorption at high symmetry sites results in the bridge site as the most stable structure. When a Sc monolayer is deposited above the surface the T4 site results as the most stable geometry. The Sc migration into the first Ga monolayer induces the Ga displaced ad-atom to be adsorbed at the T4-2 site. A ScN bilayer may be obtained under the Ga monolayer. Finally a ScN bilayer may be formed in the wurtzite phase above the surface. The formation energy plots show that in the moderate Ga-rich conditions we obtain the formation of a ScN bilayer under the gallium monolayer. However at N-rich conditions the formation of ScN bilayer above the surface is the most favorable structure. We report the density of states to explain the electronic structure of the most favorable geometries. - Highlights: • Studies of the initial stages in the formation of Sc and ScN structures on GaN • In the adsorption of Sc on the GaN the Br site is the most favorable geometry. • When a Sc replaces a Ga of the first monolayer the displaced Ga occupies a T4-2 site. • For Ga-rich conditions there is formation of ScN under the Ga monolayer. • In N-rich conditions there is formation of ScN in the wurtzite phase

  9. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui-Yong [Shandong University of Technology, Zibo 255049 (China); Ji, Feng-Qin, E-mail: fengqinji@mail.hzau.edu.cn [National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Center for Bioinformatics, Huazhong Agricultural University, Wuhan 430070 (China)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  10. The Slavic NBN Founder Mutation: A Role for Reproductive Fitness?

    Directory of Open Access Journals (Sweden)

    Eva Seemanova

    Full Text Available The vast majority of patients with Nijmegen Breakage Syndrome (NBS are of Slavic origin and carry a deleterious deletion (c.657del5; rs587776650 in the NBN gene on chromosome 8q21. This mutation is essentially confined to Slavic populations and may thus be considered a Slavic founder mutation. Notably, not a single parenthood of a homozygous c.657del5 carrier has been reported to date, while heterozygous carriers do reproduce but have an increased cancer risk. These observations seem to conflict with the considerable carrier frequency of c.657del5 of 0.5% to 1% as observed in different Slavic populations because deleterious mutations would be eliminated quite rapidly by purifying selection. Therefore, we propose that heterozygous c.657del5 carriers have increased reproductive success, i.e., that the mutation confers heterozygote advantage. In fact, in our cohort study of the reproductive history of 24 NBS pedigrees from the Czech Republic, we observed that female carriers gave birth to more children on average than female non-carriers, while no such reproductive differences were observed for males. We also estimate that c.657del5 likely occurred less than 300 generations ago, thus supporting the view that the original mutation predated the historic split and subsequent spread of the 'Slavic people'. We surmise that the higher fertility of female c.657del5 carriers reflects a lower miscarriage rate in these women, thereby reflecting the role of the NBN gene product, nibrin, in the repair of DNA double strand breaks and their processing in immune gene rearrangements, telomere maintenance, and meiotic recombination, akin to the previously described role of the DNA repair genes BRCA1 and BRCA2.

  11. Chronic pancreatitis with pancreaticolithiasis and pseudocyst in a 5-year-old boy with homozygous SPINK1 mutation

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Axel C.; Hirsch, Wolfgang [University of Leipzig, Department of Diagnostic Radiology - Pediatric Radiology, Faculty of Medicine, Leipzig (Germany); Teich, Niels; Caca, Karel [University of Leipzig, Department of Internal Medicine II - Gastroenterology / Hepatology, Faculty of Medicine, Leipzig (Germany); Limbach, Anne [University of Leipzig, Department of Pediatrics, Faculty of Medicine, Leipzig (Germany)

    2005-09-01

    We report a 5-year-old boy with a 5-month history of symptoms owing to chronic pancreatitis. Abdominal imaging revealed a large pseudocyst in the pancreatic tail and concretions in the main pancreatic duct. Successful endoscopic papillotomy and stent implantation were performed. Genetic testing showed homozygous SPINK1-N34S mutation, which is an established risk factor for chronic pancreatitis. (orig.)

  12. Chronic pancreatitis with pancreaticolithiasis and pseudocyst in a 5-year-old boy with homozygous SPINK1 mutation

    International Nuclear Information System (INIS)

    Kuehn, Axel C.; Hirsch, Wolfgang; Teich, Niels; Caca, Karel; Limbach, Anne

    2005-01-01

    We report a 5-year-old boy with a 5-month history of symptoms owing to chronic pancreatitis. Abdominal imaging revealed a large pseudocyst in the pancreatic tail and concretions in the main pancreatic duct. Successful endoscopic papillotomy and stent implantation were performed. Genetic testing showed homozygous SPINK1-N34S mutation, which is an established risk factor for chronic pancreatitis. (orig.)

  13. Stepwise Exposure of Staphylococcus aureus to Pleuromutilins Is Associated with Stepwise Acquisition of Mutations in rplC and Minimally Affects Susceptibility to Retapamulin▿

    Science.gov (United States)

    Gentry, Daniel R.; Rittenhouse, Stephen F.; McCloskey, Lynn; Holmes, David J.

    2007-01-01

    To assess their effects on susceptibility to retapamulin in Staphylococcus aureus, first-, second-, and third-step mutants with elevated MICs to tiamulin and other investigational pleuromutilin compounds were isolated and characterized through exposure to high drug concentrations. All first- and second-step mutations were in rplC, encoding ribosomal protein L3. Most third-step mutants acquired a third mutation in rplC. While first- and second-step mutations did cause an elevation in tiamulin and retapamulin MICs, a significant decrease in activity was not seen until a third mutation was acquired. All third-step mutants exhibited severe growth defects, and faster-growing variants arose at a high frequency from most isolates. These faster-growing variants were found to be more susceptible to pleuromutilins. In the case of a mutant with three alterations in rplC, the fast-growing variants acquired an additional mutation in rplC. In the case of fast-growing variants of isolates with two mutations in rplC and at least one mutation at an unmapped locus, one of the two rplC mutations reverted to wild type. These data indicate that mutations in rplC that lead to pleuromutilin resistance have a direct, negative effect on fitness. While reduction in activity of retapamulin against S. aureus can be seen through mutations in rplC, it is likely that target-specific resistance to retapamulin will be slow to emerge due to the need for three mutations for a significant effect on activity and the fitness cost of each mutational step. PMID:17404009

  14. Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.

    Science.gov (United States)

    Hedrich, Ulrike B S; Liautard, Camille; Kirschenbaum, Daniel; Pofahl, Martin; Lavigne, Jennifer; Liu, Yuanyuan; Theiss, Stephan; Slotta, Johannes; Escayg, Andrew; Dihné, Marcel; Beck, Heinz; Mantegazza, Massimo; Lerche, Holger

    2014-11-05

    Mutations in SCN1A and other ion channel genes can cause different epileptic phenotypes, but the precise mechanisms underlying the development of hyperexcitable networks are largely unknown. Here, we present a multisystem analysis of an SCN1A mouse model carrying the NaV1.1-R1648H mutation, which causes febrile seizures and epilepsy in humans. We found a ubiquitous hypoexcitability of interneurons in thalamus, cortex, and hippocampus, without detectable changes in excitatory neurons. Interestingly, somatic Na(+) channels in interneurons and persistent Na(+) currents were not significantly changed. Instead, the key mechanism of interneuron dysfunction was a deficit of action potential initiation at the axon initial segment that was identified by analyzing action potential firing. This deficit increased with the duration of firing periods, suggesting that increased slow inactivation, as recorded for recombinant mutated channels, could play an important role. The deficit in interneuron firing caused reduced action potential-driven inhibition of excitatory neurons as revealed by less frequent spontaneous but not miniature IPSCs. Multiple approaches indicated increased spontaneous thalamocortical and hippocampal network activity in mutant mice, as follows: (1) more synchronous and higher-frequency firing was recorded in primary neuronal cultures plated on multielectrode arrays; (2) thalamocortical slices examined by field potential recordings revealed spontaneous activities and pathological high-frequency oscillations; and (3) multineuron Ca(2+) imaging in hippocampal slices showed increased spontaneous neuronal activity. Thus, an interneuron-specific generalized defect in action potential initiation causes multisystem disinhibition and network hyperexcitability, which can well explain the occurrence of seizures in the studied mouse model and in patients carrying this mutation. Copyright © 2014 the authors 0270-6474/14/3414874-16$15.00/0.

  15. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    Science.gov (United States)

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Mast Cell Leukaemia: c-KIT Mutations Are Not Always Positive

    Directory of Open Access Journals (Sweden)

    Magalie Joris

    2012-01-01

    Full Text Available Mast cell leukemia (MCL is a rare and aggressive disease with poor prognosis and short survival time. D816V c-KIT mutation is the most frequent molecular abnormality and plays a crucial role in the pathogenesis and development of the disease. Thus, comprehensive diagnostic investigations and molecular studies should be carefully carried out to facilitate the therapeutic choice. A MCL patient’s case with rare phenotypic and genotypic characteristics is described with review of major clinical biological and therapeutic approaches in MCL.

  17. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle.

    Science.gov (United States)

    Koltes, James E; Mishra, Bishnu P; Kumar, Dinesh; Kataria, Ranjit S; Totir, Liviu R; Fernando, Rohan L; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M

    2009-11-17

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle.

  18. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca2+-sensitizing mutations.

    Science.gov (United States)

    Stevens, Charles M; Rayani, Kaveh; Singh, Gurpreet; Lotfalisalmasi, Bairam; Tieleman, D Peter; Tibbits, Glen F

    2017-07-14

    Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca 2+ TnC binding Ca 2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnI SW ). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca 2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca 2+ and TnI SW Surprisingly the Ca 2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca 2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca 2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca 2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca 2+ -binding site of cTnC. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The three stages of epilepsy in patients with CDKL5 mutations.

    Science.gov (United States)

    Bahi-Buisson, Nadia; Kaminska, Anna; Boddaert, Nathalie; Rio, Marlène; Afenjar, Alexandra; Gérard, Marion; Giuliano, Fabienne; Motte, Jacques; Héron, Delphine; Morel, Marie Ange N'guyen; Plouin, Perrine; Richelme, Christian; des Portes, Vincent; Dulac, Olivier; Philippe, Christophe; Chiron, Catherine; Nabbout, Rima; Bienvenu, Thierry

    2008-06-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene are responsible for a severe encephalopathy with early epilepsy. So far, the electroclinical phenotype remains largely unknown and no clear genotype-phenotype correlations have been established. To characterize the epilepsy associated with CDKL5 mutations and to look for a relationship between the genotype and the course of epilepsy. We retrospectively analyzed the electroclinical phenotypes of 12 patients aged from 2.5 to 19 years diagnosed with pathogenic CDKL5 mutations and one patient with a novel intronic sequence variation of uncertain pathogenicity and examined whether the severity of the epilepsy was linked to the type and location of mutations. The epilepsy course reveals three successive stages: (Stage I) early epilepsy (onset 1-10 weeks) with normal interictal electroencephalogram (EEG) (10/13) despite frequent convulsive seizures; (Stage II) epileptic encephalopathy with infantile spasms (8/8) and hypsarrhythmia (8/8). At the age of evaluation, seven patients were seizure free and six had developed refractory epilepsy (stage III) with tonic seizures and myoclonia (5/6). Interestingly, the patients carrying a CDKL5 mutations causing a truncation of the catalytic domain tended to develop a more frequent refractory epilepsy than patients with mutations located downstream (4/6, 66.6% versus 1/6, 16%) although, these trends are not yet significant. Our data contribute to a better definition of the epileptic phenotype in CDKL5 mutations, and might give some clues to a potential relationship between the phenotype and the genotype in these patients.

  20. A novel -192c/g mutation in the proximal P2 promoter of the hepatocyte nuclear factor-4 alpha gene (HNF4A) associates with late-onset diabetes

    DEFF Research Database (Denmark)

    Ek, Jakob; Hansen, Sara P; Lajer, Maria

    2006-01-01

    Recently, it has been shown that mutations in the P2 promoter of the hepatocyte nuclear factor (HNF)-4 alpha gene (HNF4A) cause maturity-onset diabetes of the young (MODY), while single nucleotide polymorphisms in this locus are associated with type 2 diabetes. In this study, we examined 1,189 bp...... of the P2 promoter and the associated exon 1D of HNF4A for variations associated with diabetes in 114 patients with type 2 diabetes, 72 MODYX probands, and 85 women with previous gestational diabetes mellitus. A -192c/g mutation was found in five patients. We screened 1,587 diabetic subjects and 4......,812 glucose-tolerant subjects for the -192c/g mutation and identified 5 diabetic and 1 glucose-tolerant mutation carriers (P=0.004). Examination of the families showed that carriers of the -192c/g mutation had a significantly impaired glucose-stimulated insulin release and lower levels of serum total...

  1. Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings.

    Science.gov (United States)

    Song, X Q; Fukao, T; Watanabe, H; Shintaku, H; Hirayama, K; Kassovska-Bratinova, S; Kondo, N; Mitchell, G A

    1998-01-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT; EC 2.8.3.5; locus symbol OXCT) is the key enzyme of ketone body utilization. Hereditary SCOT deficiency (MIM 245050) causes episodes of severe ketoacidosis. We developed a transient expression system for mutant SCOT cDNAs, using immortalized SCOT-deficient fibroblasts. This paper describes and characterizes three missense mutations in two SCOT-deficient siblings from Japan. They are genetic compounds who inherited the mutation C456F (c1367 G-->T) from their mother. Their paternal allele contains two mutations in cis, T58M (c173 C-->T) and V133E (c398T-->A). Expression of SCOT cDNAs containing either V133E or C456F produces no detectable SCOT activity, whereas T58M is functionally neutral. T58M is a rare sequence variant not detected in 100 control Japanese alleles. In fibroblasts from the proband (GS02), in whom immunoblot demonstrated no detectable SCOT peptide, we measured an apparent residual SCOT activity of 20-35%. We hypothesize that the high residual SCOT activity in homogenates may be an artifact caused by use of the substrate, acetoacetyl-CoA by other enzymes. Expression of mutant SCOT cDNAs more accurately reflects the residual activity of SCOT than do currently available assays in cell or tissue homogenates.

  2. The Frequency of Factor V Leiden, Prothrombin G20210A and Methylenetetrahydrofolate Reductase C677T Mutations in Migraine Patients

    Directory of Open Access Journals (Sweden)

    Ruhsen Öcal

    2010-12-01

    Full Text Available OBJECTIVE: Migraine is an independent risk factor for ischemic stroke, but its pathophysiology is still unclear. Genetic factors that predispose patients to thrombosis have been studied in patients with migraine to highlight the pathogenesis, but the results remain controversial. In this study, the frequencies of factor V Leiden (FVL, prothrombin (Pt G20210A and methylenetetrahydrofolate reductase (MTHFR C677T mutations were investigated. METHODS: One hundred and sixty patients aged of 15 to 55 years with no history of systemic disease and who had been diagnosed as migraine according to the International Headache Society (IHS diagnostic criteria at Baskent University Hospital Neurology Outpatient Clinics were investigated for FVL, Pt G20210A and MTHFR C677T mutations from their genomic DNA, and the results were compared with those of healthy controls. RESULTS: One hundred and fifty five (96.9% of 160 migraine patients were homozygote normal, 5 (3.1% were heterozygote and none of them were homozygote mutant for FVL. The control group had 9.8% heterozygote individuals but the difference between the percentages was not statistically significant (p> 0.05. There were no homozygote mutant individuals in the Turkish population study in normal subjects like our study. Thirty nine (24.4% of 160 migraine patients were heterozygote and 8 (5% were homozygote mutant for MTHFR C677T. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.15. Three (1.9% of 160 migraine patients were heterozygote and 5 (2.9% of the control group were heterozygote mutant for Pt G20210A mutation. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.420. CONCLUSION: Our study indicates that FVL, Pt G20210A and MTHFR C677T gene mutations, which are considered

  3. The Frequency of Factor V Leiden, Prothrombin G20210A and Methylenetetrahydrofolate Reductase C677T Mutations in Migraine Patients

    Directory of Open Access Journals (Sweden)

    Ruhsen Öcal

    2010-12-01

    Full Text Available OBJECTIVE: Migraine is an independent risk factor for ischemic stroke, but its pathophysiology is still unclear. Genetic factors that predispose patients to thrombosis have been studied in patients with migraine to highlight the pathogenesis, but the results remain controversial. In this study, the frequencies of factor V Leiden (FVL, prothrombin (Pt G20210A and methylenetetrahydrofolate reductase (MTHFR C677T mutations were investigated. METHODS: One hundred and sixty patients aged of 15 to 55 years with no history of systemic disease and who had been diagnosed as migraine according to the International Headache Society (IHS diagnostic criteria at Baskent University Hospital Neurology Outpatient Clinics were investigated for FVL, Pt G20210A and MTHFR C677T mutations from their genomic DNA, and the results were compared with those of healthy controls. RESULTS: One hundred and fifty five (96.9% of 160 migraine patients were homozygote normal, 5 (3.1% were heterozygote and none of them were homozygote mutant for FVL. The control group had 9.8% heterozygote individuals but the difference between the percentages was not statistically significant (p> 0.05. There were no homozygote mutant individuals in the Turkish population study in normal subjects like our study. Thirty nine (24.4% of 160 migraine patients were heterozygote and 8 (5% were homozygote mutant for MTHFR C677T. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.15. Three (1.9% of 160 migraine patients were heterozygote and 5 (2.9% of the control group were heterozygote mutant for Pt G20210A mutation. The control group had 37 (34.9% heterozygote and 6 (5.6% homozygote mutant individuals. The difference between the percentages was not statistically significant (p= 0.420. CONCLUSION: Our study indicates that FVL, Pt G20210A and MTHFR C677T gene mutations, which are considered

  4. A novel mutation of PAX3 in a Chinese family with Waardenburg syndrome.

    Science.gov (United States)

    Qin, Wei; Shu, Anli; Qian, Xueqing; Gao, Jianjun; Xing, Qinghe; Zhang, Juan; Zheng, Yonglan; Li, Xingwang; Li, Sheng; Feng, Guoyin; He, Lin

    2006-08-28

    The molecular characterization of 34 members of a Chinese family, with 22 members in four generations, affected with Waardenburg syndrome (WS1). A detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with haplotype analysis was performed. Mutation screening was carried out in the candidate gene by sequencing of amplified products. A maximum two-point lod score of 6.53 at theta = 0.00 was obtained with marker D2S2248. Haplotype analysis placed the WS1 locus to a 45.74 cM region between D2S117 and D2S206, in close proximity to the PAX3 gene on chromosome 2q35. Mutation screening in PAX3 identified a 701T > C mutation which converted a highly conserved Leu to Pro. This nucleotide alteration was neither seen in unaffected members of the family nor found in 50 unrelated control subjects. The present study identified a novel 701T > C mutation in PAX3. The mutation observed in this family highlights the phenotypic heterogeneity of the disorder.

  5. Is the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene due to a founder effect in Chinese head and neck paraganglioma patients?

    Science.gov (United States)

    Zha, Yang; Chen, Xing-ming; Lam, Ching-wan; Lee, Soo-chin; Tong, Sui-fan; Gao, Zhi-qiang

    2011-08-01

    Three Chinese patients with head and neck paragangliomas have been reported to carry the c.3G>C mutation in the succinate dehydrogenase subunit D (SDHD) gene. In addition, in our hospital, two further patients were identified who have the same mutation. It is unclear whether the c.3G>C mutation in Chinese patients is a recurrent mutation or if it is due to a founder effect. We conducted haplotype analysis on these patients to answer this question. Individual case-control study. Germ-line mutations were confirmed in the patients and their families examined in this study using direct sequencing. We also constructed and analyzed haplotypes in four Chinese families. Genotype frequencies were compared to the control group. Three of four families shared the same haplotype, which rarely occurred in the control group. The last family shared a very short area on the physical map with the other three families. There is a founder effect in Chinese head and neck paraganglioma patients carrying the SDHD c.3G>C mutation. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  6. Hereditary sensory and autonomic neuropathy type I in a Chinese family: British C133W mutation exists in the Chinese.

    Science.gov (United States)

    Bi, Hongyan; Gao, Yunying; Yao, Sheng; Dong, Mingrui; Headley, Alexander Peter; Yuan, Yun

    2007-10-01

    Hereditary sensory and autonomic neuropathy type I (HSAN I) is an autosomal dominant disorder of the peripheral nervous system characterized by marked progressive sensory loss, with variable autonomic and motor involvement. The HSAN I locus maps to chromosome 9q22.1-22.3 and is caused by mutations in the gene coding for serine palmitoyltransferase long chain base subunit 1 (SPTLC1). Sequencing in HSAN I families have previously identified mutations in exons 5, 6 and 13 of this gene. Here we report the clinical, electrophysiological and pathological findings of a proband in a Chinese family with HSAN I. The affected members showed almost typical clinical features. Electrophysiological findings showed an axonal, predominantly sensory, neuropathy with motor and autonomic involvement. Sural nerve biopsy showed loss of myelinated and unmyelinated fibers. SPTLC1 mutational analysis revealed the C133W mutation, a mutation common in British HSAN I families.

  7. Cardiac safety implications of hNav1.5 blockade and a framework for preclinical evaluation

    Directory of Open Access Journals (Sweden)

    Gul eErdemli

    2012-01-01

    Full Text Available The human cardiac sodium channel (hNav1.5, encoded by the SCN5A gene is critical for action potential generation and propagation in the heart. Drug-induced sodium channel inhibition decreases the rate of cardiomyocyte depolarization and consequently conduction velocity and can have serious implications for cardiac safety. Genetic mutations in hNav1.5 have also been linked to a number of cardiac diseases. Therefore, off-target hNav1.5 inhibition may be considered a risk marker for a drug candidate. Given the potential safety implications for patients and the costs of late stage drug development, detection and mitigation of hNav1.5 liabilities early in drug discovery and development becomes important. In this review, we describe a preclinical strategy to identify hNav1.5 liabilities that incorporates in vitro, in vivo, and in silico techniques and the application of this information in the integrated risk assessment at different stages of drug discovery and development.

  8. Mutational analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in Tunisian patients with nonsyndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-01-01

    We explored the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA Ser(UCN) genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA Ser(UCN) gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene

  9. Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses

    DEFF Research Database (Denmark)

    Gottwein, J.M.; Scheel, Troels Kasper Høyer; Hoegh, A.M.

    2007-01-01

    BACKGROUND & AIMS: Recently, full viral life cycle hepatitis C virus (HCV) cell culture systems were developed for strain JFH1 (genotype 2a) and an intragenotypic 2a/2a genome (J6/JFH). We aimed at exploiting the unique JFH1 replication characteristics to develop culture systems for genotype 3a......, which has a high prevalence worldwide. METHODS: Huh7.5 cells were transfected with RNA transcripts of an intergenotypic 3a/JFH1 recombinant with core, E1, E2, p7, and NS2 of the 3a reference strain S52, and released viruses were passaged. Cultures were examined for HCV core and/or NS5A expression...... (immunostaining), HCV RNA titers (real-time PCR), and infectivity titers (50% tissue culture infectious dose). The role of mutations identified by sequencing of recovered S52/JFH1 viruses was analyzed by reverse genetics studies. RESULTS: S52/JFH1 and J6/JFH viruses passaged in Huh7.5 cells showed comparable...

  10. Two recessive mutations in FGF5 are associated with the long-hair phenotype in donkeys.

    Science.gov (United States)

    Legrand, Romain; Tiret, Laurent; Abitbol, Marie

    2014-09-25

    Seven donkey breeds are recognized by the French studbook. Individuals from the Pyrenean, Provence, Berry Black, Normand, Cotentin and Bourbonnais breeds are characterized by a short coat, while those from the Poitou breed (Baudet du Poitou) are characterized by a long-hair phenotype. We hypothesized that loss-of-function mutations in the FGF5 (fibroblast growth factor 5) gene, which are associated with a long-hair phenotype in several mammalian species, may account for the special coat feature of Poitou donkeys. To the best of our knowledge, mutations in FGF5 have never been described in Equidae. We sequenced the FGF5 gene from 35 long-haired Poitou donkeys, as well as from a panel of 67 short-haired donkeys from the six other French breeds and 131 short-haired ponies and horses. We identified a recessive c.433_434delAT frameshift deletion in FGF5, present in Poitou and three other donkey breeds and a recessive nonsense c.245G > A substitution, present in Poitou and four other donkey breeds. The frameshift deletion was associated with the long-hair phenotype in Poitou donkeys when present in two copies (n = 31) or combined with the nonsense mutation (n = 4). The frameshift deletion led to a stop codon at position 159 whereas the nonsense mutation led to a stop codon at position 82 in the FGF5 protein. In silico, the two truncated FGF5 proteins were predicted to lack the critical β strands involved in the interaction between FGF5 and its receptor, a mandatory step to inhibit hair growth. Our results highlight the allelic heterogeneity of the long-hair phenotype in donkeys and enlarge the panel of recessive FGF5 loss-of-function alleles described in mammals. Thanks to the DNA test developed in this study, breeders of non-Poitou breeds will have the opportunity to identify long-hair carriers in their breeding stocks.

  11. The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating.

    Directory of Open Access Journals (Sweden)

    Chai Ann Ng

    Full Text Available Human ether-à-go-go-related gene (hERG K(+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

  12. Recurrent occurrences of CDKL5 mutations in patients with epileptic encephalopathy.

    Science.gov (United States)

    Yamamoto, Toshiyuki; Shimojima, Keiko; Kimura, Nobusuke; Mogami, Yukiko; Usui, Daisuke; Takayama, Rumiko; Ikeda, Hiroko; Imai, Katsumi

    2015-01-01

    The cyclin-dependent kinase-like 5 gene (CDKL5) is recognized as one of the genes responsible for epileptic encephalopathy. We identified CDKL5 mutations in five Japanese patients (one male and four female) with epileptic encephalopathy. Although all mutations were of de novo origin, they were located in the same positions as previously reported pathogenic mutations. These recurrent occurrences of de novo mutations in the same loci may indicate hot spots of nucleotide alteration.

  13. ABOLICIONISMO INGLÊS E TRÁFICO DE CRIANÇAS ESCRAVIZADAS PARA O BRASIL, 1810-1850

    OpenAIRE

    VALENCIA VILLA, Carlos; FLORENTINO, Manolo

    2016-01-01

    RESUMO Sob constante estrangulamento por parte da Inglaterra desde 1810, o comércio negreiro para o Brasil se adaptou até o seu fim definitivo, em 1850, a um padrão de demanda das elites escravistas pautado em crescentes aquisições de crianças africanas. Semelhante movimento revela uma lógica demográfica flexível, fundada na utilização do próprio tráfico visando estender temporalmente a escravidão. A aferição de semelhante hipótese está calcada no manejo dos registros dos navios negreiros con...

  14. A Novel Homozygous MYO7A Mutation: Case Report

    Directory of Open Access Journals (Sweden)

    Mahsa Ahmadi

    2018-05-01

    Full Text Available MYO7A is an unconventional myosin that is essential for ordinary hearing and vision; mutations in the MYO7A gene result in Usher syndrome type 1B and other disorders. In this manuscript, we reported a mutation (c.4705delA in exon 35, causing the alteration of a Ser amino acid to Ala at codon 1569 (p.H2027del located within the first FERMdomain of the human protein myosin VIIA. This mutation involved in the pathogenesis of hearing loss, congenital night blindness, muscular weakness, skin problem, and difficulty in keeping balance in the 13-year-old female. After checkup the patient’s DNA was extracted from peripheral blood and amplification was performed by PCR. Sequencing method was performed for identification of the mutation. The c.4705delA mutation in exon 35 was found in the patient in heterozygosis form; this means that her mother and father were carriers. This mutation is located on the tail of the myosinVIIA protein and is associated with several disorders.

  15. Suprachiasmatic nuclei of the fetal rat: characterization of a functional circadian clock using 14C-labeled deoxyglucose

    International Nuclear Information System (INIS)

    Reppert, S.M.; Schwartz, W.J.

    1984-01-01

    The circadian clock located in the suprachiasmatic nuclei (SCN) was characterized in the fetal rat by using 14 C-labeled deoxyglucose to monitor glucose utilization (metabolic activity) of the nuclei. A clear day-night oscillation of metabolic activity was detectable in the fetal SCN from the 19th through the 21st days of gestation; the nuclei were metabolically active during the subjective day and metabolically inactive during the subjective night. During the subjective day on gestational day 21, the fetal SCN were found to manifest high metabolic activity for most of the subjective day. The authors were able to acutely dissociate SCN metabolic activity in the mother rat from that in the fetus by exposing the pregnant animals to light during the normal dark period of diurnal lighting on gestational day 20. The results show the utility of the deoxyglucose method for directly investigating prenatally the function of the biological clock located in the SCN

  16. The second activating glucokinase mutation (A456V)

    DEFF Research Database (Denmark)

    Christesen, Henrik B T; Jacobsen, Bendt B; Odili, Stella

    2002-01-01

    for mutations in candidate genes revealed a heterozygous glucokinase mutation in exon 10, substituting valine for alanine at codon 456 (A456V) in the proband and his mother. The purified recombinant glutathionyl S-transferase fusion protein of the A456V glucokinase revealed a decreased glucose S(0.5) (the...

  17. Mutations in HAMP and HJV genes and their impact on expression of clinical hemochromatosis in a cohort of 100 Spanish patients homozygous for the C282Y mutation of HFE gene.

    Science.gov (United States)

    Altès, Albert; Bach, Vanessa; Ruiz, Angels; Esteve, Anna; Felez, Jordi; Remacha, Angel F; Sardà, M Pilar; Baiget, Montserrat

    2009-10-01

    Most hereditary hemochromatosis (HH) patients are homozygous for the C282Y mutation of the HFE gene. Nevertheless, penetrance of the disease is very variable. In some patients, penetrance can be mediated by concomitant mutations in other iron master genes. We evaluated the clinical impact of hepcidin (HAMP) and hemojuvelin mutations in a cohort of 100 Spanish patients homozygous for the C282Y mutation of the HFE gene. HAMP and hemojuvelin mutations were evaluated in all patients by bidirectional direct cycle sequencing. Phenotype-genotype interactions were evaluated. A heterozygous mutation of the HAMP gene (G71D) was found in only one out of 100 cases. Following, we performed a study of several members of that family, and we observed several members had a digenic inheritance of the C282Y mutation of the HFE gene and the G71D mutation of the HAMP gene. This mutation in the HAMP gene did not modify the phenotype of the individuals who were homozygous for the C282Y mutation. One other patient presented a new polymorphism in the hemojuvelin gene, without consequences in iron load or clinical course of the disease. In conclusion, HAMP and hemojuvelin mutations are rare among Spanish HH patients, and their impact in this population is not significant.

  18. Uniform and pitting corrosion events induced by SCN- anions on Al alloys surfaces and the effect of UV light

    International Nuclear Information System (INIS)

    Amin, Mohammed A.

    2011-01-01

    The influence of the alloying elements on the uniform and pitting corrosion processes of Al-6061, Al-4.5%Cu, Al-7.5%Cu, Al-6%Si and Al-12%Si alloys was studied in 0.50 M KSCN solution at 25 o C. Open-circuit potential, Tafel polarization, linear polarization resistance (LPR) and ICP-AES measurements were used to study the uniform corrosion process on the surfaces of the tested alloys. Cyclic polarization, potentiostatic current-time transients and impedance techniques were employed for pitting corrosion studies. Obtained results were compared with pure Al. Passivation kinetics of the tested Al samples were also studied as a function of applied potential, [SCN - ] and sample composition by means of potentiostatic current transients. The induction time, after which the growth of stable pits occurs, decreased with increasing applied potential and [SCN - ]. Regarding to uniform corrosion, alloyed Cu was found to enhance the corrosion rate, while alloyed Si suppressed it. Alloying elements of the tested samples diminished pitting attack to an extent depending on the percentage of the alloying element in the sample. Among the investigated materials, Al-Si alloys exhibited the highest corrosion resistance towards uniform and pitting corrosion processes in KSCN solutions. The passive and dissolution behaviour of Al was also studied under the conditions of continuous illumination (300-450 nm) based on cyclic polarization and potentiostatic techniques. The incident photons had a little influence on pit initiation and a marked effect on pit growth. These explained in terms of a photo-induced modification of the passive film formed on the anode surface, which render it more resistant to pitting. The effects of UV photons energy and period of illumination on the morphology of the pitted surfaces were also studied.

  19. Immigration, Galician and Santiago de Cuba: a Vision from the Notarial Protocols (1850-1898

    Directory of Open Access Journals (Sweden)

    Mónica García-Salgado

    2016-02-01

    Full Text Available The present research intends to approach the topic of the Galician presence in the jurisdiction of Santiago de Cuba, declared as such from the year 1847. It includes a balance on the factors of attraction and repulsion that facilitate the Galician immigrant's establishment in Cuba and Santiago de Cuba in the period 1850-1898, as well as characteristic some of their main ones. The study has been carried out starting from the information that offers the Notarial Protocols among those that Manuel Caminero´s Clerkships, Heraclio García, José Knot, the Real one Public of Government and of Guerra, and those of Caney and Copper.

  20. Mutations in 23S rRNA at the Peptidyl Transferase Center and Their Relationship to Linezolid Binding and Cross-Resistance

    DEFF Research Database (Denmark)

    Long, Katherine; Munck, Christian

    2010-01-01

    The oxazolidinone antibiotic linezolid targets the peptidyl transferase center (PTC) on the bacterial ribosome. Thirteen single and four double 23S rRNA mutations were introduced into a Mycobacterium smegmatis strain with a single rRNA operon. Converting bacterial base identity by single mutations...... at positions 2032, 2453, and 2499 to human cytosolic base identity did not confer significantly reduced susceptibility to linezolid. The largest decrease in linezolid susceptibility for any of the introduced single mutations was observed with the G2576U mutation at a position that is 7.9 Å from linezolid....... Smaller decreases were observed with the A2503G, U2504G, and G2505A mutations at nucleotides proximal to linezolid, showing that the degree of resistance conferred is not simply inversely proportional to the nucleotide-drug distance. The double mutations G2032A-C2499A, G2032A-U2504G, C2055A-U2504G, and C...

  1. BRCA Genetic Screening in Middle Eastern and North African: Mutational Spectrum and Founder BRCA1 Mutation (c.798_799delTT in North African

    Directory of Open Access Journals (Sweden)

    Abdelilah Laraqui

    2015-01-01

    Full Text Available Background. The contribution of BRCA1 mutations to both hereditary and sporadic breast and ovarian cancer (HBOC has not yet been thoroughly investigated in MENA. Methods. To establish the knowledge about BRCA1 mutations and their correlation with the clinical aspect in diagnosed cases of HBOC in MENA populations. A systematic review of studies examining BRCA1 in BC women in Cyprus, Jordan, Egypt, Lebanon, Morocco, Algeria, and Tunisia was conducted. Results. Thirteen relevant references were identified, including ten studies which performed DNA sequencing of all BRCA1 exons. For the latter, 31 mutations were detected in 57 of the 547 patients ascertained. Familial history of BC was present in 388 (71% patients, of whom 50 were mutation carriers. c.798_799delTT was identified in 11 North African families, accounting for 22% of total identified BRCA1 mutations, suggesting a founder allele. A broad spectrum of other mutations including c.68_69delAG, c.181T>G, c.5095C>T, and c.5266dupC, as well as sequence of unclassified variants and polymorphisms, was also detected. Conclusion. The knowledge of genetic structure of BRCA1 in MENA should contribute to the assessment of the necessity of preventive programs for mutation carriers and clinical management. The high prevalence of BC and the presence of frequent mutations of the BRCA1 gene emphasize the need for improving screening programs and individual testing/counseling.

  2. APOA5 Q97X Mutation Identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family

    Directory of Open Access Journals (Sweden)

    Dussaillant Catalina

    2012-11-01

    Full Text Available Abstract Background Severe hypertriglyceridemia (HTG has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. Methods We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel. Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. Results A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. Conclusion The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family.

  3. APOA5 Q97X mutation identified through homozygosity mapping causes severe hypertriglyceridemia in a Chilean consanguineous family.

    Science.gov (United States)

    Dussaillant, Catalina; Serrano, Valentina; Maiz, Alberto; Eyheramendy, Susana; Cataldo, Luis Rodrigo; Chavez, Matías; Smalley, Susan V; Fuentes, Marcela; Rigotti, Attilio; Rubio, Lorena; Lagos, Carlos F; Martinez, José Alfredo; Santos, José Luis

    2012-11-15

    Severe hypertriglyceridemia (HTG) has been linked to defects in LPL, APOC2, APOA5, LMF1 and GBIHBP1 genes. However, a number of severe HTG cases are probably caused by as yet unidentified mutations. Very high triglyceride plasma levels (>112 mmol/L at diagnosis) were found in two sisters of a Chilean consanguineous family, which is strongly suggestive of a recessive highly penetrant mutation. The aim of this study was to determine the genetic locus responsible for the severe HTG in this family. We carried out a genome-wide linkage study with nearly 300,000 biallelic markers (Illumina Human CytoSNP-12 panel). Using the homozygosity mapping strategy, we searched for chromosome regions with excess of homozygous genotypes in the affected cases compared to non-affected relatives. A large homozygous segment was found in the long arm of chromosome 11, with more than 2,500 consecutive homozygous SNP shared by the proband with her affected sister, and containing the APOA5/A4/C3/A1 cluster. Direct sequencing of the APOA5 gene revealed a known homozygous nonsense Q97X mutation (p.Gln97Ter) found in both affected sisters but not in non-affected relatives nor in a sample of unrelated controls. The Q97X mutation of the APOA5 gene in homozygous status is responsible for the severe hypertriglyceridemia in this family. We have shown that homozygosity mapping correctly pinpointed the genomic region containing the gene responsible for severe hypertriglyceridemia in this consanguineous Chilean family.

  4. A fear-inducing odor alters PER2 and c-Fos expression in brain regions involved in fear memory.

    Directory of Open Access Journals (Sweden)

    Harry Pantazopoulos

    Full Text Available Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to

  5. POLR2C Mutations Are Associated With Primary Ovarian Insufficiency in Women.

    Science.gov (United States)

    Moriwaki, Mika; Moore, Barry; Mosbruger, Timothy; Neklason, Deborah W; Yandell, Mark; Jorde, Lynn B; Welt, Corrine K

    2017-03-01

    Primary ovarian insufficiency (POI) results from a premature loss of oocytes, causing infertility and early menopause. The etiology of POI remains unknown in a majority of cases. To identify candidate genes in families affected by POI. This was a family-based genetic study. The study was performed at two academic institutions. A family with four generations of women affected by POI (n = 5). Four of these women, three with an associated autoimmune diagnosis, were studied. The controls (n = 387) were recruited for health in old age. Whole-genome sequencing was performed. Candidate genes were identified by comparing gene mutations in three family members and 387 control subjects analyzed simultaneously using the pedigree Variant Annotation, Analysis and Search Tool. Data were also compared with that in publicly available databases. We identified a heterozygous nonsense mutation in a subunit of RNA polymerase II ( POLR2C ) that synthesizes messenger RNA. A rare sequence variant in POLR2C was also identified in one of 96 women with sporadic POI. POLR2C expression was decreased in the proband compared with women with POI from another cause. Knockdown in an embryonic carcinoma cell line resulted in decreased protein production and impaired cell proliferation. These data support a role for RNA polymerase II mutations as candidates in the etiology of POI. The current data also support results from genome-wide association studies that hypothesize a role for RNA polymerase II subunits in age at menopause in the population.

  6. High frequency of mutation G377S in Brazilian type 3 Gaucher disease patients

    Directory of Open Access Journals (Sweden)

    R. Rozenberg

    2006-09-01

    Full Text Available Gaucher disease (GD, the most prevalent lysosome storage disorder, presents an autosomal recessive mode of inheritance. It is a paradigm for therapeutic intervention in medical genetics due to the existence of effective enzyme replacement therapy. We report here the analysis of GD in 262 unrelated Brazilian patients, carried out in order to establish the frequency of the most common mutations and to provide prognostic information based on genotype-phenotype correlations. Among 247 type 1 GD patients, mutation N370S was detected in 47% of all the alleles, but N370S/N370S homozygosity was found in only 10% of the patients, a much lower frequency than expected, suggesting that most individuals presenting this genotype may not receive medical attention. Recombinant alleles were detected at a high frequency: 44% of the chromosomes bearing mutation L444P had other mutations derived from the pseudogene sequence, present in 25% of patients. Three neuronopathic type 2 patients were homozygous for L444P, all presenting additional mutations (E326K or recombinant alleles that probably lead to the more severe phenotypes. Six children, classified as type 1 GD patients, had a L444P/L444P genotype, showing that neuronopathic symptoms may only manifest later in life. This would indicate the need for a higher treatment dose during enzyme replacement therapy. Finally, mutation G377S was present in 4 homozygous type 1 patients and also in compound heterozygosity in 5 (42% type 3 patients. These findings indicate that G377S cannot be unambiguously classified as mild and suggest an allele-dose effect for this mutation.

  7. SCREENING OF PROTEASE INHIBITORS RESISTANCE MUTATIONS IN HEPATITIS C VIRUS ISOLATES INFECTING ROMANIAN PATIENTS UNEXPOSED TO TRIPLE THERAPY.

    Science.gov (United States)

    Dinu, Sorin; Calistru, Petre-Iacob; Ceauşu, Emanoil; Târdeil, Graţiela; Oprişan, Gabriela

    2015-01-01

    Although the European recommendations include the use of new antiviral drugs for the treatment of hepatitis C, in Romania the current treatment remains interferon plus ribavirin. First generation viral protease inhibitors (i.e. boceprevir, telaprevir), which have raised the chances of obtaining viral clearance in up to 70% of infection cases produced by genotype 1 isolates, have not been introduced yet as standard treatment in our country. The success of these new antivirals is limited by the occurrence and selection of resistance mutations during therapy. We set-up a molecular study aiming to detect any resistance mutations to boceprevir and telaprevir harbored by hepatitis C isolates infecting Romanian patients naïve to viral protease inhibitors. Since these new antivirals are efficient and approved for genotype 1 infection, viral samples were genotyped following a protocol previously developed by our research group. We analyzed by both population sequencing and molecular cloning and sequencing the NS3 protease region of hepatitis C virus isolates infecting patients which were not previously exposed to boceprevir and telaprevir. All the analyzed samples were subtype 1b and resembled the samples collected in recent years from Romanian patients. Molecular cloning followed by sequencing showed great intra-host diversity, which is known to represent the source of isolates with different resistance phenotypes. Both population sequencing and molecular cloning followed by clone sequencing revealed two boceprevir resistance mutations (T54S and V55A), respectively, a telaprevir resistance mutation (T54S) in the sequences obtained from a patient with chronic hepatitis C. To our knowledge, this is the first study indicating the existence of pre-treatment resistance mutations to boceprevir and telaprevir in hepatitis C virus isolates infecting Romanian patients.

  8. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Yaacobi-Gross, Nir; Zhao, Kui; Ndjawa, Guy Olivier Ngongang; Li, Jinhua; Yan, Feng; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2012-01-01

    ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY

  9. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B

    International Nuclear Information System (INIS)

    Soto, José Luis; Cabrera, Carmen M; Serrano, Salvio; López-Nevot, Miguel Ángel

    2005-01-01

    The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied

  10. First study of C2491T FV mutation with ischaemic stroke risk in ...

    Indian Academy of Sciences (India)

    Faculty of Medicine and Pharmacy, Department of Genetic and Molecular Pathology Laboratory (LGPM),. Tarek Ibn Ziad, QH, Hassan II University, 9154 Casablanca, Morocco. [Diakite B., Hamzi K., Hmimech W., Nadifi S. and GMRAVC 2015 First study of C2491T FV mutation with ischaemic stroke risk in Morocco. J. Genet.

  11. Most ultraviolet irradiation induced mutations in the nematode Caenorhabditis elegans are chromosomal rearrangements

    International Nuclear Information System (INIS)

    Stewart, H.I.; Rosenbluth, R.E.; Baillie, D.L.

    1991-01-01

    In this study the utility of 254-nm ultraviolet light (UV) as a magnetic tool in C.elegans is determined. It is demonstrated that irradiation of adult hermaphrodites provides a simple method for the induction of heritable chromosomal rearrangements. A screening protocol was employed that identifies either recessive lethal mutations in the 40 map unit region balanced by the translocation eT1(III;V), or unc-36(III) duplications. Mutations were recovered in 3% of the chromosomes screened after a dose of 120 J/m 2 . This rate resembles that for 1500 R γ-ray-induced mutations selected in a similar manner. The mutations were classified either as lethals [mapping to Linkage Group (LG)III or LGV] or as putative unc-36 duplications. In contrast to the majority of UV-induced mutations analysed in micro-organisms, a large fraction of the C.elegans UV-induced mutations were found to be not simple intragenic lesions, but deficiencies for more than one adjacent gene or more complex events. Preliminary evidence for this conclusion came from the high frequency of mutations that had a dominant effect causing reduced numbers of adult progeny. Subsequently 6 out of 9 analysed LGV mutations were found to be deficiencies. Other specific rearrangements also identified were: one translocation, sT5(II;III), and two unc-36 duplications, sDp8 and sDp9. It was concluded that UV irradiation can easily be used as an additional tool for the analysis of C.elegans chromosomes, and that C.elegans should prove to be a useful organism in which to study the mechanisms whereby UV acts as a mutagen in cells of complex eukaryotes. (author). 46 refs.; 5 figs.; 4 tabs

  12. X-linked Alport syndrome associated with a synonymous p.Gly292Gly mutation alters the splicing donor site of the type IV collagen alpha chain 5 gene.

    Science.gov (United States)

    Fu, Xue Jun; Nozu, Kandai; Eguchi, Aya; Nozu, Yoshimi; Morisada, Naoya; Shono, Akemi; Taniguchi-Ikeda, Mariko; Shima, Yuko; Nakanishi, Koichi; Vorechovsky, Igor; Iijima, Kazumoto

    2016-10-01

    X-linked Alport syndrome (XLAS) is a progressive hereditary nephropathy caused by mutations in the type IV collagen alpha chain 5 gene (COL4A5). Although many COL4A5 mutations have previously been identified, pathogenic synonymous mutations have not yet been described. A family with XLAS underwent mutational analyses of COL4A5 by PCR and direct sequencing, as well as transcript analysis of potential splice site mutations. In silico analysis was also conducted to predict the disruption of splicing factor binding sites. Immunohistochemistry (IHC) of kidney biopsies was used to detect α2 and α5 chain expression. We identified a hemizygous point mutation, c.876A>T, in exon 15 of COL4A5 in the proband and his brother, which is predicted to result in a synonymous amino acid change, p.(Gly292Gly). Transcript analysis showed that this mutation potentially altered splicing because it disrupted the splicing factor binding site. The kidney biopsy of the proband showed lamellation of the glomerular basement membrane (GBM), while IHC revealed negative α5(IV) staining in the GBM and Bowman's capsule, which is typical of XLAS. This is the first report of a synonymous COL4A5 substitution being responsible for XLAS. Our findings suggest that transcript analysis should be conducted for the future correct assessment of silent mutations.

  13. A novel mitochondrial mutation m.8989G>C associated with neuropathy, ataxia, retinitis pigmentosa - the NARP syndrome

    DEFF Research Database (Denmark)

    Duno, Morten; Wibrand, Flemming; Baggesen, Kirsten

    2013-01-01

    mitochondrial point mutation, m.8989G>C, in a patient presenting with neuropathy, ataxia and retinitis pigmentosa constituting the classical NARP phenotype. This mutation alters the amino acid right next to canonical NARP mutation. We suggest that classic NARP syndrome relates to a defined dysfunction of p...

  14. The TMEM43 Newfoundland mutation p.S358L causing ARVC-5 was imported from Europe and increases the stiffness of the cell nucleus

    DEFF Research Database (Denmark)

    Milting, Hendrik; Klauke, Bärbel; Christensen, Alex Hoerby

    2014-01-01

    atomic force microscopy and revealed that the cell nuclei exhibit an increased stiffness compared with TMEM43 wild-type controls. CONCLUSION: The German family is not affected by a de novo TMEM43 mutation. It is therefore expected that an unknown number of European families may be affected by the TMEM43...... without mutations in desmosomal genes and identified the TMEM43-p.S358L mutation in a German ARVC family. We excluded TMEM43-p.S358L in 22 unrelated patients with dilated cardiomyopathy. The German family shares a common haplotype with those from Newfoundland, USA, and Denmark, suggesting...... that the mutation originated from a common founder. Examination of 40 control chromosomes revealed an estimated age of 1300-1500 years for the mutation, which proves the European origin of the Newfoundland mutation. Skin fibroblasts from a female and two male mutation carriers were analysed in cell culture using...

  15. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1.

    Science.gov (United States)

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui; Liu, Mugen

    2013-01-01

    To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A.

  16. Stability enhancement of cytochrome c through heme deprotonation and mutations

    OpenAIRE

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c551 variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0 – 4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond form...

  17. Game of clones: the genomic evolution of severe congenital neutropenia.

    Science.gov (United States)

    Touw, Ivo P

    2015-01-01

    Severe congenital neutropenia (SCN) is a genetically heterogeneous condition of bone marrow failure usually diagnosed in early childhood and characterized by a chronic and severe shortage of neutrophils. It is now well-established that mutations in HAX1 and ELANE (and more rarely in other genes) are the genetic cause of SCN. In contrast, it has remained unclear how these mutations affect neutrophil development. Innovative models based on induced pluripotent stem cell technology are being explored to address this issue. These days, most SCN patients receive life-long treatment with granulocyte colony-stimulating factor (G-CSF, CSF3). CSF3 therapy has greatly improved the life expectancy of SCN patients, but also unveiled a high frequency of progression toward myelodysplastic syndrome (MDS) and therapy refractory acute myeloid leukemia (AML). Expansion of hematopoietic clones with acquired mutations in the gene encoding the G-CSF receptor (CSF3R) is regularly seen in SCN patients and AML usually descends from one of these CSF3R mutant clones. These findings raised the questions how CSF3R mutations affect CSF3 responses of myeloid progenitors, how they contribute to the pre-leukemic state of SCN, and which additional events are responsible for progression to leukemia. The vast (sub)clonal heterogeneity of AML and the presence of AML-associated mutations in normally aged hematopoietic clones make it often difficult to determine which mutations are responsible for the leukemic process. Leukemia predisposition syndromes such as SCN are unique disease models to identify the sequential acquisition of these mutations and to interrogate how they contribute to clonal selection and leukemic evolution. © 2015 by The American Society of Hematology. All rights reserved.

  18. The temperature dependence of the reflection intensities of the modulated composite structure Hg0.776(BEDT-TTF)SCN

    International Nuclear Information System (INIS)

    Pressprich, M.R.; Beek, C. van; Coppens, P.

    1994-01-01

    The temperature dependence between 30 and 300 K of the intensities of 24 reflections of the column-composite structure Hg 0.776 (BEDT-TTF)SCN [Wang, Beno, Carlson, Thorup, Murray, Porter, Williams, Maly, Bu, Petricek, Cisarova, Coppens, Jung, Whangbo, Shirber and Overmyer (1991). Chem. Mater. 3, 508-513; BEDT-TTF=3,4,3',4'-bis(ethylenedithio)-2,2',5,5'-tetrathiafulvalene] has been analyzed in terms of a model including phason temperature factors. The temperature dependence of the main and first-order satellite reflections is reasonably well reproduced in a refinement with 236 observations and four variables. The results are interpreted in terms of a temperature independence of the static displacement amplitudes. The room-temperature r.m.s. phason fluctuations of the mercury sublattice are 50(2) . This value implies that the mean mercury displacement amplitude will increase by ∝60% on lowering of the temperature to within the liquid-helium range. The thermal contraction on cooling is the same for the two sublattices. (orig.)

  19. Identification of colorectal cancer patients with tumors carrying the TP53 mutation on the codon 72 proline allele that benefited most from 5-fluorouracil (5-FU) based postoperative chemotherapy

    International Nuclear Information System (INIS)

    Godai, Ten-i; Sakuma, Yuji; Tsuchiya, Eiju; Kameda, Yoichi; Akaike, Makoto; Miyagi, Yohei; Suda, Tetsuji; Sugano, Nobuhiro; Tsuchida, Kazuhito; Shiozawa, Manabu; Sekiguchi, Hironobu; Sekiyama, Akiko; Yoshihara, Mitsuyo; Matsukuma, Shoichi

    2009-01-01

    Although postoperative chemotherapy is widely accepted as the standard modality for Dukes' stage C or earlier stage colorectal cancer (CRC) patients, biomarkers to predict those who may benefit from the therapy have not been identified. Previous in vitro and clinical investigations reported that CRC patients with wild-type p53 gene (TP53)-tumors benefit from 5-fluorouracil (5-FU) based chemotherapy, while those with mutated TP53-tumors do not. However, these studies evaluated the mutation-status of TP53 by immunohistochemistry with or without single-strand conformation polymorphism, and the mutation frequency was different from study to study. In addition, the polymorphic status at p53 codon 72, which results in arginine or proline residues (R72P) and is thought to influence the function of the protein significantly, was not examined. To evaluate the significance of the TP53 mutation as a molecular marker to predict the prognosis of CRC patients, especially those who received postoperative chemotherapy, we examined the mutation by direct sequencing from fresh CRC tumors and evaluated the R72P polymorphism of the mutated TP53 by a combined mutant allele- and polymorphic allele-specific polymerase chain reaction (PCR). The TP53 mutation occurred in 147 (70%) of 211 Japanese CRC tumors. The mutation was observed in 93 (63%) tumors on the R72 allele and in 54 (37%) tumors on the P72 allele. Although the alterations to TP53 have no prognostic significance for CRC patients overall, we found that Dukes' stage C CRC patients who did not receive postoperative chemotherapy and carried the mutated TP53-R72 showed significantly longer survival times than those with the mutated TP53-P72 when evaluated by overall survival (p = 0.012). Using a combined mutant allele- and polymorphic allele-specific PCR, we defined the codon 72 polymorphic status of the TP53 mutated allele in Japanese CRC patients. We raised a possibility that Dukes' stage C colorectal cancer

  20. Low frequency of c-MPL gene mutations in Iranian patients with Philadelphia-negative myeloproliferative disorders.

    Science.gov (United States)

    Ghotaslou, A; Nadali, F; Chahardouli, B; Alizad Ghandforosh, N; Rostami, S H; Alimoghaddam, K; Ghavamzadeh, A

    2015-01-01

    Myeloproliferative disorders are a group of diseases characterized by increased proliferation of myeloid lineage. In addition to JAK2V617F mutation, several mutations in the c-MPL gene have been reported in patients with philadelphia-negative chronic myeloproliferative disorders that could be important in the pathogenesis of diseases. The aim of the present study was to investigate the frequency of c-MPL and JAK2V617F mutations in Iranian patients with Philadelphia-negativemyeloproliferative disorders. Peripheral blood samples were collected from 60 patients with Philadelphia-negative MPD) Subgroups ET and PMF) and 25 healthy subjects as control group. The mutation status of c-MPL and Jak2V617F were investigated by using Amplification-refractory mutation system (ARMS) and Allele-Specific PCR (AS-PCR), respectively. The results were confirmed by sequencing. Among 60 patients, 34 (56.6%) and 1(1.7%) had Jak2V617F and c-MPL mutation, respectively. Patients with Jak2V617F mutation had higher WBC counts and hemoglobin concentration than those without the mutation (p= 0.005, p=0.003). In addition, for all healthy subjects in control group, mutations were negative. The present study revealed that the c-MPL mutations unlike the Jak2V617F mutations are rare in Iranian patients with Ph-negative MPNs and the low mutation rate should be considered in the design of screening strategies of MPD patients.