WorldWideScience

Sample records for sciences current contents

  1. Cartography and Geographic Information Science in Current Contents

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula

    2009-12-01

    Full Text Available The Cartography and Geographic Information Science (CaGIS journal was published as The American Cartographer from 1974 to 1989, after that as Cartography and Geographic Information System, and since then has been published with its current name. It is published by the Cartography and Geographic Information Society, a member of the American Congress on Surveying and Mapping.

  2. Factors Influencing Science Content Accuracy in Elementary Inquiry Science Lessons

    Science.gov (United States)

    Nowicki, Barbara L.; Sullivan-Watts, Barbara; Shim, Minsuk K.; Young, Betty; Pockalny, Robert

    2013-06-01

    Elementary teachers face increasing demands to engage children in authentic science process and argument while simultaneously preparing them with knowledge of science facts, vocabulary, and concepts. This reform is particularly challenging due to concerns that elementary teachers lack adequate science background to teach science accurately. This study examined 81 in-classroom inquiry science lessons for preservice education majors and their cooperating teachers to determine the accuracy of the science content delivered in elementary classrooms. Our results showed that 74 % of experienced teachers and 50 % of student teachers presented science lessons with greater than 90 % accuracy. Eleven of the 81 lessons (9 preservice, 2 cooperating teachers) failed to deliver accurate science content to the class. Science content accuracy was highly correlated with the use of kit-based resources supported with professional development, a preference for teaching science, and grade level. There was no correlation between the accuracy of science content and some common measures of teacher content knowledge (i.e., number of college science courses, science grades, or scores on a general science content test). Our study concluded that when provided with high quality curricular materials and targeted professional development, elementary teachers learn needed science content and present it accurately to their students.

  3. Teaching science content in nursing programs in Australia: a cross-sectional survey of academics.

    Science.gov (United States)

    Birks, Melanie; Ralph, Nicholas; Cant, Robyn; Hillman, Elspeth; Chun Tie, Ylona

    2015-01-01

    Professional nursing practice is informed by biological, social and behavioural sciences. In undergraduate pre-registration nursing programs, biological sciences typically include anatomy, physiology, microbiology, chemistry, physics and pharmacology. The current gap in the literature results in a lack of information about the content and depth of biological sciences being taught in nursing curricula. The aim of this study was to establish what priority is given to the teaching of science topics in these programs in order to inform an understanding of the relative importance placed on this subject area in contemporary nursing education. This study employed a cross-sectional survey method. This paper reports on the first phase of a larger project examining science content in nursing programs. An existing questionnaire was modified and delivered online for completion by academics who teach science to nurses in these programs. This paper reports on the relative priority given by respondents to the teaching of 177 topics contained in the questionnaire. Of the relatively small population of academics who teach science to nursing students, thirty (n = 30) completed the survey. Findings indicate strong support for the teaching of science in these programs, with particular priority given to the basic concepts of bioscience and gross system anatomy. Of concern, most science subject areas outside of these domains were ranked as being of moderate or low priority. While the small sample size limited the conclusions able to be drawn from this study, the findings supported previous studies that indicated inadequacies in the teaching of science content in nursing curricula. Nevertheless, these findings have raised questions about the current philosophy that underpins nursing education in Australia and whether existing practices are clearly focused on preparing students for the demands of contemporary nursing practice. Academics responsible for the design and implementation of

  4. Valid and Reliable Science Content Assessments for Science Teachers

    Science.gov (United States)

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-01-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper…

  5. Assessing the Genetics Content in the Next Generation Science Standards.

    Science.gov (United States)

    Lontok, Katherine S; Zhang, Hubert; Dougherty, Michael J

    2015-01-01

    Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM). Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS) using a consensus list of American Society of Human Genetics (ASHG) core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs) included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.

  6. Assessing the Genetics Content in the Next Generation Science Standards.

    Directory of Open Access Journals (Sweden)

    Katherine S Lontok

    Full Text Available Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM. Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS using a consensus list of American Society of Human Genetics (ASHG core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.

  7. Elementary student teachers' science content representations

    Science.gov (United States)

    Zembal-Saul, Carla; Krajcik, Joseph; Blumenfeld, Phyllis

    2002-08-01

    This purpose of this study was to examine the ways in which three prospective teachers who had early opportunities to teach science would approach representing science content within the context of their student teaching experiences. The study is framed in the literature on pedagogical content knowledge and learning to teach. A situated perspective on cognition is applied to better understand the influence of context and the role of the cooperating teacher. The three participants were enrolled in an experimental teacher preparation program designed to enhance the teaching of science at the elementary level. Qualitative case study design guided the collection, organization, and analysis of data. Multiple forms of data associated with student teachers' content representations were collected, including audiotaped planning and reflection interviews, written lesson plans and reflections, and videotaped teaching experiences. Broad analysis categories were developed and refined around the subconstructs of content representation (i.e., knowledge of instructional strategies that promote learning and knowledge of students and their requirements for meaningful science learning). Findings suggest that when prospective teachers are provided with opportunities to apply and reflect substantively on their developing considerations for supporting children's science learning, they are able to maintain a subject matter emphasis. However, in the absence of such opportunities, student teachers abandon their subject matter emphasis, even when they have had extensive background and experiences addressing subject-specific considerations for teaching and learning.

  8. Preservice Elementary Teachers' Science Self-Efficacy Beliefs and Science Content Knowledge

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2016-10-01

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers' science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers' science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants' responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.

  9. Assessment Guide for Educators: A Content Comparison--2002 Series Test and the Current GED® Test

    Science.gov (United States)

    GED Testing Service, 2017

    2017-01-01

    This report provides a content comparison for the 2002 Series GED® test and the current GED® for the following test topic areas: (1) Mathematical Reasoning; (2) Reasoning through Language Arts; (3) Science; and (4) Social Studies.

  10. Self-Directed Learning to Improve Science Content Knowledge for Teachers

    Science.gov (United States)

    van Garderen, Delinda; Hanuscin, Deborah; Thomas, Cathy Newman; Stormont, Melissa; Lee, Eun J.

    2017-01-01

    Students with disabilities often struggle in science and underperform in this important content area when compared to their typical peers. Unfortunately, many special educators have had little preparation to develop science content knowledge or skills in methods for teaching science. Despite their lack of content knowledge, special educators are…

  11. History of Science Content Analysis of Chinese Science Textbooks from the Perspective of Acculturation

    Science.gov (United States)

    Ma, Yongjun; Wan, Yanlan

    2017-01-01

    Based on previous international studies, a content analysis scheme has been designed and used from the perspective of culture to study the history of science (HOS) in science textbooks. Nineteen sets of Chinese science textbooks have been analyzed. It has been found that there are noticeable changes in the quantity, content, layout, presentation,…

  12. "Wow! Look at That!": Discourse as a Means to Improve Teachers' Science Content Learning in Informal Science Institutions

    Science.gov (United States)

    Holliday, Gary M.; Lederman, Judith S.; Lederman, Norman G.

    2014-12-01

    Currently, it is not clear whether professional development staff at Informal Science Institutions (ISIs) are considering the way exhibits contribute to the social aspects of learning as described by the contextual model of learning (CML) (Falk & Dierking in The museum experience. Whalesback, Washington, 1992; Learning from museums: visitor experiences and the making of meaning. Altamira Press, New York, 2000) and recommended in the reform documents (see Cox-Peterson et al. in Journal of Research in Science Teaching 40:200-218, 2003). In order to move beyond only preparing science teachers for field trips, while necessary, it is also important to understand the role exhibits play in influencing teachers' content-related social interactions while engaged in ISI professional development. This study looked at a life science course that was offered at and taught by education staff of a large science and technology museum located in the Midwest, USA. The course was offered to three sections of teachers throughout the school year and met six times for a full day. The courses met approximately once a month from September through the beginning of June and provided 42 contact hours overall. Elementary and middle school teachers ( n = 94) were audio- and videotaped while participating in the content courses and interacting with the museum's exhibits. When considering the two factors within the sociocultural context of CML: within-group sociocultural mediation and facilitated mediation by others, the use of exhibits during both courses generally did not fully take into account these elements. In this study, it seemed that teachers' talk always had a purpose but it is argued that it did not always have a direction or connection to the desired content or exhibit. When freely exploring the museum, teachers often purely reacted to the display itself or the novelty of it. However, when PD staff made explicit connections between exhibits, content, and activities, participants were

  13. A content analysis of physical science textbooks with regard to the nature of science and ethnic diversity

    Science.gov (United States)

    Brooks, Kristine M.

    nature of science and what is the balance of ethnic diversity in the participants in science (students and scientists) in physical science textbooks? To establish an answer to these questions, this investigation used content analysis. For the balance of the four aspects of the nature of science, the analysis was conducted on random page samples of five physical science textbooks. A random sampling of the pages within the physical science textbooks should be sufficient to represent the content of the textbooks (Garcia, 1985). For the balance of ethnic diversity of the participants in science, the analysis was conducted on all pictures or drawings of students and scientists within the content of the five textbooks. One of these IPC books is under current use in a large, local school district and the other four were published during the same, or similar, year. Coding procedures for the sample used two sets of coders. One set of coders have previously analyzed for the nature of science in a study on middle school science textbooks (Phillips, 2006) and the coders for ethnic diversity are public school teachers who have worked with ethnically diverse students for over ten years. Both sets of coders were trained and the reliability of their coding checked before coding the five textbooks. To check for inter-coder reliability, percent agreement, Cohen's kappa and Krippendorff's alpha were calculated. The results from this study indicate that science as a body of knowledge and science as a way of investigating are the prevalent themes of the nature of science in the five physical science textbooks. This investigation also found that there is an imbalance in the ethnic diversity of students and scientists portrayed within the chapters of the physical science textbooks studied. This imbalance reflects ratios that are neither equally balanced nor in align with the U.S. Census. Given that textbooks are the main sources of information in most classrooms, the imbalance of the nature of

  14. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  15. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  16. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  17. SciNews: Incorporating Science Current Events in 21st Century Classrooms

    Science.gov (United States)

    DiMaggio, E.

    2011-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance is important for student learning and retention, especially in science where abstract concepts can often be incorrectly perceived as irrelevant. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the 2011 earthquake and tsunami in Japan), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief 'teachable moments'--when student interest is high--provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, I create pre-packaged current event materials for middle to high school teachers that align to state standards, and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15-30 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. I assemble materials within approximately one week of the regional or global science event, consisting of short slide shows, maps, videos, pictures, and real-time data. I use a listserv to send biweekly emails to subscribed instructors containing the current event topic and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach SciNews website (http://sese.asu.edu/teacher-resources) and are archived. Currently, 285 educators subscribe to the SciNews listserv, representing 36 states and 19 countries. In order to assess the effectiveness and usefulness of Sci

  18. Developing pre-service science teachers' pedagogical content knowledge by using training program

    Science.gov (United States)

    Udomkan, Watinee; Suwannoi, Paisan

    2018-01-01

    A training program was developed for enhancing pre-service science teachers' pedagogical content knowledge (PCK). The pre-service science teachers are able to: understand science curriculum, knowledge of assessment in science, knowledge of students' understanding of science, instructional strategies and orientations towards science teaching, which is conceptualized as PCK [5]. This study examined the preservice science teachers' understandings and their practices which include five pre-service science teachers' PCK. In this study, the participants demonstrated their PCK through the process of the training program by writing content representations (CoRes), preparing the lesson plans, micro-teaching, and actual teaching respectively. All pre-service science teachers' performs were collected by classroom observations. Then, they were interviewed. The results showed that the pre-service science teachers progressively developed knowledge components of PCK. Micro-teaching is the key activities for developing PCK. However, they had some difficulties in their classroom teaching. They required of sufficient ability to design appropriate instructional strategies and assessment activities for teaching. Blending content and pedagogy is also a matter of great concern. The implication of this study was that science educators can enhance pre-service science teachers' PCK by fostering their better understandings of the instructional strategies, assessment activities and blending between content and pedagogy in their classroom.

  19. The Use of Online Current Awareness Services by Natural Sciences and Engineering Faculty at Western Michigan University

    Science.gov (United States)

    Leatherman, Carrie C.; Eckel, Edward J.

    2012-01-01

    Nearly every commercial database that covers natural sciences and engineering offers some type of current awareness (CA) service that provides regular updates to users on current literature in a selected field of interest. Current awareness services include e-mail alerts, tables of contents, and RSS feeds. This study was designed to find out what…

  20. Teaching the content and context of science: The effect of using historical narratives to teach the nature of science and science content in an undergraduate introductory geology course

    Science.gov (United States)

    Vanderlinden, David Winston

    This study reports the use of historically accurate narratives (short stories) to simultaneously teach geology content and the nature of science in an introductory, undergraduate geology course. The stories describe key events involved in the development of geologists' ideas about continental drift/plate tectonics and deep time/the age of the Earth. The design of the stories provides a highly contextualized setting which is designed to promote NOS and geology understanding by explicitly attending students to fundamental concepts and requiring students to reflect on the short story content. Evidence is reported to support the conclusion that students using these short stories constructed a better understanding of (1) the variety of processes involved in the construction of scientific knowledge, (2) the subjective nature of data that allows it to be interpreted differently by different scientists, and (3) the roles that culture and society play in determining the way in which scientific work is conducted and scientific ideas are constructed, while maintaining equal levels of understanding of geology content when compared to students who did not use the short stories. In some cases, students' preconceptions about objectivity in science, the degree to which scientific ideas can be considered as "proven" or "true," and the role of discovery in science appear to have adversely affected their ability to interpret the short story content in the ways intended. In addition, students' misconceptions about differences in how oceanic and continental plates were formed and geologists' use of relative and absolute dating techniques, especially the appropriate uses of radio-isotopic dating, are described. This study has implications for science instructors as they make efforts to efficiently use class time and curriculum resources to teach about the both the content and context of science and for geology instructors as they consider students' misconceptions about plate tectonics

  1. Capturing and portraying science student teachers' pedagogical content knowledge through CoRe construction

    Science.gov (United States)

    Thongnoppakun, Warangkana; Yuenyong, Chokchai

    2018-01-01

    Pedagogical content knowledge (PCK) is an essential kind of knowledge that teacher have for teaching particular content to particular students for enhance students' understanding, therefore, teachers with adequate PCK can give content to their students in an understandable way rather than transfer subject matter knowledge to learner. This study explored science student teachers' PCK for teaching science using Content representation base methodology. Research participants were 68 4th year science student teachers from department of General Science, faculty of Education, Phuket Rajabhat University. PCK conceptualization for teaching science by Magnusson et al. (1999) was applied as a theoretical framework in this study. In this study, Content representation (CoRe) by Loughran et al. (2004) was employed as research methodology in the lesson preparation process. In addition, CoRe consisted of eight questions (CoRe prompts) that designed to elicit and portray teacher's PCK for teaching science. Data were collected from science student teachers' CoRes design for teaching a given topic and student grade. Science student teachers asked to create CoRes design for teaching in topic `Motion in one direction' for 7th grade student and further class discussion. Science student teachers mostly created a same group of science concepts according to subunits of school science textbook rather than planned and arranged content to support students' understanding. Furthermore, they described about the effect of student's prior knowledge and learning difficulties such as students' knowledge of Scalar and Vector quantity; and calculating skill. These responses portrayed science student teacher's knowledge of students' understanding of science and their content knowledge. However, they still have inadequate knowledge of instructional strategies and activities for enhance student learning. In summary, CoRes design can represented holistic overviews of science student teachers' PCK related

  2. Comfort and Content: Considerations for Informal Science Professional Development

    Science.gov (United States)

    Holliday, Gary M.; Lederman, Norman G.; Lederman, Judith S.

    2014-01-01

    This study looked at a life science course that was offered at and taught by education staff of a large informal science institution (ISI) located in the Midwest. The curriculum, materials, and agendas for the course were developed by education staff and complemented a permanent life science exhibition. The researcher developed a content test…

  3. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    Science.gov (United States)

    Klinkenborg, Ann Maria

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.

  4. Technological, Pedagogical, and Content Knowledge (TPACK): An Educational Landscape for Tertiary Science Faculty

    Science.gov (United States)

    Lavadia, Linda

    Earlier studies concluded that technology's strength is in supporting student learning rather than as an instrument for content delivery (Angeli & Valanides, 2014). Current research espouses the merits of the Technological Pedagogical Content Knowledge (TPACK) framework as a guide for educators' reflections about technology integration within the context of content and instructional practice. Grounded by two theoretical frameworks, TPACK (Mishra & Koehler, 2006; 2008) and Rogers' (1983, 1995) theory of diffusion of innovation, the purpose of this mixed-methods research was two-fold: to explore the perceived competencies of tertiary science faculty at higher education institutions with respect to their integration of technology within the constructs of pedagogical practice and content learning and to analyze whether these perceived competencies may serve as predictive factors for technology adoption level. The literature review included past research that served as models for the Sci-TPACK instrument. Twenty-nine professors of tertiary science courses participated in an online Likert survey, and four professors provided in-depth interviews on their TPACK practices. Quantitative analysis of data consisted of descriptive and reliability statistics, calculations of means for each of the seven scales or domains of TPACK, and regression analysis. Open-ended questions on the Likert survey and individual interviews provided recurrent themes of the qualitative data. Final results revealed that the participants integrate technology into pedagogy and content through a myriad of TPACK practices. Regression analysis supported perceived TPACK competencies as predictive factors for technology adoption level.

  5. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    Science.gov (United States)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  6. Interaction between Science Teaching Orientation and Pedagogical Content Knowledge Components

    Science.gov (United States)

    Demirdögen, Betül

    2016-01-01

    The purpose of this case study is to delve into the complexities of how preservice science teachers' science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the…

  7. Promoting pedagogical content knowledge development for early career secondary teachers in science and technology using content representations

    Science.gov (United States)

    Williams, John; Eames, Chris; Hume, Anne; Lockley, John

    2012-11-01

    Background: This research addressed the key area of early career teacher education and aimed to explore the use of a 'content representation' (CoRe) as a mediational tool to develop early career secondary teacher pedagogical content knowledge (PCK). This study was situated in the subject areas of science and technology, where sound teacher knowledge is particularly important to student engagement. Purpose: The study was designed to examine whether such a tool (a CoRe), co-designed by an early career secondary teacher with expert content and pedagogy specialists, can enhance the PCK of early career teachers. The research questions were: How can experts in content and pedagogy work together with early career teachers to develop one science topic CoRe and one technology topic CoRe to support the development of PCK for early career secondary teachers? How does the use of a collaboratively designed CoRe affect the planning of an early career secondary teacher in science or technology? How has engagement in the development and use of an expert-informed CoRe developed an early career teacher's PCK? Sample: The research design incorporated a unique partnership between two expert classroom teachers, two content experts, four early career teachers, and four researchers experienced in science and technology education. Design: This study employed an interpretivist-based methodology and an action research approach within a four-case study design. Data were gathered using qualitative research methods focused on semi-structured interviews, observations and document analysis. Results: The study indicated that CoRes, developed through this collaborative process, helped the early career teachers focus on the big picture of the topic, emphasize particularly relevant areas of content and consider alternative ways of planning for their teaching. Conclusions: This paper presents an analysis of the process of CoRe development by the teacher-expert partnerships and the effect that had on

  8. Learning the 'grammar of science': The influence of a physical science content course on teachers' understanding of the nature of science

    Science.gov (United States)

    Hanuscin, Deborah L.

    This research examined the development of practicing K--8 teachers' views of the nature of science (NOS) within a physical science content course. Reforms in science education have called for the teaching of science as inquiry. In order to achieve the vision of the reforms, teachers must understand science, both a body of knowledge and as a process, but also the very nature of science itself-or the values and assumptions inherent in the construction of scientific knowledge. NOS has been deemed a critical component of scientific literacy, with implications for making informed decisions about scientific claims. Research has indicated that despite the emphasis of reforms, teachers generally do not possess accurate views of NOS. Recent work in science education has led to the recommendation that efforts undertaken within teacher education programs to improve teachers' understanding of NOS can be enhanced through relevant coursework in other academic areas, including the sciences. The purpose of this dissertation was to provide an empirical basis for this recommendation, by examining the development of teachers' views of NOS within a physical science content course. To this end, the researcher employed qualitative methodology including participant observation, interview, document analysis, and questionnaire to assess teacher participants' views of the nature of science and the impact of their experience in the content course on these views. As a result of this research, implications for both the course design and science teacher education have been described. In addition, various aspects of the community of practice that characterizes the classroom that inhibit the development of understandings about the nature of science are identified. It is argued that instruction in NOS should be approached from the perspective that builds bridges between the communities of practice of learners and of scientists.

  9. Gaps in Science Content Knowledge Encountered during Teaching Practice: A Study of Early-Career Middle-School Science Teachers

    Science.gov (United States)

    Kinghorn, Brian Edward

    2013-01-01

    Subject-specific content knowledge is crucial for effective science teaching, yet many teachers are entering the field not fully equipped with all the science content knowledge they need to effectively teach the subject. Learning from practice is one approach to bridging the gap between what practicing teachers know and what they need to know.…

  10. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  11. Effect of the science teaching advancement through modeling physical science professional development workshop on teachers' attitudes, beliefs and content knowledge and students' content knowledge

    Science.gov (United States)

    Dietz, Laura

    The Science Teaching Advancement through Modeling Physical Science (STAMPS) professional development workshop was evaluated for effectiveness in improving teachers' and students' content knowledge. Previous research has shown modeling to be an effective method of instruction for improving student and teacher content knowledge, evidenced by assessment scores. Data includes teacher scores on the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992) and the Chemistry Concept Inventory (CCI; Jenkins, Birk, Bauer, Krause, & Pavelich, 2004), as well as student scores on a physics and chemistry assessment. Quantitative data is supported by teacher responses to a post workshop survey and classroom observations. Evaluation of the data shows that the STAMPS professional development workshop was successful in improving both student and teacher content knowledge. Conclusions and suggestions for future study are also included.

  12. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  13. Library and Information Science Research Areas: A Content Analysis of Articles from the Top 10 Journals 2007-8

    Science.gov (United States)

    Aharony, Noa

    2012-01-01

    The current study seeks to describe and analyze journal research publications in the top 10 Library and Information Science journals from 2007-8. The paper presents a statistical descriptive analysis of authorship patterns (geographical distribution and affiliation) and keywords. Furthermore, it displays a thorough content analysis of keywords and…

  14. Student Opinions on Mobile Augmented Reality Application and Developed Content in Science Class

    Directory of Open Access Journals (Sweden)

    Damla Karagozlu

    2017-11-01

    Full Text Available As one of the most important branches of science, natural science studies have never lost their currency. The purpose of this study is to examine the development process of Augmented Reality contents which were developed using a design-based research method with the purpose of using it in teaching of natural science topics and to look into student evaluations. In the study which employed design-based research model, developed contents were applied, analysed and re-designed with students constantly. The study group of the research consisted of forty 7th grade students at a private college in 2016-2017 fall semester. Augmented reality contents developed for science teaching were evaluated by teachers and students as effective. According to the teacher and student opinions, it was concluded that augmented reality contents of science teaching developed during design-based research process was nice, easily applicable and useful. It can be said that while developing educative materials for students, applying design-based research model and paying attention to material design principles secures the effectiveness of the developed material.

  15. WAIS Searching of the Current Contents Database

    Science.gov (United States)

    Banholzer, P.; Grabenstein, M. E.

    The Homer E. Newell Memorial Library of NASA's Goddard Space Flight Center is developing capabilities to permit Goddard personnel to access electronic resources of the Library via the Internet. The Library's support services contractor, Maxima Corporation, and their subcontractor, SANAD Support Technologies have recently developed a World Wide Web Home Page (http://www-library.gsfc.nasa.gov) to provide the primary means of access. The first searchable database to be made available through the HomePage to Goddard employees is Current Contents, from the Institute for Scientific Information (ISI). The initial implementation includes coverage of articles from the last few months of 1992 to present. These records are augmented with abstracts and references, and often are more robust than equivalent records in bibliographic databases that currently serve the astronomical community. Maxima/SANAD selected Wais Incorporated's WAIS product with which to build the interface to Current Contents. This system allows access from Macintosh, IBM PC, and Unix hosts, which is an important feature for Goddard's multiplatform environment. The forms interface is structured to allow both fielded (author, article title, journal name, id number, keyword, subject term, and citation) and unfielded WAIS searches. The system allows a user to: Retrieve individual journal article records. Retrieve Table of Contents of specific issues of journals. Connect to articles with similar subject terms or keywords. Connect to other issues of the same journal in the same year. Browse journal issues from an alphabetical list of indexed journal names.

  16. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  17. Between understanding and appreciation. Current science communication in Denmark

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  18. The transformation of science and mathematics content knowledge into teaching content by university faculty

    Science.gov (United States)

    Flynn, Natalie P.

    This study developed a survey from the existing literature in an attempt to illuminate the processes, tools, insights, and events that allow university science and mathematics content experts (Ph.D.'s) unpack their expertise in order to teach develop and teach undergraduate students. A pilot study was conducted at an urban university in order to refine the survey. The study consisted of 72 science or mathematics Ph.D. faculty members that teach at a research-based urban university. Follow-up interviews were conducted with 21 volunteer faculty to further explore their methods and tools for developing and implementing teaching within their discipline. Statistical analysis of the data revealed: faculty that taught while obtaining their Ph.D. were less confident in their ability to teach successful and faculty that received training in teaching believed that students have difficult to change misconceptions and do not commit enough time to their course. Student centered textbooks ranked the highest among tools used to gain teaching strategies followed by grading of exams and assignments for gaining insights into student knowledge and difficulties. Science and mathematics education literature and university provided education session ranked the lowest in rating scale for providing strategies for teaching. The open-ended survey questions were sub-divided and analyzed by the number of years of experience to identify the development of teaching knowledge over time and revealed that teaching became more interactive, less lecture based, and more engaging. As faculty matured and gained experience they became more aware of student misconceptions and difficulties often changing their teaching to eliminate such issues. As confidence levels increase their teaching included more technology-based tools, became more interactive, incorporated problem based activities, and became more flexible. This change occurred when and if faculty members altered their thinking about their

  19. Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.

    Science.gov (United States)

    Tohkin, Masahiro

    2017-01-01

    I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.

  20. Impact of Secondary Students' Content Knowledge on Their Communication Skills in Science

    Science.gov (United States)

    Kulgemeyer, Christoph

    2018-01-01

    The "expert blind spot" (EBS) hypothesis implies that even some experts with a high content knowledge might have problems in science communication because they are using the structure of the content rather than their addressee's prerequisites as an orientation. But is that also true for students? Explaining science to peers is a crucial…

  1. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-08-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education from 1990 to 2007. The multi-stage clustering technique was employed to investigate with what topics, to what development trends, and from whose contribution that the journal publications constructed as a science education research field. This study found that the research topic of Conceptual Change & Concept Mapping was the most studied topic, although the number of publications has slightly declined in the 2000's. The studies in the themes of Professional Development, Nature of Science and Socio-Scientific Issues, and Conceptual Chang and Analogy were found to be gaining attention over the years. This study also found that, embedded in the most cited references, the supporting disciplines and theories of science education research are constructivist learning, cognitive psychology, pedagogy, and philosophy of science.

  2. Content and Design Features of Academic Health Sciences Libraries' Home Pages.

    Science.gov (United States)

    McConnaughy, Rozalynd P; Wilson, Steven P

    2018-01-01

    The goal of this content analysis was to identify commonly used content and design features of academic health sciences library home pages. After developing a checklist, data were collected from 135 academic health sciences library home pages. The core components of these library home pages included a contact phone number, a contact email address, an Ask-a-Librarian feature, the physical address listed, a feedback/suggestions link, subject guides, a discovery tool or database-specific search box, multimedia, social media, a site search option, a responsive web design, and a copyright year or update date.

  3. Examining the Nexus of Science Communication and Science Education: A Content Analysis of Genetics News Articles

    Science.gov (United States)

    Shea, Nicole A.

    2015-01-01

    Access to science information via communications in the media is rapidly becoming a central means for the public to gain knowledge about scientific advancements. However, little is known about what content knowledge is essential for understanding issues presented in news media. Very few empirical studies attempt to bridge science communication and…

  4. NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment

    Science.gov (United States)

    Hasan, Hashima; Erickson, Kristen

    2018-01-01

    The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.

  5. Pre-Service Science Teachers in Xinjiang "Scientific Inquiry" - Pedagogical Content Knowledge Research

    Science.gov (United States)

    Li, Yufeng; Xiong, Jianwen

    2012-01-01

    Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…

  6. The Impact of a Curriculum Course on Pre-Service Primary Teachers' Science Content Knowledge and Attitudes towards Teaching Science

    Science.gov (United States)

    Murphy, Cliona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students'…

  7. Content analysis of science material in junior school-based inquiry and science process skills

    Science.gov (United States)

    Patonah, S.; Nuvitalia, D.; Saptaningrum, E.

    2018-03-01

    The purpose of this research is to obtain the characteristic map of science material content in Junior School which can be optimized using inquiry learning model to tone the science process skill. The research method used in the form of qualitative research on SMP science curriculum document in Indonesia. Documents are reviewed on the basis of the basic competencies of each level as well as their potential to trace the skills of the science process using inquiry learning models. The review was conducted by the research team. The results obtained, science process skills in grade 7 have the potential to be trained using the model of inquiry learning by 74%, 8th grade by 83%, and grade 9 by 75%. For the dominant process skills in each chapter and each level is the observing skill. Follow-up research is used to develop instructional inquiry tools to trace the skills of the science process.

  8. A content analysis of sixth-grade, seventh-grade, and eighth-grade science textbooks with regard to the nature of science

    Science.gov (United States)

    Phillips, Marianne C.

    Science teachers rely heavily on their textbooks; for many, it is the only curriculum they use (Weiss, 1993). Therefore, it is important these materials convey an accurate conception of the nature of science. Science for All Americans (AAAS, 1990) and the National Science Education Standards (NRC, 1996) call for teaching students about the nature of science. Including the nature of science throughout science textbooks will produce scientifically literate citizens (Driver and others, 1993) with an improved ability to make informed decisions (McComas, 1998). Teaching the nature of science supports the successful learning of science content and process (Driver and others, 1996), and bridges the gap between the two cultures of practicing scientists and school science (Sorsby, 2000). Do middle school science textbooks provide a balanced presentation of the nature of science throughout their text? To determine the answer, this investigation used a content analysis technique to analyze a random sample from the introduction chapter and the rest of the textbook chapters from twelve middle school science textbooks for the four aspects of the nature of science (Chiappetta, Fillman, & Sethna, 2004). Scoring procedures were used to determine interrater agreement using both Cohen's kappa (kappa) and Krippendorff's alpha (alpha). Kappa values were determined to be fair to excellent beyond chance among the three coders. The resulting values for Krippendorff's alpha ranged from acceptable (alpha > .80) to unacceptable (alpha imbalance is providing students with a rudimentary and fragmented view of how science works, despite the fact that science impacts every aspect of life (McComas, 1998). Given the impact of textbooks on learning, it is recommended that teachers be informed of these shortcomings to enable them to supplement content where it is lacking.

  9. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  10. Analysis of pedagogical content knowledge (PCK) ability of science teachers in planning and reflecting on environmental pollution content

    Science.gov (United States)

    Purwianingsih, W.; Mardiyah, A.

    2018-05-01

    Pedagogical Content Knowledge (PCK) is a blend of content knowledge and pedagogy knowledge, which can illustrate the ability of teachers to design and to teach a content by accessing what they knows about the material, students, curriculum and how best to teach the content. Description of PCK ability of science teachers can be accessed through an analysis of their ability to plan and reflect on learning. This study aims to provide an overview of teachers’ PCK skills on environmental pollution materials through use of Content Representation (CoRe) and Pedagogical and Professional-experience Repertoires (PaP-eRs). Descriptive method used in this study with six of science teachers on 7th class from three different schools as subject. The results show that teachers’ PCK skills in planning through CoRe and reflecting through PaP-eRs are in fairly good category. The teacher’s ability in implementing environmental pollution learning materials is in good category. However, there is still a discrepancy between planning through CoRe and the implementation of classroom learning. The teacher’s PCK is influenced by teaching experience and educational background.

  11. Teacher Education that Works: Preparing Secondary-Level Math and Science Teachers for Success with English Language Learners Through Content-Based Instruction

    Directory of Open Access Journals (Sweden)

    Margo Elisabeth DelliCarpini

    2014-11-01

    Full Text Available Little research exists on effective ways to prepare secondary mathematics and science teachers to work with English language learners (ELLs in mainstream mathematics and science (subsequently referred to as STEM classrooms. Given the achievement gap that exists between ELLs and their native-speaking counterparts in STEM subjects, as well as the growing numbers of ELLs in US schools, this becomes a critical issue, as academic success for these students depends on the effectiveness of instruction they receive not only in English as a second language classes (ESL, but in mainstream classrooms as well. This article reports on the effects of a program restructuring that implemented coursework specifically designed to prepare pre-service and in-service mathematics, science, and ESL teachers to work with ELLs in their content and ESL classrooms through collaboration between mainstream STEM and ESL teachers, as well as effective content and language integration. We present findings on teachers’ attitudes and current practices related to the inclusion of ELLs in the secondary-level content classroom and their current level of knowledge and skills in collaborative practice. We further describe the rationale behind the development of the course, provide a description of the course and its requirements as they changed throughout its implementation during two semesters, and present findings from the participants enrolled. Additionally, we discuss the lessons learned; researchers’ innovative approaches to implementation of content-based instruction (CBI and teacher collaboration, which we term two-way CBI (DelliCarpini & Alonso, 2013; and implications for teacher education programs.

  12. Data Science Programs in U.S. Higher Education: An Exploratory Content Analysis of Program Description, Curriculum Structure, and Course Focus

    Science.gov (United States)

    Tang, Rong; Sae-Lim, Watinee

    2016-01-01

    In this study, an exploratory content analysis of 30 randomly selected Data Science (DS) programs from eight disciplines revealed significant gaps in current DS education in the United States. The analysis centers on linguistic patterns of program descriptions, curriculum requirements, and DS course focus as pertaining to key skills and domain…

  13. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  14. Incorporating Science News Into Middle School Curricula: Current Events in the 21st Century Classroom

    Science.gov (United States)

    Dimaggio, E.

    2010-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance, especially in science when abstract concepts can often be incorrectly perceived as irrelevant, is important for student learning and retention. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the Haiti or Chile earthquakes in 2010), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief ‘teachable moments’-when student interest is high- provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, we are creating pre-packaged current event materials for middle school teachers in Arizona that align to state standards and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. Materials are assembled within approximately one week of the regional or global science event (e.g., volcanic eruptions, earthquakes) and may include a short slide show, maps, videos, pictures, and real-time data. A listserv is used to send biweekly emails to subscribed instructors. The email contains the current event topic, specific Arizona science standards addressed, and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach website and are archived. Early implementation efforts have been received positively by participating teachers. In one case

  15. Promoting Creative Thinking and Expression of Science Concepts among Elementary Teacher Candidates through Science Content Movie Creation and Showcasing

    Science.gov (United States)

    Hechter, Richard P.; Guy, Mark

    2010-01-01

    This article reports the phases of design and use of video editing technology as a medium for creatively expressing science content knowledge in an elementary science methods course. Teacher candidates communicated their understanding of standards-based core science concepts through the creation of original digital movies. The movies were assigned…

  16. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  17. Content Analysis of Science Books for Upper Primary Stage in Jordan and Intermediate Stage in Saudi Arabia from an Islamic Perspective: Analytical Comparative Study

    Science.gov (United States)

    Aldossari, Ali Tarad; Al Khaldi, Jamal Khalil; Altarawneh, Mohammad Hasan

    2016-01-01

    This study aims to identify the current situation of science books in Jordan and Saudi Arabia from an Islamic perspective. For this end, the content analysis approach has been used through the analysis of the unit concept in the science books for the seventh, eighth and ninth grades in the academic year (2015/2016) in Jordan and Saudi Arabia. The…

  18. Development of an Openmath Content Dictionary for Mathematical Knowledge of Materials Science and Engineering

    Directory of Open Access Journals (Sweden)

    Toshihiro Ashino

    2012-12-01

    Full Text Available Many relationships between parameters and physical properties in materials science and engineering are represented as mathematical expressions, such as empirical equations and regression expressions. Some materials databases handle such information with indirect methods: as a table of sets of parameters, as a list of statements of programming languages, and other ways. There is no standardized way to represent mathematical relationships, and that makes it difficult to exchange, process, and display such information. The AIST (National Institute of Advanced Industrial Science and Technology in Japan thermophysical property database manages sets of parameter values for expressions and Fortran statements that represent relationships between physical parameters, e.g., temperature, pressure, etc. and thermophysical properties. However, in this method, it is not easy to add new parameters, to process expressions, and exchange information with other software tools. In this paper, we describe the current implementation of representing mathematical knowledge in the AIST thermophysical property database, and we also discuss its problems, sample implementations, and definitions of the OpenMath content dictionary for materials science and engineering.

  19. The use of quasi-experiments in the social sciences : A content analysis

    NARCIS (Netherlands)

    Aussems, M.E.; Boomsma, A.; Snijders, T.A.B.

    This article examines the use of various research designs in the social sciences as well as the choices that are made when a quasi-experimental design is used. A content analysis was carried out on articles published in 18 social science journals with various impact factors. The presence of

  20. Five Aspects of Current Trends in German Library Science

    Science.gov (United States)

    Steierwald, Ulrike

    2006-01-01

    The specialisation Library Science at the Hochschule Darmstadt/University of Applied Science Darmstadt is the newest academic program in Germany for the higher education of librarians. Five current trends in library science in Germany reflect the new "Darmstadt Model": (1) The delimitation of a specific professional field…

  1. Urban fifth graders' connections-making between formal earth science content and their lived experiences

    Science.gov (United States)

    Brkich, Katie Lynn

    2014-03-01

    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples—the Grand Canyon, beach erosion, and others. However, these examples—which resonate well with middle- and upper-class students—ill-serve students of poverty attending urban schools who may have never traveled farther from home than the corner store. In this paper, I explore the use of a place-based educational framework in teaching earth science concepts to urban fifth graders and explore the connections they make between formal earth science content and their lived experiences using participant-driven photo elicitation techniques. I argue that students are able to gain a sounder understanding of earth science concepts when they are able to make direct observations between the content and their lived experiences and that when such direct observations are impossible they make analogies of appearance, structure, and response to make sense of the content. I discuss additionally the importance of expanding earth science instruction to include man-made materials, as these materials are excluded traditionally from the curriculum yet are most immediately available to urban students for examination.

  2. History of science content analysis of Chinese science textbooks from the perspective of acculturation

    Science.gov (United States)

    Ma, Yongjun; Wan, Yanlan

    2017-08-01

    Based on previous international studies, a content analysis scheme has been designed and used from the perspective of culture to study the history of science (HOS) in science textbooks. Nineteen sets of Chinese science textbooks have been analyzed. It has been found that there are noticeable changes in the quantity, content, layout, presentation, and writing intention of the HOS sections in textbooks from different time periods. What's more, the textbooks aim at presenting the scientific culture and aim to help students understand it better. However, the cultural associations of the HOS in textbooks is insufficient and significant differences exist among textbooks of different subjects. In order to explore the reasons why the presentation of HOS in various subjects is different, we made a specific comparison of curriculum standards of two subjects with great differences and interviewed the editors-in-chief of two textbooks. Results show that one of the most important reasons for the different writings of the HOS in textbooks is that different subject curriculum standards attach greater importance to the HOS. In addition, the attention to the HOS by editors-in-chief, the tradition of studying the HOS within the history of the discipline, and the reference textbooks in compiling textbooks are all important influence factors. Some suggestions for future textbooks compilation are given at the end.

  3. Investigation of Technological Pedagogy Content Knowledge of Pre-Service Science and Technology Teachers

    OpenAIRE

    Bayram AKARSU; Esra GÜVEN

    2014-01-01

    The purpose of this study is to investigate Technological Pedagogical Content Knowledge (TPACK) of 3rd and 4th year prospective science teachers, enrollment at the faculty of education, with respect to the technological knowledge (TK), pedagogical knowledge (PK), content knowledge (CK), technological pedagogical knowledge (TPC), pedagogical content knowledge (PCK), and information in the technological content (TPC). These knowledge types are intersection of the sub-dimensions to determine whe...

  4. Next Generation Science Standards and edTPA: Evidence of Science and Engineering Practices

    Science.gov (United States)

    Brownstein, Erica M.; Horvath, Larry

    2016-01-01

    Science teacher educators in the United States are currently preparing future science teachers to effectively implement the "Next Generation Science Standards" (NGSS) and, in thirteen states, to successfully pass a content-specific high stakes teacher performance assessment, the edTPA. Science education and teacher performance assessment…

  5. Learning from Rookie Mistakes: Critical Incidents in Developing Pedagogical Content Knowledge for Teaching Science to Teachers

    Science.gov (United States)

    Cite, Suleyman; Lee, Eun; Menon, Deepika; Hanuscin, Deborah L.

    2017-01-01

    While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching…

  6. An atom is known by the company it keeps: Content, representation and pedagogy within the epistemic revolution of the complexity sciences

    Science.gov (United States)

    Blikstein, Paulo

    The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist

  7. A Mixed Methods Content Analysis of the Research Literature in Science Education

    Science.gov (United States)

    Schram, Asta B.

    2014-01-01

    In recent years, more and more researchers in science education have been turning to the practice of combining qualitative and quantitative methods in the same study. This approach of using mixed methods creates possibilities to study the various issues that science educators encounter in more depth. In this content analysis, I evaluated 18…

  8. The psychological characteristics of experiences that influence science motivation and content knowledge

    Science.gov (United States)

    Bathgate, Meghan; Schunn, Christian

    2017-11-01

    While motivational changes towards science are common during adolescence, our work asks which perceived classroom experiences are most strongly related to these changes. Additionally, we examine which experiences are most strongly associated with learning classroom content. In particular, using self-reports from a sample of approximately 3000 middle school students, this study investigates the influence of perceived science classroom experiences, namely student engagement and perceived success, on motivational change (fascination, values, competency belief) and content knowledge. Controlling for demographic information, school effects, and initial levels of motivation and content knowledge, we find that dimensions of engagement (affect, behavioural/cognitive) and perceived success are differentially associated with changes in particular motivational constructs and learning. Affective engagement is positively associated with motivational outcomes and negatively associated with learning outcomes, behavioural-cognitive engagement is associated only with learning, and perceived success is related only to motivational outcomes. Theoretical and practical implications are discussed.

  9. A Mixed Methods Content Analysis of the Research Literature in Science Education

    Science.gov (United States)

    Schram, Asta B.

    2014-10-01

    In recent years, more and more researchers in science education have been turning to the practice of combining qualitative and quantitative methods in the same study. This approach of using mixed methods creates possibilities to study the various issues that science educators encounter in more depth. In this content analysis, I evaluated 18 studies from science education journals as they relate to the definition, design, and overall practice of using mixed methods. I scrutinized a purposeful sample, derived from 3 journals (the International Journal of Science Education, the Journal of Research in Science Teaching, and the Research in Science Education) in terms of the type of data collected, timing, priority, design, the mixing of the 2 data strands in the studies, and the justifications authors provide for using mixed methods. Furthermore, the articles were evaluated in terms of how well they met contemporary definitions for mixed methods research. The studies varied considerably in the use and understanding of mixed methods. A systematic evaluation of the employment of mixed methods methodology was used to identify the studies that best reflected contemporary definitions. A comparison to earlier content analyses of mixed methods research indicates that researchers' knowledge of mixed methods methodology may be increasing. The use of this strategy in science education research calls, however, for an improved methodology, especially concerning the practice of mixing. Suggestions are given on how to best use this approach.

  10. Learning Science Content through Socio-Scientific Issues-Based Instruction: A Multi-Level Assessment Study

    Science.gov (United States)

    Sadler, Troy D.; Romine, William L.; Topçu, Mustafa Sami

    2016-01-01

    Science educators have presented numerous conceptual and theoretical arguments in favor of teaching science through the exploration of socio-scientific issues (SSI). However, the empirical knowledge base regarding the extent to which SSI-based instruction supports student learning of science content is limited both in terms of the number of…

  11. Teaching Basic Science Content via Real-World Applications: A College-Level Summer Course in Veterinary Anatomy and Physiology

    Science.gov (United States)

    Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John

    2018-01-01

    Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…

  12. Preschoolers' Recall of Science Content from Educational Videos Presented with and without Songs

    Science.gov (United States)

    Schechter, Rachel L.

    2013-01-01

    This experimental investigation evaluated the impact of educational songs on a child's ability to recall scientific content from an educational television program. Preschoolers' comprehension of the educational content was examined by measuring children's ability to recall the featured science content (the function of a pulley and…

  13. The Role of Content in Inquiry-Based Elementary Science Lessons: An Analysis of Teacher Beliefs and Enactment

    Science.gov (United States)

    Furtak, Erin Marie; Alonzo, Alicia C.

    2010-05-01

    The Trends in International Mathematics and Science Study (TIMSS) Video Study explored instructional practices in the United States (US) in comparison with other countries that ranked higher on the 1999 TIMSS assessment, and revealed that 8th grade science teachers in the US emphasize activities over content during lessons (Roth et al. 2006). This study applies the content framework from the TIMSS Video Study to a sample of 28 3rd grade teachers enacting an inquiry-based unit on floating and sinking, and seeks a deeper understanding of teachers’ practices through analysis of interviews with those teachers. Transcripts of observed lessons were coded according to the TIMSS framework for types of content, and transcripts of teacher interviews were coded to capture the ways in which teachers described their role in and purposes for teaching science, particularly with respect to the floating and sinking unit. Results indicate that teachers focused more on canonical, procedural and experimental knowledge during lessons than on real-world connections and the nature of science; however, none of the types of content received major emphasis in a majority of the classrooms in the sample. During interviews, teachers described their practice in ways that prioritized helping students to like science over specific content outcomes. The study suggests that elementary school teachers’ emphasis on doing and feeling during inquiry-based lessons may interfere with teaching of content.

  14. Between understanding and appreciation. Current science communication in Denmark (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  15. Considerations of multicultural science and curriculum reform: A content analysis of state-adopted biology textbooks in Florida

    Science.gov (United States)

    Delgato, Margaret H.

    The purpose of this investigation was to determine the extent to which multicultural science education, including indigenous knowledge representations, had been infused within the content of high school biology textbooks. The study evaluated the textbook as an instructional tool and framework for multicultural science education instruction by comparing the mainstream content to indigenous knowledge perspectives portrayed in the student and teacher editions of 34 textbooks adopted in Florida within the last four adoption cycles occurring from 1990 to 2006. The investigation involved a content analysis framed from a mixed methods approach. Emphasis was placed, in consideration of the research questions and practicality of interpreting text with the potential for multiple meanings, within qualitative methods. The investigation incorporated five strategies to assess the extent of multicultural content: (1) calculation of frequency of indigenous representations through the use of a tally; (2) assessment of content in the teacher editions by coding the degree of incorporation of multicultural content; (3) development of an archaeology of statements to determine the ways in which indigenous representations were incorporated into the content; (4) use of the Evaluation Coefficient Analysis (ECO) to determine extent of multicultural terminologies within content; and (5) analysis of visuals and illustrations to gauge percentages of depictions of minority groups. Results indicated no solid trend in an increase of inclusion of multicultural content over the last four adoption cycles. Efforts at most reduced the inclusion of indigenous representations and other multicultural content to the level of the teacher edition distributed among the teacher-interleafed pages or as annotations in the margins. Degree of support of multicultural content to the specific goals and objectives remained limited across all four of the adoption cycles represented in the study. Emphasis on

  16. Advancing Climate Literacy through Investment in Science Education Faculty, and Future and Current Science Teachers: Providing Professional Learning, Instructional Materials, and a Model for Locally-Relevant and Culturally-Responsive Content

    Science.gov (United States)

    Halversen, C.; Apple, J. K.; McDonnell, J. D.; Weiss, E.

    2014-12-01

    The Next Generation Science Standards (NGSS) call for 5th grade students to "obtain and combine information about ways individual communities use science ideas to protect Earth's resources and environment". Achieving this, and other objectives in NGSS, will require changes in the educational system for both students and teachers. Teachers need access to high quality instructional materials and continuous professional learning opportunities starting in pre-service education. Students need highly engaging and authentic learning experiences focused on content that is strategically interwoven with science practices. Pre-service and early career teachers, even at the secondary level, often have relatively weak understandings of the complex Earth systems science required for understanding climate change and hold alternative ideas and naïve beliefs about the nature of science. These naïve understandings cause difficulties in portraying and teaching science, especially considering what is being called for in NGSS. The ACLIPSE program focuses on middle school pre-service science teachers and education faculty because: (1) the concepts that underlie climate change align well with the disciplinary core ideas and practices in NGSS for middle grades; and (2) middle school is a critical time for capturing students interest in science as student engagement by eighth grade is the most effective predictor of student pursuit of science in high school and college. Capturing student attention at this age is critical for recruitment to STEM careers and lifelong climate literacy. THE ACLIPSE program uses cutting edge research and technology in ocean observing systems to provide educators with new tools to engage students that will lead to deeper understanding of the interactions between the ocean and climate systems. Establishing authentic, meaningful connections between indigenous and place-based, and technological climate observations will help generate a more holistic perspective

  17. Developing Content Knowledge in Students Through Explicit Teaching of the Nature of Science: Influences of Goal Setting and Self-Monitoring

    Science.gov (United States)

    Peters, Erin E.

    2012-06-01

    Knowledge about the nature of science has been advocated as an important component of science because it provides a framework on which the students can incorporate content knowledge. However, little empirical evidence has been provided that links nature of science knowledge with content knowledge. The purpose of this mixed method study was to determine if both nature of science knowledge and content knowledge could be increased with an explicit, reflective nature of science intervention utilizing self-regulation over an implicit group. Results showed that the explicit group significantly outperformed the implicit group on both nature of science and content knowledge assessments. Students in the explicit group also demonstrated a greater use of detail in their inquiry work and reported a higher respect for evidence in making conclusions than the implicit group. Implications suggest that science educators could enhance nature of science instruction using goal setting and self-monitoring of student work during inquiry lessons.

  18. The impact of a dedicated Science-Technology-Society (STS) course on student knowledge of STS content

    Science.gov (United States)

    Barron, Paul E.

    In the last half century, public awareness of issues such as population growth, environmental pollution and the threat of nuclear war has pressured science education to reform to increase student social responsibility. The emerging Science-Technology-Society (STS) movement addressed these concerns by developing numerous strategies and curricula. Considerable diagnostic research has been conducted on student knowledge of the nature of science, but not on the wider scope of STS content (e.g., the nature of science and technology and their interactions with society). However, researchers have not widely studied the impact of comprehensive STS curricula on students' knowledge of STS content nor the nature of STS teaching practice that influenced this knowledge gain. This study examined student success and teacher performance in a special STS course in Ontario, Canada. Research questions focused on the STS content knowledge gain by students completing this course and the impact of the STS teachers' teaching practices on this knowledge gain. Student data were collected using pre-course and post-course assessments of students' STS content knowledge. Teacher data were obtained using semi-structured interviews, classroom observations and videotapes. Statistical analysis indicated that, after completing the STS course, students significantly increased their STS content knowledge as measured by the Views on Science Technology Society instrument. Gender and academic achievement had no significant impact on this knowledge gain, implying that this course, as taught by these teachers, could appeal to a wide range of students as a general education course. The second part of the study indicated that detailed research is needed on the relationship between STS teaching practice and student STS content knowledge gain. The small sample size prevents generalizations but initial indications show that factors such constructivist teaching practices and strong teacher STS content knowledge

  19. The Effect of Scaffolded Strategies on Content Learning in a Designed Science Cyberlearning Environment

    Science.gov (United States)

    Kern, Cynthia Lee

    2013-01-01

    Scientific inscriptions--graphs, diagrams, and data--and argumentation are integral to generating and communicating scientific understanding. Scientific inscriptions and argumentation are also important to learning science. However, previous research has indicated that learners struggle to understand and learn science content represented in…

  20. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    Science.gov (United States)

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  1. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  2. Students’ Digital Photography Behaviors during a Multiday Environmental Science Field Trip and Their Recollections of Photographed Science Content

    Directory of Open Access Journals (Sweden)

    Victor R. Lee

    2014-01-01

    Full Text Available Taking photographs to document the experiences of an educational field trip is becoming a common activity for teachers and students alike. Considering the regular creation of photographic artifacts, our goal in this paper is to explore students’ picture taking behavior and their recollections of science content associated with their photographs. In this study, we partnered with a class of fifth-grade students in the United States and provided each student with a digital camera to document their experiences during an environmental science field trip at a national park. We report the frequency of photography behaviors according to which activities were most often documented by the students and specifically that students tended to document more of their experiences when they were in outdoor, natural spaces rather than inside of visitor centers or museums. Also, through an analysis of students’ comments about the science content captured in their photographs we observe that students’ comments about photographs of the outdoors tended to show greater depth and complexity than those that were taken in indoor, museum-like spaces.

  3. Energy content of stormtime ring current from phase space mapping simulations

    International Nuclear Information System (INIS)

    Chen, M.W.; Schulz, M.; Lyons, L.R.

    1993-01-01

    The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm

  4. Examining science teachers' pedagogical content knowledge in the context of a professional development program

    NARCIS (Netherlands)

    Wongsopawiro, Dirk Soenario

    2012-01-01

    This dissertation reports on the pedagogical content knowledge (PCK) of science teachers during a professional development program. This research intended to help us understand why and how teachers make their classroom decisions as they teach science. The main questions in this study were: What is

  5. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    Science.gov (United States)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context

  6. Pedagogical Content Knowledge and Educational Cases in Computer Science: an Exploration

    NARCIS (Netherlands)

    Koppelman, Hermannus

    2008-01-01

    The concept of pedagogical content knowledge has been explored in the context of several disciplines, such as mathematics, medicine and chemistry. In this paper the concept is explored and applied to the subject matter of computer science, in particular to the sub domain of building UML class

  7. Holistic Approach to Secondary Earth Science Teacher Professional Development: the Triad of Project-based Instruction, Earth Science Content, and GIS Technology

    Science.gov (United States)

    Rubino-Hare, L.; Sample, J. C.; Fredrickson, K.; Claesgens, J.; Bloom, N.; Henderson-Dahms, C.; Manone, M.

    2011-12-01

    We have provided two years of professional development for secondary and middle school teachers with a focus on project-based instruction (PBI) using GIS. The EYE-POD project (funded by NSF-ITEST) involved pairs of teachers from Arizona and the surrounding region in two-week institutes during Summer, 2010, and an advanced institute in Summer, 2011. The NAz-POD project (funded by Arizona Department of Education and administered by Science Foundation Arizona) provided similar PD experiences, but the institutes occurred during weekends in the academic year. The institutes were led by a team with expertise in Earth science content, professional development and pedagogy, and GIS. The teachers developed learning modules using the project based learning instructional model. Pedagogy, content, and GIS skills were combined throughout the professional development activities. Academic year follow up by NAU personnel included classroom observations and technical support. For assessing student work we provided a rubric, but learned that teachers were not prepared to assess GIS products in order to determine the level of student understanding. In year two of the project we incorporated strategies for assessment of student products into the professional development. Teacher-participants and their students completed several pre- and post- assessments. Teacher assessments included a geospatial performance assessment, classroom observations, and content tests. Student data collection included attitude and efficacy questionnaires, content tests, and authentic assessments including products using GIS. Content tests were the same for teachers and students and included spatial reasoning, data analysis, and Earth science content. Data was also collected on teacher perception of professional development delivery and self-reported confidence in teaching with PBI and geospatial technology. Student assessments show that improvement occurred in all areas on the content test. Possible factors

  8. Preschoolers' Recall of Science Content From Educational Videos Presented With and Without Songs

    Science.gov (United States)

    Schechter, Rachel L.

    This experimental investigation evaluated the impact of educational songs on a child's ability to recall scientific content from an educational television program. Preschoolers' comprehension of the educational content was examined by measuring children's ability to recall the featured science content (the function of a pulley and its parts) and their use of the precise scientific terms presented in the episode. A total of 91 preschoolers were included (3-5 years old). Clusters of children were randomly assigned to a control group or one of three video groups: (a) Dialogue Only, which did not include a song; (b) Dialogue Plus Lyrics, which included a song; or (c) Lyrics Only, which consisted of a song, played twice. Results from interviews suggested that children from all video groups (lyrics and/or dialogue) were able to explain the form and function of a pulley better than the control group. The data suggested that children from the Lyrics Only group understood the science content because of the visual imagery, not through the information provided in the lyrics. In terms of precise vocabulary terms, significantly more children in the Dialogue Only group recalled at least one precise term from the program compared to the Lyrics Only group. Looking at the interview as a whole, the children's responses suggested different levels of scientific understanding. Children would require additional teacher-led instruction to deepen their scientific understanding and to clarify any misconceptions. This paper discusses implications of these findings for teachers using multi-media tools in the science classroom and producers creating new educational programming for television and other platforms.

  9. Teachers' professional development needs and current practices at the Alexander Science Center School

    Science.gov (United States)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  10. Making Sense of Principal Leadership in Content Areas: The Case of Secondary Math and Science Instruction

    Science.gov (United States)

    Lochmiller, Chad R.; Acker-Hocevar, Michele

    2016-01-01

    We drew upon sense making and leadership content knowledge to explore how high school administrators' understanding of content areas informed their leadership. We used math and science to illustrate our interpretations, noting that other content areas may pose different challenges. We found that principals' limited understanding of these content…

  11. Developing Content Knowledge in Students through Explicit Teaching of the Nature of Science: Influences of Goal Setting and Self-Monitoring

    Science.gov (United States)

    Peters, Erin E.

    2012-01-01

    Knowledge about the nature of science has been advocated as an important component of science because it provides a framework on which the students can incorporate content knowledge. However, little empirical evidence has been provided that links nature of science knowledge with content knowledge. The purpose of this mixed method study was to…

  12. Celebrity over science? An analysis of Lyme disease video content on YouTube.

    Science.gov (United States)

    Yiannakoulias, N; Tooby, R; Sturrock, S L

    2017-10-01

    Lyme disease has been a subject of medical controversy for several decades. In this study we looked at the availability and type of content represented in a (n = 700) selection of YouTube videos on the subject of Lyme disease. We classified video content into a small number of content areas, and studied the relationship between these content areas and 1) video views and 2) video likeability. We found very little content uploaded by government or academic institutions; the vast majority of content was uploaded by independent users. The most viewed videos tend to contain celebrity content and personal stories; videos with prevention information tend to be of less interest, and videos with science and medical information tend to be less liked. Our results suggest that important public health information on YouTube is very likely to be ignored unless it is made more appealing to modern consumers of online video content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A New Coherent Science Content Storyline Astronomy Course for Pre-Service Teachers at Penn State

    Science.gov (United States)

    Palma, Christopher; Plummer, Julia; Earth and Space Science Partnership

    2016-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. One of the ESSP goals has been to provide pre-service teachers with new or improved science course offerings at Penn State in the Earth and Space Science domains. In particular, we aim to provide students with opportunities to learn astronomy content knowledge through teaching methods that engage them in investigations where they experience the practices used by astronomers. We have designed a new course that builds on our research into students' ideas about Solar System astronomy (Plummer et al. 2015) and the curriculum our team created for a professional development workshop for in-service teachers (Palma et al. 2013) with this same theme. The course was offered for the first time in the spring 2015 semester. We designed the course using a coherent science content storyline approach (see, e.g., Palma et al. 2014), which requires all of the student investigations to build towards a big idea in science; in this case, we chose the model for formation of our Solar System. The course led pre-service teachers through a series of investigations that model the type of instruction we hope they will adopt in their own classrooms. They were presented with a series of research questions that all tie in to the big idea of Solar System formation, and they were responsible for collecting and interpreting their own data to draw evidence-based conclusions about one aspect of this model. Students in the course were assessed on their astronomy content knowledge, but also on their ability to construct arguments using scientific reasoning to answer astronomy questions. In this poster, we will present descriptions of the investigations, the assessments used, and our preliminary results about how the course led this group of pre-service teachers to improved understanding of astronomy content and the practices astronomers use in

  14. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  15. The current state of science in radiation protection

    International Nuclear Information System (INIS)

    Kaul, A.

    1985-01-01

    The qualification 'according to the current state of science and technology' is regularly found in radiation protection laws. It is assumed that the state of science and technology is codified in the publications of ICRP and ICRU, the International Comissions on Radiological Protection and - Units respectively, and in the UN publication USCEAR. An investigation is made on the extent the regulations of FRD comply with this requirement. Stochastic and non-stochastic damages are differentiated and the problem of assigning equivalent whole-body doses to exposures of specific body organs is considered. (G.Q.)

  16. Investigating Coherence among Turkish Elementary Science Teachers' Teaching Belief Systems, Pedagogical Content Knowledge and Practice

    Science.gov (United States)

    Bahcivan, Eralp; Cobern, William W.

    2016-01-01

    This study investigated comprehensive science teaching belief systems and their relation to science teachers' pedagogical content knowledge and teaching practices. Rokeach's (1968) belief system was used as a framework for representing the hierarchy among in-service teachers' teaching beliefs. This study employed a multiple case study design with…

  17. What's science? Where's science? Science journalism in German print media.

    Science.gov (United States)

    Summ, Annika; Volpers, Anna-Maria

    2016-10-01

    This article examines the current state of science coverage in German print media. It deals with the following questions: (1) how the main characteristics of science journalism can be described, (2) whether there is a difference between various scientific fields, and (3) how different definitions of science journalism lead to differing findings. Two forms of science coverage were analyzed in a standardized, two-part content analysis of German newspapers (N = 1730 and N = 1640). The results show a significant difference between a narrow and a broad definition of science journalism. In the classic understanding, science journalism is prompted by scientific events and is rather noncritical. Science coverage in a broad sense is defined by a wider range of journalistic styles, driven by non-scientific events, and with a focus on the statements of scientific experts. Furthermore, the study describes the specific role of the humanities and social sciences in German science coverage. © The Author(s) 2015.

  18. Current Practices in the Delivery of Undergraduate Exercise Physiology Content

    Science.gov (United States)

    Fisher, Michele M.

    2013-01-01

    The purpose of this study was to identify current practices for the delivery of exercise physiology content at the undergraduate level. An anonymous 22-item survey was sent to instructors of exercise physiology to collect information concerning the structure of course offerings and instructional practices. One hundred ten instructors responded to…

  19. Structure and dynamics of European sports science textual contents: Analysis of ECSS abstracts (1996-2014).

    Science.gov (United States)

    Hristovski, Robert; Aceski, Aleksandar; Balague, Natalia; Seifert, Ludovic; Tufekcievski, Aleksandar; Cecilia, Aguirre

    2017-02-01

    The article discusses general structure and dynamics of the sports science research content as obtained from the analysis of 21998 European College of Sport Science abstracts belonging to 12 science topics. The structural analysis showed intertwined multidisciplinary and unifying tendencies structured along horizontal (scope) and vertical (level) axes. Methodological (instrumental and mode of inquiry) integrative tendencies are dominant. Theoretical integrative tendencies are much less detectable along both horizontal and vertical axes. The dynamic analysis of written abstracts text content over the 19 years reveals the contextualizing and guiding role of thematic skeletons of each sports science topic in forming more detailed contingent research ideas and the role of the latter in stabilizing and procreating the former. This circular causality between both hierarchical levels and functioning on separate characteristic time scales is crucial for understanding how stable research traditions self-maintain and self-procreate through innovative contingencies. The structure of sports science continuously rebuilds itself through use and re-use of contingent research ideas. The thematic skeleton ensures its identity and the contingent conceptual sets its flexibility and adaptability to different research or applicative problems.

  20. Exploring science teachers' pedagogical content knowledge in the teaching of genetics in Swaziland

    Science.gov (United States)

    Mthethwa-Kunene, Khetsiwe Eunice Faith

    Recent trends show that learners' enrolment and performance in science at secondary school level is dwindling. Some science topics including genetics in biology are said to be difficult for learners to learn and thus they perform poorly in examinations. Teacher knowledge base, particularly topic-specific pedagogical content knowledge (PCK), has been identified by many researchers as an important factor that is linked with learner understanding and achievement in science. This qualitative study was an attempt to explore the PCK of four successful biology teachers and how they developed it in the context of teaching genetics. The purposive sampling technique was employed to select the participating teachers based on their schools' performance in biology public examinations and recommendations by science specialists and school principals. Pedagogical content knowledge was used as a theoretical framework for the study, which guided the inquiry in data collection, analysis and discussion of the research findings. The study adopted the case study method and various sources of evidence including concept maps, lesson plans, pre-lesson interviews, lesson observations, post-teaching teacher questionnaire, post-lesson interviews and document analysis were used to collect data on teachers' PCK as well as how PCK was assumed to have developed. The data were analysed in an attempt to determine the individual teachers' school genetics' content knowledge, related knowledge of instructional strategies and knowledge of learners' preconceptions and learning difficulties. The analysis involved an iterative process of coding data into PCK categories of content knowledge, pedagogical knowledge and knowledge of learners' preconceptions and learning difficulties. The findings of the study indicate that the four successful biology teachers generally have the necessary content knowledge of school genetics, used certain topic-specific instructional strategies, but lacked knowledge of

  1. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    Science.gov (United States)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  2. Journal of Mineralogical and Petrological Sciences

    Science.gov (United States)

    Official journal of Japan Association of Mineralogical Sciences (JAMS), focusing on mineralogical and petrological sciences and their related fields. Journal of Mineralogical and Petrological Sciences (JMPS) is the successor journal to both “Journal of Mineralogy, Petrology and Economic Geology” and “Mineralogical Journal”. Journal of Mineralogical and Petrological Sciences (JMPS) is indexed in the ISI database (Thomson Reuters), the Science Citation Index-Expanded, Current Contents/Physical, Chemical & Earth Sciences, and ISI Alerting Services.

  3. The Ways to Promote Pre-service Science Teachers’ Pedagogical Content Knowledge for Inquiry in Learning Management in Science Course

    Directory of Open Access Journals (Sweden)

    Siriphan Satthaphon

    2017-09-01

    Full Text Available This classroom action research aimed to study the ways to promote pre-service science teachers’ pedagogical content knowledge for inquiry (PCK for inquiry. The participants were 37 students who enrolled in Learning Management in Science course in academic year 2014. Multiple data sources including students’ lesson plans, reflective journals, teacher’s logs, and worksheets were collected. The inductive approach was used to analyze data. The findings revealed the ways to promote pre-service science teachers’ PCK for inquiry consisted of being teacher’s explicit role model ; providing students to reflect their practices that link between their knowledge and understandings ; reflection from video case ; collaboration between students and teacher in learning activities planning, and allowing students to practice in actual situation could be better influence students not only reflect their understandings but also design, and teach science through inquiry.

  4. Brain Based Learning in Science Education in Turkey: Descriptive Content and Meta Analysis of Dissertations

    Science.gov (United States)

    Yasar, M. Diyaddin

    2017-01-01

    This study aimed at performing content analysis and meta-analysis on dissertations related to brain-based learning in science education to find out the general trend and tendency of brain-based learning in science education and find out the effect of such studies on achievement and attitude of learners with the ultimate aim of raising awareness…

  5. Learning about the Nature of Science Using Newspaper Articles with Scientific Content

    Science.gov (United States)

    García-Carmona, Antonio; Acevedo Díaz, José Antonio

    2016-01-01

    This article presents a study aiming at assessing the efficacy of reading newspaper articles with scientific content in order to incorporate nature of science (NOS) aspects in initial primary teacher education. To this aim, a short teaching intervention based on newspaper articles was planned and performed under regular class conditions. First,…

  6. A neuromathematical model of human information processing and its application to science content acquisition

    Science.gov (United States)

    Anderson, O. Roger

    The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.

  7. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 8, Public Schools

    Science.gov (United States)

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  8. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 4, Public Schools

    Science.gov (United States)

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  9. Examining the Teaching of Science, and Technology and Engineering Content and Practices: An Instrument Modification Study

    Science.gov (United States)

    Love, Tyler S.; Wells, John G.; Parkes, Kelly A.

    2017-01-01

    A modified Reformed Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000) instrument was used to separately examine eight technology and engineering (T&E) educators' teaching of science, and T&E content and practices, as called for by the "Standards for Technological Literacy: Content for the Study of Technology"…

  10. Selection of Non Mapping Sciences Journals Suitable for Publishing Mapping Sciences Topics

    OpenAIRE

    Frančula, Nedjeljko; Lapaine, Miljenko; Stojanovski, Jadranka

    2013-01-01

    In Croatia, for career advancement in technical sciences, including then field of mapping sciences (in Croatian geodezija), it is necessary to publish a number of papers in journals indexed in Science Citation Index Expanded or Current Contents databases, whereby a certain number of papers have to be published in journals with impact factor (JIF) higher than the median of the subject category in which they are listed in the Journal Citation Reports database. Since these databases index 17 map...

  11. Learning on the Trail: A Content Analysis of a University Arboretum's Exemplary Interpretive Science Signage System

    Science.gov (United States)

    Wandersee, James H.; Clary, Renee M.

    2007-01-01

    This is an in-depth content analysis of an exemplary outdoor science signage system. The authors offer useful criteria for assessing the quality of the "opportunity to learn" within science signage systems in informal educational sites. This research may be helpful in the design or improvement of trailside interpretive signage systems.

  12. Investigating the Impact of NGSS-Aligned Professional Development on PreK-3 Teachers' Science Content Knowledge and Pedagogy

    Science.gov (United States)

    Tuttle, Nicole; Kaderavek, Joan N.; Molitor, Scott; Czerniak, Charlene M.; Johnson-Whitt, Eugenia; Bloomquist, Debra; Namatovu, Winnifred; Wilson, Grant

    2016-11-01

    This pilot study investigates the impact of a 2-week professional development Summer Institute on PK-3 teachers' knowledge and practices. This Summer Institute is a component of [program], a large-scale early-childhood science project that aims to transform PK-3 science teaching. The mixed-methods study examined concept maps, lesson plans, and classroom observations to measure possible changes in PK-3 teachers' science content knowledge and classroom practice from 11 teachers who attended the 2014 Summer Institute. Analysis of the concept maps demonstrated statistically significant growth in teachers' science content knowledge. Analysis of teachers' lesson plans demonstrated that the teachers could design high quality science inquiry lessons aligned to the Next Generation Science Standards following the professional development. Finally, examination of teachers' pre- and post-Summer Institute videotaped inquiry lessons showed evidence that teachers were incorporating new inquiry practices into their teaching, especially regarding classroom discourse. Our results suggest that an immersive inquiry experience is effective at beginning a shift towards reform-aligned science and engineering instruction but that early elementary educators require additional support for full mastery.

  13. Use of Microthemes to Increase Writing Content for Introductory Science Laboratory

    Directory of Open Access Journals (Sweden)

    Michelle L. Lewis

    2012-02-01

    Full Text Available Writing is a learning activity, as well as a communication skill. Many instructors recognize the value of writing as a learning tool but struggle to develop effective writing assignments. Instructors are generally pressed for time during lecture due to the necessity to deliver content and, therefore, cannot dedicate time necessary to teach science writing skills effectively. Traditional term papers assigned to a class with varying writing skills may not accomplish the desired goal of teaching both technical writing skills and critical thinking skills. Students that are already struggling with content may be at a disadvantage in terms of conveying complex ideas. An answer to this problem is the microtheme paper which we employ in an Introductory Botany laboratory setting.

  14. A current perspective on medical informatics and health sciences librarianship.

    Science.gov (United States)

    Perry, Gerald J; Roderer, Nancy K; Assar, Soraya

    2005-04-01

    The article offers a current perspective on medical informatics and health sciences librarianship. The authors: (1) discuss how definitions of medical informatics have changed in relation to health sciences librarianship and the broader domain of information science; (2) compare the missions of health sciences librarianship and health sciences informatics, reviewing the characteristics of both disciplines; (3) propose a new definition of health sciences informatics; (4) consider the research agendas of both disciplines and the possibility that they have merged; and (5) conclude with some comments about actions and roles for health sciences librarians to flourish in the biomedical information environment of today and tomorrow. Boundaries are disappearing between the sources and types of and uses for health information managed by informaticians and librarians. Definitions of the professional domains of each have been impacted by these changes in information. Evolving definitions reflect the increasingly overlapping research agendas of both disciplines. Professionals in these disciplines are increasingly functioning collaboratively as "boundary spanners," incorporating human factors that unite technology with health care delivery.

  15. Current and future directions of DNA in wildlife forensic science.

    Science.gov (United States)

    Johnson, Rebecca N; Wilson-Wilde, Linzi; Linacre, Adrian

    2014-05-01

    Wildlife forensic science may not have attained the profile of human identification, yet the scale of criminal activity related to wildlife is extensive by any measure. Service delivery in the arena of wildlife forensic science is often ad hoc, unco-ordinated and unregulated, yet many of those currently dedicated to wildlife conservation and the protection of endangered species are striving to ensure that the highest standards are met. The genetic markers and software used to evaluate data in wildlife forensic science are more varied than those in human forensic identification and are rarely standardised between species. The time and resources required to characterise and validate each genetic maker is considerable and in some cases prohibitive. Further, issues are regularly encountered in the construction of allelic databases and allelic ladders; essential in human identification studies, but also applicable to wildlife criminal investigations. Accreditation and certification are essential in human identification and are currently being strived for in the forensic wildlife community. Examples are provided as to how best practice can be demonstrated in all areas of wildlife crime analysis and ensure that this field of forensic science gains and maintains the respect it deserves. This review is aimed at those conducting human identification to illustrate how research concepts in wildlife forensic science can be used in the criminal justice system, as well as describing the real importance of this type of forensic analysis. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  17. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  18. Linking Student Achievement and Teacher Science Content Knowledge about Climate Change: Ensuring the Nations 3 Million Teachers Understand the Science through an Electronic Professional Development System

    Science.gov (United States)

    Niepold, F.; Byers, A.

    2009-12-01

    The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.

  19. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    Science.gov (United States)

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  20. The Role of Content and Context in PISA Interest Scales: A study of the embedded interest items in the PISA 2006 science assessment

    Science.gov (United States)

    Drechsel, Barbara; Carstensen, Claus; Prenzel, Manfred

    2011-01-01

    This paper focuses interest in science as one of the attitudinal aspects of scientific literacy. Large-scale data from the Programme for International Student Assessment (PISA) 2006 are analysed in order to describe student interest more precisely. So far the analyses have provided a general indicator of interest, aggregated over all contexts and contents in the science test. With its innovative approach PISA embeds interest items within the cognitive test unit and its contents and contexts. The main difference from conventional interest measures is that in most questionnaires, a relatively small number of interest items cover broad fields of contents and contexts. The science units represent a number of systematically differentiated scientific contexts and contents. The units' stimulus texts allow for concrete descriptions of relevant content aspects, applications, and contexts. In the analyses, multidimensional item response models are applied in order to disentangle student interest. The results indicate that multidimensional models fit the data. A two-dimensional model separating interest into two different knowledge of science dimensions described in the PISA science framework is further analysed with respect to gender, performance differences, and country. The findings give a comprehensive description of students' interest in science. The paper deals with methodological problems and describes requirements of the test construction for further assessments. The results are discussed with regard to their significance for science education.

  1. Urban science education: examining current issues through a historical lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-12-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions. When the findings from these urban science education studies were consolidated with the historical overview provided, it was revealed that the basic design and regulatory policies of urban schools have not substantively changed since their establishment in the nineteenth century. Teachers in urban science classrooms continue to face issues of inequality, poverty, and social injustice as they struggle to meet the needs of an increasingly diverse student population. Furthermore, persistent concerns of conflicting Discourses, cultural dissonance, and oppression create formidable barriers to science learning. Despite the many modifications in structure and organization, urban students are still subjugated and marginalized in systems that emphasize control and order over high-quality science education.

  2. ESN information bulletin. European science notes information bulletin reports on current European/Middle eastern science

    Energy Technology Data Exchange (ETDEWEB)

    Orendorf, C.R.

    1989-10-01

    The European Science Notes Information Bulletin (ESNIB) 89-09 is a compilation of reports on recent developments in European science of specific interest to the U.S. research and development community, and is issued in support of the mission of the Office of Naval Research European Office. Issue Number 89-09, in addition to European area news, notes, and abstracts, contains reports in the fields of Acoustics, Computer Science, Condensed-Matter Physics, Materials Science, Mathematics, Physics, Psychology, and Solid-State Physics. It is not intended to be part of the scientific literature. The value of the ESNIB to Americans is to call attention to current activity in European science and technology and to identify the institutions and people responsible for these efforts. The ESNIB authors are primarily ONREUR staff members; other reports are prepared by or in cooperation with staff members of the USAF European Office of Aero space Research and Development or the U.S. Army Research, Development and Standardization Group. Scientists from the U.S. who are traveling in Europe may also be invited to submit reports.

  3. Future-saving audiovisual content for Data Science: Preservation of geoinformatics video heritage with the TIB|AV-Portal

    Science.gov (United States)

    Löwe, Peter; Plank, Margret; Ziedorn, Frauke

    2015-04-01

    In data driven research, the access to citation and preservation of the full triad consisting of journal article, research data and -software has started to become good scientific practice. To foster the adoption of this practice the significance of software tools has to be acknowledged, which enable scientists to harness auxiliary audiovisual content in their research work. The advent of ubiquitous computer-based audiovisual recording and corresponding Web 2.0 hosting platforms like Youtube, Slideshare and GitHub has created new ecosystems for contextual information related to scientific software and data, which continues to grow both in size and variety of content. The current Web 2.0 platforms lack capabilities for long term archiving and scientific citation, such as persistent identifiers allowing to reference specific intervals of the overall content. The audiovisual content currently shared by scientists ranges from commented howto-demonstrations on software handling, installation and data-processing, to aggregated visual analytics of the evolution of software projects over time. Such content are crucial additions to the scientific message, as they ensure that software-based data-processing workflows can be assessed, understood and reused in the future. In the context of data driven research, such content needs to be accessible by effective search capabilities, enabling the content to be retrieved and ensuring that the content producers receive credit for their efforts within the scientific community. Improved multimedia archiving and retrieval services for scientific audiovisual content which meet these requirements are currently implemented by the scientific library community. This paper exemplifies the existing challenges, requirements, benefits and the potential of the preservation, accessibility and citability of such audiovisual content for the Open Source communities based on the new audiovisual web service TIB|AV Portal of the German National Library

  4. Developing Technological Pedagogical Content Knowledge in pre-service science teachers: Support from blended learning

    NARCIS (Netherlands)

    Alayyar, G.; Fisser, Petra; Voogt, Joke

    2012-01-01

    The Technological Pedagogical Content Knowledge (TPACK) framework has been used to prepare pre-service science teachers at the Public Authority of Applied Education and Training in Kuwait for ICT integration in education. Pre-service teachers worked in teams to design an ICT solution for an

  5. Developing Technological Pedagogical Content Knowledge in pre-service science teachers : Support from blended learning

    NARCIS (Netherlands)

    Alayyar, G.; Fisser, Petra; Voogt, Joke

    2012-01-01

    The Technological Pedagogical Content Knowledge (TPACK) framework has been used to prepare pre-service science teachers at the Public Authority of Applied Education and Training in Kuwait for ICT integration in education. Pre-service teachers worked in teams to design an ICT solution for an

  6. The current status of forensic science laboratory accreditation in Europe.

    Science.gov (United States)

    Malkoc, Ekrem; Neuteboom, Wim

    2007-04-11

    Forensic science is gaining some solid ground in the area of effective crime prevention, especially in the areas where more sophisticated use of available technology is prevalent. All it takes is high-level cooperation among nations that can help them deal with criminality that adopts a cross-border nature more and more. It is apparent that cooperation will not be enough on its own and this development will require a network of qualified forensic laboratories spread over Europe. It is argued in this paper that forensic science laboratories play an important role in the fight against crime. Another, complimentary argument is that forensic science laboratories need to be better involved in the fight against crime. For this to be achieved, a good level of cooperation should be established and maintained. It is also noted that harmonization is required for such cooperation and seeking accreditation according to an internationally acceptable standard, such as ISO/IEC 17025, will eventually bring harmonization as an end result. Because, ISO/IEC 17025 as an international standard, has been a tool that helps forensic science laboratories in the current trend towards accreditation that can be observed not only in Europe, but also in the rest of the world of forensic science. In the introduction part, ISO/IEC 17025 states that "the acceptance of testing and calibration results between countries should be facilitated if laboratories comply with this international standard and if they obtain accreditation from bodies which have entered into mutual recognition agreements with equivalent bodies in other countries using this international standard." Furthermore, it is emphasized that the use of this international standard will assist in the harmonization of standards and procedures. The background of forensic science cooperation in Europe will be explained by using an existing European forensic science network, i.e. ENFSI, in order to understand the current status of forensic

  7. A Survey of Current Computer Information Science (CIS) Students.

    Science.gov (United States)

    Los Rios Community Coll. District, Sacramento, CA. Office of Institutional Research.

    This document is a survey designed to be completed by current students of Computer Information Science (CIS) in the Los Rios Community College District (LRCCD), which consists of three community colleges: American River College, Cosumnes River College, and Sacramento City College. The students are asked about their educational goals and how…

  8. Content, format, gender and grade level differences in elementary students' ability to read science materials as measured by the cloze procedure

    Science.gov (United States)

    Williams, Richard L.; Yore, Larry D.

    Present instructional trends in science indicate a need to reexamine a traditional concern in science education: the readability of science textbooks. An area of reading research not well documented is the effect of color, visuals, and page layout on readability of science materials. Using the cloze readability method, the present study explored the relationships between page format, grade level, sex, content, and elementary school students ability to read science material. Significant relationships were found between cloze scores and both grade level and content, and there was a significant interaction effect between grade and sex in favor of older males. No significant relationships could be attributed to page format and sex. In the area of science content, biological materials were most difficult in terms of readability followed by earth science and physical science. Grade level data indicated that grade five materials were more difficult for that level than either grade four or grade six materials were for students at each respective level. In eight of nine cases, the science text materials would be classified at or near the frustration level of readability. The implications for textbook writers and publishers are that science reading materials need to be produced with greater attention to readability and known design principles regarding visual supplements. The implication for teachers is that students need direct instruction in using visual materials to increase their learning from text material. Present visual materials appear to neither help nor hinder the student to gain information from text material.

  9. ESN information bulletin. European science notes information bulletin reports on current European/Middle eastern science

    Energy Technology Data Exchange (ETDEWEB)

    Orendorf, C.R.

    1990-06-01

    The European Science Notes Information Bulletin (ESNIB) 90-05 is a compilation of reports on recent developments in European science of specific interest to the U.S. research and development community, and is issued in support of the mission of the Office of Naval Research European Office. Issue Number 90-05, in addition to European area news, notes, and abstracts, contains reports in the fields of Acoustics, Atmospheric Electricity, Computer Science, Electronics, and Physics. The value of the ESNIB to Americans is to call attention to current activity in European science and technology and to identify the institutions and people responsible for these efforts. The ESNIB authors are primarily ONREUR staff members; other reports are prepared by or in cooperation with staff members of the USAF European Office of Aerospace Research and Development or the U.S. Army Research, Development and Standardination Group. Scientists from the U.S. who are traveling in Europe may also be invited to submit reports.

  10. Resources and instructional strategies effective middle school science teachers use to improve content area reading skills

    Science.gov (United States)

    Beaver, Melanie S.

    This study examined the resources and instructional strategies effective middle school science teachers use to improve content area reading skills. Reading instruction in the middle school years should follow the natural cognitive progression that occurs in the adolescent brain from learning to read to reading to learn. Scientific reading is a different type of reading than most middle school students are accustomed to. It is important to understand that students will continue to be expected to read non-fiction critically for success in the 21st century. Effective teachers know this, and they perceive themselves as teachers of reading regardless of the content area in which their expertise lies. This qualitative research study was conducted at a rural middle school with three science teachers who employ before, during, and after literacy strategies when reading the textbook content with their students. The methodologies used in this study were interviews, observations, and document collection. The results of this study revealed the students' reading difficulties perceived by the teacher participants, the literacy strategies used by the teacher participants, the instructional resources the teacher participants used to improve comprehension, and the need for professional development in content area literacy.

  11. Teacher- or Learner-Centred? Science Teacher Beliefs Related to Topic Specific Pedagogical Content Knowledge: A South African Case Study

    Science.gov (United States)

    Mavhunga, Elizabeth; Rollnick, Marissa

    2016-12-01

    In science education, learner-centred classroom practices are widely accepted as desirable and are associated with responsive and reformed kinds of teacher beliefs. They are further associated with high-quality Pedagogical Content Knowledge (PCK). Topic-Specific Pedagogical Content Knowledge (TSPCK), a version of PCK defined at topic level, is known to enable the transformation of topic content into a form accessible to learners. However, little is known about teacher science beliefs in relation to TSPCK and therefore the nature of likely associated classroom practices. In this study, we investigated the relationship between TSPCK and underlying science teacher beliefs following an intervention targeting the improvement of TSPCK in the topic chemical equilibrium. Sixteen final year pre-service chemistry teachers were exposed to an intervention that explicitly focussed on knowledge for transforming the content of chemical equilibrium using the five knowledge components of TSPCK. A specially designed TSPCK instrument in chemical equilibrium and the Teacher Belief Instrument (TBI) were used to capture written responses in pre- and post-tests. Additional qualitative data was collected from audio-recorded discussions and written responses from an open-ended question asked before and after the intervention. Two key findings emerged from the study. Firstly, the development of TSPCK was linked to shifts in underlying science teacher beliefs in the direction of learner-centred teaching for the majority of pre-service teachers. Secondly, this shift was not evident for all, as for some there was development of TSPCK without a shift from teacher-centred beliefs about science teaching.

  12. Examining the Extent to Which Select Teacher Preparation Experiences Inform Technology and Engineering Educators’ Teaching of Science Content and Practices

    OpenAIRE

    Love, Tyler Scott

    2015-01-01

    With the recent release of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2014b) science educators were expected to teach engineering content and practices within their curricula. However, technology and engineering (T&E) educators have been expected to teach content and practices from engineering and other disciplines since the release of the Standards for Technological Literacy (ITEA/ITEEA, 2000/2002/2007). Requisite to the preparation of globally competitive...

  13. Learning to Teach Computer Science: Qualitative Insights into Secondary Teachers' Pedagogical Content Knowledge

    Science.gov (United States)

    Hubbard, Aleata Kimberly

    2017-01-01

    In this dissertation, I explored the pedagogical content knowledge of in-service high school educators recently assigned to teach computer science for the first time. Teachers were participating in a professional development program where they co-taught introductory computing classes with tech industry professionals. The study was motivated by…

  14. Development and Nature of Preservice Chemistry Teachers' Pedagogical Content Knowledge for Nature of Science

    Science.gov (United States)

    Demirdögen, Betül; Hanuscin, Deborah L.; Uzuntiryaki-Kondakci, Esen; Köseoglu, Fitnat

    2016-01-01

    The purpose of this case study is to delve into the complexities of the early development of preservice chemistry teachers' science teaching orientations, knowledge of learners, knowledge of instructional strategies, and knowledge of assessment during a two-semester intervention designed to enhance their pedagogical content knowledge (PCK) for…

  15. Mapping science communication scholarship in China: Content analysis on breadth, depth and agenda of published research.

    Science.gov (United States)

    Xu, Linjia; Huang, Biaowen; Wu, Guosheng

    2015-11-01

    This study attempted to illuminate the cause and relation between government, scholars, disciplines, and societal aspects, presenting data from a content analysis of published research with the key word "science communication" (Symbol: see text) in the title or in the key words, including academic papers published in journals and dissertations from the China National Knowledge Infrastructure database. Of these, 572 articles were coded using categories that identified science topics, theory, authorship, and methods used in each study to examine the breadth and depth that Science Communication has achieved since its inception in China. This study explored the dominance of History and Philosophy of Science scholars rather than Communication scholars. We also explored how science communication research began from theories and concepts instead of science report analysis and the difficulties of the shift from public understanding of science to public engagement in China. © The Author(s) 2015.

  16. The Politics of Developing and Maintaining Mathematics and Science Curriculum Content Standards. Research Monograph.

    Science.gov (United States)

    Kirst, Michael W.; Bird, Robin L.

    The movement toward math and science curriculum standards is inextricably linked with high-stakes politics. There are two major types of politics discussed in this paper: the allocation of curriculum content, and the political issues involved in systemic change. Political strategies for gaining assent to national, state, and local content…

  17. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  18. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido

    2014-07-04

    The results of an investigation on the Er doping of porous silicon are presented. Electrochemical impedance spectroscopy, optical reflectivity, and spatially resolved energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes. The measurements show that, for equal transferred charge and identical porous silicon (PSi) layers, the applied current intensity also influences the final Er content. An interpretative model is proposed in order to describe the two distinct chemical processes. The results can be useful for a better control over the doping process.

  19. Interactive Multimodal Molecular Set – Designing Ludic Engaging Science Learning Content

    DEFF Research Database (Denmark)

    Thorsen, Tine Pinholt; Christiansen, Kasper Holm Bonde; Jakobsen Sillesen, Kristian

    2014-01-01

    This paper reports on an exploratory study investigating 10 primary school students’ interaction with an interactive multimodal molecular set fostering ludic engaging science learning content in primary schools (8th and 9th grade). The concept of the prototype design was to bridge the physical...... and virtual worlds with electronic tags and, through this, blend the familiarity of the computer and toys, to create a tool that provided a ludic approach to learning about atoms and molecules. The study was inspired by the participatory design and informant design methodologies and included design...

  20. Developing Technological Pedagogical Content Knowledge in Pre-Service Science Teachers: Support from Blended Learning

    Science.gov (United States)

    Alayyar, Ghaida M.; Fisser, Petra; Voogt, Joke

    2012-01-01

    The "Technological Pedagogical Content Knowledge" (TPACK) framework has been used to prepare pre-service science teachers at the Public Authority of Applied Education and Training in Kuwait for ICT integration in education. Pre-service teachers worked in teams to design an ICT solution for an authentic problem they faced during in-school…

  1. Lights, camera, action research: The effects of didactic digital movie making on students' twenty-first century learning skills and science content in the middle school classroom

    Science.gov (United States)

    Ochsner, Karl

    Students are moving away from content consumption to content production. Short movies are uploaded onto video social networking sites and shared around the world. Unfortunately they usually contain little to no educational value, lack a narrative and are rarely created in the science classroom. According to new Arizona Technology standards and ISTE NET*S, along with the framework from the Partnership for 21st Century Learning Standards, our society demands students not only to learn curriculum, but to think critically, problem solve effectively, and become adept at communicating and collaborating. Didactic digital movie making in the science classroom may be one way that these twenty-first century learning skills may be implemented. An action research study using a mixed-methods approach to collect data was used to investigate if didactic moviemaking can help eighth grade students learn physical science content while incorporating 21st century learning skills of collaboration, communication, problem solving and critical thinking skills through their group production. Over a five week period, students researched lessons, wrote scripts, acted, video recorded and edited a didactic movie that contained a narrative plot to teach a science strand from the Arizona State Standards in physical science. A pretest/posttest science content test and KWL chart was given before and after the innovation to measure content learned by the students. Students then took a 21st Century Learning Skills Student Survey to measure how much they perceived that communication, collaboration, problem solving and critical thinking were taking place during the production. An open ended survey and a focus group of four students were used for qualitative analysis. Three science teachers used a project evaluation rubric to measure science content and production values from the movies. Triangulating the science content test, KWL chart, open ended questions and the project evaluation rubric, it

  2. Pedagogical Content Knowledge (PCK): Exploring its Usefulness for Science Lecturers in Higher Education

    Science.gov (United States)

    Fraser, Sharon P.

    2016-02-01

    In the past 30 years, pedagogical content knowledge (PCK) frameworks have become important constructs in educational research undertaken in the school education system and a focus for research for curriculum and teacher education researchers. As regards science, PCK research has been plentiful, but thus far, the concept of PCK (significantly enhanced since its proposal) has only been validated in the school context (Kindergarten to Grade 12). Within this environment, however, it has proven to be a very useful construct for understanding teacher practice and contributing to the improvement of teacher education courses. Knowledge about whether PCK is useful as a conceptual framework for science lecturers (teachers) working in higher education is as yet unknown and represents a gap in the research literature; the research outlined here is a first step in exploring its usefulness in this context. This paper provides an analysis of data obtained from semi-structured interviews conducted with nine Australian science university lecturers from various disciplines and levels of seniority and experience of tertiary teaching, as well as an academic developer skilled in facilitating science academics' understanding of pedagogy in higher education. The research aimed to investigate the extent to which one version of a school-based science PCK framework resonated with the pedagogical thinking of university science lecturers and the ways in which it could influence their teaching practice.

  3. Translating Current Science into Materials for High School via a Scientist-Teacher Partnership

    Science.gov (United States)

    Brown, Julie C.; Bokor, Julie R.; Crippen, Kent J.; Koroly, Mary Jo

    2014-01-01

    Scientist-teacher partnerships are a unique form of professional development that can assist teachers in translating current science into classroom instruction by involving them in meaningful collaborations with university researchers. However, few reported models aim to directly alter science teachers' practices by supporting them in the…

  4. Current Crisis in Science Education? Women in Science and Problems for the Behavioral Scientists. Some Perspectives of a Physicist.

    Science.gov (United States)

    Dresselhaus, Mildred S.

    A number of problems exist in society which require the cooperation of physical and social scientists. One of these problems is the current crisis in science education. There are several aspects to this problem, including the declining interest of students in math and science at a time when functioning in our society requires more, not less,…

  5. The Impact of Video Case Content on Preservice Elementary Teachers' Decision-Making and Conceptions of Effective Science Teaching

    Science.gov (United States)

    Olson, Joanne K.; Bruxvoort, Crystal N.; Vande Haar, Andrea J.

    2016-01-01

    Little is known about how the content of a video case influences what preservice teachers learn about science teaching. This study was designed to determine the impact of two different video cases on preservice elementary teachers' conceptions of multiple aspects of effective science teaching, with one video selected to focus attention on the role…

  6. Do Subject Matter Knowledge, and Pedagogical Content Knowledge Constitute the Ideal Gas Law of Science Teaching?

    Science.gov (United States)

    Lederman, Norman G.; Gess-Newsome, Julie

    1992-01-01

    Describes Pedagogical Content Knowledge and focuses on the empirical research directly concerned with the relationship between science teachers' subject matter knowledge or structures and actual classroom practice. Concludes there is little evidence that a relationship exists. (PR)

  7. Science as Content, Science as Context: Working in the Science Department

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    2004-01-01

    In this study we explored how the science department shaped the relationship between a science department head, Mr Greg, and a teacher, Ms Horton, as they grappled with their expectations of, and responsibilities for, teaching and leadership in the daily life in the department. We found that, from their life histories and their positions in the…

  8. Urban Science Education: Examining Current Issues through a Historical Lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-01-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions.…

  9. The latest science and human

    International Nuclear Information System (INIS)

    Kim, Sang Il; Lee, Hae Du; Lee, Geun Hui

    1985-04-01

    The book is collective reports on the science and human. The contents of this book are life ethics and technology ethics, conception of human and human science, biotechnology. The tower of Babel in computer age, human brain and robot, new media and communication innovation, status of computer engineering, current condition of development of new media, mass media and violence, crime and scientification of terror, condition of the life and peace, period of machine and literature, religious prophecy and scientific prophecy and hi-tech age and education of science.

  10. The latest science and human

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Il; Lee, Hae Du; Lee, Geun Hui

    1985-04-15

    The book is collective reports on the science and human. The contents of this book are life ethics and technology ethics, conception of human and human science, biotechnology. The tower of Babel in computer age, human brain and robot, new media and communication innovation, status of computer engineering, current condition of development of new media, mass media and violence, crime and scientification of terror, condition of the life and peace, period of machine and literature, religious prophecy and scientific prophecy and hi-tech age and education of science.

  11. The international face of sports science through the window of the Journal of Sports Sciences--with a special reference to kinanthropometry.

    Science.gov (United States)

    Reilly, Thomas

    2008-02-15

    The history of the Journal of Sports Sciences is traced from the antecedents of its initiation to the current time. The developments of the sports sciences at large are reflected in the content of the journal. Its links with the international agenda are described, and related to landmark publications. Special attention is given to the relationships with international bodies, the International Society for Advancement of Kinanthropometry and the World Commission of Science and Sports. The expansion of sport and exercise sciences, both nationally and internationally, was reflected in the increased frequency of publication of the journal. Key areas in the kinanthropometric content are identified and placed in context. The review culminates in the highlighting of likely areas for future research.

  12. Multidisciplinary cognitive content of nanoscience and nanotechnology

    International Nuclear Information System (INIS)

    Milojević, Staša

    2012-01-01

    This article examines the cognitive evolution and disciplinary diversity of nanoscience/nanotechnology (nano research) as expressed through the terminology used in titles of nano journal articles. The analysis is based on the NanoBank bibliographic database of 287,106 nano articles published between 1981 and 2004. We perform multifaceted analyses of title words, focusing on 100 most frequent words or phrases (terms). Hierarchical clustering of title terms reveals three distinct time periods of cognitive development of nano research: formative (1981–1990), early (from 1991 to 1998), and current (after 1998). Early period is characterized by the introduction of thin film deposition techniques, while the current period is characterized by the increased focus on carbon nanotube and nanoparticle research. We introduce a method to identify disciplinary components of nanotechnology. It shows that the nano research is being carried out in a number of diverse parent disciplines. Currently, only 5% of articles are published in dedicated nano-only journals. We find that some 85% of nano research today is multidisciplinary. The case study of the diffusion of several nano-specific terms (e.g., “carbon nanotube”) shows that concepts spread from the initially few disciplinary components to the majority of them in a time span of around a decade. Hierarchical clustering of disciplinary components reveals that the cognitive content of current nanoscience can be divided into nine clusters. Some clusters account for a large fraction of nano research and are identified with such parent disciplines as the condensed matter and applied physics, materials science, and analytical chemistry. Other clusters represent much smaller parts of nano research, but are as cognitively distinct. In the decreasing order of size, these fields are: polymer science, biotechnology, general chemistry, surface science, and pharmacology. Cognitive content of research published in nano-only journals is

  13. Shaping Pedagogical Content Knowledge for Experienced Agriculture Teachers in the Plant Sciences: A Grounded Theory

    Science.gov (United States)

    Rice, Amber H.; Kitchel, Tracy

    2017-01-01

    This grounded theory study explored the pedagogical content knowledge (PCK) of experienced agriculture teachers in the plant sciences. The most emergent phenomenon to surface from the data was the influence of beliefs on participants' PCK. This central phenomenon became the cornerstone for the model of what was shaping experienced agriculture…

  14. The Development and Current Status of Library and Information Science Education in Japan

    Directory of Open Access Journals (Sweden)

    Kuang-hua Chen

    2001-12-01

    Full Text Available Library and information science (LIS education of Japan has been established in the early 20th century, but destroyed during the World War II. Thanks to the help provided by the United States, the LIS education revived. However, it influenced a lot, especially the thoughts of public librarianship in the Library Law of Japan. At present, 8 universities offer formal LIS degree program and over 200 universities or colleges offer LIS courses as qualifications for public librarians. This article will introduce the curriculum designs, full-time faculty, and program characteristics of Library and Information Science in Japan. [Article content in Chinese

  15. Emotions in prospective secondary teachers when teaching science content, distinguishing by gender

    Science.gov (United States)

    Belén Borrachero, Ana; Brígido, María; Mellado, Lucía; Costillo, Emilio; Mellado, Vicente

    2014-05-01

    Background:Until recently, the affective components of education had long been undervalued. Today, one finds ever more studies on cognitive and affective interrelationships that are lending support to the idea that affect and cognition are best understood when viewed as independent and complementary mental functions. Purpose:The present work analyses the emotions of prospective secondary education teachers, distinguishing them by gender, in relation to the teaching of Biology, Geology, Physics and Chemistry in order to contribute to designing subsequent interventions targeted at improving science teachers' occupational health. Sample:The total sample consisted of 178 students (53 male and 125 female) of the post-graduate teaching certificate course at the University of Extremadura, all of whom were prospective secondary school teachers. We also worked with a sub-sample of 66 Science and Engineering graduates (33 male and 33 female). Design and methods:A questionnaire was prepared that includes items on each of the emotions that the prospective teacher might feel when teaching the science content of the proposed courses. The chi-squared test was used to determine whether a relationship exists between emotions and the variable gender when it came to their teaching Biology, Geology, Physics and Chemistry at the compulsory secondary education level. Results:The results showed that the male teachers more frequently report positive emotions than the female. The latter manifested an increase in negative emotions in teaching Geology, Physics and Chemistry content. And the study of the sub-sample showed positive emotions are more frequently reported than negative ones in all four subjects, with this being particularly so in Biology. Conclusions:The study of emotions is vital in the educational formation of prospective secondary teachers. These students will soon face day-to-day life in the classroom, and many of them, especially the women, declare themselves to be

  16. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-06-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA. Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  17. Teachers' perceptions on primary science teaching

    Science.gov (United States)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  18. "Wow! Look at That!": Discourse as a Means to Improve Teachers' Science Content Learning in Informal Science Institutions

    Science.gov (United States)

    Holliday, Gary M.; Lederman, Judith S.; Lederman, Norman G.

    2014-01-01

    Currently, it is not clear whether professional development staff at Informal Science Institutions (ISIs) are considering the way exhibits contribute to the social aspects of learning as described by the contextual model of learning (CML) (Falk & Dierking in "The museum experience." Whalesback, Washington, 1992; "Learning from…

  19. Current STR-based techniques in forensic science

    Directory of Open Access Journals (Sweden)

    Phuvadol Thanakiatkrai

    2013-01-01

    Full Text Available DNA analysis in forensic science is mainly based on short tandem repeat (STR genotyping. The conventional analysis is a three-step process of DNA extraction, amplification and detection. An overview of various techniques that are currently in use and are being actively researched for STR typing is presented. The techniques are separated into STR amplification and detection. New techniques for forensic STR analysis focus on increasing sensitivity, resolution and discrimination power for suboptimal samples. These are achieved by shifting primer-binding sites, using high-fidelity and tolerant polymerases and applying novel methods to STR detection. Examples in which STRs are used in criminal investigations are provided and future research directions are discussed.

  20. Science communication in Brazil: A historical review and considerations about the current situation.

    Science.gov (United States)

    Massarani, Luisa; Moreira, Ildeu DE Castro

    2016-09-01

    In this paper, we present a historical overview of the science communication activities in Brazil since the nineteenth century and we analyze the current situation and its main concerns. The principal scopes and tools for science communication discussed here are the following: science centers and museums, mass media and large public events for communicating science and technology (S&T). In recent years, such activities have had a significant breakthrough in Brazil. Yet, there is still a long way to go in order to deliver a quality and extensive science and technology communication to the Brazilians as well as to achieve a suitable level of social appropriation of knowledge on S&T by the Brazilian society. Some of the main challenges that we are facing are discussed herein.

  1. Teaching Language and Content: Instructor Strategies in a Bilingual Science Class at a Chinese University

    Science.gov (United States)

    Liang, Xiaoping; Smith, Sara W.

    2012-01-01

    The present research analyzes instructional strategies used to integrate the learning of content and English as a foreign language in a bilingual physics class at a university in Shanghai, China. It examines how the instructor handles meaning and form of new English science vocabulary in concept-focused physics lectures and the strategies he used…

  2. Science education with the help of media. Educating science concerning the help of current news of media referring to it

    International Nuclear Information System (INIS)

    Lazar, I.; Agoston, L.

    2005-01-01

    In the last decades, at the beginning of the 21st century high school students turn their back on science more frequently than before, therefore the generation of the community of reliable scientists and experts becomes the elder. The time spent studying science in schools is also decreasing. However, mass-communication, electronic and traditional media plays more and more part in the description and explanation of scientific problems in our time. Media is inundated with questions, facts and rumours in connection with science, therefore imaginary fears, beliefs and superstitions can get into the limelight of interests. Problems like keeping people frightened with radioactivity and the ionizing and non-ionizing radiations is probably the most popular way of making ''bad news'' (panic) in the mass-media, and they particularly call our attention to the most current tasks in education of the next generations. In order to help to keep the public informed in a precise and exact way, it's necessary to put natural science into practice in high schools. Our new method of science education could prove the necessity of science taught through the current news of the media. This means students learn by making discussions and corrections of the news. The Science and Media Project provides the possibility of applying scientific ways of thinking about questions of our environment and life and it also improves critical approach towards new information. This method is put to practice by real project works, including a lot of fieldwork and reading of papers and scientific literature, enabling the students to discover and solve problems by themselves. (author)

  3. How do staff members at science and technology centres consider the impact of sponsors on the scientific content of exhibitions?

    DEFF Research Database (Denmark)

    Davidsson, Eva; Sørensen, Helene

    2009-01-01

    or historical museums. But in what ways may sponsors impact exhibition content and design at science and technology centres? This study seeks to explore how staff members consider the impact of sponsors and donors on exhibit content and design. The data collection involves a survey, interviews and a focus group...... interview with staff members, who work with planning and constructing new exhibitions at their science and technology centre. The results suggest that sponsors may interfere in exhibition construction both directly and indirectly. This means that sponsors could put explicit demands when it comes...... to the choice of scientific content and design and thereby interfere directly. Indirect impact, on the other hand, refers to implicit demands of sponsors where staff members take into account for what they believe are views of the sponsors through self-censorship....

  4. A study of the effects of English language proficiency and scientific reasoning skills on the acquisition of science content knowledge of Hispanic English language learners and native English language-speaking students participating in grade 10 science classes

    Science.gov (United States)

    Torres, Hector Neftali, Sr.

    2000-11-01

    The purpose of this study was to examine the effects of English language proficiency and levels of scientific reasoning skills of Hispanic English language learners and native English language speaking students on their acquisition of science content knowledge as measured by a state-wide standardized science test. The researcher studied a group of high school Hispanic English language learners and native English language speaking students participating in Grade 10 science classes. The language proficiency of the students was to be measured through the use of the Test of English as a Foreign Language (TOEFL) instrument. A Classroom Test of Scientific Reasoning developed by Lawson (1978) was administered in either English or Spanish to the group of Hispanic English language learners and in English to the group of native English language-speaking students in order to determine their levels of scientific reasoning skills. The students' acquisition of science content knowledge was measured through the use of statewide-standardized science test developed by the State's Department of Education. This study suggests that the levels of English language proficiency appear to influence the acquisition of science content knowledge of Hispanic English language learners in the study. The results of the study also suggest that with regards to scientific reasoning skills, students that showed high levels or reflective reasoning skills for the most part performed better on the statewide-standardized science test than students with intuitive or transitional reasoning skills. This assertion was supported by the studies conducted by Lawson and his colleagues, which showed that high levels of reasoning or reflective reasoning skills are prerequisite for most high school science courses. The findings in this study imply that high order English language proficiency combined with high levels of reasoning skills enhances students' abilities to learn science content subject matter. This

  5. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    Science.gov (United States)

    Tolbert, Sara E.

    2011-12-01

    This dissertation research project presents the results of a longitudinal study that investigates the knowledge, beliefs, and practices of 13 preservice secondary science teachers participating in a science teacher credentialing/Masters program designed to integrate issues of equity and diversity throughout coursework and seminars. Results are presented in the form of three papers: The first paper describes changes in preservice teacher knowledge about contextualization in science instruction, where contextualization is defined as facilitating authentic connections between science learning and relevant personal, social, cultural, ecological, and political contexts of students in diverse secondary classrooms; the second paper relates changes in the self-efficacy and content-specific beliefs about science, science teaching, diversity, and diversity in science instruction; and the final paper communicates the experiences and abilities of four "social justice advocates" learning to contextualize science instruction in underserved secondary placement classrooms. Results indicate that secondary student teachers developed more sophisticated understandings of how to contextualize science instruction with a focus on promoting community engagement and social/environmental activism in underserved classrooms and how to integrate science content and diversity instruction through student-centered inquiry activities. Although most of the science teacher candidates developed more positive beliefs about teaching science in underrepresented classrooms, many teacher candidates still attributed their minority students' underperformance and a (perceived) lack of interest in school to family and cultural values. The "social justice advocates" in this study were able to successfully contextualize science instruction to varying degrees in underserved placement classrooms, though the most significant limitations on their practice were the contextual factors of their student teaching

  6. Understanding current causes of women's underrepresentation in science.

    Science.gov (United States)

    Ceci, Stephen J; Williams, Wendy M

    2011-02-22

    Explanations for women's underrepresentation in math-intensive fields of science often focus on sex discrimination in grant and manuscript reviewing, interviewing, and hiring. Claims that women scientists suffer discrimination in these arenas rest on a set of studies undergirding policies and programs aimed at remediation. More recent and robust empiricism, however, fails to support assertions of discrimination in these domains. To better understand women's underrepresentation in math-intensive fields and its causes, we reprise claims of discrimination and their evidentiary bases. Based on a review of the past 20 y of data, we suggest that some of these claims are no longer valid and, if uncritically accepted as current causes of women's lack of progress, can delay or prevent understanding of contemporary determinants of women's underrepresentation. We conclude that differential gendered outcomes in the real world result from differences in resources attributable to choices, whether free or constrained, and that such choices could be influenced and better informed through education if resources were so directed. Thus, the ongoing focus on sex discrimination in reviewing, interviewing, and hiring represents costly, misplaced effort: Society is engaged in the present in solving problems of the past, rather than in addressing meaningful limitations deterring women's participation in science, technology, engineering, and mathematics careers today. Addressing today's causes of underrepresentation requires focusing on education and policy changes that will make institutions responsive to differing biological realities of the sexes. Finally, we suggest potential avenues of intervention to increase gender fairness that accord with current, as opposed to historical, findings.

  7. Development and Nature of Preservice Chemistry Teachers' Pedagogical Content Knowledge for Nature of Science

    Science.gov (United States)

    Demirdöğen, Betül; Hanuscin, Deborah L.; Uzuntiryaki-Kondakci, Esen; Köseoğlu, Fitnat

    2016-08-01

    The purpose of this case study is to delve into the complexities of the early development of preservice chemistry teachers' science teaching orientations, knowledge of learners, knowledge of instructional strategies, and knowledge of assessment during a two-semester intervention designed to enhance their pedagogical content knowledge (PCK) for teaching nature of science (NOS). Thirty preservice chemistry teachers enrolled in a Research in Science Education course participated in the study. Qualitative data sources included responses to an open-ended instrument, interviews, observations, and artifacts such as lesson plans and reflection papers. Through the in-depth analysis of explicit PCK and constant comparative method of analysis, we identified the influence of the intervention on participants' PCK for NOS. Analysis of data revealed four major themes related to the nature of preservice chemistry teachers' NOS teaching practices and their PCK for NOS: (1) prerequisite knowledge and beliefs are necessary to teach NOS, (2) there is a developmental progression of PCK for NOS from knowledge to application level, (3) teachers need some comfort in their NOS understanding to teach NOS, and (4) the higher integration of PCK components leads to successful NOS teaching practices. Implications for science teacher education and research are discussed.

  8. The influence of secondary science teachers' pedagogical content knowledge, educational beliefs and perceptions of the curriculum on implementation and science reform

    Science.gov (United States)

    Bonner, Portia Selene

    2001-07-01

    Science education reform is one of the focal points of restructuring the educational system in the United States. However, research indicates a slow change in progression towards science literacy among secondary students. One of the factors contributing to slow change is how teachers implement the curriculum in the classroom. Three constructs are believed to be influential in curriculum implementation: educational beliefs, pedagogical knowledge and perception of the curriculum. Earlier research suggests that there is a strong correlation between teachers' educational beliefs and instructional practices. These beliefs can be predictors of preferred strategies employed in the classroom. Secondly, teachers' pedagogical knowledge, that is the ability to apply theory and appropriate strategies associated with implementing and evaluating a curriculum, contributes to implementation. Thirdly, perception or how the curriculum itself is perceived also effects implementation. Each of these constructs has been examined independently, but never the interplay of the three. The purpose of this qualitative study was to examine the interplay of teachers' educational beliefs, pedagogical content knowledge and perceptions of a science curriculum with respect to how these influence curriculum implementation. This was accomplished by investigating the emerging themes that evolved from classroom observations, transcripts from interview and supplementary data. Five high school biology teachers in an urban school system were observed for ten months for correspondence of teaching strategies to the curriculum. Teachers were interviewed formally and informally about their perceptions of science teaching, learning and the curriculum. Supplementary material such as lesson plans, course syllabus and notes from classroom observations were collected and analyzed. Data were transcribed and analyzed for recurring themes using a thematic matrix. A theoretical model was developed from the emerging

  9. Probe into geo-information science and information science in nuclear and geography science in China

    International Nuclear Information System (INIS)

    Tang Bin

    2001-01-01

    In the past ten years a new science-Geo-Information Science, a branch of Geoscience, developed very fast, which has been valued and paid much attention to. Based on information science, the author analyzes the flow of material, energy, people and information and their relations, presents the place of Geo-Information Science in Geo-science and its content from Geo-Informatics, Geo-Information technology and the application of itself. Finally, the author discusses the main content and problem existed in Geo-Information Science involved in Nuclear and Geography Science

  10. Blog Citations as Indicators of the Societal Impact of Research : Content Analysis of Social Sciences Blogs

    Directory of Open Access Journals (Sweden)

    Hamid R. Jamali

    2015-06-01

    Full Text Available This article analyzes motivations behind social sciences blog posts citing journal articles in order to find out whether blog citations are good indicators for the societal impact or benefits of research. A random sample of 300 social sciences blog posts (out of 1,233 blog posts from ResearchBlogging.org published between 01/01/2012 to 18/06/2014 were subjected to content analysis. The 300 blog posts had 472 references including 424 journal articles from 269 different journals. Sixty‐one (22.68% of all cited journals were from the social sciences and most of the journals with high frequency were highly cited general science journals such as PNAS and Science. Seventy‐five percent of all journals were referenced only once. The average age of articles cited at the time of citation was 5.8 years. Discussion and criticism were the two main categories of motivations. Overall, the study shows the potential of blog citations as an altmetric measure and as a proxy for assessing the research impact. A considerable number of citation motivations in blogs such as disputing a belief, suggesting policies, providing a solution to a problem, reacting to media, criticism and the like seemed to support gaining societal benefits. Societal benefits are considered as helping stimulate new approaches to social issues, or informing public debate and policymaking. Lower self‐citation (compared to some other altmetric measures such as tweets and the fact that blogging involves generating content (i.e. an intellectual process give them an advantage for altmetrics. However, limitations and contextual issues such as disciplinary differences and low uptake of altmetrics, in general, in scholarly communication should not be ignored when using blogs as a data source for altmetrics.

  11. Teacher leadership in mathematics and science: Subject content knowledge and the improvement of instruction

    Science.gov (United States)

    Manno, Christopher M.

    This study explores the role of teacher leader subject content knowledge in the promotion of professional development and instructional reform. Consistent with a distributed leadership perspective, many have asserted that the promotion of school effectiveness can be enhanced through the application of teacher leadership (Frost & Durrant, 2003; Harris, 2002a; Sherrill, 1999; Silva, Gimbert, & Nolan, 2000; York-Barr & Duke, 2004). There has been much discussion in the research about the significance of teachers' subject content knowledge in teaching and learning which has generally asserted a positive relationship with instructional practice and student achievement (Darling-Hammond, 2000; Newton & Newton, 2001; Parker & Heywood, 2000). The role of content knowledge in teacher leader work has been less researched. This study focused on deepening understanding of perceptions regarding teacher leaders' roles in improving instructional practice. Based on a framework of common teacher leader tasks, qualitative methods were used to investigate the relationship between teacher leader subject content knowledge and perceptions of effectiveness in promoting professional development and instructional reform. The study indicates that content experts behave differently than their non-expert counterparts. Content experts recognize deficiencies in colleagues' content knowledge as a primary problem in the implementation of math or science reform. Content experts view their work as advocacy for improved curriculum and instruction for all children, and work within a small set of task categories to promote discussions about teaching, learning, and content. Content experts develop trust and rapport with colleagues by demonstrating expertise, and are respected for their deep knowledge and efforts to help teachers learn the content. They also differ from non-content experts in the professional growth experiences in which they engage. The consideration of content expertise as an influence

  12. Using News Media Databases (LexisNexis) To Identify Relevant Topics For Introductory Earth Science Classes

    Science.gov (United States)

    Cervato, C.; Jach, J. Y.; Ridky, R.

    2003-12-01

    Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms

  13. Next Generation Science Partnerships

    Science.gov (United States)

    Magnusson, J.

    2016-02-01

    I will provide an overview of the Next Generation Science Standards (NGSS) and demonstrate how scientists and educators can use these standards to strengthen and enhance their collaborations. The NGSS are rich in content and practice and provide all students with an internationally-benchmarked science education. Using these state-led standards to guide outreach efforts can help develop and sustain effective and mutually beneficial teacher-researcher partnerships. Aligning outreach with the three dimensions of the standards can help make research relevant for target audiences by intentionally addressing the science practices, cross-cutting concepts, and disciplinary core ideas of the K-12 science curriculum that drives instruction and assessment. Collaborations between researchers and educators that are based on this science framework are more sustainable because they address the needs of both scientists and educators. Educators are better able to utilize science content that aligns with their curriculum. Scientists who learn about the NGSS can better understand the frameworks under which educators work, which can lead to more extensive and focused outreach with teachers as partners. Based on this model, the International Ocean Discovery Program (IODP) develops its education materials in conjunction with scientists and educators to produce accurate, standards-aligned activities and curriculum-based interactions with researchers. I will highlight examples of IODP's current, successful teacher-researcher collaborations that are intentionally aligned with the NGSS.

  14. Preservice Elementary Teachers' Beliefs about Nature of Science and Constructivist Teaching in the Content-Specific Context

    Science.gov (United States)

    Yoon, Hye-Gyoung; Kim, Byoung Sug

    2016-01-01

    The purpose of this study was to explore how Korean preservice elementary teachers' beliefs about nature of science (NOS) and their beliefs about constructivist teaching were structured and related and if any relation was prevalent in the content-specific contexts. As the same format, three versions of questionnaires were developed in three…

  15. Opportunities for Space Science Education Using Current and Future Solar System Missions

    Science.gov (United States)

    Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.

    2010-12-01

    The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a

  16. New media landscapes and the science information consumer.

    Science.gov (United States)

    Brossard, Dominique

    2013-08-20

    Individuals are increasingly turning to online environments to find information about science and to follow scientific developments. It is therefore crucial for scientists and scientific institutions to consider empirical findings from research in online science communication when thinking about science in the public sphere. After providing a snapshot of the current media landscape, this paper reviews recent major research findings related to science communication in the online environment and their implications for science in the 21st century. Particular emphasis is given to the bias introduced by search engines, the nature of scientific content encountered online, and the potential impact of the Internet on audiences' knowledge and attitudes toward science.

  17. The presence of academic health sciences libraries on Facebook: the relationship between content and library popularity.

    Science.gov (United States)

    Garcia-Milian, Rolando; Norton, Hannah F; Tennant, Michele R

    2012-01-01

    Social networks such as Facebook allow libraries to be proactive in reaching their users. While some libraries have popular Facebook pages, it remains unclear what attracts users to these pages. This study evaluates relationships between libraries' Facebook page content and popularity. An analysis of 72 academic health sciences libraries' Facebook pages showed positive correlations between number of library fans and number of tabs, photos, events, and wall posts on Facebook. Libraries posting videos had significantly more fans than libraries without them. This study contributes to an understanding of correlations between content and popularity on Facebook, with implications for library outreach.

  18. Influence of subject matter discipline and science content knowledge on National Board Certified science teachers' conceptions, enactment, and goals for inquiry

    Science.gov (United States)

    Breslyn, Wayne Gene

    The present study investigated differences in the continuing development of National Board Certified Science Teachers' (NBCSTs) conceptions of inquiry across the disciplines of biology, chemistry, earth science, and physics. The central research question of the study was, "How does a NBCST's science discipline (biology, chemistry, earth science, or physics) influence their conceptions, enactment, and goals for inquiry-based teaching and learning?" A mixed methods approach was used that included an analysis of the National Board portfolio entry, Active Scientific Inquiry, for participants (n=48) achieving certification in the 2007 cohort. The portfolio entry provided detailed documentation of teachers' goals and enactment of an inquiry lesson taught in their classroom. Based on the results from portfolio analysis, participant interviews were conducted with science teachers (n=12) from the 2008 NBCST cohort who represented the science disciplines of biology, chemistry, earth science, and physics. The interviews provided a broader range of contexts to explore teachers' conceptions, enactment, and goals of inquiry. Other factors studied were disciplinary differences in NBCSTs' views of the nature of science, the relation between their science content knowledge and use of inquiry, and changes in their conceptions of inquiry as result of the NB certification process. Findings, based on a situated cognitive framework, suggested that differences exist between biology, chemistry, and earth science teachers' conceptions, enactment, and goals for inquiry. Further, individuals teaching in more than one discipline often held different conceptions of inquiry depending on the discipline in which they were teaching. Implications for the research community include being aware of disciplinary differences in studies on inquiry and exercising caution in generalizing findings across disciplines. In addition, teachers who teach in more than one discipline can highlight the contextual

  19. Discrete calculus applied analysis on graphs for computational science

    CERN Document Server

    Grady, Leo J

    2010-01-01

    This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.

  20. Embedded Simultaneous Prompting Procedure to Teach STEM Content to High School Students with Moderate Disabilities in an Inclusive Setting

    Science.gov (United States)

    Heinrich, Sara; Collins, Belva C.; Knight, Victoria; Spriggs, Amy D.

    2016-01-01

    Effects of an embedded simultaneous prompting procedure to teach STEM (science, technology, engineering, math) content to three secondary students with moderate intellectual disabilities in an inclusive general education classroom were evaluated in the current study. Students learned discrete (i.e., geometric figures, science vocabulary, or use of…

  1. Current status of investigations in the field of solid state science in central Kazakstan region

    International Nuclear Information System (INIS)

    Kuketaev, T.A.

    1999-01-01

    Investigations in the field of solid state science were initiated together with foundation of University in Karaganda. Historically general investigations in this field were conducted for scientific directions related to optical, luminescent and radiation properties of wide gap insulator. This activity was carried out according to appropriate plans of coordination counsels en-gaged in the physics of insulators, luminescent and radiation physics at the Academy of Science USSR and in the Committee on sciences and engineering of the Counsel of Ministers of the USSR. A number of works were coordinated by the Academy of Sciences of Kazakhstan Republic. Investigations in the field of solid state science, con-ducted in the Central Kazakstan and coordinated by the Institute of Physics and Engineering of Kazakhstan National Academy of Sciences, can be currently distinguished according to scientific directions. Currently, the following scientific directions in the field of solid state science exist in the Central Kazakstan: influence of polymorph phase transitions on electron excitation in wide-gap crystals, radiation malformation and recombination, dielectric spectroscopy of crystals with hydrogen link, spectral and luminescent properties and energy migration processes in disordered and partly ordered systems of organic molecules. It is necessary to note that all investigated objects, described in this report, were recovered by investigators. That is, the relevant hardware is available

  2. The botanical content in the South African curriculum: A barren desert or a thriving forest?

    Directory of Open Access Journals (Sweden)

    Amelia L. Abrie

    2016-02-01

    Full Text Available Botanists who are interested in education have often expressed their dismay at how plant sciences are neglected in Biology curricula, despite the important roles that plants play. While botanists in several overseas countries have studied the ways in which plant sciences are represented in curricula, no research has been done on how botany is neglected in the South African curriculum. Currently, the South African curriculum is known as the Curriculum and Assessment Policy Statements (CAPS for Grades R–12. In this study, a comparison was made among the content that is generally taught in introductory plant sciences courses, the American Society of Plant Biologists’ principles for plant biology education and the relevant CAPS documents. The time spent on plant, animal or human-focused content was established and compared at both phase and grade level. It was found that while the curriculum addresses all the major concepts in the plant sciences, very little time was being allocated to exclusively plant-focused content as compared to animal and human-focused content. This neglect was particularly prevalent in the Foundation Phase. The way in which the content is structured and presented in the curriculum may in all likelihood not be sufficient to provide a strong knowledge and skills foundation in the plant sciences, nor will it encourage the development of positive values towards plants. While consensus regarding the content of a curriculum will be difficult to achieve, awareness of potential gaps in the curriculum should be brought to the attention of the botanical and educational communities.

  3. A Science for Citizenship Model: Assessing the Effects of Benefits, Risks, and Trust for Predicting Students' Interest in and Understanding of Science-Related Content

    Science.gov (United States)

    Jack, Brady Michael; Lee, Ling; Yang, Kuay-Keng; Lin, Huann-shyang

    2017-10-01

    This study showcases the Science for Citizenship Model (SCM) as a new instructional methodology for presenting, to secondary students, science-related technology content related to the use of science in society not taught in the science curriculum, and a new approach for assessing the intercorrelations among three independent variables (benefits, risks, and trust) to predict the dependent variable of triggered interest in learning science. Utilizing a 50-minute instructional presentation on nanotechnology for citizenship, data were collected from 301 Taiwanese high school students. Structural equation modeling (SEM) and paired-samples t-tests were used to analyze the fitness of data to SCM and the extent to which a 50-minute class presentation of nanotechnology for citizenship affected students' awareness of benefits, risks, trust, and triggered interest in learning science. Results of SCM on pre-tests and post-tests revealed acceptable model fit to data and demonstrated that the strongest predictor of students' triggered interest in nanotechnology was their trust in science. Paired-samples t-test results on students' understanding of nanotechnology and their self-evaluated awareness of the benefits and risks of nanotechology, trust in scientists, and interest in learning science revealed low significant differences between pre-test and post-test. These results provide evidence that a short 50-minute presentation on an emerging science not normally addressed within traditional science curriculum had a significant yet limited impact on students' learning of nanotechnology in the classroom. Finally, we suggest why the results of this study may be important to science education instruction and research for understanding how the integration into classroom science education of short presentations of cutting-edge science and emerging technologies in support of the science for citizenship enterprise might be accomplished through future investigations.

  4. An analysis of science content and representations in introductory college physics textbooks and multimodal learning resources

    Science.gov (United States)

    Donnelly, Suzanne M.

    This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations

  5. The effect of fifth grade science teachers' pedagogical content knowledge on their decision making and student learning outcomes on the concept of chemical change

    Science.gov (United States)

    Ogletree, Glenda Lee

    This study investigated the science pedagogical content knowledge (PCK) among teachers as they taught the concept of chemical change to fifth grade students. The purpose was to identify teachers' PCK and its impact in middle grade science classrooms. A second purpose was to investigate the possible relationship of teachers' science PCK to teacher actions and student learning outcomes in the classroom. The instruments used to capture PCK were background and demographic information, Content Representations (CoRe), and Professional and Pedagogical experience Repertoire (PaP-eR). The study investigated CoRe and PaP-eR with seven classroom teachers as they planned and taught chemical change to fifth grade students. Four levels of a Pedagogical Content Knowledge rubric were used to describe varying levels of PCK. The four levels were content knowledge of chemical change; knowledge of students' thinking; knowledge of how to represent chemical change to promote student learning; and professional development, collaboration, and leadership roles in science. The Reformed Teaching Observation Protocol (RTOP) described and evaluated science teaching performance levels of the teachers. In this study, 176 students were assessed to determine understanding of chemical change. There was a significant correlation between teachers' PCK scores and student achievement. The study also determined that a significant correlation existed between teachers' PCK scores and their RTOP scores revealing that RTOP scores could be predictors of PCK. Through this approach, understandings of PCK emerged that are of interest to university preservice preparation programs, research in understanding effective teachers and teaching, and the planning and implementation of professional development for teachers of science with middle grade students.

  6. The Poetry of Dandelions: Merging Content-Area Literacy and Science Content Knowledge in a Fourth-Grade Science Classroom

    Science.gov (United States)

    Madden, Lauren; Peel, Anne; Watson, Heather

    2014-01-01

    As teachers begin to implement the Common Core State Standards (CCSS) and Next Generation Science Standards (NGSS), they are challenged to focus on informational texts across the disciplines and engage children in critical thinking about complex scientific ideas. In this article, we present an integrated science-language arts lesson that explores…

  7. New media landscapes and the science information consumer

    Science.gov (United States)

    Brossard, Dominique

    2013-01-01

    Individuals are increasingly turning to online environments to find information about science and to follow scientific developments. It is therefore crucial for scientists and scientific institutions to consider empirical findings from research in online science communication when thinking about science in the public sphere. After providing a snapshot of the current media landscape, this paper reviews recent major research findings related to science communication in the online environment and their implications for science in the 21st century. Particular emphasis is given to the bias introduced by search engines, the nature of scientific content encountered online, and the potential impact of the Internet on audiences’ knowledge and attitudes toward science. PMID:23940316

  8. Doctors currently in jobs with academic content and their future intentions to pursue clinical academic careers: questionnaire surveys.

    Science.gov (United States)

    Lambert, Trevor W; Smith, Fay; Goldacre, Michael J

    2015-02-01

    Our aim was to report on doctors' descriptions of their current post at about 12 years after qualification, in respect of academic content, and to compare this with their long-term intentions. By academic content, we mean posts that are designated as clinical academic posts or clinical service posts that include research and/or teaching commitments. Questionnaire survey. All UK medical graduates of 1996 contacted in 2007, graduates of 1999 in 2012, and graduates of 2000 in 2012. UK. Responses about current posts and future intentions. Postal and email questionnaires. The response rate was 61.9% (6713/10844). Twenty eight per cent were working in posts with academic content (3.3% as clinical academics, 25% in clinical posts with some academic content). Seventeen per cent of women were working in clinical posts with some teaching and research, compared with 29% of men. A higher percentage of men than women intended to be clinical academics as their eventual career choice (3.9% overall, 5.4% of men, 2.7% of women). More doctors wished to move to a job with an academic component than away from one (N = 824 compared with 236). This was true for both men (433 compared with 118) and women (391 compared with 118). Women are under-represented both in holding posts with academic content and in aspirations to do so. It is noteworthy that many more doctors hoped to move into an academic role than to move out of one. Policy should facilitate this wish in order to address current shortfalls in clinical academic medicine.

  9. Current Research and Statistical Practices in Sport Science and a Need for Change

    Directory of Open Access Journals (Sweden)

    Jake R. Bernards

    2017-11-01

    Full Text Available Current research ideologies in sport science allow for the possibility of investigators producing statistically significant results to help fit the outcome into a predetermined theory. Additionally, under the current Neyman-Pearson statistical structure, some argue that null hypothesis significant testing (NHST under the frequentist approach is flawed, regardless. For example, a p-value is unable to measure the probability that the studied hypothesis is true, unable to measure the size of an effect or the importance of a result, and unable to provide a good measure of evidence regarding a model or hypothesis. Many of these downfalls are key questions researchers strive to answer following an investigation. Therefore, a shift towards a magnitude-based inference model, and eventually a fully Bayesian framework, is thought to be a better fit from a statistical standpoint and may be an improved way to address biases within the literature. The goal of this article is to shed light on the current research and statistical shortcomings the field of sport science faces today, and offer potential solutions to help guide future research practices.

  10. Contents and readability of currently used surgical/ procedure ...

    African Journals Online (AJOL)

    Conclusion: The content of majority of the informed consent forms used in Nigerian tertiary health institutions are poor and their readability scores are not better than those used in developed parts of the world. Health Institutions in Nigeria should revise their informed consent forms to improve their contents and do a usability ...

  11. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  12. Theoretical currents of Archival Science

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Ávila Araújo

    2013-08-01

    Full Text Available Archival Science was formed, as a scientific discipline, in the late nineteenth century, from the consolidation of a custody and heritage model. In the twentieth century, several theories have been developed, systematized in this article in four axes. As a result, Archival Science has expanded its scope of studies. As a result of this expansion, there are contemporary perspectives with systemic models, covering different types of archives, concerned with the sociocultural context of the archives, and also insering digital technologies in the practice of archives.

  13. Life Science Literacy of an Undergraduate Population

    Science.gov (United States)

    Medina, Stephanie R.; Ortlieb, Evan; Metoyer, Sandra

    2014-01-01

    Science content knowledge is a concern for educators in the United States because performance has stagnated for the past decade. Investigators designed this study to determine the current levels of scientific literacy among undergraduate students in a freshman-level biology course (a core requirement for majors and nonmajors), identify factors…

  14. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  15. The Animal Sciences Academic Quadrathlon: history, current status, and recommendations.

    Science.gov (United States)

    Kauffman, R G; Jobsis, C T; Onan, G; Day, B N

    2011-07-01

    The Animal Sciences Academic Quadrathlon (AQ) provides opportunities for teams of undergraduate animal and dairy science students to participate in regional American Society of Animal Science (ASAS)/American Dairy Science Association (ADSA) meetings and to collectively exhibit their knowledge and talents competitively in 4 categories: 1) solving practical, hands-on, laboratory-type problems; 2) providing written answers to essay-type questions about principles and concepts; 3) preparing and communicating orally and extemporaneously topics of current animal science interest; and 4) quickly responding to short-answer questions provided in the form of double-elimination quiz bowls. Each team is selected by winning the local AQ at their university. Overall and individual category winning teams are recognized, but team rankings are not emphasized. The ASAS/ADSA members provide leadership for organizing and conducting the AQ, and ASAS and each university provide travel expenses for students. The ultimate purpose is to stimulate academic excellence among undergraduate students and for the students to attend ASAS/ADSA regional scientific meetings to meet faculty and students and to attend scientific research presentations. The purpose of this document was to provide a history of the event and to make recommendations for its improvement. The AQ was conceived in 1967. During the next 10 yr, an ASAS committee developed procedures for a trial AQ held in 1980 at the ASAS Midwestern Section, Kansas State University-Manhattan, and in the next year the first official AQ was held at the ASAS Midwestern Section at the University of Nebraska-Lincoln. Starting in 1985, AQ programs were initiated at the other 3 ASAS sectional meetings, and an estimated 50,000 students representing 60 universities have participated in AQ programs since that time. If the AQ is to continue its improvement over time, it will greatly depend on sustained ASAS/ADSA faculty interest and support, as well as

  16. Materials Science

    Science.gov (United States)

    2003-01-01

    The Materials Science Program is structured so that NASA s headquarters is responsible for the program content and selection, through the Enterprise Scientist, and MSFC provides for implementation of ground and flight programs with a Discipline Scientist and Discipline Manager. The Discipline Working Group of eminent scientists from outside of NASA acts in an advisory capacity and writes the Discipline Document from which the NRA content is derived. The program is reviewed approximately every three years by groups such as the Committee on Microgravity Research, the National Materials Advisory Board, and the OBPR Maximization and Prioritization (ReMaP) Task Force. The flight program has had as many as twenty-six principal investigators (PIs) in flight or flight definition stage, with the numbers of PIs in the future dependent on the results of the ReMaP Task Force and internal reviews. Each project has a NASA-appointed Project Scientist, considered a half-time job, who assists the PI in understanding and preparing for internal reviews such as the Science Concept Review and Requirements Definition Review. The Project Scientist also insures that the PI gets the maximum science support from MSFC, represents the PI to the MSFC community, and collaborates with the Project Manager to insure the project is well-supported and remains vital. Currently available flight equipment includes the Materials Science Research Rack (MSRR-1) and Microgravity Science Glovebox. Ground based projects fall into one or more of several categories. Intellectual Underpinning of Flight Program projects include theoretical studies backed by modeling and computer simulations; bring to maturity new research, often by young researchers, and may include preliminary short duration low gravity experiments in the KC-135 aircraft or drop tube; enable characterization of data sets from previous flights; and provide thermophysical property determinations to aid PIs. Radiation Shielding and preliminary In

  17. Proceedings of the DAE-BRNS life sciences symposium on current trends in biology and medicine

    International Nuclear Information System (INIS)

    2010-01-01

    This year's Life Sciences Symposium is focused on Health Sciences. It will provide an interactive platform for deliberations on current developments in basic research on cancer, diabetes, infectious diseases, reproduction, stem cells and degenerative diseases. Several aspects like metabolism, use of biophysical techniques, detection methods, micro RNA based regulation, assisted reproductive technologies etc. are covered. Papers relevant to INIS are indexed separately

  18. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    Science.gov (United States)

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  19. Spirometry training courses: Content, delivery and assessment - a position statement from the Australian and New Zealand Society of Respiratory Science.

    Science.gov (United States)

    Swanney, Maureen P; O'Dea, Christopher A; Ingram, Emily R; Rodwell, Leanne T; Borg, Brigitte M

    2017-10-01

    Spirometry training courses are provided by health services and training organizations to enable widespread use of spirometry testing for patient care or for monitoring health. The primary outcome of spirometry training courses should be to enable participants to perform spirometry to international best practice, including testing of subjects, quality assurance and interpretation of results. Where valid results are not achieved or quality assurance programmes identify errors in devices, participants need to be able to adequately manage these issues in accordance with best practice. It is important that potential participants are confident in the integrity of the course they attend and that the course meets their expectations in terms of training. This position statement lists the content that the Australian and New Zealand Society of Respiratory Science (ANZSRS) has identified as required in a spirometry training course to adequately meet the primary outcomes mentioned above. The content requirements outlined in this position statement are based on the current international spirometry standards set out by the American Thoracic Society and European Respiratory Society. Furthermore, recommendations around course delivery for theoretical and practical elements of spirometry testing and post-course assessment are outlined in this statement. © 2017 The Authors. Respirology published by John Wiley & Sons Australia, Ltd on behalf of Asian Pacific Society of Respirology.

  20. Microblogging as an extension of science reporting.

    Science.gov (United States)

    Büchi, Moritz

    2017-11-01

    Mass media have long provided general publics with science news. New media such as Twitter have entered this system and provide an additional platform for the dissemination of science information. Based on automated collection and analysis of >900 news articles and 70,000 tweets, this study explores the online communication of current science news. Topic modeling (latent Dirichlet allocation) was used to extract five broad themes of science reporting: space missions, the US government shutdown, cancer research, Nobel Prizes, and climate change. Using content and network analysis, Twitter was found to extend public science communication by providing additional voices and contextualizations of science issues. It serves a recommender role by linking to web resources, connecting users, and directing users' attention. This article suggests that microblogging adds a new and relevant layer to the public communication of science.

  1. Ideas in Practice: Studies in Atmospheric Pollution For Science Teachers

    Science.gov (United States)

    Rowe, Donald R.

    1974-01-01

    Describes the content and structure of an enviromental course offered by the Department of Engineering Technology at Western Kentucky University. The course focuses on atmospheric pollution and is designed for science teachers currently teaching in the school system. (JR)

  2. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Meridional

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  3. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Zonal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  4. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  5. Dysrhythmia management content in ADN and BSN curricula.

    Science.gov (United States)

    McIntosh, Trisha; Duske, Shawna; Anderson, Mary Ann; Hill, Pamela

    2008-07-01

    The purposes of this study were to compare nurse educators' perceptions of the importance of selected dysrhythmia management competencies for the graduates of associate degree in nursing (ADN) and baccalaureate of science in nursing (BSN) programs, and to compare what related content is taught at the ADN and BSN level for dysrhythmia management. A quantitative, nonexperimental design with a mailed survey was used to compare how nurse educators perceive the importance of dysrhythmia competencies in selected ADN and BSN programs in the states of Illinois and Iowa, and to determine what related content is taught. A total of 33 ADN and 24 BSN programs returned the survey for a 58.2% (57 of 98) response rate. Results indicated that ADN and BSN faculty in Illinois and Iowa perceived that selected dysrhythmia management content is important and that such content is currently provided at both the ADN and BSN level. Health care institutions can have confidence that new graduates from either educational preparation have had dysrhythmia management content and can expand their level of expertise.

  6. Acquiring Science and Social Studies Knowledge in Kindergarten through Fourth Grade: Conceptualization, Design, Implementation, and Efficacy Testing of Content-Area Literacy Instruction (CALI)

    Science.gov (United States)

    Connor, Carol McDonald; Dombek, Jennifer; Crowe, Elizabeth C.; Spencer, Mercedes; Tighe, Elizabeth L.; Coffinger, Sean; Zargar, Elham; Wood, Taffeta; Petscher, Yaacov

    2017-01-01

    With national focus on reading and math achievement, science and social studies have received less instructional time. Yet, accumulating evidence suggests that content knowledge is an important predictor of proficient reading. Starting with a design study, we developed content-area literacy instruction (CALI) as an individualized (or personalized)…

  7. Current fundamental science challenges in low temperature plasma science that impact energy security and international competitiveness

    Science.gov (United States)

    Hebner, Greg

    2010-11-01

    Products and consumer goods that utilize low temperature plasmas at some point in their creation touch and enrich our lives on almost a continuous basis. Examples are many but include the tremendous advances in microelectronics and the pervasive nature of the internet, advanced material coatings that increase the strength and reliability of products from turbine engines to potato chip bags, and the recent national emphasis on energy efficient lighting and compact fluorescent bulbs. Each of these products owes their contributions to energy security and international competiveness to fundamental research investments. However, it would be a mistake to believe that the great commercial success of these products implies a robust understanding of the complicated interactions inherent in plasma systems. Rather, current development of the next generation of low temperature plasma enabled products and processes is clearly exposing a new set of exciting scientific challenges that require leaps in fundamental understanding and interdisciplinary research teams. Emerging applications such as liquid-plasma systems to improve water quality and remediate hazardous chemicals, plasma-assisted combustion to increase energy efficiency and reduce emissions, and medical applications promise to improve our lives and the environment only if difficult science questions are solved. This talk will take a brief look back at the role of low temperature plasma science in enabling entirely new markets and then survey the next generation of emerging plasma applications. The emphasis will be on describing the key science questions and the opportunities for scientific cross cutting collaborations that underscore the need for increased outreach on the part of the plasma science community to improve visibility at the federal program level. This work is supported by the DOE, Office of Science for Fusion Energy Sciences, and Sandia National Laboratories, a multi-program laboratory managed and operated

  8. Examination of the Teaching Skills for Reading Scientific Materials Needed by Science Teachers by Comparing In-Service and Prospective Science Teachers

    OpenAIRE

    山根, 嵩史; 中條, 和光

    2016-01-01

    We examined the teaching skills for reading scientific materials needed by science teachers. We compared the views of teaching skills for reading scientific materials of science teachers both in service and in training. The result of text mining for free description of the teaching skills of both groups showed that, whereas trainee teachers emphasized language ability as a teaching skill (for example, the ability to image the contents of a text), current teachers emphasized teaching the curri...

  9. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  10. The Current Situation of Field Experience in a Five-Year Science Teacher Education Program in Thailand

    Science.gov (United States)

    Faikhamta, Chatree; Jantarakantee, Ekgapoom; Roadrangka, Vantipa

    2011-01-01

    This research explored the current situation in managing the field experience of a five-year science teacher education program in one university in Thailand. A number of methods were used to assess field experience situation: (1) a questionnaire on the perceptions of pre-service science teachers of field experience management; (2) participant…

  11. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    Science.gov (United States)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  12. Using a multi-user virtual simulation to promote science content: Mastery, scientific reasoning, and academic self-efficacy in fifth grade science

    Science.gov (United States)

    Ronelus, Wednaud J.

    The purpose of this study was to examine the impact of using a role-playing game versus a more traditional text-based instructional method on a cohort of general education fifth grade students' science content mastery, scientific reasoning abilities, and academic self-efficacy. This is an action research study that employs an embedded mixed methods design model, involving both quantitative and qualitative data. The study is guided by the critical design ethnography theoretical lens: an ethnographic process involving participatory design work aimed at transforming a local context while producing an instructional design that can be used in multiple contexts. The impact of an immersive 3D multi-user web-based educational simulation game on a cohort of fifth-grade students was examined on multiple levels of assessments--immediate, close, proximal and distal. A survey instrument was used to assess students' self-efficacy in technology and scientific inquiry. Science content mastery was assessed at the immediate (participation in game play), close (engagement in-game reports) and proximal (understanding of targeted concepts) levels; scientific reasoning was assessed at the distal (domain general critical thinking test) level. This quasi-experimental study used a convenient sampling method. Seven regular fifth-grade classes participated in this study. Three of the classes were the control group and the other four were the intervention group. A cohort of 165 students participated in this study. The treatment group contained 38 boys and 52 girls, and the control group contained 36 boys and 39 girls. Two-tailed t-test, Analysis of Covariance (ANCOVA), and Pearson Correlation were used to analyze data. The data supported the rejection of the null hypothesis for the three research questions. The correlational analyses showed strong relationship among three of the four variables. There were no correlations between gender and the three dependent variables. The findings of this

  13. Engaged Learning and Youth Interest in STEM Careers: A Science Museum Exhibit on Air Pollution and Urban Sustainability

    Science.gov (United States)

    Stuart, A. L.

    2012-12-01

    Enrollments in science, technology, engineering, and mathematics (STEM) curricula currently lag workforce needs. Participation of women and minorities in STEM careers also remains low despite efforts to improve their representation in these fields. We discuss the development and evaluation of a science museum exhibit aimed at stimulating interest of middle school children (particularly girls) in STEM careers. The exhibit was designed to teach science, while addressing two factors identified as limiting the interest of girls in STEM fields — perceived lack of social relevance and lack of female role models. Further, it was designed to apply best practices in science education, including inquiry-based learning and interdisciplinary content. The exhibit was developed through collaboration between students and faculty researchers at the University of South Florida and science education and evaluation specialists at the Museum of Science and Industry of Tampa. A few stages of formative and summative assessment, including focus group discussions, visitor observation, and surveys were used to evaluate the effectiveness of the exhibit to educational project goals. The installed exhibit is focused on teaching content related to interactions between air pollution, urban design, and human health. The approximately 25 square foot exhibit space involves four different types of components. A three-dimensional model of a city, with underlying dynamic computer simulations, allows visitors to interactively explore relationships between city design, air pollution and exposures. A computer game, with quiz questions requiring user decisions on personal to community behavior, provides visual feedback regarding impacts on air pollution. Traditional panels with graphics and text, including results of current research, display integrative scientific content with open-ended questions to stimulate discussion. Finally, personal profiles highlight the diverse family, work, and social lives

  14. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  15. Qualitative Content Analysis

    OpenAIRE

    Satu Elo; Maria Kääriäinen; Outi Kanste; Tarja Pölkki; Kati Utriainen; Helvi Kyngäs

    2014-01-01

    Qualitative content analysis is commonly used for analyzing qualitative data. However, few articles have examined the trustworthiness of its use in nursing science studies. The trustworthiness of qualitative content analysis is often presented by using terms such as credibility, dependability, conformability, transferability, and authenticity. This article focuses on trustworthiness based on a review of previous studie...

  16. Web Content Management Systems: An Analysis of Forensic Investigatory Challenges.

    Science.gov (United States)

    Horsman, Graeme

    2018-02-26

    With an increase in the creation and maintenance of personal websites, web content management systems are now frequently utilized. Such systems offer a low cost and simple solution for those seeking to develop an online presence, and subsequently, a platform from which reported defamatory content, abuse, and copyright infringement has been witnessed. This article provides an introductory forensic analysis of the three current most popular web content management systems available, WordPress, Drupal, and Joomla! Test platforms have been created, and their site structures have been examined to provide guidance for forensic practitioners facing investigations of this type. Result's document available metadata for establishing site ownership, user interactions, and stored content following analysis of artifacts including Wordpress's wp_users, and wp_comments tables, Drupal's "watchdog" records, and Joomla!'s _users, and _content tables. Finally, investigatory limitations documenting the difficulties of investigating WCMS usage are noted, and analysis recommendations are offered. © 2018 American Academy of Forensic Sciences.

  17. To What Extent Does Current Scientific Research and Textbook Content Align? A Methodology and Case Study

    Science.gov (United States)

    Bierema, Andrea M.-K.; Schwartz, Renee S.; Gill, Sharon A.

    2017-01-01

    Recent calls for reform in education recommend science curricula to be based on central ideas instead of a larger number of topics and for alignment between current scientific research and curricula. Because alignment is rarely studied, especially for central ideas, we developed a methodology to discover the extent of alignment between primary…

  18. Mentoring BUGS: An Integrated Science and Technology Curriculum

    Science.gov (United States)

    Harrell, Pamela Esprivalo; Walker, Michelle; Hildreth, Bertina; Tyler-Wood, Tandra

    2004-01-01

    The current study describes an authentic learning experience designed to develop technology and science process skills through a carefully scaffolded curriculum using mealworms as a content focus. An individual mentor assigned to each 4th and 5th grade girl participating in the program delivered the curriculum. Results indicate mastery of science…

  19. ICT use in science and mathematics teacher education in Tanzan: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, A.; Fisser, P.; Pieters, J.; Voogt, J.

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  20. ICT Use in Science and Mathematics Teacher Education in Tanzania: Developing Technological Pedagogical Content Knowledge

    NARCIS (Netherlands)

    Kafyulilo, Ayoub; Fisser, Petra; Pieters, Julius Marie; Voogt, Joke

    2015-01-01

    Currently, teacher education colleges in Tanzania are being equipped with computers to prepare teachers who can integrate technology in teaching. Despite these efforts, teachers are not embracing the use of technology in their teaching. This study adopted Technological Pedagogical Content Knowledge

  1. Synthesizing research and education: Ecology and genetics of independent fern gametophytes and teaching science inquiry and content through simulations

    Science.gov (United States)

    Duffy, Aaron M.

    Two of the main areas of focus in university academics are research and education. The mission statements of Utah State University and the Department of Biology emphasize both areas, as do the requirements of funding agencies. I attempted to integrate research and education by using tools that I developed to support and inform my biological research projects to teach science. Ferns have a life cycle with alternating haploid and diploid life stages, both of which are free-living and potentially long-lived. The haploid gametophytes of some ferns reproduce asexually and may have different environmental requirements than the diploid sporophytes, so it is possible for populations of gametophytes to exist without sporophytes. This dissertation includes a description of surveys for Hymenophyllum wrightii, a fern with independent gametophytes in the Pacific Northwest, and improves our understanding of the range, distribution, and habitat requirements of these plants which were previously assumed to be rare. It also describes an attempt to explore the population genetics of gametophytes of Crepidomanes intricatum, a widespread fern in the Appalachian Mountains for which no sporophytes have ever been found. To help visualize evolutionary processes in independent gametophyte populations I developed the Virtual Population Genetics Simulator (VPGsim) to simulate populations of ferns in a 3-dimensional environment. This dissertation includes a description of VPGsim, a learning module using it to teach undergraduate genetics, and a study demonstrating its effectiveness at improving students' understanding of science content and confidence in their ability to perform science inquiry. That simulation tool led to a collaboration to find other ways to teach science with simulations, and to the development of a Virtual Plant Community simulator (VPCsim) for teaching middle school students about the effects of the environment and human impacts on living organisms. This dissertation

  2. Investigating Relationships among Pre-Service Science Teachers' Conceptual Knowledge of Electric Current, Motivational Beliefs and Self-Regulation

    Science.gov (United States)

    Inaltun, Hüseyin; Ates, Salih

    2015-01-01

    The purpose of this study is to examine relationships among pre-service science teachers' conceptual knowledge of electric current, motivational beliefs, and self-regulation. One hundred and twenty-seven students (female = 107, male = 20) enrolled in the science education program of a public university in Ankara participated the study. A concept…

  3. Who cares about the history of science?

    Science.gov (United States)

    Chang, Hasok

    2017-01-01

    The history of science has many functions. Historians should consider how their work contributes to various functions, going beyond a simple desire to understand the past correctly. There are both internal and external functions of the history of science in relation to science itself; I focus here on the internal, as they tend to be neglected these days. The internal functions can be divided into orthodox and complementary. The orthodox function is to assist with the understanding of the content and methods of science as it is now practised. The complementary function is to generate and improve scientific knowledge where current science itself fails to do so. Complementary functions of the history of science include the raising of critical awareness, and the recovery and extension of past scientific knowledge that has become forgotten or neglected. These complementary functions are illustrated with some concrete examples.

  4. The Portrayal of Occupational Therapy and Occupational Science in Canadian Newspapers: A Content Analysis

    Directory of Open Access Journals (Sweden)

    Tsing-Yee (Emily Chai

    2016-05-01

    Full Text Available The primary goal of occupational therapy is to enable people to participate in the activities of everyday life. The demand for occupational therapists in Canada is expected to grow sharply at an annual growth rate of 3.2%, compared to 0.7% for all occupations. At the same time, it is believed by occupational therapists in Canada that the Canadian public does not understand the role of occupational therapy. Occupational science is an emerging basic science field that supports the practice of occupational therapy. Given that newspapers are one source the public uses to obtain information and that newspapers are seen to shape public opinions, the purpose of this study is to investigate how “occupational therapy” is covered in Canadian newspapers from the term’s first appearance in 1917 until 2016 and how “occupational science” is covered from the term’s first appearance in 1989 to 2016. We interrogated the findings through the lens of three non-newspaper sources—two academic journals: Canadian Journal of Occupational Therapy (CJOT and Journal of Occupational Science (JOS; and one Canadian magazine: Occupational Therapy Now (OTN. We found that medical terms were prevalent in the newspaper articles covering occupational therapy similar to the presence of medical terms in the CJOT and OTN. However, the newspapers missed contemporary shifts in occupational therapy as evident in the CJOT, OTN and JOS—such as the increased engagement with enablement, occupational justice and other occupational concepts. The newspapers also failed to portray the societal issues that occupational therapy engages with on behalf of and with their clients, and the newspapers did not cover many of the client groups of occupational therapy. Occupational science was only mentioned in n = 26 articles of the nearly 300 Canadian newspapers covered with no concrete content linked to occupational science. The scope of occupational therapy presented in Canadian

  5. The Effects of Teacher Efficacy, Teacher Certification Route, Content Hours in the Sciences, Field-Based Experiences and Class Size on Middle School Student Achievement

    Science.gov (United States)

    Salgado, Robina

    No Child Left Behind Act (NCLB) was signed into law in 2002 with the idea that all students, no matter the circumstances can learn and that highly qualified teachers should be present in every classrooms (United Stated Department of Education, 2011). The mandates of NCLB also forced states to begin measuring the progress of science proficiency beginning in 2007. The study determined the effects of teacher efficacy, the type of certification route taken by individuals, the number of content hours taken in the sciences, field-based experience and class size on middle school student achievement as measured by the 8th grade STAAR in a region located in South Texas. This data provides knowledge into the effect different teacher training methods have on secondary school science teacher efficacy in Texas and how it impacts student achievement. Additionally, the results of the study determined if traditional and alternative certification programs are equally effective in properly preparing science teachers for the classroom. The study described was a survey design comparing nonequivalent groups. The study utilized the Science Teaching Efficacy Belief Instrument (STEBI). A 25-item efficacy scale made up of two subscales, Personal Science Teaching Efficacy Belief (PSTE) and Science Teaching Outcome Expectancy (STOE) (Bayraktar, 2011). Once the survey was completed a 3-Way ANOVA, MANOVA, and Multiple Linear Regression were performed in SPSS to calculate the results. The results from the study indicated no significant difference between route of certification on student achievement, but a large effect size was reported, 17% of the variances in student achievement can be accounted for by route of certification. A MANOVA was conducted to assess the differences between number of science content hours on a linear combination of personal science teacher efficacy, science teaching outcome expectancy and total science teacher efficacy as measured by the STEBI. No significant

  6. Religion as a Support Factor for Women of Color Pursuing Science Degrees: Implications for Science Teacher Educators

    Science.gov (United States)

    Ceglie, Robert

    2013-02-01

    This study explores the influence of religion as a support factor for a group of Latina and African-American women majoring in science. The current project is a part of a larger study that investigated persistence factors of underrepresented woman who were enrolled as science majors at United States colleges and universities. This paper focuses on one theme that emerged among six participants who disclosed how religion was a significant influence on their persistence in science fields. The strength and support offered by religious values is certainly not specific to science content; however, the support received from their beliefs highlights a potential area for further exploration. Given the importance of increasing participation by students from diverse backgrounds into science fields, it is critical to recognize how some of these differences may be the key factors influencing the way these students look at the world. This study offers evidence that science educators need to consider what role religious beliefs have for students who may be considering science or science education as a future career, particularly for those students from underrepresented groups.

  7. Constructing a philosophy of science of cognitive science.

    Science.gov (United States)

    Bechtel, William

    2009-07-01

    Philosophy of science is positioned to make distinctive contributions to cognitive science by providing perspective on its conceptual foundations and by advancing normative recommendations. The philosophy of science I embrace is naturalistic in that it is grounded in the study of actual science. Focusing on explanation, I describe the recent development of a mechanistic philosophy of science from which I draw three normative consequences for cognitive science. First, insofar as cognitive mechanisms are information-processing mechanisms, cognitive science needs an account of how the representations invoked in cognitive mechanisms carry information about contents, and I suggest that control theory offers the needed perspective on the relation of representations to contents. Second, I argue that cognitive science requires, but is still in search of, a catalog of cognitive operations that researchers can draw upon in explaining cognitive mechanisms. Last, I provide a new perspective on the relation of cognitive science to brain sciences, one which embraces both reductive research on neural components that figure in cognitive mechanisms and a concern with recomposing higher-level mechanisms from their components and situating them in their environments. Copyright © 2009 Cognitive Science Society, Inc.

  8. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  9. Pre-Service Teachers' Development of Technological Pedagogical Content Knowledge (TPACK) in the Context of a Secondary Science Teacher Education Program

    Science.gov (United States)

    Habowski, Thomas; Mouza, Chrystalla

    2014-01-01

    This study investigates pre-service teachers' TPACK development in a secondary science teacher education program that combined a content-specific technology integration course with extensive field experience. Both quantitative and qualitative data were collected. Quantitative data were collected through a pre-post administration of the…

  10. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    Science.gov (United States)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  11. Science Teacher Educators’ Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Directory of Open Access Journals (Sweden)

    William J. FRASER

    2017-10-01

    Full Text Available This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS, and by the Nature of Scientific Inquiry (NOSI. Furthermore, science educators’ own PCK, and the limitations of a predominantly paper-based distance education (DE model of delivery are challenges that they have to face when introducing PCK and authentic inquiry-based learning experiences. It deprives them and their students from optimal engagement in a science-oriented community of practice, and leaves little opportunity to establish flourishing communities of inquiry. This study carried out a contextual analysis of the tutorial material to assess the PCK that the student teachers had been exposed to. This comprised the ideas of a community of inquiry, a community of science, the conceptualization of PCK, scientific inquiry, and the 5E Instructional Model of the Biological Sciences Curriculum Study. The analysis confirmed that the lecturers had a good understanding of NOS, NOSI and science process skills, but found it difficult to design interventions to optimize the PCK development of students through communities of inquiry. Paper-based tutorials are ideal to share theory, policies and practices, but fail to monitor the engagement of learners in communities of inquiry. The article concludes with a number of suggestions to address the apparent lack of impact power of the paper-based mode of delivery, specifically in relation to inquiry-based teaching and learning (IBTL.

  12. Content Analysis of the Science Textbooks of Iranian Junior High School Course in terms of the Components of Health Education

    Directory of Open Access Journals (Sweden)

    Abdolreza Gilavand

    2016-12-01

    Full Text Available BackgroundProviding healthcare for students is one of the primary duties of the states. This study aimed to analyze the contents of the science textbooks of Junior High School course in terms of the components of health education in Iran.Materials and MethodsThis descriptive study was conducted through content analysis. To collect data, a researcher-made check list including: physical health, nutritional health, the environment, environmental health, family health, accidents and safety, mobility, physical education, mental health, prevention of risky behavior, control and prevention of diseases, disabilities, public health and school health, was used. The samples were the science textbooks of Junior High School course (7th, 8th and 9th grades. Analysis unit was all pages of the textbooks (texts, pictures and exercises. Descriptive method (frequency table, percentage, mean and standard deviation [SD] was used to analyze the data and non-parametric Chi-square test was used to investigate the probable significant differences between the components.ResultsThe results showed that the authors of sciences textbooks of Junior High School course have paid most attention to the component of control and prevention of diseases (21.10% and have paid no attention to the component of "mental health". Also, there were significant differences among the components of physical health, family health, the environment and environmental health in terms of to be addressed in the science textbooks of Junior High School (P

  13. Making Sense of New Science Assessments

    Science.gov (United States)

    Pellegrino, James W.

    2016-01-01

    What we choose to assess in science is what will end up being the focus of instruction. US science standards once treated content and inquiry as fairly separate strands of science learning, with content standards stating what students should know and inquiry standards stating what they should be able to do. In its content coverage, these standards…

  14. Mercury Content of Sediments in East Fork Poplar Creek: Current Assessment and Past Trends

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eller, Virginia A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, Johnbull O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Earles, Jennifer E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowe, Kenneth Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehlhorn, Tonia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olsen, Todd A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, David J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phillips, Debra H. [Queen' s Univ., Belfast (United Kingdom); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    This study provided new information on sediment mercury (Hg) and monomethylmercury (MMHg) content and chemistry. The current inventory of Hg in East Fork Poplar Creek (EFPC) bed sediments was estimated to be 334 kg, which represents a ~67% decrease relative to the initial investigations in 1984. MMHg sediment inventory was estimated to be 44.1 g, lower but roughly similar to past estimates. The results support the relevance and potential impacts of other active and planned investigations within the Mercury Remediation Technology Development for Lower East Fork Poplar Creek project (e.g., assessment and control of bank soil inputs, sorbents for Hg and MMHg removal, re-introduction of freshwater clams to EFPC), and identify gaps in current understanding that represent opportunities to understand controlling variables that may inform future technology development studies.

  15. Promoting autonomous learning in English through the implementation of Content and Language Integrated Learning (CLIL in science and maths subjects

    Directory of Open Access Journals (Sweden)

    Andriani Putu Fika

    2018-01-01

    Full Text Available Autonomous learning is a concept in which the learner has the ability to take charge of their own learning. It becomes a notable aspect that should be perceived by students. The aim of this research is for finding out the strategies used by grade two teachers in Bali Kiddy Primary School to promote autonomous learning in English through the implementation of Content and Language Integrated Learning in science and maths subjects. This study was designed in the form of descriptive qualitative study. The data were collected through observation, interview, and document study. The result of the study shows that there are some strategies of promoting autonomous learning in English through the implementation of CLIL in Science and Maths subjects. Those strategies are table of content training, questioning & presenting, journal writing, choosing activities, and using online activity. Those strategies can be adopted or even adapted as the way to promote autonomous learning in English subject.

  16. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  17. How Climate Science got to be in the Next Generation Science Standards (Invited)

    Science.gov (United States)

    Wysession, M. E.

    2013-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science

  18. Impact of a Student-Teacher-Scientist Partnership on Students' and Teachers' Content Knowledge, Attitudes toward Science, and Pedagogical Practices

    Science.gov (United States)

    Houseal, Ana K.; Abd-El-Khalick, Fouad; Destefano, Lizanne

    2014-01-01

    Engaging K-12 students in science-based inquiry is at the center of current science education reform efforts. Inquiry can best be taught through experiential, authentic science experiences, such as those provided by Student-Teacher-Scientist Partnerships (STSPs). However, very little is known about the impact of STSPs on teachers' and…

  19. A content-oriented model for science exhibit engineering

    DEFF Research Database (Denmark)

    Achiam, Marianne

    2013-01-01

    Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful......: as a means to operationalize the link between exhibit features and visitor activities; and as a template to transform scientists’ practices in the research context into visitors’ activities in the exhibit context. The resulting model of science exhibit engineering is presented and exemplified, and its...... implications for science exhibit design are discussed at three levels: the design product, the design process, and the design methodology....

  20. Mars: A Freshmen Year Seminar of Science and Science-fiction

    Science.gov (United States)

    Svec, Michael; Moffett, D. A.; Winiski, M.

    2013-06-01

    "Mars: On the shoulder of giants" is a freshmen year seminar developed collaboratively between the physics, education, and center for teaching and learning. This course focuses on how scientific knowledge is developed through the lens of our changing view of Mars throughout history. Analyses of current studies of Mars are juxtaposed against historical understanding and perceptions of the planet found in scientific and popular literature of the day, as well as the movies. Kim Stanley Robinson’s "Red Mars" provides a unifying story throughout the course complimented by Fredrick Taylor’s "The Scientific Exploration of Mars" and Hartmann’s "A Traveler’s Guide to Mars." Based on the three-years of experience, the authors advocate the use of the speculative science-fiction novel and argue for its use in high school and undergraduate courses including those for science majors. Many of the students who selected this seminar went on to major in science and in subsequent interviews discussed the influence of science fiction on their decision to major in science. Science fiction provided story, science, and speculation that became a rich medium for critical-thinking skills and critical literacy. Student reflections indicated that science fiction served as a reminder of why they study science, a source for imagination, and exploration of science as a human endeavor. Based on this experience, we propose five elements for selecting science-fiction for inclusion in science classes: 1) Provides a deep description of the science content or technologies, 2) Describes science and technologies are plausible or accurate to the time period, 3) Contains a novum or plausible innovation that plays a key element in the speculation, 4) Exploration of the impact on society or humanity, and, 5) Shows science and technology as human endeavors.

  1. The Windows to the Universe Project: Using the Internet to Support K-12 Science Education

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Bergman, J.; Russell, R.; Genyuk, J.; La Grave, M.

    2003-12-01

    The World Wide Web can be a powerful tool for reaching the public as well as students and teachers around the world, supporting both formal and informal science education. The Windows to the Universe Project, initiated in 1995, provides a case study of approaches for the use of the web to support earth and space science education and literacy efforts. Through the use of innovative approaches such as easy to use design, multi-level content, and science concepts presented in a broader background context that includes connections to culture and the humanities, Windows to the Universe is an accessible format for individuals of various ages and learning styles. A large global audience regularly uses the web site to learn about earth and space science as well as related humanities content such as myths from around the world. User surveys show that the site has over 4 millions users per year, 65 percent of which are K-12 teachers and students. Approximately 46 percent of users access the site once per week or more. Recently, we have had the opportunity to expand our efforts while we continue to update existing content based on new scientific findings and events. Earth science content on Windows to the Universe is currently growing with a new geology section and development efforts are underway to expand our space weather content with a new curriculum. Educational games allow users to learn about space in a playful context, and an online journaling tool further integrates literacy into the learning experience. In addition, we are currently translating the entire Windows to the Universe web site into Spanish. We have included educators in the project as co-designers from its inception, and by aggressively utilizing and providing professional development opportunities for teachers, the web site is now used in thousands of classrooms around the world. In the past year we have continued to support K-12 educators by adding to our suite of classroom activities and leading

  2. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  3. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  4. Meeting the Demands of Science Reforms: A Comprehensive Professional Development for Practicing Middle School Teachers

    Science.gov (United States)

    Pringle, Rose M.; Mesa, Jennifer; Hayes, Lynda

    2018-03-01

    Preparing teachers to teach science consistent with current reforms in science education is a daunting enterprise given a lack of high-quality science professional development (PD) adaptable across various contexts (Wilson 2013). This study examines the impact of a comprehensive professional development program on middle school teachers' disciplinary content knowledge and instructional practices. In this mixed methods investigation, data sources included classroom observations, content knowledge assessments, surveys, and a range of interviews. The teachers in the program showed significant improvements in their disciplinary content knowledge and demonstrated through their enactment of a reform-based curriculum, a range of ability levels to translate their knowledge into instructional practices consistent with the principles espoused in the PD. We conclude that programs that attend to elements of effective PD identified in the literature can positively impact middle school science teachers' enactment of reform-based science teaching. Our findings extend these elements to include the strategic engagement of school and district leadership and the provision of a safe learning space for teachers to collectively engage in reciprocal learning and critical practice. This study has worldwide implications for designing PD for science teachers and for extending our understanding of the impact of each element.

  5. Bringing the Science of JWST to the Public

    Science.gov (United States)

    Green, Joel D.; Smith, Denise A.; Lawton, Brandon L.; Meinke, Bonnie K.; Jirdeh, Hussein

    2017-01-01

    The James Webb Space Telescope is the successor to the Hubble Space Telescope. STScI and the Office of Public Outreach are committed to bringing awareness of the technology, the excitement, and the future science potential of this great observatory to the public and to the scientific community, prior to its 2018 launch. The challenges in ensuring the high profile of JWST (understanding the infrared, the vast distance to the telescope's final position, and the unfamiliar science territory) requires us to lay the proper background, particularly in the area of spectroscopy. We currently engage the full range of the public and scientific communities using a variety of high impact, memorable initiatives, in combination with modern technologies to extend reach, linking the science goals of Webb to the ongoing discoveries being made by Hubble. Webbtelescope.org, the public hub for scientific information related to JWST, is now open. We have injected Webb-specific content into ongoing outreach programs: for example, partnering with high impact science communicators such as MinutePhysics to produce timely and concise content; partnering with musicians and artists to link science and art. Augmented reality apps showcase NASA’s telescopes in a format usable by anyone with a smartphone, and visuals from increasingly affordable 3D VR technologies.

  6. Hydroponics: Content and Rationale

    Science.gov (United States)

    Ernst, Jeremy V.; Busby, Joe R.

    2009-01-01

    Technology education has the means of becoming the catalyst for integrated content and curricula, especially in core academic areas, such as science and mathematics, where it has been found difficult to incorporate other subject matter. Technology is diverse enough in nature that it can be addressed by a variety of content areas, serving as a true…

  7. Information-seeking strategies and science content understandings of sixth-grade students using on-line learning environments

    Science.gov (United States)

    Hoffman, Joseph Loris

    1999-11-01

    This study examined the information-seeking strategies and science content understandings learners developed as a result of using on-line resources in the University of Michigan Digital Library and on the World Wide Web. Eight pairs of sixth grade students from two teachers' classrooms were observed during inquiries for astronomy, ecology, geology, and weather, and a final transfer task assessed learners' capabilities at the end of the school year. Data included video recordings of students' screen activity and conversations, journals and completed activity sheets, final artifacts, and semi-structured interviews. Learners' information-seeking strategies included activities related to asking, planning, tool usage, searching, assessing, synthesizing, writing, and creating. Analysis of data found a majority of learners posed meaningful, openended questions, used technological tools appropriately, developed pertinent search topics, were thoughtful in queries to the digital library, browsed sites purposefully to locate information, and constructed artifacts with novel formats. Students faced challenges when planning activities, assessing resources, and synthesizing information. Possible explanations were posed linking pedagogical practices with learners' growth and use of inquiry strategies. Data from classroom-lab video and teacher interviews showed varying degrees of student scaffolding: development and critique of initial questions, utilization of search tools, use of journals for reflection on activities, and requirements for final artifacts. Science content understandings included recalling information, offering explanations, articulating relationships, and extending explanations. A majority of learners constructed partial understandings limited to information recall and simple explanations, and these occasionally contained inaccurate conceptualizations. Web site design features had some influence on the construction of learners' content understandings. Analysis of

  8. Using Educative Assessments to Support Science Teaching for Middle School English-language Learners

    Science.gov (United States)

    Buxton, Cory A.; Allexsaht-Snider, Martha; Suriel, Regina; Kayumova, Shakhnoza; Choi, Youn-jeng; Bouton, Bobette; Baker, Melissa

    2013-03-01

    Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students' emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers' instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students' emergent understandings, and how teacher-researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers' instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.

  9. A content analysis of dissemination and implementation science resource initiatives: what types of resources do they offer to advance the field?

    Science.gov (United States)

    Darnell, Doyanne; Dorsey, Caitlin N; Melvin, Abigail; Chi, Jonathan; Lyon, Aaron R; Lewis, Cara C

    2017-11-21

    The recent growth in organized efforts to advance dissemination and implementation (D & I) science suggests a rapidly expanding community focused on the adoption and sustainment of evidence-based practices (EBPs). Although promising for the D & I of EBPs, the proliferation of initiatives is difficult for any one individual to navigate and summarize. Such proliferation may also result in redundant efforts or missed opportunities for participation and advancement. A review of existing D & I science resource initiatives and their unique merits would be a significant step for the field. The present study aimed to describe the global landscape of these organized efforts to advance D & I science. We conducted a content analysis between October 2015 and March 2016 to examine resources and characteristics of D & I science resource initiatives using public, web-based information. Included resource initiatives must have engaged in multiple efforts to advance D & I science beyond conferences, offered D & I science resources, and provided content in English. The sampling method included an Internet search using D & I terms and inquiry among internationally representative D & I science experts. Using a coding scheme based on a priori and grounded approaches, two authors consensus coded website information including interactive and non-interactive resources and information regarding accessibility (membership, cost, competitive application, and location). The vast majority (83%) of resource initiatives offered at least one of seven interactive resources (consultation/technical assistance, mentorship, workshops, workgroups, networking, conferences, and social media) and one of six non-interactive resources (resource library, news and updates from the field, archived talks or slides, links pages, grant writing resources, and funding opportunities). Non-interactive resources were most common, with some appearing frequently across resource initiatives (e.g., news and updates from the

  10. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  11. Ghanaian Junior High School Science Teachers' attitude towards ...

    African Journals Online (AJOL)

    Contextualising science instruction has been found to improve pupils' understanding of science content since it links science content to the context of the pupil. Science teachers play vital roles in this effort to make science teaching relevant to the Ghanaian child through contextualisation of science instruction.

  12. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    Science.gov (United States)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  13. RMOS Contents - RMOS | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available search(/contents-en/) != -1 || url.search(/index-e.html/) != -1 ) { document.getElementById(lang).innerHTML=.../) != -1 ) { url = url.replace(-e.html,.html); document.getElementById(lang).innerHTML=[ Japanese |...en/,/jp/); document.getElementById(lang).innerHTML=[ Japanese | English ]; } else if ( url.search(//contents...//) != -1 ) { url = url.replace(/contents/,/contents-en/); document.getElementById(lang).innerHTML=[ Japanes...e(/contents-en/,/contents/); document.getElementById(lang).innerHTML=[ Japanese | English ]; } else if( url.

  14. Surviving the Implementation of a New Science Curriculum

    Science.gov (United States)

    Lowe, Beverly; Appleton, Ken

    2015-12-01

    Queensland schools are currently teaching with the first National Curriculum for Australia. This new curriculum was one of a number of political responses to address the recurring low scores in literacy, mathematics, and science that continue to hold Australia in poor international rankings. Teachers have spent 2 years getting to know the new science curriculum through meetings, training, and exploring the new Australian curriculum documents. This article examines the support and preparation for implementation provided in two regional schools, with a closer look at six specific teachers and their science teaching practices as they attempted to implement the new science curriculum. The use of a survey, field observations, and interviews revealed the schools' preparation practices and the teachers' practices, including the support provided to implement the new science curriculum. A description and analysis of school support and preparation as well as teachers' views of their experiences implementing the new science curriculum reveal both achievements and shortcomings. Problematic issues for the two schools and teachers include time to read and comprehend the curriculum documents and content expectations as well as time to train and change the current processes effectively. The case teachers' experiences reveal implications for the successful and effective implementation of new curriculum and curriculum reform.

  15. The pathways of high school science teachers and policy efforts to alter the pipeline

    Science.gov (United States)

    Sass, Tim

    2012-03-01

    There is currently much interest in improving the quality of science education in K-12 schools and encouraging more students, particularly minorities and women, to pursue careers in STEM fields. Two interrelated issues are at the forefront: the quality of science teachers and the supply of science teachers. Education research in general finds that the single most important school-based factor affecting student achievement is teacher quality. While there is little evidence that teacher credentials matter for student achievement in the lower grades, there is at least some evidence that content knowledge is an important determinant of teacher quality in middle and secondary schools. However, little is known about the pre-service preparation of high school science teachers and how the training of science teachers affects their performance in the classroom. While there are many efforts underway to increase the supply of science teachers, little is known about the supply of science teachers from different pathways and the factors that lead science teachers to leave the profession. In this presentation I discuss recent work on the supply of teachers from alternative pathways, focusing on high school science teachers. I also summarize the literature on teacher quality and attrition, emphasizing the current state of knowledge on secondary school teachers. Finally, I present current policy initiatives and discuss the likelihood of their success given current research findings.

  16. Current Status of the LOFAR EoR Key Science Project

    Science.gov (United States)

    Koopmans, L. V. E.; LOFAR EoR KSP Team

    2018-05-01

    A short status update on the LOFAR Epoch of Reionization (EoR) Key Science Project (KSP) is given, regarding data acquisition, data processing and analysis, and current power-spectrum limits on the redshifted 21-cm signal of neutral hydrogen at redshifts z = 8 - 10. With caution, we present a preliminary astrophysical analysis of ~60 hr of processed LOFAR data and their resulting power spectrum, showing that potentially already interesting limits on X-ray heating during the Cosmic Dawn can already be gained. This is by no means the final analysis of this sub-set of data, but illustrates the future potential when all nearly 3000 hr of data in hand on two EoR windows will have been processed.

  17. Global Learning and Observation to Benefit the Environment (GLOBE) Mission EARTH (GME) program delivers climate change science content, pedagogy, and data resources to K12 educators, future teachers, and professional development providers.

    Science.gov (United States)

    Ostrom, T.

    2017-12-01

    This presentation will include a series of visuals that discuss how hands-on learning activities and field investigations from the the Global Learning and Observation to Benefit the Environment (GLOBE) Mission EARTH (GME) program deliver climate change science content, pedagogy, and data resources to K12 educators, future teachers, and professional development providers. The GME program poster presentation will also show how teachers strengthen student preparation for Science, Technology, Engineering, Art and Mathematics (STEAM)-related careers while promoting diversity in the future STEM workforce. In addition to engaging students in scientific inquiry, the GME program poster will show how career exploration and preparation experiences is accomplished through direct connection to scientists and real science practices. The poster will show which hands-on learning activities that are being implemented in more than 30,000 schools worldwide, with over a million students, teachers, and scientists collecting environmental measurements using the GLOBE scientific protocols. This poster will also include how Next Generation Science Standards connect to GME learning progressions by grade strands. The poster will present the first year of results from the implementation of the GME program. Data is currently being agrigated by the east, midwest and westen regional operations.

  18. The prevalence of and factors associated with current smoking among College of Health Sciences students, Mekelle University in northern Ethiopia.

    Science.gov (United States)

    Eticha, Tadele; Kidane, Feven

    2014-01-01

    Tobacco smoking is one of the greatest causes of preventable morbidity and mortality globally, and is responsible for many causes of untimely deaths. This survey was aimed to determine prevalence and factors associated with current smoking among the students of College of Health Sciences, Mekelle University, Ethiopia. A cross-sectional study was employed using a structured self-administered questionnaire among College of Health Sciences students in March 2013. A stratified random sampling method was employed to select study participants. Data were entered and analysed using of Statistical Package for Social Sciences (SPSS) version 20.0. Of the 193 students, 57 (29.5%) of the students were current smokers. Most of the current smokers (89.4%) smoked between 1-10 sticks of cigarette per day. The two main reasons cited for smoking cigarettes were peer pressure (43.9%) and to relieve stress (36.8%). Being female (adjusted OR [AOR] = 0.49; 95% CI: 0.25, 0.95) and Tigre by ethnicity (AOR = 0.32; 95% CI: 0.14, 0.74) were significantly less associated with current smoking. On the other hand, being second year students (AOR = 3.84; 95% CI: 1.41, 10.46), khat chewing (AOR = 8.36; 95% CI: 2.60, 26.85) and taking illicit drugs (AOR = 10.59; 95% CI: 2.77, 40.51) were positively associated with current smoking cigarettes. The current smoking prevalence among students in College of Health Sciences, Mekelle University is high and therefore, effective smoking prevention and cessation intervention programs are required to reduce smoking among university students.

  19. Science on Stage: Engaging and teaching scientific content through performance art

    Science.gov (United States)

    Posner, Esther

    2016-04-01

    Engaging teaching material through performance art and music can improve the long-term retention of scientific content. Additionally, the development of effective performance skills are a powerful tool to communicate scientific concepts and information to a broader audience that can have many positive benefits in terms of career development and the delivery of professional presentations. While arts integration has been shown to increase student engagement and achievement, relevant artistic materials are still required for use as supplemental activities in STEM (science, technology, engineering, mathematics) courses. I will present an original performance poem, "Tectonic Petrameter: A Journey Through Earth History," with instructions for its implementation as a play in pre-university and undergraduate geoscience classrooms. "Tectonic Petrameter" uses a dynamic combination of rhythm and rhyme to teach the geological time scale, fundamental concepts in geology and important events in Earth history. I propose that using performance arts, such as "Tectonic Petrameter" and other creative art forms, may be an avenue for breaking down barriers related to teaching students and the broader non-scientific community about Earth's long and complex history.

  20. Social behavior in the "Age of Empathy"?-A social scientist's perspective on current trends in the behavioral sciences.

    Science.gov (United States)

    Matusall, Svenja

    2013-01-01

    Recently, several behavioral sciences became increasingly interested in investigating biological and evolutionary foundations of (human) social behavior. In this light, prosocial behavior is seen as a core element of human nature. A central role within this perspective plays the "social brain" that is not only able to communicate with the environment but rather to interact directly with other brains via neuronal mind reading capacities such as empathy. From the perspective of a sociologist, this paper investigates what "social" means in contemporary behavioral and particularly brain sciences. It will be discussed what "social" means in the light of social neuroscience and a glance into the history of social psychology and the brain sciences will show that two thought traditions come together in social neuroscience, combining an individualistic and an evolutionary notion of the "social." The paper concludes by situating current research on prosocial behavior in broader social discourses about sociality and society, suggesting that to naturalize prosocial aspects in human life is a current trend in today's behavioral sciences and beyond.

  1. Socioscientific Argumentation: The effects of content knowledge and morality

    Science.gov (United States)

    Sadler, Troy D.; Donnelly, Lisa A.

    2006-10-01

    Broad support exists within the science education community for the incorporation of socioscientific issues (SSI) and argumentation in the science curriculum. This study investigates how content knowledge and morality contribute to the quality of SSI argumentation among high school students. We employed a mixed-methods approach: 56 participants completed tests of content knowledge and moral reasoning as well as interviews, related to SSI topics, which were scored based on a rubric for argumentation quality. Multiple regression analyses revealed no statistically significant relationships among content knowledge, moral reasoning, and argumentation quality. Qualitative analyses of the interview transcripts supported the quantitative results in that participants very infrequently revealed patterns of content knowledge application. However, most of the participants did perceive the SSI as moral problems. We propose a “Threshold Model of Knowledge Transfer” to account for the relationship between content knowledge and argumentation quality. Implications for science education are discussed.

  2. Lights, Camera, Action Research: The Effects of Didactic Digital Movie Making on Students' Twenty-First Century Learning Skills and Science Content in the Middle School Classroom

    Science.gov (United States)

    Ochsner, Karl

    2010-01-01

    Students are moving away from content consumption to content production. Short movies are uploaded onto video social networking sites and shared around the world. Unfortunately they usually contain little to no educational value, lack a narrative and are rarely created in the science classroom. According to new Arizona Technology standards and…

  3. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  4. What is the current state of the science of Cyber defense?

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-09

    My overall sense of the cyber defense field is one of an adolescent discipline currently bogged down in a cloud of issues, the most iconic of which is the great diversity of approaches that are being aggregated to form a coherent field. Because my own expertise is complex systems and materials physics research, I have limited direct experience in cyber security sciences except as a user of secure networks and computing resources. However, in producing this report, I have found with certainty that there exists no calculus for cyber risk assessment, mitigation, and response, although some hopeful precepts toward this end are emerging.

  5. Rethinking the Elementary Science Methods Course: A Case for Content, Pedagogy, and Informal Science Education.

    Science.gov (United States)

    Kelly, Janet

    2000-01-01

    Indicates the importance of preparing prospective teachers who will be elementary science teachers with different methods. Presents the theoretical and practical rationale for developing a constructivist-based elementary science methods course. Discusses the impact student knowledge and understanding of science and student attitudes has on…

  6. Gender Stereotypes in Science Education Resources: A Visual Content Analysis.

    Science.gov (United States)

    Kerkhoven, Anne H; Russo, Pedro; Land-Zandstra, Anne M; Saxena, Aayush; Rodenburg, Frans J

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people's social lives, such stereotypes can also occur in education. Ways in which stereotypes are visible in education include the use of gender-biased visuals, language, teaching methods, and teachers' attitudes. The goal of this study was to determine whether science education resources for primary school contained gender-biased visuals. Specifically, the total number of men and women depicted, and the profession and activity of each person in the visuals were noted. The analysis showed that there were more men than women depicted with a science profession and that more women than men were depicted as teachers. This study shows that there is a stereotypical representation of men and women in online science education resources, highlighting the changes needed to create a balanced representation of men and women. Even if the stereotypical representation of men and women in science is a true reflection of the gender distribution in science, we should aim for a more balanced representation. Such a balance is an essential first step towards showing children that both men and women can do science, which will contribute to more gender-balanced science and technology fields.

  7. Practicing the practice: Learning to guide elementary science discussions in a practice-oriented science methods course

    Science.gov (United States)

    Shah, Ashima Mathur

    University methods courses are often criticized for telling pre-service teachers, or interns, about the theories behind teaching instead of preparing them to actually enact teaching. Shifting teacher education to be more "practice-oriented," or to focus more explicitly on the work of teaching, is a current trend for re-designing the way we prepare teachers. This dissertation addresses the current need for research that unpacks the shift to more practice-oriented approaches by studying the content and pedagogical approaches in a practice-oriented, masters-level elementary science methods course (n=42 interns). The course focused on preparing interns to guide science classroom discussions. Qualitative data, such as video records of course activities and interns' written reflections, were collected across eight course sessions. Codes were applied at the sentence and paragraph level and then grouped into themes. Five content themes were identified: foregrounding student ideas and questions, steering discussion toward intended learning goals, supporting students to do the cognitive work, enacting teacher role of facilitator, and creating a classroom culture for science discussions. Three pedagogical approach themes were identified. First, the teacher educators created images of science discussions by modeling and showing videos of this practice. They also provided focused teaching experiences by helping interns practice the interactive aspects of teaching both in the methods classroom and with smaller groups of elementary students in schools. Finally, they structured the planning and debriefing phases of teaching so interns could learn from their teaching experiences and prepare well for future experiences. The findings were analyzed through the lens of Grossman and colleagues' framework for teaching practice (2009) to reveal how the pedagogical approaches decomposed, represented, and approximated practice throughout course activities. Also, the teacher educators

  8. Middle School Teacher Misconceptions and Anxieties Concerning Space Science Disciplinary Core Ideas in NGSS

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre

  9. Liberal Studies in Science--A Successful Experiment

    Science.gov (United States)

    Jevons, F. R.

    1970-01-01

    Describes the job placement success experienced by graduates of the Science Greats Course at the University of Manchester. Discusses the course content which centers on the social relations of science. Since nearly half the course involves science content, the author discusses the science background necessary for enrollees. Presents a personal…

  10. Alignment of Content and Pedagogy in an Earth Systems Course for Pre-Service Middle School Teachers

    Science.gov (United States)

    Cole, T.; Teed, R.; Slattery, W.

    2006-12-01

    In 2003 the Ohio Department of Education developed the Ohio K-12 Science Content Standards. These new science standards substantially tracked the goals and objectives of The National Research Council's National Science Education Standards. The Ohio K-12 Science Content Standards followed the National Standards in the content areas of Physical Science, Life Science and Earth and Space Science. At the same time, the state's K-12 schools were gearing up for a new high school graduation requirement, the successful passing of a high-stakes Ohio Graduation Test, given during a student's tenth grade year. Earth and Space science questions make up approximately one third of the science test items. To make it more likely that teachers have the requisite science content knowledge Ohio has recently changed from certification of K-12 teachers to a more content rich licensure standard. This new licensure requirement splits the older certification designation of K-8 into the elementary and middle school licensure areas. Under the new licensure requirements middle school licensure candidates wishing to earn a science concentration now have to take 15 semester hours of content class work in Science. The Ohio Department of Education has strongly suggested that teacher preparation institutions develop new courses for middle school educators in all four areas of concentration, including science. In response to this call for new courses science education faculty in all science areas worked together to develop a comprehensive suite of courses that would target the science content standards guidelines in the state and national standards. The newly developed Earth and Space science course is titled Earth Systems. The course carries 4.5quarter hours of credit and is intended expressly for pre-service middle school (grades 4- 9) science teachers. The content is structured around three modules of study that are designed to develop interdisciplinary science content within the context of past

  11. Hollyweird science the next generation : from spaceships to microchips

    CERN Document Server

    Grazier, Kevin R

    2017-01-01

    Informative, entertaining and upbeat, this book continues Grazier and Cass's exploration of how technology, science, and scientists are portrayed in Hollywood productions. Both big and small-screen productions are featured and their science content illuminated—first by the authors and subsequently by a range of experts from science and the film world. Starring roles in this volume are played by, among other things, computers (human and mechanical), artificial intelligences, robots, and spacecraft. Interviews with writers, producers, and directors of acclaimed science-themed films stand side by side with the perspectives of scientists, science fiction authors, and science advisors. The result is a stimulating and informative reading experience for the layperson and professional scientist or engineer alike. The book begins with a foreword by Zack Stentz, who co-wrote X-Men: First Class and Thor, and is currently a writer/producer on CW’s The Flash.

  12. Student perception of writing in the science classroom

    Science.gov (United States)

    Deakin, Kathleen J.

    This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.

  13. The Rosetta Science Archive: Status and Plans for Completing and Enhancing the Archive Content

    Science.gov (United States)

    Heather, D.; Barthelemy, M.; Fraga, D.; Grotheer, E.; O'Rourke, L.; Taylor, M.

    2017-09-01

    On 30 September 2016, Rosetta's signal flat-lined, confirming that the spacecraft had completed its incredible mission by landing on the surface of Comet 67P/Churyumov-Gerasimenko. Although this marked an end to the spacecraft's active operations, intensive work is still on-going with instrument teams preparing their final science data increments for delivery and ingestion into ESA's Planetary Science Archive (PSA). In addition to this, ESA is establishing contracts with a number of instrument teams to enhance and improve their data and documentation in an effort to provide the best long- term archive possible for the Rosetta mission. This presentation will outline the current status of the Rosetta archive, as well as highlighting some of the 'enhanced archiving' activities planned and underway with the various instrument teams on Rosetta to ensure the scientific legacy of the mission.

  14. Different images of science

    DEFF Research Database (Denmark)

    Davidsson, Eva

      Within the science and technology centres (STC) movement there exists explicit aims and ambitions to enhance visitors' interest in and knowledge about science. Meanwhile, several researches question the choice of the scientific content in exhibitions when arguing that a too unproblematic view...... of science commonly is presented. But what images and aspects of science are visitors actually confronted with at STCs? How do staff members at STCs consider the scientific content and how do they choose what aspects of science to display in exhibitions? What ideas about visitors' learning do staff members....... The most common image was the usefulness of science which displays science in an unproblematic and single-dimensioned way. In order to explore what underlying assumptions and factors which affect how science is constituted, 17 staff members who worked with planning and constructing new exhibitions...

  15. Meeting report: Ocean 'omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013).

    Science.gov (United States)

    Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F

    2014-06-15

    The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.

  16. The Challenges and Success of Implementing Climate Studies Lessons for Pre-Professional Teachers at a Small Historically Black College to Engage Student Teaching of Science Pedagogy and Content Skill Based Learning.

    Science.gov (United States)

    Arnold, J.; Wider-Lewis, F.; Miller-Jenkins, A.

    2017-12-01

    This poster is a description of the challenges and success of implementing climate studies lessons for pre-service teachers to engage student teaching pedagogy and content skill based learning. Edward Waters College is a historical black college with an elementary education teacher program focused on urban elementary school teaching and learning. Pre-Service Elementary Educator Students often have difficulty with science and mathematics content and pedagogy. This poster will highlight the barriers and successes of using climate studies lessons to develop and enhance pre-service teachers' knowledge of elementary science principles particularly related to climate studies, physical and earth space science.

  17. AN INVESTIGATION OF TEACHERS’ PEDAGOGICAL SKILLS AND CONTENT KNOWLEDGE IN A CONTENT-BASED INSTRUCTION CONTEXT

    Directory of Open Access Journals (Sweden)

    Tengku Nor Rizan Tengku Mohamad Maasum

    2012-01-01

    Full Text Available Advocates of the content-based approach believed that a language can be learnt effectively when it is the medium of instruction rather than just a subject. Integrating English and content as part of instruction has become one of the cornerstones of second language pedagogy. Researchers claimed that there are many benefits of integrating English and content instruction. Among the benefits are the increase in students’ interest with content themes, meaningful input and understanding. In 2003, the Malaysian Ministry of Education introduced the teaching and learning of science and mathematics in English for Year One, Form One and Lower Six Form in all government public schools. This paper describes the challenges faced by teachers when they are required to teach content subjects such as science and mathematics in English. The focus of the paper is on the teachers’ pedagogical skills and content knowldge which comprises subject matter content, pedagogical approach, classroom management, use of resources, assessment, preparation of teaching materials, managing students, teachers’ compensatory communication strategies, use of first language and teachers’ perspectives of teaching content subjects in English. Data were obtained from a self-report questionnaire administered to 495 secondary school teachers in West Malaysia. Results from the study provide implications for school administrators in making decisions in assignment of capable teachers to teach the various levels of classes. Suggestions for teacher self-development and life-long learning efforts are also provided.

  18. A content analysis of dissemination and implementation science resource initiatives: what types of resources do they offer to advance the field?

    Directory of Open Access Journals (Sweden)

    Doyanne Darnell

    2017-11-01

    Full Text Available Abstract Background The recent growth in organized efforts to advance dissemination and implementation (D & I science suggests a rapidly expanding community focused on the adoption and sustainment of evidence-based practices (EBPs. Although promising for the D & I of EBPs, the proliferation of initiatives is difficult for any one individual to navigate and summarize. Such proliferation may also result in redundant efforts or missed opportunities for participation and advancement. A review of existing D & I science resource initiatives and their unique merits would be a significant step for the field. The present study aimed to describe the global landscape of these organized efforts to advance D & I science. Methods We conducted a content analysis between October 2015 and March 2016 to examine resources and characteristics of D & I science resource initiatives using public, web-based information. Included resource initiatives must have engaged in multiple efforts to advance D & I science beyond conferences, offered D & I science resources, and provided content in English. The sampling method included an Internet search using D & I terms and inquiry among internationally representative D & I science experts. Using a coding scheme based on a priori and grounded approaches, two authors consensus coded website information including interactive and non-interactive resources and information regarding accessibility (membership, cost, competitive application, and location. Results The vast majority (83% of resource initiatives offered at least one of seven interactive resources (consultation/technical assistance, mentorship, workshops, workgroups, networking, conferences, and social media and one of six non-interactive resources (resource library, news and updates from the field, archived talks or slides, links pages, grant writing resources, and funding opportunities. Non-interactive resources were most common, with some appearing frequently across

  19. How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?

    Science.gov (United States)

    Aslan, Oktay

    2015-01-01

    An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In…

  20. ESIP's Emerging Provenance and Context Content Standard Use Cases: Developing Examples and Models for Data Stewardship

    Science.gov (United States)

    Ramdeen, S.; Hills, D. J.

    2013-12-01

    Earth science data collections range from individual researchers' private collections to large-scale data warehouses, from computer-generated data to field or lab based observations. These collections require stewardship. Fundamentally, stewardship ensures long term preservation and the provision of access to the user community. In particular, stewardship includes capturing appropriate metadata and documentation--and thus the context of the data's creation and any changes they underwent over time --to enable data reuse. But scientists and science data managers must translate these ideas into practice. How does one balance the needs of current and (projected) future stakeholders? In 2011, the Data Stewardship Committee (DSC) of the Federation of Earth Science Information Partners (ESIP) began developing the Provenance and Context Content Standard (PCCS). As an emerging standard, PCCS provides a framework for 'what' must be captured or preserved as opposed to describing only 'how' it should be done. Originally based on the experiences of NASA and NOAA researchers within ESIP, the standard currently provides data managers with content items aligned to eight key categories. While the categories and content items are based on data life cycles of remote sensing missions, they can be generalized to cover a broader set of activities, for example, preservation of physical objects. These categories will include the information needed to ensure the long-term understandability and usability of earth science data products. In addition to the PCCS, the DSC is developing a series of use cases based on the perspectives of the data archiver, data user, and the data consumer that will connect theory and practice. These cases will act as specifications for developing PCCS-based systems. They will also provide for examination of the categories and content items covered in the PCCS to determine if any additions are needed to cover the various use cases, and also provide rationale and

  1. Content Development, Presentation and Delivery for eLearning in Nuclear Science and Engineering: Experiences with Emerging Authoring Tools

    International Nuclear Information System (INIS)

    Bamford, S.; Afriyie, P.; Comlan, E.

    2016-01-01

    Full text: Transference of explicit knowledge starts from content development, and proceeds with packaging and delivery. A comparative study of some selected authoring tools for knowledge creation in Nuclear Sciences and Engineering education is being carried out at the School of Nuclear and Allied Sciences in Accra, Ghana. These authoring tools include commercial software (Macromedia Suite CS6, Learning 6.0) as well as freeware software (Xerte, eXe). A course, X-ray Fluorescence Spectrometry (NSAP 603), at the postgraduate School of Nuclear and Allied Sciences (SNAS), has been selected for migration onto an eLearning platform. Different authoring tools have been employed to create some ICT-based modules for teaching and learning. This paper therefore shares the experiences realized in moving from course syllabus to digitized modules, integrating pedagogical considerations, the strengths and weakness of the selected authoring tools, user-interactivity and usability of the modules produced. The need and the basis for the adoption of an appropriate authoring tool for creation of scientific, mathematical, and engineering documents and learning materials has also been discussed. Leveraging on ICT to produce pedagogically sound learning materials for eLearning platforms promotes interests of students in nuclear sciences, and ensures continuity in producing qualified professionals. (author

  2. Science Teacher Orientations and PCK across Science Topics in Grade 9 Earth Science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-01-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade…

  3. The Nature of Relationships among the Components of Pedagogical Content Knowledge of Preservice Science Teachers: "Ozone Layer Depletion" as an Example

    Science.gov (United States)

    Kaya, Osman N.

    2009-01-01

    The purpose of this study was to explore the relationships among the components of preservice science teachers' (PSTs) pedagogical content knowledge (PCK) involving the topic "ozone layer depletion". An open-ended survey was first administered to 216 PSTs in their final year at the Faculty of Education to determine their subject matter…

  4. A Case Study of Beginning Science Teachers' Subject Matter (SMK) and Pedagogical Content Knowledge (PCK) of Teaching Chemical Reaction in Turkey

    Science.gov (United States)

    Usak, Muhammet; Ozden, Mustafa; Eilks, Ingo

    2011-01-01

    This paper describes a case study focusing on the subject matter knowledge, pedagogical content knowledge, and beliefs about science teaching of student teachers in Turkey at the start of their university education. The topic of interest was that of teaching chemical reactions in secondary chemistry education. A written test was developed which…

  5. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Search. Search. Proceedings – Mathematical Sciences. Title. Author. Keywords. Fulltext. Submit. Proceedings – Mathematical Sciences. Current Issue : Vol. 128, Issue 2. Current Issue Volume 128 | Issue 2. April 2018. Home · Volumes & Issues · Special Issues ...

  6. Disturbingly Weak: The Current State of Financial Management Education in Library and Information Science Curricula

    Science.gov (United States)

    Burger, Robert H.; Kaufman, Paula T.; Atkinson, Amy L.

    2015-01-01

    Financial management skills are necessary for responsible library management. In light of the profession's current emphasis on financial literacy, the authors posed four questions: (1) to what extent are library and information science schools providing courses in financial management for their graduates; (2) what is the quality and quantity of…

  7. AN INVESTIGATION OF TEACHERS’ PEDAGOGICAL SKILLS AND CONTENT KNOWLEDGE IN A CONTENT-BASED INSTRUCTION CONTEXT

    Directory of Open Access Journals (Sweden)

    Tengku Nor Rizan Tengku Mohamad Maasum

    2012-01-01

    Full Text Available Abstract: Advocates of the content-based approach believed that a language can be learnt effectively when it is the medium of instruction rather than just a subject.  Integrating English and content as part of instruction has become one of the cornerstones of second language pedagogy. Researchers claimed that there are many benefits of integrating English and content instruction.  Among the benefits are the increase in students’ interest with content themes, meaningful input and understanding. In 2003, the Malaysian Ministry of Education introduced the teaching and learning of science and mathematics in English for Year One, Form One and Lower Six Form in all government public schools. This paper describes the challenges faced by teachers when they are required to teach content subjects such as science and mathematics in English.  The focus of the paper is on the teachers’ pedagogical skills  and content knowldge which comprises subject matter content, pedagogical approach, classroom management, use of resources, assessment, preparation of teaching materials, managing students, teachers’ compensatory communication strategies, use of first language and teachers’ perspectives of teaching content subjects in English. Data were obtained from a self-report questionnaire administered to 495 secondary school teachers in West Malaysia. Results from the study provide implications for school administrators in making decisions in assignment of  capable teachers to teach the various levels of classes. Suggestions for teacher self-development and life-long learning efforts are also provided.   Key words: Content-based instruction, ESL instruction, second language, first language and second language pedagogy

  8. Pre-college Science Experiences; Timing and Causes of Gender Influence Science Interest Levels

    Science.gov (United States)

    Kaplita, E.; Reed, D. E.; McKenzie, D. A.; Jones, R.; May, L. W.

    2015-12-01

    It is known that female students tend to turn away from science during their pre-college years. Experiences during this time are not limited to the classroom, as cultural influences extend beyond K-12 science education and lead to the widely studied reduction in females in STEM fields. This has a large impact on climate science because currently relatively little effort is put into K-12 climate education, yet this is when college attitudes towards science are formed. To help quantify these changes, 400 surveys were collected from 4 different colleges in Oklahoma. Student responses were compared by gender against student experiences (positive and negative), and interest in science. Results of our work show that females tend to have their first positive experience with science at a younger age with friends, family and in the classroom, and have more of an interest in science when they are younger. Males in general like experiencing science more on their own, and surpass the interest levels of females late in high school and during college. While in college, males are more comfortable with science content than females, and males enjoy math and statistics more while those aspects of science were the largest areas of dislike in females. Understanding how to keep students (particularly female) interested in science as they enter their teen years is extremely important in preventing climate misconceptions in the adult population. Potential small changes such as hosting K-12 climate outreach events and including parents, as opposed to just inviting students, could greatly improve student experiences with science and hence, their understanding of climate science. Importantly, a greater focus on female students is warranted.

  9. Can a Three-Day Training Focusing on the Nature of Science and Science Practices as They Relate to Mind in the Making Make a Difference in Preschool Teachers' Self-Efficacy Engaging in Science Education?

    Science.gov (United States)

    Meacham, Colleen

    As technology and our world understanding develop, we will need citizens who are able to ask and answer questions that have not been thought of yet. Currently, high school and college graduates entering the workforce demonstrate a gap in their ability to develop unique solutions and fill the current technology-driven jobs. To address this gap, science needs to be prioritized early in children's lives. The focus of this research was to analyze a science training program that would help pre-school teachers better understand Mind in the Making life skills, the nature of science, science practices, and improve their self-efficacy integrating science education into their classrooms and curriculum. Seventy-one teachers enrolled in two three-day, professional development trainings that were conducted over three, five-hour sessions approximately one month apart... During that training the teachers learned hands-on activities for young children that introduced life and physical science content. They were also given the task of developing and implementing a science-based lesson for their students and then analyzing it with other participants. The information from the lesson plans was collected for analysis. After the last training the teachers were given a pre/post retrospective survey to measure effective outcomes. The results from the lesson plans and surveys indicate that the trainings helped improve the teachers' understanding of Mind in the Making, the nature of science, and science practices. The results also show that the teachers felt more comfortable integrating science education into their classrooms and curriculum.

  10. Exploring elementary school teachers' perception of their role in teaching content literacy in the elementary science and social studies classrooms: A mixed methods study

    Science.gov (United States)

    Jones-Moore, Lisa Michelle

    2011-12-01

    This mixed-methods study explored third, fourth, and fifth grade teachers' perceptions of their role in teaching content literacy in the elementary science and social studies classroom. The rationale for this study was the growing number of studies questioning the reliance on the inoculation theory for content area literacy comprehension. The study was a mixed methods study so as to provide insight into the participants' thought processes in decision making and instructional planning. Data sources included timed instructional observations, tiered checklist to identify strategy instruction, and prompted critical reflections. The three-tiered observation instrument categorized strategies used by teachers in tiers according to the focus of the strategy. Tier I strategies were those identified as strategies good readers use, typically taught with narrative text. The inoculation theory posits these skills transfer to reading informational and expository text. Tier II strategies were those identified as strategies appropriate for informational or expository text. Use of these strategies acknowledged that narrative and informational/expository text require different strategies, but does not differentiate between expository text drawn from particular content area. Tier III strategies were those identified as strategies particularly suited to informational or expository text drawn from specific content areas. These strategies embody cognitive processes used to comprehend text drawn from specific content areas. The findings showed the participating teachers used a preferential Tier of strategy instruction. Some participants felt that reading comprehension was more important than content. They viewed reading as a subject instead of an integral part of science and social studies instruction.

  11. Materials Data Science: Current Status and Future Outlook

    Science.gov (United States)

    Kalidindi, Surya R.; De Graef, Marc

    2015-07-01

    The field of materials science and engineering is on the cusp of a digital data revolution. After reviewing the nature of data science and Big Data, we discuss the features of materials data that distinguish them from data in other fields. We introduce the concept of process-structure-property (PSP) linkages and illustrate how the determination of PSPs is one of the main objectives of materials data science. Then we review a selection of materials databases, as well as important aspects of materials data management, such as storage hardware, archiving strategies, and data access strategies. We introduce the emerging field of materials data analytics, which focuses on data-driven approaches to extract and curate materials knowledge from available data sets. The critical need for materials e-collaboration platforms is highlighted, and we conclude the article with a number of suggestions regarding the near-term future of the materials data science field.

  12. Effects of oxygen content on the pinning energy and critical current in the granular (Hg, Re)-1223 superconductors

    International Nuclear Information System (INIS)

    Passos, C.A.C.; Orlando, M.T.D.; Fernandes, A.A.R.; Oliveira, F.D.C.; Simonetti, D.S.L.; Fardin, J.F.; Belich, H.; Ferreira, M.M.

    2005-01-01

    Hg 0.82 Re 0.18 Ba 2 Ca 2 Cu 3 O 8+d polycrystalline samples, with different oxygen content, were investigated by ac resistance measurements under different applied magnetic field (up to 3 A/m) and critical current measurements. The intergrain and intragrain regions have shown an improvement in the pinning energy and critical current density, as considering the precursor preparation with 10% of O 2 and 90% of Ar (optimal doped). In addition, the samples presented S-I-S junctions type as considering Ambegaokar-Baratoff theory

  13. An organizing model for recent cognitive science work on the self.

    Science.gov (United States)

    Pageler, Ben

    2016-10-01

    An organizing model of 'the self' emerges from applying various kinds of brain injury to recent cognitive science and philosophical work on 'the self'. This model unifies various contents and mechanisms central to current notions of the self. The article then highlights several criteria and aspects of this notion of self. Qualities of the right type and level of psychological significance delineate 'the self' as an organizing concept useful for recent philosophical work and cognitive science research. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Who's on First? Gender Differences in Performance on the "SAT"® Test on Critical Reading Items with Sports and Science Content. Research Report. ETS RR-16-26

    Science.gov (United States)

    Chubbuck, Kay; Curley, W. Edward; King, Teresa C.

    2016-01-01

    This study gathered quantitative and qualitative evidence concerning gender differences in performance by using critical reading material on the "SAT"® test with sports and science content. The fundamental research questions guiding the study were: If sports and science are to be included in a skills test, what kinds of material are…

  15. Sitting with the scientists: a collaborative approach to STEM content development

    Science.gov (United States)

    Mattson, Barbara

    2018-01-01

    For over two decades, the Goddard Astrophysics Education Team has been an integrated part of NASA Goddard’s Astrophysics Science Division. As part of NASA’s largest astrophysics organization, our team is in a unique position to collaborate with the division’s scientists, engineers, and technical personnel - our subject matter experts (SMEs) - in a variety of capacities. We often seek input from our SMEs to help implement our education programs - to ensure our programs’ scientific accuracy, to help us employ cutting-edge topics, and to promote authentic science processes. At the same time, we act as education experts for our SMEs to help them implement their ideas. We see this as a true partnership, with many opportunities for SME participation. Our current STEM Activation programs, Afterschool Universe and NASA Family Science Night, were created with strong involvement from division scientists, and our latest sessions on galaxies were developed in collaboration with an active researcher. In addition to our own programming, we have been tasked with providing NASA astrophysics content and expertise to the Goddard Office of Education, the Heliophysics Education Consortium (and their cross-division efforts), and the NASA Science Mission Directorate STEM Activation Community. This talk will provide an overview of our team’s current efforts and the ways in which we partner with our division’s SMEs.

  16. Analysis of the thematic content of review Nucleus

    International Nuclear Information System (INIS)

    Guerra Valdes, Ramiro

    2007-01-01

    A computer programme for performing standardized analysis of research areas and key concepts of nuclear science and technology under development at Cubaenergia is presented. Main components of the information processing system, as well as computational methods and modules for thematic content analysis of INIS Database record files are described. Results of thematic content analysis of review Nucleus from 1986 to 2005 are shown. Furthermore, results of demonstrative study Nucleus, Science, Technology and Society are also shown. The results provide new elements to asses the significance of the thematic content of review Nucleus in the context of innovation in interrelated multidisciplinary research areas

  17. Understanding How Science Works: The Nature of Science as The Foundation for Science Teaching and Learning

    Science.gov (United States)

    McComas, William F.

    2017-01-01

    The nature of science (NOS) is a phrase used to represent the rules of the game of science. Arguably, NOS is the most important content issue in science instruction because it helps students understand the way in which knowledge is generated and validated within the scientific enterprise. This article offers a proposal for the elements of NOS that…

  18. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  19. Identifying the Gender Dimension in Research Content

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D.; Lalonde, B.St.L.; Tippett, C.; Archambault, E.; Callaert, J.; Mantouvalou, K.; Arora, L.

    2016-07-01

    Globally, there is an increasing interest in integrating the gender dimension in research content (GDRC). As a first step towards monitoring progress in this area, a new indicator measuring the proportion of a country’s scientific publications integrating a gender dimension in their subject matter was developed for the European Commission’s She Figures 2015 publication. This indicator is based on a keyword-based query covering both sex-related terms (biological characteristics of both women and men) and gender-related terms (social/cultural factors of both women and men). The final GDRC dataset consisted of some 212,600 distinct publications including a gender dimension in their research content. Findings suggest that integrating a gender dimension into research content is relatively rare. Unsurprisingly, it was less common for scientific articles in the fields of agricultural sciences, engineering and technology, and natural sciences to do so, and more common in the social sciences. (Author)

  20. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  1. Partnering and teamwork to create content for spherical display systems to enhance public literacy in earth system and ocean sciences

    Science.gov (United States)

    Beaulieu, S. E.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.; Spargo, A.; Brickley, A.; Emery, M.

    2013-12-01

    Spherical display systems, also known as digital globes, are technologies that, in person or online, can be used to help visualize global datasets and earth system processes. Using the InterRidge Global Database of Active Submarine Hydrothermal Vent Fields and imagery from deep-sea vehicles, we are creating content for spherical display systems to educate and excite the public about dynamic geophysical and biological processes and exploration in the deep ocean. The 'Global Viewport for Virtual Exploration of Deep-Sea Hydrothermal Vents' is a collaboration between the Woods Hole Oceanographic Institution and the Ocean Explorium at New Bedford Seaport, hosting a Magic Planet and Science On a Sphere (SOS), respectively. The main activities in the first year of our project were geared towards team building and content development. Here we will highlight the partnering and teamwork involved in creating and testing the effectiveness of our new content. Our core team is composed of a lead scientist, educators at both institutions, graphic artists, and a professional evaluator. The new content addresses key principles of Earth Science Literacy and Ocean Literacy. We will share the collaborative, iterative process by which we developed two educational pieces, 'Life without sunlight' and 'Smoke and fire underwater' - each focusing on a different set of 3 literacy principles. We will share how we conducted our front-end and formative evaluations and how we focused on 2 NSF Informal Education Impact Categories for our evaluation questionnaire for the public. Each educational piece is being produced as a stand-alone movie and as an interactive, docent-led presentation integrating a number of other datasets available from NOAA's SOS Users Network. The proximity of our two institutions enables a unique evaluation of the learning attained with a stand-alone spherical display vs. live presentations with an SOS.

  2. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  3. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  4. Discovering Science from an Armchair: Popular Science in British Magazines of the Interwar Years.

    Science.gov (United States)

    Bowler, Peter J

    2016-01-01

    Analysing the contents of magazines published with the stated intention of conveying information about science and technology to the public provides a mechanism for evaluation what counted as 'popular science'. This article presents numerical surveys of the contents of three magazines published in inter-war Britain (Discovery, Conquest and Armchair Science) and offers an evaluation of the results. The problem of defining relevant topic-categories is addressed, both direct and indirect strategies being employed to ensure that the topics correspond to what the editors and publishers took to be the principal areas of science and technology of interest to their readers. Analysis of the results of the surveys reveals different editorial policies depending on the backgrounds of the publishers and their anticipated readerships. The strong focus of the two most populist magazines on applied science and 'hobbyist' topics such as natural history, radio and motoring is noted and contrasted with the very limited coverage of theoretical science. In conclusion, a survey of changes in the contents over the periods of publication is used to identify trends in the coverage of science during this period.

  5. Pedagogical Content Knowledge of Experts and Novices--What Knowledge Do They Activate When Analyzing Science Lessons?

    Science.gov (United States)

    Krepf, Matthias; Plöger, Wilfried; Scholl, Daniel; Seifert, Andreas

    2018-01-01

    In the current debate on pedagogical content knowledge (PCK), the term is used to refer to the context-specific knowledge that teachers activate when reflecting on practice. Against the background of this debate, we conducted an empirical study and sought to answer the question of which knowledge experts and novices activated in assessing a…

  6. Computing Education in Korea--Current Issues and Endeavors

    Science.gov (United States)

    Choi, Jeongwon; An, Sangjin; Lee, Youngjun

    2015-01-01

    Computer education has been provided for a long period of time in Korea. Starting as a vocational program, the content of computer education for students evolved to include content on computer literacy, Information Communication Technology (ICT) literacy, and brand-new computer science. While a new curriculum related to computer science was…

  7. The role of entomology in environmental and science education: Comparing outreach methods for their impact on student and teacher content knowledge and motivation

    Science.gov (United States)

    Weeks, Faith J.

    Outreach programming can be an important way for local students and teachers to be exposed to new fields while enhancing classroom learning. University-based outreach programs are offered throughout the country, including most entomology departments as few individuals learn about insects in school and these programs can be excellent sources of entomological education, as well as models to teach environmental and science education. Each department utilizes different instructional delivery methods for teaching about insects, which may impact the way in which students and teachers understand the insect concepts presented. To determine the impact of using entomology to enhance science and environmental education, this study used a series of university-based entomology outreach programs to compare three of the most common delivery methods for their effect on teacher and student content knowledge and motivation, specifically student interest in entomology and teacher self-efficacy. Twenty fifth grade classrooms were assessed over the course of one school year. The results show that teacher knowledge significantly increased when teachers were unfamiliar with the content and when trained by an expert, and teacher self-efficacy did not decrease when asked about teaching with insects. For students, content knowledge increased for each lesson regardless of treatment, suggesting that outreach program providers should focus on working with local schools to integrate their field into the classroom through the delivery methods best suited to the needs of the university, teachers, and students. The lessons also had an impact on student interest in science and environmental education, with an overall finding that student interest increases when using insects in the classroom.

  8. The changing information environment for nanotechnology: online audiences and content

    International Nuclear Information System (INIS)

    Anderson, Ashley A.; Brossard, Dominique; Scheufele, Dietram A.

    2010-01-01

    The shift toward online communication in all realms, from print newspapers to broadcast television, has implications for how the general public consumes information about nanotechnology. The goal of this study is threefold: to investigate who is using online sources for information and news about science and nanotechnology, to examine what the general public is searching for online with regards to nanotechnology, and to analyze what they find in online content of nanotechnology. Using survey data, we find those who report the Internet as their primary source of science and technology news are diverse in age, more knowledgeable about science and nanotechnology, highly educated, male, and more diverse racially than users of other media. In a comparison of demographic data on actual visits by online users to general news and science Web sites, science sites attracted more male, non-white users from the Western region of the United States than news sites did. News sites, on the other hand, attracted those with a slightly higher level of education. Our analysis of published estimates of keyword searches on nanotechnology reveals people are turning to the Internet to search for keyword searches related to the future, health, and applications of nanotechnology. A content analysis of online content reveals health content dominates overall. Comparisons of content in different types of sites-blogs, government, and general sites-are conducted.

  9. The changing information environment for nanotechnology: online audiences and content

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ashley A., E-mail: aaanderson3@wisc.edu; Brossard, Dominique; Scheufele, Dietram A. [University of Wisconsin-Madison, Department of Life Sciences Communication (United States)

    2010-05-15

    The shift toward online communication in all realms, from print newspapers to broadcast television, has implications for how the general public consumes information about nanotechnology. The goal of this study is threefold: to investigate who is using online sources for information and news about science and nanotechnology, to examine what the general public is searching for online with regards to nanotechnology, and to analyze what they find in online content of nanotechnology. Using survey data, we find those who report the Internet as their primary source of science and technology news are diverse in age, more knowledgeable about science and nanotechnology, highly educated, male, and more diverse racially than users of other media. In a comparison of demographic data on actual visits by online users to general news and science Web sites, science sites attracted more male, non-white users from the Western region of the United States than news sites did. News sites, on the other hand, attracted those with a slightly higher level of education. Our analysis of published estimates of keyword searches on nanotechnology reveals people are turning to the Internet to search for keyword searches related to the future, health, and applications of nanotechnology. A content analysis of online content reveals health content dominates overall. Comparisons of content in different types of sites-blogs, government, and general sites-are conducted.

  10. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  11. Investigating students' view on STEM in learning about electrical current through STS approach

    Science.gov (United States)

    Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.

  12. Questionnaire for the contents of cancer professional training plan by Ministry of Education, Culture, Sports, Science, and Technology Japan

    International Nuclear Information System (INIS)

    Sasaki, Ryohei; Numasaki, Hodaka; Teshima, Teruki; Nishio, Teiji; Fukuda, Haruyuki; Ashino, Yasuo; Onishi, Hiroshi; Nakamura, Katsumasa; Nagata, Yasushi

    2009-01-01

    Questionnaire for the contents of cancer professional training plan by Ministry of Education, Culture, Sports, Science, and Technology Japan were widely assessed and introduced in the 4th Japanese Society for Therapeutic Radiology and Oncology (JASTRO) Future Planning Seminar held on March 8, 2008 in Tokyo, Japan. From the assessment, small number of instructors for medical physicists was elucidated as the most important problem for the future of fields of radiation oncology in Japan. (author)

  13. Expanding Computer Science Education in Schools: Understanding Teacher Experiences and Challenges

    Science.gov (United States)

    Yadav, Aman; Gretter, Sarah; Hambrusch, Susanne; Sands, Phil

    2017-01-01

    The increased push for teaching computer science (CS) in schools in the United States requires training a large number of new K-12 teachers. The current efforts to increase the number of CS teachers have predominantly focused on training teachers from other content areas. In order to support these beginning CS teachers, we need to better…

  14. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    Scientists with limited time to devote to educating the public about their work will get the greatest multiplier effect for their investment of time by successfully interacting with university science educators. These university professors are the smallest and least publicized group of professionals in the chain of people working to create science literate citizens. They connect to all aspects of formal and informal education, influencing everything from what and how youngsters and adults learn science to legislative rulings. They commonly teach methods of teaching science to undergraduates aspiring to teach in K-12 settings and experienced teachers. They serve as agents for change to improve science education inside schools and at the state level K-16, including what science content courses are acceptable for teacher licensure. University science educators are most often housed in a College of Education or Department of Education. Significant differences in culture exist in the world in which marine scientists function and that in which university science educators function, even when they are in the same university. Subsequently, communication and building relationships between the groups is often difficult. Barriers stem from not understanding each other's roles and responsibilities; and different reward systems, assumptions about teaching and learning, use of language, approaches to research, etc. This presentation will provide suggestions to mitigate the barriers and enable scientists to leverage the multiplier effect saving much time and energy while ensuring the authenticity of their message is maintained. Likelihood that a scientist's message will retain its authenticity stems from criteria for a university science education position. These professors have undergraduate degrees in a natural science (e.g., biology, chemistry, physics, geology), and usually a master's degree in one of the sciences, a combination of natural sciences, or a master's including

  15. National Climate Change and Wildlife Science Center, Version 2.0

    Science.gov (United States)

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  16. A Comparison of Experienced and Preservice Elementary School Teachers' Content Knowledge and Pedagogical Content Knowledge about Electric Circuits

    Science.gov (United States)

    Lin, Jing-Wen

    2017-01-01

    This study investigated the differences between Taiwanese experienced and preservice elementary school science teachers' content knowledge (CK) about electric circuits and their ability to predict students' preconceptions about electric circuits as an indicator of their pedagogical content knowledge (PCK). An innovative web-based recruitment and…

  17. Meeting report: Ocean ‘omics science, technology and cyberinfrastructure: current challenges and future requirements (August 20-23, 2013)

    Science.gov (United States)

    Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.

    2014-01-01

    The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495

  18. Science-based occupations and the science curriculum: Concepts of evidence

    Science.gov (United States)

    Aikenhead, Glen S.

    2005-03-01

    What science-related knowledge is actually used by nurses in their day-to-day clinical reasoning when attending patients? The study investigated the knowledge-in-use of six acute-care nurses in a hospital surgical unit. It was found that the nurses mainly drew upon their professional knowledge of nursing and upon their procedural understanding that included a common core of concepts of evidence (concepts implicitly applied to the evaluation of data and the evaluation of evidence - the focus of this research). This core included validity triangulation, normalcy range, accuracy, and a general predilection for direct sensual access to a phenomenon over indirect machine-managed access. A cluster of emotion-related concepts of evidence (e.g. cultural sensitivity) was also discovered. These results add to a compendium of concepts of evidence published in the literature. Only a small proportion of nurses (one of the six nurses in the study) used canonical science content in their clinical reasoning, a result consistent with other research. This study also confirms earlier research on employees in science-rich workplaces in general, and on professional development programs for nurses specifically: canonical science content found in a typical science curriculum (e.g. high school physics) does not appear relevant to many nurses' knowledge-in-use. These findings support a curriculum policy that gives emphasis to students learning how to learn science content as required by an authentic everyday or workplace context, and to students learning concepts of evidence.

  19. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

    International Nuclear Information System (INIS)

    Zhao, H.; University of Colorado, Boulder, CO; Li, X.; University of Colorado, Boulder, CO; Baker, D. N.

    2015-01-01

    Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute more significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O + . This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.

  20. Negotiating Science and Engineering: An Exploratory Case Study of a Reform-Minded Science Teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-01-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the…

  1. Preparing nursing students for enhanced roles in primary care: The current state of prelicensure and RN-to-BSN education.

    Science.gov (United States)

    Wojnar, Danuta M; Whelan, Ellen Marie

    With the current emphasis on including registered nurses (RNs) on the primary care teams, it is essential that nursing programs prepare students for employment in these settings. This study explored the current state of prelicensure and RN-to-Bachelor of Science in Nursing (BSN) online education regarding the implementation of primary care content in the curricula. A sample of 1,409 schools and/or colleges from across the United States was invited to participate in an online survey. About 529 surveys were returned for an overall response rate of 37.5%. Summative content analysis was used to analyze survey data. Although most respondents have implemented some primary care content, some found it challenging and others have demurred from incorporating primary care content altogether. Nursing leaders and faculty in academia must collaborate with clinical partners to design and expand didactic and clinical learning experiences that emphasize primary care content in the prelicensure and RN-to-BSN education. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Food reward system: current perspectives and future research needs.

    Science.gov (United States)

    Alonso-Alonso, Miguel; Woods, Stephen C; Pelchat, Marcia; Grigson, Patricia Sue; Stice, Eric; Farooqi, Sadaf; Khoo, Chor San; Mattes, Richard D; Beauchamp, Gary K

    2015-05-01

    This article reviews current research and cross-disciplinary perspectives on the neuroscience of food reward in animals and humans, examines the scientific hypothesis of food addiction, discusses methodological and terminology challenges, and identifies knowledge gaps and future research needs. Topics addressed herein include the role of reward and hedonic aspects in the regulation of food intake, neuroanatomy and neurobiology of the reward system in animals and humans, responsivity of the brain reward system to palatable foods and drugs, translation of craving versus addiction, and cognitive control of food reward. The content is based on a workshop held in 2013 by the North American Branch of the International Life Sciences Institute. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  3. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  4. Preparing perservice teachers to teach elementary school science

    Science.gov (United States)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  5. The Impact of a Racing Feature on Middle School Science Students' Performance in an Educational Game: The Effect of Content-Free Game-Actions

    Science.gov (United States)

    Ault, Marilyn; Craig-Hare, Jana; Frey, Bruce

    2016-01-01

    Reason Racer is an online, rate-based, multiplayer game designed to engage middle school students in the knowledge and skills related to scientific argumentation. Several game features are included as design considerations unrelated to science content or argumentation. One specific feature, a competitive racing component that occurs in between…

  6. Social behaviour in the Age of Empathy? – A social scientist’s perspective on current trends in the behavioural sciences.

    Directory of Open Access Journals (Sweden)

    Svenja eMatusall

    2013-05-01

    Full Text Available Recently, several behavioral sciences became increasingly interested in investigating biological and evolutionary foundations of (human social behavior. In this light, prosocial behavior is seen as a core element of human nature. A central role within this perspective plays the ‘social brain’ that is not only able to communicate with the environment but rather to interact directly with other brains via neuronal mind reading capacities such as empathy. From the perspective of a sociologist, this paper investigates what social means in contemporary behavioral and particularly brain sciences. It will be discussed what social means in the light of social neuroscience and a glance into the history of social psychology and the brain sciences will show that two thought traditions come together in social neuroscience, combining an individualistic and an evolutionary notion of the social. The paper concludes by situating current research on prosocial behavior in broader social discourses about sociality and society, suggesting that to naturalise prosocial aspects in human life is a current trend in today's behavioral sciences and beyond.

  7. Surface analysis methods in materials science

    CERN Document Server

    Sexton, Brett; Smart, Roger

    1992-01-01

    The idea for this book stemmed from a remark by Philip Jennings of Murdoch University in a discussion session following a regular meeting of the Australian Surface Science group. He observed that a text on surface analysis and applica­ tions to materials suitable for final year undergraduate and postgraduate science students was not currently available. Furthermore, the members of the Australian Surface Science group had the research experience and range of coverage of sur­ face analytical techniques and applications to provide a text for this purpose. A of techniques and applications to be included was agreed at that meeting. The list intended readership of the book has been broadened since the early discussions, particularly to encompass industrial users, but there has been no significant alter­ ation in content. The editors, in consultation with the contributors, have agreed that the book should be prepared for four major groups of readers: - senior undergraduate students in chemistry, physics, metallur...

  8. Bridging the language gap: Exploring science teachers' dual role as teachers of content and English literacy

    Science.gov (United States)

    Arnold, Suzanne C.

    Responsibility for educating English language learners is increasingly falling on the shoulders of content specialists at the secondary level, as students are mainstreamed into classes. Therefore, providing these students an opportunity to achieve academic success depends largely on the quality of mainstream instruction (Cornell, 1995). Most teachers receive little or no preparation in how to work with English language learners. In my study, I address the instructional issues confronting three white, monolingual English-speaking middle school science teachers who must meet the demands of an increasing English language learner population. Specifically, this study explores teacher beliefs and enactment of reform-oriented science and sheltered instructional approaches to develop English language learners scientific and English literacy skills. I also explore the relationships that exist between these two dynamics in an effort to determine the extent to which teachers take on a dual role as teachers promoting English language and science proficiency. Using a participant observation case study method and my adaptation of Schwab's commonplaces heuristic, I analyzed the relationship between teacher beliefs, milieu, subject matter, and enactment in bridging the language gap in the science classroom for English language learners. The most noteworthy finding of this study was the significant role of milieu in enacting lessons that bridge the language gap and foster the development of English language learners science and English literacy skills. The findings suggest that greater attention be given to helping teachers establish a relationship-driven classroom milieu. You can provide all kinds of courses or professional learning experiences to improve teachers' instructional practices, but they must also recognize the importance of establishing relationships with their students; the coursework they take will not supplant the need to foster a warm and safe environment for all

  9. U.S. Materials Science on the International Space Station: Status and Plans

    Science.gov (United States)

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  10. Writing for Science Literacy

    Science.gov (United States)

    Chamberlin, Shannon Marie

    Scientific literacy is the foundation on which both California's currently adopted science standards and the recommended new standards for science are based (CDE, 2000; NRC, 2011). The Writing for Science Literacy (WSL) curriculum focuses on a series of writing and discussion tasks aimed at increasing students' scientific literacy. These tasks are based on three teaching and learning constructs: thought and language, scaffolding, and meta-cognition. To this end, WSL is focused on incorporating several strategies from the Rhetorical Approach to Reading, Writing, Listening and Speaking to engage students in activities designed to increase their scientific literacy; their ability to both identify an author's claim and evidence and to develop their own arguments based on a claim and evidence. Students participated in scaffolded activities designed to strengthen their written and oral discourse, hone their rhetorical skills and improve their meta-cognition. These activities required students to participate in both writing and discussion tasks to create meaning and build their science content knowledge. Students who participated in the WSL curriculum increased their written and oral fluency and were able to accurately write an evidence-based conclusion all while increasing their conceptual knowledge. This finding implies that a discourse rich curriculum can lead to an increase in scientific knowledge.

  11. Considerations for Producing Media for Science Museum Exhibits: A Volcano Video Case Study

    Science.gov (United States)

    Sable, MFA, J.

    2013-12-01

    While science museums continue to expand their use of videos in exhibits, they are also seeking to add engaging content to their websites in the hope of reaching broader audiences. As a cost-effective way to do both, a project is undertaken to develop a video for a museum website that can easily be adapted for use in an exhibit. To establish goals and constraints for the video, this project explores the needs of museums and their audiences. Past literature is compared with current exhibitions in several U.S. museums. Once identified, the needs of science museums are incorporated into the content, form, and style of the two-part video "Living in Pele's Paradise." Through the story of the spectacular 1959-60 eruption of Kilauea Volcano, Hawai'i, the video shows how research and monitoring contribute to helping communities prepare for volcanic hazards. A 20-minute version of the video is produced for the web, and a 4-minute version is developed for use in a hypothetical science museum exhibit. The two versions of the video provide a cross-platform experience with multiple levels of content depth.

  12. How much basic science content do second-year medical students remember from their first year?

    Science.gov (United States)

    Schneid, Stephen D; Pashler, Hal; Armour, Chris

    2018-01-23

    While most medical students generally perform well on examinations and pass their courses during the first year, we do not know how much basic science content they retain at the start of their second year and how that relates to minimal competency set by the faculty. In the fall of 2014, before starting their second-year courses, 27 medical students volunteered to participate in a study of long-term retention of the basic sciences by taking a "retention exam" after a delay of 5-11 months. The overall mean performance when the students initially answered the 60 multiple choice questions (MCQs) was 82.8% [standard deviation (SD) = 7.4%], which fell to 50.1% (SD = 12.1%) on the retention exam. This gave a mean retention of 60.4% (SD = 12.8%) with the retention for individual students ranging from 37 to 81%. The majority of students (23/27; 85%) fell below the minimal level of competency to start their second year. Medical educators should be more aware of the significant amount of forgetting that occurs during training and make better use of instructional strategies that promote long-term learning such as retrieval practice, interleaving, and spacing.

  13. Collection development and outsourcing in academic health sciences libraries: a survey of current practices.

    Science.gov (United States)

    Blecic, D D; Hollander, S; Lanier, D

    1999-04-01

    Academic health sciences libraries in the United States and Canada were surveyed regarding collection development trends, including their effect on approval plan and blanket order use, and use of outsourcing over the past four years. Results of the survey indicate that serials market forces, budgetary constraints, and growth in electronic resources purchasing have resulted in a decline in the acquisition of print items. As a result, approval plan use is being curtailed in many academic health sciences libraries. Although use of blanket orders is more stable, fewer than one-third of academic health sciences libraries report using them currently. The decline of print collections suggests that libraries should explore cooperative collection development of print materials to ensure access and preservation. The decline of approval plan use and the need for cooperative collection development may require additional effort for sound collection development. Libraries were also surveyed about their use of outsourcing. Some libraries reported outsourcing cataloging and shelf preparation of books, but none reported using outsourcing for resource selection. The reason given most often for outsourcing was that it resulted in cost savings. As expected, economic factors are driving both collection development and outsourcing practices.

  14. AN ANALYSIS OF MISCONCEPTIONS IN SCIENCE TEXTBOOKS: EARTH SCIENCE IN ENGLAND AND WALES

    OpenAIRE

    King , Chris John Henry

    2010-01-01

    Abstract Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/ misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/ misconception per page. Science syllabuses and examinations surveyed also showed errors/ misconceptions. ...

  15. Los Alamos National Lab: National Security Science

    Science.gov (United States)

    SKIP TO PAGE CONTENT Los Alamos National Laboratory Delivering science and technology to protect Museum New Hires Publications Research Library Mission Science & Innovation Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Lab Organizations Science Programs

  16. An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales

    Science.gov (United States)

    King, Chris John Henry

    2010-01-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…

  17. Ten Decades of the Science Textbook: A Revealing Mirror of Science Education Past and Present.

    Science.gov (United States)

    Lynch, Paddy P.; Strube, Paul D.

    1985-01-01

    Indicates that trends in science education can be examined by examining science textbook content. Suggests that a historical overview is important and pertinent to contemporary thinking and contemporary problems in science education. (Author/JN)

  18. Reform in medical and health sciences educational system: a Delphi study of faculty members' views at Shiraz University of Medical Sciences.

    Science.gov (United States)

    Salehi, A; Harris, N; Lotfi, F; Hashemi, N; Kojouri, J; Amini, M

    2014-04-03

    Despite the strengths in the Iranian medical and health sciences educational system, areas in need of improvement have been noted. The purpose of this study was to understand the views of faculty members at Shiraz University of Medical Sciences about current and future needs for medical and health sciences education, with the goal of improving the quality of the educational system. The data were collected using a Delphi consensus method. Analysis of the findings identified the following key themes among the factors likely to contribute to medical and health sciences education and training: adding and/or increasing student numbers in higher degrees in preference to associate degrees; providing more interactive, student-centred teaching methods; improving the educational content with more practical and research-based courses tailored to society's needs; and an emphasis on outcome-based student evaluation techniques. These changes aim to respond to health trends in society and enhance the close relationship between medical education and the needs of the Iranian society.

  19. Integrating independent research into science curricula to foster STEM leadership

    Science.gov (United States)

    Queenan, Craig; Calabro, Alyssa; Becker, David

    2013-05-01

    Preparing students for college and future careers is one of the main goals of K-12 education, but current STEM teaching methods do not do enough to interest students and leave them prepared to enter into and succeed in STEM careers. While measures to implement unifying standards for science education across the country are aimed at ensuring that all students are taught the same material at each grade level, a shift in the way science is taught to is needed to complete the redesign of science education. The independent research model described here aligns with the new content standards and focuses on developing the principles of perspective, purpose, resources, collaboration, analysis, and presentation. These principles not only engage students in the classroom, but also leave students prepared to enter into science programs in college and succeed in leadership roles in the STEM workforce.

  20. Topics in Current Science Research: Closing the Achievement Gap for Under Resourced Students of Color

    Science.gov (United States)

    Loya Villalpando, Alvaro; Daal, Miguel; Phipps, Arran; Speller, Danielle; Sadoulet, Bernard; Winheld, Rachel; Cryogenic Dark Matter Search Collaboration

    2015-04-01

    Topics in Current Science Research (TCSR) is a five-week summer course offered at the University of California, Berkeley through a collaboration between the Level Playing Field Institute's Summer Math and Science Honors Academy (SMASH) Program and the Cryogenic Dark Matter Search (CDMS) group at UC Berkeley. SMASH is an academic enrichment program geared towards under-resourced, high school students of color. The goals of the course are to expand the students' conception of STEM, to teach the students that science is a method of inquiry and not just a collection of facts that are taught in school, and to expose the scholars to critical thinking within a scientific setting. The course's curriculum engages the scholars in hands-on scientific research, project proposal writing, and presentation of their scientific work to their peers as well as to a panel of UC Berkeley scientists. In this talk, we describe the course and the impact it has had on previous scholars, we discuss how the course's pedagogy has evolved over the past 10 years to enhance students' perception and understanding of science, and we present previous participants' reflections and feedback about the course and its success in providing high school students a genuine research experience at the university level.

  1. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau; Rabinowitz, Mitchell

    2014-01-01

    How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of domain, age, and previous experience with content on the ways students approach questioning across history and science texts. In 3 experiments, 3rd-, 8th-, and 10th-grade students in large…

  2. THE EFFECTS OF ELECTIVE COURSE DESIGNED WITH DIFFERENT CONTENTS ON PRE-SERVICE SCIENCE TEACHERS’ SELF-EFFICACY BELIEFS AND KNOWLEDGE ABOUT ORGANIZING CURRICULUM BASED FIELD TRIPS

    Directory of Open Access Journals (Sweden)

    Aykut Emre Bozdoğan

    2018-06-01

    Full Text Available This research examined the effect of a course designed with different content on pre-service science teachers’ self-efficacy beliefs and knowledge about organizing curriculum-based trips. A pre-test post-test quasi experimental design was used in the research. One-hundred and thirty pre-service science teachers participated in the research. The research was carried out within the context of an elective course called “Informal Learning Environments in Science Education” and was conducted over 14 weeks in total for two hours per week. The research data were obtained by means of a questionnaire, self–efficacy scale for designing curriculum-based field trips (CFTSES and semi-structured focus-group interviews. As a result of the research, it was found that the course content which included in-class and out-of-school setting practices in the 3rd group was the most effective. This was followed by the 2nd group which included only in-class implementations. The first group which was supported with visuals and theoretical related presented information was the group which was the least effected. The results of the research revealed that pre-service science teachers had mainly different concerns about safety, but that this did not deter them, as they still continued to design curriculum-based field trips for learners.

  3. The challenge of increasing vitamin C content in plant foods.

    Science.gov (United States)

    Cruz-Rus, Eduardo; Amaya, Iraida; Valpuesta, Victoriano

    2012-09-01

    The term "vitamin" is used to define a number of organic compounds that have to be obtained from different foods because the organism itself cannot synthesize them in the quantities needed to sustain life. Vitamin C is the common name for L-ascorbic acid. In humans, the principal role of this molecule is to scavenge reactive oxygen species, due to its antioxidant capacity, and to serve as cofactor for many enzymes. A deficiency of L-ascorbic acid is traditionally linked to human diseases such as scurvy. Plant foods are the principal source of L-ascorbic acid for humans. There is a high variability of L-ascorbic acid content in the various plant organs that are used for human consumption. This diversity is related to the specific functions played by L-ascorbic acid in the different plant tissues. The net content of L-ascorbic acid in plants is determined through a balance of the activities of different biosynthetic, recycling, and catabolic pathways. Here we review the importance of L-ascorbic acid for human health, the current knowledge on its metabolism and function in plants, and the efforts that have already been made by genetic modification to improve its content in plant organs used for human food. We provide a current and forward looking perspective of how plant science can contribute to improving the L-ascorbic acid content in crop species using gene transformation, quantitative trait loci and association mapping-based approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The current practice of using multiple representations in year 4 science classrooms

    Science.gov (United States)

    Chuenmanee, Chanoknat; Thathong, Kongsak

    2018-01-01

    Multiple representations have been widely used as a reasoning tool for understanding complex scientific concepts. Thus this study attempted to investigate the current practice of using multiple representations on Year 4 science classrooms in terms of modes and levels which appear in curriculum documents, teaching plans, tasks and assessments, teaching practices, and students' behaviors. Indeed, documentary analysis, classroom observation, and interview were used as the data collection methods. First of all, Year 4 science documents were analyzed. Then classroom observation was used as a collecting method to seek what actually happen in the classroom. Finally, in-depth interviews were used to gather more information and obtain meaningful data. The finding reveals that many modes of verbal, visual, and tactile representations within three levels of representations are posed in Year 4 documents. Moreover, according to classroom observations and interviews, there are three main points of applying multiple representations into classrooms. First of all, various modes of representations were used, however, a huge number of them did not come together with the levels. The levels of representations, secondly, macroscopic and cellular levels were introduced into all classrooms while symbolic level was provided only in some classrooms. Finally, the connection of modes and levels pointed out that modes of representations were used without the considerations on the levels of them. So, it seems to be that teaching practice did not meet the aims of curriculum. Therefore, these issues were being considered in order to organize and design the further science lessons.

  5. Current status of science. V. 2

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the second volume, the authors propose a comprehensive view of Science: on Environment, nuclear and renewable energies, human life and medicine, on new products as new materials, information medium, food, drugs and products of biomedical engineering, on new services as the transports and telecommunications and on new methods as artificial intelligence, robotics, chemical engineering, enzymatic engineering, gene farming and cell cultures

  6. Public understanding of science and the perception of nanotechnology: the roles of interest in science, methodological knowledge, epistemological beliefs, and beliefs about science

    International Nuclear Information System (INIS)

    Retzbach, Andrea; Marschall, Joachim; Rahnke, Marion; Otto, Lukas; Maier, Michaela

    2011-01-01

    In this article, we report data from an online questionnaire study with 587 respondents, representative for the adult U.S. population in terms of age, gender, and level of education. The aim of this study was to assess how interest in science and knowledge as well as beliefs about science are associated with risk and benefit perceptions of nanotechnology. The findings suggest that the U.S. public is still rather unfamiliar with nanotechnology. Those who have some knowledge mainly have gotten it from TV and the Internet. The content of current media reports is perceived as fairly positive. Knowledge of scientific methods is unrelated to benefit and risk perceptions, at least when other predictors are controlled. In contrast, positive beliefs about science (e.g., its impact on economy or health) and more sophisticated epistemological beliefs about the nature of scientific knowledge are moderately linked to more positive perceptions of nanotechnology. The only exception is the perception of scientific uncertainty: This is associated with less positive evaluations. Finally, higher engagement with science is associated with higher risk perceptions. These findings show that laypersons who are engaged with science and who are aware of the inherent uncertainty of scientific evidence might perceive nanotechnology in a somewhat more differentiated way, contrary to how it is portrayed in the media today.

  7. Analysis of chemistry textbook content and national science education standards in terms of air quality-related learning goals

    Science.gov (United States)

    Naughton, Wendy

    In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.

  8. [Physical activity as prevention and treatment resource of chronic diseases in the syllabus of Medicine and Sport Sciences at Spanish universities].

    Science.gov (United States)

    Calonge Pascual, Sergio; Casajús Mallén, José Antonio; González Gross, Marcela

    2017-07-28

    Currently, there is scientific evidence about the benefits of physical exercise over human health. The aim of this study was to review the curricula of Medicine and Sport Sciences at Spanish universities, specifically regarding the contents related to physical exercise in the promotion, prevention and treatment of non-communicable chronic diseases (NCDs). In a systematic way, all syllabus, programs and contents of the different subjects were reviewed for all Spanish universities which offer the Bachelors of Medicine and Sport Sciences. Total, compulsory and optional European Credit Transfer System (ECTS) were analyzed and added for each university. Practicum and Bachelor thesis were not considered. In the mean, Medicine studies dedicate 3.62% (2.38% mandatory and 1.20% optional) of the total 360 ECTS to these contents. In Sport Sciences studies, of the total 240 ECTS, 17.78% (9.87% mandatory and 7.92% optional) were identified as related to these areas of knowledge. Contents ranged from 36 to 4.5 ECTS in Medicine and from 48 to 28 ECTS in Sport Sciences. There is a great disparity between universities for both degrees among Spanish universities. Contents related to the efficient use of physical exercise for the prevention and treatment of non-communicable chronic diseases are scarce, especially in Medicine. Results indicate the need of increasing these contents in undergraduate studies and/or include them in Master or other programs.

  9. Accessorizing Building Science – A Web Platform to Support Multiple Market Transformation Programs

    Energy Technology Data Exchange (ETDEWEB)

    Madison, Michael C.; Antonopoulos, Chrissi A.; Dowson, Scott T.; Franklin, Trisha L.; Carlsen, Leif C.; Baechler, Michael C.

    2014-09-28

    As demand for improved energy efficiency in homes increases, builders need information on the latest findings in building science, rapidly ramping-up energy codes, and technical requirements for labeling programs. The Building America Solution Center is a Department of Energy (DOE) website containing hundreds of expert guides designed to help residential builders install efficiency measures in new and existing homes. Builders can package measures with other media for customized content. Website content provides technical support to market transformation programs such as ENERGY STAR and has been cloned and adapted to provide content for the Better Buildings Residential Program. The Solution Center uses the Drupal open source content management platform to combine a variety of media in an interactive manner to make information easily accessible. Developers designed a unique taxonomy to organize and manage content. That taxonomy was translated into web-based modules that allow users to rapidly traverse structured content with related topics, and media. We will present information on the current design of the Solution Center and the underlying technology used to manage the content. The paper will explore development of features, such as “Field Kits” that allow users to bundle and save content for quick access, along with the ability to export PDF versions of content. Finally, we will discuss development of an Android based mobile application, and a visualization tool for interacting with Building Science Publications that allows the user to dynamically search the entire Building America Library.

  10. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  11. An intelligent content discovery technique for health portal content management.

    Science.gov (United States)

    De Silva, Daswin; Burstein, Frada

    2014-04-23

    Continuous content management of health information portals is a feature vital for its sustainability and widespread acceptance. Knowledge and experience of a domain expert is essential for content management in the health domain. The rate of generation of online health resources is exponential and thereby manual examination for relevance to a specific topic and audience is a formidable challenge for domain experts. Intelligent content discovery for effective content management is a less researched topic. An existing expert-endorsed content repository can provide the necessary leverage to automatically identify relevant resources and evaluate qualitative metrics. This paper reports on the design research towards an intelligent technique for automated content discovery and ranking for health information portals. The proposed technique aims to improve efficiency of the current mostly manual process of portal content management by utilising an existing expert-endorsed content repository as a supporting base and a benchmark to evaluate the suitability of new content A model for content management was established based on a field study of potential users. The proposed technique is integral to this content management model and executes in several phases (ie, query construction, content search, text analytics and fuzzy multi-criteria ranking). The construction of multi-dimensional search queries with input from Wordnet, the use of multi-word and single-word terms as representative semantics for text analytics and the use of fuzzy multi-criteria ranking for subjective evaluation of quality metrics are original contributions reported in this paper. The feasibility of the proposed technique was examined with experiments conducted on an actual health information portal, the BCKOnline portal. Both intermediary and final results generated by the technique are presented in the paper and these help to establish benefits of the technique and its contribution towards effective

  12. The Impact of Using Student-Dictated Oral Review Stories on Science Vocabulary, Content Knowledge, and Non-Fiction Writing Skills of First Grade Students

    Science.gov (United States)

    Bishoff, Sandra Wells

    2010-01-01

    The purpose of this study was to determine if using an intervention called Student Dictated Oral Review Stories (SDORS) had an effect on science vocabulary usage and content knowledge for ninety-three students in six first grade classrooms and the subgroup of economically disadvantaged students in a mid-sized north Texas school district. The…

  13. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    Science.gov (United States)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  14. Networked Content Analysis: The case of climate change

    NARCIS (Netherlands)

    Niederer, S.M.C.

    2016-01-01

    Content Analysis has been developed within communication science as a technique to analyze bodies of text for features or (recurring) themes, in order to identify cultural indicators, societal trends and issues. And while Content Analysis has seen a tremendous uptake across scientific disciplines,

  15. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  16. Translational Science Project Team Managers: Qualitative Insights and Implications from Current and Previous Postdoctoral Experiences.

    Science.gov (United States)

    Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A

    2014-07-01

    The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.

  17. contents.htm | currsci | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; currsci; contents.htm. 404! error. The page your are looking for can not be found! Please check the link or use the navigation bar at the top. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year meeting of the Academy will be held from ...

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. P C S Devara. Articles written in Journal of Earth System Science. Volume 112 Issue 2 June 2003 pp 205-221. Study of total column atmospheric aerosol optical depth, ozone and precipitable water content over Bay of Bengal during BOBMEX-99 · K K Dani R S ...

  19. The Content Analysis, Material Presentation, and Readability of Curriculum 2013 Science Textbook for 1st Semester of Junior High School 7th Grade

    Directory of Open Access Journals (Sweden)

    Endik Deni Nugroho

    2017-07-01

    Full Text Available Based on the early observation by researchers of the two Science textbooks 7thGrade about biological material, 1stand 2ndsemester of curriculum 2013, there were errors in the material presentation and legibility. This study aimed to compare and find the contents suitability of the book based on standard of competence and basic competences, readability, materials presentation and supporting material in the science textbook VII grade, 1st and 2nd semester and measured student legibility. This study used a qualitative descriptive approach by using document analysis. The data resources were obtained by using purposive, the data collection was triangulation, data analysis was inductive/qualitative and the results emphasized the meaning. This research results showed that the Integrated Sciences and Sciences textbook 1st and 2nd semester meet the standards of the core competencies and basic competence on the syllabus curriculum 2013 and also meet the books standart. The results of the analysis conducted in misstatement concept and principles and material llustration in the Integrated Science textbook 1st semester were found 5 misstatement concept, for the presentation of the principles and material illustration was found no error. In the book Integrated Sciences there was no delivery errors concept, principle, and material illustration. Science textbook 1st semester found 8 concepts misstatements and 8 illustration material misstatements. In general, Integrated Sciences and Sciences textbooks 1st and 2nd semester are illegibility so not appropriate for students.

  20. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  1. BAYERO JOURNAL OF PURE AND APPLIED SCIENCES (BAJOPAS)

    African Journals Online (AJOL)

    User

    sciences, namely: Agricultural Sciences, Botany, Biochemistry, Chemistry, Computer Science,. Engineering, Environmental Sciences and Geography. Also, areas of Laboratory Science, Technology,. Mathematical Sciences, Microbiology, Physics, Medical Sciences and Zoology form part of the contents of the Journal.

  2. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    Science.gov (United States)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  3. A socio-cultural reframing of science and dis/ability in education: past problems, current concerns, and future possibilities

    Science.gov (United States)

    Connor, David J.; Valle, Jan W.

    2015-12-01

    In this article we assert the value of a socio-cultural reframing of science and dis/ability in education. We begin by problematizing current issues in education pertaining to the often-unquestioned concept of dis/ability and the impact that has upon research, theory, practice, and policy. As our topic is broad, we have chosen to focus upon four interconnected areas: (1) the historical mistrust of science and pseudo-science by people with dis/abilities; (2) the pervasive use of pseudo-science within the contemporary field of special education; (3) the use of dis/ability studies in education (DSE) to provide a contrast between a traditional positivist framing and a socio-cultural framing of dis/ability, and; (4) a brief exploration of what a DSE/socio-cultural grounding looks like for both schools and classroom teachers. In sum, our intention is to engage science educators to reject deficit-notions of dis/ability in favor of understanding it as part of human variation, and consider the personal and professional benefits of this shift.

  4. Negotiating science and engineering: an exploratory case study of a reform-minded science teacher

    Science.gov (United States)

    Guzey, S. Selcen; Ring-Whalen, Elizabeth A.

    2018-05-01

    Engineering has been slowly integrated into K-12 science classrooms in the United States as the result of recent science education reforms. Such changes in science teaching require that a science teacher is confident with and committed to content, practices, language, and cultures related to both science and engineering. However, from the perspective of the science teacher, this would require not only the development of knowledge and pedagogies associated with engineering, but also the construction of new identities operating within the reforms and within the context of their school. In this study, a middle school science teacher was observed and interviewed over a period of nine months to explore his experiences as he adopted new values, discourses, and practices and constructed his identity as a reform-minded science teacher. Our findings revealed that, as the teacher attempted to become a reform-minded science teacher, he constantly negotiated his professional identities - a dynamic process that created conflicts in his classroom practices. Several differences were observed between the teacher's science and engineering instruction: hands-on activities, depth and detail of content, language use, and the way the teacher positioned himself and his students with respect to science and engineering. Implications for science teacher professional development are discussed.

  5. Gender Stereotypes in Science Education Resources : A Visual Content Analysis

    NARCIS (Netherlands)

    Kerkhoven, A.H.; Rodrigues, Dos Santos Russo P.M.; Land, A.M.; Saxena, A.; Rodenburg, F.J.

    2016-01-01

    More men are studying and working in science fields than women. This could be an effect of the prevalence of gender stereotypes (e.g., science is for men, not for women). Aside from the media and people’s social lives, such stereotypes can also occur in education. Ways in which stereotypes are

  6. The Development, Field Testing and Evaluation of Three Hierarchies of Behaviorally Stated Objectives for the Chemistry Content of a Course of Instruction in Physical Science for Pre-Service Nursing Students.

    Science.gov (United States)

    Love, Robert Alden

    The purpose of this research was to develop hierarchies of behavioral objectives for the chemistry content of a one-semester course in physical science for preservice associate degree nursing students. Each of three content objectives was expressed by a series of behaviorally stated objectives which included a terminal objective for a unit of…

  7. Development of preservice elementary teachers' science self- efficacy beliefs and its relation to science conceptual understanding

    Science.gov (United States)

    Menon, Deepika

    Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self

  8. Qualitative Content Analysis

    Directory of Open Access Journals (Sweden)

    Satu Elo

    2014-02-01

    Full Text Available Qualitative content analysis is commonly used for analyzing qualitative data. However, few articles have examined the trustworthiness of its use in nursing science studies. The trustworthiness of qualitative content analysis is often presented by using terms such as credibility, dependability, conformability, transferability, and authenticity. This article focuses on trustworthiness based on a review of previous studies, our own experiences, and methodological textbooks. Trustworthiness was described for the main qualitative content analysis phases from data collection to reporting of the results. We concluded that it is important to scrutinize the trustworthiness of every phase of the analysis process, including the preparation, organization, and reporting of results. Together, these phases should give a reader a clear indication of the overall trustworthiness of the study. Based on our findings, we compiled a checklist for researchers attempting to improve the trustworthiness of a content analysis study. The discussion in this article helps to clarify how content analysis should be reported in a valid and understandable manner, which would be of particular benefit to reviewers of scientific articles. Furthermore, we discuss that it is often difficult to evaluate the trustworthiness of qualitative content analysis studies because of defective data collection method description and/or analysis description.

  9. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  10. Early Childhood Educators' Self-Efficacy in Science, Math, and Literacy Instruction and Science Practice in the Classroom

    Science.gov (United States)

    Gerde, Hope K.; Pierce, Steven J.; Lee, Kyungsook; Van Egeren, Laurie A.

    2018-01-01

    Research Findings: Quality early science education is important for addressing the low science achievement, compared to international peers, of elementary students in the United States. Teachers' beliefs about their skills in a content area, that is, their content self-efficacy is important because it has implications for teaching practice and…

  11. PREFACE: National Seminar on Current Trends in Materials Science (CTMS-2011)

    Science.gov (United States)

    Jayakrishnan, R.; Vijayakumar, K. P.; Unnikrishnan, N. V.

    2013-05-01

    India is going through an era of many changes in its higher education system. Emphasis is being given to research and development initiatives at Universities and colleges. The teaching community is faced with the challenge of coping with both regular academic activities and research initiatives. The teaching faculties need to keep in step with the momentous research output being generated globally. To mold young talent that will be sought after, teachers need to undertake challenging initiatives. Research in emerging areas like nanotechnology, meta materials, functional materials and structures is being pursued vigorously in Universities and colleges in the state of Kerala. Awareness of the impact of integrating teaching and research in basic science has inspired the teaching faculty. The number of seminars and conferences is not commensurate with the amount of research being conducted in this state. The state lags behind in the number of institutes with state of the art facilities and human resource with cutting edge knowledge. The national seminar on Current Trends in Materials Science (CTMS-2011) is organized by the Department of Physics, Christian College, Chengannur. It is a continuation of the initiatives of the Department to bridge the haitus between teaching and research. Current Trends in Materials Science (CTMS-2007) was successfully conducted with over 80 research paper presentations and participation of delegates from the states of Karnataka, Andhrapradesh, Tamilnadu and Kerala. CTMS-2011 is a sequel envisaged to serve as an effective platform for teachers to interact with eminent scientists and share their knowledge and experience. Papers were invited from the subject area comprising glasses and ceramics, crystal growth, nanotechnology, semiconductors thin films and polymers. We are delighted that after a peer review process of the papers we have selected ten of the best papers presented at the seminar for publication in IOP Conference Series

  12. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  13. Integrative activities content (aic: an auxiliary tool for the teaching of Biochemistry in the course of biological sciences at UFRN

    Directory of Open Access Journals (Sweden)

    F. D. Silva

    2015-08-01

    Full Text Available There are constant changes in the development of science, technology, politics, culture and society; the need for change is also evident in the training of teachers. The ease of access to information makes us realize that traditional teaching needs to be updated.The increasing demotivation of students,followed by high reprobation rates, has become a real challenge to the teaching practice.The objective of this work was to awaken in students enrolled in the discipline of MOLECULAR DIVERSITY (MD, a required curricular component in the Course of Biological Sciences at UFRN, an interest in studying the chemistry and functions of biomolecules, better relating the two to each other, and the content already studied in the course, in order to improve the teaching-learning process. This work was developed in a tutoring project registered at PROGRAD/UFRN. This discipline, MD, addresses chemical and structural features of the main organic molecules.The methodology focused on applying problem integrators called INTEGRATIVE ACTIVITIES OF CONTENT. This refers specifically to the application of problems that integrate the topics taught in the discipline, and also those administered in the disciplines processed in parallel, or even in previous semesters. In this way students realize that molecules relate and interact in all bodies; this gives rise to life through metabolism. The discipline is expected to promote meaningful and inter-related learning. We obtained the following results: greater participation and involvement of students in answering the questions posed; greater interest in the discipline;positive changes regarding the number of students who dropped the class, and in reprobation;and greater integration between teachers, students, and teaching assistants. The methodology used in this work was extremely important to achieve the proposed objectives, helping to facilitate the process of teaching-learning, as also to important relate content.

  14. Does content knowledge matter for new teachers?

    Science.gov (United States)

    Reeves, Todd D.

    There is considerable evidence that new teachers are ill prepared for classroom practice, including self-reported evidence collected from teachers (e.g., Levine, 2006), and statistical evidence for differences in the achievement of students with new versus more experienced teachers (Rivkin, Hanushek, & Kain, 2005). In light of the challenges encountered by new teachers (e.g., Levine, 2006), this study examined the value of different forms of teacher knowledge for teachers with different levels of experience. In particular, this study investigated the interactive relationship between teaching experience and teacher content knowledge, and student achievement in mathematics and science. In New York City, Boyd et al. (2009) linked practice-focused teacher preparation to student mathematics achievement in the first year of teaching and teacher content preparation to achievement in the second. However, other studies demonstrated interactions between teaching experience and content knowledge with different interpretations (e.g., Kukla-Acevedo, 2009; Monk, 1994). At the same time, this study examined the interactive relationship between teaching experience and teachers' pedagogical content knowledge, and student achievement. Extant models of teacher career development (Huberman, 1989; National Research Council, 2010) and how teacher education affects student achievement (e.g., Desimone, 2009) offered theoretical grounding for the study. With nationally representative samples of fourth and eighth grade U.S. students--participants in the 2011 Trends in International Mathematics and Science Study--this study employed hierarchical linear modeling to address its research questions among an array of student achievement outcomes in the domains of mathematics and science. This study attempted to account for salient student, teacher, and contextual factors, and the probabilities of teachers' receipt of various teacher education "treatments" (i.e., propensity score analysis) to

  15. Library and Information Science (LIS)

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    This article outlines the history of library and information science (LIS), from its roots in library science, information science and documentation. It considers various conceptions or “paradigms” in the field and discusses the topical content of LIS as well as the relationships between LIS...

  16. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    Science.gov (United States)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  17. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    Science.gov (United States)

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  18. Science communication on YouTube: Factors that affect channel and video popularity.

    Science.gov (United States)

    Welbourne, Dustin J; Grant, Will J

    2016-08-01

    YouTube has become one of the largest websites on the Internet. Among its many genres, both professional and amateur science communicators compete for audience attention. This article provides the first overview of science communication on YouTube and examines content factors that affect the popularity of science communication videos on the site. A content analysis of 390 videos from 39 YouTube channels was conducted. Although professionally generated content is superior in number, user-generated content was significantly more popular. Furthermore, videos that had consistent science communicators were more popular than those without a regular communicator. This study represents an important first step to understand content factors, which increases the channel and video popularity of science communication on YouTube. © The Author(s) 2015.

  19. A behavioral science/behavioral medicine core curriculum proposal for Japanese undergraduate medical education.

    Science.gov (United States)

    Tsutsumi, Akizumi

    2015-01-01

    Behavioral science and behavioral medicine have not been systematically taught to Japanese undergraduate medical students. A working group under the auspices of Japanese Society of Behavioral Medicine developed an outcome-oriented curriculum of behavioral science/behavioral medicine through three processes: identifying the curriculum contents, holding a joint symposium with related societies, and defining outcomes and proposing a learning module. The behavioral science/behavioral medicine core curriculum consists of 11 units of lectures and four units of practical study. The working group plans to improve the current core curriculum by devising formative assessment methods so that students can learn and acquire attitude as well as the skills and knowledge necessary for student-centered clinical practice.

  20. Building a Semantic Framework for eScience

    Science.gov (United States)

    Movva, S.; Ramachandran, R.; Maskey, M.; Li, X.

    2009-12-01

    The e-Science vision focuses on the use of advanced computing technologies to support scientists. Recent research efforts in this area have focused primarily on “enabling” use of infrastructure resources for both data and computational access especially in Geosciences. One of the existing gaps in the existing e-Science efforts has been the failure to incorporate stable semantic technologies within the design process itself. In this presentation, we describe our effort in designing a framework for e-Science built using Service Oriented Architecture. Our framework provides users capabilities to create science workflows and mine distributed data. Our e-Science framework is being designed around a mass market tool to promote reusability across many projects. Semantics is an integral part of this framework and our design goal is to leverage the latest stable semantic technologies. The use of these stable semantic technologies will provide the users of our framework the useful features such as: allow search engines to find their content with RDFa tags; create RDF triple data store for their content; create RDF end points to share with others; and semantically mash their content with other online content available as RDF end point.

  1. Cell Phones Transform a Science Methods Course

    Science.gov (United States)

    Madden, Lauren

    2012-01-01

    A science methods instructor intentionally encouraged cell phone use for class work to discover how cell phones can be used as research tools to enhance the content and engage the students. The anecdotal evidence suggested that students who used their smartphones as research tools experienced the science content and pedagogical information…

  2. Rock-Solid Support: Florida District Weighs Effectiveness of Science Professional Learning

    Science.gov (United States)

    Shear, Linda; Penuel, William R.

    2010-01-01

    The best science teachers are not only experts in teaching and knowledgeable about science content, but they are also great at teaching science. They have specialized teaching knowledge, including knowledge of effective pedagogical practices in science, student difficulties with understanding content, and curricular purposes. As a result,…

  3. Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students

    Science.gov (United States)

    Palmer, David; Dixon, Jeanette; Archer, Jennifer

    2015-01-01

    Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…

  4. A Case Study Investigating Secondary Science Teachers' Perceptions of Science Literacy Instruction

    Science.gov (United States)

    Blackmon, Phyllis Ann

    This project study addressed the lack of inclusion of discipline literacy pedagogy in secondary classrooms in a rural school district in eastern North Carolina. Discipline literacy practices are recommended in the Common Core Standards for History/Social Studies, Science, and Technical Subjects. The district had implemented content area reading strategies across content areas, yet no significant progress in secondary students' reading abilities had been demonstrated in statewide or national assessments. The conceptual framework that drove this study was disciplinary literacy, founded by the literacy research of Shanahan, Shanahan, and Zygouris-Coe. Within a qualitative case study method, this investigation of 8 secondary science teachers' experiences teaching literacy during content instruction focused on practices of embedding science-specific reading strategies into lessons and factors that influence teachers' decisions to participate in professional development to advance their learning of discipline-specific literacy methods. Data were collected and triangulated using a focus group and 8 individual interviews. Data from both methods were analyzed into codes and categories that developed into emergent themes. Findings from the focus group and individual interviews revealed that the science teachers possessed limited knowledge of science-specific reading strategies; used random, general literacy practices; and had completed inadequate professional development on science-related topics. Positive change may occur if district leaders support teachers in expanding their knowledge and application of discipline literacy strategies through participation in discipline literacy-focused professional development. The study may provide educators and researchers a deeper understanding of disciplinary literacy and increase research on the topic.

  5. 42. Science week: Laser Science and applications, Aleppo (SY), 2-4 Nov 2002, Book two: Laser science and medical laser applications

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes the papers presented at the 42nd science week of the Supreme Council of Sciences, held in Aleppo (Syria) from 2-4 November 2002. This proceedings is published in three books covering laser science and applications and in particular on material studies and medical uses. Part two covers medical applications, Part three on applications of laser in material sciences, while Part one is for contents and the proceedings program

  6. Scientific Caricatures in the Earth Science Classroom: An Alternative Assessment for Meaningful Science Learning

    Science.gov (United States)

    Clary, Renee M.; Wandersee, James H.

    2010-01-01

    Archive-based, historical research of materials produced during the Golden Age of Geology (1788-1840) uncovered scientific caricatures (SCs) which may serve as a unique form of knowledge representation for students today. SCs played important roles in the past, stimulating critical inquiry among early geologists and fueling debates that addressed key theoretical issues. When historical SCs were utilized in a large-enrollment college Earth History course, student response was positive. Therefore, we offered SCs as an optional assessment tool. Paired t-tests that compared individual students’ performances with the SC option, as well as without the SC option, showed a significant positive difference favoring scientific caricatures ( α = 0.05). Content analysis of anonymous student survey responses revealed three consistent findings: (a) students enjoyed expressing science content correctly but creatively through SCs, (b) development of SCs required deeper knowledge integration and understanding of the content than conventional test items, and (c) students appreciated having SC item options on their examinations, whether or not they took advantage of them. We think that incorporation of SCs during assessment may effectively expand the variety of methods for probing understanding, thereby increasing the mode validity of current geoscience tests.

  7. Methodological basis for formation of uniterruptible education content for future specialists of atomic-nuclear complex

    International Nuclear Information System (INIS)

    Burtebayev, N.; Burtebayeva, J.T.; Basharuly, R.; Altynsarin, Y.

    2009-01-01

    Full text: For science-reliable determination of the content of uninterruptible education system, as a rule, the following levels of theoretical-methodological approach are used in complex: 1) science-wide methodological level based on the dialectical laws of knowledge theory; 2) science-wide methodological level based on the principles and the provisions of system analysis; 3) particular science methodological level based on the laws and the principles of any specific science [1]. Such holistic approach covering all levels of science methodology is required for determination of the content of uninterruptible education for future specialists of nuclear profile. Indeed, considering the problem related to the content of uninterruptible education from the point of the first science-wide methodological level we shall follow primary the requirements of dialectical 'Law of common, special and single unity', where firstly the universal values in science, culture and technology forming the united invariant of education content of the world education space is positioned as the 'common' component of uninterruptible education content; secondly, the theoretical-practical achievements gained in the countries of any region (for example Eurasian space) are positioned as the 'special' component of the content for the training of the specialists of nuclear profile; thirdly, the content elements determined in accordance with socio-economic order of the specific society introducing the national interests of the specific country (for example, Republic of Kazakhstan) are positioned as the 'single' component of the education content for the future specialists of atomic-nuclear complex. Inseparable unity of the above mentioned components of the education content which have been determined in accordance with the laws, principles and provisions of all three levels of science-methodological approach assures the high level competence and the functional mobility of nuclear profile specialist

  8. Making science accessible through collaborative science teacher action research on feminist pedagogy

    Science.gov (United States)

    Capobianco, Brenda M.

    The underrepresentation of women and minorities in science is an extensively studied yet persistent concern of our society. Major reform movements in science education suggest that better teaching, higher standards, and sensitivity to student differences can overcome long-standing obstacles to participation among women and minorities. In response to these major reform movements, researchers have suggested teachers transform their goals, science content, and instructional practices to make science more attractive and inviting to all students, particularly young women and minorities (Barton, 1998; Brickhouse, 1994; Mayberry & Rees, 1999; Rodriguez, 1999; Roychoudhury, Tippins, & Nichols, 1995). One of the more dominant approaches currently heralded is the use of feminist pedagogy in science education. The purpose of this study was to examine the ways eleven middle and high school science teachers worked collaboratively to engage in systematic, self-critical inquiry of their own practice and join with other science teachers to engage in collaborative conversations in effort to transform their practice for a more equitable science education. Data were gathered via semi-structured interviews, whole group discussions, classroom observations, and review of supporting documents. Data analysis was based on grounded theory (Strauss & Corbin, 1990) and open coding (Miles and Huberman, 1994). This study described the collective processes the science teachers and university researcher employed to facilitate regular collaborative action research meetings over the course of six months. Findings indicated that engaging in collaborative action research allowed teachers to gain new knowledge about feminist science teaching, generate a cluster of pedagogical possibilities for inclusive pedagogy, and enhance their understanding for science teaching. Additional findings indicated dilemmas teachers experienced including resistance to a feminist agenda and concerns for validity in action

  9. The Journal of Earth System Science Education: Peer Review for Digital Earth and Digital Library Content

    Science.gov (United States)

    Johnson, D.; Ruzek, M.; Weatherley, J.

    2001-05-01

    The Journal of Earth System Science Education is a new interdisciplinary electronic journal aiming to foster the study of the Earth as a system and promote the development and exchange of interdisciplinary learning resources for formal and informal education. JESSE will serve educators and students by publishing and providing ready electronic access to Earth system and global change science learning resources for the classroom and will provide authors and creators with professional recognition through publication in a peer reviewed journal. JESSE resources foster a world perspective by emphasizing interdisciplinary studies and bridging disciplines in the context of the Earth system. The Journal will publish a wide ranging variety of electronic content, with minimal constraints on format, targeting undergraduate educators and students as the principal readership, expanding to a middle and high school audience as the journal matures. JESSE aims for rapid review and turn-around of resources to be published, with a goal of 12 weeks from submission to publication for resources requiring few changes. Initial publication will be on a quarterly basis until a flow of resource submissions is established to warrant continuous electronic publication. JESSE employs an open peer review process in which authors and reviewers discuss directly the acceptability of a resource for publication using a software tool called the Digital Document Discourse Environment. Reviewer comments and attribution will be available with the resource upon acceptance for publication. JESSE will also implement a moderated peer commentary capability where readers can comment on the use of a resource or make suggestions. In the development phase, JESSE will also conduct a parallel anonymous review of content to validate and ensure credibility of the open review approach. Copyright of materials submitted remains with the author, granting JESSE the non-exclusive right to maintain a copy of the resource

  10. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  11. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  12. Citizen Science- Lessons learned from non-science majors involved in Globe at Night and the Great Worldwide Star Count

    Science.gov (United States)

    Browning, S.

    2011-12-01

    Non-science majors often misunderstand the process of science, potentially leading to a fear or mistrust of scientific inquiry and current scientific theory. Citizen science projects are a critical means of reaching this audience, as many will only take a limited number of science courses during their undergraduate careers. For the past three years, our freshman Earth Science students have participated in both Globe at Night and the Great Worldwide Star Count, citizen science programs that encourage simple astronomical observations which can be compiled globally to investigate a number of issues. Our focus has been introducing students to the effect of light pollution on observational astronomy in an effort to highlight the effect of increasing urbanization in the U.S. on amateur astronomy. These programs, although focused on astronomy, often awaken natural curiosity about the Earth and man's effect on the natural world, a concept that can easily be translated to other areas of Earth science. Challenges encountered include content specific issues, such as misinterpreting the location or magnitude of the constellation being observed, as well as student disinterest or apathy if the project is not seen as being vital to their performance in the course. This presentation reports on lessons learned in the past three years, and offers suggestions for engaging these students more fully in future projects.

  13. Ocean Science for Decision-Making: Current Activities of the National Research Council's Ocean Studies Board

    Science.gov (United States)

    Roberts, S.; Glickson, D.; Mengelt, C.; Forrest, S.; Waddell, K.

    2012-12-01

    The National Research Council is a private, nonprofit organization chartered by Congress in 1916 as an expansion of the U.S. National Academy of Sciences. Its mission is to improve the use of science in government decision making and public policy, increase public understanding, and promote the acquisition and dissemination of knowledge in matters involving science, engineering, technology, and health. Within the National Research Council, the Ocean Studies Board (OSB) mission is to explore the science, policies, and infrastructure needed to understand, manage, and conserve coastal and marine environments and resources. OSB undertakes studies and workshops on emerging scientific and policy issues at the request of federal agencies, Congress, and others; provides program reviews and guidance; and facilitates communication on oceanographic issues among different sectors. OSB also serves as the U.S. National Committee to the international, nongovernmental Scientific Committee on Oceanic Research (SCOR). OSB has produced reports on a wide range of topics of interest to researchers and educators, the federal government, the non-profit sector, and industry. Recent reports have focused on ecosystem services in the Gulf of Mexico after the Deepwater Horizon oil spill, sea level rise on the U.S. west coast, scientific ocean drilling needs and accomplishments, requirements for sustained ocean color measurements, critical infrastructure for ocean research, tsunami warning and preparedness, ocean acidification, and marine and hydrokinetic power resource assessments. Studies that are currently underway include responding to oil spills in the Arctic, evaluating the effectiveness of fishery stock rebuilding plans, and reviewing the National Ocean Acidification Research Plan. OSB plays an important role in helping create policy decisions and disseminating important information regarding various aspects of ocean science.

  14. But science is international! Finding time and space to encourage intercultural learning in a content-driven physiology unit.

    Science.gov (United States)

    Etherington, Sarah J

    2014-06-01

    Internationalization of the curriculum is central to the strategic direction of many modern universities and has widespread benefits for student learning. However, these clear aspirations for internationalization of the curriculum have not been widely translated into more internationalized course content and teaching methods in the classroom, particularly in scientific disciplines. This study addressed one major challenge to promoting intercultural competence among undergraduate science students: finding time to scaffold such learning within the context of content-heavy, time-poor units. Small changes to enhance global and intercultural awareness were incorporated into existing assessments and teaching activities within a second-year biomedical physiology unit. Interventions were designed to start a conversation about global and intercultural perspectives on physiology, to embed the development of global awareness into the assessment and to promote cultural exchanges through peer interactions. In student surveys, 40% of domestic and 60% of international student respondents articulated specific learning about interactions in cross-cultural groups resulting from unit activities. Many students also identified specific examples of how cultural beliefs would impact on the place of biomedical physiology within the global community. In addition, staff observed more widespread benefits for student engagement and learning. It is concluded that a significant development of intercultural awareness and a more global perspective on scientific understanding can be supported among undergraduates with relatively modest, easy to implement adaptations to course content.

  15. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  16. High School Student Perceptions of the Utility of the Engineering Design Process: Creating Opportunities to Engage in Engineering Practices and Apply Math and Science Content

    Science.gov (United States)

    Berland, Leema; Steingut, Rebecca; Ko, Pat

    2014-01-01

    Research and policy documents increasingly advocate for incorporating engineering design into K-12 classrooms in order to accomplish two goals: (1) provide an opportunity to engage with science content in a motivating real-world context; and (2) introduce students to the field of engineering. The present study uses multiple qualitative data…

  17. Student-Centered Learning in an Earth Science, Preservice, Teacher-Education Course

    Science.gov (United States)

    Avard, Margaret

    2009-01-01

    In an effort to get elementary teachers to teach more science in the classroom, a required preservice science education course was designed to promote the use of hands-on teaching techniques. This paper describes course content and activities for an innovative, student-centered, Earth science class. However, any science-content course could be…

  18. Developing Distinct Mathematical and Scientific Pedagogical Content Knowledge in an Early Childhood Dual-Content Methods Course: An Alternative to Integration

    Science.gov (United States)

    Kalchman, Mindy; Kozoll, Richard H.

    2017-01-01

    Methods for teaching early childhood mathematics and science are often addressed in a single, dual-content course. Approaches to teaching this type of course include integrating the content and the pedagogy of both subjects, or keeping the subject areas distinct. In this article, the authors discuss and illustrate their approach to such a combined…

  19. Protein, casein and micellar salts in milk: Current content and historical perspectives

    NARCIS (Netherlands)

    Bijl, E.; Valenberg, van H.J.F.; Huppertz, T.; Hooijdonk, van A.C.M.

    2013-01-01

    The protein and fat content of Dutch bulk milk has been monitored since the 1950s and has increased considerably, by 11 and 20%, respectively, whereas milk yield has more than doubled. The change in protein and fat content of milk is advantageous for the dairy industry, as these are the 2 most

  20. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Science Smiles · Ayan Guha · More Details Fulltext PDF. pp 4-5 Table of Contents. Table of Contents · More Details Fulltext PDF. pp 6-10 Series Article. Dawn of Science - Measuring the Heavens · T Padmanabhan · More Details Fulltext PDF. pp 11-22 General Article. Antoine-Laurent Lavoisier · Gopalpur Nagendrappa.

  1. Achievement of Serbian eighth grade students in science

    Directory of Open Access Journals (Sweden)

    Antonijević Radovan

    2006-01-01

    Full Text Available The paper considers the main results and some educational implications of the TIMSS 2003 assessment conducted in Serbia in the fields of the science achievement of Serbian eighth grade students and the science curriculum context of their achievement. There were 4264 students in the sample. It was confirmed that Serbian eighth graders had made average scale score of 468 points in the science, and with this achievement they are placed in the zone of the top of low international benchmarking level, very close to the point of intermediate benchmark. The average science achievement of the Serbian eighth graders is somewhat below the general international science achievement. The best results were achieved in the science content domain of "chemistry", and the lower results in the content domain of "environmental science". Across the defined science cognitive domains, it was confirmed that the Serbian students had achieved the best results in cognitive domain of "factual knowledge" and weaker results in "reasoning and analysis". The achieved results raise many questions about contents of the science curriculum in Serbia, its overall quality and basic characteristics of its implementation. These results can be eligibly used to improve the science curricula and teaching in Serbian primary school. .

  2. Secondary science teachers' attitudes toward and beliefs about science reading and science textbooks

    Science.gov (United States)

    Yore, Larry D.

    Science textbooks are dominant influences behind most secondary science instruction but little is known about teachers' approach to science reading. The purpose of this naturalistic study was to develop and validate a Science and Reading Questionnaire to assess secondary science teachers' attitudes toward science reading and their beliefs or informed opinions about science reading. A survey of 428 British Columbia secondary science teachers was conducted and 215 science teachers responded. Results on a 12-item Likert attitude scale indicated that teachers place high value on reading as an important strategy to promote learning in science and that they generally accept responsibility for teaching content reading skills to science students. Results on a 13-item Likert belief scale indicated that science teachers generally reject the text-driven model of reading, but they usually do not have well-formulated alternative models to guide their teaching practices. Teachers have intuitive beliefs about science reading that partially agree with many research findings, but their beliefs are fragmented and particularly sketchy in regard to the cognitive and metacognitive skills required by readers to learn from science texts. The findings for attitude, belief, and total scales were substantiated by further questions in the Science and Reading Questionnaire regarding classroom practice and by individual interviews and classroom observations of a 15-teacher subsample of the questionnaire respondents.

  3. Innovating Science Teacher Education: A History and Philosophy of Science Perspective

    Science.gov (United States)

    Niaz, Mansoor

    2010-01-01

    How teachers view the nature of scientific knowledge is crucial to their understanding of science content and how it can be taught. This book presents an overview of the dynamics of scientific progress and its relationship to the history and philosophy of science, and then explores their methodological and educational implications and develops…

  4. Current state of Czech astronomy popularization and its potential for enhancing science career interest

    Science.gov (United States)

    Kříček, Radek

    2015-08-01

    The Czech Republic has a dense net of observatories, astronomical clubs and other activities for both adults and children. Can we use it to improve skills of our pupils and their motivation to choose their career in science? Does the situation in the Czech Republic differ from abroad? What can we improve in the future? These questions were not answered satisfactorily so far. We decided to contribute to solve this issue.We present our survey of current state based mainly on electronic sources and personal dealings. Besides of 56 observatories working with public and many interest clubs, there are other possibilities to meet astronomy. For example, Astronomical Olympiad attracts thousands of pupils across the country each year to solve both theoretical and practical tasks in astronomy. In other projects, children can visit Dark-Sky Parks, design experiments for a stratospheric balloon, observe with CCD or radio devices or build their own rockets.We outline our ongoing project to examine the link between popularization activities and pupils’ or high school students’ attitude toward science and science career. We plan to create a typology of both popularization activities and life stories of people dealing with astronomy. From the methodological point of view, the mixed method design, combining both the qualitative and quantitative approach, will be used to solve the research problems. The basic research plan will be a case study. So far the project is based on interviews with various subjects. We choose people with different life stories, all connected with astronomy or astronomy popularization in some period. We focus on important moments in their career, similarities between subjects, and various types of possible motivation to participate in astronomy-related activities or to study science at university.Future results can be used to help interested organizations such as universities, observatories or astronomical societies. They will be able to work more

  5. Radiologic science students' perceptions of parental involvement.

    Science.gov (United States)

    DuBose, Cheryl; Barymon, Deanna; Vanderford, Virginia; Hensley, Chad; Shaver, Gary

    2014-01-01

    A new generation of students is in the classroom, and they are not always alone. Helicopter parents, those who hover around the student and attempt to ease life's challenges, are accompanying the students to radiologic science programs across the nation. To determine radiologic science students' perception regarding their parents' level of involvement in their lives. A survey focused on student perceptions of parental involvement inside and outside of the academic setting was completed by 121 radiologic science students at 4 institutional settings. The analysis demonstrates statistically significant relationships between student sex, age, marital status, and perceived level of parental involvement. In addition, as financial support increases, students' perception of the level of parental involvement also increases. Radiologic science students want their parents to be involved in their higher education decisions. Research indicates that students with involved parents are more successful, and faculty should be prepared for increased parental involvement in the future. Radiologic science students perceive their parents to be involved in their academic careers. Ninety-five percent of respondents believe that the financial support of their parent or parents contributes to their academic success. Sixty-five percent of participants are content with their parents' current level of involvement, while 11% wish their parents were more involved in their academic careers.

  6. Promoting Children's Understanding And Interest In Science Through Informal Science Education

    Science.gov (United States)

    Bartley, Jessica E.; Mayhew, Laurel M.; Finkelstein, Noah D.

    2009-11-01

    We present results from the University of Colorado's Partnership for Informal Science Education in the Community (PISEC) in which university participants work in afterschool programs on inquiry-based activities with primary school children from populations typically under represented in science. This university-community partnership is designed to positively impact youth, university students, and the institutions that support them while improving children's attitudes towards and understanding of science. Children worked through circuit activities adapted from the Physics and Everyday Thinking (PET) curriculum and demonstrated increased understanding of content area as well as favorable beliefs about science.

  7. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  8. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Farrell, W. M.

    2015-12-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  9. A Model for Effective Professional Development of Formal Science Educators

    Science.gov (United States)

    Bleacher, L. V.; Jones, A. J. P.; Farrell, W. M.

    2015-01-01

    The Lunar Workshops for Educators (LWE) series was developed by the Lunar Reconnaissance Orbiter (LRO) education team in 2010 to provide professional development on lunar science and exploration concepts for grades 6-9 science teachers. Over 300 educators have been trained to date. The LWE model incorporates best practices from pedagogical research of science education, thoughtful integration of scientists and engineer subject matter experts for both content presentations and informal networking with educators, access to NASA-unique facilities, hands-on and data-rich activities aligned with education standards, exposure to the practice of science, tools for addressing common misconceptions, follow-up with participants, and extensive evaluation. Evaluation of the LWE model via pre- and post-assessments, daily workshop surveys, and follow-up surveys at 6-month and 1-year intervals indicate that the LWE are extremely effective in increasing educators' content knowledge, confidence in incorporating content into the classroom, understanding of the practice of science, and ability to address common student misconceptions. In order to address the efficacy of the LWE model for other science content areas, the Dynamic Response of Environments at Asteroids, the Moon, and moons of Mars (DREAM2) education team, funded by NASA's Solar System Exploration Research Virtual Institute, developed and ran a pilot workshop called Dream2Explore at NASA's Goddard Space Flight Center in June, 2015. Dream2Explore utilized the LWE model, but incorporated content related to the science and exploration of asteroids and the moons of Mars. Evaluation results indicate that the LWE model was effectively used for educator professional development on non-lunar content. We will present more detail on the LWE model, evaluation results from the Dream2Explore pilot workshop, and suggestions for the application of the model with other science content for robust educator professional development.

  10. EPA Leadership on Science, Innovation, and Decision Support Tools for Addressing Current and Future Challenges.

    Science.gov (United States)

    Hecht, Alan D; Ferster, Aaron; Summers, Kevin

    2017-10-16

    When the U.S. Environmental Protection Agency (EPA) was established nearly 50 years ago, the nation faced serious threats to its air, land, and water, which in turn impacted human health. These threats were effectively addressed by the creation of EPA (in 1970) and many subsequent landmark environmental legislations which in turn significantly reduced threats to the Nation's environment and public health. A key element of historic legislation is research aimed at dealing with current and future problems. Today we face national and global challenges that go beyond classic media-specific (air, land, water) environmental legislation and require an integrated paradigm of action and engagement based on (1) innovation based on science and technology, (2) stakeholder engagement and collaboration, and (3) public education and support. This three-pronged approach recognizes that current environmental problems, include social as well as physical and environmental factors, are best addressed through collaborative problem solving, the application of innovation in science and technology, and multiple stakeholder engagement. To achieve that goal, EPA's Office of Research and Development (ORD) is working directly with states and local communities to develop and apply a suite of accessible decision support tools (DST) that aim to improve environmental conditions, protect human health, enhance economic opportunity, and advance a resilient and sustainability society. This paper showcases joint EPA and state actions to develop tools and approaches that not only meet current environmental and public health challenges, but do so in a way that advances sustainable, healthy, and resilient communities well into the future. EPA's future plans should build on current work but aim to effectively respond to growing external pressures. Growing pressures from megatrends are a major challenge for the new Administration and for cities and states across the country. The recent hurricanes hitting

  11. A glimpse of the future in animal nutrition science. 2. Current and future solutions

    Directory of Open Access Journals (Sweden)

    Luis Orlindo Tedeschi

    Full Text Available ABSTRACT Despite tremendous advancements in the livestock sector, additional opportunities exist to improve even further livestock production around the globe. Forecasting is not an exact science and it relies heavily on past and current knowledge. Improvements in the nutritional sciences (both human and animal include a better understanding of agents that cause deterioration of human health, improving the quality of animal products, applying effective fetal programming, developing new feeds and feeding strategies, and revisiting longstanding technologies. Improvements in the understanding of the rumen microbiome will enable scientists to increase the fermentation efficiency and, hopefully, select microbial species of greater interest. Improvements in remote sensing and ground-based instrumentation, telecommunications, and weather forecasting technologies will aid in the continued improvements of early warning systems to assist livestock producers in reducing risk and adapting to the changing environment. Broad utilization of sensor technologies will allow scientists to collect real-time data and, when combined with mathematical modeling, decision support systems will become an indispensable managerial tool for livestock production with the possibility to automate low-level decisions on the farm, such as supplementation schedules, sorting of animals, and early detection of disease and outbreaks. The identification of feed efficient animals may be the single most impactful advancement towards long-term livestock sustainability and the promise of feeding the world animal products. We contend that education across societal levels is the first step to solve current and future challenges of the livestock industry. The dilemma has been who will take the first step forward.

  12. Scheduling science on television: A comparative analysis of the representations of science in 11 European countries.

    Science.gov (United States)

    Lehmkuhl, Markus; Karamanidou, Christina; Mörä, Tuomo; Petkova, Kristina; Trench, Brian

    2012-11-01

    This article explores the factors that influence the volume and structure of science programming by European television broadcasters, focussing on differences among channel patterns. It proposes three factors as relevant to understanding differences in science programming: A) the segmentation/fragmentation of television markets; B) the presence of middle sized commercial channels; C) the dependency of public service TV channels on commercial income (trading/advertising). We identified countries whose channel patterns encourage a varied picture of science - namely Sweden, Finland and Germany. They are distinguished from those which show a less differentiated picture and present a smaller volume of science content on television - such as Great Britain and Ireland. Finally, we identified countries whose channel patterns don't encourage a varied picture of science - namely Spain, Greece, Bulgaria and Estonia - and these countries present their small volume of science content at off-peak hours, in contrast to patterns in Great Britain and Ireland.

  13. Symposium on Current Research in the Chemical Sciences: Third Annual Southern Station Chemical Sciences Meeting

    Science.gov (United States)

    Timothy G. Rials; [Editor

    1994-01-01

    The original charter for this annual meeting of chemical sciences personnel called for an informal atmosphere for the discussion of common concerns and needs. The years have seen the definition of our "common concern" evolve into a sharing of our efforts in applying the science of chemistry to the resolution of problems faced by our forest resource. I believe...

  14. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    Science.gov (United States)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science

  15. International production on science oriented towards data: analysis of the terms data science and e-science in scopus and the web of science

    OpenAIRE

    Leilah Santiago Bufrem; Fábio Mascarenhas e Silva; Natanael Vitor Sobral; Anna Elizabeth Galvão Coutinho Correia

    2016-01-01

    Introduction: current configuration in the dynamics of production and scientific communication reveals the role of Science Oriented Towards Data, a comprehensive conception represented, mainly, by terms such as "e-Science" and "Data Science". Objective: To present the global scientific production on Science Oriented Towards Data by using the terms "e-Science" and "Data Science" in Scopus and the Web of Science during 2006-2016. Methodology: The study is divided into five phases: a) sear...

  16. Making Earth Science Relevant in the K-8 Classroom. The Development of an Instructional Soils Module for Pre-Service Elementary Teachers Using the Next Generation Science Standards

    Science.gov (United States)

    Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.

    2013-12-01

    The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF

  17. Content Analysis of Life Exhibitions in Japanese Science Museums and Centres

    Science.gov (United States)

    Kazama, Tomoko; Ogawa, Masakata

    2015-01-01

    Life exhibitions in Japanese science museums (SMs) face difficulties in coping with rapid progress in the life sciences owing to certain constraints around the frequency of exhibit renovations, and the Japanese indigenous understanding of the natural world (Shizen) that Japanese visitors unconsciously bring with them. To what extent do current…

  18. Laboratory Notebooks in the Science Classroom

    Science.gov (United States)

    Roberson, Christine; Lankford, Deanna

    2010-01-01

    Lab notebooks provide students with authentic science experiences as they become active, practicing scientists. Teachers gain insight into students' understanding of science content and processes, while students create a lasting personal resource. This article provides high school science teachers with guidelines for implementing lab notebooks in…

  19. GLOBE Atmosphere and AMS Diversity Program Content to Foster Weather and Climate Science Awareness at HBCUs: A Curriculum Enhancement Model

    Science.gov (United States)

    Padgett, D.

    2017-12-01

    Tennessee State University (TSU) is a member of the "Global Learning and Observations to Benefit the Environment (GLOBE) Mission Earth" project. The World Regional Geography (GEOG 1010/1020) courses are required for Education majors. Pre-service teachers must complete several exercises to be certified in the GLOBE Atmosphere Protocols. The pre-service teachers are required to develop GLOBE-based lessons to high school students. The exercise theme is "Exploring the Impacts of Urban Heat Islands (UHI) using Geospatial Technology." Surface temperature, ambient air temperature, and cloud cover data are collected. Sample point locations are logged using Garmin GPS receivers and then mapped using ArcGIS Online (http://arcg.is/1oiD379). The service learning outreach associated with this experience requires collegians to thoroughly understand the physical, social, and health science content associated with UHIs and then impart the information to younger learners. The precollegiate students are motivated due to their closeness in age and social context to the college students. All of the students have the advantage of engaging in hands-on problem-based learning of complex meteorology, climate science, and geospatial technology concepts. The optimal result is to have pre-service teachers enroll in the Weather and Climate (GEOG 3500) course, which is supported by the American Meteorological Society (AMS) Weather and Climate Studies Curriculum. Tennessee State University faculty have completed training to deliver the curriculum through the AMS Diversity Program. The AMS Weather Studies and Climate Studies programs have been institutionalized at Tennessee State University (TSU) since fall 2005. Approximately 250 undergraduate students have been exposed to the interactive AMS learning materials over the past 10-plus years. Non-STEM, and education majors are stimulated by the real-time course content and are encouraged to think critically about atmospheric systems science, and

  20. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  1. Dewey's "Science as Method" a Century Later: Reviving Science Education for Civic Ends

    Science.gov (United States)

    Rudolph, John L.

    2014-01-01

    Over a hundred years ago, John Dewey delivered his now-well-known address "Science as Subject-Matter and as Method" to those assembled at the Boston meeting of the American Association for the Advancement of Science in which he lamented the nearly exclusive focus on content knowledge in early-20th-century school science classrooms. This…

  2. Inquiry-Based Integrated Science Education: Implementation of Local Content “Soil Washing” Project To Improve Junior High School Students’ Environmental Literacy

    Science.gov (United States)

    Syifahayu

    2017-02-01

    The study was conducted based on teaching and learning problems led by conventional method that had been done in the process of learning science. It gave students lack opportunities to develop their competence and thinking skills. Consequently, the process of learning science was neglected. Students did not have opportunity to improve their critical attitude and creative thinking skills. To cope this problem, the study was conducted using Project-Based Learning model through inquiry-based science education about environment. The study also used an approach called Sains Lingkungan and Teknologi masyarakat - “Saling Temas” (Environmental science and Technology in Society) which promoted the local content in Lampung as a theme in integrated science teaching and learning. The study was a quasi-experimental with pretest-posttest control group design. Initially, the subjects were given a pre-test. The experimental group was given inquiry learning method while the control group was given conventional learning. After the learning process, the subjects of both groups were given post-test. Quantitative analysis was performed using the Mann-Whitney U-test and also a qualitative descriptive. Based on the result, environmental literacy skills of students who get inquiry learning strategy, with project-based learning model on the theme soil washing, showed significant differences. The experimental group is better than the control group. Data analysis showed the p-value or sig. (2-tailed) is 0.000 <α = 0.05 with the average N-gain of experimental group is 34.72 and control group is 16.40. Besides, the learning process becomes more meaningful.

  3. The effects of two secondary science teacher education program structures on teachers' habits of mind and action

    Science.gov (United States)

    Bergman, Daniel Jay

    2007-12-01

    This study investigated the effects of the Iowa State University Secondary Science Teacher Education Program (ISU SSTEP) on the educational goals and habits of mind exhibited by its graduates. Ten teachers from ISU SSTEP participated in the study---five from the former program featuring one semester of science teaching methods, five from the current program featuring three semesters of science teaching methods (four for the graduate certification consortium). A naturalistic inquiry research approach included the following methods used with each teacher: three classroom observations, classroom artifact analysis, teacher questionnaires and semi-structured interviews, and questionnaires for students about perceived emphasis of educational goals. Evidence exists that graduates from the current ISU SSTEP format exhibited a closer match to the educational goals promoted, modeled, and advocated by the science teaching methods faculty. Graduates from the current ISU SSTEP also exhibited a closer match to the habits of mind---understanding, action, reflection, action plan for improvement---promoted and modeled by the program. This study has implications for other secondary science teacher education programs, particularly increasing the number of science teaching methods courses; teaching meaningful content of both concepts and skills through a research-based framework; modeling the appropriate teacher behaviors, strategies, habits, and goal promotion by methods instructors; and addressing issues of institutional constraints experienced by future teachers.

  4. Everyday science & science every day: Science-related talk & activities across settings

    Science.gov (United States)

    Zimmerman, Heather

    To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.

  5. Controversies in the Hydrosphere: an iBook exploring current global water issues for middle school classrooms

    Science.gov (United States)

    Dufoe, A.; Guertin, L. A.

    2012-12-01

    This project looks to help teachers utilize iPad technology in their classrooms as an instructional tool for Earth system science and connections to the Big Ideas in Earth Science. The project is part of Penn State University's National Science Foundation (NSF) Targeted Math Science Partnership grant, with one goal of the grant to help current middle school teachers across Pennsylvania engage students with significant and complex questions of Earth science. The free Apple software iBooks Author was used to create an electronic book for the iPad, focusing on a variety of controversial issues impacting the hydrosphere. The iBook includes image slideshows, embedded videos, interactive images and quizzes, and critical thinking questions along Bloom's Taxonomic Scale of Learning Objectives. Outlined in the introductory iBook chapters are the Big Ideas of Earth System Science and an overview of Earth's spheres. Since the book targets the hydrosphere, each subsequent chapter focuses on specific water issues, including glacial melts, aquifer depletion, coastal oil pollution, marine debris, and fresh-water chemical contamination. Each chapter is presented in a case study format that highlights the history of the issue, the development and current status of the issue, and some solutions that have been generated. The next section includes critical thinking questions in an open-ended discussion format that focus on the Big Ideas, proposing solutions for rectifying the situation, and/or assignments specifically targeting an idea presented in the case study chapter. Short, comprehensive multiple-choice quizzes are also in each chapter. Throughout the iBook, students are free to watch videos, explore the content and form their own opinions. As a result, this iBook fulfills the grant objective by engaging teachers and students with an innovative technological presentation that incorporates Earth system science with current case studies regarding global water issues.

  6. A Socio-Cultural Reframing of Science and Dis/ability in Education: Past Problems, Current Concerns, and Future Possibilities

    Science.gov (United States)

    Connor, David J.; Valle, Jan W.

    2015-01-01

    In this article we assert the value of a socio-cultural reframing of science and dis/ability in education. We begin by problematizing current issues in education pertaining to the often-unquestioned concept of dis/ability and the impact that has upon research, theory, practice, and policy. As our topic is broad, we have chosen to focus upon four…

  7. Inquiring into Pre-Service Content Area Teachers' Development of Literacy Practices and Pedagogical Content Knowledge

    Science.gov (United States)

    Mitton Kukner, Jennifer; Murray Orr, Anne

    2015-01-01

    The focus of this qualitative multi-year case study is on preservice teachers' experiences related to the development of their literacy practices in teaching high school science, math, social studies and other content area courses during their final field placement in a teacher education program. Results indicate tangible indicators of overall…

  8. AUTHENTIC SCIENCE EXPERIENCES: PRE-COLLEGIATE SCIENCE EDUCATORS’ SUCCESSES AND CHALLENGES DURING PROFESSIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Andrea C. Burrows

    2016-04-01

    Full Text Available Twenty-three pre-collegiate educators of elementary students (ages 5-10 years and secondary students (ages 11-18 years attended a two-week science, technology, engineering, and mathematics (STEM astronomy focused professional development in the summer of 2015 with activities focused on authentic science experiences, inquiry, and partnership building. ‘Authentic’ in this research refers to scientific skills and are defined. The study explores the authentic science education experience of the pre-collegiate educators, detailing the components of authentic science as seen through a social constructionism lens. Using qualitative and quantitative methods, the researchers analyzed the successes and challenges of pre-collegiate science and mathematics educators when immersed in STEM and astronomy authentic science practices, the educators’ perceptions before and after the authentic science practices, and the educators’ performance on pre to post content tests during the authentic science practices. Findings show that the educators were initially engaged, then disengaged, and then finally re-engaged with the authentic experience. Qualitative responses are shared, as are the significant results of the quantitative pre to post content learning scores of the educators. Conclusions include the necessity for PD team delivery of detailed explanations to the participants - before, during, and after – for the entire authentic science experience and partnership building processes. Furthermore, expert structure and support is vital for participant research question generation, data collection, and data analysis (successes, failures, and reattempts. Overall, in order to include authentic science in pre-collegiate classrooms, elementary and secondary educators need experience, instruction, scaffolding, and continued support with the STEM processes.

  9. Use of tactual materials on the achievement of content specific vocabulary and terminology acquisition within an intermediate level science curriculum

    Science.gov (United States)

    Terry, Brian H.

    In this quasi-experimental study, the researcher investigated the effectiveness of three tactual strategies and one non-tactual strategy of content specific vocabulary acquisition. Flash cards, task cards, and learning wheels served as the tactual strategies, and vocabulary review sheets served as a non-tactual strategy. The sample (n=85) consisted of all middle school students in a small high performing middle school located in the northern suburbs of New York City. All of the vocabulary words and terms came from the New York State Intermediate Level Science Core Curriculum. Pre-tests and post-tests were used to collect the data. A repeated measures ANOVA was conducted on the gain scores from each of the treatments. Multiple paired sample t-tests were conducted to analyze the results. Repeated measures ANOVAs were used to determine if there was a variance between the academic achievement levels of the students, gender, and grade level for each of the treatments. All of the treatments significantly improved the science achievement of the students, but significance was found between them. Significance was found between the achievement groups with the above average students attaining a higher mean on the pre-test and post-test for each treatment, whereas the below average students had the lowest mean on both assessments. The sixth grade students showed significant improvement over the seventh grade students while using the flash cards (p=.004) and learning wheel (p=.007). During the learning wheel treatment, the males scored significantly better (p=.021) than the females on the pre-test and post-test. During the worksheet treatment, significance (p=.034) was found between gender and achievement group. The below average male students had the greatest gain from the pre-test to the post-test, but the post-test mean was still the lowest of the groups. Limitations, implications for future research and current practice are discussed. Key words are: flash cards, task cards

  10. Perceptions of preparedness of LBS I teachers in the state of Illinois and graduates of Illinois State University's LBS I program to collaborate in teaching grade 7--12 math, science, and social science

    Science.gov (United States)

    Caldwell, Janet E.

    The expectations for no child to be left behind are leading to increased emphasis on teaching math, science, and social science effectively to students with disabilities. This study utilized information collected from online surveys to examine how current LBS I teachers and individuals graduating from the Illinois State University teacher certification program in LBS I perceive their preparedness to teach these subjects. Participants provided information about coursework and life experiences, and they made suggestions about teacher preparation and professional development programs. Six key items forming the composite variable focused on level of preparation in (a) best practices, (b) selecting materials, (c) selecting objectives, (d) adapting instructional strategies, (e) planning lessons, and (f) and evaluating outcomes. Only 30 LBS I teachers of the 282 contacted by e-mail completed surveys. Of 115 graduates contacted, 71 participated in the original survey and 23 participated in a follow-up survey. Data were analyzed to learn more about the teachers' self-perceptions regarding preparedness to teach math, science, or social science. There was a correlation between perceived level of knowledge and the composite preparation variable for all subjects, but no correlation with length of teaching. Both groups indicated high school content courses were important in preparation to teach. Teachers also indicated collaboration and graduates indicated grade school learning. The most frequent recommendation for both teacher preparation and professional development was additional methods courses. A survey distributed to math, science, and social science teachers of Grades 7--12 asked about their perceptions of the preparedness of LBS I teachers to teach their area of content. Few surveys were completed for each subject so they were examined qualitatively. There was variability among participants, but generally the content area teachers rated themselves as more prepared than

  11. Use of the Rasch Measurement Model to Explore the Relationship between Content Knowledge and Topic-Specific Pedagogical Content Knowledge for Organic Chemistry

    Science.gov (United States)

    Davidowitz, Bette; Potgieter, Marietjie

    2016-01-01

    Research has shown that a high level of content knowledge (CK) is necessary but not sufficient to develop the special knowledge base of expert teachers known as pedagogical content knowledge (PCK). This study contributes towards research to quantify the relationship between CK and PCK in science. In order to determine the proportion of the…

  12. Participation in a Multi-Institutional Curriculum Development Project Changed Science Faculty Knowledge and Beliefs about Teaching Science

    Science.gov (United States)

    Donovan, Deborah A.; Borda, Emily J.; Hanley, Daniel M.; Landel, Carolyn C.

    2015-01-01

    Despite significant pressure to reform science teaching and learning in K12 schools, and a concurrent call to reform undergraduate courses, higher education science content courses have remained relatively static. Higher education science faculty have few opportunities to explore research on how people learn, examine state or national science…

  13. Horizon Scanning: How Will Metabolomics Applications Transform Food Science, Bioengineering, and Medical Innovation in the Current Era of Foodomics?

    Science.gov (United States)

    Bayram, Mustafa; Gökırmaklı, Çağlar

    2018-03-01

    Food and engineering sciences have tended to neglect the importance of human nutrition sciences and clinical study of new molecules discovered by food engineering community, and vice versa. Yet, the value of systems thinking and use of omics technologies in food engineering are rapidly emerging. Foodomics is a new concept and practice to bring about "precision nutrition" and integrative bioengineering studies of food composition, quality, and safety, and applications to improve health of humans, animals, and other living organisms on the planet. Foodomics signals a three-way convergence among (1) food engineering; (2) omics systems science technologies such as proteomics, metabolomics, glycomics; and (3) medical/life sciences. This horizon scanning expert review aims to challenge the current practices in food sciences and bioengineering so as to adopt foodomics and systems thinking in foodstuff analysis, with a focus on possible applications of metabolomics. Among the omics biotechnologies, metabolomics is one of the prominent analytical platforms of interest to both food engineers and medical researchers engaged in nutritional sciences, precision medicine, and systems medicine diagnostics. Medical and omics system scientists, and bioengineering scholars can mutually learn from their respective professional expertise. Moving forward, establishment of "Foodomics Think Tanks" is one conceivable strategy to integrate medical and food sciences innovation at a systems scale. With its rich history in food sciences and tradition of interdisciplinary scholarship, the Silk Road countries offer notable potential for synthesis of diverse knowledge strands necessary to realize the prospects of foodomics from Asia and Middle East to Europe.

  14. Examining the effects of media on learners' mental representations and cognitive processes in science

    Science.gov (United States)

    Carr, Adrienne L.

    This study examined the effects of television and video games as media on the science knowledge and understanding of middle school students in a Midwest, urban charter school. Twenty-five study participants were organized into eight focus groups. Each group, which comprised of three to four members, was introduced to one of two media types, a television show episode or video games, and then asked a series of questions prompting group dialogue. Results show that students were able to distinguish science ideas presented in the media and made science content connections from previous classroom learning. Implications suggest how teachers can utilize weapons of mass instruction, the tools of media technology, to fight against the challenges that plague our current system of education.

  15. Original science-based music and student learning

    Science.gov (United States)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  16. Energy matters: An investigation of drama pedagogy in the science classroom

    Science.gov (United States)

    Alrutz, Megan

    The purpose of this study is to explore and document how informal and improvisational drama techniques affect student learning in the science classroom. While implementing a drama-based science unit, I examined multiple notions of learning, including, but not limited to, traditional notions of achievement, student understanding, student participation in the science classroom, and student engagement with, and knowledge of, science content. Employing an interpretivist research methodology, as outlined by Fredrick Erickson for qualitative analysis in the classroom, I collected data through personal observations; student and teacher interviews; written, artistic and performed class work; video-recorded class work; written tests; and questionnaires. In analyzing the data, I found strong support for student engagement during drama-based science instruction. The drama-based lessons provided structures that drew students into lessons, created enthusiasm for the science curriculum, and encouraged meaningful engagement with, and connections to, the science content, including the application and synthesis of science concepts and skills. By making student contributions essential to each of the lessons, and by challenging students to justify, explain, and clarify their understandings within a dramatic scenario, the classroom facilitators created a conducive learning environment that included both support for student ideas and intellectual rigor. The integration of drama-based pedagogy most affected student access to science learning and content. Students' participation levels, as well as their interest in both science and drama, increased during this drama-based science unit. In addition, the drama-based lessons accommodated multiple learning styles and interests, improving students' access to science content and perceptions of their learning experience and abilities. Finally, while the drama-based science lessons provided multiple opportunities for solidifying understanding of

  17. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges

    Directory of Open Access Journals (Sweden)

    Solomon P Wasser

    2014-12-01

    Full Text Available The main target of the present review is to draw attention to the current perspectives, advances, evidences, challenges, and future development of medicinal mushroom science in the 21 st century. Medicinal mushrooms and fungi are thought to possess approximately 130 medicinal functions, including antitumor, immunomodulating, antioxidant, radical scavenging, cardiovascular, anti-hypercholesterolemic, antiviral, antibacterial, anti-parasitic, antifungal, detoxification, hepatoprotective, and antidiabetic effects. Many, if not all, higher Basidiomycetes mushrooms contain biologically active compounds in fruit bodies, cultured mycelium, and cultured broth. Special attention is paid to mushroom polysaccharides. The data on mushroom polysaccharides and different secondary metabolites are summarized for approximately 700 species of higher hetero- and homobasidiomycetes. Numerous bioactive polysaccharides or polysaccharide-protein complexes from the medicinal mushrooms described appear to enhance innate and cell-mediated immune responses, and exhibit antitumor activities in animals and humans. Whilst the mechanism of their antitumor actions is still not completely understood, stimulation and modulation of key host immune responses by these mushroom compounds appear central. Polysaccharides and low-molecular-weight secondary metabolites are particularly important due to their antitumor and immunostimulating properties. Several of the mushroom compounds have been subjected to Phase I, II, and III clinical trials, and are used extensively and successfully in Asia to treat various cancers and other diseases. Special attention is given to many important unsolved problems in the study of medicinal mushrooms.

  18. Berkeley Lab - Materials Sciences Division

    Science.gov (United States)

    , which aims to showcase some of the latest material science and metallurgy content published in the Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for intrinsically consist of atomic rotation Scientists Discover Material Ideal for Smart Photovoltaic Windows A

  19. SOFSEM 2017: theory and practice of computer science: 43rd International Conference on Current Trends in Theory and Practice of Computer Science, Limerick, Ireland, January 16-20, 2017, Proceedings

    NARCIS (Netherlands)

    Steffen, B.; Baier, C.; van den Brand, M.G.J.; Eder, J.; Hinchey, M.; Margaria, T.

    2017-01-01

    This book constitutes the refereed proceedings of the 43rd International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2017, held in Limerick, Ireland, in January 2017. The 34 papers presented in this volume were carefully reviewed and selected from 41 submissions.

  20. Open Content in Open Context

    Science.gov (United States)

    Kansa, Sarah Whitcher; Kansa, Eric C.

    2007-01-01

    This article presents the challenges and rewards of sharing research content through a discussion of Open Context, a new open access data publication system for field sciences and museum collections. Open Context is the first data repository of its kind, allowing self-publication of research data, community commentary through tagging, and clear…

  1. An investigation of the relationships between junior high school students' (8th and 9th grades) background variables and structure of knowledge recall of biological content

    Science.gov (United States)

    Demetrius, Olive Joyce

    The purpose of this study was to examine the relationships between Junior High School students' (8th and 9th grades) background variables (e.g. cognitive factors, prior knowledge, preference for science versus non-science activities, formal and informal activities) and structure of information recall of biological content. In addition, this study will illustrate how flow maps, a graphic display, designed to represent the sequential flow and cross linkage of ideas in information recalled by the learner can be used as a tool for analyzing science learning data. The participants (46 junior high school students) were taught a lesson on the human digestive system during which they were shown a model of the human torso. Their pattern of information recall was determined by using an interview technique to elicit their understanding of the functional anatomy of the human digestive system. The taped responses were later transcribed for construction of the flow map. The interview was also used to assess knowledge recall of biological content. The flow map, science interest questionnaire and the cognitive operations (based on content analysis of student's narrative) were used to analyze data from each respondent. This is a case study using individual subjects and interview techniques. The findings of this study are: (1) Based on flow map data higher academic ability students have more networking of ideas than low ability students. (2) A large percentage of 9th grade low ability students intend to pursue science/applied science course work after leaving school but they lack well organized ways of representing science knowledge in memory. (3) Content analysis of the narratives shows that students with more complex ideational networks use higher order cognitive thought processes compared to those with less networking of ideas. If students are to make a successful transition from low academic performance to high academic performance it seems that more emphasis should be placed on

  2. Science and Technology Metrics

    Science.gov (United States)

    2005-01-01

    CONTENTS,1992, Vol 35, Iss AUG, pp 3 12 Garfield E, "Parascience, Pseudoscience , and Political Power Holton,Gerald on the Antiscience Phenomenon And Why...1993, Vol 25, Iss JUN, pp 3 9 Garfield E, "The Science Religion Connection an Introduction to Science and Religion From Warfare over Sociobiology to a

  3. Using Argument-Based Science Inquiry to Improve Science Achievement for Students with Disabilities in Inclusive Classrooms

    Science.gov (United States)

    Taylor, Jonte C.; Tseng, Ching-mei; Murillo, Angelique; Therrien, William; Hand, Brian

    2018-01-01

    The increased emphasis on STEM related careers and the use of science in everyday life makes learning science content and concepts critical for all students especially for those with disabilities. As suggested by the National Resource Council (2012), more emphasis is being placed on being able to critically think about science concepts in and…

  4. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    Science.gov (United States)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student

  5. New tools, technology and techniques applied in geological sciences: current situation and future perspectives

    International Nuclear Information System (INIS)

    Ulloa, Andres

    2014-01-01

    Technological tools and work methodologies most used in the area of geological sciences are reviewed and described. The various electronic devices such as laptops, palmtops or PDA (personal digital assistant), tablets and smartphones have allowed to take field geological data and store them efficiently. Tablets and smartphones have been convenient for data collection of scientific data by the diversity of sensors that present, portability, autonomy and the possibility to install specific applications. High precision GPS in conjunction with LIDAR technology and sonar technology have been more accessible and used for geological research, generating high resolution three-dimensional models to complement geological studies. Remote sensing techniques such as high penetration radar are used to perform models of the ice thickness and topography in Antarctic. Modern three-dimensional scanning and printing techniques are used in geological science research and teaching. Currently, the advance in the computer technology has allowed to handle three-dimensional models on personal computers efficiently way and with different display options. Some, of the new areas of geology, emerged recently, are mentioned to generate a broad panorama toward where can direct geological researches in the next years [es

  6. Bayero Journal of Pure and Applied Sciences: Editorial Policies

    African Journals Online (AJOL)

    Also, areas of Laboratory Science, Technology, Mathematical Sciences, Microbiology, Physics, Medical Sciences and Zoology form part of the contents ... BUSINESS/CIRCULATION EDITOR ... Environment, Bayero University, Kano, Nigerian.

  7. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  8. Professional development in college science teaching

    Science.gov (United States)

    Thomas, Aimee Kathryn

    Graduate students earning a doctorate in the sciences historically focus their work on research and not professional development in college science teaching. However, for those who go on to a career in academia, a majority of their time will be dedicated to teaching. During the past few years, graduate teaching assistants (GTAs) have been prepared to teach by attending a daylong workshop that included logistical information, but left pedagogy largely unexplored. Since that time, a seminar has been added to provide an introduction to pedagogical theory and practices and to provide practice teaching in the biological sciences laboratory course. Yet, more pedagogical preparation is needed. This study was conducted to determine if there was a need for a teaching certificate program for doctoral students in the College of Science and Technology (CoST) at The University of Southern Mississippi. The GTA respondents studied set teaching goals that were consistent with faculty members across the country; however, this research went further by finding out how competent the GTAs perceived they were and how much support they perceived they needed with respect to teaching and professional development. The GTAs did not differ in their perceived level of competence based on experience level; however, the less experienced GTAs did perceive they needed more support than the experienced GTAs. To help GTAs develop a skill set that many CoST graduates currently lack, it is recommended that the University provide ample training and supervision. Establishing a certificate program can potentially impact the community in the following ways: (1) the training of GTAs contributes to the academic preparation of future academic professionals who will be teaching in various institutions; (2) GTA training provides professional development and awareness that teaching requires life long professional development; (3) ensuring competent academicians, not only in content but also in pedagogy; (4

  9. A narrative study of novice elementary teachers' perceptions of science instruction

    Science.gov (United States)

    Harrell, Roberta

    It is hoped that, once implemented, the Next Generation Science Standards (NGSS) will engage students more deeply in science learning and build science knowledge sequentially beginning in Kindergarten (NRC, 2013). Early instruction is encouraged but must be delivered by qualified elementary teachers who have both the science content knowledge and the necessary instructional skills to teach science effectively to young children (Ejiwale, 2012, Spencer, Vogel, 2009, Walker, 2011). The purpose of this research study is to gain insight into novice elementary teachers' perceptions of science instruction. This research suggests that infusion of constructivist teaching in the elementary classroom is beneficial to the teacher's instruction of science concepts to elementary students. Constructivism is theory that learning is centered on the learner constructing new ideas or concepts built upon their current/past knowledge (Bruner, 1966). Based on this theory, it is recommended that the instructor should try to encourage students to discover principles independently; essentially the instructor presents the problem and lets students go (Good & Brophy, 2004). Discovery learning, hands-on, experimental, collaborative, and project-based learning are all approaches that use constructivist principles. The NGSS are based on constructivist principles. This narrative study provides insight into novice elementary teachers' perceptions of science instruction considered through the lens of Constructivist Theory (Bruner, 1960).

  10. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    Science.gov (United States)

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  11. The development of pedagogical content knowledge in science teachers: New opportunities through technology-mediated reflection and peer-exchange

    Science.gov (United States)

    Madeira, M. Cheryl-Ann

    This design-based research study investigates the development of pedagogical content knowledge among nine teacher-participants (N = 9) in three design phases. PCK is a particular type of teacher knowledge that addresses not only the teacher's understanding of the content to be instructed, but also ways of how to teach that content effectively. This knowledge has been well documented over several decades, and is seen as central to teacher expertise. However, its actual development has been difficult for researchers to investigate. This study offers a detailed perspective on how teachers developed PCK with their engagement in lesson planning and enactment of a project-based technology-enhanced lesson. The study includes two specific interventions designed to enhance teachers' development of PCK: (1) scaffolded reflection that occurs throughout the practices; and (2) peer-exchange of lesson plans, enactment ideas, and completed reflections. The findings demonstrate that teachers improve their planning and enactment of project-based technology-enhanced lessons with scaffolded reflection and peer exchange. Positive correlations were seen between teachers' engagement in the reflections and the quality of their lesson planning. Teachers who participated more deeply in the scaffolded reflections were able to understand how their lesson plans and enactment patterns fostered student understanding of relevant science concepts. Positive correlations were also seen between community influence and teacher lesson plans and enactment. Additionally, positive correlations were confirmed between teachers' level of participation in the peer exchange activities and the quality of their lesson planning and enactments. Teachers who contributed more deeply within the online and face-to-face peer community meetings benefited from the different perspectives of their peers about student learning and the best ways to succeed with project-based instruction. This study allowed some insight into

  12. Signs of taste for science: a methodology for studying the constitution of interest in the science classroom

    Science.gov (United States)

    Anderhag, P.; Wickman, P.-O.; Hamza, K. M.

    2015-06-01

    In this paper we present a methodological approach for analyzing the transformation of interest in science through classroom talk and action. To this end, we use the construct of taste for science as a social and communicative operationalization, or proxy, to the more psychologically oriented construct of interest. To gain a taste for science as part of school science activities means developing habits of performing and valuing certain distinctions about ways to talk, act and be that are jointly construed as belonging in the school science classroom. In this view, to learn science is not only about learning the curriculum content, but also about learning a normative and aesthetic content in terms of habits of distinguishing and valuing. The approach thus complements previous studies on students' interest in science, by making it possible to analyze how taste for science is constituted, moment-by-moment, through talk and action in the science classroom. In developing the method, we supplement theoretical constructs coming from pragmatism and Pierre Bourdieu with empirical data from a lower secondary science classroom. The application of the method to this classroom demonstrates the potential that the approach has for analyzing how conceptual, normative, and aesthetic distinctions within the science classroom interact in the constitution of taste for, and thereby potentially also in the development of interest in science among students.

  13. Egyptian Journal of Biomedical Sciences

    African Journals Online (AJOL)

    The Egyptian Journal of Biomedical Sciences publishes in all aspects of biomedical research sciences. Both basic and clinical research papers are welcomed. Vol 23 (2007). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles. Phytochemical And ...

  14. NATURAL-SCIENCE EDUCATION: SCIENTIFIC AND RELIGIOUS KNOWLEDGE CORRELATION IN THE VIEW OF A SYMMETRY PRINCIPLE. PART I. THE CONTENT OF A SYMMETRY PRINCIPLE

    Directory of Open Access Journals (Sweden)

    Vitaly L. Gapontsev

    2015-01-01

    problems of a science, in particular problems of a correlation of scientific and religious knowledge, and as a whole – forming of hierarchy of scientific disciplines that will include not only all existing scientific directions from strict deductive to empirical, but even those directions that are not recognised as scientific disciplines. Such possibilities are given by reason of the double logic status of concept «symmetry» – as the general inductive and as primary deductive phenomenon. Practical significance. Research outcomes can be useful and form a basis for optimisation of structure of the educational content – designing of a new throughline of the training providing formation of a complete picture of scientific knowledge. The necessity of such throughline is connected with education crisis in the conditions of continuously growing scope of information and as a result redundancy of curriculums. The disciplines of the general natural-science courses, such as «Natural-science World View» and «Concept of Modern Natural Sciences» can be independent elements of similar training under the condition of selection of its content according to a fundamental principle of symmetry. 

  15. Teaching Science through Story

    Science.gov (United States)

    Horton, Jessica

    2013-01-01

    Children find comfort in stories. They are familiar, accessible and entertaining. By teaching science through narratives, we can provide that same comfort and access to scientific content to children of all ages. In this article, I will discuss how, through the use of narratives in science instruction, we can provide students with a deeper…

  16. 'The kind of mildly curious sort of science interested person like me': Science bloggers' practices relating to audience recruitment.

    Science.gov (United States)

    Ranger, Mathieu; Bultitude, Karen

    2016-04-01

    With at least 150 million professional and amateur blogs on the Internet, blogging offers a potentially powerful tool for engaging large and diverse audiences with science. This article investigates science blogging practices to uncover key trends, including bloggers' self-perceptions of their role. Interviews with seven of the most popular science bloggers revealed them to be driven by intrinsic personal motivations. Wishing to pursue their love of writing and share their passion for science, they produce content suitable for niche audiences of science enthusiasts, although they do not assume background scientific knowledge. A content analysis of 1000 blog posts and comparison with the most popular blogs on the Internet further confirmed this result and additionally identified key factors that affect science blog popularity, including update frequency, topic diversity and the inclusion of non-text elements (especially images and video). © The Author(s) 2014.

  17. International collaboration in medical radiation science.

    Science.gov (United States)

    Denham, Gary; Allen, Carla; Platt, Jane

    2016-06-01

    International collaboration is recognised for enhancing the ability to approach complex problems from a variety of perspectives, increasing development of a wider range of research skills and techniques and improving publication and acceptance rates. The aim of this paper is to describe the current status of international collaboration in medical radiation science and compare this to other allied health occupations. This study utilised a content analysis approach where co-authorship of a journal article was used as a proxy for research collaboration and the papers were assigned to countries based on the corporate address given in the by-line of the publication. A convenience sample method was employed and articles published in the professional medical radiation science journals in the countries represented within our research team - Australia, the United Kingdom (UK) and the United States of America (USA) were sampled. Physiotherapy, speech pathology, occupational therapy and nursing were chosen for comparison. Rates of international collaboration in medical radiation science journals from Australia, the UK and the USA have steadily increased over the 3-year period sampled. Medical radiation science demonstrated lower average rates of international collaboration than the other allied health occupations sampled. The average rate of international collaboration in nursing was far below that of the allied health occupations sampled. Overall, the UK had the highest average rate of international collaboration, followed by Australia and the USA, the lowest. Overall, medical radiation science is lagging in international collaboration in comparison to other allied health fields.

  18. Science teacher orientations and PCK across science topics in grade 9 earth science

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Goodwin, Dawne

    2017-07-01

    While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher's classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher's practice, and orientation, can vary, dependent on the context and science topics taught.

  19. Texas Science Teacher Characteristics and Conceptual Understanding of Newton's Laws of Motion

    Science.gov (United States)

    Busby, Karin Burk

    extrapolated to determine any correlations. The sample size for this study was small (n=24), requiring a second study investigate potential correlations to teacher characteristics. The second study was conducted using the 2013-2014 school year participants in the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching [TRC] (Texas Regional Collaborative for Excellence in Science and Mathematics Teaching, 2013), a statewide program led by The University of Texas at Austin Center for STEM Education (Texas Regional Collaborative for Excellence in Science and Mathematics Teaching, 2013). Participants completed a demographic survey and took the TRC Physics Assessment instrument developed for the TRC to determine current conceptual understanding of Newtonian mechanics as defined by the Texas Essential Knowledge and Skills. The TRC also collected demographic data including Texas Educational Agency region, participant's sex, years of service in teaching, current teaching position, level of highest degree earned, whether or not the participant had a STEM degree, and certification type. Correlations were determined between overall average and conceptual force questions only. The sample size was substantial (n=368) but due to time constraints in its development, the TRC Physics Assessment was unable to undergo reliability or validity testing before implementation. Test question pertaining to each of Newton's three laws of motion were extrapolated to determine any correlations. A significance value of p= 0.05 was used for all tests. Both content assessments indicated that, on average, teacher-participants had a considerable misunderstanding of Newtonian mechanics with Newton's third law questions especially difficult for the populations. Teachers' current teaching assignment was statistically significant for most tests, suggesting that high school physics teachers have more conceptual understanding of Newtonian mechanics than middle school teachers but have not

  20. Web-Scale Discovery Services Retrieve Relevant Results in Health Sciences Topics Including MEDLINE Content

    Directory of Open Access Journals (Sweden)

    Elizabeth Margaret Stovold

    2017-06-01

    Full Text Available A Review of: Hanneke, R., & O’Brien, K. K. (2016. Comparison of three web-scale discovery services for health sciences research. Journal of the Medical Library Association, 104(2, 109-117. http://dx.doi.org/10.3163/1536-5050.104.2.004 Abstract Objective – To compare the results of health sciences search queries in three web-scale discovery (WSD services for relevance, duplicate detection, and retrieval of MEDLINE content. Design – Comparative evaluation and bibliometric study. Setting – Six university libraries in the United States of America. Subjects – Three commercial WSD services: Primo, Summon, and EBSCO Discovery Service (EDS. Methods – The authors collected data at six universities, including their own. They tested each of the three WSDs at two data collection sites. However, since one of the sites was using a legacy version of Summon that was due to be upgraded, data collected for Summon at this site were considered obsolete and excluded from the analysis. The authors generated three questions for each of six major health disciplines, then designed simple keyword searches to mimic typical student search behaviours. They captured the first 20 results from each query run at each test site, to represent the first “page” of results, giving a total of 2,086 total search results. These were independently assessed for relevance to the topic. Authors resolved disagreements by discussion, and calculated a kappa inter-observer score. They retained duplicate records within the results so that the duplicate detection by the WSDs could be compared. They assessed MEDLINE coverage by the WSDs in several ways. Using precise strategies to generate a relevant set of articles, they conducted one search from each of the six disciplines in PubMed so that they could compare retrieval of MEDLINE content. These results were cross-checked against the first 20 results from the corresponding query in the WSDs. To aid investigation of overall

  1. God, design, and naturalism: Implications of methodological naturalism in science for science-religion relation

    OpenAIRE

    Piotr Bylica; Dariusz Sagan

    2015-01-01

    The aim of this paper is to analyze the implications flowing from adopting methodological naturalism in science, with special emphasis on the relation between science and religion. Methodological naturalism, denying supernatural and teleological explanations, influences the content of scientific theories, and in practice leads to vision of science as compatible with ontological naturalism and in opposition to theism. Ontological naturalism in turn justifies the acceptance of methodological na...

  2. Surface science principles and current applications

    CERN Document Server

    Taglauer, E; Wandelt, K

    1996-01-01

    Modern technologies increasingly rely on low-dimensional physics at interfaces and in thin-films and nano-structures. Surface science holds a key position in providing the experimental methods and theoretical models for a basic understanding of these effects. This book includes case studies and status reports about research topics such as: surface structure determination by tensor-LEED and surface X-ray diffraction; the preparation and detection of low-dimensional electronic surface states; quantitative surface compositional analysis; the dynamics of adsorption and reaction of adsorbates, e.g. kinetic oscillations; the characterization and control of thin-film and multilayer growth including the influence of surfactants; a critical assessment of the surface physics approach to heterogeneous catalysis.

  3. An Investigation of Science and Technology Teachers’ Views on the 5th Grade Science Course

    OpenAIRE

    İkramettin Daşdemir

    2014-01-01

    This study was conducted to explore the science and technology teachers’ views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content analysis method. According to the results obtained from the open-ended questions, a great majority of science and technology teache...

  4. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  5. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  6. Understanding Children's Science Identity through Classroom Interactions

    Science.gov (United States)

    Kim, Mijung

    2018-01-01

    Research shows that various stereotypes about science and science learning, such as science being filled with hard and dry content, laboratory experiments, and male-dominated work environments, have resulted in feelings of distance from science in students' minds. This study explores children's experiences of science learning and science identity.…

  7. How does a Next Generation Science Standard Aligned, Inquiry Based, Science Unit Impact Student Achievement of Science Practices and Student Science Efficacy in an Elementary Classroom?

    Science.gov (United States)

    Whittington, Kayla Lee

    This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.

  8. New Roles for Scientists and Science Societies to Improve Science Communication

    Science.gov (United States)

    Schneider, S. H.

    2008-12-01

    Should North American Scientists and Science Societies continue with current communication programs or is there a need for expanded and or altered roles in Science Communication? If current practices are working, why is discourse outside of science societies so often misinformed and distorted on environmental change issues that are clearly defined and described within the science community? Climate change is one example there is virtual unanimity and overwhelming evidence from the scientific community that the Earth is warming rapidly and humans are an important cause, but there is confusion in the media and the public, in part due to disinformation campaigns by greenhouse gas polluters and privately funded "Think Tanks." A summary discussion will be presented that addresses many of the ideas and issues brought forward by colleagues in science, science communication and education. Scientists and Science Societies must re-establish objectivity in science information communication to educators, the media and the public. Recommendations on directions will be a key outcome of this presentation.

  9. A Survey of Introductory Statistics Courses at University Faculties of Pharmaceutical Sciences in Japan.

    Science.gov (United States)

    Matsumura, Mina; Nakayama, Takuto; Sozu, Takashi

    2016-01-01

    A survey of introductory statistics courses at Japanese medical schools was published as a report in 2014. To obtain a complete understanding of the way in which statistics is taught at the university level in Japan, it is important to extend this survey to related fields, including pharmacy, dentistry, and nursing. The current study investigates the introductory statistics courses offered by faculties of pharmaceutical sciences (six-year programs) at Japanese universities, comparing the features of these courses with those studied in the survey of medical schools. We collected relevant data from the online syllabi of statistics courses published on the websites of 71 universities. The survey items included basic course information (for example, the course names, the targeted student grades, the number of credits, and course classification), textbooks, handouts, the doctoral subject and employment status of each lecturer, and course contents. The period surveyed was July-September 2015. We found that these 71 universities offered a total of 128 statistics courses. There were 67 course names, the most common of which was "biostatistics (iryou toukeigaku)." About half of the courses were designed for first- or second-year students. Students earned fewer than two credits. There were 62 different types of textbooks. The lecturers held doctoral degrees in 18 different subjects, the most common being a doctorate in pharmacy or science. Some course content differed, reflecting the lecturers' academic specialties. The content of introductory statistics courses taught in pharmaceutical science programs also differed slightly from the equivalent content taught in medical schools.

  10. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  11. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  12. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  13. Enrolling science teachers in continual professional development

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2010-01-01

    The theoretical paper presents a model of how science teachers working in small groups can use video to diagnose the challengees that students face when learning science content, and how they can then design and refine appropriate teaching interventions. The analysis and discussion suggest that t...... that the proposed professional development program, based around group learning, should be formatively assessed, researched and refined over time following the principles of design based research, likewise the teachers' classroom interventions.......The theoretical paper presents a model of how science teachers working in small groups can use video to diagnose the challengees that students face when learning science content, and how they can then design and refine appropriate teaching interventions. The analysis and discussion suggest...

  14. Home | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The 25 July 2016 issue of Current Science includes a compilation of nine articles ... These articles, authored by various medical experts, both from India and outside, ... India's current position on the regulation of Ayurvedic practice, research and ... journal of science education brought out by the Indian Academy of Sciences.

  15. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    Science.gov (United States)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  16. Global forces and local currents in Argentina's science policy crossroads: restricted access or open knowledge

    Directory of Open Access Journals (Sweden)

    Horacio Javier Etchichury

    2014-11-01

    Full Text Available The article describes the tensions between two competing approaches to scientific policy in Argentina. The traditional vision favors autonomous research. The neoliberal conception fosters the link between science and markets. In the past few years, a neodevelopmentalist current also tries to stress relevance of scientific research. Finally, the article describes how the Open Access movement has entered the debate. The World Bank intervention and the human rights dimension of the question are discussed in depth. The article introduces the notion of open knowledge as a guiding criterion to design a human-rights based scientific policy.

  17. Perspectives on Current Issues Is ``Anthropic Selection'' Science?

    Science.gov (United States)

    Larson, Ronald G.

    2007-01-01

    I argue that there are strong reasons for resisting as a principle of science the concept of “anthropic selection.” This concept asserts that the existence of “observers” in a universe can be used as a condition that selects physical laws and constants necessary for intelligent life from different laws or physical constants prevailing in a vast number of other universes, to thereby explain why the properties of our universe are conducive to intelligent life. My reasons for limiting “anthropic selection” to the realm of speculation rather than permitting it to creep into mainstream science include our inability to estimate the probabilities of emergence of “observers” in a universe, the lack of testability through direct observation of the assumed high variability of the constants of nature, the lack of a clear definition of an “observer,” and the arbitrariness in how and to what questions anthropic selection is applied.

  18. Cognitive Language and Content Standards: Language Inventory of the Common Core State Standards in Mathematics and the Next Generation Science Standards

    Science.gov (United States)

    Winn, Kathleen M.; Mi Choi, Kyong; Hand, Brian

    2016-01-01

    STEM education is a current focus of many educators and policymakers and the Next Generation Science Standards (NGSS) with the Common Core State Standards in Mathematics (CCSSM) are foundational documents driving curricular and instructional decision making for teachers and students in K-8 classrooms across the United States. Thus, practitioners…

  19. U-Science (Invited)

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to

  20. Advance the Earth Science Education in China by Using New Technology

    Science.gov (United States)

    Qian, R.; Wang, X.; Sun, L.

    2013-12-01

    With the development of Chinese economy, science and technology, as well as the increasing demand of the persons with knowledge and experience in earth science and geological exploration, the higher education of earth science has been boosted in recent years. There are 2,000 to 3,000 students studying earth science every year and many of them will take part in scientific research and engineering technology work around the world after graduation, which increased the demand of educators, both in quantity and quality. However, the fact is that there is a huge gap between the demand and the current number of educators due to the explosion of students, which makes the reform of traditional education methods inevitable. There is great significance in doing research on the teaching methods catering to a large number of students. Some research contents and result based on the reform of education methods has been conducted. We integrate the teaching contents with the cutting-edge research projects and stress significance of earth science, which will greatly enhance the student's enthusiasm of it. Moreover. New technology will be applied to solve the problem that every teacher are responsible for 100~150 students in one courses. For instance, building the Internet platform where teachers and the students can discuss the courses contents, read the latest scientific articles. With the numerical simulation technology, the internal structure of the Earth, geological phenomena, characteristics of ore body, geophysical and hydrological fields, etc. can be simulated and the experiments and teaching practice can be demonstrated via video technology. It can also be used to design algorithm statistics and assessment and monitor teaching effect. Students are separated into small groups to take research training with their personal tutor at the beginning of the first semester, which will increase the opportunities for students to communicate with educators and solve the problem that the

  1. Future Tense: Science Fiction Confronts the New Science.

    Science.gov (United States)

    Antczak, Janice

    1990-01-01

    Describes 10 science fiction stories for young readers whose contents address recent developments on the frontiers of scientific research, including genetic engineering, artificial intelligence, and robotics. The use of these materials to inform young readers about the issues and dangers involved in scientific developments is discussed. (CLB)

  2. Training on intellectual disability in health sciences: the European perspective

    Science.gov (United States)

    Salvador-Carulla, Luis; Martínez-Leal, Rafael; Heyler, Carla; Alvarez-Galvez, Javier; Veenstra, Marja Y.; García-Ibáñez, Jose; Carpenter, Sylvia; Bertelli, Marco; Munir, Kerim; Torr, Jennifer; Van Schrojenstein Lantman-de Valk, Henny M. J.

    2015-01-01

    Background Intellectual disability (ID) has consequences at all stages of life, requires high service provision and leads to high health and societal costs. However, ID is largely disregarded as a health issue by national and international organisations, as are training in ID and in the health aspects of ID at every level of the education system. Specific aim This paper aims to (1) update the current information about availability of training and education in ID and related health issues in Europe with a particular focus in mental health; and (2) to identify opportunities arising from the initial process of educational harmonization in Europe to include ID contents in health sciences curricula and professional training. Method We carried out a systematic search of scientific databases and websites, as well as policy and research reports from the European Commission, European Council and WHO. Furthermore, we contacted key international organisations related to health education and/or ID in Europe, as well as other regional institutions. Results ID modules and contents are minimal in the revised health sciences curricula and publications on ID training in Europe are equally scarce. European countries report few undergraduate and graduate training modules in ID, even in key specialties such as paediatrics. Within the health sector, ID programmes focus mainly on psychiatry and psychology. Conclusion The poor availability of ID training in health sciences is a matter of concern. However, the current European policy on training provides an opportunity to promote ID in the curricula of programmes at all levels. This strategy should address all professionals working in ID and it should increase the focus on ID relative to other developmental disorders at all stages of life. PMID:25705375

  3. Student teachers' views: what is an interesting life sciences curriculum?

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2011-01-01

    Full Text Available In South Africa, the Grade 12 'classes of 2008 and 2009' were the first to write examinations under the revised Life Sciences (Biology curriculum which focuses on outcomes-based education (OBE. This paper presents an exploration of what students (as learners considered to be difficult and interesting in Grades 10-12 Life Sciences curricula in the Further Education and Training (FET phase. A sample of 125 first year, pre-service Life Sciences and Natural Sciences teachers from a university responded to a questionnaire in regard to their experiences with the newly implemented FET Life Sciences curricula. The responses to the questions were analysed qualitatively and/or quantitatively. Friedman tests were used to compare the mean rankings of the four different content knowledge areas within each curriculum, and to make cross-curricular comparisons of the mean rankings of the same content knowledge area for all three curricula. All four content areas of Grade 12 were considered as being more interesting than the other two grades. In terms of difficulty, the students found the Grade 10 curriculum themes the most difficult, followed by the Grade 12 and the Grade 11 curricula. Most of the students found the themes under the content area Diversity, change and continuity (Grades 10-12 more difficult to learn than the other three content areas. It is recommended that more emphasis needs to be placed on what learners are interested in, and on having this incorporated into Life Sciences curricula.

  4. Determining discourses: Constraints and resources influencing early career science teachers

    Science.gov (United States)

    Grindstaff, Kelly E.

    This study explores the thinking and practices of five early-career teachers of grades eight to ten science, in relation to their histories, schools, students, and larger cultural and political forces. All the teachers are young women, two in their fourth year of teaching, who teach together in an affluent suburb, along with one first-year teacher. The other two are first-year teachers who teach in an urban setting. All of these teachers most closely associated good science teaching with forming relationships with students. They filtered science content through a lens of relevance (mostly to everyday life) and interest for students. Thus they filtered science content through a commitment to serving students, which makes sense since I argue that the primary motivations for teaching had more to do with working with students and helping people than the disciplines of science. Thus, within the discourse of the supremacy of curriculum and the prevalence of testing, these teachers enact hybrid practices which focus on covering content -- to help ensure the success of students -- and on relevance and interest, which has more to do with teaching styles and personality than disciplines of science. Ideas of good teaching are not very focused on science, which contradicts the type of support they seek and utilize around science content. This presents a challenge to pre- and in-service education and support to question what student success means, what concern for students entails and how to connect caring and concern for students with science.

  5. Teacher perceptions of usefulness of mobile learning devices in rural secondary science classrooms

    Science.gov (United States)

    Tighe, Lisa

    The internet and easy accessibility to a wide range of digital content has created the necessity for teachers to embrace and integrate digitial media in their curriculums. Although there is a call for digital media integration in curriculum by current learning standards, rural schools continue to have access to fewer resources due to limited budgets, potentially preventing teachers from having access to the most current technology and science instructional materials. This dissertation identifies the perceptions rural secondary science teachers have on the usefulness of mobile learning devices in the science classroom. The successes and challenges in using mobile learning devices in the secondary classroom were also explored. Throughout this research, teachers generally supported the integration of mobile devices in the classroom, while harboring some concerns relating to student distractability and the time required for integrating mobile devices in exisiting curriculum. Quantitative and qualitative data collected through surveys, interviews, and classroom observations revealed that teachers perceive that mobile devices bring benefits such as ease of communication and easy access to digitial information. However, there are perceived challenges with the ability to effectively communicate complex scientific information via mobile devices, distractibility of students, and the time required to develop effective curriculum to integrate digital media into the secondary science classroom.

  6. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-04-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums ("directive sources") predictably led students to other sources such as teachers, families, internet, and science books ("directed sources"). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.

  7. Automated Scoring of Constructed-Response Science Items: Prospects and Obstacles

    Science.gov (United States)

    Liu, Ou Lydia; Brew, Chris; Blackmore, John; Gerard, Libby; Madhok, Jacquie; Linn, Marcia C.

    2014-01-01

    Content-based automated scoring has been applied in a variety of science domains. However, many prior applications involved simplified scoring rubrics without considering rubrics representing multiple levels of understanding. This study tested a concept-based scoring tool for content-based scoring, c-rater™, for four science items with rubrics…

  8. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    pp 819-820 Editorial. Editorial · B V Rajarama Bhat · More Details Fulltext PDF. pp 821-821 Science Smiles. Science Smiles · Ayan Guha · More Details Fulltext PDF. pp 822-823 Table of Contents. Table of Contents · More Details Fulltext PDF. pp 824-846 General Article. India's Arrival on the Modern Mathematical Scene.

  9. eScience and archiving for space science

    Directory of Open Access Journals (Sweden)

    Timothy E Eastman

    2006-01-01

    Full Text Available A confluence of technologies is leading towards revolutionary new interactions between robust data sets, state-of-the-art models and simulations, high-data-rate sensors, and high-performance computing. Data and data systems are central to these new developments in various forms of eScience or grid systems. Space science missions are developing multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission architectures that will further add to the data avalanche. Fortunately, Knowledge Discovery in Database (KDD tools are rapidly expanding to meet the need for more efficient information extraction and knowledge generation in this data-intensive environment. Concurrently, scientific data management is being augmented by content-based metadata and semantic services. Archiving, eScience and KDD all require a solid foundation in interoperability and systems architecture. These concepts are illustrated through examples of space science data preservation, archiving, and access, including application of the ISO-standard Open Archive Information System (OAIS architecture.

  10. Focus: global currents in national histories of science: the "global turn" and the history of science in Latin America.

    Science.gov (United States)

    McCook, Stuart

    2013-12-01

    The "global turn" in the history of science offers new ways to think about how to do national and regional histories of science, in this case the history of science in Latin America. For example, it questions structuralist and diffusionist models of the spread of science and shows the often active role that people in Latin America (and the rest of the Global South) played in the construction of "universal" scientific knowledge. It suggests that even national or regional histories of science must be situated in a global context; all too often, such histories have treated global processes as a distant backdrop. At the same time, historians need to pay constant attention to the role of power in the construction of scientific knowledge. Finally, this essay highlights a methodological tool for writing globally inflected histories of science: the method of "following".

  11. The science of science outreach: methods to maximise audience engagement

    Science.gov (United States)

    Adamson, Kathryn; Lane, Timothy

    2016-04-01

    Effective public engagement relies on a clear understanding of public audiences; their existing knowledge base and their learning preferences. Scientific content that is effective in academic spheres is not necessarily popular in the public domain. This may be due to content (e.g. beginner level to advanced terminology); presentation style (graphical, text, multimedia); audience demographic (children to adults); and entertainment value. Over the last few years, there has been a major expansion in the quantity and quality of science outreach material. For scientists, the production of outreach material, in any form, is the first giant leap to disseminating their knowledge to broader audiences. However, there is also a need to evaluate the performance of outreach material, so that its content and delivery style can be tailored and maximised for the target audience. We examine the Google Analytics data for climate science outreach website Climatica over a 12 month period in 2015. The site publishes regular posts, which take the form of short written articles, graphics, videos, or teaching resources, on all aspects of climate science. The site is publicised via social media including Twitter and Facebook. In particular, we assess website performance, in terms of website visits and post engagement. These are examined in the context of: post topic, post style, social media engagement, and the timing of post publication/advertisement. The findings of this investigation are used to explore audience preferences and mechanisms for future post development to maximise the use of this web resource.

  12. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Kathmandu, Nepal; Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012, India. Dates. Manuscript received: 9 October 2014; Manuscript revised: 31 January 2015; Accepted: 3 February 2015. Supplementary Material. supp7.doc. Journal of Chemical Sciences. Current Issue : Vol.

  13. Proanthocyanadin (condensed tannin) content of Brachystegia ...

    African Journals Online (AJOL)

    The higher contents of PA in the leaves that were harvested when mature than in young leaves could explain why animals prefer eating young rather than mature leaves of B. spiciformis. Keywords: browse legume, proanthocyanidins n-butanol, stages. African Journal of Range & Forage Science 2006, 23(3): 197–200 ...

  14. Teaching the process of science: faculty perceptions and an effective methodology.

    Science.gov (United States)

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  15. Committee on Women in Science, Engineering, and Medicine (CWSEM)

    Science.gov (United States)

    harassment on women and their careers in science, engineering, and medicine. In addition to evidence-based Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science

  16. Science Engagement Through Hands-On Activities that Promote Scientific Thinking and Generate Excitement and Awareness of NASA Assets, Missions, and Science

    Science.gov (United States)

    Graff, P. V.; Foxworth, S.; Miller, R.; Runco, S.; Luckey, M. K.; Maudlin, E.

    2018-01-01

    The public with hands-on activities that infuse content related to NASA assets, missions, and science and reflect authentic scientific practices promotes understanding and generates excitement about NASA science, research, and exploration. These types of activities expose our next generation of explorers to science they may be inspired to pursue as a future STEM career and expose people of all ages to unique, exciting, and authentic aspects of NASA exploration. The activities discussed here (Blue Marble Matches, Lunar Geologist Practice, Let's Discover New Frontiers, Target Asteroid, and Meteorite Bingo) have been developed by Astromaterials Research and Exploration Science (ARES) Science Engagement Specialists in conjunction with ARES Scientists at the NASA Johnson Space Center. Activities are designed to be usable across a variety of educational environments (formal and informal) and reflect authentic scientific content and practices.

  17. The Implementation of Pedagogical Content Knowledge (PCK based Guided Inquiry on Science Teacher Students

    Directory of Open Access Journals (Sweden)

    Lulu Tunjung Biru

    2018-05-01

    Full Text Available The aim of this study is examining the learning of Integrated Sciences through PCK based guided inquiry on prospective science teacher students. This research method was descriptive qualitative involving 33 science teacher students who taking Integrated Science 1 Subject in academic year 2016/2017. The research instrument used was the observation sheet to know the implementation PCK based guided inquiry. The results showed that the implementation of the activities of lecturer and science teacher students during the learning process using PCK based guided inquiry was very good conducted.

  18. The Context of Current Content Analysis of Gender Roles: An Introduction to a Special Issue

    Science.gov (United States)

    Popova, Lucy; Linz, Daniel G.

    2010-01-01

    The aim of this paper is to provide context for the quantitative content analyses of gender roles that are to be included in both parts of this special issue. First, a timeline of historical uses of the content analysis methodology is presented. Second, research objectives that frequently drive content analysis of gender roles are described; these include: to support feminist claims, to compare media with real life, to predict effects on audiences, and to detect effects of media producers on content. Third, previous content analyses published in Sex Roles and other gender-focused journals are reviewed and categorized in terms of medium, genre, time span, gender, and nationality. Finally, contributions of each of the articles in this special issue are outlined. PMID:20694031

  19. 42. Science week: Laser Science and applications, Aleppo (SY), 2-4 Nov 2002, Book three: Laser applications

    International Nuclear Information System (INIS)

    2005-01-01

    This publication includes the papers presented at the 42nd science week of the Supreme Council of Sciences, held in Aleppo (Syria) from 2-4 November 2002. This proceedings is published in three books covering laser science and applications and in particular on material studies and medical uses. Part two covers medical applications, Part three on applications of laser in material sciences, while Part one is for contents and the proceedings program

  20. Gravitational biology and space life sciences: Current status and ...

    Indian Academy of Sciences (India)

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...