WorldWideScience

Sample records for sciences education a tool

  1. Clinical Correlations as a Tool in Basic Science Medical Education

    Directory of Open Access Journals (Sweden)

    Brenda J. Klement

    2016-01-01

    Full Text Available Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1 Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2 Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3 Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4 Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5 Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills.

  2. Data Mining Tools in Science Education

    OpenAIRE

    Premysl Zaskodny

    2012-01-01

    The main principle of paper is Data Mining in Science Education (DMSE) as Problem Solving. The main goal of paper is consisting in Delimitation of Complex Data Mining Tool and Partial Data Mining Tool of DMSE. The procedure of paper is consisting of Data Preprocessing in Science Education, Data Processing in Science Education, Description of Curricular Process as Complex Data Mining Tool (CP-DMSE), Description of Analytical Synthetic Modeling as Partial Data Mining Tool (ASM-DMSE) and finally...

  3. Science comics as tools for science education and communication: a brief, exploratory study

    OpenAIRE

    M. Tatalovic

    2009-01-01

    Comics are a popular art form especially among children and as such provide a potential medium for science education and communication. In an attempt to present science comics in a museum exhibit I found many science themed comics and graphic books. Here I attempt to provide an overview of already available comics that communicate science, the genre of ‘science comics’. I also provide a quick literature review for evidence that comics can indeed be efficiently used for promoting scientific li...

  4. Fermilab Friends for Science Education | Board Tools

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Board Tools Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education FFSE Scholarship Tools Google Drive Join Us/Renew Membership Forms: Online - Print Support Us Donation

  5. Science comics as tools for science education and communication: a brief, exploratory study

    Directory of Open Access Journals (Sweden)

    M. Tatalovic

    2009-11-01

    Full Text Available Comics are a popular art form especially among children and as such provide a potential medium for science education and communication. In an attempt to present science comics in a museum exhibit I found many science themed comics and graphic books. Here I attempt to provide an overview of already available comics that communicate science, the genre of ‘science comics’. I also provide a quick literature review for evidence that comics can indeed be efficiently used for promoting scientific literacy via education and communication. I address the issue of lack of studies about science comics and their readers and suggest some possible reasons for this as well as some questions that could be addressed in future studies on the effect these comics may have on science communication.

  6. Handbook of Research on Science Education and University Outreach as a Tool for Regional Development

    Science.gov (United States)

    Narasimharao, B. Pandu, Ed.; Wright, Elizabeth, Ed.; Prasad, Shashidhara, Ed.; Joshi, Meghana, Ed.

    2017-01-01

    Higher education institutions play a vital role in their surrounding communities. Besides providing a space for enhanced learning opportunities, universities can utilize their resources for social and economic interests. The "Handbook of Research on Science Education and University Outreach as a Tool for Regional Development" is a…

  7. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  8. Education of the Pierre Auger Observatory: The Cinema as a Tool in Science Education.

    Science.gov (United States)

    Garcia, B.; Raschia, C.

    2006-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, astrophysics in general, and associated technologies. This report focuses on recent activities and future initiatives and, especially, on a very recent professional production of two educative videos for children between 6 and 11 years: "Messengers of Space" (18 min), and for general audiences: "An Adventure of the Mind" (20 min). The use of new resources, as 2D- and 3D-animation, to teach and learn in sciences is also discussed.

  9. Effects of Educational Blogging on Perceptions of Science and Technology Education Students toward Web as a Learning Tool

    Directory of Open Access Journals (Sweden)

    Erkan Tekinarslan

    2012-06-01

    Full Text Available The purpose of this study is to investigate effects of educational blogging on perceptions (e.g., attitude, self-efficacy of undergraduate students in Science and Technology Education program toward Web as a learning tool. In addition, this study examines opinions of the Science and Technology Education students about contribution of educational blogging to the students’ perceptions toward Web as a learning tool, knowledge in the field, and advantages and disadvantages of educational blogging. The methodological frame of this study is based on both one group pre-test and post-test design, and qualitative approaches including observations, interviews and document analyses. A total of 32 undergraduate students voluntarily participated in the pre-test and post-test sections, and 25 students participated in the interviews. The findings indicate that educational blogging have positive effects over the students’ attitudes on the usability, selfefficacy, affective and Web-based learning subscales. In addition, the qualitative findings reveal positive contributions of educational blogging to the students’ knowledge in the field, and to the perceptions and thoughts of the students toward Web as a learning tool

  10. Science as a Web of Trails: Redesigning Science Education with the Tools of the Present to Meet the Needs of the Future

    Science.gov (United States)

    Karno, Donna; Glassman, Michael

    2013-01-01

    Science education has experienced significant changes since the mid-20th century, most recently with the creation of STEM curricula (DeBoer 1991; Yager 2000). The emergence of the World Wide Web as a tool in research and discovery offers Pre-K-12 science education an opportunity to share information and perspectives which engage students with the…

  11. Robotic education, a tool for the theaching-learning of the science and technology

    Directory of Open Access Journals (Sweden)

    Kathia Pittí Patiño

    2012-07-01

    Full Text Available Normal.dotm 0 0 1 113 649 Universidad de Salamanca 5 1 797 12.0 0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} This paper presents and analyzes the educational robotics as a tool to support teaching and learning process at the level of pre-media, primarily engaged in complex subjects such as mathematics, physics and computer science, among others. The study was limited to high schools in the province of Chiriqui, Panama, took a sample of six schools in the province and for each school involved both students and teachers. The main objective of the project was to demonstrate how robotics education, facilitates and encourages teaching and learning of science and technology. The results showed that robotics could become an excellent tool to understand abstract concepts and complex subjects in the area of science and technology, as well as allowing developing basic skills such as teamwork.

  12. Tools to Assess Behavioral and Social Science Competencies in Medical Education: A Systematic Review

    Science.gov (United States)

    Carney, Patricia A.; Palmer, Ryan T.; Miller, Marissa Fuqua; Thayer, Erin K.; Estroff, Sue E.; Litzelman, Debra K.; Biagioli, Frances E.; Teal, Cayla R.; Lambros, Ann; Hatt, William J.; Satterfield, Jason M.

    2015-01-01

    Purpose Behavioral and social science (BSS) competencies are needed to provide quality health care, but psychometrically validated measures to assess these competencies are difficult to find. Moreover, they have not been mapped to existing frameworks, like those from the Liaison Committee on Medical Education (LCME) and Accreditation Council for Graduate Medical Education (ACGME). This systematic review aimed to identify and evaluate the quality of assessment tools used to measure BSS competencies. Method The authors searched the literature published between January 2002 and March 2014 for articles reporting psychometric or other validity/reliability testing, using OVID, CINAHL, PubMed, ERIC, Research and Development Resource Base, SOCIOFILE, and PsycINFO. They reviewed 5,104 potentially relevant titles and abstracts. To guide their review, they mapped BSS competencies to existing LCME and ACGME frameworks. The final, included articles fell into three categories: instrument development, which were of the highest quality; educational research, which were of the second highest quality; and curriculum evaluation, which were of lower quality. Results Of the 114 included articles, 33 (29%) yielded strong evidence supporting tools to assess communication skills, cultural competence, empathy/compassion, behavioral health counseling, professionalism, and teamwork. Sixty-two (54%) articles yielded moderate evidence and 19 (17%) weak evidence. Articles mapped to all LCME standards and ACGME core competencies; the most common was communication skills. Conclusions These findings serve as a valuable resource for medical educators and researchers. More rigorous measurement validation and testing and more robust study designs are needed to understand how educational strategies contribute to BSS competency development. PMID:26796091

  13. How Mockups, a Key Engineering Tool, Help to Promote Science, Technology, Engineering, and Mathematics Education

    Science.gov (United States)

    McDonald, Harry E.

    2010-01-01

    The United States ranking among the world in science, technology, engineering, and mathematics (STEM) education is decreasing. To counteract this problem NASA has made it part of its mission to promote STEM education among the nation s youth. Mockups can serve as a great tool when promoting STEM education in America. The Orion Cockpit Working Group has created a new program called Students Shaping America s Next Space Craft (SSANS) to outfit the Medium Fidelity Orion Mockup. SSANS will challenge the students to come up with unique designs to represent the flight design hardware. There are two main types of project packages created by SSANS, those for high school students and those for university students. The high school projects will challenge wood shop, metal shop and pre-engineering classes. The university projects are created mainly for senior design projects and will require the students to perform finite element analysis. These projects will also challenge the undergraduate students in material selection and safety requirements. The SSANS program will help NASA in its mission to promote STEM education, and will help to shape our nations youth into the next generation of STEM leaders.

  14. An Engineering Innovation Tool: Providing Science Educators a Picture of Engineering in Their Classroom

    Science.gov (United States)

    Ross, Julia Myers; Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.

    2018-01-01

    An Engineering Innovation Tool was designed to support science teachers as they navigate the opportunities and challenges the inclusion of engineering affords by providing a useful tool to be used within the professional development environment and beyond. The purpose of this manuscript is to share the design, development and substance of the tool…

  15. Map-IT! A Web-Based GIS Tool for Watershed Science Education.

    Science.gov (United States)

    Curtis, David H.; Hewes, Christopher M.; Lossau, Matthew J.

    This paper describes the development of a prototypic, Web-accessible GIS solution for K-12 science education and citizen-based watershed monitoring. The server side consists of ArcView IMS running on an NT workstation. The client is built around MapCafe. The client interface, which runs through a standard Web browser, supports standard MapCafe…

  16. Mind Maps as Facilitative Tools in Science Education

    Science.gov (United States)

    Safar, Ammar H.; Jafer,Yaqoub J.; Alqadiri, Mohammad A.

    2014-01-01

    This study explored the perceptions, attitudes, and willingness of pre-service science teachers in the College of Education at Kuwait University about using concept/mind maps and its related application software as facilitative tools, for teaching and learning, in science education. The first level (i.e., reaction) of Kirkpatrick's/Phillips'…

  17. Concept-Cartoons as a Tool to Evoke and Analyze Pupils Judgments in Social Science Education

    Directory of Open Access Journals (Sweden)

    Felix Fenske

    2011-10-01

    Full Text Available The following contribution makes an effort to place the concept-cartoon-method into the context of social science education. Concept-cartoons (CCs enable teachers to use the everyday life experiences and individual thoughts of the pupils as a positive enrichment tool within the learning processes. In this context, CCs are very suitable to function as a method to gain information about both the existing mental conceptions and the individual political judgment strategies. Through this, it is possible to put everyday life concepts and scientific knowledge in a constructive relationship, which finally enhances new learning objectives. First the article highlights the relevance of pupils’ and teachers` concepts for judgment processes. On this basis the method of CCs is introduced and evaluated.Der folgende Artikel beschäftigt sich mit den Möglichkeiten des methodischen Einsatzes von Concept-Cartoons im Rahmen sozialwissenschaftlichen Unterrichts. Als Instrumentarium zur Diagnose von Schülervorstellungen und individuellen Urteilsstrategien, bieten Comic-Cartoons den Lehrkräften die Möglichkeit, den Unterricht entlang dieser lernrelevanten Perspektiven zu gestalten. Durch die konstruktive Verknüpfung von Alltagskonzepten und Fachkonzepten können auf diese Weise neue Chancen für nachhaltige Lehr- und Lernprozesse erschlossen werden. Innerhalb dieses Beitrags wird zunächst die Bedeutung von Schülervorstellungen und vorfachlichen Urteilsstrategien für wirksamen sozialwissenschaftlichen Unterricht geklärt. Im Anschluss erfolgt eine Einführung in die Methode „Concept-Cartoons“. Abschließend werden exemplarisch drei von den Autoren gestaltete Cartoons vorgestellt.

  18. [The portfolio in health sciences teacher education: a tool for learning and assessment].

    Science.gov (United States)

    Roni, Carolina; Eder, María L; Schwartzman, Gisela

    2013-01-01

    The Portfolio is an assessment tool of learning that recently appears in academic forums, and since 2008 is part of the University Teacher Education Program (Teaching Training) at University Institute of Hospital Italiano. Was included to allow teachers reflect on their own practices and accompany them in their educational work everyday. This paper shares the evaluative experience focused on the educational value of the writing process of the Portfolio, as long as is a reflection and a learning tool, by the relationship that promotes between theory and practice. Writing promotes psychological processes that enable students gain new meanings of the knowledge and take over them. At the same time, it can attend the construction of practical rationality that governs the ways of intervening in the classroom, because they write and reflect from their own teaching work. They have been introduced changes in the proposed during the course of its implementation to preserve its purposes: to accompany the draft review, jointly define index, etc. Students point that it is high impact training and conclude that writing is re-think about what they have learned, and therefore keep learning.

  19. Oximetry: a reflective tool for the detection of physiological expression of emotions in a science education classroom

    Science.gov (United States)

    Calderón, Olga

    2016-09-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation—SpO2); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying pilot according to changes in altitude and oxygen availability in the atmosphere. Nonetheless, the uses for pulse oximetry may expand to other fields where there is human interaction and where physiological outputs reflect fluctuations mediated by arising emotions. A classroom, for instance is filled with a plethora of emotions, but very often participants in this space are unaware of others' or their own sentiments as these arise as a result of interactions and responses to class discussions. In this paper I describe part of a larger study-taking place at Brooklyn College of the City University of New York. The focus is on the exploration of emotions and mindfulness in the science classroom. The oximeter is used in this study as a reflexive tool to detect emotions emerging among participants of a graduate History and Philosophy of Science Education course offered in the spring of 2012. Important physiological information of class participants provided by the oximeter is used to analyze the role of emotions in the classroom as sensitive and controversial topics in science education are discussed every week.

  20. FOSS Tools and Applications for Education in Geospatial Sciences

    Directory of Open Access Journals (Sweden)

    Marco Ciolli

    2017-07-01

    Full Text Available While the theory and implementation of geographic information systems (GIS have a history of more than 50 years, the development of dedicated educational tools and applications in this field is more recent. This paper presents a free and open source software (FOSS approach for education in the geospatial disciplines, which has been used over the last 20 years at two Italian universities. The motivations behind the choice of FOSS are discussed with respect to software availability and development, as well as educational material licensing. Following this philosophy, a wide range of educational tools have been developed, covering topics from numerical cartography and GIS principles to the specifics regarding different systems for the management and analysis of spatial data. Various courses have been implemented for diverse recipients, ranging from professional training workshops to PhD courses. Feedback from the students of those courses provides an invaluable assessment of the effectiveness of the approach, supplying at the same time directions for further improvement. Finally, lessons learned after 20 years are discussed, highlighting how the management of educational materials can be difficult even with a very open approach to licensing. Overall, the use of free and open source software for geospatial (FOSS4G science provides a clear advantage over other approaches, not only simplifying software and data management, but also ensuring that all of the information related to system design and implementation is available.

  1. "Shool Biotope" as science and environment educational tools in Japan

    Science.gov (United States)

    Yoshida, K.; Matsumoto, I.

    2011-12-01

    We have very small artificial pond in elementary school and junior high school in Japan. There are small fish, aquatic insect, and plant, and we can easily check and study. Recently, this type very small artificial pond that we call "Biotope" has been reconsidered as educational tool for study about biology and ecology. We introduce the some cases of the elementary school in Shimane Prefecture, Japan. And then, we pick up some important good educational materials and methods and their problems. Shimane prefecture is the place where relatively much nature is left even in Japan, and children are favored in the opportunity which usually touches nature and study it. It thought about use for Biotope in the inside of school of such from the viewpoint of science and environment education. It is possible with Biotope in the inside of school that a fish, aquatic insect, and plant in Biotope and that's environment are observed for every day and for a long time. As for the teacher of the elementary and junior high schools, it is important to make a plan of Biotope corresponding to the subject and those contents of learning through the year. We define School-Biotope as a thing that a teacher recognizes that educational importance and to make the most of as an education subject intentionally.

  2. Advancing alternate tools: why science education needs CRP and CRT

    Science.gov (United States)

    Dodo Seriki, Vanessa

    2018-03-01

    Ridgeway and Yerrick's paper, Whose banner are we waving?: exploring STEM partnerships for marginalized urban youth, unearthed the tensions that existed between a local community "expert" and a group of students and their facilitator in an afterschool program. Those of us who work with youth who are traditionally marginalized, understand the importance of teaching in culturally relevant ways, but far too often—as Ridgeway and Yerrick shared—community partners have beliefs, motives, and ideologies that are incompatible to the program's mission and goals. Nevertheless, we often enter partnerships assuming that the other party understands the needs of the students or community; understands how in U.S. society White is normative while all others are deficient; and understands how to engage with students in culturally relevant ways. This forum addresses the underlying assumption, described in the Ridgeway and Yerrick article, that educators—despite their background and experiences—are able to teach in culturally relevant ways. Additionally, I assert based on the finding in the article that just as Ladson-Billings and Tate (Teach Coll Rec 97(1):47-68, 1995) asserted, race in the U.S. society, as a scholarly pursuit, was under theorized. The same is true of science education; race in science education is under theorized and the use of culturally relevant pedagogy and critical race theory as a pedagogical model and analytical tool, respectively, in science education is minimal. The increased use of both would impact our understanding of who does science, and how to broaden participation among people of color.

  3. Science Learning with Information Technologies as a Tool for "Scientific Thinking" in Engineering Education

    Science.gov (United States)

    Smirnov, Eugeny; Bogun, Vitali

    2011-01-01

    New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…

  4. Determining Useful Tools for the Flipped Science Education Classroom

    Science.gov (United States)

    MacKinnon, Gregory

    2015-01-01

    This paper reports the results of a 3-year longitudinal study on the perceived utility of supplying elementary science teacher interns with four asynchronous tools to assist them in creating their first lesson plan of a constructivist nature. The research accessed qualitative and quantitative measures to sample intern reaction to the notion of a…

  5. Concept maps as a polyvalent educational tool for health sciences: Their application to histology

    OpenAIRE

    Sánchez-Quevedo, María del Carmen; Cubero, María Angustias; Alaminos, Miguel; Vicente Crespo, Pascual; Campos, Antonio

    2006-01-01

    En el presente artículo se analiza el mapa conceptual como instrumento de estrategia educativa aplicada a las ciencias de la salud y, especialmente, al ámbito de la histología. Tras considerar los elementos constitutivos y los tipos de mapas conceptuales y el fundamento epistemológico de los mismos para estimular el aprendizaje significativo, se examina la aplicación de los mapas al desarrollo curricular, la evaluación, el diseño pedagógico por parte del profesor y el autoaprendizaje por part...

  6. Popularization of science as a marketing tool exemplified by “Paths of Copernicus” – a programme funded by the Ministry of Science and Higher Education

    Directory of Open Access Journals (Sweden)

    Adam Piasecki

    2014-12-01

    Full Text Available This article concerns the project Mine Surfers (2013-2014 carried out by the EMAG Institute of Innovative Technologies within a programme funded by the Ministry of Science and Higher Education. The authors present the positive marketing effects resulting from the project. In the case study, they describe the project against the backdrop of activities undertaken by other project teams. As well as the issues related to the execution of the project as such, focus was also placed on operations aiming for project promotion as well as popularising research and educational activities. Finally, the results of media monitoring with respect to the project are discussed.

  7. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  8. Online Learning Tools as Supplements for Basic and Clinical Science Education.

    Science.gov (United States)

    Ellman, Matthew S; Schwartz, Michael L

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the "flipped classroom" pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.

  9. Article Commentary: Online Learning Tools as Supplements for Basic and Clinical Science Education

    Directory of Open Access Journals (Sweden)

    Matthew S. Ellman

    2016-01-01

    Full Text Available Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the “flipped classroom” pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.

  10. PolarTREC: Successful Methods and Tools for Attaining Broad Educational Impacts with Interdisciplinary Polar Science

    Science.gov (United States)

    Timm, K. M.; Warburton, J.; Owens, R.; Warnick, W. K.

    2008-12-01

    PolarTREC--Teachers and Researchers Exploring and Collaborating, a program of the Arctic Research Consortium of the U.S. (ARCUS), is a National Science Foundation (NSF)-funded International Polar Year (IPY) project in which K-12 educators participate in hands-on field experiences in the polar regions, working closely with IPY scientists as a pathway to improving science education. Developing long-term teacher- researcher collaborations through PolarTREC ensures up-to-date climate change science content will permeate the K-12 education system long after the IPY. By infusing education with the cutting edge science from the polar regions, PolarTREC has already shown an increase in student and public knowledge of and interest in the polar regions and global climate change. Preliminary evaluations have shown that PolarTREC's program activities have many positive impacts on educators and their ability to teach science concepts and improve their teaching methods. Additionally, K-12 students polled in interest surveys showed significant changes regarding the importance of understanding the polar regions as a person in today's world. Researchers have been overwhelmingly satisfied with PolarTREC and cited several specific strengths, including the program's crucial link between the teachers' field research experiences and their classroom and the extensive training provided to teachers prior to their expedition. This presentation will focus on other successful components of the PolarTREC program and how researchers and organizations might use these tools to reach out to the public for long-term impacts. Best practices include strategies for working with educators and the development of an internet-based platform for teachers and researchers to interact with the public, combining several communication tools such as online journals and forums, real-time Internet seminars, lesson plans, activities, audio, and other educational resources that address a broad range of scientific

  11. Analysis of the Approach to Parasitic Cycles in Brazilian Science Textbooks as a Tool for Education in Health and Environment

    Science.gov (United States)

    Simplicio, Nathan D. C. S.; Cordova, Bianca C.; Oliveira-Filho, Eduardo C.

    2016-01-01

    Modifying the environment is a characteristic of the human species. With deforestation and the expansion of urban centers, diseases known in animals have begun to be described in humans. Science textbooks constitute an instrument of great importance in understanding this issue. This study evaluated the main science textbooks, recommended by the…

  12. OERL: A Tool For Geoscience Education Evaluators

    Science.gov (United States)

    Zalles, D. R.

    2002-12-01

    The Online Evaluation Resource Library (OERL) is a Web-based set of resources for improving the evaluation of projects funded by the Directorate for Education and Human Resources (EHR) of the National Science Foundation (NSF). OERL provides prospective project developers and evaluators with material that they can use to design, conduct, document, and review evaluations. OERL helps evaluators tackle the challenges of seeing if a project is meeting its implementation and outcome-related goals. Within OERL is a collection of exemplary plans, instruments, and reports from evaluations of EHR-funded projects in the geosciences and in other areas of science and mathematics. In addition, OERL contains criteria about good evaluation practices, professional development modules about evaluation design and questionnaire development, a dictionary of key evaluation terms, and links to evaluation standards. Scenarios illustrate how the resources can be used or adapted. Currently housed in OERL are 137 instruments, and full or excerpted versions of 38 plans and 60 reports. 143 science and math projects have contributed to the collection so far. OERL's search tool permits the launching of precise searches based on key attributes of resources such as their subject area and the name of the sponsoring university or research institute. OERL's goals are to 1) meet the needs for continuous professional development of evaluators and principal investigators, 2) complement traditional vehicles of learning about evaluation, 3) utilize the affordances of current technologies (e.g., Web-based digital libraries, relational databases, and electronic performance support systems) for improving evaluation practice, 4) provide anytime/anyplace access to update-able resources that support evaluators' needs, and 5) provide a forum by which professionals can interact on evaluation issues and practices. Geoscientists can search the collection of resources from geoscience education projects that have

  13. Validation of a Tool Evaluating Educational Apps for Smart Education

    Science.gov (United States)

    Lee, Jeong-Sook; Kim, Sung-Wan

    2015-01-01

    The purpose of this study is to develop and validate an evaluation tool of educational apps for smart education. Based on literature reviews, a potential model for evaluating educational apps was suggested. An evaluation tool consisting of 57 survey items was delivered to 156 students in middle and high schools. An exploratory factor analysis was…

  14. Utilizing a MOOC as an education and outreach tool for geoscience: case study from Tokyo Tech's MOOC on "Deep Earth Science"

    Science.gov (United States)

    Tagawa, S.; Okuda, Y.; Hideki, M.; Cross, S. J.; Tazawa, K.; Hirose, K.

    2016-12-01

    Massive open online courses (MOOC or MOOCs) have attracted world-wide attention as a new digital educational tool. However, utilizing MOOCs for teaching geoscience and for outreach activity are limited so far. Mainly due to the fact that few MOOCs are available on this topic. The following questions are usually asked before undertaking MOOC development. How many students will potentially enroll in a course and what kind of background knowledge do they have? What is the best way to market the course and let them learn concepts easily? How will the instructor or staff manage discussion boards and answer questions? And, more simply, is a MOOC an effective educational or outreach tool? Recently, Tokyo Institute of Technology (Tokyo Tech) offered our first MOOC on "Deep Earth Science" on edX, which is one of the largest worldwide MOOC platforms. This brand new course was released in the Fall of 2015 and will re-open during the winter of 2016. This course contained materials such as structure of inside of the Earth, internal temperature of the earth and how it is estimated, chemical compositions and dynamics inside the earth. Although this course mainly dealt with pure scientific research content, over 5,000 students from 156 countries enrolled and 4 % of them earned a certificate of completion. In this presentation, we will share a case study based upon what we learned from offering "Deep Earth Science". At first, we will give brief introduction of our course. Then, we want to introduce tips to make a better MOOC by focusing on 1) students' motivation on studying, scientific literacy background, and completion rate, 2) offering engaging content and utilization of surveys, and 3) discussion board moderation. In the end, we will discuss advantages of utilizing a MOOC as an effective educational tool for geoscience. We welcome your ideas on MOOCs and suggestions on revising the course content.

  15. Storytelling: a leadership and educational tool.

    Science.gov (United States)

    Kowalski, Karren

    2015-06-01

    A powerful tool that leaders and educators can use to engage the listeners-both staff and learners-is storytelling. Stories demonstrate important points, valuable lessons, and the behaviors that are preferred by the leader. Copyright 2015, SLACK Incorporated.

  16. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    Science.gov (United States)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  17. Applying Alternative Teaching Methods to Impart a Rounded, Liberal Arts and Sciences (LAS) Education: Students' Reflections on the Role of Magazines as Instructional Tools

    Science.gov (United States)

    Sithole, Alec; Kibirige, Joachim; Mupinga, Davison M.; Chiyaka, Edward T.

    2016-01-01

    In a constantly and rapidly changing social world, students from all disciplines ought to attain a rounded education within the tradition of a "Liberal Arts and Sciences" (LAS) context. Students outside of the natural sciences must be encouraged to appreciate the place of those sciences in their lives. Conversely, students in the natural…

  18. Performance Assessment as a Diagnostic Tool for Science Teachers

    Science.gov (United States)

    Kruit, Patricia; Oostdam, Ron; van den Berg, Ed; Schuitema, Jaap

    2018-04-01

    Information on students' development of science skills is essential for teachers to evaluate and improve their own education, as well as to provide adequate support and feedback to the learning process of individual students. The present study explores and discusses the use of performance assessments as a diagnostic tool for formative assessment to inform teachers and guide instruction of science skills in primary education. Three performance assessments were administered to more than 400 students in grades 5 and 6 of primary education. Students performed small experiments using real materials while following the different steps of the empirical cycle. The mutual relationship between the three performance assessments is examined to provide evidence for the value of performance assessments as useful tools for formative evaluation. Differences in response patterns are discussed, and the diagnostic value of performance assessments is illustrated with examples of individual student performances. Findings show that the performance assessments were difficult for grades 5 and 6 students but that much individual variation exists regarding the different steps of the empirical cycle. Evaluation of scores as well as a more substantive analysis of students' responses provided insight into typical errors that students make. It is concluded that performance assessments can be used as a diagnostic tool for monitoring students' skill performance as well as to support teachers in evaluating and improving their science lessons.

  19. Tools for Educational Data Mining: A Review

    Science.gov (United States)

    Slater, Stefan; Joksimovic, Srecko; Kovanovic, Vitomir; Baker, Ryan S.; Gasevic, Dragan

    2017-01-01

    In recent years, a wide array of tools have emerged for the purposes of conducting educational data mining (EDM) and/or learning analytics (LA) research. In this article, we hope to highlight some of the most widely used, most accessible, and most powerful tools available for the researcher interested in conducting EDM/LA research. We will…

  20. A Collaborative Educational Association Rule Mining Tool

    Science.gov (United States)

    Garcia, Enrique; Romero, Cristobal; Ventura, Sebastian; de Castro, Carlos

    2011-01-01

    This paper describes a collaborative educational data mining tool based on association rule mining for the ongoing improvement of e-learning courses and allowing teachers with similar course profiles to share and score the discovered information. The mining tool is oriented to be used by non-expert instructors in data mining so its internal…

  1. Teleconferencing in medical education: a useful tool.

    Science.gov (United States)

    Lamba, Pankaj

    2011-01-01

    Education and healthcare are basic needs for human development. Technological innovation has broadened the access to higher quality healthcare and education without regard to time, distance or geopolitical boundaries. Distance learning has gained popularity as a means of learning in recent years due to widely distributed learners, busy schedules and rising travel costs. Teleconferencing is also a very useful tool as a distance learning method.Teleconferencing is a real-time and live interactive programme in which one set of participants are at one or more locations and the other set of participants are at another. The teleconference allows for interaction, including audio and/or video, and possibly other modalities, between at least two sites. Various methods are available for setting up a teleconferencing unit. A detailed review of the trend in the use of teleconferencing in medical education was conducted using Medline and a literature search.Teleconferencing was found to be a very useful tool in continuing medical education (CME), postgraduate medical education, undergraduate medical education, telementoring and many other situations. The use of teleconferencing in medical education has many advantages including savings in terms of travel costs and time. It gives access to the best educational resources and experience without any limitations of boundaries of distance and time. It encourages two-way interactions and facilitates learning in adults. Despite having some pitfalls in its implementation it is now being seen as an important tool in facilitating learning in medicine and many medical schools and institutions are adapting this novel tool.

  2. Utilization of Software Tools for Uncertainty Calculation in Measurement Science Education

    International Nuclear Information System (INIS)

    Zangl, Hubert; Zine-Zine, Mariam; Hoermaier, Klaus

    2015-01-01

    Despite its importance, uncertainty is often neglected by practitioners in the design of system even in safety critical applications. Thus, problems arising from uncertainty may only be identified late in the design process and thus lead to additional costs. Although there exists numerous tools to support uncertainty calculation, reasons for limited usage in early design phases may be low awareness of the existence of the tools and insufficient training in the practical application. We present a teaching philosophy that addresses uncertainty from the very beginning of teaching measurement science, in particular with respect to the utilization of software tools. The developed teaching material is based on the GUM method and makes use of uncertainty toolboxes in the simulation environment. Based on examples in measurement science education we discuss advantages and disadvantages of the proposed teaching philosophy and include feedback from students

  3. [A therapeutic education tool in paediatric dentistry].

    Science.gov (United States)

    Marquillier, Thomas; Trentesaux, Thomas; Catteau, Céline; Delfosse, Caroline

    Therapeutic education for children is developing in the treatment of dental caries. The Elmy pathway, a pedagogical game aiming to improve children's oral health skills, has been designed. The qualitative assessment of this tool seems to confirm its benefit for use in therapeutic education sessions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Tools for Engaging Scientists in Education and Public Outreach: Resources from NASA's Science Mission Directorate Forums

    Science.gov (United States)

    Buxner, S.; Grier, J.; Meinke, B. K.; Gross, N. A.; Woroner, M.

    2014-12-01

    The NASA Science Education and Public Outreach (E/PO) Forums support the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums foster collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. We will present tools to engage and resources to support scientists' engagement in E/PO efforts. Scientists can get connected to educators and find support materials and links to resources to support their E/PO work through the online SMD E/PO community workspace (http://smdepo.org) The site includes resources for scientists interested in E/PO including one page guides about "How to Get Involved" and "How to Increase Your Impact," as well as the NASA SMD Scientist Speaker's Bureau to connect scientists to audiences across the country. Additionally, there is a set of online clearinghouses that provide ready-made lessons and activities for use by scientists and educators: NASA Wavelength (http://nasawavelength.org/) and EarthSpace (http://www.lpi.usra.edu/earthspace/). The NASA Forums create and partner with organizations to provide resources specifically for undergraduate science instructors including slide sets for Earth and Space Science classes on the current topics in astronomy and planetary science. The Forums also provide professional development opportunities at professional science conferences each year including AGU, LPSC, AAS, and DPS to support higher education faculty who are teaching undergraduate courses. These offerings include best practices in instruction, resources for teaching planetary science and astronomy topics, and other special topics such as working with diverse students and the use of social media in the classroom. We are continually soliciting ways that we can better support scientists' efforts in effectively engaging in E/PO. Please contact Sanlyn Buxner (buxner@psi.edu) or Jennifer Grier (jgrier@psi.edu) to

  5. Teleconferencing in Medical Education: A Useful Tool

    Directory of Open Access Journals (Sweden)

    Lamba Pankaj

    2011-08-01

    Full Text Available Education and healthcare are basic needs for humandevelopment. Technological innovation has broadened theaccess to higher quality healthcare and education withoutregard to time, distance or geopolitical boundaries. Distancelearning has gained popularity as a means of learning inrecent years due to widely distributed learners, busyschedules and rising travel costs. Teleconferencing is also avery useful tool as a distance learning method.Teleconferencing is a real-time and live interactiveprogramme in which one set of participants are at one ormore locations and the other set of participants are atanother. The teleconference allows for interaction,including audio and/or video, and possibly other modalities,between at least two sites. Various methods are availablefor setting up a teleconferencing unit. A detailed review ofthe trend in the use of teleconferencing in medicaleducation was conducted using Medline and a literaturesearch.Teleconferencing was found to be a very useful tool incontinuing medical education (CME, postgraduate medicaleducation, undergraduate medical education,telementoring and many other situations. The use ofteleconferencing in medical education has many advantagesincluding savings in terms of travel costs and time. It givesaccess to the best educational resources and experiencewithout any limitations of boundaries of distance and time.It encourages two-way interactions and facilitates learningin adults. Despite having some pitfalls in its implementationit is now being seen as an important tool in facilitatinglearning in medicine and many medical schools andinstitutions are adapting this novel tool.

  6. Heuristic Diagrams as a Tool to Teach History of Science

    Science.gov (United States)

    Chamizo, José A.

    2012-05-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The left side originally related in Gowin's Vee with philosophies, theories, models, laws or regularities now agrees with Toulmin's concepts (language, models as representation techniques and application procedures). Mexican science teachers without experience in science education research used the heuristic diagram to learn about the history of chemistry considering also in the left side two different historical times: past and present. Through a semantic differential scale teachers' attitude to the heuristic diagram was evaluated and its usefulness was demonstrated.

  7. Novel Tools for Climate Change Learning and Responding in Earth Science Education

    Science.gov (United States)

    Sparrow, Elena; Brunacini, Jessica; Pfirman, Stephanie

    2015-04-01

    Several innovative, polar focused activities and tools including a polar hub website (http://thepolarhub.org) have been developed for use in formal and informal earth science or STEM education by the Polar Learning and Responding (PoLAR) Climate Change Education Partnership (consisting of climate scientists, experts in the learning sciences and education practitioners). In seeking to inform understanding of and response to climate change, these tools and activities range from increasing awareness to informing decisions about climate change, from being used in classrooms (by undergraduate students as well as by pre-college students or by teachers taking online climate graduate courses) to being used in the public arena (by stakeholders, community members and the general public), and from using low technology (card games such as EcoChains- Arctic Crisis, a food web game or SMARTIC - Strategic Management of Resources in Times of Change, an Arctic marine spatial planning game) to high technology (Greenify Network - a mobile real world action game that fosters sustainability and allows players to meaningfully address climate change in their daily lives, or the Polar Explorer Data Visualization Tablet App that allows individuals to explore data collected by scientists and presented for the everyday user through interactive maps and visualizations, to ask questions and go on an individualized tour of polar regions and their connections to the rest of the world). Games are useful tools in integrative and applied learning, in gaining practical and intellectual skills, and in systems thinking. Also, as part of the PoLAR Partnership, a Signs of the Land Climate Change Camp was collaboratively developed and conducted, that can be used as a model for engaging and representing indigenous communities in the co-production of climate change knowledge, communication tools and solutions building. Future camps are planned with Alaska Native Elders, educators including classroom

  8. Incorporating a Soil Science Artifact into a University ePortfolio Assessment Tool

    Science.gov (United States)

    Mikhailova, Elena; Werts, Joshua; Post, Christopher; Ring, Gail

    2014-01-01

    The ePortfolio is a useful educational tool that is utilized in many educational institutions to showcase student accomplishments and provide students with an opportunity to reflect on their educational progress. The objective of this study was to develop and test an artifact from an introductory soil science course to be included in the…

  9. Oximetry: A Reflective Tool for the Detection of Physiological Expression of Emotions in a Science Education Classroom

    Science.gov (United States)

    Calderón, Olga

    2016-01-01

    The pulse oximeter is a device that measures the oxygen concentration (or oxygen saturation--SpO[subscript 2]); heart rate, and heartbeat of a person at any given time. This instrument is commonly used in medical and aerospace fields to monitor physiological outputs of a patient according to health conditions or physiological yields of a flying…

  10. A Pedagogical Model for Science Education through Blended Learning

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2015-01-01

    This paper proposes a framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The study constitutes a work in progress and started as a response to complex

  11. Statistical thinking: tool for development of nursing as a science

    Directory of Open Access Journals (Sweden)

    Sonia Patricia Carreño Moreno

    2017-09-01

    Full Text Available Objective: To integrate findings of scientific literature that report on the importance of statistical thinking for development of nursing as a science.  Content synthesis: Literature review of articles published in indexed scientific journals between 1998 and 2017 in databases lilacs, sage Journals, Wiley Online Library, Scopus, bireme, Scielo, ScienceDirect, PubMed, cuiden® y ProQuest. 22 publications were included and findings were extracted, classified, and simplified using descriptor codes, nominal codes, and emerging topics. The following six topics emerged from searches: Education for statistical thinking; Statistical thinking for decision-making in practice; Obstacles to the statistical thinking development; Skills necessary to statistical thinking; Statistics in creating scientific knowledge; and Challenges for statistical thinking development. Conclusion: In the current development of nursing as a science, statistical thinking has primarily been a useful tool for the research field and training of researchers. The existence of obstacles to the statistical thinking development in nurse practitioners has been reported, revealing the need to bound statistics with nursing practice. For this purpose, it is essential to prepare texts and subject of statistics applied to the context of discipline and practice. Descriptors: Biostatistics; Statistics as Topic; Statistics; Science; Nursing(source: decs, bireme.

  12. Building a Global Ocean Science Education Network

    Science.gov (United States)

    Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.

    2016-02-01

    It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html

  13. Towards a truer multicultural science education: how whiteness impacts science education

    Science.gov (United States)

    Le, Paul T.; Matias, Cheryl E.

    2018-03-01

    The hope for multicultural, culturally competent, and diverse perspectives in science education falls short if theoretical considerations of whiteness are not entertained. Since whiteness is characterized as a hegemonic racial dominance that has become so natural it is almost invisible, this paper identifies how whiteness operates in science education such that it falls short of its goal for cultural diversity. Because literature in science education has yet to fully entertain whiteness ideology, this paper offers one of the first theoretical postulations. Drawing from the fields of education, legal studies, and sociology, this paper employs critical whiteness studies as both a theoretical lens and an analytic tool to re-interpret how whiteness might impact science education. Doing so allows the field to reconsider benign, routine, or normative practices and protocol that may influence how future scientists of Color experience the field. In sum, we seek to have the field consider the theoretical frames of whiteness and how it might influence how we engage in science education such that our hope for diversity never fully materializes.

  14. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  15. Nuclear Science References as a Tool for Data Evaluation

    International Nuclear Information System (INIS)

    Winchell, D.F.

    2005-01-01

    For several decades, the Nuclear Science References database has been maintained as a tool for data evaluators and for the wider pure and applied research community. This contribution will describe the database and recent developments in web-based access

  16. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  17. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  18. Developing and testing multimedia educational tools to teach Polar Sciences in the Italian school

    Science.gov (United States)

    Macario, Maddalena; Cattadori, Matteo; Bianchi, Cristiana; Zattin, Massimiliano; Talarico, Franco Maria

    2013-04-01

    In the last few years science education moved forward rapidly by connecting the expertise and enthusiasm of polar educators worldwide. The interest in Polar Sciences determined the creation of a global professional network for those that educate in, for, and about the Polar Regions. In Italy, this cooperation is well represented by APECS-Italy, the Italian section of the Association of Polar Early Career Scientists (APECS) that is composed by young researchers and teachers of the Italian School. The Polar Regions represent one of the best natural environments where students can investigate directly on global changes. In this sense, the working group UNICAMearth of the Geology Division of School of Science and Technology, University of Camerino (Italy), promotes the arrangement of instructional resources based on real data coming from the research world. Our project aims to develop innovative teaching resources and practices designed to bring the importance of the Polar Regions closer to home. Consequently, Polar Sciences could become a focus point in the new national school curricula, where Earth Sciences have to be thought and learnt in an integrated way together with other sciences. In particular, M. Macario is producing a teaching tool package, starting from a case study, which includes a dozen of full lesson plans based on multimedia tools (images, smart board lessons and videos of lab experiments) as well as on hands-on activities about polar issues and phenomena. Among the resources the teaching tool package is referring to, there is also an App for tablet named CLAST (CLimate in Antartica from Sediments and Tectonics). This App has been designed by a team made up of polar scientists belonging to the University of Siena and University of Padova, two science teachers of the Museo delle Scienze (MUSE) of Trento other than M. Macario. CLAST has been funded by two Research Projects, CLITEITAM ("CLImate-TEctonics Interactions along the TransAntarctic Mountains

  19. The science writing tool

    Science.gov (United States)

    Schuhart, Arthur L.

    This is a two-part dissertation. The primary part is the text of a science-based composition rhetoric and reader called The Science Writing Tool. This textbook has seven chapters dealing with topics in Science Rhetoric. Each chapter includes a variety of examples of science writing, discussion questions, writing assignments, and instructional resources. The purpose of this text is to introduce lower-division college science majors to the role that rhetoric and communication plays in the conduct of Science, and how these skills contribute to a successful career in Science. The text is designed as a "tool kit," for use by an instructor constructing a science-based composition course or a writing-intensive Science course. The second part of this part of this dissertation reports on student reactions to draft portions of The Science Writing Tool text. In this report, students of English Composition II at Northern Virginia Community College-Annandale were surveyed about their attitudes toward course materials and topics included. The findings were used to revise and expand The Science Writing Tool.

  20. Tools and resources for neuroanatomy education: a systematic review.

    Science.gov (United States)

    Arantes, M; Arantes, J; Ferreira, M A

    2018-05-03

    The aim of this review was to identify studies exploring neuroanatomy teaching tools and their impact in learning, as a basis towards the implementation of a neuroanatomy program in the context of a curricular reform in medical education. Computer-assisted searches were conducted through March 2017 in the PubMed, Web of Science, Medline, Current Contents Connect, KCI and Scielo Citation Index databases. Four sets of keywords were used, combining "neuroanatomy" with "education", "teaching", "learning" and "student*". Studies were reviewed independently by two readers, and data collected were confirmed by a third reader. Of the 214 studies identified, 29 studies reported data on the impact of using specific neuroanatomy teaching tools. Most of them (83%) were published in the last 8 years and were conducted in the United States of America (65.52%). Regarding the participants, medical students were the most studied sample (37.93%) and the majority of the studies (65.52%) had less than 100 participants. Approximately half of the studies included in this review used digital teaching tools (e.g., 3D computer neuroanatomy models), whereas the remaining used non-digital learning tools (e.g., 3D physical models). Our work highlight the progressive interest in the study of neuroanatomy teaching tools over the last years, as evidenced from the number of publications and highlight the need to consider new tools, coping with technological development in medical education.

  1. Using Food as a Tool to Teach Science to 3rd Grade Students in Appalachian Ohio

    Science.gov (United States)

    Duffrin, Melani W.; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-01-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007 to 2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3rd-grade classrooms in Appalachian Ohio; teachers in these…

  2. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  3. Towards a pedagogical model for science education: bridging educational contexts through a blended learning approach

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2017-01-01

    This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The development of this design framework started as a response to complex

  4. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  5. Getting The Picture: Our Changing Climate- A new learning tool for climate science

    Science.gov (United States)

    Yager, K.; Balog, J. D.

    2014-12-01

    Earth Vision Trust (EVT), founded by James Balog- photographer and scientist, has developed a free, online, multimedia climate science education tool for students and educators. Getting The Picture (GTP) creates a new learning experience, drawing upon powerful archives of Extreme Ice Survey's unique photographs and time-lapse videos of changing glaciers around the world. GTP combines the latest in climate science through interactive tools that make the basic scientific tenets of climate science accessible and easy to understand. The aim is to use a multidisciplinary approach to encourage critical thinking about the way our planet is changing due to anthropogenic activities, and to inspire students to find their own voice regarding our changing climate The essence of this resource is storytelling through the use of inspiring images, field expedition notes and dynamic multimedia tools. EVT presents climate education in a new light, illustrating the complex interaction between humans and nature through their Art + Science approach. The overarching goal is to educate and empower young people to take personal action. GTP is aligned with national educational and science standards (NGSS, CCSS, Climate Literacy) so it may be used in conventional classrooms as well as education centers, museum kiosks or anywhere with Internet access. Getting The Picture extends far beyond traditional learning to provide an engaging experience for students, educators and all those who wish to explore the latest in climate science.

  6. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  7. The Media as an Invaluable Tool for Informal Earth System Science Education

    Science.gov (United States)

    James, E.; Gautier, C.

    2001-12-01

    One of the most widely utilized avenues for educating the general public about the Earth's environment is the media, be it print, radio or broadcast. Accurate and effective communication of issues in Earth System Science (ESS), however, is significantly hindered by the public's relative scientific illiteracy. Discussion of ESS concepts requires the laying down of a foundation of complex scientific information, which must first be conveyed to an incognizant audience before any strata of sophisticated social context can be appropriately considered. Despite such a substantial obstacle to be negotiated, the environmental journalist is afforded the unique opportunity of providing a broad-reaching informal scientific education to a largely scientifically uninformed population base. This paper will review the tools used by various environmental journalists to address ESS issues and consider how successful each of these approaches has been at conveying complex scientific messages to a general audience lacking sufficient scientific sophistication. Different kinds of media materials used to this effect will be analyzed for their ideas and concepts conveyed, as well as their effectiveness in reaching the public at large.

  8. IRRAS, a new tool in food science

    NARCIS (Netherlands)

    Meinders, M.B.J.; Bosch, van den G.G.M.; Jongh, de H.H.J.

    2001-01-01

    This report illustrates that infra-red reflection absorption spectroscopy (IRRAS) is a new powerful and promising technique to obtain detailed molecular information of biomolecules at and near the air/water interface of complex food solutions. Here it is demonstrated that in combination with

  9. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    , 2007). Some of these newer formats are developed in partnerships between research and education institutions and game developers and are based on learning theory as well as game design methods. Games well suited for creating narrative framework or simulations where students gain first-hand experience......This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  10. LinkedIn as a Learning Tool in Business Education

    Science.gov (United States)

    Cooper, Brett; Naatus, Mary Kate

    2014-01-01

    This article summarizes the existing research on social media as a learning tool in higher education and adds to the literature on incorporating social media tools into collegiate business education by suggesting specific course content areas of business where LinkedIn exercises and training can be incorporated. LinkedIn as a classroom tool cannot…

  11. Facebook: A Potentially Valuable Educational Tool?

    Science.gov (United States)

    Voivonta, Theodora; Avraamidou, Lucy

    2018-01-01

    This paper is concerned with the educational value of Facebook and specifically how it can be used in formal educational settings. As such, it provides a review of existing literature of how Facebook is used in higher education paying emphasis on the scope of its use and the outcomes achieved. As evident in existing literature, Facebook has been…

  12. Facebook : A potentially valuable educational tool?

    NARCIS (Netherlands)

    Voivonta, Theodora; Avraamidou, Lucy

    2018-01-01

    This paper is concerned with the educational value of Facebook and specifically how it can be used in formal educational settings. As such, it provides a review of existing literature of how Facebook is used in higher education paying emphasis on the scope of its use and the outcomes achieved. As

  13. Heuristic Diagrams as a Tool to Teach History of Science

    Science.gov (United States)

    Chamizo, Jose A.

    2012-01-01

    The graphic organizer called here heuristic diagram as an improvement of Gowin's Vee heuristic is proposed as a tool to teach history of science. Heuristic diagrams have the purpose of helping students (or teachers, or researchers) to understand their own research considering that asks and problem-solving are central to scientific activity. The…

  14. Context Based Learning: A Role for Cinema in Science Education

    Science.gov (United States)

    Arroio, Agnaldo

    2010-01-01

    This paper discusses the role of cinema as a tool for science education. Based on the socio-cultural approach put forward by Vygotsky, it draws attention to the fact that an audience can interact with the characters and share their emotions and actions showed in an audiovisual setting. Experiences come from an interaction with a learning…

  15. Networks of Practice in Science Education Research: A Global Context

    Science.gov (United States)

    Martin, Sonya N.; Siry, Christina

    2011-01-01

    In this paper, we employ cultural sociology and Braj Kachru's model of World Englishes as theoretical and analytical tools for considering English as a form of capital necessary for widely disseminating research findings from local networks of practice to the greater science education research community. We present a brief analysis of recent…

  16. [COMETE: a tool to develop psychosocial competences in patient education].

    Science.gov (United States)

    Saugeron, Benoit; Sonnier, Pierre; Marchais, Stéphanie

    2016-01-01

    This article presents a detailed description of the development and use of the COMETE tool. The COMETE tool is designed to help medical teams identify, develop or evaluate psychosocial skills in patient education and counselling. This tool, designed in the form of a briefcase, proposes methodological activities and cards that assess psychosocial skills during a shared educational assessment, group meetings or during an individual evaluation. This tool is part of a support approach for medical teams caring for patients with chronic diseases.

  17. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.

    2015-01-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  18. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Farrell, W. M.

    2015-12-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  19. Open Educational Resources in Support of Science Learning: Tools for Inquiry and Observation

    Science.gov (United States)

    Scanlon, Eileen

    2012-01-01

    This article focuses on the potential of free tools, particularly inquiry tools for influencing participation in twenty-first-century learning in science, as well as influencing the development of communities around tools. Two examples are presented: one on the development of an open source tool for structured inquiry learning that can bridge the…

  20. A Community Assessment Tool for Education Resources

    Science.gov (United States)

    Hou, C. Y.; Soyka, H.; Hutchison, V.; Budden, A. E.

    2016-12-01

    In order to facilitate and enhance better understanding of how to conserve life on earth and the environment that sustains it, Data Observation Network for Earth (DataONE) develops, implements, and shares educational activities and materials as part of its commitment to the education of its community, including scientific researchers, educators, and the public. Creating and maintaining educational materials that remain responsive to community needs is reliant on careful evaluations in order to enhance current and future resources. DataONE's extensive collaboration with individuals and organizations has informed the development of its educational resources and through these interactions, the need for a comprehensive, customizable education evaluation instrument became apparent. In this presentation, the authors will briefly describe the design requirements and research behind a prototype instrument that is intended to be used by the community for evaluation of its educational activities and resources. We will then demonstrate the functionality of a web based platform that enables users to identify the type of educational activity across multiple axes. This results in a set of structured evaluation questions that can be included in a survey instrument. Users can also access supporting documentation describing the types of question included in the output or simply download a full editable instrument. Our aim is that by providing the community with access to a structured evaluation instrument, Earth/Geoscience educators will be able to gather feedback easily and efficiently in order to help maintain the quality, currency/relevancy, and value of their resources, and ultimately, support a more data literate community.

  1. Public Science Education and Outreach as a Modality for Teaching Science Communication Skills to Undergraduates

    Science.gov (United States)

    Arion, Douglas; OConnell, Christine; Lowenthal, James; Hickox, Ryan C.; Lyons, Daniel

    2018-01-01

    The Alan Alda Center for Communicating Science at Stony Brook University is working with Carthage College, Dartmouth College, and Smith College, in partnership with the Appalachian Mountain Club, to develop and disseminate curriculum to incorporate science communication education into undergraduate science programs. The public science education and outreach program operating since 2012 as a partnership between Carthage and the Appalachian Mountain Club is being used as the testbed for evaluating the training methods. This talk will review the processes that have been developed and the results from the first cohort of students trained in these methods and tested during the summer 2017 education and outreach efforts, which reached some 12,000 members of the public. A variety of evaluation and assessment tools were utilized, including surveys of public participants and video recording of the interactions of the students with the public. This work was supported by the National Science Foundation under grant number 1625316.

  2. Three Dimensional Spherical Display Systems and McIDAS: Tools for Science, Education and Outreach

    Science.gov (United States)

    Kohrs, R.; Mooney, M. E.

    2010-12-01

    The Space Science and Engineering Center (SSEC) and Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin are now using a 3D spherical display system and their Man computer Data Access System (McIDAS)-X and McIDAS-V as outreach tools to demonstrate how scientists and forecasters utilize satellite imagery to monitor weather and climate. Our outreach program displays orbits and data coverage of geostationary and polar satellites and demonstrates how each is beneficial for the remote sensing of Earth. Global composites of visible, infrared and water vapor images illustrate how satellite instruments collect data from different bands of the electromagnetic spectrum to monitor global weather patterns 24 hours a day. Captivating animations on spherical display systems are proving to be much more intuitive than traditional 2D displays, enabling audiences to view satellites orbiting above real-time weather systems circulating the entire globe. Complimenting the 3D spherical display system are the UNIX-based McIDAS-X and Java-based McIDAS-V software packages. McIDAS is used to composite the real-time global satellite data and create other weather related derived products. Client and server techniques used by these software packages provide the opportunity to continually update the real-time content on our globe. The enhanced functionality of McIDAS-V extends our outreach program by allowing in-depth interactive 4-dimensional views of the imagery previously viewed on the 3D spherical display system. An important goal of our outreach program is the promotion of remote sensing research and technology at SSEC and CIMSS. The 3D spherical display system has quickly become a popular tool to convey societal benefits of these endeavors. Audiences of all ages instinctively relate to recent weather events which keeps them engaged in spherical display presentations. McIDAS facilitates further exploration of the science behind the weather

  3. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  4. Integrating Computational Science Tools into a Thermodynamics Course

    Science.gov (United States)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  5. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  6. Scenario planning: a tool for academic health sciences libraries.

    Science.gov (United States)

    Ludwig, Logan; Giesecke, Joan; Walton, Linda

    2010-03-01

    Review the International Campaign to Revitalise Academic Medicine (ICRAM) Future Scenarios as a potential starting point for developing scenarios to envisage plausible futures for health sciences libraries. At an educational workshop, 15 groups, each composed of four to seven Association of Academic Health Sciences Libraries (AAHSL) directors and AAHSL/NLM Fellows, created plausible stories using the five ICRAM scenarios. Participants created 15 plausible stories regarding roles played by health sciences librarians, how libraries are used and their physical properties in response to technology, scholarly communication, learning environments and health care economic changes. Libraries are affected by many forces, including economic pressures, curriculum and changes in technology, health care delivery and scholarly communications business models. The future is likely to contain ICRAM scenario elements, although not all, and each, if they come to pass, will impact health sciences libraries. The AAHSL groups identified common features in their scenarios to learn lessons for now. The hope is that other groups find the scenarios useful in thinking about academic health science library futures.

  7. Development of a tool for evaluating multimedia for surgical education.

    Science.gov (United States)

    Coughlan, Jane; Morar, Sonali S

    2008-09-01

    Educational multimedia has been designed to provide surgical trainees with expert operative information outside of the operating theater. The effectiveness of multimedia (e.g., CD-ROMs) for learning has been a common research topic since the 1990s. To date, however, little discussion has taken place on the mechanisms to evaluate the quality of multimedia-driven teaching. This may be because of a lack of research into the development of appropriate tools for evaluating multimedia, especially for surgical education. This paper reports on a small-scale pilot and exploratory study (n = 12) that developed a tool for surgical multimedia evaluation. The validity of the developed tool was established through adaptation of an existing tool, which was reviewed using experts in surgery, usability, and education. The reliability of the developed tool was tested with surgical trainees who used it to assess a multimedia CD-ROM created for teaching basic surgical skills. The findings contribute to an understanding of surgical trainees' experience of using educational multimedia, in terms of characteristics of the learning material for interface design and content and the process of developing evaluation tools, in terms of inclusion of appropriate assessment criteria. The increasing use of multimedia in medical education necessitates the development of standardized tools for determining the quality of teaching and learning. Little research exists into the development of such tools and so the present work stimulates discussion on how to evaluate surgical training.

  8. VRML - A new tool in biomedical education

    Directory of Open Access Journals (Sweden)

    Tomaz Amon

    1999-01-01

    Full Text Available VRML (Virtual Reality Modelling Language represents a fully interactive multimedia learning environment in the virtual 3D space. It has a unique advantage that its files are about 100x smaller in size than the corresponding video clips. This software is free, platform independent and can be observed with a web browser. By applying this technology many educational projects do not need to be distributed on CD ROMs anymore. Because of their small file size (typically about 3 MB they can be downloaded from the web. We use VRML to show the structures and functions of biological systems for the educational purposes in the secondary and high schools. Such three-dimensional worlds allow the user to travel in their virtual space, learning the principles of biological systems in a fast, effective and pleasant way. Therefore we believe that this technique will play in future a role in biological publications as important as today are the illustrations added to text. Many of our creations can be observed on our web page http://verbena.fe.uni-lj.si/~tomaz/VRML/

  9. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  10. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  11. A Customized Drought Decision Support Tool for Hsinchu Science Park

    Science.gov (United States)

    Huang, Jung; Tien, Yu-Chuan; Lin, Hsuan-Te; Liu, Tzu-Ming; Tung, Ching-Pin

    2016-04-01

    Climate change creates more challenges for water resources management. Due to the lack of sufficient precipitation in Taiwan in fall of 2014, many cities and counties suffered from water shortage during early 2015. Many companies in Hsinchu Science Park were significantly influenced and realized that they need a decision support tool to help them managing water resources. Therefore, a customized computer program was developed, which is capable of predicting the future status of public water supply system and water storage of factories when the water rationing is announced by the government. This program presented in this study for drought decision support (DDSS) is a customized model for a semiconductor company in the Hsinchu Science Park. The DDSS is programmed in Java which is a platform-independent language. System requirements are any PC with the operating system above Windows XP and an installed Java SE Runtime Environment 7. The DDSS serves two main functions. First function is to predict the future storage of Baoshan Reservoir and Second Baoshan Reservoir, so to determine the time point of water use restriction in Hsinchu Science Park. Second function is to use the results to help the company to make decisions to trigger their response plans. The DDSS can conduct real-time scenario simulations calculating the possible storage of water tank for each factory with pre-implementation and post-implementation of those response plans. In addition, DDSS can create reports in Excel to help decision makers to compare results between different scenarios.

  12. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  13. Learning science and science education in a new era.

    Science.gov (United States)

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  14. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  15. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  16. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, poweful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  17. Synchrotron light sources: A powerful tool for science and technology

    International Nuclear Information System (INIS)

    Schlachter, F.; Robinson, A.

    1996-01-01

    A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia

  18. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  19. Scientism and Scientific Thinking. A Note on Science Education

    Science.gov (United States)

    Gasparatou, Renia

    2017-11-01

    The move from respecting science to scientism, i.e., the idealization of science and scientific method, is simple: We go from acknowledging the sciences as fruitful human activities to oversimplifying the ways they work, and accepting a fuzzy belief that Science and Scientific Method, will give us a direct pathway to the true making of the world, all included. The idealization of science is partly the reason why we feel we need to impose the so-called scientific terminologies and methodologies to all aspects of our lives, education too. Under this rationale, educational policies today prioritize science, not only in curriculum design, but also as a method for educational practice. One might expect that, under the scientistic rationale, science education would thrive. Contrariwise, I will argue that scientism disallows science education to give an accurate image of the sciences. More importantly, I suggest that scientism prevents one of science education's most crucial goals: help students think. Many of my arguments will borrow the findings and insights of science education research. In the last part of this paper, I will turn to some of the most influential science education research proposals and comment on their limits. If I am right, and science education today does not satisfy our most important reasons for teaching science, perhaps we should change not just our teaching strategies, but also our scientistic rationale. But that may be a difficult task.

  20. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  1. Technology and Early Science Education: Examining Generalist Primary School Teachers' Views on Tacit Knowledge Assessment Tools

    Science.gov (United States)

    Hast, Michael

    2017-01-01

    For some time a central issue has occupied early science education discussions--primary student classroom experiences and the resulting attitudes towards science. This has in part been linked to generalist teachers' own knowledge of science topics and pedagogical confidence. Recent research in cognitive development has examined the role of…

  2. Potential of augmented reality in sciences education. A literature review.

    OpenAIRE

    Swensen, Håkon

    2016-01-01

    POTENTIAL OF AUGMENTED REALITY IN SCIENCES EDUCATION A LITERATURE REVIEW H. Swensen Oslo and Akershus University College of Applied Sciences (NORWAY) Fewer and fewer students in Europe choose STEM education, while in today's job market have a growing need for people with such education. There are many reasons for this situation, but one important factor is that many students perceive school science as difficult. In science, there are many complex and abstract concepts to be learned, which put...

  3. Simulation-Based e-Learning Tools for Science,Engineering, and Technology Education(SimBeLT)

    Science.gov (United States)

    Davis, Doyle V.; Cherner, Y.

    2006-12-01

    The focus of Project SimBeLT is the research, development, testing, and dissemination of a new type of simulation-based integrated e-learning set of modules for two-year college technical and engineering curricula in the areas of thermodynamics, fluid physics, and fiber optics that can also be used in secondary schools and four-year colleges. A collection of sophisticated virtual labs is the core component of the SimBeLT modules. These labs will be designed to enhance the understanding of technical concepts and underlying fundamental principles of these topics, as well as to master certain performance based skills online. SimBeLT software will help educators to meet the National Science Education Standard that "learning science and technology is something that students do, not something that is done to them". A major component of Project SimBeLT is the development of multi-layered technology-oriented virtual labs that realistically mimic workplace-like environments. Dynamic data exchange between simulations will be implemented and links with instant instructional messages and data handling tools will be realized. A second important goal of Project SimBeLT labs is to bridge technical skills and scientific knowledge by enhancing the teaching and learning of specific scientific or engineering subjects. SimBeLT builds upon research and outcomes of interactive teaching strategies and tools developed through prior NSF funding (http://webphysics.nhctc.edu/compact/index.html) (Project SimBeLT is partially supported by a grant from the National Science Foundation DUE-0603277)

  4. Science Education: A Case for Astronomy

    Science.gov (United States)

    Wentzel, Donat G.

    1971-01-01

    Describes astronomy course used as a medium to provide an understanding of how science progresses and how it relates to society. Illustrations are given of how scientific judgment, importance of basic science, humanistic aspects of science, and the priorities among science are presented. (DS)

  5. Web-Site as an Educational Tool in Biology Education: A Case of Nutrition Issue

    Science.gov (United States)

    Fancovicova, Jana; Prokop, Pavol; Usak, Muhammet

    2010-01-01

    The purpose of the study was to evaluate the efficacy and feasibility of using website in biology education. We have explored the World Wide Web as a possible tool for education about health and nutrition. The websites were teaching tools for primary school students. Control groups used the traditional educational materials as books or worksheets,…

  6. Flogging a Dead Horse: Pseudoscience and School Science Education

    Science.gov (United States)

    Vlaardingerbroek, Barend

    2011-01-01

    Pseudoscience is a ubiquitous aspect of popular culture which constitutes a direct challenge to science, and by association, to science education. With the exception of politically influential pseudosciences trying to impose themselves on official curricula such as creationism, science education authorities and professional organisations seem…

  7. The Utility of a Physics Education in Science Policy

    Science.gov (United States)

    Roberts, Drew

    2016-03-01

    In order for regulators to create successful policies on technical issues, ranging from environmental protection to distribution of national Grant money, the scientific community must play an integral role in the legislative process. Through a summer-long internship with the Science, Space, and Technology Committee of the U.S. House of Representatives, I have learned that skills developed while pursuing an undergraduate degree in physics are very valuable in the policy realm. My physics education provided me the necessary tools to bridge the goals of the scientific and political communities. The need for effective comprehension and communication of technical subjects provides an important opportunity for individuals with physics degrees to make substantial contributions to government policy. Science policy should be encouraged as one of the many career pathways for physics students. Society of Physics Students, John and Jane Mather Foundation for Science and the Arts.

  8. Video Creation: A Tool for Engaging Students to Learn Science

    Science.gov (United States)

    Courtney, A. R.

    2016-12-01

    Students today process information very differently than those of previous generations. They are used to getting their news from 140-character tweets, being entertained by You-Tube videos, and Googling everything. Thus, traditional passive methods of content delivery do not work well for many of these millennials. All students, regardless of career goals, need to become scientifically literate to be able to function in a world where scientific issues are of increasing importance. Those who have had experience applying scientific reasoning to real-world problems in the classroom will be better equipped to make informed decisions in the future. The problem to be solved is how to present scientific content in a manner that fosters student learning in today's world. This presentation will describe how the appeal of technology and social communication via creation of documentary-style videos has been used to engage students to learn scientific concepts in a university non-science major course focused on energy and the environment. These video projects place control of the learning experience into the hands of the learner and provide an opportunity to develop critical thinking skills. Students discover how to locate scientifically reliable information by limiting searches to respected sources and synthesize the information through collaborative content creation to generate a "story". Video projects have a number of advantages over research paper writing. They allow students to develop collaboration skills and be creative in how they deliver the scientific content. Research projects are more effective when the audience is larger than just a teacher. Although our videos are used as peer-teaching tools in the classroom, they also are shown to a larger audience in a public forum to increase the challenge. Video will be the professional communication tool of the future. This presentation will cover the components of the video production process and instructional lessons

  9. A crowdsourcing model for creating preclinical medical education study tools.

    Science.gov (United States)

    Bow, Hansen C; Dattilo, Jonathan R; Jonas, Andrea M; Lehmann, Christoph U

    2013-06-01

    During their preclinical course work, medical students must memorize and recall substantial amounts of information. Recent trends in medical education emphasize collaboration through team-based learning. In the technology world, the trend toward collaboration has been characterized by the crowdsourcing movement. In 2011, the authors developed an innovative approach to team-based learning that combined students' use of flashcards to master large volumes of content with a crowdsourcing model, using a simple informatics system to enable those students to share in the effort of generating concise, high-yield study materials. The authors used Google Drive and developed a simple Java software program that enabled students to simultaneously access and edit sets of questions and answers in the form of flashcards. Through this crowdsourcing model, medical students in the class of 2014 at the Johns Hopkins University School of Medicine created a database of over 16,000 questions that corresponded to the Genes to Society basic science curriculum. An analysis of exam scores revealed that students in the class of 2014 outperformed those in the class of 2013, who did not have access to the flashcard system, and a survey of students demonstrated that users were generally satisfied with the system and found it a valuable study tool. In this article, the authors describe the development and implementation of their crowdsourcing model for creating study materials, emphasize its simplicity and user-friendliness, describe its impact on students' exam performance, and discuss how students in any educational discipline could implement a similar model of collaborative learning.

  10. CONTINUING EDUCATION : A TOOL FOR CARE SAFETY

    Directory of Open Access Journals (Sweden)

    Eliane Carlosso Krummenauer

    2014-07-01

    Full Text Available A educação dos profissionais de saúde(PS é uma das principais estratégias para a adoção de práticas seguras no trabalho em saúde. É uma ferramenta que contribui para que os trabalhadores se conscientizem sobre as consequências de suas práticas e a aderência das precauções e medidas de biosegurança, inclusive a prevenção de acidentes com pérfuro-cortantes no exercício profissional(1. O ambiente de trabalho hospitalar é considerado insalubre por agrupar pacientes portadores de diversas enfermidades infectocontagiosas e viabilizar procedimentos que oferecem riscos de acidentes e doenças para os PS. Para que as condições do trabalho se tornem mais seguras, se faz necessário medidas estruturais e organizacionais que visem a mudança de comportamento destes, através de esforços conjuntos do serviço e de seus trabalhadores. Para elaborar estas ações é preciso considerar a inserção do trabalhador no grupo e nos processos de trabalho, além de sua vida social e o desgaste emocional dado pelo contexto sócio-econômico-cultural no qual o trabalho está inserido(2. Além disso, requer um trabalho interdisciplinar e intersetorial na prevenção de doenças ocupacionais e promoção de saúde na assistência, garantindo um suporte psico social e que defenda seus interesses, quando necessário(3. Estas medidas devem ser trabalhadas em conjunto com o Serviço Especializado em Engenharia de Segurança e em Medicina do Trabalho(SESMT, Comissão Interna de Prevenção de Acidentes(CIPA, Comissão de Controle de Infecção(CCIH, Serviço de Educação Continuada e demais setores que se encarregam de educação e vigilância em saúde nas instituições. Para disponibilizar condições de trabalho mais seguras as instituições precisam organizar e estruturar os seguintes processos de trabalho: vacinação dos PS conforme legislação; protocolos de utilização de equipamentos de proteção individual; protocolos de precau

  11. Nutritional education: a tool for healthy feeding

    Directory of Open Access Journals (Sweden)

    Querubina Bringel Olinda

    2010-09-01

    Full Text Available Em 2007, no Brasil, as doenças do aparelho circulatório levaram 308.466 pessoas ao óbito, contribuindo com 31,89% de todas as mortes. Em conjunto, elas representaram uma taxa de 162,9 óbitos por cem mil habitantes. As neoplasias, no ano referido, dentro dos grandes grupos de causas de morte, resultaram numa carga de 159.092 óbitos, contribuíram com 16,7% de todas as mortes e conceberam uma taxa de mortalidade específica de 84,0 óbitos por cem mil habitantes(1. Essas doenças têm importantes fatores de risco, claramente descritos na literatura. Entre eles, encontramos os fatores ambientais como tabagismo,alcoolismo, prática de atividade física e alimentação. Alimentação saudável. Muitos são os conceitos dados ao ato de alimentarse. Quando falamos em alimentação saudável devemos pensar em qualidadee quantidade do que ingerimos. Os alimentos saudáveis têm sido colocados em diferentes mídias como promotores de saúde e os estudos epidemiológicos mostram uma relação inversa entre o consumo de frutas e vegetais, associados à prática de atividade física, com a redução do risco de doenças crônicas, como as cardiovasculares e o câncer(2. O efeito protetor da alimentação inicia-se com as práticas alimentares da infância, com o ato de amamentar e de oferecer uma alimentação equilibrada para as crianças. O consumo alimentar dos pais, certamente é determinante nas escolhas alimentares das crianças e, portanto, responsável pela provável garantia de uma alimentação promotora de saúde. O poder aquisitivo das famílias nem sempre é garantidor de escolhas alimentares saudáveis. Doces, enlatados, embutidos,churrascos refrigerantes são alimentos frequentes no consumo alimentar dos indivíduos, independente do seu poder aquisitivo. Ao contrário, frutas, vegetais, cereais integrais são alimentos de segunda escolha e seu baixo consumo está associado ao aumento do risco de obesidade, câncer, dislipidemias. Nesse

  12. Supporting Beginning Teacher Planning and Enactment of Investigation-based Science Discussions: The Design and Use of Tools within Practice-based Teacher Education

    Science.gov (United States)

    Kademian, Sylvie M.

    Current reform efforts prioritize science instruction that provides opportunities for students to engage in productive talk about scientific phenomena. Given the challenges teachers face enacting instruction that integrates science practices and science content, beginning teachers need support to develop the knowledge and teaching practices required to teach reform-oriented science lessons. Practice-based teacher education shows potential for supporting beginning teachers while they are learning to teach in this way. However, little is known about how beginning elementary teachers draw upon the types of support and tools associated with practice-based teacher education to learn to successfully enact this type of instruction. This dissertation addresses this gap by investigating how a practice-based science methods course using a suite of teacher educator-provided tools can support beginning teachers' planning and enactment of investigation-based science lessons. Using qualitative case study methodologies, this study drew on video-records, lesson plans, class assignments, and surveys from one cohort of 22 pre-service teachers (called interns in this study) enrolled in a year-long elementary education master of the arts and teaching certification program. Six focal interns were also interviewed at multiple time-points during the methods course. Similarities existed across the types of tools and teaching practices interns used most frequently to plan and enact investigation-based discussions. For the focal interns, use of four synergistic teaching practices throughout the lesson enactments (including consideration of students' initial ideas; use of open-ended questions to elicit, extend, and challenge ideas; connecting across students' ideas and the disciplinary core ideas; and use of a representation to organize and highlight students' ideas) appeared to lead to increased opportunities for students to share their ideas and engage in data analysis, argumentation and

  13. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  14. Games As Educational Tools in eARTh Science: MAREOPOLI and THE ENERGY CHALLENGE.

    Science.gov (United States)

    Garvani, Sara; Locritani, Marina; di Laura, Francesca; Stroobant, Mascha; Merlino, Silvia

    2017-04-01

    Research and researchers do have an important role in sustainable green and blue economy. It is also clear that outreach activities are fundamental to improve societal perception of Science past and present results and future insights or consequences and that is primary to change people's mentality. This is one of the main goals of the Scientific Dissemination Group (SDG) "La Spezia Gulf of Science", made up by Research Centres, Schools and Cultural associations located in La Spezia (Liguria, Italy). However, communicating scientific results means also improving educational methods: introducing tight relationship with artists (especially graphic designers), can produce unusual approaches and translate concepts in images which everyone can understand also under an emotional point of view. Images have a fundamental role for understanding and learning simple and less simple concepts, for example general public and high School students can be reached by interactive conferences with live speed painting (Locritani et al., 2016), and kids can be involved in interactive games. And games, especially, can reduce learning curves, since playing itself creates a natural forum for exchanging ideas and reflecting on natural phenomena and human impacts outside of class hours. Games, and the entertainment value of play, have the ability to teach and transform (Gobet et al., 2004). In this work we'll present two different games that raised from the collaboration between researchers and artists: MAREOPOLI and THE ENERGY CHALLENGE. MAREOPOLI (The City of Tides) is a simplified adaptation of the famous board game Monopoly, and consist of 36 spaces: 16 important historical and coastal cities having relevant tide phenomena, 8 Unexpected Events spaces (questions are asked on Modern Oceanography), 8 Curious Facts spaces (players receive information on historical records) and 4 corner squares: GO, (Blocked) in Limestone Grotto/Just Visiting, Free Beach Club, and Go to Limestone Grotto

  15. Reforming Science Education: Part I. The Search for a Philosophy of Science Education

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    The call for reforms in science education has been ongoing for a century, with new movements and approaches continuously reshaping the identity and values of the discipline. The HPS movement has an equally long history and taken part in the debates defining its purpose and revising curriculum. Its limited success, however, is due not only to competition with alternative visions and paradigms (e.g. STS, multi-culturalism, constructivism, traditionalism) which deadlock implementation, and which have led to conflicting meanings of scientific literacy, but the inability to rise above the debate. At issue is a fundamental problem plaguing science education at the school level, one it shares with education in general. It is my contention that it requires a guiding “metatheory” of education that can appropriately distance itself from the dual dependencies of metatheories in psychology and the demands of socialization—especially as articulated in most common conceptions of scientific literacy tied to citizenship. I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science. This will be elaborated in Part II of a supplemental paper to the present one. As a prerequisite to presenting Egan’s metatheory I first raise the issue of the need for a conceptual shift back to philosophy of education within the discipline, and thereto, on developing and demarcating true educational theories (essentially neglected since Hirst). In the same vein it is suggested a new research field should be opened with the express purpose of developing a discipline-specific “philosophy of science education” (largely neglected since Dewey) which could in addition serve to reinforce science education

  16. Unit testing as a teaching tool in higher education

    Directory of Open Access Journals (Sweden)

    Peláez Canek

    2016-01-01

    Full Text Available Unit testing in the programming world has had a profound impact in the way modern complex systems are developed. Many Open Source and Free Software projects encourage (and in some cases, mandate the use of unit tests for new code submissions, and many software companies around the world have incorporated unit testing as part of their standard developing practices. And although not all software engineers use them, very few (if at all object their use. However, there is almost no research available pertaining the use of unit tests as a teaching tool in introductory programming courses. I have been teaching introductory programming courses in the Computer Sciences program at the Sciences Faculty in the National Autonomous University of Mexico for almost ten years, and since 2013 I have been using unit testing as a teaching tool in those courses. The intent of this paper is to discuss the results of this experience.

  17. Basic science right, not basic science lite: medical education at a crossroad.

    Science.gov (United States)

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  18. A typology of educationally focused medical simulation tools.

    Science.gov (United States)

    Alinier, Guillaume

    2007-10-01

    The concept of simulation as an educational tool in healthcare is not a new idea but its use has really blossomed over the last few years. This enthusiasm is partly driven by an attempt to increase patient safety and also because the technology is becoming more affordable and advanced. Simulation is becoming more commonly used for initial training purposes as well as for continuing professional development, but people often have very different perceptions of the definition of the term simulation, especially in an educational context. This highlights the need for a clear classification of the technology available but also about the method and teaching approach employed. The aims of this paper are to discuss the current range of simulation approaches and propose a clear typology of simulation teaching aids. Commonly used simulation techniques have been identified and discussed in order to create a classification that reports simulation techniques, their usual mode of delivery, the skills they can address, the facilities required, their typical use, and their pros and cons. This paper presents a clear classification scheme of educational simulation tools and techniques with six different technological levels. They are respectively: written simulations, three-dimensional models, screen-based simulators, standardized patients, intermediate fidelity patient simulators, and interactive patient simulators. This typology allows the accurate description of the simulation technology and the teaching methods applied. Thus valid comparison of educational tools can be made as to their potential effectiveness and verisimilitude at different training stages. The proposed typology of simulation methodologies available for educational purposes provides a helpful guide for educators and participants which should help them to realise the potential learning outcomes at different technological simulation levels in relation to the training approach employed. It should also be a useful

  19. Framing a future for soil science education.

    Science.gov (United States)

    Field, Damien

    2017-04-01

    The emerging concept of Global Soil Security highlights the need to have a renewed education framework that addresses the needs of those who want to; 1) know soil, 2) know of soil, and/or 3) be aware of soil. Those who know soil are soil science discipline experts and are concerned with soil as an object of study. With their discipline expertise focusing on what soil's are capable of they would be brokers of soil knowledge to those who know of soil. The connection with soil by the those in the second group focuses on the soil's utility and are responsible for managing the functionality and condition of the soil, the obvious example are farmers and agronomists. Reconnecting society with soil illustrates those who are members of the third group, i.e. those who are aware of soil. This is predicated on concepts of 'care' and is founded in the notion of beauty and utility. The utility is concerned with soil providing good Quality, clean food, or a source of pharmaceuticals. Soil also provides a place for recreation and those aware of soil know who this contributes to human health. The teaching-research-industry-learning (TRIL) nexus has been used to develop a framework for the learning and teaching of soil science applicable to a range of recipients, particularly campus-based students and practicing farm advisors. Consultation with academics, industry and professionals, by means of online (Delphi Study) and face-to-face forums, developed a heavily content-rich core body of knowledge (CBoK) relevant to industry, satisfying those who; know, and know of soil. Integrating the multidisciplinary approach in soil science teaching is a future aspiration, and will enable the development of curriculum that incorporates those who 'care' for soil. In the interim the application of the TRIL model allows the development of a learning framework more suited to real word needs. The development of a learning framework able to meet industry needs includes authentic complex scenarios that

  20. Digitized Educational Technology: A Learning Tool Using Remotely Sensed Data

    Science.gov (United States)

    Love, Gloria Carter

    1999-01-01

    Digitized Educational software for different levels of instruction were developed and placed on the web (geocities). Students attending the Pre-Engineering Summer 1998 Camp at Dillard University explored the use of the software which included presentations, applications, and special exercises. Student comments were received and considered for adjustments. The second outreach program included students from Colton Junior High School and Natural Science Majors at Dillard University. The Natural Majors completed a second survey concerning reasons why students selected majors in the Sciences and Mathematics. Two student research assistants (DU) and faculty members/parents of Colton Junior High assisted.

  1. On the way to a philosophy of science education

    Science.gov (United States)

    Schulz, Roland M.

    This Thesis argues the case that a philosophy of science education is required for improving science education as a research field as well as curriculum and teacher pedagogy. It seeks to re-think science education as an educational endeavor by examining why past reform efforts have been only partially successful, including why the fundamental goal of achieving scientific literacy after several "reform waves" has proven to be so elusive. The identity of such a philosophy is first defined in relation to the fields of philosophy, philosophy of science, and philosophy of education. Considering science education as a research discipline it is emphasized a new field should be broached with the express purpose of developing a discipline-specific "philosophy of science education" (largely neglected since Dewey). A conceptual shift towards the philosophy of education. is needed, thereto, on developing and demarcating true educational theories which could in addition serve to reinforce science education's growing sense of academic autonomy and independence from socio-economic demands. Two educational metatheories are contrasted, those of Kieran Egan and the Northern European Bildung tradition, to illustrate the task of such a philosophy. Egan's cultural-linguistic metatheory is presented for two primary purposes: it is offered as a possible solution to the deadlock of the science literacy conceptions within the discipline; regarding practice, examples are provided how it can better guide the instructional practice of teachers, specifically how it reinforces the work of other researchers in the History and Philosophy of Science (HPS) reform movement who value narrative in learning science. Considering curriculum and instruction, a philosophy of science education is conceptualized as a "second order" reflective capacity of the teacher. This notion is aligned with Shulman's idea of Pedagogical Content Knowledge. It is argued that for educators the nature of science learning

  2. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  3. Religious Education as a Tool for Enhancing Diversity

    DEFF Research Database (Denmark)

    Andersen, Peter Birkelund; Laudrup, Carin

    2010-01-01

    Over the past 30 years or so scholars in the social sciences and politicians alike have increasingly focused their attention on the effect of migration in European societies. This has resulted in theories of multiculturalism and more recently theories of cultural, ethnic, and religious diversity....... This paper raises the question of how such theories are reflected in religious education in the Danish school system. Based on analyses of a survey among pupils in their final year in upper secondary schools, it is argued that non-confessional religious education is one way of enhancing religious tolerance....

  4. Decolonizing Science and Science Education in a Postcolonial Space (Trinidad, a Developing Caribbean Nation, Illustrates

    Directory of Open Access Journals (Sweden)

    Laila N. Boisselle

    2016-03-01

    Full Text Available The article addresses how remnant or transformed colonialist structures continue to shape science and science education, and how that impact might be mitigated within a postcolonial environment in favor of the development of the particular community being addressed. Though cognizant of, and resistant to, the ongoing colonial impact globally and nationally (and any attempts at subjugation, imperialism, and marginalization, this article is not about anticolonial science. Indeed, it is realized that the postcolonial state of science and science education is not simply defined, and may exist as a mix of the scientific practices of the colonizer and the colonized. The discussion occurs through a generic postcolonial lens and is organized into two main sections. First, the discussion of the postcolonial lens is eased through a consideration of globalization which is held here as the new colonialism. The article then uses this lens to interrogate conceptions of science and science education, and to suggest that the mainstream, standard account of what science is seems to represent a globalized- or arguably a Western, modern, secular-conception of science. This standard account of science can act as a gatekeeper to the indigenous ways of being, knowing, and doing of postcolonial populations. The article goes on to suggest that as a postcolonial response, decolonizing science and science education might be possible through practices that are primarily contextually respectful and responsive. That is, localization is suggested as one possible antidote to the deleterious effects of globalization. Trinidad, a postcolonial developing Caribbean nation, is used as illustration.

  5. Students' Attitudes towards Interdisciplinary Education: A Course on Interdisciplinary Aspects of Science and Engineering Education

    Science.gov (United States)

    Gero, Aharon

    2017-01-01

    A course entitled "Science and Engineering Education: Interdisciplinary Aspects" was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is…

  6. Periodic table as a powerful tool for radiation education

    International Nuclear Information System (INIS)

    Aratani, Michi; Osanai, Yuko; Uchiumi, Fumiko; Tsushima, Kazuko; Kamayachi, Tei; Kudo, Michiko

    2005-01-01

    The periodic tables ordinarily start with an element of atomic number 1, hydrogen. Hydrogen atoms, however, are derived from neutrons by way of β decay. Consequently, neutron should be located at a zero position of atomic number, which corresponds to the left side and above helium. A periodic table, especially with the zero position for neutron, is essential from present view of matter and serves as a powerful tool for radiation education. (author)

  7. Safety Education and Science.

    Science.gov (United States)

    Ralph, Richard

    1980-01-01

    Safety education in the science classroom is discussed, including the beginning of safe management, attitudes toward safety education, laboratory assistants, chemical and health regulation, safety aids, and a case study of a high school science laboratory. Suggestions for safety codes for science teachers, student behavior, and laboratory…

  8. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  9. El mapa conceptual. Un instrumento educativo polivalente para las ciencias de la salud: Su aplicación en histología Concept maps as a polyvalent educational tool for health sciences: Their application to histology

    Directory of Open Access Journals (Sweden)

    María del Carmen Sánchez-Quevedo

    2006-06-01

    Full Text Available En el presente artículo se analiza el mapa conceptual como instrumento de estrategia educativa aplicada a las ciencias de la salud y, especialmente, al ámbito de la histología. Tras considerar los elementos constitutivos y los tipos de mapas conceptuales y el fundamento epistemológico de los mismos para estimular el aprendizaje significativo, se examina la aplicación de los mapas al desarrollo curricular, la evaluación, el diseño pedagógico por parte del profesor y el autoaprendizaje por parte del alumno en el contexto del proceso de Bolonia. En el ámbito de la histología se analiza la utilización de los distintos tipos de mapas para la definición y jerarquización de sus contenidos, su relación con el resto de las disciplinas y su nuevo paradigma vinculado a la Ingeniería tisular.This article analyzes the concept map as a tool for educational strategy applied to health sciences, particularly in the area of histology. After considering the elements that make up these maps, the different types of concept maps and the epistemological basis of maps as instruments to enhance significant learning, the article examines how maps can be used for curriculum development, evaluation, pedagogic design by teachers, and self-learning by students within the context of the Bologna process. UIT reference to histology, we analyze how different types of maps are used to define and rank concepts, examine the relationship between disciplines and to understand the new paradigm of histology related to tissue engineering.

  10. A Tool for Adopting a Different Perspective on Classroom Observation and Feedback on Science Lessons

    Science.gov (United States)

    Haynes, Lyn

    2014-01-01

    This article outlines the development of a tool designed to take forward the practice of science teachers through subject-specific guidance and discourse that promotes dialogue and deep critical reflection on practice.

  11. NASA Global Hawk: A New Tool for Earth Science Research

    Science.gov (United States)

    Hall, Phill

    2009-01-01

    This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.

  12. INNOVATIVE PRACTICES IN SCIENCE EDUCATION: A PANACEA ...

    African Journals Online (AJOL)

    Global Journal

    innovative practices for enhanced students' academic achievement in science subjects. KEYWORDS: Academic ... a new invention or way of doing something. Furthermore .... associated with scientific processes needed for advancement in ...

  13. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  14. Bibliometric mapping as a science policy and research management tool

    NARCIS (Netherlands)

    Noyons, Everard Christiaan Marie

    1999-01-01

    Bibliometric maps of science are landscapes of scientific research fields created by quantitative analysis of bibliographic data. In such maps the 'cities' are, for instance, research topics. Topics with a strong cognitive relation are in each other's vicinity and topics with a weak relation are

  15. Bayes' theorem: A paradigm research tool in biomedical sciences

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... It is on this premise that this article presents Bayes' theorem as a vital tool. A brief intuitive ... diseased individual will be selected or that a disease-free individual will be selected? ...... Ultrasound physics and. Instruction 3rd ed ...

  16. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  17. A Didactics (Didaktik) of Theory of Science in Higher Education

    DEFF Research Database (Denmark)

    Wiberg, Merete

    A Didactics (Didaktik) of Theory of Science in Higher Education - An investigation of Student’s understanding and application of theory of science and the idea of developing a didactics of theory of science as teaching in ontological complexity The paper is a work in progress and a preparation...... not come into play as a resource for the students’ understanding and investigation of the topic they are dealing with. The idea of this research project is on the one hand to investigate how teaching in theory of science is conducted in various higher education contexts and on the other hand to discuss...... and investigation of the topic they are dealing with. The idea of this research project is on the one hand to investigate how teaching in theory of science is conducted in various higher education contexts and on the other hand to discuss the role theory of science might have in students’ striving of understanding...

  18. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Discusses: (1) the nature of science; (2) Ausubel's learning theory and its application to introductory science; and (3) mathematics and physics instruction. Outlines a checklist approach to Certificate of Extended Education (CSE) practical assessment in biology. (JN)

  19. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  20. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  1. Educational Impact of Digital Visualization Tools on Digital Character Production Computer Science Courses

    Science.gov (United States)

    van Langeveld, Mark Christensen

    2009-01-01

    Digital character production courses have traditionally been taught in art departments. The digital character production course at the University of Utah is centered, drawing uniformly from art and engineering disciplines. Its design has evolved to include a synergy of computer science, functional art and human anatomy. It gives students an…

  2. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  3. Teaching resources in speleology and karst: a valuable educational tool

    Directory of Open Access Journals (Sweden)

    De Waele Jo

    2010-01-01

    Full Text Available There is a growing need in the speleological community of tools that make teaching of speleology and karst much easier. Despite the existence of a wide range of major academic textbooks, often the caver community has a difficult access to such material. Therefore, to fill this gap, the Italian Speleological Society, under the umbrella of the Union International de Spéléologie, has prepared a set of lectures, in a presentation format, on several topics including geology, physics, chemistry, hydrogeology, mineralogy, palaeontology, biology, microbiology, history, archaeology, artificial caves, documentation, etc. These lectures constitute the “Teaching Resources in Speleology and Karst”, available online. This educational tool, thanks to its easily manageable format, can constantly be updated and enriched with new contents and topics.

  4. Measuring Science Instructional Practice: A Survey Tool for the Age of NGSS

    Science.gov (United States)

    Hayes, Kathryn N.; Lee, Christine S.; DiStefano, Rachelle; O'Connor, Dawn; Seitz, Jeffery C.

    2016-01-01

    Ambitious efforts are taking place to implement a new vision for science education in the United States, in both Next Generation Science Standards (NGSS)-adopted states and those states creating their own, often related, standards. In-service and pre-service teacher educators are involved in supporting teacher shifts in practice toward the new…

  5. Making a Map of Science: General Systems Theory as a Conceptual Framework for Tertiary Science Education.

    Science.gov (United States)

    Gulyaev, Sergei A.; Stonyer, Heather R.

    2002-01-01

    Develops an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge to provide students with tools for a more holistic understanding of science. Uses GST as the core methodology for understanding science and its complexity. Discusses the role of scientific community in producing…

  6. Gender Stereotypes in Science Education Resources: A Visual Content Analysis.

    Science.gov (United States)

    Kerkhoven, Anne H; Russo, Pedro; Land-Zandstra, Anne M; Saxena, Aayush; Rodenburg, Frans J

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people's social lives, such stereotypes can also occur in education. Ways in which stereotypes are visible in education include the use of gender-biased visuals, language, teaching methods, and teachers' attitudes. The goal of this study was to determine whether science education resources for primary school contained gender-biased visuals. Specifically, the total number of men and women depicted, and the profession and activity of each person in the visuals were noted. The analysis showed that there were more men than women depicted with a science profession and that more women than men were depicted as teachers. This study shows that there is a stereotypical representation of men and women in online science education resources, highlighting the changes needed to create a balanced representation of men and women. Even if the stereotypical representation of men and women in science is a true reflection of the gender distribution in science, we should aim for a more balanced representation. Such a balance is an essential first step towards showing children that both men and women can do science, which will contribute to more gender-balanced science and technology fields.

  7. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    Science.gov (United States)

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  8. Using Posters as a Pedagogical Tool in Nurse Education

    DEFF Research Database (Denmark)

    Bagger, Bettan; Taylor Kelly, Hélène

    2013-01-01

    Using Posters as a Pedagogical Tool in Nurse Education Bettan Bagger and Hélène Kelly Experiences from teaching 5th semester, nursing students at bachelor level with respect to prevention and health promotion have resulted in the introduction of poster presentations as a pedagogical tool. Poster...... in challenges to traditional pedagogical approaches away from the teacher’s role as the disseminator of knowledge towards the role of facilitator of learning. This is in tact with professional demands highlighting the necessity of life long learning. Poster presentations have successfully been employed...... in developing students’ intellectual, professional and academic competences as well as being useful in developing competencies with relevance to practice. Working with posters forces students to organize, evaluate and reflect upon information and develops their abilities to communicate their theoretical...

  9. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  10. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  11. Tools for open geospatial science

    Science.gov (United States)

    Petras, V.; Petrasova, A.; Mitasova, H.

    2017-12-01

    Open science uses open source to deal with reproducibility challenges in data and computational sciences. However, just using open source software or making the code public does not make the research reproducible. Moreover, the scientists face the challenge of learning new unfamiliar tools and workflows. In this contribution, we will look at a graduate-level course syllabus covering several software tools which make validation and reuse by a wider professional community possible. For the novices in the open science arena, we will look at how scripting languages such as Python and Bash help us reproduce research (starting with our own work). Jupyter Notebook will be introduced as a code editor, data exploration tool, and a lab notebook. We will see how Git helps us not to get lost in revisions and how Docker is used to wrap all the parts together using a single text file so that figures for a scientific paper or a technical report can be generated with a single command. We will look at examples of software and publications in the geospatial domain which use these tools and principles. Scientific contributions to GRASS GIS, a powerful open source desktop GIS and geoprocessing backend, will serve as an example of why and how to publish new algorithms and tools as part of a bigger open source project.

  12. The National Eclipse Weather Experiment: use and evaluation of a citizen science tool for schools outreach.

    Science.gov (United States)

    Portas, Antonio M; Barnard, Luke; Scott, Chris; Harrison, R Giles

    2016-09-28

    The National Eclipse Weather Experiment (NEWEx) was a citizen science project for atmospheric data collection from the partial solar eclipse of 20 March 20. Its role as a tool for schools outreach is discussed here, in seeking to bridge the gap between self-identification with the role of a scientist and engagement with science, technology, engineering and mathematics subjects. (The science data generated have had other uses beyond this, explored elsewhere.) We describe the design of webforms for weather data collection, and the use of several external partners for the dissemination of the project nationwide. We estimate that up to 3500 pupils and teachers took part in this experiment, through the 127 schools postcodes identified in the data submission. Further analysis revealed that 43.3% of the schools were primary schools and 35.4% were secondary. In total, 96.3% of participants reported themselves as 'captivated' or 'inspired' by NEWEx. We also found that 60% of the schools that took part in the experiment lie within the highest quintiles of engagement with higher education, which emphasizes the need for the scientific community to be creative when using citizen science projects to target hard-to-reach audiences.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  13. How a Deweyan Science Education Further Enables Ethics Education

    Science.gov (United States)

    Webster, Scott

    2008-01-01

    This paper questions the perceived divide between "science" subject matter and "moral" or "ethical" subject matter. A difficulty that this assumed divide produces is that science teachers often feel that there needs to be "special treatment" given to certain issues which are of an ethical or moral nature and which are "brought into" the science…

  14. A model for education and promoting food science and technology ...

    African Journals Online (AJOL)

    A model for education and promoting food science and technology among high school students and the public. ... at the tertiary stage (retail) directly with the consumer while depending on the product of FST. ... AJOL African Journals Online.

  15. AUGMENTED REALITY AS A TEACHING TOOL IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Tashko Rizov

    2015-06-01

    Full Text Available Rapid development of the technology has influenced its inevitable entrance in the learning processes. Teachers are often challenged to use the appropriate educational technology in the process of teaching in order to ease the learning process of students. Introducing new technology in the teaching process should utilize the new technology in any possible way in order to assist the teacher in transferring the knowledge and assist the students in grasping that knowledge. This paper should emphasize the benefits of using augmented reality in higher education, by measuring outcomes of the students which used augmented reality as a teaching tool in the courses. Results from the survey imply that students show significantly improved results in increasing the interest, understanding and interiorizing the learning material. University teachers found that using augmented reality is significantly improving the learning process of students and their teaching process in a pedagogical and technical sense. 

  16. An Examination of Farmworker Pesticide Educators in a Southeastern State: Informal Science Educators and Risk Communication

    Science.gov (United States)

    LePrevost, Catherine E.

    2011-12-01

    Because pesticide exposure is a significant hazard to farmworkers in their working and living environments, basic pesticide toxicology is a topic for farmworker science education that has implications beyond scientific literacy to encompass farmworkers' safety and health. Migrant and seasonal farmworkers have been identified as an at-risk population because of the cultural and linguistic barriers they face, their temporary employment and tenuous documentation status, and their low literacy levels and limited formal education. Despite the key role of pesticide educators in promoting farmworker scientific literacy, safety, and health, data regarding pesticide educators are absent in the literature. This dissertation investigated the nature of pesticide educators in a southeastern state. Drawing on quantitative and qualitative methods, the three studies contained within this body of work characterize the personal beliefs---including pesticide risk, self-efficacy, and teaching beliefs---of pesticide educators, as well as educators' personal goals and their beliefs about the environments in which they pursue those goals. The research allowed for the creation of a profile of the organizations that and individuals who provide pesticide education to farmworkers in a highly agricultural state. The first study details the development and field testing of the Pesticide Risk Beliefs Inventory, a quantitative inventory to gauge pesticide risk beliefs, with a sample of pesticide educators (n=43) in a southeastern state. The 19-item, Likert-type inventory was found to be psychometrically sound with a Cronbach's alpha of 0.780 and a valuable tool in capturing pesticide educators' beliefs about pesticide risk, assessing beliefs in four key categories. The Pesticide Risk Beliefs Inventory could be useful in exploring beliefs about pesticide risks and guiding efforts to address misconceptions held by a variety of formal and informal science learners, educators, practitioners, the

  17. Education and Training in Forensic Science: A Guide for Forensic Science Laboratories, Educational Institutions, and Students. Special Report.

    Science.gov (United States)

    US Department of Justice, 2004

    2004-01-01

    Forensic science provides scientific and foundational information for investigators and courts, and thus plays a crucial role in the criminal justice system. This guide was developed through the work of the Technical Working Group on Education and Training in Forensic Science (TWGED) to serve as a reference on best education and training practices…

  18. Cadaveric dissection as an educational tool for anatomical sciences in the 21st century.

    Science.gov (United States)

    Ghosh, Sanjib Kumar

    2017-06-01

    Anatomical education has been undergoing reforms in line with the demands of medical profession. The aim of the present study is to assess the impact of a traditional method like cadaveric dissection in teaching/learning anatomy at present times when medical schools are inclining towards student-centered, integrated, clinical application models. The article undertakes a review of literature and analyzes the observations made therein reflecting on the relevance of cadaveric dissection in anatomical education of 21st century. Despite the advent of modern technology and evolved teaching methods, dissection continues to remain a cornerstone of anatomy curriculum. Medical professionals of all levels believe that dissection enables learning anatomy with relevant clinical correlates. Moreover dissection helps to build discipline independent skills which are essential requirements of modern health care setup. It has been supplemented by other teaching/learning methods due to limited availability of cadavers in some countries. However, in the developing world due to good access to cadavers, dissection based teaching is central to anatomy education till date. Its utility is also reflected in the perception of students who are of the opinion that dissection provides them with a foundation critical to development of clinical skills. Researchers have even suggested that time has come to reinstate dissection as the core method of teaching gross anatomy to ensure safe medical practice. Nevertheless, as dissection alone cannot provide uniform learning experience hence needs to be complemented with other innovative learning methods in the future education model of anatomy. Anat Sci Educ 10: 286-299. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  19. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  20. Citizen Science as a Tool for Conservation in Residential Ecosystems

    Directory of Open Access Journals (Sweden)

    Caren B. Cooper

    2007-12-01

    Full Text Available Human activities, such as mining, forestry, and agriculture, strongly influence processes in natural systems. Because conservation has focused on managing and protecting wildlands, research has focused on understanding the indirect influence of these human activities on wildlands. Although a conservation focus on wildlands is critically important, the concept of residential area as an ecosystem is relatively new, and little is known about the potential of such areas to contribute to the conservation of biodiversity. As urban sprawl increases, it becomes urgent to construct a method to research and improve the impacts of management strategies for residential landscapes. If the cumulative activities of individual property owners could help conserve biodiversity, then residential matrix management could become a critical piece of the conservation puzzle. "Citizen science" is a method of integrating public outreach and scientific data collection locally, regionally, and across large geographic scales. By involving citizen participants directly in monitoring and active management of residential lands, citizen science can generate powerful matrix management efforts, defying the "tyranny of small decisions" and leading to positive, cumulative, and measurable impacts on biodiversity.

  1. A "Semantic" View of Scientific Models for Science Education

    Science.gov (United States)

    Adúriz-Bravo, Agustín

    2013-01-01

    In this paper I inspect a "semantic" view of scientific models taken from contemporary philosophy of science-I draw upon the so-called "semanticist family", which frontally challenges the received, syntactic conception of scientific theories. I argue that a semantic view may be of use both for science education in the…

  2. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  3. Urban science education: examining current issues through a historical lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-12-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions. When the findings from these urban science education studies were consolidated with the historical overview provided, it was revealed that the basic design and regulatory policies of urban schools have not substantively changed since their establishment in the nineteenth century. Teachers in urban science classrooms continue to face issues of inequality, poverty, and social injustice as they struggle to meet the needs of an increasingly diverse student population. Furthermore, persistent concerns of conflicting Discourses, cultural dissonance, and oppression create formidable barriers to science learning. Despite the many modifications in structure and organization, urban students are still subjugated and marginalized in systems that emphasize control and order over high-quality science education.

  4. Interdisciplinary Science Courses for College General Education Requirements: Perspectives of Faculty at a State University.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    Science educators have been advocating a broader role for science education--that of helping all students see the relevance of science to their own lives. Yet the only experience with post-secondary science that non-science majors get is through a couple of science courses which are part of the general education requirements (GERs) for a liberal…

  5. Coteaching as a Model for Preservice Secondary Science Teacher Education

    Science.gov (United States)

    Scantlebury, Kathryn; Gallo-Fox, Jennifer; Wassell, Beth

    2008-01-01

    This paper focuses on a 3-year, longitudinal study of the implementation of coteaching, as an innovative approach for preparing high school science teachers enrolled in an undergraduate science teacher education programme located in the United States. The coteaching/co-generative dialogue/co-respect/co-responsibility dialectic is introduced as a…

  6. Globalization of Science Education: Comment and a Commentary

    Science.gov (United States)

    Fensham, Peter J.

    2011-01-01

    The globalized nature of modern society has generated a number of pressures that impact internationally on countries' policies and practices of science education. Among these pressures are key issues of health and environment confronting global science, global economic control through multi-national capitalism, comparative and competitive…

  7. Library Science Education: A New Role for Academic Libraries

    Science.gov (United States)

    Wesley, Threasa L.

    2018-01-01

    Many individuals working in library and information organizations do not hold a master of library science (MLS) degree or other specialized library science credential. Recognizing that this professional gap could be addressed by diversified educational opportunities, the W. Frank Steely Library at Northern Kentucky University in Highland Heights…

  8. Science Curiosity as a Correlate of Academic Performance in Mathematics Education: Insights from Nigerian Higher Education

    OpenAIRE

    Abakpa , Benjamin ,; Abah , Joshua ,; Okoh Agbo-Egwu , Abel

    2018-01-01

    International audience; This study investigated the relationship between the science curiosity levels of undergraduate of mathematics education in a Nigerian higher educational institution and their academic grade point averages. The study employed a correlational survey research design on a random sample of 104 mathematics education students. The Science Curiosity Scale – Comparative Self Report was adapted to measure the students' distinctive appetite for consuming science-related media for...

  9. Educational Games as a Teaching Tool in Pharmacy Curriculum.

    Science.gov (United States)

    Aburahma, Mona Hassan; Mohamed, Heba Moustafa

    2015-05-25

    The shift in the pharmacist's role from simply dispensing medications to effective delivery of pharmaceutical care interventions and drug therapy management has influenced pharmacy education.(1-3) The educational focus has shifted from basic sciences to clinical and integrated courses that require incorporating active-learning strategies to provide pharmacy graduates with higher levels of competencies and specialized skills. As opposed to passive didactic lectures, active-learning strategies address the educational content in an interactive learning environment to develop interpersonal, communication, and problem-solving skills needed by pharmacists to function effectively in their new roles.(4-6) One such strategy is using educational games. The aim of this paper is to review educational games adopted in different pharmacy schools and to aid educators in replicating the successfully implemented games and overcoming deficiencies in educational games. This review also highlights the main pitfalls within this research area.

  10. Science, Worldviews, and Education

    Science.gov (United States)

    Gauch, Hugh G., Jr.

    2009-01-01

    Whether science can reach conclusions with substantial worldview import, such as whether supernatural beings exist or the universe is purposeful, is a significant but unsettled aspect of science. For instance, various scientists, philosophers, and educators have explored the implications of science for a theistic worldview, with opinions spanning…

  11. Construction and Validation of a Holistic Education School Evaluation Tool Using Montessori Erdkinder Principles

    Science.gov (United States)

    Setari, Anthony Philip

    2016-01-01

    The purpose of this study was to construct a holistic education school evaluation tool using Montessori Erdkinder principles, and begin the validation process of examining the proposed tool. This study addresses a vital need in the holistic education community for a school evaluation tool. The tool construction process included using Erdkinder…

  12. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  13. Art: ally or tool in science teaching?

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Ferreira

    2012-10-01

    Full Text Available We know that art and science have influenced one another over the centuries. As an example, in the nineteenth century, the poets of the Romantic movement portrayed in some of their most beautiful poems the anguish they felt facing the development of thermodynamics and the possibility of heat death of the universe. In recent years different methodological possibilities have been put in evidence in science education: experimenting with low cost materials, history of science, virtual environments, among others. We believe that the art in this process has played an important role, but still marginal, because, as well as science, it also produces knowledge about reality. However, their potential is perceived more as a tool for teaching rather than as an active participant in building relationships and about the nature of humankind.

  14. Social Networking Tools and Teacher Education Learning Communities: A Case Study

    Science.gov (United States)

    Poulin, Michael T.

    2014-01-01

    Social networking tools have become an integral part of a pre-service teacher's educational experience. As a result, the educational value of social networking tools in teacher preparation programs must be examined. The specific problem addressed in this study is that the role of social networking tools in teacher education learning communities…

  15. Science and the city: A visual journey towards a critical place based science education

    Science.gov (United States)

    Ibrahim, Sheliza

    The inclusion of societal and environmental considerations during the teaching and learning of science and technology has been a central focus among science educators for many decades. Major initiatives in science and technology curriculum advocate for science, technology, society and environment (STSE). Yet, it is surprising that despite these longstanding discussions, it is only recently that a handful of researchers have turned to students' 'places' (and the literature of place based education) to serve as a source of teaching and learning in science education. In my study, I explore three issues evident in place based science education. First, it seems that past scholarship focused on place-based projects which explore issues usually proposed by government initiatives, university affiliation, or community organizations. Second, some of the studies fail to pay extended attention to the collaborative and intergenerational agency that occurs between researcher, teacher, student, and community member dynamics, nor does it share the participatory action research process in order to understand how teacher practice, student learning, and researcher/local collaborations might help pedagogy emerge. The third issue is that past place-based projects, rarely if ever, return to the projects to remember the collaborative efforts and question what aspects sustained after they were complete. To address these issues, I propose a critical place based science education (CPBSE) model. I describe a participatory action research project that develops and explores the CPBSE model. The data were gathered collaboratively among teachers, researchers, and students over 3 years (2006-2008), via digital video ethnography, photographs, and written reflections. The data were analysed using a case study approach and the constant comparative method. I discuss the implications for its practice in the field of STSE and place based education. I conclude that an effective pedagogical model of

  16. Mathematical Modeling Activities as a Useful Tool for Values Education

    Science.gov (United States)

    Doruk, Bekir Kursat

    2012-01-01

    Values education is crucial since it is one of the factors to reach success in education in broader sense and in mathematics education in particular sense. It is also important for educating next generations of societies. However, previous research showed that expected importance for values education was not given in Mathematics courses. In a few…

  17. Qualitative Research in PBL in Health Sciences Education: A Review

    Science.gov (United States)

    Jin, Jun; Bridges, Susan

    2016-01-01

    Context: Qualitative methodologies are relatively new in health sciences education research, especially in the area of problem-based learning (PBL). A key advantage of qualitative approaches is the ability to gain in-depth, textured insights into educational phenomena. Key methodological issues arise, however, in terms of the strategies of…

  18. Developing health science students into integrated health professionals: a practical tool for learning

    Directory of Open Access Journals (Sweden)

    Duncan Madeleine

    2007-11-01

    Full Text Available Abstract Background An integrated sense of professionalism enables health professionals to draw on relevant knowledge in context and to apply a set of professional responsibilities and ethical principles in the midst of changing work environments 12. Inculcating professionalism is therefore a critical goal of health professional education. Two multi-professional courses for first year Health Science students at the University of Cape Town, South Africa aim to lay the foundation for becoming an integrated health professional 3. In these courses a diagram depicting the domains of the integrated health professional is used to focus the content of small group experiential exercises towards an appreciation of professionalism. The diagram serves as an organising framework for conceptualising an emerging professional identity and for directing learning towards the domains of 'self as professional' 45. Objective This paper describes how a diagrammatic representation of the core elements of an integrated health professional is used as a template for framing course content and for organising student learning. Based on the assumption that all health care professionals should be knowledgeable, empathic and reflective, the diagram provides students and educators with a visual tool for investigating the subjective and objective dimensions of professionalism. The use of the diagram as an integrating point of reference for individual and small group learning is described and substantiated with relevant literature. Conclusion The authors have applied the diagram with positive impact for the past six years with students and educators reporting that "it just makes sense". The article includes plans for formal evaluation. Evaluation to date is based on preliminary, informal feedback on the value of the diagram as a tool for capturing the domains of professionalism at an early stage in the undergraduate education of health professional students.

  19. Tools for Implementing Science Practice in a Large Introductory Class

    Science.gov (United States)

    Prothero, W. A.

    2008-12-01

    Scientists must have in-depth background knowledge of their subject area and know where current knowledge can be advanced. They perform experiments that gather data to test new or existing theories, present their findings at meetings, publish their results, critically review the results of others, and respond to the reviews of their own work. In the context of a course, these activities correspond to learning the background material by listening to lectures or reading a text, formulating a problem, exploring data using student friendly data access and plotting software, giving brief talks to classmates in a small class or lab setting, writing a science paper or lab report, reviewing the writing of their peers, and receiving feedback (and grades) from their instructors and/or peers. These activities can be supported using course management software and online resources. The "LearningWithData" software system allows solid Earth (focused on plate tectonics) data exploration and plotting. Ocean data access, display, and plotting are also supported. Background material is delivered using animations and slide show type displays. Students are accountable for their learning through included homework assignments. Lab and small group activities provide support for data exploration and interpretation. Writing is most efficiently implemented using the "Calibrated Peer Review" method. This methodology is available at http://cpr.molsci.ucla.edu/. These methods have been successfully implemented in a large oceanography class at UCSB.

  20. Soils in art as a teaching tool in soil science

    Science.gov (United States)

    Poch, Rosa M.

    2017-04-01

    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  1. In-Service Science Teachers' and the Use of Multimedia as a Teaching Tool

    Science.gov (United States)

    Ameyaw, Y.; Quansah, E.

    2013-01-01

    The study investigated the attitudes of in-service teachers' towards the use of multimedia as a tool for science teaching in Junior High Schools in the Greater Accra Region of Ghana. The population sample consisted of 100 Junior High School (JHS) science teachers made up of 60 urban teachers and 40 rural teachers from three selected districts…

  2. THE EDUCATION IN VALUES FORM A SCIENCE-TECHNOLOGY AND SOCIETY APPROACH: THE EDUCATIVE SIMULATION AS AN ADVANCED DIDACTIC TOOL / LA EDUCACIÓN EN VALORES DESDE EL ENFOQUE CIENCIA-TECNOLOGÍA-SOCIEDAD: LA SIMULACIÓN EDUCATIVA COMO HERRAMIENTA DIDÁCTICA AVANZADA

    Directory of Open Access Journals (Sweden)

    Alberto Bujardón Mendoza

    2010-10-01

    Full Text Available The science-technology and society approach (STS underlines a consideration about science and technology as social phenomena. Its educative dimension can be manifested through the incorporation of the conceptual content, the means and didactic procedures according to its essence. To promote educative sceneries in the university, that propitiate the development of the political and ethic reflexive capacities, constitute the objective of this proposal. This enriches the repertoire of the teaching resources as a new way: the educative simulation, which helps the educative influence of STS and in the education in values. In the first phase, it is argument the inescapable relation between the two pretensions: to educate in values and STS. Then, it is offered the support for the development of a didactic model with a reflexive and constructive character in the teaching-learning process. It is highlighted what to understand for constructivism in general terms and in the didactic of sciences.

  3. Using food as a tool to teach science to 3 grade students in Appalachian Ohio.

    Science.gov (United States)

    Duffrin, Melani W; Hovland, Jana; Carraway-Stage, Virginia; McLeod, Sara; Duffrin, Christopher; Phillips, Sharon; Rivera, David; Saum, Diana; Johanson, George; Graham, Annette; Lee, Tammy; Bosse, Michael; Berryman, Darlene

    2010-04-01

    The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a compilation of programs aimed at using food as a tool to teach mathematics and science. In 2007-2008, a foods curriculum developed by professionals in nutrition and education was implemented in 10 3(rd)-grade classrooms in Appalachian Ohio; teachers in these classrooms implemented 45 hands-on foods activities that covered 10 food topics. Subjects included measurement; food safety; vegetables; fruits; milk and cheese; meat, poultry, and fish; eggs; fats; grains; and meal management. Students in four other classrooms served as the control group. Mainstream 3(rd)-grade students were targeted because of their receptiveness to the subject matter, science standards for upper elementary grades, and testing that the students would undergo in 4(th) grade. Teachers and students alike reported that the hands-on FoodMASTER curriculum experience was worthwhile and enjoyable. Our initial classroom observation indicated that the majority of students, girls and boys included, were very excited about the activities, became increasingly interested in the subject matter of food, and were able to conduct scientific observations.

  4. Simulator technology as a tool for education in cardiac care.

    Science.gov (United States)

    Hravnak, Marilyn; Beach, Michael; Tuite, Patricia

    2007-01-01

    Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.

  5. Soleil a new powerful tool for materials science

    International Nuclear Information System (INIS)

    Baudelet, F.; Belkhou, R.; Briois, V.; Coati, A.; Dumas, P.; Flank, A.M.; Fontaine, P.; Garreau, Y.; Lyon, O.; Quinkal, I.; Roy, P.; Sauvage, M.; Sirotti, F.; Somogyi, A.; Thiaudiere, D.; Coati, A.; Flank, A.M.; Fontaine, P.; Garreau, Y; Etgens, V.H.; Rochet, F.

    2005-01-01

    The first photons delivered by the third generation synchrotron source SOLEIL will be soon available for the scientific community. In this context, this paper presents an overview of the potentialities offered by this new machine for the study of materials. The outstanding brilliance of the SOLEIL source will enable to reduce by several orders of magnitude the data collection time for most of the synchrotron techniques (X-ray absorption spectroscopy - EXAFS, wide and small angle X-ray scattering - WAXS and SAXS, X-ray diffraction -XRD, photoelectron spectroscopy and microscopy-XPS and PEEM, etc.) thus allowing an operando approach of catalysis processes. The spatial resolution, from a few micrometers to sub micrometer scale, accessible by micro-diffraction and micro-spectroscopy in the wavelength range from the far IR to the hard X-rays, will provide spatial distributions of different elements (atomic and chemical state selectivity) in a material, from the working heterogeneous catalyst to the reservoir rocks. The reactivity of surfaces and nano-particles exposed to controlled gas fluxes will be studied by several in situ techniques. Finally the combination of different synchrotron techniques (diffraction, absorption and fluorescence X) and the access to complementary information obtained through the simultaneous combination of these techniques with those routinely applied in Materials Science, such as UV-Vis or Raman spectroscopy, will offer enlarged capabilities for the operando characterization of materials. (authors)

  6. Tandem accelerators in Romania: Multi-tools for science, education and technology

    Science.gov (United States)

    Burducea, I.; GhiÅ£ǎ, D. G.; Sava, T. B.; Straticiuc, M.

    2017-06-01

    An educated selection of the main beam parameters - particle type, velocity and intensity, can result in a cutting-edge scalpel to remove tumors, sanitize sewage, act as a nuclear forensics detective, date an artefact, clean up air, improve a microprocessor, transmute nuclear waste, detect a counterfeit or even look into the stars. Nowadays more than particle accelerators operate worldwide in medicine, industry and basic research. For example the proton therapy market is expected to attain 1 billion US per year in 2019 with almost 330 proton therapy rooms, while the annual market for the ion implantation industry already reached 1.5 G in revenue [1,2]. A brief history of the Tandem Accelerators Complex at IFIN-HH [3] emphasizing on their applications and the physics behind the scenes, is also presented [4-6].

  7. Peer Observation of Teaching: A Practical Tool in Higher Education

    Science.gov (United States)

    Fletcher, Jeffrey A.

    2018-01-01

    There are limited viewpoints in the literature about peer observation of teaching in higher education and how it can be an effective tool to improve the quality of instruction in the classroom (Bell, 2001; Bell, 2005; Bell & Mladenovic, 2008; Brancato, 2003; Chism, 2007; Huston & Weaver, 2008; Shortland, 2004; Shortland, 2010; Smith,…

  8. A New Approach to Teaching Science to Elementary Education Majors in Response to the NGSS

    Science.gov (United States)

    Brevik, C.; Daniels, L.; McCoy, C.

    2015-12-01

    The Next Generation Science Standards (NGSS) place an equal emphasis on science process skills and science content. The goal is to have K-12 students "doing" science, not just "learning about" science. However, most traditional college science classes for elementary education majors place a much stronger emphasis on science content knowledge with the hands-on portion limited to a once-a-week lab. The two models of instruction are not aligned. The result is that many elementary school teachers are unprepared to offer interactive science with their students. Without additional coaching, many teachers fall back on the format they learned in college - lecture, handouts, homework. If we want teachers to use more hands-on methods in the classroom, these techniques should be taught to elementary education majors when they are in college. Dickinson State University has begun a collaboration between the Teacher Education Department and the Department of Natural Sciences. The physical science course for elementary education majors has been completely redesigned to focus equally on the needed science content and the science process skills emphasized by the NGSS. The format of the course has been adjusted to more closely mirror a traditional K-5 classroom; the course meets for 50 minutes five days a week. A flipped-classroom model has been adopted to ensure no content is lost, and hands-on activities are done almost every day as new concepts are discussed. In order to judge the effectiveness of these changes, a survey tool was administered to determine if there was a shift in the students' perception of science as an active instead of a passive field of study. The survey also measured the students' comfort-level in offering a hands-on learning environment in their future classrooms and their confidence in their ability to effectively teach science concepts to elementary students. Results from the first year of the study will be presented.

  9. A Bibliography for Philosophy and Constructivism in Science Education

    Science.gov (United States)

    Matthews, Michael R.

    The research literature on educational constructivism is voluminous (see the Carmichael (1990) Pfundt & Duit (1994) and Driver et al. (1994b) bibliographies cited below). The research - in both the Piagetian and Alternative Conception traditions - covers children's learning, cognitive development, curriculum development, classroom practices, teacher education, and much else. There is a further enormous literature on constructivism in philosophy of science (see Leplin (1984) and Churchland & Hooker (1985)), and on constructivism in the sociology of science (see Brown (1984), McMullin (1988, 1992). In turn these latter literatures overlap with the ocean of writing on post-modernist theory of knowledge and cognition (see Gross & Levitt (1994)). The following references relate mostly to educational constructivism, and then, with some exceptions, to articles that address epistemological and philosophical matters in science education. Even so it is not an exhaustive list, but hopefully it will be useful for teachers and researchers in the field. The author welcomes additions or omissions being brought to his attention.

  10. Robotic education, a tool for the theaching-learning of the science and technology La robótica educativa, una herramienta para la enseñanza-aprendizaje de las ciencias y las tecnologías

    Directory of Open Access Journals (Sweden)

    Kathia Pittí Patiño

    2012-07-01

    Full Text Available Normal.dotm 0 0 1 113 649 Universidad de Salamanca 5 1 797 12.0 0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} This paper presents and analyzes the educational robotics as a tool to support teaching and learning process at the level of pre-media, primarily engaged in complex subjects such as mathematics, physics and computer science, among others. The study was limited to high schools in the province of Chiriqui, Panama, took a sample of six schools in the province and for each school involved both students and teachers. The main objective of the project was to demonstrate how robotics education, facilitates and encourages teaching and learning of science and technology. The results showed that robotics could become an excellent tool to understand abstract concepts and complex subjects in the area of science and technology, as well as allowing developing basic skills such as teamwork. Normal.dotm 0 0 1 134 765 Universidad de Salamanca 6 1 939 12.0 0 false 18 pt 18 pt 0 0 false false false /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso

  11. Inclusive Planetary Science Outreach and Education: a Pioneering European Experience

    Science.gov (United States)

    Galvez, A.; Ballesteros, F.; García-Frank, A.; Gil, S.; Gil-Ortiz, A.; Gómez-Heras, M.; Martínez-Frías, J.; Parro, L. M.; Parro, V.; Pérez-Montero, E.; Raposo, V.; Vaquerizo, J. A.

    2017-09-01

    Abstract Universal access to space science and exploration for researchers, students and the public, regardless of physical abilities or condition, is the main objective of work by the Space Inclusive Network (SpaceIn). The purpose of SpaceIn is to conduct educational and communication activities on Space Science in an inclusive and accessible way, so that physical disability is not an impediment for participating. SpaceIn members aim to enlarge the network also by raising awareness among individuals such as undergraduate students, secondary school teachers, and members of the public with an interest and basic knowledge on science and astronomy. As part of a pilot experience, current activities are focused on education and outreach in the field of comparative Planetary Science and Astrobiology. Themes include the similarities and differences between terrestrial planets, the role of water and its interaction with minerals on their surfaces, the importance of internal thermal energy in shaping planets and moons and the implications for the appearance of life, as we know it, in our planet and, possibly, in other places in our Solar System and beyond. The topics also include how scientific research and space missions can shed light on these fundamental issues, such as how life appears on a planet, and thus, why planetary missions are important in our society, as a source of knowledge and inspiration. The tools that are used to communicate the concepts include talks with support of multimedia and multi-sensorial material (video, audio, tactile, taste, smell) and field trips to planetary analogue sites that are accessible to most members of the public, including people with some kind of disability. The field trips help illustrate scientific concepts in geology e.g. lava formations, folds, impact features, gullies, salt plains; biology, e.g. extremophiles, halophites; and exploration technology, e.g. navigation in an unknown environment, hazard and obstacle avoidance

  12. [A quality evaluation tableau for health institutions: an educational tool].

    Science.gov (United States)

    Moll, Marie Christine; Decavel, Frédérique; Merlet, Christine

    2009-09-01

    For a few years, health institutions have had to comply with the certification and the need to establish the new governance. Thanks to the accreditation version 2 (obtained in 2005), the elaboration of the hospital project (adopted in October, 2006) and the organization in poles since 2006, the quality oriented management became a priority axis at the University Hospital of Angers. The strategic adaptation to quality requirements leads to develop the hospital management, more especially at the level of the clinical, medico technical and administrative poles. The elements of the hospital project including the part about the quality, risk and evaluation aim at being adapted by every pole according to the level of its project. This adaptation which is imposed to each pole manager requires a practical and educational accompaniment allowing at the same time to realize a diagnosis of the progress of the quality approach, a measure of the impact of the global impregnation within the institution and a comparison between pole. A eight axis dashboard with criteria and a user guide were developed from certification ISO 9001, the EFQM manual and the certification manual version 2 of the Healthcare High Authorities. The criteria are transcribed in an EXCEL grid ready to use. Succeeding in estimating your own quality system means that you demonstrate the maturity of the quality approach. The results of this evaluation confirmed those of the certification. The dashboard is a management structuring tool at the service of the multidisciplinary team. Two considerations emerge from these results: First of all, for the hospital top management, the axes to be improved emerge as a priority to determine and target the next annual action plans. The results also allow to support the auto evaluation for the certification version 2010 planned in January of the same year. It is a pragmatic tool which allows auto evaluation and comparison to estimate the pole performances. It is a strategic

  13. Riding a tsunami in ocean science education

    Science.gov (United States)

    Reed, Donald L.

    1998-08-01

    An experiment began in late 1994 in which the WWW plays a critical role in the instruction of students in an oceanography course for non-majors. The format of the course consists of an equal blend of traditional lectures, tutorial-style exercises delivered from the course WWW site, classroom activities, such as poster presentations and group projects, and field excursions to local marine environments. The driving force behind the technology component of the course is to provide high-quality educational materials that can be accessed at the convenience of the student. These materials include course information and handouts, lecture notes, self-paced exercises, a virtual library of electronic resources, information on newsworthy marine events, and late-breaking oceanographic research that impacts the population of California. The course format was designed to partially meet the demands of today's students, involve students in the learning process, and prepare students for using technology in work following graduation. Students have reacted favorably to the use of the WWW and comments by peers have been equally supportive. Students are more focused in their efforts during the computer-based exercises than while listening to lecture presentations. The implementation of this form of learning, however, has not, as yet, reduced the financial cost of the course or the amount of instructor effort in providing a high quality education. Interactions between the instructor and students have increased significantly as the informality of a computer laboratory promotes individual discussions and electronic communication provides students with easy (and frequent) access to the instructor outside of class.

  14. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik......Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive....... Several problems are discussed, the main being: How can preschool teachers balance children’s sense of wonder, i.e. their construction of knowledge (which often result in a anthropocentric thinking) against a teaching approach, which gives children a scientific understanding of scientific phenomena....

  15. Education Sciences: Towards a Theoretical Rebirth Beyond Reductionisms

    Directory of Open Access Journals (Sweden)

    Maria FORMOSINHO

    2013-11-01

    Full Text Available In order to clarify the directions that Education Sciences may take in the near future we start by discussing the current epistemological predicament of Education, and then articulate this discussion with an assessment of the impact of some major determinant external factors. We proceed by presenting the thread of Modernity in the configurations of educational reason and the impact of the inner fracture of reason fostered by Postmodernity, which leads us to conclude with the epistemic and normative requirements for theorizing Education. To avoid reductionism, we propose a triangular metatheory that should be able to account for the irreducible complexity of education. It presents a three-dimensional field where Education Sciences comprise, firstly, a hermeneutic and speculative dimension, cultivated by philosophy and oriented towards the setting of values and goals for the action, secondly, a descriptive and explanatory dimension, common to other Social Sciences, and thirdly an operational and technological dimension which surpasses the mere technical rationality confined to the selection of means and operationalization of goals, and therefore is in search of an intersubjective agreement that builds a consensus on the deontological normativity that regulates the activity of the professional educator, in its role of free agent and as a resource for action and change.

  16. The Blooming Anatomy Tool (BAT): A Discipline-Specific Rubric for Utilizing Bloom's Taxonomy in the Design and Evaluation of Assessments in the Anatomical Sciences

    Science.gov (United States)

    Thompson, Andrew R.; O'Loughlin, Valerie D.

    2015-01-01

    Bloom's taxonomy is a resource commonly used to assess the cognitive level associated with course assignments and examination questions. Although widely utilized in educational research, Bloom's taxonomy has received limited attention as an analytical tool in the anatomical sciences. Building on previous research, the Blooming Anatomy Tool (BAT)…

  17. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    constructs for students attending the MOSS residential program. Analysis of results from paired-samples t-test indicates that MOSS does contribute to a positive change in science identity and this change does persist one month following the visit to MOSS, although a slight decline is seen. The results from this research and creation of this instrument provide useful tools for educators interested in increasing their students' science identity.

  18. Virtual Museums as Educational Tool

    DEFF Research Database (Denmark)

    2007-01-01

    Virtual Museums as Educational Tool On this web site you will find a collection of resources on virtual museums. The web site is meant to be a knowledge base for people with interest in museums, virtuality and education, and how virtual museums may contribute to adult education and lifelong...

  19. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  20. Grid Information Technology as a New Technological Tool for e-Science, Healthcare and Life Science

    Directory of Open Access Journals (Sweden)

    Juan Manuel Maqueira Marín

    2007-06-01

    Full Text Available Nowadays, scientific projects require collaborative environments and powerful computing resources capable of handling huge quantities of data, which gives rise to e-Science. These requirements are evident in the need to optimise time and efforts in activities to do with health. When e-Science focuses on the collaborative handling of all the information generated in clinical medicine and health, e-Health is the result. Scientists are taking increasing interest in an emerging technology – Grid Information Technology – that may offer a solution to their current needs. The current work aims to survey how e-Science is using this technology all around the world. We also argue that the technology may provide an ideal solution for the new challenges facing e-Health and Life Science.

  1. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  2. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  3. Specifying a curriculum for biopolitical critical literacy in science teacher education: exploring roles for science fiction

    Science.gov (United States)

    Gough, Noel

    2017-12-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of biopolitics. I consider how such a biopolitically inflected critical literacy might find expression in a science teacher education curriculum and suggest a number of ways of materializing such a curriculum in specific literatures, media, procedures, and assessment tasks, with particular reference to the contributions of science fiction in popular media.

  4. Collaboration between science teacher educators and science faculty from arts and sciences for the purpose of developing a middle childhood science teacher education program: A case study

    Science.gov (United States)

    Buck, Gayle A.

    1998-12-01

    The science teacher educators at a midwestern university set a goal to establish a collaborative relationship between themselves and representatives from the College of Arts & Sciences for the purpose of developing a middle childhood science education program. The coming together of these two faculties provided a unique opportunity to explore the issues and experiences that emerge as such a collaborative relationship is formed. In order to gain a holistic perspective of the collaboration, a phenomenological case study design and methods were utilized. The study took a qualitative approach to allow the experiences and issues to emerge in a naturalistic manner. The question, 'What are the issues and experiences that emerge as science teacher educators and science faculty attempt to form a collaborative relationship for the purpose of developing a middle childhood science teacher program?' was answered by gathering a wealth of data. These data were collected by means of semi-structured interviews, observations and written document reviews. An overall picture was painted of the case by means of heuristic, phenomenological, and issues analyses. The researcher followed Moustakas' Phases of Heuristic Research to answer the questions 'What does science mean to me?' and 'What are my beliefs about the issues guiding this case?' prior to completing the phenomenological analysis. The phenomenological analysis followed Moustakas' 'Modification of the Van Kaam Methods of Analysis of Phenomenological Data'. This inquiry showed that the participants in this study came to the collaboration for many different reasons and ideas about the purpose for such a relationship. The participants also had very different ideas about how such a relationship should be conducted. These differences combined to create some issues that affected the development of curriculum and instruction. The issues involved the lack of (a) mutual respect for the work of the partners, (b) understanding about the

  5. Redesigning a General Education Science Course to Promote Critical Thinking

    Science.gov (United States)

    Rowe, Matthew P.; Gillespie, B. Marcus; Harris, Kevin R.; Koether, Steven D.; Shannon, Li-Jen Y.; Rose, Lori A.

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. PMID:26231561

  6. Further Education Performance Indicators: A Motivational or a Performative Tool?

    Science.gov (United States)

    Boocock, Andrew

    2013-01-01

    Ethnographic research in a further education College (Borough College) between 2000 and 2005 assessed the impact of performance indicators (PIs) within a department teaching GCSEs and A-levels. Research focused on PIs integral to the Learning and Skills Council funding formula, the Common Inspection Framework and newspaper league tables, and the…

  7. A Framework for the Evaluation of CASE Tool Learnability in Educational Environments

    Science.gov (United States)

    Senapathi, Mali

    2005-01-01

    The aim of the research is to derive a framework for the evaluation of Computer Aided Software Engineering (CASE) tool learnability in educational environments. Drawing from the literature of Human Computer Interaction and educational research, a framework for evaluating CASE tool learnability in educational environments is derived. The two main…

  8. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  9. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  10. Cognitive apprenticeship in health sciences education: a qualitative review.

    Science.gov (United States)

    Lyons, Kayley; McLaughlin, Jacqueline E; Khanova, Julia; Roth, Mary T

    2017-08-01

    Cognitive apprenticeship theory emphasizes the process of making expert thinking "visible" to students and fostering the cognitive and meta-cognitive processes required for expertise. The purpose of this review was to evaluate the use of cognitive apprenticeship theory with the primary aim of understanding how and to what extent the theory has been applied to the design, implementation, and analysis of education in the health sciences. The initial search yielded 149 articles, with 45 excluded because they contained the term "cognitive apprenticeship" only in reference list. The remaining 104 articles were categorized using a theory talk coding scheme. An in depth qualitative synthesis and review was conducted for the 26 articles falling into the major theory talk category. Application of cognitive apprenticeship theory tended to focus on the methods dimension (e.g., coaching, mentoring, scaffolding), with some consideration for the content and sociology dimensions. Cognitive apprenticeship was applied in various disciplines (e.g., nursing, medicine, veterinary) and educational settings (e.g., clinical, simulations, online). Health sciences education researchers often used cognitive apprenticeship to inform instructional design and instrument development. Major recommendations from the literature included consideration for contextual influences, providing faculty development, and expanding application of the theory to improve instructional design and student outcomes. This body of research provides critical insight into cognitive apprenticeship theory and extends our understanding of how to develop expert thinking in health sciences students. New research directions should apply the theory into additional aspects of health sciences educational research, such as classroom learning and interprofessional education.

  11. Redesigning a General Education Science Course to Promote Critical Thinking.

    Science.gov (United States)

    Rowe, Matthew P; Gillespie, B Marcus; Harris, Kevin R; Koether, Steven D; Shannon, Li-Jen Y; Rose, Lori A

    2015-01-01

    Recent studies question the effectiveness of a traditional university curriculum in helping students improve their critical thinking and scientific literacy. We developed an introductory, general education (gen ed) science course to overcome both deficiencies. The course, titled Foundations of Science, differs from most gen ed science offerings in that it is interdisciplinary; emphasizes the nature of science along with, rather than primarily, the findings of science; incorporates case studies, such as the vaccine-autism controversy; teaches the basics of argumentation and logical fallacies; contrasts science with pseudoscience; and addresses psychological factors that might otherwise lead students to reject scientific ideas they find uncomfortable. Using a pretest versus posttest design, we show that students who completed the experimental course significantly improved their critical-thinking skills and were more willing to engage scientific theories the general public finds controversial (e.g., evolution), while students who completed a traditional gen ed science course did not. Our results demonstrate that a gen ed science course emphasizing the process and application of science rather than just scientific facts can lead to improved critical thinking and scientific literacy. © 2015 M. P. Rowe, B. M. Gillespie, et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Science Education - Deja Vu Revised.

    Science.gov (United States)

    Walsh, John

    1982-01-01

    Summarizes views expressed and issues raised at the National Convocation on Precollege Education in Mathematics and Science and another meeting to establish a coalition of affiliates for science and mathematics education. (DC)

  13. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  14. Population Health Science: A Core Element of Health Science Education in Sub-Saharan Africa.

    Science.gov (United States)

    Hiatt, Robert A; Engmann, Natalie J; Ahmed, Mushtaq; Amarsi, Yasmin; Macharia, William M; Macfarlane, Sarah B; Ngugi, Anthony K; Rabbani, Fauziah; Walraven, Gijs; Armstrong, Robert W

    2017-04-01

    Sub-Saharan Africa suffers an inordinate burden of disease and does not have the numbers of suitably trained health care workers to address this challenge. New concepts in health sciences education are needed to offer alternatives to current training approaches.A perspective of integrated training in population health for undergraduate medical and nursing education is advanced, rather than continuing to take separate approaches for clinical and public health education. Population health science educates students in the social and environmental origins of disease, thus complementing disease-specific training and providing opportunities for learners to take the perspective of the community as a critical part of their education.Many of the recent initiatives in health science education in sub-Saharan Africa are reviewed, and two case studies of innovative change in undergraduate medical education are presented that begin to incorporate such population health thinking. The focus is on East Africa, one of the most rapidly growing economies in sub-Saharan Africa where opportunities for change in health science education are opening. The authors conclude that a focus on population health is a timely and effective way for enhancing training of health care professionals to reduce the burden of disease in sub-Saharan Africa.

  15. Science Education at Riverside Middle School A Case Study

    Science.gov (United States)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and

  16. Results of a Research Evaluating Quality of Computer Science Education

    Science.gov (United States)

    Záhorec, Ján; Hašková, Alena; Munk, Michal

    2012-01-01

    The paper presents the results of an international research on a comparative assessment of the current status of computer science education at the secondary level (ISCED 3A) in Slovakia, the Czech Republic, and Belgium. Evaluation was carried out based on 14 specific factors gauging the students' point of view. The authors present qualitative…

  17. A History of Soil Science Education in the United States

    Science.gov (United States)

    Brevik, Eric C.

    2017-04-01

    The formal study of soil science is a fairly recent undertaking in academics. Fields like biology, chemistry, and physics date back hundreds of years, but the scientific study of soils only dates to the late 1800s. Academic programs to train students in soil science are even more recent, with the first such programs only developing in the USA in the early 1900s. Some of the first schools to offer soil science training at the university level included the University of North Carolina (UNC), Earlham College (EC), and Cornell University. The first modern soil science textbook published in the United States was "Soils, Their Properties and Management" by Littleton Lyon, Elmer Fippin and Harry Buckman in 1909. This has evolved over time into the popular modern textbook "The Nature and Properties of Soils", most recently authored by Raymond Weil and Nyle Brady. Over time soil science education moved away from liberal arts schools such as UNC and EC and became associated primarily with land grant universities in their colleges of agriculture. There are currently about 71 colleges and universities in the USA that offer bachelors level soil science degree programs, with 54 of these (76%) being land grant schools. In the 1990s through the early 2000s enrollment in USA soil science programs was on the decline, even as overall enrollment at USA colleges and universities increased. This caused considerable concern in the soil science community. More recently there is evidence that soil science student numbers may be increasing, although additional information on this potential trend is desirable. One challenge soil science faces in the modern USA is finding an academic home, as soils are taught by a wide range of fields and soils classes are taken by students in many fields of study, including soil science, a range of agricultural programs, environmental science, environmental health, engineering, geology, geography, and others.

  18. Evaluating a Graduate Professional Development Program for Informal Science Educators

    Science.gov (United States)

    Lake, Jeremy Paul

    This study is an examination and evaluation of the outcomes of a series of courses that I helped build to create a graduate certificate. Specifically, I wanted to evaluate whether or not the online iteration of the Informal Science Institutions Environmental Education Graduate Certificate Program truly provided the long term professional development needed to enhance the skills of the formal and informal educators participating so that they could contribute meaningfully to the improvement of science literacy in their respective communities. My role as an internal evaluator provided an extraordinary opportunity to know the intent of the learning opportunities and why they were constructed in a particular fashion. Through the combination of my skills, personal experiences both within the certificate's predecessor and as an educator, I was uniquely qualified to explore the outcomes of this program and evaluate its effectiveness in providing a long-term professional development for participants. After conducting a literature review that emphasized a need for greater scientific literacy in communities across America, it was evident that the formal education enterprise needs the support of informal educators working on the ground in myriad different settings in ways that provide science as both content and process, learning science facts and doing real science. Through a bridging of informal science educators with formal teachers, it was thought each could learn the culture of the other, making each more fluent in accessing community resources to help make these educators more collaborative and able to bridge the classroom with the outside world. This bridge promotes ongoing, lifelong learning, which in turn can help the national goal of greater scientific literacy. This study provided insight into the thinking involved in the learners' growth as they converted theory presented in course materials into practice. Through an iterative process of reviewing the course

  19. Realist Ontology and Natural Processes: A Semantic Tool to Analyze the Presentation of the Osmosis Concept in Science Texts

    Science.gov (United States)

    Spinelli Barria, Michele; Morales, Cecilia; Merino, Cristian; Quiroz, Waldo

    2016-01-01

    In this work, we developed an ontological tool, based on the scientific realism of Mario Bunge, for the analysis of the presentation of natural processes in science textbooks. This tool was applied to analyze the presentation of the concept of osmosis in 16 chemistry and biology books at different educational levels. The results showed that more…

  20. Open Educational Resources as a Tool to Improve Language Education Effectiveness in the Russian Higher Institutions

    Directory of Open Access Journals (Sweden)

    Tatiana Sidorenko

    2014-09-01

    Full Text Available An attempt of Russian universities to move forward to the leading positions in the world rankings has resulted in some initiatives to enhance their activities on the market of education services. Under these conditions, foreign language proficiency is no longer a luxury and it is becoming an important tool to implement goals of university development. In this regard, new methods and techniques of foreign language teaching are highly demanded, which would significantly improve the language competency of both students and faculty members. A search for effective methods to enhance foreign language teaching makes analyze Massive Open Online Courses (MOOCs open educational platforms and consider an opportunity for these platforms to be integrated into the existing system of foreign language teaching in Russian higher education institutions. Based on the research findings, the author concludes that it is irrational to use the resources as embedded components without significant adjustment to the conditions existing in the current higher education system.

  1. Assessment in Science Education

    Science.gov (United States)

    Rustaman, N. Y.

    2017-09-01

    An analyses study focusing on scientific reasoning literacy was conducted to strengthen the stressing on assessment in science by combining the important of the nature of science and assessment as references, higher order thinking and scientific skills in assessing science learning as well. Having background in developing science process skills test items, inquiry in its many form, scientific and STEM literacy, it is believed that inquiry based learning should first be implemented among science educators and science learners before STEM education can successfully be developed among science teachers, prospective teachers, and students at all levels. After studying thoroughly a number of science researchers through their works, a model of scientific reasoning was proposed, and also simple rubrics and some examples of the test items were introduced in this article. As it is only the beginning, further studies will still be needed in the future with the involvement of prospective science teachers who have interests in assessment, either on authentic assessment or in test items development. In balance usage of alternative assessment rubrics, as well as valid and reliable test items (standard) will be needed in accelerating STEM education in Indonesia.

  2. Health Sciences undergraduate education at UCT: a story of transformation.

    Science.gov (United States)

    Hartman, Nadia; Kathard, Harsha; Perez, Gonda; Reid, Steve; Irlam, James; Gunston, Geney; Janse van Rensburg, Vicki; Burch, Vanessa; Duncan, Madeleine; Hellenberg, Derek; Van Rooyen, Ian; Smouse, Mantoa; Sikakane, Cynthia; Badenhorst, Elmi; Ige, Busayo

    2012-03-02

    Undergraduate education and training in the Faculty of Health Sciences at the University of Cape Town has become socially responsive. A story of transformation that is consonant with wider societal developments since the 1994 democratic elections, outlining the changes in undergraduate curricula across the faculty, is presented.

  3. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  4. Urban Science Education: Examining Current Issues through a Historical Lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-01-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions.…

  5. Professional Development in Climate Science Education as a Model for Navigating the Next Generations Science Standards - A High School Science Teacher's Perspective

    Science.gov (United States)

    Manning, C.; Buhr, S. M.

    2012-12-01

    The Next Generation Science Standards attempt to move the American K12 education system into the 21st century by focusing on science and engineering practice, crosscutting concepts, and the core ideas of the different disciplines. Putting these standards into practice will challenge a deeply entrenched system and science educators will need significant financial support from state and local governments, professional development from colleges and universities, and the creation of collegial academic networks that will help solve the many problems that will arise. While all of this sounds overwhelming, there are proven strategies and mechanisms already in place. Educators who tackle challenging topics like global climate change are turning to scientists and other like-minded teachers. Many of these teachers have never taken a class in atmospheric science but are expected to know the basics of climate and understand the emerging science as well. Teachers need scientists to continue to reach out and provide rigorous and in-depth professional development opportunities that enable them to answer difficult student questions and deal with community misconceptions about climate science. Examples of such programs include Earthworks, ICEE (Inspiring Climate Education Excellence) and ESSEA (Earth System Science Education Alliance). Projects like CLEAN (Climate Literacy and Energy Awareness Network) provide excellent resources that teachers can integrate into their lessons. All of these benefit from the umbrella of documents like Climate Literacy: The Essential Principles of Climate Science. Support from the aforementioned networks has encouraged the development of effective approaches for teaching climate science. From the perspective of a Geoscience master teacher and instructional coach, this presentation will demonstrate how scientists, researchers, and science education professionals have created models for professional development that create long-term networks supporting

  6. The making of a bilingual science educator: An autobiographical study

    Science.gov (United States)

    Chacon, Hugo Alejandro

    This qualitative study explores the journey of a Latino educator in becoming a bilingual high school science teacher and university professor. It focuses on discovering how the practice of teaching and learning is shaped through social, psychological, and cultural factors. Through the use of an autobiographical method known as currere, the researcher recounts personal and educational experiences that address important issues in education related to language, science, culture, and social class through the perspective of one doing the work. The study reviews the literature on autobiographical forms of research in the field of education and suggests how autobiography in education, an emerging genre, holds the promise for creating new meanings of the self while at the same time attempts to develop a theory of autobiography that acknowledges the importance of people of color and other marginalized groups. Data collected include 22 hours of audiotaped recordings, conversations, and educational artifacts including notes from innovative classroom projects, lesson plans, conference presentations, computer files, graduate coursework, classroom videotaping, university course evaluations, and department memos. Findings of this study revealed that: (a) the process of becoming a transformative educator involves critical self-reflection on one's cultural/ethnic identity and linguistic heritage; (b) the importance of self-reflection on one's teaching is a critical component in moving towards a more culturally and linguistically responsive curriculum; (c) the bilingual educator can achieve a greater understanding of the important role in the maintenance, implementation, and promotion of minority language education through a reflective practice; and (d) the development of the underrepresented voice in education and the awakening to one's personal and philosophical worldviews is as important as the preparation one receives in becoming a bilingual teacher.

  7. Toulmin's argument pattern as a "horizon of possibilities" in the study of argumentation in science education

    Science.gov (United States)

    Erduran, Sibel

    2018-01-01

    Kim and Roth (this issue) purport to draw on the social-psychological theory of L. S. Vygotsky in order to investigate social relations in children's argumentation in science topics. The authors argue that the argumentation framework offered by Stephen Toulmin is limited in addressing social relations. The authors thus criticize Toulmin's Argument Pattern (TAP) as an analytical tool and propose to investigate the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children by studying dialogical interactions. In this paper, I illustrate how Toulmin's framework can contribute to (a) the study of "social relations", and (b) provide an example utilizing a theoretical framework on social relations, namely Engeström's Activity Theory framework, and (c) describe how we have used the Activity Theory along with TAP in order to understand the development of argumentation in the practices of science educators. Overall, I will argue that TAP is not inherently incapable of addressing social relational aspects of argumentation in science education but rather that science education researchers can transform theoretical tools such as Toulmin's framework intended for other purposes for use in science education research.

  8. Student use of Web 2.0 tools to support argumentation in a high school science classroom

    Science.gov (United States)

    Weible, Jennifer L.

    This ethnographic study is an investigation into how two classes of chemistry students (n=35) from a low-income high school with a one-to-one laptop initiative used Web 2.0 tools to support participation in the science practice of argumentation (i.e., sensemaking, articulating understandings, and persuading an audience) during a unit on alternative energy. The science curriculum utilized the Technology-Enhanced Inquiry Tools for Science Education as a pedagogical framework (Kim, Hannafin, & Bryan, 2007). Video recordings of the classroom work, small group discussions, and focus group interviews, documents, screen shots, wiki evidence, and student produced multi-media artifacts were the data analyzed for this study. Open and focused coding techniques, counts of social tags and wiki moves, and interpretive analyses were used to find patterns in the data. The study found that the tools of social bookmarking, wiki, and persuasive multimedia artifacts supported participation in argumentation. In addition, students utilized the affordances of the technologies in multiple ways to communicate, collaborate, manage the work of others, and efficiently complete their science project. This study also found that technologically enhanced science curriculum can bridge students' everyday and scientific understandings of making meaning, articulating understandings, and persuading others of their point of view. As a result, implications from this work include a set of design principles for science inquiry learning that utilize technology. This study suggests new consideration of analytical methodology that blends wiki data analytics and video data. It also suggests that utilizing technology as a bridging strategy serves two roles within classrooms: (a) deepening students' understanding of alternative energy science content and (b) supporting students as they learn to participate in the practices of argumentation.

  9. A Discipline-Specific Approach to the History of U.S. Science Education

    Science.gov (United States)

    Otero, Valerie K.; Meltzer, David E.

    2017-01-01

    Although much has been said and written about the value of using the history of science in teaching science, relatively little is available to guide educators in the various science disciplines through the educational history of their own discipline. Through a discipline-specific approach to a course on the history of science education in the…

  10. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  11. A training and educational tool for neutron coincidence measurements

    International Nuclear Information System (INIS)

    Huszti, J.; Bagi, J.; Langner, D.

    2009-01-01

    Neutron coincidence counting techniques are widely used for nuclear safeguards inspection. They are based on the detection of time correlated neutrons created from spontaneous or induced fission of plutonium and some other actinides. IAEA inspectors are trained to know and to use this technique, but it is not easy to illustrate and explain the basics of the neutron coincidence counting. The traditional shift registers or multiplicity counters give only multiplicity distributions and the singles, doubles and triples count rates. Using the list mode method for the recording and evaluation of neutron coincidence data makes it easier to teach this technique. List mode acquisition is a relatively new way to collect data in neutron coincidence counting. It is based on the recording of the follow-up times of neutron pulses originating from a neutron detector into a file. The recorded pulse train can be evaluated with special software after the measurement. Hardware and software for list mode neutron coincidence acquisition have been developed in the Institute of Isotopes and is called a Pulse Train Reader. A system called Virtual Source for replaying pulse trains registered with the list mode device has also been developed. The list mode device and the pulse train 're-player' together build a good educational tool for teaching the basics of neutron coincidence counting. Some features of the follow-up time, multiplicity and Rossi-alpha distributions can be well demonstrated by replaying artificially generated or pre-recorded pulse trains. The choice of real sources is stored on DVD. There is no need to transport and maintain real sources for the training. Virtual sources also give the possibility of investigating rare sources that trainees would not have access to otherwise. (authors)

  12. Science, human nature, and a new paradigm for ethics education.

    Science.gov (United States)

    Lampe, Marc

    2012-09-01

    For centuries, religion and philosophy have been the primary basis for efforts to guide humans to be more ethical. However, training in ethics and religion and imparting positive values and morality tests such as those emanating from the categorical imperative and the Golden Rule have not been enough to protect humankind from its bad behaviors. To improve ethics education educators must better understand aspects of human nature such as those that lead to "self-deception" and "personal bias." Through rationalizations, faulty reasoning and hidden bias, individuals trick themselves into believing there is little wrong with their own unethical behavior. The application of science to human nature offers the possibility of improving ethics education through better self-knowledge. The author recommends a new paradigm for ethics education in contemporary modern society. This includes the creation of a new field called "applied evolutionary neuro-ethics" which integrates science and social sciences to improve ethics education. The paradigm can merge traditional thinking about ethics from religious and philosophical perspectives with new ideas from applied evolutionary neuro-ethics.

  13. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    Science.gov (United States)

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  14. Teacher collaboration and elementary science teaching: Using action research as a tool for instructional leadership

    Science.gov (United States)

    Roberts, Sara Hayes

    The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.

  15. OMIRIS educational tool

    International Nuclear Information System (INIS)

    Dumont, X.; Artus, J.C.; Gonin, M.; Bidard, F.; Hickman, B.

    2004-01-01

    The biological effects of ionizing radiations are one of the most important issues for workers exposed to these radiations in nuclear plants. To deliver information to workers about this topic, the 'Utility Medical Work Officers' wanted an educational tool. This tool named 'OMIRIS' was prepared under the authority of the federation of professors in radiology, radiobiology and radioprotection and the industrial nuclear partners in France (ANDRA, AREVA/COGEMA and FRAMATOME-ANP, CEA and EDF). The use of animation techniques helps to present in a simple way this complex topic using an interactive, pleasant and comprehensible form. Detailed information is given about 5 themes: 1) the various sources of ionizing radiation whatever they are natural, medical, industrial or military; 2) the various types of exposure, whether internal or external, their characteristics: duration, target organs and radiological toxicity and the different means of protection; 3) the concept of dose, the importance of dose rate and the reference values of doses; 4) the biological effects on the human organism, notions of dose threshold and aims, results and limitations of epidemiological surveys; and 5) the regulation based on radiological protection studies

  16. Development of a pre-service teacher training course on integration of ICT into inquiry based science education.

    NARCIS (Netherlands)

    Tran, Trinh-Ba; van den Berg, Ed; Ellermeijer, Ton; Beishuizen, Jos; Dvořák, Leoš; Koudelková, Věra

    In order to be able to integrate ICT into Inquiry Based Science Education (IBSE), teachers need much time and support for mastering ICT tools, learning the basis of IBSE, and getting experience in applying these tools in pupil investigations. For this purpose, we have developed a course within the

  17. A Prototype for Education Programs using Planetari and Space Centres as Key Tools

    Science.gov (United States)

    Thompson, L; Brumfitt, A.; Honan, P.

    Few hands on space experiments designed for school education allow the students and teachers to participate in the discovery of new science. One particularly experiment which flew on STS107 Columbia was designed specifically to do just this. A key feature of the project was to use a Zoo and a University as key tools in providing through life development and support. The project, "Spiders in Space" ran over a four year period resulted in the student and scientist team publishing over twenty refereed papers on their research findings. Throughout the project teacher and student performance, satisfaction, knowledge, abilities and competency were monitored and critically evaluated. The progressive gathering and feedback was used to improve the program and adapt the learning experience to the student needs and abilities. Based on the experience gained with the Spider Experiment on STS-107, the originating team of scientists and teachers have formulated a structure on which to facilitate the design of similar space education cross discipline projects. The project architecture presented uses as key tools Planetaria, Space science education centres, zoos and Universities in the successful delivery of the programs.The engagement of these key tools facilitates a cost effective and educationally sound support network for thousands of schools to have some ownership of their space program. These key tools provide both continuing professional development for teachers wishing to enter the program and field laboratory support for the student classes engaged in it. The resulting programs are designed to foster collaboration between space research and education on an international scale. The sample new program is presented which demonstrates the application of scientific principles by making students and teachers an integral part of current space research. Issues such as environment, climate control and biological diversity are investigated with a view to providing research outcomes

  18. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  19. A Combinational Digital Logic Design Tool for Practice and Assessment in Engineering Education

    Directory of Open Access Journals (Sweden)

    Rasha Morsi

    2016-08-01

    Full Text Available As technology advances, computers are being used almost everywhere. In a 2013 US Census report (File and Ryan, 2014, 83.8% (up from 78.9% in 2012 of U.S. households reported owning a computer with 74.4% reporting internet use (73.4% high speed internet. In recent years, the shift in educational technologies has been moving towards gaming, more specifically serious gaming. Although this is an important trend, there is still much to be said about e-learning through a step-by-step interactive process using an online practice tool. This paper presents a detailed description of the Combinational Logic Design Tool (CLDT (Morsi and Russell (2007. CLDT was designed and developed under the CCLI project, #0737242, funded by the National Science Foundation, which aimed to develop and disseminate a novel online practice tool for on demand review and assessment in Electrical and Computer Engineering education. The paper also reports on a formal assessment conducted in a Digital Logic Design Classroom and presents the results of this assessment.

  20. Ludic Educational Game Creation Tool

    DEFF Research Database (Denmark)

    Vidakis, Nikolaos; Syntychakis, Efthimios; Kalafatis, Konstantinos

    2015-01-01

    This paper presents initial findings and ongoing work of the game creation tool, a core component of the IOLAOS(IOLAOS in ancient Greece was a divine hero famed for helping with some of Heracles’s labors.) platform, a general open authorable framework for educational and training games. The game...... creation tool features a web editor, where the game narrative can be manipulated, according to specific needs. Moreover, this tool is applied for creating an educational game according to a reference scenario namely teaching schoolers road safety. A ludic approach is used both in game creation and play....... Helping children staying safe and preventing serious injury on the roads is crucial. In this context, this work presents an augmented version of the IOLAOS architecture including an enhanced game creation tool and a new multimodality module. In addition presents a case study for creating educational games...

  1. A novel educational tool for teaching ocular ultrasound

    Directory of Open Access Journals (Sweden)

    Mustafa MS

    2011-06-01

    Full Text Available MS Mustafa1, J Montgomery2, HR Atta11Department of Ophthalmology, Aberdeen Royal Infirmary, UK; 2Medi-CAL, College of Life Sciences and Medicine, University of Aberdeen, Foresterhill, Aberdeen, UKAbstract: Ocular ultrasound is now in increasing demand in routine ophthalmic clinical practice not only because it is noninvasive but also because of ever-advancing technology providing higher resolution imaging. It is however a difficult branch of ophthalmic investigations to grasp, as it requires a high skill level to interface with the technology and provide accurate interpretation of images for ophthalmic diagnosis and management. It is even more labor intensive to teach ocular ultrasound to another fellow clinician. One of the fundamental skills that proved difficult to learn and teach is the need for the examiner to “mentally convert” 2-dimensional B-scan images into 3-dimensional (3D interpretations. An additional challenge is the requirement to carry out this task in real time. We have developed a novel approach to teach ocular ultrasound by using a novel 3D ocular model. A 3D virtual model is built using widely available, open source, software. The model is then used to generate movie clips simulating different movements and orientations of the scanner head. Using Blender, Quicktime motion clips are choreographed and collated into interactive quizzes and other pertinent pedagogical media. The process involves scripting motion vectors, rotation, and tracking of both the virtual stereo camera and the model. The resulting sequence is then rendered for twinned right- and left-eye views. Finally, the twinned views are synchronized and combined in a format compatible with the stereo projection apparatus. This new model will help the student with spatial awareness and allow for assimilation of this awareness into clinical practice. It will also help with grasping the nomenclature used in ocular ultrasound as well as helping with localization of

  2. Citizen Science as a Tool in Biological Recording—A Case Study of Ailanthus altissima (Mill. Swingle

    Directory of Open Access Journals (Sweden)

    Barbara Sladonja

    2018-01-01

    Full Text Available Non-native invasive species frequently appear in urban and non-urban ecosystems and may become a threat to biodiversity. Some of these newcomers are introduced accidentally, and others are introduced through a sequence of events caused by conscious human decisions. Involving the general public in biodiversity preservation activities could prevent the negative consequences of these actions. Accurate and reliable data collecting is the first step in invasive species management, and citizen science can be a useful tool to collect data and engage the public in science. We present a case study of biological recording of tree of heaven (Ailanthus altissima (Mill. Swingle using a participatory citizen model. The first goal in this case study was to develop a cheap, widely accessible, and effective inventory method, and to test it by mapping tree of heaven in Croatia. A total of 90.61 km of roads and trails was mapped; 20 single plants and 19 multi-plant clusters (mapped as polygons were detected. The total infested area was 2610 m2. The second goal was to educate citizens and raise awareness of this invasive species. The developed tool and suggested approach aided in improving invasive risk management in accordance with citizen science principles and can be applied to other species or areas.

  3. The Pitfalls of a Tool-based Science and the Promise of a Problem-focused Science

    Directory of Open Access Journals (Sweden)

    Patrick E. McKnight

    2011-05-01

    Full Text Available Our present social sciences are at risk of losing sight of their primary purpose: the goal of reducing uncertainty. For years social scientists have drifted slowly toward the routine of employing of accepted methodological, conceptual, and analytical tools rather than engaging in problem oriented inquiry. Scientific contributions are reviewed in accordance to their compliance with the routine application of tools rather than focusing on their ability to problem-solve for a wider population. Researchers in every area of psychology for instance now insist on using methods such as random assignment and control groups, as well as data analytic procedures such as null hypothesis significance testing without regard to their relevance. A problem-focused inquiry would not dictate the routine use of any particular tool but rather the judicious application of tools when deemed appropriate. The following article describes  the current situation in the framework contrasting toolbased and problem-focused inquiry and offers several insights that may create a more balanced and fruitful approach to scientific inquiry. DOI: 10.2458/azu_jmmss.v1i2.99

  4. Fermilab Friends for Science Education | Support Us

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Support Us improving science (science, technology, engineering and mathematics) education. Your donation allows us to Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education

  5. A new program in earth system science education

    Science.gov (United States)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  6. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  7. Toward a Science of Honors Education

    Science.gov (United States)

    Jones, Beata M.

    2016-01-01

    In this article, Beata Jones attempts to organize the honors discipline into a comprehensive framework that can guide explorations and shed light on specific attributes of honors entities in the framework of their interrelationships. The framework offers an approach to deal with the inherent fragmentation of the field, which can lead to…

  8. Have Economic Educators Embraced Social Media as a Teaching Tool?

    Science.gov (United States)

    Al-Bahrani, Abdullah; Patel, Darshak; Sheridan, Brandon J.

    2017-01-01

    In this article, the authors discuss the results of a study of the perceptions of a national sample of economics faculty members from various institutions regarding the use of social media as a teaching tool in and out of the economics classroom. In the past few years, social media has become globally popular, and its use is ubiquitous among…

  9. Using Video Analysis, Microcomputer-Based Laboratories (MBL’s and Educational Simulations as Pedagogical Tools in Revolutionizing Inquiry Science Teaching and Learning

    Directory of Open Access Journals (Sweden)

    Jay B. Gregorio

    2015-01-01

    Full Text Available La main á la pâte is an inquiry-based science education programme founded in 1996 by Georges Charpak, Pierre Lena, Yves Quere and the French Académie des Sciences with the support of the Ministry of Education. The operation of the program primarily aims to revitalize and expand science teaching and learning in primary education by implementing an inquiry process that combines spontaneous exploration through varied prediction, experimentation, observation and argumentation. As a recognized program of innovation in science, La main á la pâte has gained global visibility and transcended across cultural backgrounds. The strength of the program is founded on continuous educational collaboration and innovative projects among pioneering institutions and educators for more than a decade.

  10. The "Metaphorical Collage" as a Research Tool in the Field of Education

    Science.gov (United States)

    Russo-Zimet, Gila

    2016-01-01

    The aim of this paper is to propose a research tool in the field of education--the "metaphorical collage." This tool facilitates the understanding of concepts and processes in education through the analysis of metaphors in collage works that include pictorial images and verbal images. We believe the "metaphorical collage" to be…

  11. Critical Science Education in a Suburban High School Chemistry Class

    Science.gov (United States)

    Ashby, Patrick

    To improve students' scientific literacy and their general perceptions of chemistry, I enacted critical chemistry education (CCE) in two "regular level" chemistry classes with a group of 25 students in a suburban, private high school as part of this study. CCE combined the efforts of critical science educators (Fusco & Calabrese Barton, 2001; Gilbert 2013) with the performance expectations of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013a) to critically transform the traditional chemistry curriculum at this setting. Essentially, CCE engages students in the critical exploration of socially situated chemistry content knowledge and requires them to demonstrate this knowledge through the practices of science. The purpose of this study was to gauge these students development of chemistry content knowledge, chemistry interest, and critical scientific literacy (CSL) as they engaged in CCE. CSL was a construct developed for this study that necessarily combined the National Research Center's (2012) definition of scientific literacy with a critical component. As such, CSL entailed demonstrating content knowledge through the practices of science as well as the ability to critically analyze the intersections between science content and socially relevant issues. A mixed methods, critical ethnographic approach framed the collection of data from open-ended questionnaires, focus group interviews, Likert surveys, pre- and post unit tests, and student artifacts. These data revealed three main findings: (1) students began to develop CSL in specific, significant ways working through the activities of CCE, (2) student participants of CCE developed a comparable level of chemistry content understanding to students who participated in a traditional chemistry curriculum, and (3) CCE developed a group of students' perceptions of interest in chemistry. In addition to being able to teach students discipline specific content knowledge, the implications of this study are

  12. Educating science editors: is there a comprehensive strategy?

    Science.gov (United States)

    Gasparyan, Armen Yuri; Yessirkepov, Marlen; Gorin, Sergey V; Kitas, George D

    2014-12-01

    The article considers available options to educate science editors in the fast-transforming digital environment. There is no single course or resource that can cover their constantly changing and diversifying educational needs. The involvement in research, writing, and reviewing is important for gaining editing skills, but that is not all. Membership in editorial associations and access to updated scholarly information in the field are mandatory for maintaining editorial credentials. Learned associations offer access to a few widely-recognized periodicals. There are also formal training courses covering issues in science writing and ethical editing, but no high-level evidence data exist to promote any of these. Networking with like-minded specialists within the global and regional editorial associations seems a useful strategy to upgrade editorial skills and resolve problems with the quality control and digitization of scholarly periodicals.

  13. STEM Education and Leadership: A Mathematics and Science Partnership Approach

    OpenAIRE

    Twyford, John; Järvinen, Esa-Matti

    2010-01-01

    The issue of attracting more young people to choose careers in science, technology, engineering, and mathematics (STEM) has become critical for the United States. Recent studies by businesses, associations, and education have all agreed that the United States’ performance in the STEM disciplines have placed our nation in grave risk of relinquishing its competitive edge in the marketplace (e.g., Rising above the gathering storm, 2007). A Congressional Research Service (2006) report stated that...

  14. Gamification as a tool for enhancing graduate medical education.

    Science.gov (United States)

    Nevin, Christa R; Westfall, Andrew O; Rodriguez, J Martin; Dempsey, Donald M; Cherrington, Andrea; Roy, Brita; Patel, Mukesh; Willig, James H

    2014-12-01

    The last decade has seen many changes in graduate medical education training in the USA, most notably the implementation of duty hour standards for residents by the Accreditation Council of Graduate Medical Education. As educators are left to balance more limited time available between patient care and resident education, new methods to augment traditional graduate medical education are needed. To assess acceptance and use of a novel gamification-based medical knowledge software among internal medicine residents and to determine retention of information presented to participants by this medical knowledge software. We designed and developed software using principles of gamification to deliver a web-based medical knowledge competition among internal medicine residents at the University of Alabama (UA) at Birmingham and UA at Huntsville in 2012-2013. Residents participated individually and in teams. Participants accessed daily questions and tracked their online leaderboard competition scores through any internet-enabled device. We completed focus groups to assess participant acceptance and analysed software use, retention of knowledge and factors associated with loss of participants (attrition). Acceptance: In focus groups, residents (n=17) reported leaderboards were the most important motivator of participation. Use: 16 427 questions were completed: 28.8% on Saturdays/Sundays, 53.1% between 17:00 and 08:00. Retention of knowledge: 1046 paired responses (for repeated questions) were collected. Correct responses increased by 11.9% (pgamification-based educational intervention was well accepted among our millennial learners. Coupling software with gamification and analysis of trainee use and engagement data can be used to develop strategies to augment learning in time-constrained educational settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. A feasibility study of educational tools for osteomalacia.

    Science.gov (United States)

    Waxman, R; Adebajo, A; Robinson, S; Walker, D; Johnson, M; Rahman, A; Samanta, A; Kumar, K; Raza, K; Helliwell, P

    2017-03-01

    Many people in the UK, particularly people of South Asian origin, are advised to supplement their vitamin D intake, yet most do not. This suggests an unmet educational need. The osteomalacia mind map was developed to meet this need. The mind map contains culturally sensitive images, translated into Urdu and made interactive on a DVD. This study explores the feasibility of a randomised controlled study to measure the effect of education on improving vitamin D knowledge and adherence. This was a pilot and feasibility study. Cluster randomisation was used to avoid inter person contamination. Two South Asian women's groups were recruited to receive information about osteomalacia either by interactive DVD or an Arthritis Research UK leaflet. Knowledge and compliance were tested before and after the educational interventions via a knowledge questionnaire and the measurement of vitamin D and parathormone levels. The groups were found to be mismatched for knowledge, educational attainment and language at baseline. There were also organisational difficulties and possible confounding due to different tutors and translators. The DVD group had high knowledge at baseline which did not improve. The leaflet group had low knowledge at baseline that did improve. The DVD group had lower parathormone which did not change. The leaflet group had an increase in vitamin D but parathormone remained high. Performing a randomised study with this population utilising an educational intervention was difficult to execute. If cluster randomisation is used, extreme care must be taken to match the groups at baseline.

  16. Gamification as a tool for enhancing graduate medical education

    Science.gov (United States)

    Nevin, Christa R; Westfall, Andrew O; Rodriguez, J Martin; Dempsey, Donald M; Cherrington, Andrea; Roy, Brita; Patel, Mukesh; Willig, James H

    2014-01-01

    Introduction The last decade has seen many changes in graduate medical education training in the USA, most notably the implementation of duty hour standards for residents by the Accreditation Council of Graduate Medical Education. As educators are left to balance more limited time available between patient care and resident education, new methods to augment traditional graduate medical education are needed. Objectives To assess acceptance and use of a novel gamification-based medical knowledge software among internal medicine residents and to determine retention of information presented to participants by this medical knowledge software. Methods We designed and developed software using principles of gamification to deliver a web-based medical knowledge competition among internal medicine residents at the University of Alabama (UA) at Birmingham and UA at Huntsville in 2012–2013. Residents participated individually and in teams. Participants accessed daily questions and tracked their online leaderboard competition scores through any internet-enabled device. We completed focus groups to assess participant acceptance and analysed software use, retention of knowledge and factors associated with loss of participants (attrition). Results Acceptance: In focus groups, residents (n=17) reported leaderboards were the most important motivator of participation. Use: 16 427 questions were completed: 28.8% on Saturdays/Sundays, 53.1% between 17:00 and 08:00. Retention of knowledge: 1046 paired responses (for repeated questions) were collected. Correct responses increased by 11.9% (pgamification-based educational intervention was well accepted among our millennial learners. Coupling software with gamification and analysis of trainee use and engagement data can be used to develop strategies to augment learning in time-constrained educational settings. PMID:25352673

  17. History of Physics as a Tool to Detect the Conceptual Difficulties Experienced by Students: The Case of Simple Electric Circuits in Primary Education

    Science.gov (United States)

    Leone, Matteo

    2014-01-01

    The present paper advocates the use of History of Science into the teaching of science in primary education through a case study in the field of electricity. In this study, which provides both historical and experimental evidence, a number of conceptual difficulties faced by early nineteenth century physicists are shown to be a useful tool to…

  18. Creating a Dialogic Environment for Transformative Science Teaching Practices: Towards an Inclusive Education for Science

    Science.gov (United States)

    Reynaga-Peña, Cristina G.; Sandoval-Ríos, Marisol; Torres-Frías, José; López-Suero, Carolina; Lozano Garza, Adrián; Dessens Félix, Maribel; González Maitland, Marcelino; Ibanez, Jorge G.

    2018-01-01

    This paper focuses on the design and application of a teacher training strategy to promote the inclusive education of students with disabilities in the science classroom, through the creation of adult learning environments grounded on the principles of dialogic learning. Participants of the workshop proposal consisted of a group of twelve teachers…

  19. Specifying a Curriculum for Biopolitical Critical Literacy in Science Teacher Education: Exploring Roles for Science Fiction

    Science.gov (United States)

    Gough, Noel

    2017-01-01

    In this essay I suggest some ways in which science teacher educators in Western neoliberal economies might facilitate learners' development of a critical literacy concerning the social and cultural changes signified by the concept of "biopolitics." I consider how such a biopolitically inflected critical literacy might find expression in…

  20. Autobiographies in Preservice Teacher Education: A Snapshot Tool for Building a Culturally Responsive Pedagogy

    Science.gov (United States)

    Gunn, AnnMarie Alberton; Bennett, Susan V.; Evans, Linda Shuford; Peterson, Barbara J.; Welsh, James L.

    2013-01-01

    Many scholars have made the call for teacher educators to provide experiences that can lead preservice teachers to embrace a culturally responsive pedagogy. We investigated the use of brief autobiographies during an internship as a tool (a) for preservice teachers to examine their multidimensional culture; and (b) for teacher educators to assess…

  1. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  2. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Science.gov (United States)

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  3. Fermilab Friends for Science Education | Programs

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Programs Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search photo Fermilab Friends for Science Education, in partnership with Fermilab and area educators, designs

  4. Building a Massive Volcano Archive and the Development of a Tool for the Science Community

    Science.gov (United States)

    Linick, Justin

    2012-01-01

    The Jet Propulsion Laboratory has traditionally housed one of the world's largest databases of volcanic satellite imagery, the ASTER Volcano Archive (10Tb), making these data accessible online for public and scientific use. However, a series of changes in how satellite imagery is housed by the Earth Observing System (EOS) Data Information System has meant that JPL has been unable to systematically maintain its database for the last several years. We have provided a fast, transparent, machine-to-machine client that has updated JPL's database and will keep it current in near real-time. The development of this client has also given us the capability to retrieve any data provided by NASA's Earth Observing System Clearinghouse (ECHO) that covers a volcanic event reported by U.S. Air Force Weather Agency (AFWA). We will also provide a publicly available tool that interfaces with ECHO that can provide functionality not available in any of ECHO's Earth science discovery tools.

  5. Science Education for Empowerment and Social Change: A Case Study of a Teacher Educator in Urban Pakistan.

    Science.gov (United States)

    Zahur, Rubina; Barton, Angela Calabrese; Upadhyay, Bhaskar Raj

    2002-01-01

    Discusses the purpose of science education for children of the very poor classes in caste-oriented developing countries such as Pakistan. Presents a case study of one teacher educator whose beliefs and practices sharply deviated from the norm--she believes that science education ought to be about empowering students to make physical and political…

  6. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    Science.gov (United States)

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  7. A nested virtualization tool for information technology practical education.

    Science.gov (United States)

    Pérez, Carlos; Orduña, Juan M; Soriano, Francisco R

    2016-01-01

    A common problem of some information technology courses is the difficulty of providing practical exercises. Although different approaches have been followed to solve this problem, it is still an open issue, specially in security and computer network courses. This paper proposes NETinVM, a tool based on nested virtualization that includes a fully functional lab, comprising several computers and networks, in a single virtual machine. It also analyzes and evaluates how it has been used in different teaching environments. The results show that this tool makes it possible to perform demos, labs and practical exercises, greatly appreciated by the students, that would otherwise be unfeasible. Also, its portability allows to reproduce classroom activities, as well as the students' autonomous work.

  8. Using the AGsploration: the Science of Maryland Agriculture Curriculum as a Tool to Increase Youth Appreciation and Understanding of Agriculture and Science

    Directory of Open Access Journals (Sweden)

    April Hall Barczewski

    2017-01-01

    Full Text Available AGsploration: The Science of Maryland Agriculture is a 24-lesson, peer-reviewed curriculum that includes experiential hands-on activities and built-in pre-/post-evaluation tools. Lesson topics include production agriculture, the environment and nutrition with emphasis on how science relates to each topic. Student pre-/post- evaluation data reflects participation in AGsploration positively affects students’ attitudes about agriculture and science. Separate evaluations were developed to survey two groups of trained teen teachers about the curriculum immediately following their training, 1-2 years after using the curriculum and another 3-4 years post involvement. The results demonstrated that teen teachers were an effective way to disseminate the curriculum and these same teens increased their agriculture knowledge, life skills and interest in agriculture science education and careers. A similar evaluation was conducted with adult educators following a training session and another 1-2 years after actively using the curriculum. This data suggests that the curriculum is well received and valued.

  9. Joseph Priestley Across Theology, Education, and Chemistry: An Interdisciplinary Case Study in Epistemology with a Focus on the Science Education Context

    Science.gov (United States)

    de Berg, Kevin C.

    2011-07-01

    This paper discusses the findings of a search for the intellectual tools used by Joseph Priestley (1733-1804) in his chemistry, education, and theology documents. Priestley's enquiring democratic view of knowledge was applicable in all three areas and constitutes a significant part of his lifework. Current epistemological issues in science education are examined from the point of view of the nature of theory and experiment as observed in Priestley's writings and as espoused in modern philosophy of science. Science and religious faith issues in the context of science education are examined from the point of view of one's understanding of sacred texts, and the suggestion is made that a Priestleyan model of "the liberty to think for oneself" and "to hold knowledge with humility and virtue" could prove helpful in dealing with the known divergent opinions in relation to science, education, and religion.

  10. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  11. Are Games Effective Learning Tools? A Review of Educational Games

    Science.gov (United States)

    de Freitas, Sara

    2018-01-01

    The literature around the use, efficacy and design of educational games and game-based learning approaches has been building up gradually and in phases, across different disciplines and in an ad hoc way. This has been problematic in a number of ways and resulted in fragmented literature and inconsistent referencing patterns between different…

  12. Feyerabend on Science and Education

    Science.gov (United States)

    Kidd, Ian James

    2013-01-01

    This article offers a sympathetic interpretation of Paul Feyerabend's remarks on science and education. I present a formative episode in the development of his educational ideas--the "Berkeley experience"--and describe how it affected his views on the place of science within modern education. It emerges that Feyerabend arrived at a…

  13. Mediated Authentic Video: A Flexible Tool Supporting a Developmental Approach to Teacher Education

    Science.gov (United States)

    Stutchbury, Kris; Woodward, Clare

    2017-01-01

    YouTube now has more searches than Google, indicating that video is a motivating and, potentially, powerful learning tool. This paper investigates how we can embrace video to support improvements in teacher education. It will draw on innovative approaches to teacher education, developed by the Open University UK, in order to explore in more depth…

  14. Educational Technologies in Problem-Based Learning in Health Sciences Education: A Systematic Review

    Science.gov (United States)

    Jin, Jun

    2014-01-01

    Background As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. Objective The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. Methods A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Results Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for

  15. Educational technologies in problem-based learning in health sciences education: a systematic review.

    Science.gov (United States)

    Jin, Jun; Bridges, Susan M

    2014-12-10

    As a modern pedagogical philosophy, problem-based learning (PBL) is increasingly being recognized as a major research area in student learning and pedagogical innovation in health sciences education. A new area of research interest has been the role of emerging educational technologies in PBL. Although this field is growing, no systematic reviews of studies of the usage and effects of educational technologies in PBL in health sciences education have been conducted to date. The aim of this paper is to review new and emerging educational technologies in problem-based curricula, with a specific focus on 3 cognate clinical disciplines: medicine, dentistry, and speech and hearing sciences. Analysis of the studies reviewed focused on the effects of educational technologies in PBL contexts while addressing the particular issue of scaffolding of student learning. A comprehensive computerized database search of full-text articles published in English from 1996 to 2014 was carried out using 3 databases: ProQuest, Scopus, and EBSCOhost. Eligibility criteria for selection of studies for review were also determined in light of the population, intervention, comparison, and outcomes (PICO) guidelines. The population was limited to postsecondary education, specifically in dentistry, medicine, and speech and hearing sciences, in which PBL was the key educational pedagogy and curriculum design. Three types of educational technologies were identified as interventions used to support student inquiry: learning software and digital learning objects; interactive whiteboards (IWBs) and plasma screens; and learning management systems (LMSs). Of 470 studies, 28 were selected for analysis. Most studies examined the effects of learning software and digital learning objects (n=20) with integration of IWB (n=5) and LMS (n=3) for PBL receiving relatively less attention. The educational technologies examined in these studies were seen as potentially fit for problem-based health sciences education

  16. International Science Education: A Study of UNESCO Science Education Improvement Projects in Selected Anglophone Countries of Africa: Project Problems.

    Science.gov (United States)

    Nichter, Richard

    1984-01-01

    Discusses some of the problems faced by technical advisors implementing projects for the improvement of science education in Africa and reasons for these problems. Problem areas considered include underdevelopment, underestimating the process, finances, personality conflict and motivation, and opposition from key groups. (A list of major UNESCO…

  17. Design of Mobile e-Books as a Teaching Tool for Diabetes Education

    Science.gov (United States)

    Guo, Sophie Huey-Ming

    2017-01-01

    To facilitate people with diabetes adopting information technologies, a tool of mobile eHealth education for diabetes was described in this paper, presenting the validity of mobile eBook for diabetes educators. This paper describes the design concepts and validity of this mobile eBook for diabetes educators delivering diabetes electronic…

  18. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  19. A Comparison of the Methodological Quality of Articles in Computer Science Education Journals and Conference Proceedings

    Science.gov (United States)

    Randolph, Justus J.; Julnes, George; Bednarik, Roman; Sutinen, Erkki

    2007-01-01

    In this study we empirically investigate the claim that articles published in computer science education journals are more methodologically sound than articles published in computer science education conference proceedings. A random sample of 352 articles was selected from those articles published in major computer science education forums between…

  20. Stop the Bleeding: the Development of a Tool to Streamline NASA Earth Science Metadata Curation Efforts

    Science.gov (United States)

    le Roux, J.; Baker, A.; Caltagirone, S.; Bugbee, K.

    2017-12-01

    The Common Metadata Repository (CMR) is a high-performance, high-quality repository for Earth science metadata records, and serves as the primary way to search NASA's growing 17.5 petabytes of Earth science data holdings. Released in 2015, CMR has the capability to support several different metadata standards already being utilized by NASA's combined network of Earth science data providers, or Distributed Active Archive Centers (DAACs). The Analysis and Review of CMR (ARC) Team located at Marshall Space Flight Center is working to improve the quality of records already in CMR with the goal of making records optimal for search and discovery. This effort entails a combination of automated and manual review, where each NASA record in CMR is checked for completeness, accuracy, and consistency. This effort is highly collaborative in nature, requiring communication and transparency of findings amongst NASA personnel, DAACs, the CMR team and other metadata curation teams. Through the evolution of this project it has become apparent that there is a need to document and report findings, as well as track metadata improvements in a more efficient manner. The ARC team has collaborated with Element 84 in order to develop a metadata curation tool to meet these needs. In this presentation, we will provide an overview of this metadata curation tool and its current capabilities. Challenges and future plans for the tool will also be discussed.

  1. Social networks as a tool for science communication and public engagement: focus on Twitter.

    Science.gov (United States)

    López-Goñi, Ignacio; Sánchez-Angulo, Manuel

    2018-02-01

    Social networks have been used to teach and engage people about the importance of science. The integration of social networks in the daily routines of faculties and scientists is strongly recommended to increase their personal brand, improve their skills, enhance their visibility, share and communicate science to society, promote scientific culture, and even as a tool for teaching and learning. Here we review the use of Twitter in science and comment on our previous experience of using this social network as a platform for a Massive Online Open Course (MOOC) in Spain and Latin America. We propose to extend this strategy to a pan-European Microbiology MOOC in the near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  3. Geospatial Data Science Data and Tools | Geospatial Data Science | NREL

    Science.gov (United States)

    help sizing a residential photovoltaic system? Want to know what renewable energy resources are science tools help users apply NREL's geographic information system expertise to their own projects. Need

  4. The development of a personalized patient education tool for decision making for postmenopausal women with osteoporosis

    NARCIS (Netherlands)

    Hiligsmann, M.; Ronda, G.; Weijden, T.T. van der; Boonen, A.

    2016-01-01

    A personalized patient education tool for decision making (PET) for postmenopausal women with osteoporosis was developed by means of a systematic development approach. A prototype was constructed and refined by involving various professionals and patients. Professionals and patients expressed a

  5. Computer games as a pedagogical tool in education

    OpenAIRE

    Maher, Ken

    1997-01-01

    Designing computer based environments is never easy, especially when considering young learners. Traditionally, computer gaming has been seen as lacking in educational value, but rating highly in satisfaction and motivation. The objective of this dissertation is to look at elements of computer based learning and to ascertain how computer games can be included as a means of improving learning. Various theories are drawn together from psychology, instructional technology and computer gaming, to...

  6. Gender Stereotypes in Science Education Resources : A Visual Content Analysis

    NARCIS (Netherlands)

    Kerkhoven, A.H.; Rodrigues, Dos Santos Russo P.M.; Land, A.M.; Saxena, A.; Rodenburg, F.J.

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people’s social lives, such stereotypes can also occur in education. Ways in which stereotypes are

  7. A Holistic Approach to Science Education: Disciplinary, Affective, and Equitable

    Science.gov (United States)

    Mehta, Rohit; Mehta, Swati; Seals, Christopher

    2017-01-01

    In this chapter, we argue that science education is more than the high stakes, rigorous practices and methodology that students often find dull and uninspiring. We present that aesthetic and humanistic motivations, such as wonder, curiosity, and social justice, are also inherent reasons for doing science. In the MSUrbanSTEM program, we designed an…

  8. Informational literacy in higher education: design of a mensuration tool

    Directory of Open Access Journals (Sweden)

    María del Carmen Toledo Sánchez

    2015-11-01

    Full Text Available Objective. To show psychometric research phase to examine the validity of an instrument designed to measure information literacy in the Institutions of higher education in Mexico. Method. The questionnaire design of 50 items was based on the UNESCO standards of information and communication technologies (ICT competencies for teachers and skills standards for access and use of information in higher education. The methodological strategy contemplated verification of content validity, item-item correlation and construct through factorial analysis. The sample was 73 professors and librarians who work in educational institutions of northwestern Mexico. Results. The final design was reduced to 44 items, and it demonstrated the items evaluate the same construct in their internal structure, and revealed 5 dimensions for informational variable competencies and 5 competencies for ICT. Conclusions. The items have good clarity regarding the specific concept, nevertheless, the elimination of 6 items was needed proving to be a valid and reliable instrument to measure the informational literacy in the studied context.

  9. CERN as a Non-School Resource for Science Education

    CERN Document Server

    Ellis, Jonathan Richard

    2000-01-01

    As a large international research laboratory, CERN feels it has a special responsibility for outreach, and has many activities directed towards schools, including organized visits, an on-site museum, hands-on experiments, a Summer intern programme for high-school teachers, lecture series and webcasts. Ongoing activities and future plans are reviewed, and some ideas stimulated by this workshop are offered concerning the relevance of CERN's experience to Asia, and the particular contribution that CERN can make as a non-school resource for science education.

  10. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    Science.gov (United States)

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  11. Isotope ratio mass spectrometry as a tool for source inference in forensic science: A critical review.

    Science.gov (United States)

    Gentile, Natacha; Siegwolf, Rolf T W; Esseiva, Pierre; Doyle, Sean; Zollinger, Kurt; Delémont, Olivier

    2015-06-01

    Isotope ratio mass spectrometry (IRMS) has been used in numerous fields of forensic science in a source inference perspective. This review compiles the studies published on the application of isotope ratio mass spectrometry (IRMS) to the traditional fields of forensic science so far. It completes the review of Benson et al. [1] and synthesises the extent of knowledge already gathered in the following fields: illicit drugs, flammable liquids, human provenancing, microtraces, explosives and other specific materials (packaging tapes, safety matches, plastics, etc.). For each field, a discussion assesses the state of science and highlights the relevance of the information in a forensic context. Through the different discussions which mark out the review, the potential and limitations of IRMS, as well as the needs and challenges of future studies are emphasized. The paper elicits the various dimensions of the source which can be obtained from the isotope information and demonstrates the transversal nature of IRMS as a tool for source inference. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. A tool for assessing cultural competence training in dental education.

    Science.gov (United States)

    Holyfield, Lavern J; Miller, Barbara H

    2013-08-01

    Policies exist to promote fairness and equal access to opportunities and services that address basic human needs of all U.S. citizens. Nonetheless, health disparities continue to persist among certain subpopulations, including those of racial, ethnic, geographic, socioeconomic, and other cultural identity groups. The Commission on Dental Accreditation (CODA) has added standards to address this concern. According to the most recent standards, adopted in 2010 for implementation in July 2013, CODA stipulates that "students should learn about factors and practices associated with disparities in health." Thus, it is imperative that dental schools develop strategies to comply with this addition. One key strategy for compliance is the inclusion of cultural competence training in the dental curriculum. A survey, the Dental Tool for Assessing Cultural Competence Training (D-TACCT), based on the Association of American Medical Colleges' Tool for Assessing Cultural Competence Training (TACCT), was sent to the academic deans at seventy-one U.S. and Canadian dental schools to determine best practices for cultural competence training. The survey was completed by thirty-seven individuals, for a 52 percent response rate. This article describes the use of this survey as a guide for developing culturally competent strategies and enhancing cultural competence training in dental schools.

  13. Science education ahead?

    Science.gov (United States)

    1999-01-01

    In spite of the achievements and successes of science education in recent years, certain problems undoubtedly remain. Firstly the content taught at secondary level has largely remained unchanged from what had been originally intended to meet the needs of those who would go on to become scientists. Secondly the curriculum is overloaded with factual content rather than emphasizing applications of scientific knowledge and skills and the connections between science and technology. Thirdly the curriculum does not relate to the needs and interests of the pupils. A recent report entitled Beyond 2000: Science Education for the Future, derived from a series of seminars funded by the Nuffield Foundation, attempts to address these issues by setting out clear aims and describing new approaches to achieve them. Joint editors of the report are Robin Millar of the University of York and Jonathan Osborne of King's College London. The recommendations are that the curriculum should contain a clear statement of its aims, with the 5 - 16 science curriculum seen as enhancing general `scientific literacy'. At key stage 4 there should be more differentiation between the literacy elements and those designed for the early stages of a specialist training in science; up to the end of key stage 3 a common curriculum is still appropriate. The curriculum should be presented clearly and simply, following on from the statement of aims, and should provide young people with an understanding of some key `ideas about science'. A wide variety of teaching methods and approaches should be encouraged, and the assessment approaches for reporting on students' performance should focus on their ability to understand and interpret information as well as their knowledge and understanding of scientific ideas. The last three recommendations in the report cover the incorporation of aspects of technology and the applications of science into the curriculum, with no substantial change overall in the short term but a

  14. Virtual Reality as a Tool in the Education

    Science.gov (United States)

    Piovesan, Sandra Dutra; Passerino, Liliana Maria; Pereira, Adriana Soares

    2012-01-01

    The virtual reality is being more and more used in the education, enabling the student to find out, to explore and to build his own knowledge. This paper presents an Educational Software for presence or distance education, for subjects of Formal Language, where the student can manipulate virtually the target that must be explored, analyzed and…

  15. A Learning Tool and Program Development for Mechatronics Design Education

    Science.gov (United States)

    Iribe, Masatsugu; Shirahata, Akihiro; Kita, Hiromasa; Sasashige, Yousuke; Dasai, Ryoichi

    In this paper we propose a new type educational program for Mechatronics design which contributes to develop the physical sense and problem solving ability of the students who study Mechatronics design. For this program we provide a new handicraft kit of 4-wheeled car which is composed of inexpensive and commonplace parts, and the performance of the assembled 4-wheeled car is sensitive to its assembly arrangement. And then we implemented this program with the handicraft kit to the university freshmen, and verified its effectiveness, and report the results of the program.

  16. A Visualization-Based Tutoring Tool for Engineering Education

    Science.gov (United States)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  17. A study of understanding: Alchemy, abstraction, and circulating reference in tertiary science education

    Science.gov (United States)

    Merritt, Brett W.

    Understanding is widely touted to be of paramount importance for education. This is especially true in science education research and development where understanding is heralded as one of the cornerstones of reform. Teachers are expected to teach for understanding and students are expected to learn with understanding. This dissertation is an empirical study of the concept of understanding. After analyzing various constructions of understanding in current U.S. education literature, I suggest that understanding is defined by five distinct features---they are knowledge (or knowledge base), coherence, transfer, extrapolation, and cognition--- and that these features are heavily informed and shaped by the psychological sciences. This relationship is neither good nor bad, I argue, but it means that teaching for and learning with understanding are not heavily informed and shaped by, for example, the natural sciences. Drawing from historical, philosophical, and anthropological perspectives of science, but especially from the work of Bruno Latour, I enact a radical revision(ing) of psychological notions such as "abstraction" and "transfer." The two main purposes of this re-visioning are (1) to draw critical attention to particular characteristics of a cognitive learning theory that emphasizes abstract concepts, and (2) to align many of the principles and tools used in science education more closely with those used in empirical scientific research. Finally, by bringing some examples of teaching and learning from an undergraduate biology classroom into conversation with both psychological and empirical practices and perspectives, I suggest that problematizing the current construction of understanding creates much needed room in mainstream science education for more empirical forms of learning and styles of teaching. A shift to such forms and styles, I conclude, should prove to be more inclusive and less constraining for both students and teachers.

  18. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  19. Tele-surgery: a new virtual tool for medical education.

    Science.gov (United States)

    Russomano, Thais; Cardoso, Ricardo B; Fernandes, Jefferson; Cardoso, Paulizan G; Alves, Jarcedy M; Pianta, Christina D; Souza, Hamilton P; Lopes, Maria Helena I

    2009-01-01

    The rapid evolution of telecommunication technology has enabled advances to be made in low cost video-conferencing through the improvement of high speed computer communication networks and the enhancement of Internet security protocols. As a result of this progress, eHealth education programs are becoming a reality in universities, providing the opportunity for students to have greater interaction at live surgery classes by means of virtual participation. Undergraduate students can be introduced to new concepts of medical care, remote second opinion and to telecommunication systems, whilst virtually experiencing surgical procedures and lectures. The better access this provides to the operating theater environment, the patient and the surgeon can improve the learning process for students. An analogical system was used for this experimental pilot project due to the benefits of it being low cost with a comparatively easy setup. The tele-surgery lectures were also transmitted to other universities by means of a Pentium 4 computer using open source software and connected to a portable image acquisition device located in the São Lucas University Hospital. Telemedicine technology has proven to be an important instrument for the improvement of medical education and health care. This study allowed health professionals, professors and students to have greater interaction during surgical procedures, thus enabling a greater opportunity for knowledge exchange.

  20. Sensory Science Education

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2018-01-01

    little note of the body-mind interactions we have with the material world. Utilizing examples from primary schools, it is argued that a sensory pedagogy in science requires a deliberate sensitization and validation of the senses’ presence and that a sensor pedagogy approach may reveal the unique ways...... in how we all experience the world. Troubling science education pedagogy is therefore also a reconceptualization of who we are and how we make sense of the world and the acceptance that the body-mind is present, imbalanced and complex....

  1. Pika: A snow science simulation tool built using the open-source framework MOOSE

    Science.gov (United States)

    Slaughter, A.; Johnson, M.

    2017-12-01

    The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the

  2. A comprehensive program of nuclear engineering and science education

    International Nuclear Information System (INIS)

    Bereznai, G.; Lewis, B.

    2014-01-01

    The University of Ontario Institute of Technology offers undergraduate degrees in nuclear engineering, nuclear power, health physics and radiation science, graduate degrees (masters as well as doctorate) in nuclear engineering, and graduate diplomas that encompass a wide range of nuclear engineering and technology topics. Professional development programs tailored to specific utility needs are also offered, and the sharing of course material between the professional development and university education courses has strengthened both approaches to ensuring the high qualification levels required of professionals in the nuclear industry. (author)

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Rama Rao Nadendla. Articles written in Resonance – Journal of Science Education. Volume 9 Issue 5 May 2004 pp 51-60 General Article. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking · Rama Rao Nadendla · More Details Fulltext ...

  4. Use of social media and online tools for participative space education and citizen science in India: Perspectives of future space leaders

    Science.gov (United States)

    Khan, Aafaque; Sridhar, Apoorva

    2012-07-01

    The previous decade saw the emergence of internet in the new avatar popularly known as Web 2.0. After its inception, Internet (also known as Web 1.0) remained centralized and propriety controlled; the information was displayed in form of static pages and users could only browse through these pages connected via URLs (Unique Resource Locator), links and search engines. Web 2.0, on the other hand, has features and tools that allow users to engage in dialogue, interact and contribute to the content on the World Wide Web. As a Result, Social Media has become the most widely accepted medium of interactive and participative dialogue around the world. Social Media is not just limited to Social Networking; it extends from podcasts, webcasts, blogs, micro-blogs, wikis, forums to crowd sourcing, cloud storage, cloud computing and Voice over Internet Protocol. World over, there is a rising trend of using Social Media for Space Education and Outreach. Governments, Space Agencies, Universities, Industry and Organizations have realized the power of Social Media to communicate advancement of space science and technology, updates on space missions and their findings to the common man as well as to the researchers, scientists and experts around the world. In this paper, the authors intend to discuss, the perspectives, of young students and professionals in the space industry on various present and future possibilities of using Social Media in space outreach and citizen science, especially in India and other developing countries. The authors share a vision for developing Social Media platforms to communicate space science and technology, along innovative ideas on participative citizen science projects for various space based applications such as earth observation and space science. Opinions of various young students and professionals in the space industry from different parts of the world are collected and reflected through a comprehensive survey. Besides, a detailed study and

  5. A Rapid Assessment Tool for affirming good practice in midwifery education programming.

    Science.gov (United States)

    Fullerton, Judith T; Johnson, Peter; Lobe, Erika; Myint, Khine Haymar; Aung, Nan Nan; Moe, Thida; Linn, Nay Aung

    2016-03-01

    to design a criterion-referenced assessment tool that could be used globally in a rapid assessment of good practices and bottlenecks in midwifery education programs. a standard tool development process was followed, to generate standards and reference criteria; followed by external review and field testing to document psychometric properties. review of standards and scoring criteria were conducted by stakeholders around the globe. Field testing of the tool was conducted in Myanmar. eleven of Myanmar׳s 22 midwifery education programs participated in the assessment. the clinimetric tool was demonstrated to have content validity and high inter-rater reliability in use. a globally validated tool, and accompanying user guide and handbook are now available for conducting rapid assessments of compliance with good practice criteria in midwifery education programming. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. New Millennium Technology: A Tool for Re-Branding Education in ...

    African Journals Online (AJOL)

    New Millennium Technology: A Tool for Re-Branding Education in Nigeria. ... It could be formal or informal depending on the approaches used. The approaches call for varied and ... AJOL African Journals Online. HOW TO USE AJOL.

  7. Current Events via Electronic Media: An Instructional Tool in a General Education Geology Course

    Science.gov (United States)

    Flood, T. P.

    2008-12-01

    St. Norbert College (SNC) is a liberal arts college in the Green Bay Metropolitan area with an enrollment of approximately 2100 students. All students are required to take one science course with a laboratory component as part of the general education program. Approximately 40% of all SNC students take introductory geology. Class size for this course is approximately 35 students. Each faculty member teaches one section per semester in a smart classroom A synthesis of current events via electronic media is an excellent pedagogical tool for the introductory geology course. An on-going informal survey of my introductory geology class indicates that between 75- 85% of all students in the class, mostly freshman and sophomores, do not follow the news on a regular basis in any format, i.e. print, internet, or television. Consequently, most are unaware of current scientific topics, events, trends, and relevancy. To address this issue, and develop a positive habit of the mind, a technique called In-the-News-Making-News (INMN) is employed. Each class period begins with a scientifically-related (mostly geology) online news article displayed on an overhead screen. The articles are drawn from a variety of sources that include international sites such as the BBC and CBC; national sites such as PBS, New York Times, and CNN; and local sites such as the Milwaukee Journal Sentinel and the Green Bay Press Gazette. After perusing the article, additional information is often acquired by "Google" to help supplement and clarify the original article. An interactive discussion follows. Topics that are typically covered include: global climate change, basic scientific and technological discoveries, paleontology/evolution, natural disasters, mineral/ energy/ water resources, funding for science, space exploration, and other. Ancillary areas that are often touched on in the conversation include ethics, politics, economics, philosophy, education, geography, culture, or other. INMN addresses

  8. Engagement as a Threshold Concept for Science Education and Science Communication

    Science.gov (United States)

    McKinnon, Merryn; Vos, Judith

    2015-01-01

    Science communication and science education have the same overarching aim--to engage their audiences in science--and both disciplines face similar challenges in achieving this aim. Knowing how to effectively engage their "audiences" is fundamental to the success of both. Both disciplines have well-developed research fields identifying…

  9. Virtual Reality Educational Tool for Human Anatomy.

    Science.gov (United States)

    Izard, Santiago González; Juanes Méndez, Juan A; Palomera, Pablo Ruisoto

    2017-05-01

    Virtual Reality is becoming widespread in our society within very different areas, from industry to entertainment. It has many advantages in education as well, since it allows visualizing almost any object or going anywhere in a unique way. We will be focusing on medical education, and more specifically anatomy, where its use is especially interesting because it allows studying any structure of the human body by placing the user inside each one. By allowing virtual immersion in a body structure such as the interior of the cranium, stereoscopic vision goggles make these innovative teaching technologies a powerful tool for training in all areas of health sciences. The aim of this study is to illustrate the teaching potential of applying Virtual Reality in the field of human anatomy, where it can be used as a tool for education in medicine. A Virtual Reality Software was developed as an educational tool. This technological procedure is based entirely on software which will run in stereoscopic goggles to give users the sensation of being in a virtual environment, clearly showing the different bones and foramina which make up the cranium, and accompanied by audio explanations. Throughout the results the structure of the cranium is described in detailed from both inside and out. Importance of an exhaustive morphological knowledge of cranial fossae is further discussed. Application for the design of microsurgery is also commented.

  10. THE METHODICAL ASPECTS OF MAXIMA USING AS A TOOL FOR FUNDAMENTAL TRAINING OF BACHELORS OF COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    M. Shyshkina

    2014-07-01

    Full Text Available Within the formation of the information society, where the pace of scientific progress is rapidly growing, it is difficult to provide the training for immediate inclusion of the person into the production chain at a workplace or in an educational system. There is the way out and it is fundamentalization of informatics education. It is necessary to train the specialist so that he (she could be able to be adapted quickly to the changes occurring in the industry technological development; to give him knowledge, universal in nature, so as the expert may navigate quickly to resolve the professional tasks on this basis. The article describes the trends of systems of computer mathematics (SCM pedagogical use for teaching computer science disciplines. The general characteristics and conditions for effective use of the Maxima as a tool for fundamentalization of the bachelors learning process are outlined. The ways of informatics disciplines teaching methodology are revealed. The peculiarities of cloud based learning solutions are considered. The purpose of the article is the analysis of contemporary approaches to the use of systems of computer mathematics as a tool for fundamentalization of informatics disciplines training courses and identify methodological aspects of these systems application for the teaching of operations research as by the example of SCM Maxima. The object of investigation is the learning process of informatics bachelors with the use of SCM. The subject of investigation is the peculiarities of using the SCM Maxima as a learning tool for informatics courses support

  11. Writing-to-learn in undergraduate science education: a community-based, conceptually driven approach.

    Science.gov (United States)

    Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J

    2012-01-01

    Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.

  12. Perspectives of the Sociology of Scientific Knowledge and Science Education: a study of Education Journals

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Meglhioratti

    2018-04-01

    Full Text Available Despite the fact that Science Teaching emphasizes the importance of researches in Epistemology and History of Science and also covers social aspects of the scientific construction, there are still relatively very few studies which are systematically based on perspectives from the Sociology of Science or from the Sociology of Scientific Knowledge. In this article, it has been outlined a brief history of the sociological perspectives of scientific knowledge, characterizing them as differentiationist, antidifferentiationist and tranversalist. Then, a bibliographical study was developed in journals Qualis A1 and A2 in the area of “Teaching” of CAPES, with emphasis in Science Teaching, from 2007 to 2016, aiming to understand how the sociological perspectives are present in science education. The search for articles which articulate sociological aspects and Science Education was done through use of search engines emerging from the accomplished historic, among them: Sociology of Science, Sociology of Scientific Knowledge, Ethnography, Laboratory Studies, Strong Program, Scientific Fields, Scientific Ethos, Actor-Network Theory, Social and Technical Networks, Latour, Bloor, Merton and Bourdieu. Through this research, we have identified 46 articles which have approaches with the subject. The articles were investigated by Content Analysis and were organized in the units of analysis: 1 Foundations of the sociology of knowledge; 2 Scientific Ethos; 3 Science Working System; 4 Sociogenesis of knowledge; 5 Strong Program of Sociology of Knowledge; 6 Laboratory studies and scientific practice; 7 Actor-Network Theory; 8 Bourdieusian Rationale; 9 Non-Bourdieusian tranversalist approaches; 10 Notes regarding the Sociology of Science. The units of analysis with the greatest number of articles were "Laboratory Studies and Scientific Practice" and "Actor-Network Theory", both closer to an antidifferentiationist perspective of the sociology of science, in which

  13. Education as a tool for cultural regeneration and development in ...

    African Journals Online (AJOL)

    The Federal Republic of Nigeria has acknowledged and therefore encapsulated the importance of cultural regeneration to national development when it spelt out in its National Policy on Education (NPE) one of its objectives of education as to develop and promote the Nigerian culture in the context of the world's cultural ...

  14. Towards a Versatile Tele-Education Platform for Computer Science Educators Based on the Greek School Network

    Science.gov (United States)

    Paraskevas, Michael; Zarouchas, Thomas; Angelopoulos, Panagiotis; Perikos, Isidoros

    2013-01-01

    Now days the growing need for highly qualified computer science educators in modern educational environments is commonplace. This study examines the potential use of Greek School Network (GSN) to provide a robust and comprehensive e-training course for computer science educators in order to efficiently exploit advanced IT services and establish a…

  15. Internationalizing Legal Education: a Cooperative Tool in a Globalized World

    OpenAIRE

    J. Williams, Jamie

    2015-01-01

    The term “globalization” has been applied to everything from economics and technology to socialmedia and market trends. Its use has become somewhat of a cliché1, and it is almost impossible to reada treatment of globalization that does not acknowledge the ambivalence and hyperbole surroundingthe term. The phrase “globalization of legal education” has the power to conjure visions ofsophisticated lawyers-in-the-making jockeying for positions in transnational mega firms, or interningat Internati...

  16. A consideration on issues of the science education in Japan

    International Nuclear Information System (INIS)

    Arima, Akito

    1999-01-01

    The paper discusses the features of the science education of Japan based on the international data on the science achievement test scores of the school children. Furthermore, the paper introduces the world inquiry surveys on the scientific knowledge of ordinary adults, which is shown by the National Science Foundation, USA. The author will give what the science education of Japan should be in future. The 14 years-age middle school pupils of Japan had gotten the higher scores of science and mathematics achievement tests among the world, i.e. they had been between the first and the third positions in the three time tests from 1964 to 1995. The Japanese showed the extremely narrow distribution of the score. On the other hand, the Singapore and the USA showed the wide spread distributions. Another point of the Japanese pupils was weak capability to put their knowledge to practical use. They knew well that carbon dioxide came out from burning of carbon. However, few knew why carbon dioxide extinguished the fires. The NSF of USA had done the inquiry survey for the ordinary adults' knowledge on molecule, DNA, radiation, radioactivity and so on. In this case the Japanese were almost in the worst group. It is recommended that the education in the real life practice in the natural world should give more emphasis in the science education rather than studies on the papers in Japan. (Y. Tanaka)

  17. Realizing a Democratic Community of Teachers: John Dewey and the Idea of a Science of Education

    Science.gov (United States)

    Frank, Jeff

    2017-01-01

    In this paper, I make the case that John Dewey's philosophy of education aims to bring about a democratic community of teachers capable of creating a science of teaching. To make this case, I will do a three things. First, I will discuss "Sources of a Science of Education" and argue that this work is deeply connected to a work written at…

  18. A Survey of Educational Games as Interaction Design Tools for Affective Learning: Thematic Analysis Taxonomy

    Science.gov (United States)

    Yusoff, Zarwina; Kamsin, Amirrudin; Shamshirband, Shahaboddin; Chronopoulos, Anthony T.

    2018-01-01

    A Computer game is the new platform in generating learning experiences for educational purposes. There are many educational games that have been used as an interaction design tool in a learning environment to enhance students learning outcomes. However, research also claims that playing video games can have a negative impact on student behavior,…

  19. SpacePy - a Python-based library of tools for the space sciences

    International Nuclear Information System (INIS)

    Morley, Steven K.; Welling, Daniel T.; Koller, Josef; Larsen, Brian A.; Henderson, Michael G.

    2010-01-01

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks to promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the

  20. THE FLAG: A Web Resource of Innovative Assessment Tools for Faculty in College Science, Mathematics, Engineering, and Technology

    Science.gov (United States)

    Zeilik, M.; Mathieu, R. D.; National InstituteScience Education; College Level-One Team

    2000-12-01

    Even the most dedicated college faculty often discover that their students fail to learn what was taught in their courses and that much of what students do learn is quickly forgotten after the final exam. To help college faculty improve student learning in college Science, Mathematics, Engineering and Technology (SMET), the College Level - One Team of the National Institute for Science Education has created the "FLAG" a Field-tested Learning Assessment Guide for SMET faculty. Developed with funding from the National Science Foundation, the FLAG presents in guidebook format a diverse and robust collection of field-tested classroom assessment techniques (CATs), with supporting information on how to apply them in the classroom. Faculty can download the tools and techniques from the website, which also provides a goals clarifier, an assessment primer, a searchable database, and links to additional resources. The CATs and tools have been reviewed by an expert editorial board and the NISE team. These assessment strategies can help faculty improve the learning environments in their SMET courses especially the crucial introductory courses that most strongly shape students' college learning experiences. In addition, the FLAG includes the web-based Student Assessment of Learning Gains. The SALG offers a convenient way to evaluate the impact of your courses on students. It is based on findings that students' estimates of what they gained are more reliable and informative than their observations of what they liked about the course or teacher. It offers accurate feedback on how well the different aspects of teaching helped the students to learn. Students complete the SALG online after a generic template has been modified to fit the learning objectives and activities of your course. The results are presented to the teacher as summary statistics automatically. The FLAG can be found at the NISE "Innovations in SMET Education" website at www.wcer.wisc.edu/nise/cl1

  1. TOOLS OF KNOWLEDGE DISSEMINATION WITHIN A NATIONAL DEFENSE INSTITUTION FOR INNOVATION, TECHNOLOGY AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Edson Aparecida de Araújo Querido Oliveira

    2006-11-01

    Full Text Available This paper describes and analyzes in a National Defense Institution for Innovation, Technology and Science its tools of knowledge dissemination. The methodology contemplates the period of 2004 and 2005. Qualitative and quantitative information orientate the research in order to understand focal aspects on knowledge dissemination, in comparison with theoretical references of renowned authors and other elaborated research searching for elements to perform an organizational diagnosis, focused on the knowledge dissemination as well as on the forces which promote or obstruct the organizational development. Conclusions are that the tools of knowledge dissemination must suitable to spread the tacit knowledge in such a way as the explicit ones and that, in a National Defense Institution, other important aspects must be considered, a time that, being the spread knowledge of wrong form can, besides bringing damages for the organization, to compromise the national sovereignty.

  2. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  3. Fluid dynamics practices as a scientific divulgation tool in high school education

    Directory of Open Access Journals (Sweden)

    Fabiano Tavares da Silva

    2016-12-01

    Full Text Available http://dx.doi.org/10.5007/1807-0221.2016v13n24p94 This extension project was designed to bring together students from high schools in Nova Friburgo-RJ region with the Instituto Politécnico IPRJ / UERJ, providing an experience within the university with scientific incentive practices to the area of sciences and earth. Introducing the universe and diversity in the mathematics and science area with a short course aimed to studies of particles analysis, viscosity and permeability, this initiative encompasses more than knowledge of these activities, but also restore the link between school and university, inserting the high school students in the university environment and scientific activities. The importance of providing a "north" for teens, due to the great difficulty of choosing their profession, makes this Extension Project a potential tool that will certainly contribute to the professional future of these young citizens. Therefore, the students had a laboratory experience and also it was possible to motivate them to go further in the superior education through the awareness that university is accessible to all of people.

  4. Users’ perception of visual aesthetics and usefulness of a web-based educational tool

    OpenAIRE

    Sánchez Franco, Manuel Jesús; Villarejo Ramos, Ángel Francisco; Peral Peral, Begoña; Buitrago Esquinas, Eva María; Roldán Salgueiro, José Luis

    2013-01-01

    As a result of our research we have become increasingly aware of the relevance of visual design in understanding learners’ attitudes towards the use of virtual tools. Likewise, perceived usefulness is an essential antecedent of the cumulative impressions of, and preferences for, such tools. Therefore, the aim of this study is to investigate the main effects of visual design and usefulness on learning and productivity in the domain of web-based educational tools. Structural Equation M...

  5. Development of a web-based, work-related asthma educational tool for patients with asthma

    OpenAIRE

    Ghajar-Khosravi, Shadi; Tarlo, Susan M; Liss, Gary M; Chignell, Mark; Ribeiro, Marcos; Levinson, Anthony J; Gupta, Samir

    2013-01-01

    BACKGROUND: Asthma is a common chronic condition. Work-related asthma (WRA) has a large socioeconomic impact and is increasing in prevalence but remains under-recognized. Although international guidelines recommend patient education, no widely available educational tool exists.OBJECTIVE: To develop a WRA educational website for adults with asthma.METHODS: An evidence-based database for website content was developed, which applied evidence-based website design principles to create a website pr...

  6. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  7. Research on Educational Standards in German Science Education--Towards a Model of Student Competences

    Science.gov (United States)

    Kulgemeyer, Christoph; Schecker, Horst

    2014-01-01

    This paper gives an overview of research on modelling science competence in German science education. Since the first national German educational standards for physics, chemistry and biology education were released in 2004 research projects dealing with competences have become prominent strands. Most of this research is about the structure of…

  8. Bronchoscopy Simulation Training as a Tool in Medical School Education.

    Science.gov (United States)

    Gopal, Mallika; Skobodzinski, Alexus A; Sterbling, Helene M; Rao, Sowmya R; LaChapelle, Christopher; Suzuki, Kei; Litle, Virginia R

    2018-07-01

    Procedural simulation training is rare at the medical school level and little is known about its usefulness in improving anatomic understanding and procedural confidence in students. Our aim is to assess the impact of bronchoscopy simulation training on bronchial anatomy knowledge and technical skills in medical students. Medical students were recruited by email, consented, and asked to fill out a survey regarding their baseline experience. Two thoracic surgeons measured their knowledge of bronchoscopy on a virtual reality bronchoscopy simulator using the Bronchoscopy Skills and Tasks Assessment Tool (BSTAT), a validated 65-point checklist (46 for anatomy, 19 for simulation). Students performed four self-directed training sessions of 15 minutes per week. A posttraining survey and BSTAT were completed afterward. Differences between pretraining and posttraining scores were analyzed with paired Student's t tests and random intercept linear regression models accounting for baseline BSTAT score, total training time, and training year. The study was completed by 47 medical students with a mean training time of 81.5 ± 26.8 minutes. Mean total BSTAT score increased significantly from 12.3 ± 5.9 to 48.0 ± 12.9 (p training time and frequency of training did not have a significant impact on level of improvement. Self-driven bronchoscopy simulation training in medical students led to improvements in bronchial anatomy knowledge and bronchoscopy skills. Further investigation is under way to determine the impact of bronchoscopy simulation training on future specialty interest and long-term skills retention. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Ethics as a Gateway to Computer Science in Primary Education

    Directory of Open Access Journals (Sweden)

    Juan Vicente OLTRA GUTIÉRREZ

    2017-07-01

    Full Text Available This paper presents a proposal to bring ethics and ICT closer to students of the first courses of the primary education, supporting one in each other, following the Law “Real Decreto 126/2014, 28th of February”, which establishes the basic curriculum for Primary Education. Within this Law, two of seven skills in the curriculum are established: digital skill (the third and also social and civic skills (the fifth. Given the digital natives population who are receiving education, it would be a slightly more ambitious goal to be able to glimpse them to support one in another. In this area, for example, we find a specific subject such as “Social and Civic values” with evaluation criteria such as “Employ new technologies by developing social and civic values in safe environments”. Thanks to this gateway, we can introduce small door to the vision of computer science, through ethics, which may be transversal with all subjects of the curriculum. The suggestion of the present article is to confront teachers with a vision of technology from an outside perspective, from an ethical prism, once the technology is turned it off and the mobiles or tablets screens are converted into a mere black mirror.

  10. The AACSB: A Valuable Tool for the Language Educator.

    Science.gov (United States)

    Bush-Bacelis, Jean L.

    The American Assembly of Collegiate Schools of Business (AACSB), an accrediting agency, may be an overlooked tool for establishing rationale and credibility for globalization of business courses. The 245 member institutions are bound by the agency's accrediting requirements, and many others are influenced by the standards set in those…

  11. Supply Chain Simulator: A Scenario-Based Educational Tool to Enhance Student Learning

    Science.gov (United States)

    Siddiqui, Atiq; Khan, Mehmood; Akhtar, Sohail

    2008-01-01

    Simulation-based educational products are excellent set of illustrative tools that proffer features like visualization of the dynamic behavior of a real system, etc. Such products have great efficacy in education and are known to be one of the first-rate student centered learning methodologies. These products allow students to practice skills such…

  12. Using Developmental Evaluation as a Design Thinking Tool for Curriculum Innovation in Professional Higher Education

    Science.gov (United States)

    Leonard, Simon N.; Fitzgerald, Robert N.; Riordan, Geoffrey

    2016-01-01

    This paper argues for the use of "developmental" evaluation as a design-based research tool for sustainable curriculum innovation in professional higher education. Professional education is multi-faceted and complex with diverse views from researchers, professional practitioners, employers and the world of politics leaving little…

  13. A university system's approach to enhancing the educational mission of health science schools and institutions: the University of Texas Academy of Health Science Education

    Directory of Open Access Journals (Sweden)

    L. Maximilian Buja

    2013-03-01

    Full Text Available Background: The academy movement developed in the United States as an important approach to enhance the educational mission and facilitate the recognition and work of educators at medical schools and health science institutions. Objectives: Academies initially formed at individual medical schools. Educators and leaders in The University of Texas System (the UT System, UTS recognized the academy movement as a means both to address special challenges and pursue opportunities for advancing the educational mission of academic health sciences institutions. Methods: The UTS academy process was started by the appointment of a Chancellor's Health Fellow for Education in 2004. Subsequently, the University of Texas Academy of Health Science Education (UTAHSE was formed by bringing together esteemed faculty educators from the six UTS health science institutions. Results: Currently, the UTAHSE has 132 voting members who were selected through a rigorous, system-wide peer review and who represent multiple professional backgrounds and all six campuses. With support from the UTS, the UTAHSE has developed and sustained an annual Innovations in Health Science Education conference, a small grants program and an Innovations in Health Science Education Award, among other UTS health science educational activities. The UTAHSE represents one university system's innovative approach to enhancing its educational mission through multi- and interdisciplinary as well as inter-institutional collaboration. Conclusions: The UTAHSE is presented as a model for the development of other consortia-type academies that could involve several components of a university system or coalitions of several institutions.

  14. Science education and everyday action

    Science.gov (United States)

    McCann, Wendy Renee Sherman

    2001-07-01

    This dissertation addresses three related tasks and issues in the larger field of science education. The first is to review of the several uses of "everydayness" at play in the science education literature, and in the education and social science literatures more generally. Four broad iterations of everydayness were found in science education, and these were traced and analyzed to develop their similarities, and contradictions. It was concluded that despite tendencies in science education research to suppose a fundamental demarcation either between professional science and everyday life, or between schools and everyday life, all social affairs, including professional science and activity in schools, are continuous with everyday life, and consist fundamentally in everyday, ordinary mundane actions which are ordered and organized by the participants to those social activities and occasions. The second task for this dissertation was to conduct a naturalistic, descriptive study of undergraduate-level physics laboratory activities from the analytic perspective of ethnomethodology. The study findings are presented as closely-detailed analysis of the students' methods of following their instructions and 'fitting' their observed results to a known scientific concept or principle during the enactment of their classroom laboratory activities. Based on the descriptions of students' practical work in following instructions and 'fitting'. The characterization of school science labs as an "experiment-demonstration hybrid" is developed. The third task of this dissertation was to synthesize the literature review and field study findings in order to clarify what science educators could productively mean by "everydayness", and to suggest what understandings of science education the study of everyday action recommends. It is argued that the significance of the 'experiment-demo hybrid' characterization must be seen in terms of an alternate program for science education research, which

  15. Twitter as a teaching tool in the Social Sciences faculties. A case study from the Economic History

    Directory of Open Access Journals (Sweden)

    Misael Arturo López Zapico

    2013-08-01

    Full Text Available 0 0 1 127 701 USAL 5 1 827 14.0 Normal 0 21 false false false ES JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:Calibri; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:ES; mso-fareast-language:EN-US;} The increasing use of social networking among university students ease the way for teachers to use these kinds of tools towards achieving the objectives set in the European Higher Education Area. In this sense, Twitter appears as a highly versatile learning tool that perfectly fits with the skill-based education approach, as evidenced by the literature. This paper describes the methodology, as well as, discusses the results of three experiments that took place during the 2011-2012 Academic Year at the School of Economics and Business of the University of Oviedo. Twitter was used during those experiments to debate the today’s economic crisis. The indicators obtained are used to conclude that microblogging services are a proper tool not only for teaching Economic History but also for doing so for any Social Sciences.

  16. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Science.gov (United States)

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  17. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  18. GLOBE Observer: A new tool to bring science activities and measurements home

    Science.gov (United States)

    Riebeek Kohl, H.; Murphy, T.

    2016-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that provides students and the public worldwide with the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. For more than 20 years, GLOBE-trained teachers have been leading environmental data collection and student research in the classroom. In 2016, GLOBE expanded to invite data collection from citizen scientists of all ages through a simple smart phone app. The app makes it possible for students to take GLOBE data (environmental observations) outside of school with their families. It enables a museum, park, youth organization, or other informal institution to provide a simple take-home activity that will keep patrons engaged in environmental science from home. This presentation will provide a demonstration of the app and will provide examples of its use in informal settings.

  19. Science education in a bilingual class: problematising a translational practice

    Science.gov (United States)

    Ünsal, Zeynep; Jakobson, Britt; Molander, Bengt-Olov; Wickman, Per-Olof

    2016-10-01

    In this article we examine how bilingual students construe relations between everyday language and the language of science. Studies concerning bilingual students language use in science class have mainly been conducted in settings where both the teacher and the students speak the same minority language. In this study data was collected in a class consisting of students aged 13-14. All students had Turkish as their minority language, whereas the teacher's minority language was Bosnian. The class was observed when they were working with acids and bases. In addition, the students were interviewed in groups. They were asked about how they use their languages during science lessons and then asked to describe and explain scientific phenomena and processes that had been a part of the observed lessons. For the analysis, practical epistemology analysis and the theory of translanguaging were used. The results show how the students' everyday language repertoire may limit their possibilities to make meaning of science. In particular, the teacher's practice of facilitating and supporting students' understanding of science content by relating it to concrete examples took another direction since the everyday words he used were not a part of the students' language repertoire. The study also shows how the students used their minority language as a resource to translate words from Swedish to Turkish in order to proceed with the science activities. However, translating scientific concepts was problematic and led to the students' descriptions of the concepts not being in line with how they are viewed in science. Finally, the study also demonstrates how monolingual exams may limit bilingual students' achievements in science. The study contributes by presenting and discussing circumstances that need to be taken into consideration when planning and conducting science lessons in classes where the teacher and the student do not share the same minority language.

  20. Towards a new learning science for the reinvention of education - A trans-disciplinary perspective

    NARCIS (Netherlands)

    Jörg, T.

    2006-01-01

    At first the question will be addressed why a new learning science is needed. The field of education may be considered as an uninventive discipline, still waiting to become a real science. History has shown the general problem of social sciences to become scientific in its method and approach.

  1. Chemical Education: A Tool for Wealth Creation from Waste ...

    African Journals Online (AJOL)

    This paper focuses on exposing the indispensible role of chemical education in wealth creation from waste. Every settlement of people has one type of waste or the other to dispose. The challenge of waste management has in recent time occupied researchers such that innovations are geared towards reducing wastes that ...

  2. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  3. Online Localization of "Zooniverse" Citizen Science Projects--On the Use of Translation Platforms as Tools for Translator Education

    Science.gov (United States)

    Michalak, Krzysztof

    2015-01-01

    This paper aims at describing the way in which online translation platforms can facilitate the process of training translators. "Zooniverse," a website hosting a variety of citizen science projects in which everyone can take part, was used as an example of such a concept. The first section of this paper is focused on the history, idea…

  4. Educational clusters as a tool ofpublic policy on the market of educational services

    OpenAIRE

    M. I. Vorona

    2016-01-01

    Due to the new challenges, the implementation of cluster technology can be considired to be one of the innovative and promising tools of national and regional economy’ competitiveness raise. The cluster approach can be used is in different areas, but most attention in thie article has been paid to the problems of industrial clusters. At the same time, educational clusters remain to be poorly implemented in practice and, consequently, they are less studied theoretically. The aim of the arti...

  5. Towards Eco-reflexive Science Education. A Critical Reflection About Educational Implications of Green Chemistry

    Science.gov (United States)

    Sjöström, Jesper; Eilks, Ingo; Zuin, Vânia G.

    2016-05-01

    The modern world can be described as a globalized risk society. It is characterized by increasing complexity, unpredictable consequences of techno-scientific innovations and production, and its environmental consequences. Therefore, chemistry, just like many other knowledge areas, is in an ongoing process of environmentalization. For example, green chemistry has emerged as a new chemical metadiscipline and movement. The philosophy of green chemistry was originally based on a suggestion of twelve principles for environment-friendly chemistry research and production. The present article problematizes limitations in green chemistry when it comes to education. It argues that the philosophy of green chemistry in the context of education needs to be extended with socio-critical perspectives to form educated professionals and citizens who are able to understand the complexity of the world, to make value-based decisions, and to become able to engage more thoroughly in democratic decision-making on sustainability issues. Different versions of sustainability-oriented science/chemistry education are discussed to sharpen a focus on the most complex type, which is Bildung-oriented, focusing emancipation and leading to eco-reflexive education. The term eco- reflexive is used for a problematizing stance towards the modern risk society, an understanding of the complexity of life and society and their interactions, and a responsibility for individual and collective actions towards socio-ecojustice and global sustainability. The philosophical foundation and characteristics of eco-reflexive science education are sketched on in the article.

  6. A Study of Science Education Positions, Search Process, and Hiring Practices

    Science.gov (United States)

    Barrow, Lloyd H.; Germann, Paul J.

    2006-01-01

    The purpose of this study was to analyze science education searches and hiring practices for faculty positions listed in The Chronicle of Higher Education for an academic year. Chairs of searches completed a survey about successful and unsuccessful searches. Over 70% of searches were successful in hiring new science education faculty with 33%…

  7. Alice in Oman: A Study on Object-First Approaches in Computer Science Education

    Science.gov (United States)

    Hayat, Khizar; Al-Shukaili, Naeem Ali; Sultan, Khalid

    2017-01-01

    The success of university-level education depends on the quality of underlying school education and any deficiency therein may be detrimental to a student's career. This may be more glaring with Computer Science education, given its mercurial nature. In the developing countries, the Computer Science school curricula are usually stuffed with…

  8. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  9. A model for education and promoting food science and technology ...

    African Journals Online (AJOL)

    USER

    2010-08-02

    Aug 2, 2010 ... economics, hospitality management and nutrition/dietetics. FST operates at the .... strategy involved inviting food industry professionals to deliver talks and .... shared outcomes in this case is to see FST education and training alive ... in the concepts of food science and an awareness of food system will help ...

  10. A Position Paper Joint Science Education Panel (IASc, INSA, NASI)

    Indian Academy of Sciences (India)

    user

    ogy and computer science, etc., are being introduced as substitutes for the fundamental subjects like biology, physics or mathematics. This practice is hollowing the .... absence of the required level of academic audit, the quality of education imparted at many of them is below the minimal expected levels. The categories 4-6 ...

  11. Autonomy, Competence, and Intrinsic Motivation in Science Education: A Self- Determination Theory Perspective

    Science.gov (United States)

    Painter, Jason

    The purpose of this study was to examine a proposed motivational model of science achievement based on self-determination theory. The study relied on U.S. eighth-grade science data from the 2007 Third International Mathematics and Science Study to examine a structural model that hypothesized how perceived autonomy support, perceived competence in science, intrinsic motivation, and science achievement related to each other. Mother's education and student gender were used as controls. Findings showed that the hypothesized model provided a good fit to the data. The strongest direct effect on science achievement was students' perceived competence in science. Student intrinsic motivation was shown to have a surprisingly negative effect on science achievement. Autonomy support had positive direct effects on students' perceived competence in science and intrinsic motivation and had indirect positive effects to science achievement. Results and implications for science education are discussed.

  12. Reconceptualizing Elementary Teacher Preparation: A Case for Informal Science Education

    Science.gov (United States)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of informal science environments to teaching and…

  13. Innovating Science Teacher Education: A History and Philosophy of Science Perspective

    Science.gov (United States)

    Niaz, Mansoor

    2010-01-01

    How teachers view the nature of scientific knowledge is crucial to their understanding of science content and how it can be taught. This book presents an overview of the dynamics of scientific progress and its relationship to the history and philosophy of science, and then explores their methodological and educational implications and develops…

  14. Evaluating the use of twitter as a tool to increase engagement in medical education.

    Science.gov (United States)

    Diug, Basia; Kendal, Evie; Ilic, Dragan

    2016-01-01

    Social media is regularly used by undergraduate students. Twitter has a constant feed to the most current research, news and opinions of experts as well as organisations. Limited evidence exists that examines how to use social media platforms, such as Twitter, effectively in medical education. Furthermore, there is limited evidence to inform educators regarding social media's potential to increase student interaction and engagement. To evaluate whether social media, in particular Twitter, can be successfully used as a pedagogical tool in an assessment to increase student engagement with staff, peers and course content. First year biomedical science students at Monash University completing a core public health unit were recruited into the study. Twitter-related activities were incorporated into the semester long unit and aligned with both formative and summative assessments. Students completed a structured questionnaire detailing previous use of social media and attitudes towards its use in education post engagement in the Twitter-specific activities. Likert scale responses compared those who participated in the Twitter activities with those who did not using student's t-test. A total of 236 (79.4%) of invited students participated in the study. Among 90% of students who reported previous use of social media, 87.2% reported using Facebook, while only 13.1% reported previous use of Twitter. Social media was accessed most commonly through a mobile device (49.1%). Students actively engaging in Twitter activities had significantly higher end-of-semester grades compared with those who did not [Mean Difference (MD) = 3.98, 95% CI 0.40, 7.55]. Students perceived that the use of Twitter enabled greater accessibility to staff, was a unique method of promoting public health, and facilitated collaboration with peers. Use of social media as an additional, or alternate, teaching intervention is positively supported by students. Specific use of micro-blogs such as Twitter can

  15. Locating a space of criticality as new scholars in science education

    Science.gov (United States)

    Burke, Lydia E. Carol-Ann; Bazzul, Jesse

    2017-09-01

    As newcomers in the field of science education research we discuss our perspectives on critical scholarship in the academy. Using the metalogue approach we explore our perceptions of science education, our experiences of the barriers to critical science education research, our analyses of why these barriers exist, and imaginings about how these barriers could be removed. In this paper, metalogue provides us with a way to retain our individual voices, thoughts and ideas, yet challenge our pre-conceived notions about finding a critical space in science education. Through an interaction with each other's thoughts and past experiences we outline some aspects of the field of science education as we see it; for example, we discuss why the field may be seen as rigid as well as the contexts that surround possibilities for interdisciplinary, critical, social justice research. We conclude that a larger, multi-vocal discussion is necessary to locate the possibilities for critical, social justice oriented science education.

  16. Virtual science instructional strategies: A set of actual practices as perceived by secondary science educators

    Science.gov (United States)

    Gillette, Tammy J.

    2009-12-01

    The purpose of this proposed research study was to identify actual teaching practices/instructional strategies for online science courses. The identification of these teaching practices/instructional strategies could be used to compile a set of teaching practices/instructional strategies for virtual high school and online academy science instructors. This study could assist online science instructors by determining which teaching practices/instructional strategies were preferred for the online teaching environment. The literature reviewed the role of online and face-to-face instructional strategies, then discussed and elaborated on the science instructional strategies used by teachers, specifically at the secondary level. The current literature did not reflect an integration of these areas of study. Therefore, the connectedness of these two types of instructional strategies and the creation of a set of preferred instructional practices for online science instruction was deemed necessary. For the purpose of this study, the researcher designed a survey for face-to-face and online teachers to identify preferred teaching practices, instructional strategies, and types of technology used when teaching high school science students. The survey also requested demographic data information from the faculty members, including years of experience, subject(s) taught, and whether the teacher taught in a traditional classroom or online, to determine if any of those elements affect differences in faculty perceptions with regard to the questions under investigation. The findings from the current study added to the literature by demonstrating the differences and the similarities that exist between online and face-to-face instruction. Both forms of instruction tend to rely on student-centered approaches to teaching. There were many skills that were similar in that both types of instructors tend to focus on implementing the scientific method. The primary difference is the use of

  17. Urban special education policy and the lived experience of stigma in a high school science classroom

    Science.gov (United States)

    Hale, Chris

    2015-12-01

    In this paper, I provide a window into the lived experience of a group of urban high school science students confronted with the stigma associated with special education, disability, and academic failure and present tools to understanding the ideological forces and institutional structures that undermine the ability of schools to create a culture of care and inclusion of children with disabilities. With the purpose of understanding the context of these students' tainted social status within the school community, I draw connections between the ideological bipolarity and ambiguity of federal and state special education law and the lack of moral commitment at the local level to including and protecting the rights of children with disabilities in New York City schools. An important element of this paper is an exploration of a decade of neoliberal reform in the New York City Department of Education and the meticulously documented failure of New York City's special education system to provide mandated services, adequately include special education students, and generally protect the rights of children with disabilities. I conclude that the ableism embedded in special education law and a lack of meaningful enforcement renders special education regulations intangible to administrators whereas neoliberal performance benchmarks are extremely salient due to the dire consequences for schools of not meeting them.

  18. A computational approach to climate science education with CLIMLAB

    Science.gov (United States)

    Rose, B. E. J.

    2017-12-01

    CLIMLAB is a Python-based software toolkit for interactive, process-oriented climate modeling for use in education and research. It is motivated by the need for simpler tools and more reproducible workflows with which to "fill in the gaps" between blackboard-level theory and the results of comprehensive climate models. With CLIMLAB you can interactively mix and match physical model components, or combine simpler process models together into a more comprehensive model. I use CLIMLAB in the classroom to put models in the hands of students (undergraduate and graduate), and emphasize a hierarchical, process-oriented approach to understanding the key emergent properties of the climate system. CLIMLAB is equally a tool for climate research, where the same needs exist for more robust, process-based understanding and reproducible computational results. I will give an overview of CLIMLAB and an update on recent developments, including: a full-featured, well-documented, interactive implementation of a widely-used radiation model (RRTM) packaging with conda-forge for compiler-free (and hassle-free!) installation on Mac, Windows and Linux interfacing with xarray for i/o and graphics with gridded model data a rich and growing collection of examples and self-computing lecture notes in Jupyter notebook format

  19. CORE SIM: A multi-purpose neutronic tool for research and education

    International Nuclear Information System (INIS)

    Demaziere, Christophe

    2011-01-01

    Highlights: → A highly flexible neutronic core simulator was developed. → The tool estimates the static neutron flux, the eigenmodes, and the neutron noise. → The tool was successfully validated via many benchmark cases. → The tool can be used for research and education. → The tool is freely available. - Abstract: This paper deals with the development, validation, and demonstration of an innovative neutronic tool. The novelty of the tool resides in its versatility, since many different systems can be investigated and different kinds of calculations can be performed. More precisely, both critical systems and subcritical systems with an external neutron source can be studied, and static and dynamic cases in the frequency domain (i.e. for stationary fluctuations) can be considered. In addition, the tool has the ability to determine the different eigenfunctions of any nuclear core. For each situation, the static neutron flux, the different eigenmodes and eigenvalues, the first-order neutron noise, and their adjoint functions are estimated, as well as the effective multiplication factor of the system. The main advantages of the tool, which is entirely MatLab based, lie with the robustness of the implemented numerical algorithms, its high portability between different computer platforms and operative systems, and finally its ease of use since no input deck writing is required. The present version of the tool, which is based on two-group diffusion theory, is mostly suited to investigate thermal systems. The definition of both the static and dynamic core configurations directly from the static macroscopic cross-sections and their fluctuations, respectively, makes the tool particularly well suited for research and education. Some of the many benchmark cases used to validate the tool are briefly reported. The static and dynamic capabilities of the tool are also demonstrated for the following configurations: a vibrating control rod, a perturbation traveling upwards

  20. SETI as an educational tool

    Science.gov (United States)

    Vaile, R. A.

    SETI offers an extraordinary catalyst in our search for a better education. While the glamour of movie images increased the general public awareness of the term "SETI", we are challenged to improve the level of public understanding of the fundamental scientific and technological issues involved in SETI. It is also critical to keep in mind the reality of human existence. No country seems entirely at peace, whether one considers cultural, trade, military, or heritage issues; no country seems content with the breadth and standards of education for following generations. However, SETI requires generations to participate across cultures, and this long-term human involvement must be sustained through both education and communication across many disciplines and different cultures. For both these major roles, SETI appears to offer a tantalising range and depth, both in educational tools, and in superb tests of communication skills. This paper considers the educational influence of roles evoked by SETI issues. We will briefly consider the range in expertise needed in SETI, the means of improving the public SETI awareness, and mechanisms through which such education may explore the consequences of any SETI result (whether judged as successful or not). Examples of the use of SETI in formal secondary and University education are briefly reviewed.

  1. Science for education: a new model of translational research applied to education

    Directory of Open Access Journals (Sweden)

    Roberto Lent

    2017-07-01

    Full Text Available A great advance in the last transition of centuries has been the consolidation of the concept of translational research, applied with success in Health and Engineering in practically all countries of medium/high GDP. Intriguingly, this has not occurred with Education. It is yet not perceived that Science can already understand how people learn, which are the mechanisms that accelerate learning and teaching, and how this would impact on the economy and the social progress of nations. It is also not perceived that innovations can be validated with populational studies to rationalize and scale novel teaching initiatives, nor which socioemotional competences should future citizens possess to work in companies more and more automatized and informatized. Perhaps because of this omission, the progress of Brazilian educational indicators has been so modest. In Health, public policies not only invest in material improvements (sanitation, hospital attendance, nutritional coverture, etc, but also on Science and Innovation capable of creating new options in the international scenario (therapies for degenerative diseases, vaccines for infectious diseases, etc. Differently, on Education investment has focused exclusively on material improvements (more schools, better salaries for teachers, etc, necessary but insufficient to accelerate growth of our indicators at faster and more competitive rates. This scenario opens to us a window of opportunity to create a new Science policy aiming at Education. To give concreteness to this possibility, the proposal on discussion is that the new initiatives of support and funding by public and private agencies should have Science for Education as its structurant axis.

  2. Redefining roles of science in planning and management: ecology as a planning and management tool

    Science.gov (United States)

    Greg Mason; Stephen Murphy

    2002-01-01

    Science as a way of knowing has great value to decision-making but there is need to consider all its attributes and assess how science ought to be informing decision-making. Consideration of the critiques of science can make science stronger and more useful to decision-making in an environmental and ecological context. Scientists, planners, and managers need to...

  3. A pilot study: research poster presentations as an educational tool for undergraduate epidemiology students

    Directory of Open Access Journals (Sweden)

    Deonandan R

    2013-09-01

    Full Text Available Raywat Deonandan, James Gomes, Eric Lavigne, Thy Dinh, Robert Blanchard Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada Abstract: Students in a fourth year epidemiology course were surveyed after participating in a formal Science Research Day in which they presented original research, in poster form, to be judged by scientists from the community. Of 276 participating students, 80 (29% responded to the study survey. As a result, 19% of respondents were more likely to pursue a career in science, and 27.5% were more likely to pursue a career in epidemiology. Only one respondent reported being less likely to pursue a science career, while seven were less likely to pursue epidemiology. A majority of respondents felt that the poster experience was on par with, or superior to, a comparable research paper, in terms of both educational appeal and enjoyment. Mandatory, formal poster presentations are an innovative format for teaching advanced health sciences, and may more accurately reflect the realities of a science career than do more traditional educational formats. Keywords: epidemiology, education, undergraduate, research–teaching nexus

  4. Reflection as a Learning Tool in Graduate Medical Education: A Systematic Review.

    Science.gov (United States)

    Winkel, Abigail Ford; Yingling, Sandra; Jones, Aubrie-Ann; Nicholson, Joey

    2017-08-01

    Graduate medical education programs employ reflection to advance a range of outcomes for physicians in training. However, the most effective applications of this tool have not been fully explored. A systematic review of the literature examined interventions reporting the use of reflection in graduate medical education. The authors searched Medline/PubMed, Embase, Cochrane CENTRAL, and ERIC for studies of reflection as a teaching tool to develop medical trainees' capacities. Key words and subject headings included reflection , narrative , residents/GME , and education / teaching / learning . No language or date limits were applied. The search yielded 1308 citations between inception for each database and June 15, 2015. A total of 16 studies, encompassing 477 residents and fellows, met eligibility criteria. Study quality was assessed using the Critical Appraisal Skills Programme Qualitative Checklist. The authors conducted a thematic analysis of the 16 articles. Outcomes studied encompassed the impact of reflection on empathy, comfort with learning in complex situations, and engagement in the learning process. Reflection increased learning of complex subjects and deepened professional values. It appears to be an effective tool for improving attitudes and comfort when exploring difficult material. Limitations include that most studies had small samples, used volunteers, and did not measure behavioral outcomes. Critical reflection is a tool that can amplify learning in residents and fellows. Added research is needed to understand how reflection can influence growth in professional capacities and patient-level outcomes in ways that can be measured.

  5. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    Science.gov (United States)

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  6. Is Christian Education Compatible With Science Education?

    Science.gov (United States)

    Martin, Michael

    Science education and Christian education are not compatible if by Christian education one means teaching someone to be a Christian. One goal of science education is to give students factual knowledge. Even when there is no actual conflict of this knowledge with the dogmas of Christianity, there exists the potential for conflict. Another goal of science education is to teach students to have the propensity to be sensitive to evidence: to hold beliefs tentatively in light of evidence and to reject these beliefs in the light of new evidence if rejection is warranted by this evidence. This propensity conflicts with one way in which beliefs are often taught in Christian education: namely as fundamental dogmas, rather than as subject to revision in the light of the evidence.

  7. A sociohistorical examination of George Herbert Mead's approach to science education.

    Science.gov (United States)

    Edwards, Michelle L

    2016-07-01

    Although George Herbert Mead is widely known for his social psychological work, his views on science education also represent a significant, yet sometimes overlooked contribution. In a speech delivered in March 1906 entitled "The Teaching of Science in College," Mead calls for cultural courses on the sciences, such as sociology of science or history of science courses, to increase the relevancy of natural and physical science courses for high school and university students. These views reflect Mead's perspective on a number of traditional dualisms, including objectivity versus subjectivity and the social sciences versus natural and physical sciences. Taking a sociohistorical outlook, I identify the context behind Mead's approach to science education, which includes three major influences: (1) German intellectual thought and the Methodenstreit debate, (2) pragmatism and Darwin's theory of evolution, and (3) social reform efforts in Chicago and the General Science Movement. © The Author(s) 2014.

  8. Educational clusters as a tool ofpublic policy on the market of educational services

    Directory of Open Access Journals (Sweden)

    M. I. Vorona

    2016-08-01

    Due to this, the innovative educational cluster has been determined as a voluntary association of geographically close interacting entities, educational institutions, government, banking and private sector, innovative enterprises/organizations infrastructure. Such interaction is characterized by the production of competitive educational, cultural, social services, the availability of the agreed development strategy aimed at the interests of each participant and the region being a territory of cluster’s localization.

  9. Twelve tips for using Twitter as a learning tool in medical education.

    Science.gov (United States)

    Forgie, Sarah Edith; Duff, Jon P; Ross, Shelley

    2013-01-01

    Twitter is an online social networking service, accessible from any Internet-capable device. While other social networking sites are online confessionals or portfolios of personal current events, Twitter is designed and used as a vehicle to converse and share ideas. For this reason, we believe that Twitter may be the most likely candidate for integrating social networking with medical education. Using current research in medical education, motivation and the use of social media in higher education, we aim to show the ways Twitter may be used as a learning tool in medical education. A literature search of several databases, online sources and blogs was carried out examining the use of Twitter in higher education. We created 12 tips for using Twitter as a learning tool and organized them into: the mechanics of using Twitter, suggestions and evidence for incorporating Twitter into many medical education contexts, and promoting research into the use of Twitter in medical education. Twitter is a relatively new social medium, and its use in higher education is in its infancy. With further research and thoughtful application of media literacy, Twitter is likely to become a useful adjunct for more personalized teaching and learning in medical education.

  10. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  11. A new generation of cyberinfrastructure and data services for earth system science education and research

    Science.gov (United States)

    Ramamurthy, M. K.

    2006-06-01

    A revolution is underway in the role played by cyberinfrastructure and modern data services in the conduct of research and education. We live in an era of an unprecedented data volume from diverse sources, multidisciplinary analysis and synthesis, and active, learner-centered education emphasis. Complex environmental problems such as global change and water cycle transcend disciplinary and geographic boundaries, and their solution requires integrated earth system science approaches. Contemporary education strategies recommend adopting an Earth system science approach for teaching the geosciences, employing pedagogical techniques such as enquiry-based learning. The resulting transformation in geoscience education and research creates new opportunities for advancement and poses many challenges. The success of the scientific enterprise depends heavily on the availability of a state-of-the-art, robust, and flexible cyberinfrastructure, and on the timely access to quality data, products, and tools to process, manage, analyze, integrate, publish, and visualize those data. Concomittantly, rapid advances in computing, communication, and information technologies have revolutionized the provision and use of data, tools and services. The profound consequences of Moore's Law and the explosive growth of the Internet are well known. On the other hand, how other technological trends have shaped the development of data services is less well understood. For example, the advent of digital libraries, web services, open standards and protocols have been important factors in shaping a new generation of cyberinfrastructure for solving key scientific and educational problems. This paper presents a broad overview of these issues, along with a survey of key information technology trends, and discuses how those trends are enabling new approaches to applying data services for solving geoscientific problems.

  12. A new generation of cyberinfrastructure and data services for earth system science education and research

    Directory of Open Access Journals (Sweden)

    M. K. Ramamurthy

    2006-01-01

    Full Text Available A revolution is underway in the role played by cyberinfrastructure and modern data services in the conduct of research and education. We live in an era of an unprecedented data volume from diverse sources, multidisciplinary analysis and synthesis, and active, learner-centered education emphasis. Complex environmental problems such as global change and water cycle transcend disciplinary and geographic boundaries, and their solution requires integrated earth system science approaches. Contemporary education strategies recommend adopting an Earth system science approach for teaching the geosciences, employing pedagogical techniques such as enquiry-based learning. The resulting transformation in geoscience education and research creates new opportunities for advancement and poses many challenges. The success of the scientific enterprise depends heavily on the availability of a state-of-the-art, robust, and flexible cyberinfrastructure, and on the timely access to quality data, products, and tools to process, manage, analyze, integrate, publish, and visualize those data. Concomittantly, rapid advances in computing, communication, and information technologies have revolutionized the provision and use of data, tools and services. The profound consequences of Moore's Law and the explosive growth of the Internet are well known. On the other hand, how other technological trends have shaped the development of data services is less well understood. For example, the advent of digital libraries, web services, open standards and protocols have been important factors in shaping a new generation of cyberinfrastructure for solving key scientific and educational problems. This paper presents a broad overview of these issues, along with a survey of key information technology trends, and discuses how those trends are enabling new approaches to applying data services for solving geoscientific problems.

  13. Projection on a Sphere for a More Interactive Approach for Education and Outreach in Earth Sciences

    Science.gov (United States)

    Hardy, A.; King, S. D.

    2011-12-01

    Anna Hardy, Scott D. King, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061 Systems that project images onto a spherical surface are relatively new, moderately priced technology that could change the way students and the general public learn about Earth Sciences. For classroom and small museum spaces, such as the Geoscience Museum at Virginia Tech, a globe of about one-meter diameter can be used. Such a system has been recently installed in our 2500 square foot museum space. With this system we are able to display many types of Earth Science data including: global sea rise, weather and climate data, plate reconstructions, and projections of planets in the solar system. Animations show phenomenon over time including motions of plates over millions of years or evolution of global weather patterns over periods of days to weeks. We are importing other deep Earth data sets including global tomographic models to the system. As an outreach tool, one advantage of this technology is that it allows visitors to view global data in its natural spherical geometry and does not require them to visualize global spherical data or models from two-dimensional maps or displays. We will report on the effectiveness of this tool at communicating concepts with both college general education students and museum guests (pre-school through adult) via general surveying. Our initial comparison will be comprehension from classes with and without access to the spherical projection system.

  14. Users’ perception of visual design and usefulness of a web-based educational tool

    OpenAIRE

    Sánchez Franco, Manuel Jesús; Villarejo Ramos, Ángel Francisco; Peral Peral, Begoña; Buitrago Esquinas, Eva María; Roldán Salgueiro, José Luis

    2012-01-01

    Our research has become increasingly aware of the relevance of visual design in understanding learners’ attitudes towards the use of virtual tools. Likewise, perceived usefulness is an essential antecedent of the cumulative impressions of and preferences for them. Therefore, the aim of this study is to investigate the main effects of visual design and usefulness on learning and productivity in the domain of web-based educational tools. A Structural Equation Modelling, specifically Partial Lea...

  15. Science Education Using a Computer Model-Virtual Puget Sound

    Science.gov (United States)

    Fruland, R.; Winn, W.; Oppenheimer, P.; Stahr, F.; Sarason, C.

    2002-12-01

    We created an interactive learning environment based on an oceanographic computer model of Puget Sound-Virtual Puget Sound (VPS)-as an alternative to traditional teaching methods. Students immersed in this navigable 3-D virtual environment observed tidal movements and salinity changes, and performed tracer and buoyancy experiments. Scientific concepts were embedded in a goal-based scenario to locate a new sewage outfall in Puget Sound. Traditional science teaching methods focus on distilled representations of agreed-upon knowledge removed from real-world context and scientific debate. Our strategy leverages students' natural interest in their environment, provides meaningful context and engages students in scientific debate and knowledge creation. Results show that VPS provides a powerful learning environment, but highlights the need for research on how to most effectively represent concepts and organize interactions to support scientific inquiry and understanding. Research is also needed to ensure that new technologies and visualizations do not foster misconceptions, including the impression that the model represents reality rather than being a useful tool. In this presentation we review results from prior work with VPS and outline new work for a modeling partnership recently formed with funding from the National Ocean Partnership Program (NOPP).

  16. What’s Ketso? A Tool for Researchers, Educators, and Practitioners

    Directory of Open Access Journals (Sweden)

    James S. Bates

    2016-06-01

    Full Text Available Researchers, educators, and practitioners utilize a range of tools and techniques to obtain data, input, feedback, and information from research participants, program learners, and stakeholders. Ketso is both an array of information gathering techniques and a toolkit (see www.ketso.com. It “can be used in any situation when people come together to share information, learn from each other, make decisions and plan actions” (Tippett & How, 2011, p. 4. The word ketso means “action” in the Sesotho language, spoken in the African nation of Lesotho where the concept for this instrument was conceived. Ketso techniques fall into the participatory action research family of social science research methods (Tippett, Handley, & Ravetz, 2007. Ohio State University Extension professionals have used the Ketso toolkit and its techniques in numerous settings, including for professional development, conducting community needs/interests assessments, brainstorming, and data collection. As a toolkit, Ketso uses tactile and colorful leaves, branches, and icons to organize and display participants’ contributions on felt mats. As an array of techniques, Ketso is effective in engaging audiences because it is inclusive and provides each participant a platform for their perspective to be shared.

  17. Exploring the Potential and Complexity of a Critical Pedagogy of Place in Urban Science Education

    Science.gov (United States)

    Schindel Dimick, Alexandra

    2016-01-01

    What does it mean to engage in critical pedagogy of place in formal science education? Although Gruenewald's (2003a) theoretical construct of a critical pedagogy of place has been heavily cited, there is nonetheless a lack of empirical research on critical pedagogy of place, particularly within formal science education. This paper provides a case…

  18. Suited for Spacewalking: A Teacher's Guide with Activities for Technology Education, Mathematics, and Science

    Science.gov (United States)

    Vogt, Gregory L.; George, Jane A. (Editor)

    1998-01-01

    A Teacher's Guide with Activities for Technology Education, Mathematics, and Science National Aeronautics and Space Administration Office of Human Resources and Education Education Division Washington, DC Education Working Group NASA Johnson Space Center Houston, Texas This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication.

  19. Current Crisis in Science Education? Women in Science and Problems for the Behavioral Scientists. Some Perspectives of a Physicist.

    Science.gov (United States)

    Dresselhaus, Mildred S.

    A number of problems exist in society which require the cooperation of physical and social scientists. One of these problems is the current crisis in science education. There are several aspects to this problem, including the declining interest of students in math and science at a time when functioning in our society requires more, not less,…

  20. Towards a New Generation of Time-Series Visualization Tools in the ESA Heliophysics Science Archives

    Science.gov (United States)

    Perez, H.; Martinez, B.; Cook, J. P.; Herment, D.; Fernandez, M.; De Teodoro, P.; Arnaud, M.; Middleton, H. R.; Osuna, P.; Arviset, C.

    2017-12-01

    During the last decades a varied set of Heliophysics missions have allowed the scientific community to gain a better knowledge on the solar atmosphere and activity. The remote sensing images of missions such as SOHO have paved the ground for Helio-based spatial data visualization software such as JHelioViewer/Helioviewer. On the other hand, the huge amount of in-situ measurements provided by other missions such as Cluster provide a wide base for plot visualization software whose reach is still far from being fully exploited. The Heliophysics Science Archives within the ESAC Science Data Center (ESDC) already provide a first generation of tools for time-series visualization focusing on each mission's needs: visualization of quicklook plots, cross-calibration time series, pre-generated/on-demand multi-plot stacks (Cluster), basic plot zoom in/out options (Ulysses) and easy navigation through the plots in time (Ulysses, Cluster, ISS-Solaces). However, as the needs evolve and the scientists involved in new missions require to plot multi-variable data, heat maps stacks interactive synchronization and axis variable selection among other improvements. The new Heliophysics archives (such as Solar Orbiter) and the evolution of existing ones (Cluster) intend to address these new challenges. This paper provides an overview of the different approaches for visualizing time-series followed within the ESA Heliophysics Archives and their foreseen evolution.

  1. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  2. A Cultural Historical Activity Theory Approach in Natural Sciences Education Laboratory Lessons towards Reforming Teachers Training

    Science.gov (United States)

    Kolokouri, Eleni; Theodoraki, Xarikleia; Plakitsi, Katerina

    2012-01-01

    This paper focuses on connecting natural sciences education with Cultural Historical Activity Theory (CHAT). In this sense, natural sciences education is considered as a lifelong learning procedure, not seen as an individual but as a collective activity. Moreover, learning becomes a human activity in which theory and praxis are strongly connected…

  3. A tutorial on machine learning in educational science

    OpenAIRE

    Kidzinski, Lukasz; Giannakos, Michail; Sampson, Demetrios G.; Dillenbourg, Pierre

    2015-01-01

    Popularity of massive online open courses (MOOCs) allowed educational researchers to address problems which were not accessible few years ago. Although classical statistical techniques still apply, large datasets allow us to discover deeper patterns and to provide more accu-rate predictions of student’s behaviors and outcomes. The goal of this tutorial is to disseminate knowledge on elementary data analysis tools as well as facilitating simple practical data-analysis activities with the purpo...

  4. System Dynamics in Medical Education: A Tool for Life

    Science.gov (United States)

    Rubin, David M.; Richards, Christopher L.; Keene, Penelope A. C.; Paiker, Janice E.; Gray, A. Rosemary T.; Herron, Robyn F. R.; Russell, Megan J.; Wigdorowitz, Brian

    2012-01-01

    A course in system dynamics has been included in the first year of our university's six-year medical curriculum. System Dynamics is a discipline that facilitates the modelling, simulation and analysis of a wide range of problems in terms of two fundamental concepts viz. rates and levels. Many topics encountered in the medical school curriculum,…

  5. Investigating Image Formation with a Camera Obscura: a Study in Initial Primary Science Teacher Education

    Science.gov (United States)

    Muñoz-Franco, Granada; Criado, Ana María; García-Carmona, Antonio

    2018-04-01

    This article presents the results of a qualitative study aimed at determining the effectiveness of the camera obscura as a didactic tool to understand image formation (i.e., how it is possible to see objects and how their image is formed on the retina, and what the image formed on the retina is like compared to the object observed) in a context of scientific inquiry. The study involved 104 prospective primary teachers (PPTs) who were being trained in science teaching. To assess the effectiveness of this tool, an open questionnaire was applied before (pre-test) and after (post-test) the educational intervention. The data were analyzed by combining methods of inter- and intra-rater analysis. The results showed that more than half of the PPTs advanced in their ideas towards the desirable level of knowledge in relation to the phenomena studied. The conclusion reached is that the camera obscura, used in a context of scientific inquiry, is a useful tool for PPTs to improve their knowledge about image formation and experience in the first person an authentic scientific inquiry during their teacher training.

  6. Design refinement tools for a teacher education curriculum: The ...

    African Journals Online (AJOL)

    Using the example of a course in service learning (SL), the authors discuss their reflection on a curriculum that failed to help the students convert declarative knowledge to procedures of pedagogy, or to internalise this knowledge to become part of their disposition as teachers. The students' theoretical work had remained in ...

  7. THE PROJECTED RATE OF COMPETENCE FORMATION AS A TOOL OF EDUCATIONAL MANAGEMENT OF ADVANCED LEVEL OF EDUCATION

    Directory of Open Access Journals (Sweden)

    L. V. Lvov

    2017-01-01

    Full Text Available Introduction. Specially organized complex of the scientific research directed to obtaining the reliable advancing information about development of pedagogical members is necessary for the development of educational policy, the strategy of development for educational systems, and methods of management of quality of pedagogical activity at different stages of education. The result of the educational management of professional and educational process is caused by the quality of pedagogical design. In turn, the quality of pedagogical forecasting is a factor determining the overall effectiveness of management through the pedagogical design.The aim of this article is to describe the model that allows applying the rate of competence formation as a tool of educational management and providing the advanced level of education. Methodology and research methods are based on pre-competence and context approach, which supposes the content selection as a set of competencies and designing the educational and professional process with the use of the rate of formation of ability and readiness (competency as a tool of teaching management.Results. The author states socio-pedagogical contradiction, which is in acute shortage of predictive tools in the management of the educational process. The article describes terminology and empirical mathematical models that underpin pedagogical management of the educational and professional training of students that provides the advanced level of formation of organizational and managerial competence.Scientific novelty. The author clarifies the concept of the advanced level of education; introduces the term of the rate of formation of competency; proposes a new model to solve the problem of predicting learning outcomes and timely management influence by managers of education at all stages of the design and functioning of the educational system in the conditions of implementation of competence-based approach in the higher school

  8. Science Education in a South African Township: What Type of ...

    African Journals Online (AJOL)

    This article reports on research conducted in a science class to determine how learners respond to a science module that relates to their social and cultural context. The theory of social constructivism framed this research; the notion that the social environment of children infl uences their learning provided the focus for the ...

  9. Integrating Wikis as Educational Tools for the Development of a Community of Inquiry

    Science.gov (United States)

    Eteokleous, Nikleia; Ktoridou, Despo; Orphanou, Maria

    2014-01-01

    This article describes a study that attempted to evaluate the integration of wikis as an educational tool in successfully achieving the learning objectives of a fifth-grade linguistics and literature course. A mixed-method approach was employed--data were collected via questionnaires, reflective journals, observations, and interviews. The results…

  10. Social Studies Education in the 21st Century, a Tool for Fighting ...

    African Journals Online (AJOL)

    Social Studies Education in the 21st Century, a Tool for Fighting Corruption in Nigeria. ... African Research Review ... The thrust of the paper is that corruption and indiscipline exemplified in social and political vices constitute obstacles for integrated national development, and that social studies as a subject has a role to play ...

  11. System dynamics in medical education: a tool for life.

    Science.gov (United States)

    Rubin, David M; Richards, Christopher L; Keene, Penelope A C; Paiker, Janice E; Gray, A Rosemary T; Herron, Robyn F R; Russell, Megan J; Wigdorowitz, Brian

    2012-05-01

    A course in system dynamics has been included in the first year of our university's six-year medical curriculum. System Dynamics is a discipline that facilitates the modelling, simulation and analysis of a wide range of problems in terms of two fundamental concepts viz. rates and levels. Many topics encountered in the medical school curriculum, from biochemistry to sociology, can be understood in this way. The course was introduced following a curriculum review process in which it was concluded that knowledge of systems would serve to enhance problem-solving skills and clinical reasoning. The specific characteristics of system dynamics, the widespread use of digital computers, and the availability of suitable software made it possible to introduce the course at this level. The syllabus comprises a brief review of relevant mathematics followed by system dynamics topics taught in the context of examples, which are primarily but not exclusively medical. It is anticipated that this will introduce new thought processes to medical students, including holistic thinking and improved graphical visualisation skills.

  12. Education Student Perceptions of Virtual Reality as a Learning Tool

    Science.gov (United States)

    Domingo, Jelia R.; Bradley, Elizabeth Gates

    2018-01-01

    The purpose of this study was to ascertain student perceptions of the use and value of three-dimensional virtual environments. A grounded theory approach was used to gather and examine data. Just over half of student participants reported positive experiences. However, most experienced technical difficulties. Despite the technical challenges of…

  13. A Science Education that Promotes the Characteristics of Science and Scientists

    Directory of Open Access Journals (Sweden)

    Michael P. Clough

    2015-01-01

    Full Text Available Why does anyone do science? Why would anyone want to do science? Those are question that take on added significance as policymakers around the globe emphasize the importance of STEM education and seek to encourage the best and brightest young minds to enter STEM fields. But at the root of those questions are more fundamental issues that are important for all citizens.

  14. Understanding Natural Sciences Education in a Reggio Emilia-Inspired Preschool

    Science.gov (United States)

    Inan, Hatice Zeynep; Trundle, Kathy Cabe; Kantor, Rebecca

    2010-01-01

    This ethnographic study explored aspects of how the natural sciences were represented in a Reggio Emilia-inspired laboratory preschool. The natural sciences as a discipline--a latecomer to preschool curricula--and the internationally known approach, Reggio Emilia, interested educators and researchers, but there was little research about science in…

  15. Art and Science Education Collaboration in a Secondary Teacher Preparation Programme

    Science.gov (United States)

    Medina-Jerez, William; Dambekalns, Lydia; Middleton, Kyndra V.

    2012-01-01

    Background and purpose: The purpose of this study was to record and measure the level of involvement and appreciation that prospective teachers in art and science education programmes demonstrated during a four-session integrated activity. Art and science education prospective teachers from a Rocky Mountain region university in the US worked in…

  16. Measurement in Physical Education and Exercise Science: A Brief Report on 2017

    Science.gov (United States)

    Myers, Nicholas D.; Lee, Seungmin; Kostelis, Kimberly T.

    2018-01-01

    The purpose of this annual report is to provide a summary of measurement in physical education and exercise science-related activities in 2017. A recent trend for an annual increase in manuscript submissions to measurement in physical education and exercise science continued in 2017. Twenty-nine countries were represented (i.e., corresponding…

  17. Science Education: The New Humanity?

    Science.gov (United States)

    Douglas, John H.

    1973-01-01

    Summarizes science education trends, problems, and controversies at the elementary, secondary, and higher education levels beginning with the Physical Science Study Committee course, and discusses the present status concerning the application of the Fourth Revolution to the education system. (CC)

  18. A Behavioral Science Assessment of Selected Principles of Consumer Education.

    Science.gov (United States)

    Friedman, Monroe; Rees, Jennifer

    1988-01-01

    This study examined the bahavioral science support for a set of 20 food-buying principles. Three types of principles are found; they differ in the consumer behaviors they recommend and in the nature and strength of support they receive in the behavioral science literature. (Author/JOW)

  19. Reconceptualizing Elementary Teacher Preparation : A case for informal science education

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2015-01-01

    The purpose of this case study was to explore the ways in which 3 different informal science experiences in the context of an elementary methods course influenced a group of prospective elementary teachers' ideas about science teaching and learning as well as their understandings about the role of

  20. Research Trends in Science Education from 2008 to 2012: A Systematic Content Analysis of Publications in Selected Journals

    Science.gov (United States)

    Lin, Tzu-Chiang; Lin, Tzung-Jin; Tsai, Chin-Chung

    2014-01-01

    This paper presents the third study of research trends in science education. In this review, a total of 990 papers published in the "International Journal of Science Education," the "Journal of Research in Science Teaching," and "Science Education" from 2008 to 2012 were analyzed. The results indicate that in the…

  1. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  2. Reformed Teaching and Learning in Science Education: A Comparative Study of Turkish and US Teachers

    Science.gov (United States)

    Ozfidan, Burhan; Cavlazoglu, Baki; Burlbaw, Lynn; Aydin, Hasan

    2017-01-01

    Achievements of educational reform advantage constructivist understandings of teaching and learning, and therefore highlight a shift in beliefs of teachers and apply these perceptions to the real world. Science teachers' beliefs have been crucial in understanding and reforming science education as beliefs of teachers regarding learning and…

  3. Developing a Material-Dialogic Approach to Pedagogy to Guide Science Teacher Education

    Science.gov (United States)

    Hetherington, Lindsay; Wegerif, Rupert

    2018-01-01

    Dialogic pedagogy is being promoted in science teacher education but the literature on dialogic pedagogy tends to focus on explicit voices, and so runs the risk of overlooking the important role that material objects often play in science education. In this paper we use the findings of a teacher survey and classroom case study to argue that there…

  4. A Linked Data Approach for the Discovery of Educational ICT Tools in the Web of Data

    Science.gov (United States)

    Ruiz-Calleja, Adolfo; Vega-Gorgojo, Guillermo; Asensio-Perez, Juan I.; Bote-Lorenzo, Miguel L.; Gomez-Sanchez, Eduardo; Alario-Hoyos, Carlos

    2012-01-01

    The use of Information and Communication Technologies (ICT) tools to support learning activities is nowadays generalized. Several educational registries provide information about ICT tools in order to help educators in their discovery and selection. These registries are typically isolated and require much effort to keep tool information up to…

  5. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE

    Science.gov (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.

    2009-12-01

    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program (http://www.lewiscenter.org/gavrt) and The Radio JOVE project (http://radiojove.gsfc.nasa.gov) each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  6. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  7. Towards a Systematic Screening Tool for Quality Assurance and Semiautomatic Fraud Detection for Images in the Life Sciences

    OpenAIRE

    Koppers, Lars; Wormer, Holger; Ickstadt, Katja

    2016-01-01

    The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for ...

  8. Applying a Goal-Driven Model of Science Teacher Cognition to the Resolution of Two Anomalies in Research on the Relationship between Science Teacher Education and Classroom Practice

    Science.gov (United States)

    Hutner, Todd L.; Markman, Arthur B.

    2017-01-01

    Two anomalies continue to confound researchers and science teacher educators. First, new science teachers are quick to discard the pedagogy and practices that they learn in their teacher education programs in favor of a traditional, didactic approach to teaching science. Second, a discrepancy exists at all stages of science teachers' careers…

  9. A philosophical examination of Mead's pragmatist constructivism as a referent for adult science education

    Science.gov (United States)

    Furbish, Dean Russel

    The purpose of this study is to examine pragmatist constructivism as a science education referent for adult learners. Specifically, this study seeks to determine whether George Herbert Mead's doctrine, which conflates pragmatist learning theory and philosophy of natural science, might facilitate (a) scientific concept acquisition, (b) learning scientific methods, and (c) preparation of learners for careers in science and science-related areas. A philosophical examination of Mead's doctrine in light of these three criteria has determined that pragmatist constructivism is not a viable science education referent for adult learners. Mead's pragmatist constructivism does not portray scientific knowledge or scientific methods as they are understood by practicing scientists themselves, that is, according to scientific realism. Thus, employment of pragmatist constructivism does not adequately prepare future practitioners for careers in science-related areas. Mead's metaphysics does not allow him to commit to the existence of the unobservable objects of science such as molecular cellulose or mosquito-borne malarial parasites. Mead's anti-realist metaphysics also affects his conception of scientific methods. Because Mead does not commit existentially to the unobservable objects of realist science, Mead's science does not seek to determine what causal role if any the hypothetical objects that scientists routinely posit while theorizing might play in observable phenomena. Instead, constructivist pragmatism promotes subjective epistemology and instrumental methods. The implication for learning science is that students are encouraged to derive scientific concepts based on a combination of personal experience and personal meaningfulness. Contrary to pragmatist constructivism, however, scientific concepts do not arise inductively from subjective experience driven by personal interests. The broader implication of this study for adult education is that the philosophically laden

  10. Educational activities for neutron sciences

    International Nuclear Information System (INIS)

    Hiraka, Haruhiro; Ohoyama, Kenji; Iwasa, Kazuaki

    2011-01-01

    Since now we have several world-leading neutron science facilities in Japan, enlightenment activities for introducing neutron sciences, for example, to young people is an indispensable issue. Hereafter, we will report present status of the activities based on collaborations between universities and neutron facilities. A few suggestions for future educational activity of JSNS are also shown. (author)

  11. Interactive, technology-enhanced self-regulated learning tools in healthcare education: a literature review.

    Science.gov (United States)

    Petty, Julia

    2013-01-01

    Learning technology is increasingly being implemented for programmes of blended learning within nurse education. With a growing emphasis on self-directed study particularly in post-basic education, there is a need for learners to be guided in their learning away from practice and limited classroom time. Technology-enabled (TE) tools which engage learners actively can play a part in this. The effectiveness and value of interactive TE learning strategies within healthcare is the focus of this paper. To identify literature that explores the effectiveness of interactive, TE tools on knowledge acquisition and learner satisfaction within healthcare with a view to evaluating their use for post-basic nurse education. A Literature Review was performed focusing on papers exploring the comparative value and perceived benefit of TE tools compared to traditional modes of learning within healthcare. The Databases identified as most suitable due to their relevance to healthcare were accessed through EBSCOhost. Primary, Boolean and advanced searches on key terms were undertaken. Inclusion and exclusion criteria were applied which resulted in a final selection of 11 studies for critique. Analysis of the literature found that knowledge acquisition in most cases was enhanced and measured learner satisfaction was generally positive for interactive, self-regulated TE tools. However, TE education may not suit all learners and this is critiqued in the light of the identified limitations. Interactive self regulation and/or testing can be a valuable learning strategy that can be incorporated into self-directed programmes of study for post-registration learners. Whilst acknowledging the learning styles not suited to such tools, the concurrent use of self-directed TE tools with those learning strategies necessitating a more social presence can work together to support enhancement of knowledge required to deliver rationale for nursing practice. Copyright © 2012 Elsevier Ltd. All rights

  12. From Orthodoxy to Plurality in the Nature of Science (NOS) and Science Education: A Metacommentary

    Science.gov (United States)

    Bazzul, Jesse

    2017-01-01

    This article provides a metacommentary on the special issue on nature of science (NOS). The issue is composed of senior scholars discussing Hodson and Wong's (2017, this issue) critique of the consensus view of nature of science, which on a basic level states that there are agreed-upon aspects of science that can be taught in K-12 schools. Each…

  13. DISTANCE LEARNING TECHNOLOGY AS A TOOL FOR COMPETITIVE GROWTH OF EDUCATIONAL PROGRAMMES IN UNIVERSITIES

    Directory of Open Access Journals (Sweden)

    K. B. Prigozhina

    2017-01-01

    Full Text Available Introduction. The programs of distance education are in a great demand. Therefore, the problems of the organization in higher education institutions of educational process with the use of appropriate technologies have arisen. The aim of the publication is to set an example of introducing distance learning tools into higher education system, which could help to identify possible conditions and ways of creating a virtual educational environment covering in continuity three-cycle structure of higher education, as well as non-degree supplementary educational programs. Methodology and research methods. Basic research methods include comparative analysis, qualitative and quantitative methods based on empirical observation and data processing. The methodological base for the research included competence and student-centered approaches, psycho-didactic and acmeological approaches to lifelong learning. Results and scientific novelty. The role of distance educational technologies in ensuring availability and competitiveness of programs of the basic and continuing education is emphasized. The alternative choice of creating a virtual educational environment on the basis of distance learning technologies in a non-linguistic university is proved from linguodidactic basis. The interaction of principles, approaches, and conditions for its implementation and development are given. The research provides a model of an electronic teaching complex and a two-cluster model of the coursebook as a part of virtual educational unit. Practical application of these models contributes to self-study and learning autonomy of students. Practical significance. The authors describe the content and structure of innovative teaching resources that enable to rely on student-centered approach. The recommendations on establishing a virtual educational environment in universities of programs-in-demand implementation of the basic and continuing education are provided.

  14. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    Science.gov (United States)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  15. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    Science.gov (United States)

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  16. Dewey's "Science as Method" a Century Later: Reviving Science Education for Civic Ends

    Science.gov (United States)

    Rudolph, John L.

    2014-01-01

    Over a hundred years ago, John Dewey delivered his now-well-known address "Science as Subject-Matter and as Method" to those assembled at the Boston meeting of the American Association for the Advancement of Science in which he lamented the nearly exclusive focus on content knowledge in early-20th-century school science classrooms. This…

  17. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  18. Mobile computing device as tools for college student education: a case on flashcards application

    Science.gov (United States)

    Kang, Congying

    2012-04-01

    Traditionally, college students always use flash cards as a tool to remember massive knowledge, such as nomenclature, structures, and reactions in chemistry. Educational and information technology have enabled flashcards viewed on computers, like Slides and PowerPoint, works as tunnels of drilling and feedback for the learners. The current generation of students is more capable of information technology and mobile computing devices. For example, they use their Mobile phones much more intensively everyday day. Trends of using Mobile phone as an educational tool is analyzed and a educational technology initiative is proposed, which use Mobile phone flash cards applications to help students learn biology and chemistry. Experiments show that users responded positively to these mobile flash cards.

  19. Radiation and Health: A Workshop for Science Educators

    Science.gov (United States)

    Krieger, Kenneth

    2010-03-01

    This workshop covers nuclear science and technology topics suitable for science teachers to use in grade 4-12 classes. Subjects included are Fundamentals of Radiation, Exposure to natural and man- made Radiation, Cellular Biology and Radiation Effects, Radioactive Waste Management, Health Physics and Radiation Physics, and Career possibilities in Nuclear Technology. Schools of participants will receive a working Geiger Counter. Workshop presenter is a TEA-approved CPE Provider. Limited to 20 participants - 3 hours - Cost 2.00

  20. COMPUTERIZATION OF EDUCATION AS A TOOL OF UNIVERSITY TEACHER’S BASIC FUNCTIONS SUPPORT

    Directory of Open Access Journals (Sweden)

    V. V. Denysenko

    2014-04-01

    Full Text Available The intensive process of education computerization confronts modern educators a number of economic, technical, social, psychological and educational problems that need to be solved. The use of computer technology in educational process opens enormous opportunities for the development of cognitive abilities – from sensory and perceptual to speech and mental forms. In broad dissemination and use of technical aids, optical and acoustic techniques, programmed education, cinema, television, computer, the modern scientists and researchers see one of the main factors to enhance education and upbringing level both at regular and higher education institutions. Unfortunately, the process of the organic combination of technical and pedagogical sciences in terms of theory and practice introducing computer (multimedia teaching aids is not as powerful as expected; and as it has been dictated by the needs of the modern society. The slow pace of computerization’s implementation of the learning process at high school has been caused by the reasons of different nature and scale. The main objective of the article is to highlight the problems of computer teaching aids using in teaching process at higher education institutions. The conducted analysis of studying computerization allowed us determining the impact and role in providing the university teacher’s basic functions. It has been established that the teacher is one of the management leading objects of educational and cognitive students’ activity and all its functions practically may have computer support.

  1. Developing a framework for evaluating the impact of Healthcare Improvement Science Education across Europe: a qualitative study

    Directory of Open Access Journals (Sweden)

    Manuel Lillo-Crespo

    2017-11-01

    Full Text Available Purpose Frontline healthcare professionals are well positioned to improve the systems in which they work. Educational curricula, however, have not always equipped healthcare professionals with the skills or knowledge to implement and evaluate improvements. It is important to have a robust and standardized framework in order to evaluate the impact of such education in terms of improvement, both within and across European countries. The results of such evaluations will enhance the further development and delivery of healthcare improvement science (HIS education. We aimed to describe the development and piloting of a framework for prospectively evaluating the impact of HIS education and learning. Methods The evaluation framework was designed collaboratively and piloted in 7 European countries following a qualitative methodology. The present study used mixed methods to gather data from students and educators. The framework took the Kirkpatrick model of evaluation as a theoretical reference. Results The framework was found to be feasible and acceptable for use across differing European higher education contexts according to the pilot study and the participants’ consensus. It can be used effectively to evaluate and develop HIS education across European higher education institutions. Conclusion We offer a new evaluation framework to capture the impact of HIS education. The implementation of this tool has the potential to facilitate the continuous development of HIS education.

  2. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Onion Plant as an Educational Tool for Phylogenetic Studies: Molecular Analysis and a New Phylogeny? Shilpa Pathak Amita Akolkar Bakhtaver S Mahajan. Classroom Volume 7 Issue 3 March 2002 pp 66-79 ...

  3. Career education attitudes and practices of K-12 science educators

    Science.gov (United States)

    Smith, Walter S.

    A random sample of 400 K-12 science educators who were members of the National Science Teachers Association were surveyed regarding their attitude toward and practice of career education in their science teaching. These science teachers rejected a narrowly vocational view, favoring instead a conception of career education which included self-perception, values analysis, and vocational skills objectives. The science educators affirmed the importance of career education for a student's education, asserted career education ought to be taught in their existing science courses, and expressed a willingness to do so. Fewer than one-third of the science teachers, however, reported incorporating career education at least on a weekly basis in their science lessons. The major impediment to including more career education in science teaching was seen to be their lack of knowledge of methods and materials relevant to science career education, rather than objections from students, parents, or administrators; their unwillingness; or their evaluation of career education as unimportant. Thus, in order to improve this aspect of science teaching, science teachers need more concrete information about science career education applications.

  4. Online self-assessment as a quality assurance tool in higher professional education

    NARCIS (Netherlands)

    Prof. Rene Butter

    2014-01-01

    Theme: Quality Assurance in Higher Education An online tool was developed for (potential) students to assess the congruence between the characteristics of an educational program and student preferences (Butter & Van Raalten, 2010)

  5. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  6. Understanding the Educational Experiences of Science Teachers in a Five-Year Teacher Education Program: A Phenomenological Study

    Science.gov (United States)

    Srivastava, Nitin

    This qualitative study provides an overview of educational experiences of six in-service and three pre-service secondary science teachers in the Benedum Collaborative Five-Year Teacher Education Program at a land-grant university. The researcher interviewed secondary science teachers on the experiences they found meaningful in various program components that influenced their teacher identity, beliefs about science pedagogy, and their sense of preparedness for teaching. Document analysis of teachers' journals and lesson plans supplemented the qualitative data in addition to the researcher's role and knowledge as an outsider (non-Benedum graduate) and insider (facilitator and instructor in the technology integration based classes for one year) of the Benedum Collaborative Five-Year Teacher Education Program. Findings also supported the Holmes (1986) and Goodlad (1990) views for extended field experiences and "collaborative culture" in teacher education for well-prepared teachers.

  7. A new educational tool to learn about hydration: taste workshops for children.

    Science.gov (United States)

    Valero Gaspar, Teresa; Rodríguez-Alonso, Paula; Ruiz Moreno, Emma; Del Pozo de la Calle, Susana; Ávila Torres, José Manuel; Varela Moreiras, Gregorio

    2016-07-13

    Nutrition education contributes to children´s understanding and practice of healthy lifestyles behaviors. Having a well hydration status is an essential topic, especially since children are a vulnerable population who are much more  prone to dehydration than adults are. The approval of the Report on the European Gastronomic Heritage: Cultural and Educational Aspects in 2014 served as starting point to work on innovative audio-visual and multimedia materials for children. The Spanish Nutrition Foundation (FEN) and the Royal Academy of Gastronomy (RAG), in collaboration with the Ministry of Education, Culture and Sport in Spain (MECD),  developed educational videos for schoolchildren to learn about food, nutrition and gastronomy, specially, the importance of being hydrated. To develop a serial of videos for children between 3 and 9 years old with nutrition and cooking lessons to be used as educational resources in the official curricula. Fourteen chapters related to food, nutrition, gastronomy, physical activity and hydration to be used to record videos were designed and tested. A nutritionist, a chef and two puppets were the main characters acting in the videos.  The chapters were assembled in nine videos that included five sections: introduction, video lesson, recipes -in case of hydration, recipes with different water content foods were recorded-, what have you learntand check your knowledge. A summary of the new educational material was officially presented at the Spain Pavilion during the Expo Milano 2015. Moreover, they are included as education  tool for teachers in the new PANGEI Programme (Food, Nutrition and Gastronomy for Infantile Education) conjointly launched by FEN, RAG and MEDC. Taste workshops are useful as innovative nutrition education tools to reinforce language, listening and motor skills as well as food and nutrition concepts, and specially, the importance of being well hydrated.

  8. Development of a context specific accreditation assessment tool for affirming quality midwifery education in Bangladesh.

    Science.gov (United States)

    Bogren, Malin; Sathyanarayanan Doraiswamy; Erlandsson, Kerstin; Akhter, Halima; Akter, Dalia; Begum, Momtaz; Chowdhury, Merry; Das, Lucky; Akter, Rehana; Begum, Sufia; Akter, Renoara; Yesmin, Syeada; Khatun, Yamin Ara

    2018-06-01

    using the International Confederation of Midwives (ICM) Global Standards for Midwifery Education as a conceptual framework, the aim of this study was to explore and describe important 'must haves' for inclusion in a context-specific accreditation assessment tool in Bangladesh. A questionnaire study was conducted using a Likert rating scale and 111 closed-response single items on adherence to accreditation-related statements, ending with an open-ended question. The ICM Global Standards guided data collection, deductive content analysis and description of the quantitative results. twenty-five public institutes/colleges (out of 38 in Bangladesh), covering seven out of eight geographical divisions in the country. one hundred and twenty-three nursing educators teaching the 3-year diploma midwifery education programme. this study provides insight into the development of a context-specific accreditation assessment tool for Bangladesh. Important components to be included in this accreditation tool are presented under the following categories and domains: 'organization and administration', 'midwifery faculty', 'student body', 'curriculum content', 'resources, facilities and services' and 'assessment strategies'. The identified components were a prerequisite to ensure that midwifery students achieve the intended learning outcomes of the midwifery curriculum, and hence contribute to a strong midwifery workforce. The components further ensure well-prepared teachers and a standardized curriculum supported at policy level to enable effective deployment of professional midwives in the existing health system. as part of developing an accreditation assessment tool, it is imperative to build ownership and capacity when translating the ICM Global Standards for Midwifery Education into the national context. this initiative can be used as lessons learned from Bangladesh to develop a context-specific accreditation assessment tool in line with national priorities, supporting the

  9. Using Simulation to Teach About Poverty in Nursing Education: A Review of Available Tools.

    Science.gov (United States)

    Reid, Carol A; Evanson, Tracy A

    2016-01-01

    Poverty is one of the most significant social determinants of health, and as such, it is imperative that nurses have an understanding of the impact that living in poverty has upon one's life and health. A lack of such understanding will impede nurses from providing care that is patient centered, treats all patients fairly, and advocates for social justice. It is essential that nursing educators assure that poverty-related content and effective teaching strategies are used in nursing curricula in order to help students develop this understanding. Several poverty-simulation tools are available and may be able to assist with development of accurate knowledge, skills, and attitudes. Unfortunately, little evidence exists to evaluate most poverty simulation tools. This article will provide an introduction to several poverty-related simulation tools, discuss any related research that evaluates their effectiveness, and make recommendations for integration of such simulation tools into nursing curricula. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Video education for critical care nurses to assess pain with a behavioural pain assessment tool: A descriptive comparative study.

    Science.gov (United States)

    Björn, Annika; Pudas-Tähkä, Sanna-Mari; Salanterä, Sanna; Axelin, Anna

    2017-10-01

    To evaluate the impact of video education on critical care nurses' knowledge and skills in using a behavioural pain assessment tool for intensive care patients and to explore the nurses' experiences with video education. Forty-eight nurses in one intensive care unit watched an educational video on the use of the Critical-Care Pain Observation Tool, then assessed pain in two patients with the tool and took a knowledge test. The researcher made parallel pain assessments. Interrater reliability of patients' pain assessment between nurses and the researcher was determined to examine nurses' skills in using the tool after education. Twenty nurses were interviewed about their experiences with the video education. Interviews were analysed with deductive thematic analysis. The knowledge test scores indicated that the nurses learned the principles of how to use the tool. The interrater reliability of pain assessments reached a moderate level of agreement during the painful procedure, with a weighted kappa coefficient value of 0.48, CL [0.37, 0.58]. The nurses perceived video education positively, but requested additional interaction. Video education is useful in teaching the principles of using a pain assessment tool. Additional clinical training is required for nurses to reach adequate skills in using the tool. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Scientific literacy and the ontology of science education: A case study of learning in the outdoors

    Science.gov (United States)

    Gleason, Tristan

    This dissertation seeks to articulate a framework for critiquing and reconstructing science education by fleshing out the relationships between science education, its ontological commitments to nature, and educational practices that promote justice and democracy. Drawing on theoretical and methodological resources from American Pragmatism and science studies, I offer a case study that evokes the practices of a residential outdoor science program in the Pacific Northwest. I suggest that these practices provide an opportunity to imagine how science education emerges differently when it abandons its commitments to a singular and authoritative Nature, and explore how this program provides empirical resources for building a theory of science education that is multinatural. Grasping the plurality of nature diminishes the tension between experiences and the world, recognizing the importance of the sciences to democratic action without positioning them as a singular source of authority. Multinaturalism then becomes an orienting concept for imagining and reconstructing more democratic and just practices of science education, practices that move away from the transmission of a cannon of white, Eurocentric knowledge, and towards the navigation of problems in dynamic worlds.

  12. Game-Based Learning in Science Education: A Review of Relevant Research

    Science.gov (United States)

    Li, Ming-Chaun; Tsai, Chin-Chung

    2013-12-01

    The purpose of this study is to review empirical research articles regarding game-based science learning (GBSL) published from 2000 to 2011. Thirty-one articles were identified through the Web of Science and SCOPUS databases. A qualitative content analysis technique was adopted to analyze the research purposes and designs, game design and implementation, theoretical backgrounds and learning foci of these reviewed studies. The theories and models employed by these studies were classified into four theoretical foundations including cognitivism, constructivism, the socio-cultural perspective, and enactivism. The results indicate that cognitivism and constructivism were the major theoretical foundations employed by the GBSL researchers and that the socio-cultural perspective and enactivism are two emerging theoretical paradigms that have started to draw attention from GBSL researchers in recent years. The analysis of the learning foci showed that most of the digital games were utilized to promote scientific knowledge/concept learning, while less than one-third were implemented to facilitate the students' problem-solving skills. Only a few studies explored the GBSL outcomes from the aspects of scientific processes, affect, engagement, and socio-contextual learning. Suggestions are made to extend the current GBSL research to address the affective and socio-contextual aspects of science learning. The roles of digital games as tutor, tool, and tutee for science education are discussed, while the potentials of digital games to bridge science learning between real and virtual worlds, to promote collaborative problem-solving, to provide affective learning environments, and to facilitate science learning for younger students are also addressed.

  13. Anatomy education environment measurement inventory: A valid tool to measure the anatomy learning environment.

    Science.gov (United States)

    Hadie, Siti Nurma Hanim; Hassan, Asma'; Ismail, Zul Izhar Mohd; Asari, Mohd Asnizam; Khan, Aaijaz Ahmed; Kasim, Fazlina; Yusof, Nurul Aiman Mohd; Manan Sulong, Husnaida Abdul; Tg Muda, Tg Fatimah Murniwati; Arifin, Wan Nor; Yusoff, Muhamad Saiful Bahri

    2017-09-01

    Students' perceptions of the education environment influence their learning. Ever since the major medical curriculum reform, anatomy education has undergone several changes in terms of its curriculum, teaching modalities, learning resources, and assessment methods. By measuring students' perceptions concerning anatomy education environment, valuable information can be obtained to facilitate improvements in teaching and learning. Hence, it is important to use a valid inventory that specifically measures attributes of the anatomy education environment. In this study, a new 11-factor, 132-items Anatomy Education Environment Measurement Inventory (AEEMI) was developed using Delphi technique and was validated in a Malaysian public medical school. The inventory was found to have satisfactory content evidence (scale-level content validity index [total] = 0.646); good response process evidence (scale-level face validity index [total] = 0.867); and acceptable to high internal consistency, with the Raykov composite reliability estimates of the six factors are in the range of 0.604-0.876. The best fit model of the AEEMI is achieved with six domains and 25 items (X 2  = 415.67, P education environment in Malaysia. A concerted collaboration should be initiated toward developing a valid universal tool that, using the methods outlined in this study, measures the anatomy education environment across different institutions and countries. Anat Sci Educ 10: 423-432. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  14. Science education for empowerment and social change: a case study of a teacher educator in urban Pakistan

    Science.gov (United States)

    Zahur, Rubina; Calabrese Barton, Angela; Upadhyay, Bhaskar Raj

    2002-09-01

    In this manuscript we focus on the question, 'What should be the purpose of science education for children of the very poor class in caste-oriented developing countries such as Pakistan?' In other words, in a country where the literacy rate hovers around 10 per cent for the poorest segment of society and where there is no expectation that children will complete primary school, of what importance is primary science education and to what end should it be offered in schools? We begin a conversation around this question by presenting, in this manuscript, a case study of one teacher educator whose beliefs and practices sharply deviate from the norm - she believes science education ought to be about empowering students to make physical and political changes in their community. In particular, using the rich, contextual interview and observational data generated through case study, we show how Haleema's (pseudonym) orientation to science teacher education are buttressed by three fundamental beliefs: that low levels of literacy and school achievement among poor children have as much to do with poor families' lack of power/influence on the purposes and processes of schooling as it has to do with opportunities and resources; that school science can begin to address inequalities in power by fostering a kind of scientific literacy among children that leads to individual and community empowerment around health and environmental issues, the very science-related issues that divide quality of life and opportunity for poor families; and that teacher education programmes can play a role in transforming a society's views about how science and scientific practices might play a role in bringing communities together to effect change for the better.

  15. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  16. The Impact of Agricultural Science Education on Performance in a Biology Course

    Science.gov (United States)

    Ernest, Byron L.

    The lack of student achievement in science is often cited in U.S. educational reports. At the study site, low student achievement in science has been an ongoing concern for administrators. The purpose of this mixed methods study was to investigate the impact of agricultural science education on student performance in a Biology course. Vygotsky's constructivist theory and Gardner's multiple intelligences theory provided the framework for the study. The quantitative research question examined the relationship between the completion of Fundamentals of Agriculture Science and Business course and student performance in Biology I. Teacher perceptions and experiences regarding the integration of science and agricultural curriculum and traditional science curriculum were examined qualitatively. A sequential explanatory design was employed using 3 years of data collected from 486 high school students and interviews with 10 teachers. Point-biserial correlation and chi square tests revealed statistically significant relationships between whether or not students completed Fundamentals of Agriculture Science and Business and Biology I course performance, as measured by the end of course assessment and the course grade. In the qualitative sequence, typological and inductive data analyses were applied to the interview data, and themes of student impact and teacher experience emerged. Social change implications may be possible through improved science education for students in this program. Agriculture science courses may be used to facilitate learning of complex science concepts, designing teacher collaboration and professional development for teaching science in a relevant context, and resultant improved student performance in science.

  17. 3D-Printed specimens as a valuable tool in anatomy education: A pilot study.

    Science.gov (United States)

    Garas, Monique; Vaccarezza, Mauro; Newland, George; McVay-Doornbusch, Kylie; Hasani, Jamila

    2018-06-06

    Three-dimensional (3D) printing is a modern technique of creating 3D-printed models that allows reproduction of human structures from MRI and CT scans via fusion of multiple layers of resin materials. To assess feasibility of this innovative resource as anatomy educational tool, we conducted a preliminary study on Curtin University undergraduate students to investigate the use of 3D models for anatomy learning as a main goal, to assess the effectiveness of different specimen types during the sessions and personally preferred anatomy learning tools among students as secondary aim. The study consisted of a pre-test, exposure to test (anatomical test) and post-test survey. During pre-test, all participants (both without prior experience and experienced groups) were given a brief introduction on laboratory safety and study procedure thus participants were exposed to 3D, wet and plastinated specimens of the heart, shoulder and thigh to identify the pinned structures (anatomical test). Then, participants were provided a post-test survey containing five questions. In total, 23 participants completed the anatomical test and post-test survey. A larger number of participants (85%) achieved right answers for 3D models compared to wet and plastinated materials, 74% of population selected 3D models as the most usable tool for identification of pinned structures and 45% chose 3D models as their preferred method of anatomy learning. This preliminary small-size study affirms the feasibility of 3D-printed models as a valuable asset in anatomy learning and shows their capability to be used adjacent to cadaveric materials and other widely used tools in anatomy education. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. A review of creative and expressive writing as a pedagogical tool in medical education.

    Science.gov (United States)

    Cowen, Virginia S; Kaufman, Diane; Schoenherr, Lisa

    2016-03-01

    The act of writing offers an opportunity to foster self-expression and organisational abilities, along with observation and descriptive skills. These soft skills are relevant to clinical thinking and medical practice. Medical school curricula employ pedagogical approaches suitable for assessing medical and clinical knowledge, but teaching methods for soft skills in critical thinking, listening and verbal expression, which are important in patient communication and engagement, may be less formal. Creative and expressive writing that is incorporated into medical school courses or clerkships offers a vehicle for medical students to develop soft skills. The aim of this review was to explore creative and expressive writing as a pedagogical tool in medical schools in relation to outcomes of medical education. This project employed a scoping review approach to gather, evaluate and synthesise reports on the use of creative and expressive writing in US medical education. Ten databases were searched for scholarly articles reporting on creative or expressive writing during medical school. Limitation of the results to activities associated with US medical schools, produced 91 articles. A thematic analysis of the articles was conducted to identify how writing was incorporated into the curriculum. Enthusiasm for writing as a pedagogical tool was identified in 28 editorials and overviews. Quasi-experimental, mixed methods and qualitative studies, primarily writing activities, were aimed at helping students cognitively or emotionally process difficult challenges in medical education, develop a personal identity or reflect on interpersonal skills. The programmes and interventions using creative or expressive writing were largely associated with elective courses or clerkships, and not required courses. Writing was identified as a potentially relevant pedagogical tool, but not included as an essential component of medical school curricula. © 2016 John Wiley & Sons Ltd.

  19. A Commitment To America's Future: Responding to the Crisis in Mathematics & Science Education

    Science.gov (United States)

    Business-Higher Education Forum (NJ1), 2005

    2005-01-01

    This report warns that if current trends continue, the United States will lose is preeminence in science and technology and its leadership position in innovation. In this report, the Business-Higher Education Forum (BHEF) proposes a four-part action plan in which business, higher education, and policy leaders support P-12 education leaders in…

  20. ROAST: Peer Review as a Learning and Assessment Tool in Graduate Education

    Science.gov (United States)

    Somerville, R. C.

    2003-12-01

    Constructivist learning theory and inquiry-based educational practice stress the parallels between learning and research. Although peer review has long been a central feature of the working lives of research scientists, it has rarely found its way into the classroom. Motivated by this thought, an imaginary journal, Reviews of Atmospheric Science Topics (ROAST), has been integrated into a graduate-level course in atmospheric thermodynamics. The instructor acts as editor of ROAST. Students in the class are divided into teams and assigned topics on which to write survey papers and give in-class presentations, using the text, the Internet, the library, and other resources. The assigned topics range over the subject matter of the course. The submitted survey papers are sent by the ROAST editor to other members of the class, acting as anonymous reviewers. Just as in the case of real research journals, the editor asks the authors to respond to criticisms of reviewers and then sends the revised papers back to the reviewers. Each student is thus a researcher and co-author of one paper as well as an anonymous reviewer of several others. ROAST has proven to be not only a useful means of fostering learning, but also a natural and effective assessment tool. The peer review mechanism allows the student authors to address the defects in their papers, and hence in their learning, as pointed out not by an authority figure or an examination but by their own peers. As an important side benefit, the students gain experience with the peer review process itself and come to appreciate its strengths and weaknesses in evaluating scientific papers.

  1. The Curriculum Customization Service: A Tool for Customizing Earth Science Instruction and Supporting Communities of Practice

    Science.gov (United States)

    Melhado, L. C.; Devaul, H.; Sumner, T.

    2010-12-01

    Accelerating demographic trends in the United States attest to the critical need to broaden access to customized learning: reports refer to the next decade as the era of “extreme diversity” in K-12 classrooms, particularly in large urban school districts. This diverse student body possesses a wide range of knowledge, skills, and abilities in addition to cultural differences. A single classroom may contain students with different levels of quantitative skills, different levels of English language proficiency, and advanced students preparing for college-level science. A uniform curriculum, no matter how well designed and implemented, cannot possibly serve the needs of such diverse learners equally well. Research has shown positive learning outcomes when pedagogical strategies that customize instruction to address specific learner needs are implemented, with under-achieving students often benefiting most. Supporting teachers in the effective adoption and use of technology to meet these instructional challenges is the underlying goal of the work to be presented here. The Curriculum Customization Service (CCS) is an integrated web-based platform for middle and high school Earth science teachers designed to facilitate teachers’ instructional planning and delivery; enhancing existing curricula with digital library resources and shared teacher-contributed materials in the context of articulated learning goals. The CCS integrates interactive resources from the Digital Library for Earth System Education (DLESE) with an inquiry-based curriculum component developed by the American Geological Institute (EarthComm and Investigating Earth Systems). The digital library resources emphasize visualizations and animations of Earth processes that often challenge students’ understanding, offering multiple representations of phenomena to address different learning styles, reading abilities, and preconceived ideas. Teachers can access these materials, as well as those created or

  2. Gendered education in a gendered world: looking beyond cosmetic solutions to the gender gap in science

    Science.gov (United States)

    Sinnes, Astrid T.; Løken, Marianne

    2014-06-01

    Young people in countries considered to be at the forefront of gender equity still tend to choose very traditional science subjects and careers. This is particularly the case in science, technology, engineering and mathematics subjects (STEM), which are largely male dominated. This article uses feminist critiques of science and science education to explore the underlying gendered assumptions of a research project aiming to contribute to improving recruitment, retention and gender equity patterns in STEM educations and careers. Much research has been carried out to understand this gender gap phenomenon as well as to suggest measures to reduce its occurrence. A significant portion of this research has focused on detecting the typical "female" and "male" interest in science and has consequently suggested that adjustments be made to science education to cater for these interests. This article argues that adjusting science subjects to match perceived typical girls' and boys' interests risks being ineffective, as it contributes to the imposition of stereotyped gender identity formation thereby also imposing the gender differences that these adjustments were intended to overcome. This article also argues that different ways of addressing gender issues in science education themselves reflects different notions of gender and science. Thus in order to reduce gender inequities in science these implicit notions of gender and science have to be made explicit. The article begins with an overview of the current situation regarding gender equity in some so- called gender equal countries. We then present three perspectives from feminist critiques of science on how gender can be seen to impact on science and science education. Thereafter we analyze recommendations from a contemporary research project to explore which of these perspectives is most prevalent.

  3. Evaluation in medical education: A topical review of target parameters, data collection tools and confounding factors

    Science.gov (United States)

    Schiekirka, Sarah; Feufel, Markus A.; Herrmann-Lingen, Christoph; Raupach, Tobias

    2015-01-01

    Background and objective: Evaluation is an integral part of education in German medical schools. According to the quality standards set by the German Society for Evaluation, evaluation tools must provide an accurate and fair appraisal of teaching quality. Thus, data collection tools must be highly reliable and valid. This review summarises the current literature on evaluation of medical education with regard to the possible dimensions of teaching quality, the psychometric properties of survey instruments and potential confounding factors. Methods: We searched Pubmed, PsycINFO and PSYNDEX for literature on evaluation in medical education and included studies published up until June 30, 2011 as well as articles identified in the “grey literature”. Results are presented as a narrative review. Results: We identified four dimensions of teaching quality: structure, process, teacher characteristics, and outcome. Student ratings are predominantly used to address the first three dimensions, and a number of reliable tools are available for this purpose. However, potential confounders of student ratings pose a threat to the validity of these instruments. Outcome is usually operationalised in terms of student performance on examinations, but methodological problems may limit the usability of these data for evaluation purposes. In addition, not all examinations at German medical schools meet current quality standards. Conclusion: The choice of tools for evaluating medical education should be guided by the dimension that is targeted by the evaluation. Likewise, evaluation results can only be interpreted within the context of the construct addressed by the data collection tool that was used as well as its specific confounding factors. PMID:26421003

  4. Health education on diabetes at a South African national science ...

    African Journals Online (AJOL)

    ... with a major negative impact on the health and development of South Africans. ... To determine the effects of a health education programme on increasing ... models, word-search games, information leaflets and a computer-based quiz ...

  5. Developing Elementary Science PCK for Teacher Education: Lessons Learned from a Second Grade Partnership

    Science.gov (United States)

    Bradbury, Leslie U.; Wilson, Rachel E.; Brookshire, Laura E.

    2017-06-01

    In this self-study, two science educators partnered with two elementary teachers to plan, implement, and reflect on a unit taught in second grade classrooms that integrated science and language arts. The researchers hoped to increase their pedagogical content knowledge (PCK) for elementary science teaching so that they might use their experiences working in an elementary context to modify their practices in their elementary science method instruction. The research question guiding the study was: What aspects of our PCK for elementary science teaching do we as science educators develop by co-planning, co-teaching, and reflecting with second grade teachers? Data include transcripts of planning meetings, oral reflections about the experience, and videos of the unit being enacted. Findings indicate that managing resources for science teaching, organizing students for science learning, and reflecting on science teaching were themes prevalent in the data. These themes were linked to the model of PCK developed by Park and Oliver (Research in Science Education, 38, 261-284, 2008) and demonstrate that we developed PCK for elementary science teaching in several areas. In our discussion, we include several proposed changes for our elementary science methods course based on the outcomes of the study.

  6. The health sciences librarian in medical education: a vital pathways project task force.

    Science.gov (United States)

    Schwartz, Diane G; Blobaum, Paul M; Shipman, Jean P; Markwell, Linda Garr; Marshall, Joanne Gard

    2009-10-01

    The Medical Education Task Force of the Task Force on Vital Pathways for Hospital Librarians reviewed current and future roles of health sciences librarians in medical education at the graduate and undergraduate levels and worked with national organizations to integrate library services, education, and staff into the requirements for training medical students and residents. Standards for medical education accreditation programs were studied, and a literature search was conducted on the topic of the role of the health sciences librarian in medical education. Expectations for library and information services in current standards were documented, and a draft standard prepared. A comprehensive bibliography on the role of the health sciences librarian in medical education was completed, and an analysis of the services provided by health sciences librarians was created. An essential role and responsibility of the health sciences librarian will be to provide the health care professional with the skills needed to access, manage, and use library and information resources effectively. Validation and recognition of the health sciences librarian's contributions to medical education by accrediting agencies will be critical. The opportunity lies in health sciences librarians embracing the diverse roles that can be served in this vital activity, regardless of accrediting agency mandates.

  7. Science Fiction Movies as a Tool for Revealing Students' Knowledge and Alternative Conceptions

    Science.gov (United States)

    Ongel-Erdal, Sevinc; Sonmez, Duygu; Day, Rob

    2004-01-01

    According to renowned physicist Stephen Hawking, "science fiction is useful both for stimulating the imagination and for diffusing fear of the future." Indeed, several studies suggest that using science fiction movies as a teaching aid can improve both motivation and achievement. However, if a movie's plot crosses the line between good…

  8. The Evolution of Psychology as a Basic Bio-behavioral Science in Healthcare Education.

    Science.gov (United States)

    Carr, John E

    2017-12-01

    For over a century, researchers and educators have called for the integration of psychological science into medical school curricula, but such efforts have been impeded by barriers within medicine and psychology. In addressing these barriers, Psychology has re-examined its relationship to Medicine, incorporated psychological practices into health care, and redefined its parameters as a science. In response to interdisciplinary research into the mechanisms of bio-behavioral interaction, Psychology evolved from an ancillary social science to a bio-behavioral science that is fundamental to medicine and health care. However, in recent medical school curriculum innovations, psychological science is being reduced to a set of "clinical skills," and once again viewed as an ancillary social science. These developments warrant concern and consideration of new approaches to integrating psychological science in medical education.

  9. A confluence of traditions: Examining teacher practice in the merging of secondary science and environmental education

    Science.gov (United States)

    Astrid, Steele

    Embedding environmental education within secondary science curriculum presents both philosophical and practical difficulties for teachers. This ethnographic/narrative study, with its methodology grounded in eco-feminism and realism/constructivism, examines the work of six secondary science teachers as they engage in an action research project focused on merging environmental education in their science lessons. Over the course of several months the teachers examine and discuss their views and their professional development related to the project. In the place of definitive conclusions, eight propositions relating the work of secondary science teachers to environmental education, form the basis for a discussion of the implications of the study. The implications are particularly relevant to secondary schools in Ontario, Canada, where the embedding of environmental education in science studies has been mandated.

  10. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-02-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on one theme that emerged among six participants who disclosed how religion was a significant influence on their persistence in science fields. The strength and support offered by religious values is certainly not specific to science content; however, the support received from their beliefs highlights a potential area for further exploration. Given the importance of increasing participation by students from diverse backgrounds into science fields, it is critical to recognize how some of these differences may be the key factors influencing the way these students look at the world. This study offers evidence that science educators need to consider what role religious beliefs have for students who may be considering science or science education as a future career, particularly for those students from underrepresented groups.

  11. Space Science Education Resource Directory

    Science.gov (United States)

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  12. "Once upon a time": a discussion of children's picture books as a narrative educational tool for nursing students.

    Science.gov (United States)

    Crawley, Josephine Mary

    2009-01-01

    Narrative pedagogy influences many areas of nursing education, with emphasis on the co-constructing of narrative between students, educators, and clinicians. Little has been written about published children's literature as a basis for narrative discussion in nursing education. This article describes how narrative pedagogy already works within nursing education and explores features of children's picture books that give them value as a narrative educational tool for nursing students, providing stories that encourage self-understanding and deconstruct the multiple realities of narratives about the human condition.

  13. Microbiome Tools for Forensic Science.

    Science.gov (United States)

    Metcalf, Jessica L; Xu, Zhenjiang Z; Bouslimani, Amina; Dorrestein, Pieter; Carter, David O; Knight, Rob

    2017-09-01

    Microbes are present at every crime scene and have been used as physical evidence for over a century. Advances in DNA sequencing and computational approaches have led to recent breakthroughs in the use of microbiome approaches for forensic science, particularly in the areas of estimating postmortem intervals (PMIs), locating clandestine graves, and obtaining soil and skin trace evidence. Low-cost, high-throughput technologies allow us to accumulate molecular data quickly and to apply sophisticated machine-learning algorithms, building generalizable predictive models that will be useful in the criminal justice system. In particular, integrating microbiome and metabolomic data has excellent potential to advance microbial forensics. Copyright © 2017. Published by Elsevier Ltd.

  14. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  15. Materials science tetrahedron--a useful tool for pharmaceutical research and development.

    Science.gov (United States)

    Sun, Changquan Calvin

    2009-05-01

    The concept of materials science tetrahedron (MST) concisely depicts the inter-dependent relationship among the structure, properties, performance, and processing of a drug. Similar to its role in traditional materials science, MST encompasses the development in the emerging field of pharmaceutical materials science and forms a scientific foundation to the design and development of new drug products. Examples are given to demonstrate the applicability of MST to both pharmaceutical research and product development. It is proposed that a systematic implementation of MST can expedite the transformation of pharmaceutical product development from an art to a science. By following the principle of MST, integration of research among different laboratories can be attained. The pharmaceutical science community as a whole can conduct more efficient, collaborative, and coherent research.

  16. "Socratic Circles are a Luxury": Exploring the Conceptualization of a Dialogic Tool in Three Science Classrooms

    Science.gov (United States)

    Copelin, Michelle Renee

    Research has shown that dialogic instruction promotes learning in students. Secondary science has traditionally been taught from an authoritative stance, reinforced in recent years by testing policies requiring coverage. Socratic Circles are a framework for student-led dialogic discourse, which have been successfully used in English language arts and social studies classrooms. The purpose of this research was to explore the implementation process of Socratic Circles in secondary science classes where they have been perceived to be more difficult. Focusing on two physical science classes and one chemistry class, this study described the nature and characteristics of Socratic Circles, teachers' dispositions toward dialogic instruction, the nature and characteristics of student discussion, and student motivation. Socratic Circles were found to be a dialogic support that influenced classroom climate, social skills, content connections, and student participation. Teachers experienced conflict between using traditional test driven scripted teaching, and exploring innovation through dialogic instruction. Students experienced opportunities for peer interaction, participation, and deeper discussions in a framework designed to improve dialogic skills. Students in two of the classrooms showed evidence of motivation for engaging in peer-led discussion, and students in one class did not. The class that did not show evidence of motivation had not been given the same scaffolding as the other two classes. Two physical science teachers and one chemistry teacher found that Socratic Circles required more scaffolding than was indicated by their peers in other disciplines such as English and social studies. The teachers felt that student's general lack of background knowledge for any given topic in physical science or chemistry necessitated the building of a knowledge platform before work on a discussion could begin. All three of the teachers indicated that Socratic Circles were a

  17. Science overlay maps: a new tool for research policy and library management

    NARCIS (Netherlands)

    Rafols, I.; Porter, A.L.; Leydesdorff, L.

    2010-01-01

    We present a novel approach to visually locate bodies of research within the sciences, both at each moment of time and dynamically. This article describes how this approach fits with other efforts to locally and globally map scientific outputs. We then show how these science overlay maps help

  18. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education.

    Science.gov (United States)

    Augusto, Ingrid; Monteiro, Douglas; Girard-Dias, Wendell; Dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes Dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  19. Smartphones: Powerful Tools for Geoscience Education

    Science.gov (United States)

    Johnson, Zackary I.; Johnston, David W.

    2013-11-01

    Observation, formation of explanatory hypotheses, and testing of ideas together form the basic pillars of much science. Consequently, science education has often focused on the presentation of facts and theories to teach concepts. To a great degree, libraries and universities have been the historical repositories of scientific information, often restricting access to a small segment of society and severely limiting broad-scale geoscience education.

  20. The Art of Astronomy: A New General Education Course for Non-Science Majors

    Science.gov (United States)

    Pilachowski, Catherine A.; van Zee, Liese

    2017-01-01

    The Art of Astronomy is a new general education course developed at Indiana University. The topic appeals to a broad range of undergraduates and the course gives students the tools to understand and appreciate astronomical images in a new way. The course explores the science of imaging the universe and the technology that makes the images possible. Topics include the night sky, telescopes and cameras, light and color, and the science behind the images. Coloring the Universe: An Insider's Look at Making Spectacular Images of Space" by T. A. Rector, K. Arcand, and M. Watzke serves as the basic text for the course, supplemented by readings from the web. Through the course, students participate in exploration activities designed to help them first to understand astronomy images, and then to create them. Learning goals include an understanding of scientific inquiry, an understanding of the basics of imaging science as applied in astronomy, a knowledge of the electromagnetic spectrum and how observations at different wavelengths inform us about different environments in the universe, and an ability to interpret astronomical images to learn about the universe and to model and understand the physical world.

  1. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 12. Pictures at an Exhibition – A ... Vivek S Borkar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  2. Questions as a tool for bridging science and everyday language games

    Science.gov (United States)

    Lundin, Mattias

    2007-01-01

    Research has shown how students can shift between different ways of communicating about natural phenomena. The point of departure in this text is that school science comprises science ways to communicate as well as everyday ways to communicate. In school science activities transitions, from for example everyday ways to explain to science ways to explain, occur and the purpose of this paper is to show what role questions play in these transitions. Data consists of video observations of a group of 24 students, 15 years of age, doing their ordinary school science work without my interference in their planning. Relevant conversations including questions were transcribed. The analysis was made by examining the establishment of relations between utterances in the transcribed conversations. Relations that bridge science and everyday language games are described in the results. Questions that were formulated in an everyday language game illustrate the difficulties of making transitions to a science language game. Without teacher guidance, students' questions are potential promoters for making the topic drift and to develop into something totally different from the topic as planned by the teacher. However, questions promote transitions to an everyday language game. These can be used by teachers for example to adjust an everyday explanation and guide students in making science knowledge useful in daily life.

  3. What’s Ketso? A Tool for Researchers, Educators, and Practitioners

    OpenAIRE

    James S. Bates

    2016-01-01

    Researchers, educators, and practitioners utilize a range of tools and techniques to obtain data, input, feedback, and information from research participants, program learners, and stakeholders. Ketso is both an array of information gathering techniques and a toolkit (see www.ketso.com). It “can be used in any situation when people come together to share information, learn from each other, make decisions and plan actions” (Tippett & How, 2011, p. 4). The word ketso means “action” in the Sesot...

  4. SSMA Science Reviewers' Forecasts for the Future of Science Education.

    Science.gov (United States)

    Jinks, Jerry; Hoffer, Terry

    1989-01-01

    Described is a study which was conducted as an exploratory assessment of science reviewers' perceptions for the future of science education. Arrives at interpretations for identified categories of computers and high technology, science curriculum, teacher education, training, certification, standards, teaching methods, and materials. (RT)

  5. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    Science.gov (United States)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    /student perceptions of science and scientists. Evidence of the aforementioned changes are provided through external evaluation and results obtained from several assessment tools. The program also utilizes an internal evaluator to monitor participants thoughts and opinions on the previous years' collaboration. Additionally, graduate fellows maintain a reflective journal to provide insight into experiences occurring both in-class and among peers. Finally, student surveys administered prior to and concluding the academic year assess changes in student attitudes and self-perception of spatial thinking skills.

  6. New Technologies and Science Teachers Education within the Context of Distance Learning: A Case Study for the University of Lagos

    Science.gov (United States)

    Adewara, Ademola Johnson; Lawal, Olufunke

    2015-01-01

    The Open and Distance Learning (ODL) education for science teachers is seen as a solution to the problems of equity and access to teacher education in Nigeria. It is used to provide cost-effective Science Teacher Education, and to train large numbers of teachers within a short period of time. The need for training science teachers through ODL…

  7. Experiences of graduate students: Using Cabri as a visualization tool in math education

    Directory of Open Access Journals (Sweden)

    Çiğdem Gül

    2014-12-01

    Full Text Available Through the use of graphic calculators and dynamic software running on computers and mobile devices, students can learn complex algebraic concepts. The purpose of this study is to investigate the experiences of graduate students using Cabri as a visualization tool in math education. The qualitative case study was used in this study. Five students from graduate students studying at the non-thesis math program of a university located in the Blacksea region were the participant of the study. As a dynamic learning tool, Cabri provided participants an environment where participants visually discovered the geometry. It was concluded that dynamic learning tools like Cabri has a huge potential for teaching visually the challenging concepts that students struggle to image. Further research should investigate the potential plans for integrating the use of dynamic learning software into the math curriculum

  8. The educational effects of mobile learning on students of medical sciences: A systematic review in experimental studies.

    Science.gov (United States)

    Koohestani, Hamid Reza; Soltani Arabshahi, Seyed Kamran; Fata, Ladan; Ahmadi, Fazlollah

    2018-04-01

    The demand for mobile learning in the medical science educational program is increasing. The present review study gathers evidence highlighted by the experimental studies on the educational effects of mobile learning for medical science students. The study was carried out as a systematic literature search published from 2007 to July 2017 in the databases PubMed/Medline, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Web of Knowledge (Thomson Reuters) , Educational Resources and Information Center (ERIC), EMBASE (Elsevier), Cochrane library, PsycINFO and Google Scholar. To examine quality of the articles, a tool validated by the BEME Review was employed. Totally, 21 papers entered the study. Three main themes emerged from the content of papers: (1) improvement in student clinical competency and confidence, (2) acquisition and enhancing of students' theoretical knowledge, and (3) students' positive attitudes to and perception of mobile learning. Level 2B of Kirkpatrick hierarchy had been examined by all the papers and seven of them had reported two or more outcome levels, but level 4 was not reported in the papers. Our review showed that the students of medical sciences had positive response and attitudes to mobile learning. Moreover, implementation of mobile learning in medical sciences program might lead to valuable educational benefits and improve clinical competence and confidence along with theoretical knowledge, attitudes, and perception of mobile learning. The results indicated that mobile learning strategy in medical education can positively affect learning in all three domains of Bloom's Taxonomy.

  9. Newspapers in Science Education: A Study Involving Sixth Grade Students

    Science.gov (United States)

    Lai, Ching-San; Wang, Yun-Fei

    2016-01-01

    The purpose of this study was to explore the learning performance of sixth grade elementary school students using newspapers in science teaching. A quasi-experimental design with a single group was used in this study. Thirty-three sixth grade elementary school students participated in this study. The research instruments consisted of three…

  10. Educating Laboratory Science Learners at a Distance Using Interactive Television

    Science.gov (United States)

    Reddy, Christopher

    2014-01-01

    Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…

  11. Crowdfunding for Elementary Science Educators

    Science.gov (United States)

    Reese, Jessica; Miller, Kurtz

    2017-01-01

    The inadequate funding of science education in many school districts, particularly in underserved areas, is preventing elementary science educators from realizing the full potential of the "Next Generation Science Standards" ("NGSS"). Yet many elementary science teachers may be unaware that millions of dollars per year are…

  12. The effectiveness of digital microscopy as a teaching tool in medical laboratory science curriculum.

    Science.gov (United States)

    Castillo, Demetra

    2012-01-01

    A fundamental component to the practice of Medical Laboratory Science (MLS) is the microscope. While traditional microscopy (TM) is gold standard, the high cost of maintenance has led to an increased demand for alternative methods, such as digital microscopy (DM). Slides embedded with blood specimens are converted into a digital form that can be run with computer driven software. The aim of this study was to investigate the effectiveness of digital microscopy as a teaching tool in the field of Medical Laboratory Science. Participants reviewed known study slides using both traditional and digital microscopy methods and were assessed using both methods. Participants were randomly divided into two groups. Group 1 performed TM as the primary method and DM as the alternate. Group 2 performed DM as the primary and TM as the alternate. Participants performed differentials with their primary method, were assessed with both methods, and then performed differentials with their alternate method. A detailed assessment rubric was created to determine the accuracy of student responses through comparison of clinical laboratory and instructor results. Student scores were reflected as a percentage correct from these methods. This assessment was done over two different classes. When comparing results between methods for each, independent of the primary method used, results were not statistically different. However, when comparing methods between groups, Group 1 (n = 11) (TM = 73.79% +/- 9.19, DM = 81.43% +/- 8.30; paired t10 = 0.182, p < 0.001) showed a significant difference from Group 2 (n = 14) (TM = 85.64% +/- 5.30, DM = 85.91% +/- 7.62; paired t13 = 3.647, p = 0.860). In the subsequent class, results between both groups (n = 13, n = 16, respectively) did not show any significant difference between groups (Group 1 TM = 86.38% +/- 8.17, Group 1 DM = 88.69% +/- 3.86; paired t12 = 1.253, p = 0.234; Group 2 TM = 86.75% +/- 5.37, Group 2 DM = 86.25% +/- 7.01, paired t15 = 0.280, p

  13. Identifying barriers to Science, Technology, Society and environment (STSE) educational goals and pedagogy in science education: A case study of UMASS Lowell undergraduate engineering

    Science.gov (United States)

    Phaneuf, Tiffany

    The implementation of sustainable development in higher education is a global trend. Engineers, as gatekeepers of technological innovation, confront increasingly complex world issues ranging from economic and social to political and environmental. Recently, a multitude of government reports have argued that solving such complex problems requires changes in the pedagogy of engineering education, such as that prescribed by the Science, Technology, Society, and education (STS) movement that grew out of the environmental movement in the 70s. In STS students are engaged in the community by understanding that scientific progress is innately a sociopolitical process that involves dimensions of power, wealth and responsibility. United States accreditation criteria now demand "the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context" (ABET Engineering Accreditation Commission 2005). With such emphasis on STS education as necessary to address complex world issues, it is vital to assess the barriers in the traditional engineering curriculum that may inhibit the success of such educational reform. This study identifies barriers to STS goals and pedagogy in post secondary science education by using the Francis College of Engineering at UMASS Lowell as a single case study. The study draws on existing literature to develop a theoretical framework for assessing four hypothesized barriers to STS education in undergraduate engineering. Identification of barriers to STS education in engineering generates a critical reflection of post secondary science education and its role in preparing engineers to be active citizens in shaping a rapidly globalizing world. The study offers policy recommendations for enabling post secondary science education to incorporate STS education into its curriculum.

  14. Fermilab Friends for Science Education | Calendar

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Calendar Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  15. Fermilab Friends for Science Education | Mission

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Mission Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education Office Search Programs Calendar Join Us/Renew Membership Forms: Online - Print Support Us Donation Forms: Online - Print Tree of

  16. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  17. CMS launches new educational tools

    CERN Document Server

    Corinne Pralavorio

    2014-01-01

    On 5 and 11 November, almost 90 pupils from the Fermi scientific high school in Livorno, Italy, took part in two Masterclass sessions organised by CMS.   CMS Masterclass participants.  The pupils took over a hall at CERN for an afternoon to test a new software tool called CIMA (CMS Instrument for Masterclass Analysis) for the first time. The software simplifies the process of recording results and reduces the number of steps required to enter data. During the exercise, each group of pupils had to analyse about a hundred events from the LHC. For each event, the budding physicists determined whether what they saw was a candidate W boson, Z boson or Higgs boson, identified the decay mode and entered key data. At the end of the analysis, they used the results to reconstruct a mass diagram. CIMA was developed by a team of scientists from the University of Aachen, Germany, the University of Notre-Dame, United States, and CERN. CMS has also added yet another educational tool to its already l...

  18. More than Just Playing Outside: A Self-Study on Finding My Identity as an Environmental Educator in Science Education

    Science.gov (United States)

    Gatzke, Jenna M.; Buck, Gayle A.; Akerson, Valarie L.

    2015-01-01

    The purpose of this study was to investigate the identity conflicts I was experiencing as an environmental educator entering a doctoral program in science education. My inquiry used self-study methodology with a variety of data sources, including sixteen weeks of personal journal entries, audio-recordings of four critical friend meetings, and…

  19. Training Educators to Teach the Sun and Space Weather Using a Kit of Tools

    Science.gov (United States)

    Keesee, A. M.; Ensign, T.

    2014-12-01

    NASA provides a wealth of data from Heliospheric missions to the public, but educators face several challenges to using such data in the classroom. These include the knowledge of what is available and how to use it, a full understanding of the science concepts the data demonstrate, ability to obtain and maintain products to access data, and access to technology (such as computer labs) for anything other than testing. To surmount these challenges, the Educator Resource Center at the NASA Independent Validation and Verification (IV&V) Center in Fairmont, WV has developed an operational model that focuses on housing, maintaining, and lending out kits of necessary equipment along with training educators in the science concepts and use of kit materials. Following this model, we have developed a Sun and Space Weather kit and an educator professional development course that we have presented several times. The kit includes a classroom set of iPads utilized to access data from NASA missions and other sources as well as create video reports for project based outcomes, a set of telescopes for safe solar viewing, and materials to explore magnetic fields and the electromagnetic spectrum. We will present an overview of the training course, the kit materials, and lessons learned.

  20. Okhee Lee, Cory A. Buxton, James A. Banks (ed.), Diversity and equity in science education: research, policy, and practice

    Science.gov (United States)

    Bannier, Betsy J.

    2015-06-01

    Highly relevant for academic study among K-12 educators and the higher education faculty who train pre-service teachers, Diversity and equity in science education highlights three interrelated issues impacting science education in the United States. First, complicated dynamics related to the large and increasing population of English language learning (ELL) students are discussed. Second, the realities of standardized test scores are comparatively explored, both within and beyond the United States. Third, the politics of accountability in education are vigorously discussed. Okhee Lee and Cory A. Buxton weave through the contexts of politics, education, science, and culture to expand existing discourse about how to best educate our nation's children.

  1. Fermilab Friends for Science Education | Tree of Knowledge

    Science.gov (United States)

    Fermilab Friends for Science Education FFSE Home About Us Join Us Support Us Contact Us Tree of Testimonials Our Donors Board of Directors Board Tools Calendar Join Us Donate Now Get FermiGear! Education precollege science education programs. Prominently displayed at the Lederman Science Center is the lovely

  2. Exploring the development of science self-efficacy in preservice elementary school teachers participating in a science education methods course

    Science.gov (United States)

    Gunning, Amanda M.

    The demands of society's increasing dependence on science and technology call for our students to have a solid foundation in science education, starting in the earliest grades. However, elementary school teachers often lack the necessary experiences to deliver that education. This qualitative study seeks to explore the development of six preservice elementary teachers in a semester-long science methods course. The course consisted of many components; one in particular was a microteaching experience, which emerged as especially significant. The participants' experiences throughout the semester were studied primarily through the lens of self-efficacy, but were also examined considering learning theories and mental models. It was found that two participants in particular were self-directed learners and were able to construct for themselves a self-selected cognitive apprenticeship. Other findings include the significance of a microteaching experience on development of self-efficacy in science teaching and the role mental models may or may not play in development of self-efficacy in the science methods course. This study has implications both for preservice elementary education in science and in general.

  3. A Mixed Methods Content Analysis of the Research Literature in Science Education

    Science.gov (United States)

    Schram, Asta B.

    2014-10-01

    In recent years, more and more researchers in science education have been turning to the practice of combining qualitative and quantitative methods in the same study. This approach of using mixed methods creates possibilities to study the various issues that science educators encounter in more depth. In this content analysis, I evaluated 18 studies from science education journals as they relate to the definition, design, and overall practice of using mixed methods. I scrutinized a purposeful sample, derived from 3 journals (the International Journal of Science Education, the Journal of Research in Science Teaching, and the Research in Science Education) in terms of the type of data collected, timing, priority, design, the mixing of the 2 data strands in the studies, and the justifications authors provide for using mixed methods. Furthermore, the articles were evaluated in terms of how well they met contemporary definitions for mixed methods research. The studies varied considerably in the use and understanding of mixed methods. A systematic evaluation of the employment of mixed methods methodology was used to identify the studies that best reflected contemporary definitions. A comparison to earlier content analyses of mixed methods research indicates that researchers' knowledge of mixed methods methodology may be increasing. The use of this strategy in science education research calls, however, for an improved methodology, especially concerning the practice of mixing. Suggestions are given on how to best use this approach.

  4. MetaBlast! Virtual Cell: A Pedagogical Convergence between Game Design and Science Education

    Directory of Open Access Journals (Sweden)

    Anson Call

    2007-10-01

    Full Text Available Virtual Cell is a game design solution to a specific scientific and educational problem; expressly, how to make advanced, university level plant biology instruction on molecular and anatomical levels an exciting, efficient learning experience. The advanced technologies of 3D modeling and animation, computer programming and game design are united and tempered with strong, scientific guidance for accuracy and art direction for a powerful visual and audio simulation. The additional strength of intense gaming as a powerful tool aiding memory, logic and problem solving has recently become well recognized. Virtual Cell will provide a unique gaming experience, while transparently teaching scientifically accurate facts and concepts about, in this case, a soybean plant's inner workings and dependant mechanisms on multiple scales and levels of complexity. Virtual Cell (from now on referred to as VC in the future may prove to be a reference for other scientific/education endeavors as scientists battle for a more prominent mind share among average citizens. This paper will discuss the difficulties of developing VC, its structure, intended game and educational goals along with additional benefits to both the sciences and gaming industry.

  5. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  6. Environmental Science and Engineering Merit Badges: An Exploratory Case Study of a Non-Formal Science Education Program and the U.S. Scientific and Engineering Practices

    Science.gov (United States)

    Vick, Matthew E.; Garvey, Michael P.

    2016-01-01

    The Boy Scouts of America's Environmental Science and Engineering merit badges are two of their over 120 merit badges offered as a part of a non-formal educational program to U.S. boys. The Scientific and Engineering Practices of the U.S. Next Generation Science Standards provide a vision of science education that includes integrating eight…

  7. NASA Wavelength: A Digital Library for Earth and Space Science Education

    Science.gov (United States)

    Schwerin, T.; Peticolas, L. M.; Bartolone, L. M.; Davey, B.; Porcello, D.

    2012-12-01

    The NASA Science Education and Public Outreach Forums have developed a web-based information system - NASA Wavelength - that will enable easy discovery and retrieval of thousands of resources from the NASA Earth and space science education portfolio. The beta system is being launched fall 2012 and has been developed based on best-practices in the architecture and design of Web-based information systems. The design style and philosophy emphasize simple, reusable data and services that facilitate the free-flow of data across systems. The primary audiences for NASA Wavelength are STEM educators (K-12, higher education and informal education) as well as scientists, education and public outreach professionals who work with k-12, higher education and informal education.

  8. An online knowledge resource and questionnaires as a continuing pharmacy education tool to document reflective learning.

    Science.gov (United States)

    Budzinski, Jason W; Farrell, Barbara; Pluye, Pierre; Grad, Roland M; Repchinsky, Carol; Jovaisas, Barbara; Johnson-Lafleur, Janique

    2012-06-18

    To assess the use of an electronic knowledge resource to document continuing education activities and reveal educational needs of practicing pharmacists. Over a 38-week period, 67 e-mails were sent to 6,500 Canadian Pharmacists Association (CPhA) members. Each e-mail contained a link to an e-Therapeutics+ Highlight, a factual excerpt of selected content from an online drug and therapeutic knowledge resource. Participants were then prompted to complete a pop-up questionnaire. Members completed 4,140 questionnaires. Participants attributed the information they learned in the Highlights to practice improvements (50.4%), learning (57.0%), and motivation to learn more (57.4%). Reading Highlight excerpts and completing Web-based questionnaires is an effective method of continuing education that could be easily documented and tracked, making it an effective tool for use with e-portfolios.

  9. The Potential of Perspectivism for Science Education

    Science.gov (United States)

    Pearce, Jacob V.

    2013-01-01

    Many science teachers are presented with the challenge of characterizing science as a dynamic, human endeavour. Perspectivism, as a hermeneutic philosophy of science, has the potential to be a learning tool for teachers as they elucidate the complex nature of science. Developed earlier by Nietzsche and others, perspectivism has recently re-emerged…

  10. Road Safety Education in a Science Course: Evaluation of "Science and the Road."

    Science.gov (United States)

    Gardner, Paul L.

    1989-01-01

    A traffic safety instructional package--"Science and the Road"--was assessed. It was designed by the Road Traffic Authority of Victoria (Australia) for use in tenth-grade science courses. Evaluation findings resulted in revision of the unit and implementation of more inservice courses for teachers lacking relevant biology and physics…

  11. Examining the Nexus of Science Communication and Science Education: A Content Analysis of Genetics News Articles

    Science.gov (United States)

    Shea, Nicole A.

    2015-01-01

    Access to science information via communications in the media is rapidly becoming a central means for the public to gain knowledge about scientific advancements. However, little is known about what content knowledge is essential for understanding issues presented in news media. Very few empirical studies attempt to bridge science communication and…

  12. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  13. Cultural Memory Banking in Preservice Science Teacher Education

    Science.gov (United States)

    Handa, Vicente C.; Tippins, Deborah J.

    2012-12-01

    This study focused on the exemplification of cultural memory banking as an ethnographic tool to understand cultural practices relevant to science teaching and learning in a rural coastal village in a central island of the Philippine archipelago. Using the collaborative action ethnography as a research methodology, 10 prospective science teachers and a science teacher educator/doctoral candidate formed a research team and documented community funds of knowledge relevant to science teaching and learning through their participation in a Community Immersion course. The study employed the use of the cultural memory banking as a meditational tool to analyze, make sense of, and represent interview, focus-group discussion, and observation data, among others, for the development of culturally relevant science lessons. Originally used as an anthropological tool to preserve cultural knowledge associated with the cultivation of indigenous plant varieties, the cultural memory banking, as adapted in science education, was used, both as a data collection and analytic tool, to locate relevant science at the intersection of community life. The research team developed a cultural memory bank exemplar, "Ginamos: The Stinky Smell that Sells," to highlight the learning experiences and meaning-making process of those involved in its development. Dilemmas and insights on the development and use of cultural memory banking were discussed with respect to issues of knowledge mining and mainstreaming of indigenous/local funds of knowledge, troubling the privileged position of Western-inspired nature of science.

  14. Spec Tool; an online education and research resource

    Science.gov (United States)

    Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.

    2016-06-01

    Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.

  15. Sàng khôn as A Theorizing Tool in Mobility Education

    Directory of Open Access Journals (Sweden)

    Ngoc Ba Doan

    2017-02-01

    Full Text Available The current virtual and physical mobility of humans, ideas, knowledge and epistemologies has major implications for education, especially in settings where English is seen as the default medium of instruction. While diversity is inherent in mobility, English-only pedagogy is a denial of the richness and potential of diverse resources learners bring with them through their mobility. This paper reports a philosophical stance and pedagogical practices employed by a lecturer in English language education at an Australian university. It argues that students’ full linguistic resources and epistemologies, known as sàng khôn, contribute to their agency and can be used as tools to theorise new knowledge in the context of their mobility education.

  16. A Comparison of Creativity in Project Groups in Science and Engineering Education in Denmark and China

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Valero, Paola

    2015-01-01

    Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China.......Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China....

  17. Balancing the Equation. A Study of Women and Science and Technology within Further Education. Project Report.

    Science.gov (United States)

    Stoney, Sheila M.; Reid, Margaret I.

    A 1-year project was conducted to explore ways and suggest possible strategies by which Further Education staff in Great Britain can help improve women's participation, progress, and attainment in physical science and technology, particularly at technician and craft levels. Data were collected by a questionnaire survey of heads of science and…

  18. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  19. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  20. Collaborative Data Mining Tool for Education

    Science.gov (United States)

    Garcia, Enrique; Romero, Cristobal; Ventura, Sebastian; Gea, Miguel; de Castro, Carlos

    2009-01-01

    This paper describes a collaborative educational data mining tool based on association rule mining for the continuous improvement of e-learning courses allowing teachers with similar course's profile sharing and scoring the discovered information. This mining tool is oriented to be used by instructors non experts in data mining such that, its…