WorldWideScience

Sample records for science project designed

  1. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  2. Doing the Project and Learning the Content: Designing Project-Based Science Curricula for Meaningful Understanding

    Science.gov (United States)

    Kanter, David E.

    2010-01-01

    Project-based science curricula can improve students' usable or meaningful understanding of the science content underlying a project. However, such curricula designed around "performances" wherein students design or make something do not always do this. We researched ways to design performance project-based science curricula (pPBSc) to better…

  3. Using design science in educational technology research projects

    Directory of Open Access Journals (Sweden)

    Susan M. Chard

    2017-12-01

    Full Text Available Design science is a research paradigm where the development and evaluation of a technology artefact is a key contribution. Design science is used in many domains and this paper draws on those domains to formulate a generic structure for design science research suitable for educational technology research projects. The paper includes guidelines for writing proposals using the design science research methodology for educational technology research and presents a generic research report structure. The paper presents ethical issues to consider in design science research being conducted in educational settings and contributes guidelines for assessment when the research contribution involves the creation of a technology artefact.

  4. A biotic game design project for integrated life science and engineering education.

    Science.gov (United States)

    Cira, Nate J; Chung, Alice M; Denisin, Aleksandra K; Rensi, Stefano; Sanchez, Gabriel N; Quake, Stephen R; Riedel-Kruse, Ingmar H

    2015-03-01

    Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM) education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course). We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  5. A biotic game design project for integrated life science and engineering education.

    Directory of Open Access Journals (Sweden)

    Nate J Cira

    2015-03-01

    Full Text Available Engaging, hands-on design experiences are key for formal and informal Science, Technology, Engineering, and Mathematics (STEM education. Robotic and video game design challenges have been particularly effective in stimulating student interest, but equivalent experiences for the life sciences are not as developed. Here we present the concept of a "biotic game design project" to motivate student learning at the interface of life sciences and device engineering (as part of a cornerstone bioengineering devices course. We provide all course material and also present efforts in adapting the project's complexity to serve other time frames, age groups, learning focuses, and budgets. Students self-reported that they found the biotic game project fun and motivating, resulting in increased effort. Hence this type of design project could generate excitement and educational impact similar to robotics and video games.

  6. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  7. WFIRST Project Science Activities

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  8. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  9. Project-Based Science

    Science.gov (United States)

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  10. Design Theory Projectability

    DEFF Research Database (Denmark)

    Baskerville, Richard; Pries-Heje, Jan

    2014-01-01

    design science research is materially prescriptive, it requires a different perspective in developing the breadth of applications of design theories. In this paper we propose different concepts that embody forms of general technological knowledge The concept of projectability, developed originally......Technological knowledge has been characterized as having a scope that is specific to a particular problem. However, the information systems community is exploring forms of design science research that provide a promising avenue to technological knowledge with broader scope: design theories. Because...... as a means of distinguishing realized generalizations from unrealized generalizations, helps explain how design theories, being prescriptive, possess a different form of applicability. The concept of entrenchment describes the use of a theory in many projections. Together these concepts provide a means...

  11. Reference Design Project Book: NUSEL-Homestake

    OpenAIRE

    Haxton, W. C.

    2003-01-01

    This submission includes the overview, science timeline, reference design, WBS, and mine status sections of the Homestake collaboration's Reference Design Project Book. The Project Book describes the specific plan for converting the Homestake Gold Mine into a facility for physics, earth science, and engineering. The proposed developments on the 7400- and 4850-ft levels are presented, along with the plans for adapting Homestake's existing infrastructure for science. The plan differs substantia...

  12. Projecting the Future for Design Science Research: An Action‐Case Based Analysis

    DEFF Research Database (Denmark)

    Baskerville, Richard; Pries-Heje, Jan

    2015-01-01

    and theories appears to be a key challenge. In this paper we commence with a DESRIST paper from 2012 that instantiated design principles in an artifact for a bank. That paper included plans and techniques for future use of its principles (propagation), including prescriptions for a five-phase adoption process...... or theories have stimulated many actual projections. We demonstrate these concepts in a case study of propagation: a chemical manufacturer and service provider that adopted the design principles arising from that 2012 DESRIST banking-based design science research. We conclude that generalizability is too well...

  13. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  14. Bridging the Design-Science Gap with Tools: Science Learning and Design Behaviors in a Simulated Environment for Engineering Design

    Science.gov (United States)

    Chao, Jie; Xie, Charles; Nourian, Saeid; Chen, Guanhua; Bailey, Siobhan; Goldstein, Molly H.; Purzer, Senay; Adams, Robin S.; Tutwiler, M. Shane

    2017-01-01

    Many pedagogical innovations aim to integrate engineering design and science learning. However, students frequently show little attempt or have difficulties in connecting their design projects with the underlying science. Drawing upon the Cultural-Historical Activity Theory, we argue that the design tools available in a learning environment…

  15. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  16. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  17. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  18. Improving Science Attitude and Creative Thinking through Science Education Project: A Design, Implementation and Assessment

    Science.gov (United States)

    Sener, Nilay; Türk, Cumhur; Tas, Erol

    2015-01-01

    The purpose of this study is to examine the effects of a science education project implemented in different learning environments on secondary school students' creative thinking skills and their attitudes to science lesson. Within this scope, a total of 50 students who participated in the nature education project in Samsun City in 2014 make up the…

  19. Duplex Design Project: Science Pilot Test.

    Science.gov (United States)

    Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

    Work is reported towards the completion of a prototype duplex-design assessment instrument for grade-12 science. The student course-background questionnaire and the pretest section of the two-stage instrument that was developed were administered to all 134 12th-grade students at St. Clairsville High School (Ohio). Based on the information obtained…

  20. Reengineering the Project Design Process

    Science.gov (United States)

    Casani, E.; Metzger, R.

    1994-01-01

    In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.

  1. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design.

    Science.gov (United States)

    Parrish, Julia K; Burgess, Hillary; Weltzin, Jake F; Fortson, Lucy; Wiggins, Andrea; Simmons, Brooke

    2018-05-21

    Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches - simplification at scale and complexity with care - generate more robust science outcomes.

  2. 34 CFR 637.13 - What are design projects?

    Science.gov (United States)

    2010-07-01

    ... EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Kinds of Projects Does the Secretary Assist Under This Program? § 637.13 What are design projects? (a) Design... 34 Education 3 2010-07-01 2010-07-01 false What are design projects? 637.13 Section 637.13...

  3. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  4. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  5. Science operations management. [with Infrared Astronomy Satellite project

    Science.gov (United States)

    Squibb, G. F.

    1984-01-01

    The operation teams engaged in the IR Astronomical Satellite (IRAS) project included scientists from the IRAS International Science Team. The detailed involvement of these scientists in the design, testing, validation, and operations phases of the IRAS mission contributed to the success of this project. The Project Management Group spent a substantial amount of time discussing science-related issues, because science team coleaders were members from the outset. A single scientific point-of-contact for the Management Group enhanced the depth and continuity of agreement reached in decision-making.

  6. FEDS : A Framework for Evaluation in Design Science Research

    DEFF Research Database (Denmark)

    Venable, John; Pries-Heje, Jan; Baskerville, Richard

    2015-01-01

    Evaluation of design artefacts and design theories is a key activity in Design Science Research (DSR), as it provides feedback for further development and (if done correctly) assures the rigour of the research. However, the extant DSR literature provides insufficient guidance on evaluation...... to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...

  7. The Effect of Environmental Science Projects on Students' Environmental Knowledge and Science Attitudes

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Aamri, Shamsa S.

    2014-01-01

    The current study explores the effectiveness of involving students in environmental science projects for their environmental knowledge and attitudes towards science. The study design is a quasi-experimental pre-post control group design. The sample was 62 11th-grade female students studying at a public school in Oman. The sample was divided into…

  8. Open-science projects get kickstarted at CERN

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CERN is one of the host sites for the Mozilla Science Lab Global Sprint to be held on 4 and 5 June, which will see participants around the world work on projects to further open science and educational tools.   IdeaSquare will be hosting the event at CERN. The Mozilla Science Lab Global Sprint was first held in 2014 to bring together open-science practitioners and enthusiasts to collaborate on projects designed to advance science on the open web. The sprint is a loosely federated event, and CERN is participating in the 2015 edition, hosting sprinters in the hacker-friendly IdeaSquare. Five projects have been formally proposed and CERN users and staff are invited to participate in a variety of ways. A special training session will also be held to introduce the CERN community to existing open-science and collaborative tools, including ones that have been deployed at CERN. 1. GitHub Science Badges: Sprinters will work on developing a badge-style visual representation of how open a software pro...

  9. Reengineering the project design process

    Science.gov (United States)

    Kane Casani, E.; Metzger, Robert M.

    1995-01-01

    In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.

  10. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  11. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  12. Tohoku Women's Hurdling Project: Science Angels (abstract)

    Science.gov (United States)

    Mizuki, Kotoe; Watanabe, Mayuko

    2009-04-01

    Tohoku University was the first National University to admit three women students in Japan in 1913. To support the university's traditional ``open-door'' policy, various projects have been promoted throughout the university since its foundation. A government plan, the Third-Stage Basic Plan for Science and Technology, aims to increase the women scientist ratio up to 25% nationwide. In order to achieve this goal, the Tohoku Women's Hurdling Project, funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), was adopted in 2006. This project is threefold: support for child/family, improvement of facilities, and support for the next generation, which includes our Science Angels program. ``Science Angels'' are women PhD students appointed by the university president, with the mission to form a strong support system among each other and to become role-models to inspire younger students who want to become researchers. Currently, 50 women graduate students of the natural sciences are Science Angels and are encouraged to design and deliver lectures in their areas of specialty at their alma maters. Up to now, 12 lectures have been delivered and science events for children in our community have been held-all with great success.

  13. Setting up crowd science projects.

    Science.gov (United States)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  14. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  15. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  16. The Aeolus project: Science outreach through art.

    Science.gov (United States)

    Drumm, Ian A; Belantara, Amanda; Dorney, Steve; Waters, Timothy P; Peris, Eulalia

    2015-04-01

    With a general decline in people's choosing to pursue science and engineering degrees there has never been a greater need to raise the awareness of lesser known fields such as acoustics. Given this context, a large-scale public engagement project, the 'Aeolus project', was created to raise awareness of acoustics science through a major collaboration between an acclaimed artist and acoustics researchers. It centred on touring the large singing sculpture Aeolus during 2011/12, though the project also included an extensive outreach programme of talks, exhibitions, community workshops and resources for schools. Described here are the motivations behind the project and the artwork itself, the ways in which scientists and an artist collaborated, and the public engagement activities designed as part of the project. Evaluation results suggest that the project achieved its goal of inspiring interest in the discipline of acoustics through the exploration of an other-worldly work of art. © The Author(s) 2013.

  17. Atmospheric River Tracking Method Intercomparison Project (ARTMIP: project goals and experimental design

    Directory of Open Access Journals (Sweden)

    C. A. Shields

    2018-06-01

    Full Text Available The Atmospheric River Tracking Method Intercomparison Project (ARTMIP is an international collaborative effort to understand and quantify the uncertainties in atmospheric river (AR science based on detection algorithm alone. Currently, there are many AR identification and tracking algorithms in the literature with a wide range of techniques and conclusions. ARTMIP strives to provide the community with information on different methodologies and provide guidance on the most appropriate algorithm for a given science question or region of interest. All ARTMIP participants will implement their detection algorithms on a specified common dataset for a defined period of time. The project is divided into two phases: Tier 1 will utilize the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2 reanalysis from January 1980 to June 2017 and will be used as a baseline for all subsequent comparisons. Participation in Tier 1 is required. Tier 2 will be optional and include sensitivity studies designed around specific science questions, such as reanalysis uncertainty and climate change. High-resolution reanalysis and/or model output will be used wherever possible. Proposed metrics include AR frequency, duration, intensity, and precipitation attributable to ARs. Here, we present the ARTMIP experimental design, timeline, project requirements, and a brief description of the variety of methodologies in the current literature. We also present results from our 1-month proof-of-concept trial run designed to illustrate the utility and feasibility of the ARTMIP project.

  18. Development and Validation of a Project Package for Junior Secondary School Basic Science

    Science.gov (United States)

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  19. The Use of Online Citizen-Science Projects to Provide Experiential Learning Opportunities for Nonmajor Science Students

    Directory of Open Access Journals (Sweden)

    Donna M. Kridelbaugh

    2015-11-01

    Full Text Available Citizen science is becoming even more accessible to the general public through technological advances in the development of mobile applications, facilitating information dissemination and data collection. With the advent of “big data,” many citizen-science projects designed to help researchers sift through piles of research data now exist entirely online, either in the form of playing a game or via other digital avenues. Recent trends in citizen science have also focused on “crowdsourcing” solutions from the general public to help solve societal issues, often requiring nothing more than brainstorming and a computer to submit ideas. Online citizen science thus provides an excellent platform to expand the accessibility of experiential learning opportunities for a broad range of nonmajor science students at institutions with limited resources (e.g., community colleges. I created an activity for a general microbiology lecture to engage students in hands-on experiences via participation in online citizen-science projects. The objectives of the assignment were for students to: 1 understand that everyone can be a scientist; 2 learn to be creative and innovative in designing solutions to health and science challenges; and 3 further practice science communication skills with a written report. This activity is designed for introductory science courses with nonmajor science students who have limited opportunities to participate in undergraduate research experiences.

  20. SPECIAL REPORT - The KC EMPOWER Project: Designing More Accessible STEM Learning Activities

    Directory of Open Access Journals (Sweden)

    Bob Hirshon

    2016-01-01

    Full Text Available The overall purpose of the Kinetic City (KC Empower project was to examine how informal science activities can be made accessible for students with disabilities. The premise of this project was that all students, including those with disabilities, are interested in and capable of engaging in science learning experiences, if these experiences are accessible to them. Drawing on resources from Kinetic City, a large collection of science experiments, games, and projects developed by the American Association for the Advancement of Science (AAAS, the project researched and adapted five afterschool science activities guided by universal design for learning principles.

  1. Science Projects | Akron-Summit County Public Library

    Science.gov (United States)

    Hours & Locations Main Library Science & Technology Division Science Projects Science Projects Have fun with science experiments. Whether you need to do a project for a school science fair or you want to be a mad scientist, our Science Project Index and other resources can get you started. Find how

  2. The muon science facility at the JAERI/KEK joint project

    International Nuclear Information System (INIS)

    Miyake, Y.; Nishiyama, K.; Makimura, S.; Kawamura, N.; Shimomura, K.; Kadono, R.; Higemoto, W.; Fukuchi, K.; Beveridge, J.L.; Ishida, K.; Matsuzaki, T.; Watanabe, I.; Matsuda, Y.; Sakamoto, S.; Nakamura, S.N.; Nagamine, K.

    2003-01-01

    The Muon Science Facility is one of the experimental arenas of the JAERI/KEK Joint Project, which also includes neutron science, particle and nuclear physics, neutrino physics and nuclear transmutation science. Following the recommendations by the review committees, the Joint Project was finally approved for construction at the end of December, 2000. The approval is for Phase 1 of 1335 Oku Yen out of the total project cost of 1890 Oku Yen. It is planned to locate the muon science experimental area together with the neutron facility in an integrated building, as a facility for materials and life science studies. Because its construction will be started in April 2003, we are now working to complete the detailed design of the building structure, shielding, electrical services, cooling water, primary proton beam line, one muon target and secondary beam lines

  3. Assessing Motivations and Use of Online Citizen Science Astronomy Projects

    Science.gov (United States)

    Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole

    2018-01-01

    The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their

  4. The role of assessment infrastructures in crafting project-based science classrooms

    Science.gov (United States)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  5. Science communication in European projects

    International Nuclear Information System (INIS)

    Vachev, Boyko; Stamenov, Jordan

    2009-01-01

    Science communication in several resent successful projects of Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences (INRNE, BAS) from the 5th and 6th Framework Programmes of EC is presented: the joint INRNE, BAS project with JRC of EC (FP5 NUSES) and two subsequent Centre of Excellence projects (FP5 HIMONTONET and FP6 BEOBAL) are considered. Innovations and traditional forms development and application are discussed. An overview of presentation and communication of INRNE, BAS contribution to Bulgarian European Project is made. Good practices have been derived. Keywords: Science communication, European projects, Innovations

  6. Building a Creative Ecosystem: The Young Designers on Location Project

    Science.gov (United States)

    Davies, Dan; Howe, Alan; Haywood, Susan

    2004-01-01

    This article reports on findings from a research project designed to explore ways in which creativity can be fostered through interactions between selected children, particular environments, materials, techniques and key adults. The Young Designers on Location (YDoL) project was funded by the National Endowment for Science, Technology and the Arts…

  7. Testing the robustness of Citizen Science projects: Evaluating the results of pilot project COMBER.

    Science.gov (United States)

    Chatzigeorgiou, Giorgos; Faulwetter, Sarah; Dailianis, Thanos; Smith, Vincent Stuart; Koulouri, Panagiota; Dounas, Costas; Arvanitidis, Christos

    2016-01-01

    Citizen Science (CS) as a term implies a great deal of approaches and scopes involving many different fields of science. The number of the relevant projects globally has been increased significantly in the recent years. Large scale ecological questions can be answered only through extended observation networks and CS projects can support this effort. Although the need of such projects is apparent, an important part of scientific community cast doubt on the reliability of CS data sets. The pilot CS project COMBER has been created in order to provide evidence to answer the aforementioned question in the coastal marine biodiversity monitoring. The results of the current analysis show that a carefully designed CS project with clear hypotheses, wide participation and data sets validation, can be a valuable tool for the large scale and long term changes in marine biodiversity pattern change and therefore for relevant management and conservation issues.

  8. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  9. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  10. Mash-up of techniques between data crawling/transfer, data preservation/stewardship and data processing/visualization technologies on a science cloud system designed for Earth and space science: a report of successful operation and science projects of the NICT Science Cloud

    Science.gov (United States)

    Murata, K. T.

    2014-12-01

    Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT

  11. A Coastal Citizen Science Project - How to run an international Citizen Science Project?

    Science.gov (United States)

    Kruse, K.; Knickmeier, K.; Thiel, M.; Gatta, M.

    2016-02-01

    "Searching for plastic garbage" is an international Citizen Science project that aims to participate school students in the public discussion on the topic "plastic pollution in the ocean". For this, young people apply various research methods, evaluate their data, communicate and publish their results and investigate solutions solving this problem. The project will be carried out in Chile and Germany at the same time, which allows the participating students to share and compare their results and discuss their ideas with an international partner. This takes place on the website www.save-ocean.org. The project promotes intercultural and scientific skills of the students. They get insights into scientific research, get into another culture and experiences plastic pollution as an important global problem. Since May 2015, 450 pupils aged 10 to 15 years and 20 teachers in Germany and Chile have explored the plastic garbage on beaches. Where are the largest plastic garbage deposits? Which items of plastic are mostly found in Germany and Chile? Or where does this garbage comes from? These and other research questions are being answered by an international network between students, teachers and scientists. After completing the first Citizen Science pilot study successfully in summer 2015, the entire German and Chilean coast will be explored in spring 2016 by around 2500 participating school students. The project "Searching for plastic garbage" is the first international Citizen Science project that is a cooperation between the ocean:lab of Kiel Science Factory and the "Cientificos de la Basura", a project of the department of marine biology at University Catolica del Norte in Coquimbo, Chile. The project is supported by the Cluster of Excellence "The Future Ocean", the Leibniz Institute for Science Education and Mathematics (IPN), the Ministry of School and Professional Education of Land Schleswig-Holstein and the University Catolica del Norte in Coquimbo, Chile

  12. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  13. Reflexivity in performative science shop projects

    OpenAIRE

    Beunen, R.; Duineveld, M.; During, R.; Straver, G.H.M.B.; Aalvanger, A.

    2012-01-01

    Science shop research projects offer possibilities for universities to engage with communities. Many science shop projects directly or indirectly intend to empower certain marginalised groups or interests within a decision-making process. In this article we argue that it is important to reflect on the role and position the researchers have in these projects. We present three science shop projects to illustrate some of the dilemmas that may arise in relation to citizen empowerment, democracy, ...

  14. Collaborative online projects for English language learners in science

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Knox, Carolyn; Rivas, Carmen

    2013-12-01

    This paper summarizes how collaborative online projects (COPs) are used to facilitate science content-area learning for English Learners of Hispanic origin. This is a Mexico-USA partnership project funded by the National Science Foundation. A COP is a 10-week thematic science unit, completely online, and bilingual (Spanish and English) designed to provide collaborative learning experiences with culturally and linguistically relevant science instruction in an interactive and multimodal learning environment. Units are integrated with explicit instructional lessons that include: (a) hands-on and laboratory activities, (b) interactive materials and interactive games with immediate feedback, (c) animated video tutorials, (d) discussion forums where students exchange scientific learning across classrooms in the USA and in Mexico, and (e) summative and formative assessments. Thematic units have been aligned to U.S. National Science Education Standards and are under current revisions for alignment to the Common Core State Standards. Training materials for the teachers have been integrated into the project website to facilitate self-paced and independent learning. Preliminary findings of our pre-experimental study with a sample of 53 students (81 % ELs), distributed across three different groups, resulted in a 21 % statistically significant points increase from pretest to posttest assessments of science content learning, t( 52) = 11.07, p = .000.

  15. Scientific literacy of adult participants in an online citizen science project

    Science.gov (United States)

    Price, Charles Aaron

    Citizen Science projects offer opportunities for non-scientists to take part in scientific research. Scientific results from these projects have been well documented. However, there is limited research about how these projects affect their volunteer participants. In this study, I investigate how participation in an online, collaborative astronomical citizen science project can be associated with the scientific literacy of its participants. Scientific literacy is measured through three elements: attitude towards science, belief in the nature of science and competencies associated with learning science. The first two elements are measured through a pre-test given to 1,385 participants when they join the project and a post-test given six months later to 125 participants. Attitude towards science was measured using nine Likert-items custom designed for this project and beliefs in the nature of science were measured using a modified version of the Nature of Science Knowledge scale. Responses were analyzed using the Rasch Rating Scale Model. Competencies are measured through analysis of discourse occurring in online asynchronous discussion forums using the Community of Inquiry framework, which describes three types of presence in the online forums: cognitive, social and teaching. Results show that overall attitudes did not change, p = .225. However, there was significant change towards attitudes about science in the news (positive) and scientific self efficacy (negative), p impact on some aspects of scientific literacy. Using the Rasch Model allowed us to uncover effects that may have otherwise been hidden. Future projects may want to include social interactivity between participants and also make participants specifically aware of how they are contributing to the entire scientific process.

  16. Participatory Design of Citizen Science Experiments

    Science.gov (United States)

    Senabre, Enric; Ferran-Ferrer, Nuria; Perelló, Josep

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through co-creation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention…

  17. Weekend Science Project

    Science.gov (United States)

    Santos, Karey

    2012-01-01

    Weekend plans...every family has them. Whether it's fishing, swimming, or simply picnicking by the river, water plays a significant role in many recreational endeavors. Encouraging students and their families to use their "scientific eyes" to explore these wonderful wet places is what Weekend Science Project is all about. Weekend Science Project…

  18. The effects of topic choice in project-based instruction on undergraduate physical science students' interest, ownership, and motivation

    Science.gov (United States)

    Milner-Bolotin, Marina

    2001-07-01

    Motivating nonscience majors in science and mathematics studies became one of the most interesting and important challenges in contemporary science and mathematics education. Therefore, designing and studying a learning environment, which enhances students' motivation, is an important task. This experimental study sought to explore the implications of student autonomy in topic choice in a project-based Physical Science Course for nonscience majors' on students' motivational orientation. It also suggested and tested a model explaining motivational outcomes of project-based learning environment through increased student ownership of science projects. A project, How Things Work, was designed and implemented in this study. The focus of the project was application of physical science concepts learned in the classroom to everyday life situations. Participants of the study (N = 59) were students enrolled in three selected sections of a Physical Science Course, designed to fulfill science requirements for nonscience majors. These sections were taught by the same instructor over a period of an entire 16-week semester at a large public research university. The study focused on four main variables: student autonomy in choosing a project topic, their motivational orientation, student ownership of the project, and the interest in the project topic. Achievement Goal Orientation theory became the theoretical framework for the study. Student motivational orientation, defined as mastery or performance goal orientation, was measured by an Achievement Goal Orientation Questionnaire. Student ownership was measured using an original instrument, Ownership Measurement Questionnaire, designed and tested by the researchers. Repeated measures yoked design, ANOVA, ANCOVA, and multivariate regression analysis were implemented in the study. Qualitative analysis was used to complement and verify quantitative results. It has been found that student autonomy in the project choice did not make a

  19. The LOFAR Transients Key Science Project

    NARCIS (Netherlands)

    Stappers, B.; Fender, R.; Wijers, R.

    2009-01-01

    The Transients Key Science Project (TKP) is one of six Key Science Projects of the next generation radio telescope LOFAR. Its aim is the study of transient and variable low-frequency radio sources with an extremely broad science case ranging from relativistic jet sources to pulsars, exoplanets,

  20. Integration of case study approach, project design and computer ...

    African Journals Online (AJOL)

    Integration of case study approach, project design and computer modeling in managerial accounting education ... Journal of Fundamental and Applied Sciences ... in the Laboratory of Management Accounting and Controlling Systems at the ...

  1. Designing Philadelphia Land Science as a Game to Promote Identity Exploration

    Science.gov (United States)

    Barany, Amanda; Shah, Mamta; Cellitti, Jessica; Duka, Migela; Swiecki, Zachari; Evenstone, Amanda; Kinley, Hannah; Quigley, Peter; Shaffer, David Williamson; Foster, Aroutis

    2017-01-01

    Few digital tools are designed to support identity exploration around careers in science, technology, engineering, and mathematics (STEM) that may help close existing representation gaps in STEM fields. The aim of this project is to inform the design of games that facilitate learning as identity change as defined by the Projective Reflection…

  2. The Use of Online Citizen-Science Projects to Provide Experiential Learning Opportunities for Nonmajor Science Students?

    OpenAIRE

    Kridelbaugh, Donna M.

    2016-01-01

    Citizen science is becoming even more accessible to the general public through technological advances in the development of mobile applications, facilitating information dissemination and data collection. With the advent of “big data,” many citizen-science projects designed to help researchers sift through piles of research data now exist entirely online, either in the form of playing a game or via other digital avenues. Recent trends in citizen science have also focused on “crowdsourcing” so...

  3. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  4. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  5. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  6. The Square Kilometre Array Science Data Processor. Preliminary compute platform design

    International Nuclear Information System (INIS)

    Broekema, P.C.; Nieuwpoort, R.V. van; Bal, H.E.

    2015-01-01

    The Square Kilometre Array is a next-generation radio-telescope, to be built in South Africa and Western Australia. It is currently in its detailed design phase, with procurement and construction scheduled to start in 2017. The SKA Science Data Processor is the high-performance computing element of the instrument, responsible for producing science-ready data. This is a major IT project, with the Science Data Processor expected to challenge the computing state-of-the art even in 2020. In this paper we introduce the preliminary Science Data Processor design and the principles that guide the design process, as well as the constraints to the design. We introduce a highly scalable and flexible system architecture capable of handling the SDP workload

  7. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  8. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  9. Citizens Science for Sustainability (SuScit) Project Briefing

    DEFF Research Database (Denmark)

    Eames, Malcolm; Mortensen, Jonas Egmose; Adebowale, Maria

    This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project.......This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project....

  10. Animal Science Project

    International Nuclear Information System (INIS)

    Anon.

    Researches carried out in the 'Animal Science Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo state, Brazil, are described. Such researches comprise : immunology and animal nutrition. Tracer techniques are employed in this study. (M.A.) [pt

  11. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  12. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Project Lifescape. This project is part of the Academy initiative to enhance the quality of science education. It is pursued in collaboration with the Centre for Ecological Sciences at the Indian Institute of Science to spread biodiversity literacy, expecially within the high school and college student community, and to involve them ...

  13. ScienceDesk Project Overview

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  14. System design of a proton linac for the neutron science project at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hasegawa, Kazuo; Mizumoto, Motoharu; Ouchi, Nobuo; Honda, Yoichiro; Ino, Hiroshi

    1999-01-01

    The Japan Atomic Energy Research Institute has been proposing the Neutron Science Project (NSP). The NSP requires pulse and CW proton beams with an energy of 1.5 GeV and an average beam power up to 8MW. This paper describes design concepts and parameters of the linac. A front end part of the linac, which consists of RFQ, DTL and SDTL sections, uses normal conducting structures and a high energy part uses superconducting (SC) structures. The linac has two injector lines for the pulse and the CW modes, respectively, and the two lines merge at 7 MeV. The total linac length is approximately 900 m and most of the part (>75%) is the superconducting section. An equipartitioning design, which is a new idea to suppress an emittance growth for high power linacs, has been taken for the DTL, the SDTL and the SC sections. Compared with the conventional constant phase advance design scheme, the equipartitioning design scheme is proved to be a good approach to suppress the longitudinal emittance growth. (author)

  15. Cultivation of students' engineering designing ability based on optoelectronic system course project

    Science.gov (United States)

    Cao, Danhua; Wu, Yubin; Li, Jingping

    2017-08-01

    We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.

  16. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    Science.gov (United States)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  17. Participatory design of citizen science experiments

    OpenAIRE

    Senabre, Enric; Ferran Ferrer, Núria; Perelló, Josep, 1974-

    2018-01-01

    This article describes and analyzes the collaborative design of a citizen science research project through cocreation. Three groups of secondary school students and a team of scientists conceived three experiments on human behavior and social capital in urban and public spaces. The study goal is to address how interdisciplinary work and attention to social concerns and needs, as well as the collective construction of research questions, can be integrated into scientific research. The 95 stude...

  18. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  19. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    standards for quality of teaching, and an educational agenda that promotes high standards for all students, Aeronautics and Aviation Science: Careers and Opportunities had as its aim to deliver products to schools, both in and outside the project sites, which attempt to incorporate multi-disciplined approaches in the presentation of a curriculum which would be appropriate in any classroom, while also aiming to appeal to young women and minorities. The curriculum was developed to provide students with fundamentals of aeronautics and aviation science. The curriculum also encouraged involving students and teachers in research projects, and further information gathering via electronic bulletin boards and internet capabilities. Though not entirely prescriptive, the curriculum was designed to guide teachers through recommended activities to supplement MCET's live telecast video presentations. Classroom teachers were encouraged to invite local pilots, meteorologists, and others from the field of aviation and aeronautics, particularly women and minorities to visit schools and to field questions from the students.

  20. Primary teachers conducting inquiry projects : effects on attitudes towards teaching science and conducting inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte; van Hest, Erna G.W.C.M.; Poortman, Cindy Louise

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers’ attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of

  1. Project X: Accelerator Reference Design

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Stephen D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-06-20

    Project X is a high-intensity proton facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. Project X is an integral part of the U.S. Intensity Frontier Roadmap as described in the P5 report of May 2008 [1] and within the Fermilab Strategic Plan of November 2011 [2]. This document represents Part I of the “Project X Book” describing the Project X accelerator facility and the broad range of physics research opportunities enabled by Project X. Parts II and III provide in-depth descriptions of the physics research program, both within and beyond particle physics [3]. The primary elements of the U.S. program to be supported by Project X include: Neutrino Experiments: Experimental studies of neutrino oscillations and neutrino interaction physics with ultra-intense neutrino beams provided by a high-power proton source with energies up to 120 GeV, utilizing near detectors at the Fermilab site and massive detectors at distant underground laboratories. Goal: At least 2 MW of proton beam power at any energy between 60 to 120 GeV; several hundred kW of proton beam power on target at 8 GeV. Kaon, Muon, Nucleon, and Neutron Precision Experiments: World-leading experiments studying ultra-rare kaon decays, searching for muon-to-electron conversion and nuclear electron dipole moments (EDMs), and exploring neutron properties at very high precision. Goal: MW-class proton beams supporting multiple experiments at 1 and 3 GeV, with flexible capability for providing distinct beam formats to concurrent users while allowing simultaneous operations with the neutrino program. Material Science and Nuclear Energy Applications: High-intensity accelerator, spallation, target and transmutation technology demonstrations will provide critical input into the design of future energy systems, including next generation fission reactors, nuclear waste transmutation systems and future thorium fuel-cycle power systems. Possible

  2. Closed and Open Design Projects in the Education of Engineers

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel

    1965-01-01

    The two aspects of engineering education are the teaching of science and the teaching of design. By ``design'' is meant the procedure of selecting and combining distinct elements to create complete systems which will perform useful functions. In this paper, the author describes the application of...... of this concept of design teaching at The Technical University of Denmark, after a procedure which includes a sequence of closed and open design projects in both computational and experimental laboratories...

  3. Project BudBurst: Continental-scale citizen science for all seasons

    Science.gov (United States)

    Henderson, S.; Newman, S. J.; Ward, D.; Havens-Young, K.; Alaback, P.; Meymaris, K.

    2011-12-01

    Project BudBurst's (budburst.org) recent move to the National Ecological Observatory Network (NEON) has benefitted both programs. NEON has been able to use Project BudBurst as a testbed to learn best practices, network with experts in the field, and prototype potential tools for engaging people in continental-scale ecology as NEON develops its citizen science program. Participation in Project BudBurst has grown significantly since the move to NEON. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. This presentation will provide an overview of Project BudBurst and will report on the results of the 2010 field campaign and discuss plans to expand Project BudBurst in 2012 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst is co-managed by the National Ecological Observatory Network and the Chicago

  4. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  5. Designing for expansive science learning and identification across settings

    Science.gov (United States)

    Stromholt, Shelley; Bell, Philip

    2017-10-01

    In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.

  6. Building an mlearning research framework through design science research

    CSIR Research Space (South Africa)

    Ford, M

    2014-11-01

    Full Text Available The purpose of this paper is to provide an explanation of how Design Science research has been applied in order to develop a mobile learning framework for the ICT4RED project which is currently in progress in Cofimvaba in the Eastern Cape Province...

  7. System design projects for undergraduate design education

    Science.gov (United States)

    Batill, S. M.; Pinkelman, J.

    1993-01-01

    Design education has received considerable in the recent past. This paper is intended to address one aspect of undergraduate design education and that is the selection and development of the design project for a capstone design course. Specific goals for a capstone design course are presented and their influence on the project selection are discussed. The evolution of a series of projects based upon the design of remotely piloted aircraft is presented along with students' perspective on the capstone experience.

  8. Looking at Life. Teacher's Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  9. Primary Teachers Conducting Inquiry Projects: Effects on Attitudes towards Teaching Science and Conducting Inquiry

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious…

  10. Student cognition and motivation during the Classroom BirdWatch citizen science project

    Science.gov (United States)

    Tomasek, Terry Morton

    The purpose of this study was to examine and describe the ways various stakeholders (CBW project developer/coordinator, elementary and middle school teachers, and 5th through 8th grade students) envisioned, implemented and engaged in the citizen science project, eBird/Classroom BirdWatch. A multiple case study mixed-methods research design was used to examine student engagement in the cognitive processes associated with scientific inquiry as part of citizen science participation. Student engagement was described based on a sense of autonomy, competence, relatedness and intrinsic motivation. A goal of this study was to expand the taxonomy of differences between authentic scientific inquiry and simple inquiry to include those inquiry tasks associated with participation in citizen science by describing how students engaged in this type of science. This research study built upon the existing framework of cognitive processes associated with scientific inquiry described by Chinn and Malhotra (2002). This research provides a systematic analysis of the scientific processes and related reasoning tasks associated with the citizen science project eBird and the corresponding curriculum Classroom BirdWatch . Data consisted of responses to surveys, focus group interviews, document analysis and individual interviews. I suggest that citizen science could be an additional form of classroom-based science inquiry that can promote more authentic features of scientific inquiry and engage students in meaningful ways.

  11. Accelerating Science Driven System Design With RAMP

    Energy Technology Data Exchange (ETDEWEB)

    Wawrzynek, John [Univ. of California, Berkeley, CA (United States)

    2015-05-01

    Researchers from UC Berkeley, in collaboration with the Lawrence Berkeley National Lab, are engaged in developing an Infrastructure for Synthesis with Integrated Simulation (ISIS). The ISIS Project was a cooperative effort for “application-driven hardware design” that engages application scientists in the early parts of the hardware design process for future generation supercomputing systems. This project served to foster development of computing systems that are better tuned to the application requirements of demanding scientific applications and result in more cost-effective and efficient HPC system designs. In order to overcome long conventional design-cycle times, we leveraged reconfigurable devices to aid in the design of high-efficiency systems, including conventional multi- and many-core systems. The resulting system emulation/prototyping environment, in conjunction with the appropriate intermediate abstractions, provided both a convenient user programming experience and retained flexibility, and thus efficiency, of a reconfigurable platform. We initially targeted the Berkeley RAMP system (Research Accelerator for Multiple Processors) as that hardware emulation environment to facilitate and ultimately accelerate the iterative process of science-driven system design. Our goal was to develop and demonstrate a design methodology for domain-optimized computer system architectures. The tangible outcome is a methodology and tools for rapid prototyping and design-space exploration, leading to highly optimized and efficient HPC systems.

  12. Curiosity: the Mars Science Laboratory Project

    Science.gov (United States)

    Cook, Richard A.

    2012-01-01

    The Curiosity rover landed successfully in Gale Crater, Mars on August 5, 2012. This event was a dramatic high point in the decade long effort to design, build, test and fly the most sophisticated scientific vehicle ever sent to Mars. The real achievements of the mission have only just begun, however, as Curiosity is now searching for signs that Mars once possessed habitable environments. The Mars Science Laboratory Project has been one of the most ambitious and challenging planetary projects that NASA has undertaken. It started in the successful aftermath of the 2003 Mars Exploration Rover project and was designed to take significant steps forward in both engineering and scientific capabilities. This included a new landing system capable of emplacing a large mobile vehicle over a wide range of potential landing sites, advanced sample acquisition and handling capabilities that can retrieve samples from both rocks and soil, and a high reliability avionics suite that is designed to permit long duration surface operations. It also includes a set of ten sophisticated scientific instruments that will investigate both the geological context of the landing site plus analyze samples to understand the chemical & organic composition of rocks & soil found there. The Gale Crater site has been specifically selected as a promising location where ancient habitable environments may have existed and for which evidence may be preserved. Curiosity will spend a minimum of one Mars year (about two Earth years) looking for this evidence. This paper will report on the progress of the mission over the first few months of surface operations, plus look retrospectively at lessons learned during both the development and cruise operations phase of the mission..

  13. Science projects in renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    First, the book is written for teachers and other adults who educate children in grades K-12. This allows us to include projects with a variety of levels of difficulty, leaving it to the teacher to adapt them to the appropriate skill level. Second, the book generally focuses on experimental projects that demonstrate the scientific method. We believe that learning the experimental process is most beneficial for students and prepares them for further endeavors in science and for life itself by developing skills in making decisions and solving problems. Although this may appear to limit the book's application to more advanced students and more experienced science teachers, we hope that some of the ideas can be applied to beginning science classes. In addition, we recognize that there are numerous sources of nonexperimental science activities in the field and we hope this book will fill a gap in the available material. Third, we've tried to address the difficulties many teachers face in helping their students get started on science projects. By explaining the process and including extensive suggestions of resources -- both nationally and locally -- we hope to make the science projects more approachable and enjoyable. We hope the book will provide direction for teachers who are new to experimental projects. And finally, in each section of ideas, we've tried to include a broad sampling of projects that cover most of the important concepts related to each technology. Additional topics are listed as one-liners'' following each group of projects.

  14. A Research Design for NASA-Funded Professional Development Projects

    Science.gov (United States)

    Bleicher, R. E.; Lambert, J.; Getty, S. R.

    2011-12-01

    This proposal outlines a research plan designed to measure gains in student learning resulting from their teachers participating in professional development. Project Description Misconceptions about global climate change (GCC) are prevalent in the general public (Kellstedt, Zahran, & Vedlitz, 2008; Washington & Cook, 2011). One solution is to provide high school students with a better grounding in the basic science and data that underlie GCC. The overarching goal of a NASA-funded project, Promoting Educational Leadership in Climate Change Literacy (PEL), is to increase GCC literacy in high school students. Research Design The research design is interpretative (Erickson, 2006), framed within a multi-method design, synthesizing both quantitative and qualitative data sources (Morse, 2003). Overall, the data will provide rich information about the PEL's impact on curriculum development, teacher pedagogical knowledge, and student learning. The expectancy-value theory of achievement motivation (E-V-C) (Fan, 2011; Wigfield & Eccles, 1994) provides a theoretical foundation for the research. Expectancy is the degree to which a teacher or student has reason to expect that they will be successful in school. Value indicates whether they think that performance at school will be worthwhile to them. Cost is the perceived sacrifices that must be undertaken, or factors that can inhibit, a successful performance at school. For students, data from an embedded E-V-C investigation will help articulate how E-V-C factors relate to student interest in science, continuing to study science, or embarking on STEM related careers. For teachers, the E-V-C measures will give insight into a key mediating variable on student achievement in science. The evaluation will seek to address research questions at the student and teacher levels. Table 1 presents a sample of research questions and data sources. This is a sample of a much larger set of questions that will be addressed in the project. Data

  15. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    Haas, Andrew; The ATLAS collaboration

    2016-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the surprising results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices.

  16. Forces. 'O' Level Teacher's Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  17. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  18. Science teachers' meaning-making when involved in a school-based professional development project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2012-01-01

    A group of teachers’ meaning-making when they are collaboratively analyzing artifacts from practice in local science classrooms in a school-based professional development (PD) project is examined through repeated interviews and represented as meaning-making maps. The interpretation of the teachers......’ meaningmaking includes both their reference to outcomes from the project and their expressed ideas about teaching and learning of science. All four teachers refer to experiences from experimenting in their classrooms and interpret the collected artifacts in relation to students’ learning. Furthermore, they all...... felt encouraged to continue collaboration around science. During the interviews, the teachers emphasize various elements apparently connected to concrete challenges they each experience in their professional work. Implications in relation to the design of PD are discussed....

  19. Science teachers' meaning-making when involved in a school-based professional development project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2012-01-01

    A group of teachers' meaning-making when they are collaboratively analyzing artifacts from practice in local science classrooms in a school-based professional development (PD) project is examined through repeated interviews and represented as meaning-makig maps. The interpretation of the teachers......' meaning-making includes both their reference to outcomes from the project and their expressed ideas about teaching and learning of science. All four teachers refer to experiences from experimenting in their classrooms and interpret the collected artifacts in relation to students' learning. Furthermore......, they all felt encouraged to continue collaboration around science. During the interviews, the teachers emphasize various elements apparently connected to concrete challenges they each experience in their professional work. Implications in relation to the design of PD are discussed....

  20. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  1. 4-H Textile Science Beginner Projects.

    Science.gov (United States)

    Scholl, Jan

    This packet contains three 4-H projects for students beginning the sewing sequence of the textile sciences area. The projects cover basics of sewing using sewing machines, more difficult sewing machine techniques, and hand sewing. Each project provides an overview of what the student will learn, what materials are needed, and suggested projects…

  2. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  3. Technology Foresight For Youth: A Project For Science and Technology Education in Sweden

    Science.gov (United States)

    Kendal, Anne Louise

    "Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.

  4. The design explorer project

    DEFF Research Database (Denmark)

    Pejtersen, Annelise Mark; Sonnenwald, Diane H.; Buur, Jacob

    1997-01-01

    the 'Design Explorer' research project whose goal is to specify requirements for an information system that will effectively help design team members from different domains and organizational cultures to locate and utilize diverse information sources and interact more effectively throughout the design process....... The project introduces a new approach to support of design; instead of design guidelines, support is given by creating a transparent information environment in which designers can navigate freely according to their individual preferences. The project is based on a framework that structures the dimensions......, or categories, of domain information which need to be available for a system or product designer/design team in order to determine the characteristics of the artefact, or object of design. These dimensions include information about the different work domains in which the product plays a role during its lifetime...

  5. A feeling for Systems Development Work - Design of the ROSA project

    DEFF Research Database (Denmark)

    Bødker, Susanne; Greenbaum, Joan

    1988-01-01

    This article is based on the design of a research project that will look at intuition, learning processes, language and roles in the development of computer systems. The research project, called ROSA (a Danish acronym for Roles and Cooperation in Systems Development) grew out of our interest...... in the informal working practices among systems developers, because it is these informal working relationships that are most often overlooked in research about computer science methods and tools. The project applies a gender perspective to look at the informal work relations of systems developers. The concept...

  6. [Nebraska 4-H Wheat Science School Enrichment Project, Teacher/Leader Guides 213-222 and 227.

    Science.gov (United States)

    Nebraska Univ., Lincoln. Inst. of Agriculture and Natural Resources.

    Through the 4-H Wheat Science project, students learn the importance of wheat from the complete process of growing wheat to the final product of bread. The curriculum is designed to include hands-on experiences in science, consumer education, nutrition, production economics, vocabulary, and applied mathematics. Teachers can select those units out…

  7. Project-Based Learning as a Vehicle for Teaching Science at the University Level

    Science.gov (United States)

    Courtney, A. R.; Wade, P.

    2012-12-01

    In a typical science course learning is teacher directed. Students are presented with knowledge and concepts via textbooks and lecture and then given the opportunity to apply them. Project-based learning (PBL) creates a context and reason to learn information and concepts. In PBL, learning is student directed and teacher facilitated. Students take ownership of their learning by finding, evaluating and synthesizing information from a variety of resources and via interaction between each other. In PBL, the project is central rather than peripheral to the curriculum. It is not just an activity that provides examples, additional practice or applications of the course content, but rather, the vehicle through which major concepts are discovered. The PBL process requires students to do revision and reflection encouraging them to think about what and how they are learning. PBL projects also allow students to develop important life-work skills such as collaboration, communication and critical thinking within the discipline. We have employed PBL in both Liberal Arts courses for non-science majors and upper division courses for science students. Three examples will be discussed. The first will be the production of video documentaries in a non-science major course; the second, a student generated electronic textbook in a 300-level energy course for science students; and lastly, a student designed analysis project in a chemistry major capstone laboratory course. The product in each of these examples was used to deliver knowledge to others in the class as well as members of the public providing motivation for students to do high-quality work. In our examples, student documentaries are publicly screened as part of a university-wide Academic Excellence Showcase; the student generated electronic textbook is available for public use on the internet; and the results of the student designed analysis were communicated to the real-world clients via letters and reports. We will discuss

  8. 34 CFR 637.41 - What are the cost restrictions on design project grants?

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What are the cost restrictions on design project grants...) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION MINORITY SCIENCE AND ENGINEERING IMPROVEMENT PROGRAM What Conditions Must be Met by a Grantee? § 637.41 What are the cost restrictions on design...

  9. Benefits of co-design in service design projects

    NARCIS (Netherlands)

    Steen, M.; Manschot, M.A.J.; De Koning, N.

    2011-01-01

    In many service design projects, co-design is seen as critical to success and a range of benefits are attributed to co-design. In this paper, we present an overview of benefits of co-design in service design projects, in order to help the people involved to articulate more precisely and

  10. Benefits of Co-design in Service Design Projects

    NARCIS (Netherlands)

    Steen, M.G.D.; Manschot, M.; Koning, N. de

    2011-01-01

    In many service design projects, co-design is seen as critical to success and a range of benefits are attributed to co-design. In this paper, we present an overview of benefits of co-design in service design projects, in order to help the people involved to articulate more precisely and

  11. The LOFAR Magnetism Key Science Project

    NARCIS (Netherlands)

    Anderson, James; Beck, Rainer; Bell, Michael; de Bruyn, Ger; Chyzy, Krzysztof; Eislöffel, Jochen; Enßlin, Torsten; Fletcher, Andrew; Haverkorn, Marijke; Heald, George; Horneffer, Andreas; Noutsos, Aris; Reich, Wolfgang; Scaife, Anna; the LOFAR collaboration, [No Value

    2012-01-01

    Measuring radio waves at low frequencies offers a new window to study cosmic magnetism, and LOFAR is the ideal radio telescope to open this window widely. The LOFAR Magnetism Key Science Project (MKSP) draws together expertise from multiple fields of magnetism science and intends to use LOFAR to

  12. Designing Project Management

    NARCIS (Netherlands)

    Heintz, John Linke; Lousberg, L.; Wamelink, J.W.F.; Saari, A.; Huovinen, P.

    2016-01-01

    In this paper we introduce the concept of Designing Project Management. On the basis of our earlier work, we suggest that there is still a gap between what is known from recent project management literature and what project managers can structurally help in the effectiveness of their work. Assuming

  13. Live Storybook Outcomes of Pilot Multidisciplinary Elementary Earth Science Collaborative Project

    Science.gov (United States)

    Soeffing, C.; Pierson, R.

    2017-12-01

    Live Storybook Outcomes of pilot multidisciplinary elementary earth science collaborative project Anchoring phenomena leading to student led investigations are key to applying the NGSS standards in the classroom. This project employs the GLOBE elementary storybook, Discoveries at Willow Creek, as an inspiration and operational framework for a collaborative pilot project engaging 4th grade students in asking questions, collecting relevant data, and using analytical tools to document and understand natural phenomena. The Institute of Global Environmental Strategies (IGES), a GLOBE Partner, the Outdoor Campus, an informal educational outdoor learning facility managed by South Dakota Game, Fish and Parks, University of Sioux Falls, and All City Elementary, Sioux Falls are collaborating partners in this project. The Discoveries at Willow Creek storyline introduces young students to the scientific process, and models how they can apply science and engineering practices (SEPs) to discover and understand the Earth system in which they live. One innovation associated with this project is the formal engagement of elementary students in a global citizen science program (for all ages), GLOBE Observer, and engaging them in data collection using GLOBE Observer's Cloud and Mosquito Habitat Mapper apps. As modeled by the fictional students from Willow Creek, the 4th grade students will identify their 3 study sites at the Outdoor Campus, keep a journal, and record observations. The students will repeat their investigations at the Outdoor Campus to document and track change over time. Students will be introduced to "big data" in a manageable way, as they see their observations populate GLOBE's map-based data visualization and . Our research design recognizes the comfort and familiarity factor of literacy activities in the elementary classroom for students and teachers alike, and postulates that connecting a science education project to an engaging storybook text will contribute to a

  14. Taking a 'Big Data' approach to data quality in a citizen science project.

    Science.gov (United States)

    Kelling, Steve; Fink, Daniel; La Sorte, Frank A; Johnston, Alison; Bruns, Nicholas E; Hochachka, Wesley M

    2015-11-01

    Data from well-designed experiments provide the strongest evidence of causation in biodiversity studies. However, for many species the collection of these data is not scalable to the spatial and temporal extents required to understand patterns at the population level. Only data collected from citizen science projects can gather sufficient quantities of data, but data collected from volunteers are inherently noisy and heterogeneous. Here we describe a 'Big Data' approach to improve the data quality in eBird, a global citizen science project that gathers bird observations. First, eBird's data submission design ensures that all data meet high standards of completeness and accuracy. Second, we take a 'sensor calibration' approach to measure individual variation in eBird participant's ability to detect and identify birds. Third, we use species distribution models to fill in data gaps. Finally, we provide examples of novel analyses exploring population-level patterns in bird distributions.

  15. Earth Science Capability Demonstration Project

    Science.gov (United States)

    Cobleigh, Brent

    2006-01-01

    A viewgraph presentation reviewing the Earth Science Capability Demonstration Project is shown. The contents include: 1) ESCD Project; 2) Available Flight Assets; 3) Ikhana Procurement; 4) GCS Layout; 5) Baseline Predator B Architecture; 6) Ikhana Architecture; 7) UAV Capability Assessment; 8) The Big Picture; 9) NASA/NOAA UAV Demo (5/05 to 9/05); 10) NASA/USFS Western States Fire Mission (8/06); and 11) Suborbital Telepresence.

  16. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-07-01

    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  17. Design, science and naturalism

    Science.gov (United States)

    Deming, David

    2008-09-01

    The Design Argument is the proposition that the presence of order in the universe is evidence for the existence of God. The Argument dates at least to the presocratic Greek philosophers, and is largely based on analogical reasoning. Following the appearance of Aquinas' Summa Theologica in the 13th century, the Christian Church in Europe embraced a Natural Theology based on observation and reason that allowed it to dominate the entire world of knowledge. Science in turn advanced itself by demonstrating that it could be of service to theology, the recognized queen of the sciences. During the heyday of British Natural Theology in the 17th and 18th centuries, the watchmaker, shipbuilder, and architect analogies were invoked reflexively by philosophers, theologians, and scientists. The Design Argument was not systematically and analytically criticized until David Hume wrote Dialogues on Natural Religion in the 1750s. After Darwin published Origin of Species in 1859, Design withered on the vine. But in recent years, the Argument has been resurrected under the appellation "intelligent design," and been the subject of political and legal controversy in the United States. Design advocates have argued that intelligent design can be formulated as a scientific hypothesis, that new scientific discoveries validate a design inference, and that naturalism must be removed as a methodological requirement in science. If science is defined by a model of concentric epistemological zonation, design cannot be construed as a scientific hypothesis because it is inconsistent with the core aspects of scientific methodology: naturalism, uniformity, induction, and efficient causation. An analytical examination of claims by design advocates finds no evidence of any type to support either scientific or philosophical claims that design can be unambiguously inferred from nature. The apparent irreducible complexity of biological mechanisms may be explained by exaptation or scaffolding. The argument

  18. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  19. Water Integration Project Science Strategies White Paper

    International Nuclear Information System (INIS)

    Alan K. Yonk

    2003-01-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document

  20. Water Integration Project Science Strategies White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  1. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  2. Virtual Mockup test based on computational science and engineering. Near future technology projected by JSPS-RFTFADVENTURE project

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu

    2001-01-01

    The ADVENTURE project began on August, 1997, as a project in the computational science' field of JSPS-RFTFADVENTURE project, and is progressed as five year project. In this project, by using versatile parallel computer environment such as PC cluster, super parallel computer, and so on , to solve an arbitrary shape of actual dynamical equation by using 10 to 100 million freedom class mode under maintaining a general use analytical capacity agreeable with present general use computational mechanics system, further development of a large-scale parallel computational mechanics system (ADVENTURE system) capable of carrying out an optimization design on shapes, physical properties, loading conditions, and so on is performed. Here was scoped, after outlining on background of R and D on ADVENTURE system and its features, on near future virtual mockup test forecast from it. (G.K.)

  3. Elementary and middle school science improvement project

    Science.gov (United States)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  4. Progress of JAERI neutron science project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    Neutron Science Project was started at Japan Atomic Energy Research Institute since 1996 for promoting futuristic basic science and nuclear technology utilizing neutrons. For this purpose, research and developments of intense proton accelerator and spallation neutron target were initiated. The present paper describes the current status of such research and developments. (author)

  5. Scientist-teacher collaboration: Integration of real data from a coastal wetland into a high school life science ecology-based research project

    Science.gov (United States)

    Hagan, Wendy L.

    Project G.R.O.W. is an ecology-based research project developed for high school biology students. The curriculum was designed based on how students learn and awareness of the nature of science and scientific practices so that students would design and carry out scientific investigations using real data from a local coastal wetland. This was a scientist-teacher collaboration between a CSULB biologist and high school biology teacher. Prior to implementing the three-week research project, students had multiple opportunities to practice building requisite skills via 55 lessons focusing on the nature of science, scientific practices, technology, Common Core State Standards of reading, writing, listening and speaking, and Next Generation Science Standards. Project G.R.O.W. culminated with student generated research papers and oral presentations. Outcomes reveal students struggle with constructing explanations and the use of Excel to create meaningful graphs. They showed gains in data organization, analysis, teamwork and aspects of the nature of science.

  6. Project management of life-science research projects: project characteristics, challenges and training needs.

    Science.gov (United States)

    Beukers, Margot W

    2011-02-01

    Thirty-four project managers of life-science research projects were interviewed to investigate the characteristics of their projects, the challenges they faced and their training requirements. A set of ten discriminating parameters were identified based on four project categories: contract research, development, discovery and call-based projects--projects set up to address research questions defined in a call for proposals. The major challenges these project managers are faced with relate to project members, leadership without authority and a lack of commitment from the respective organization. Two-thirds of the project managers indicated that they would be interested in receiving additional training, mostly on people-oriented, soft skills. The training programs that are currently on offer, however, do not meet their needs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Atoms and Molecules. 'O' Level. Teacher's Guide. Unit 2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Mandizha, George

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…

  8. Soil Science self-learning based on the design and conduction of experiments

    Science.gov (United States)

    Jordán, A.; Bárcenas-Moreno, G.; Zavala, L. M.

    2012-04-01

    This paper presents an experience for introducing the methodology of project-based learning (PBL) in the area of Soil Science in the University of Sevilla (Spain). Currently, teachers try to enhance practical experience of university students in a complementary manner to theoretical knowledge. However, many times this is a difficult process. Practice is an important part of personal work in the vast majority of subjects that degree students receive, since the implementation of the EHEA. In most cases, these experiences are presented as partial small experiments or projects, assigned to the area-specific knowledge agenda. Certain sciences, such as Soil Science, however, require synthesis and integration capabilities of previous knowledge. It is therefore necessary to develop practical programs that address the student not only to the performance of laboratory determinations, but to the formulation of hypotheses, experimental design and problem solving, whether in groups or individually, situated in a wide context and allowing students to make connections with other areas of knowledge. This project involves the development of teamwork experiments, for the study real cases and problems and making decisions in the field of Soil Science. The results of the experimental work were publicly exposed as posters and oral presentations and were discussed during a mini-congress open to students and a general audience. The open and dynamic nature of the project substantially improves student motivation, which adds value to our project. Due to the multidisciplinary character of Soil Science it is relatively easy to propose projects of some complexity, and therefore, provides good conditions for introducing the PBL methodology. The teacher's role is also important and is not limited to observe or qualify the students, but it is a catalyst for learning. It is important that teacher give the leadership of the process and make the students themselves feel the protagonists of the

  9. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    Science.gov (United States)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz

  10. 18 CFR 157.37 - Project design.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project design. 157.37... Seasons for Alaska Natural Gas Transportation Projects § 157.37 Project design. In reviewing any... proposed project has been designed to accommodate the needs of shippers who have made conforming bids...

  11. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This project is part of the Academy initiative to enhance the quality of science education. It is pursued in ... database through a website. Project Lifescape has also initiated work using some Indian languages. ... and Outreach. Math and Finance ...

  12. A rural virtual health sciences library project: research findings with implications for next generation library services*

    OpenAIRE

    Richwine, Margaret (Peggy); McGowan, Julie J.

    2001-01-01

    Purpose: The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals.

  13. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  14. Using design science and artificial intelligence to improve health communication: ChronologyMD case example.

    Science.gov (United States)

    Neuhauser, Linda; Kreps, Gary L; Morrison, Kathleen; Athanasoulis, Marcos; Kirienko, Nikolai; Van Brunt, Deryk

    2013-08-01

    This paper describes how design science theory and methods and use of artificial intelligence (AI) components can improve the effectiveness of health communication. We identified key weaknesses of traditional health communication and features of more successful eHealth/AI communication. We examined characteristics of the design science paradigm and the value of its user-centered methods to develop eHealth/AI communication. We analyzed a case example of the participatory design of AI components in the ChronologyMD project intended to improve management of Crohn's disease. eHealth/AI communication created with user-centered design shows improved relevance to users' needs for personalized, timely and interactive communication and is associated with better health outcomes than traditional approaches. Participatory design was essential to develop ChronologyMD system architecture and software applications that benefitted patients. AI components can greatly improve eHealth/AI communication, if designed with the intended audiences. Design science theory and its iterative, participatory methods linked with traditional health communication theory and methods can create effective AI health communication. eHealth/AI communication researchers, developers and practitioners can benefit from a holistic approach that draws from theory and methods in both design sciences and also human and social sciences to create successful AI health communication. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Space Science in Project SMART: A UNH High School Outreach Program

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  16. Innovative Project Activities in Science [From the NSTA Study of Innovative Project Activities

    Science.gov (United States)

    Science Teacher, 1975

    1975-01-01

    Describes four projects chosen as innovative project activities in science which exhibited identification of unique or novel problems and creative approaches to their solutions. Projects included a study of fish in Lake Erie, a goat raising project, an analysis of terrestrial plant ecology and soil composition, and a study of marine and wetlands…

  17. Strategical integration and prior evaluation of science and innovation projects in Ecuadorians sports organizations.

    Directory of Open Access Journals (Sweden)

    Gloria Barroso Rodríguez

    2015-09-01

    Full Text Available This work shows the design of a procedure for evaluating the strategical integration of science and innovation projects level in the physical and sport sphere, and its validation through expert criteria for application to Ecuadorian sports organizations. As a result, it was possible to demonstrate the validity of the procedure designed, so it will be possible to be used to facilitate decision-making in relation to the execution of such projects considering, as a value judgment, the level of their essential components integration for the achievement of objectives aligned to the strategic priorities of the Ecuadorians sports organizations.  

  18. Visualizing Practices in Project-based Design

    DEFF Research Database (Denmark)

    Whyte, Jennifer; Tryggestad, Kjell; Comi, Alice

    2016-01-01

    Project-based design involves a variety of visual representations, which are evolved to make decisions and accomplish project objectives. Yet, such mediated and distributed ways of working are difficult to capture through ethnographies that examine situated design. A novel approach is developed t...... representations enabled participants in project-based design to develop and share understanding. The complexity of projects and their distributed and mediated nature makes this approach timely and important in addressing new research questions and practical challenges.......Project-based design involves a variety of visual representations, which are evolved to make decisions and accomplish project objectives. Yet, such mediated and distributed ways of working are difficult to capture through ethnographies that examine situated design. A novel approach is developed...... of situated design. This allows the researcher to be nimble, tracing connections across complex engineering projects; reconstructing practices through their visual representations; and observing their effects. Second, it articulates how, in these empirical cases, interaction with a cascade of visual...

  19. Design Science Research For Personal Knowledge Management System Development - Revisited

    Directory of Open Access Journals (Sweden)

    Ulrich Schmitt

    2016-11-01

    Thirdly, the development process and resulting prototype are verified against accepted general design science research (DSR guidelines. DSR aims at creating innovative IT artifacts (that extend human and social capabilities and meet desired outcomes and at validating design processes (as evidence of their relevance, utility, rigor, resonance, and publishability. Together with the incorporated references to around thirty prior publications covering technical and methodological details, a kind of ‘Long Discussion Case’ emerges aiming to potentially assist IT researchers and entrepreneurs engaged in similar projects.

  20. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  1. The Virtual Design Team: Designing Project Organizations as Engineers Design Bridges

    Directory of Open Access Journals (Sweden)

    Raymond E. Levitt

    2012-08-01

    Full Text Available This paper reports on a 20-year program of research intended to advance the theory and practice of organization design for projects from its current status as an art practiced by a handful of consultants worldwide, based on their intuition and tacit knowledge, to: (1 an “organizational engineering” craft, practiced by a new generation of organizational designers; and (2 an attractive and complementary platform for new modes of “virtual synthetic organization theory research.” The paper begins with a real-life scenario that provided the motivation for developing the Virtual Design Team (VDT, an agent-based project organizational simulation tool to help managers design the work processes and organization of project teams engaged in large, semi-routine but complex and fast-paced projects. The paper sets out the underlying philosophy, representation, reasoning, and validation of VDT, and it concludes with suggestions for future research on computational modeling for organization design to extend the frontiers of organizational micro-contingency theory and expand the range of applicability and usefulness of design tools for project organizations and supply-chain networks based on this theory.

  2. Advertising Citizen Science: A Trailer for the Citizen Sky Project

    Science.gov (United States)

    Wyatt, Ryan; Price, A.

    2012-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star epsilon Aurigae. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component, introducing participants to the full scientific process from background research to paper writing for a peer-reviewed journal. As a means of generating interest in the project, the California Academy of Sciences produced a six-minute "trailer” formatted for both traditional and fulldome planetariums as well as HD and web applications. This talk will review the production process for the trailer as well as the methods of distribution via planetariums, social media, and other venues_along with an update on the Citizen Sky Project as a whole. We will show how to use a small, professionally-produced planetarium trailer to help spread word on a citizen science project. We will also show preliminary results on a study about how participation level/type in the project affects science learning.

  3. Investigating Changes in Student Attitudes and Understanding of Science through Participation in Citizen Science Projects in College Coursework

    Science.gov (United States)

    Cardamone, Carolin; Cobb, Bethany E.

    2018-01-01

    Over the last decade, web-based “citizen science” projects such as the Zooniverse have allowed volunteers and professional scientists to work together for the advancement of science. While much attention has been paid to the benefits to science from these new projects, less attention has been paid to their impact on the participants and, in particular, to the projects’ potential to impact students who might engage in these projects through coursework. We report on a study engaging students in introductory astronomy classes at the George Washington University and Wheelock College in an assignment in which each student individually contributed to a “physics” or “space” citizen science project of their choice, and groups of students worked together to understand and articulate the scientific purpose of a citizen science project to which they all contributed. Over the course of approximately four weeks, the students kept logs of their individual contributions to the project, and recorded a brief reflection on each of their visits (noting, for example, interesting or confusing things they might encounter along the way). The project culminated with each group delivering a creative presentation that demonstrated their understanding of both the science goals of the project and the value of their own contributions to the project. In this talk, we report on the experience of the students with the project and on an assessment of the students’ attitudes toward science and knowledge of the process of science completed before the introduction of the assignment and again at its conclusion.

  4. Making the Invisible Visible: The Oklahoma Science Project.

    Science.gov (United States)

    McCarty, Robbie; Pedersen, Jon E.

    2002-01-01

    Reports that teachers in preservice education programs still view the teaching of science much in the same traditional ways as our predecessors. "The Oklahoma Science Project (OSP) Model for Professional Development: Practicing Science Across Contexts" will build discourses and relationships that can be extended across contexts to establish…

  5. HiggsHunters - a citizen science project for ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00053405; The ATLAS collaboration

    2017-01-01

    Since the launch of HiggsHunters.org in November 2014, citizen science volunteers have classified more than a million points of interest in images from the ATLAS experiment at the LHC. Volunteers have been looking for displaced vertices and unusual features in images recorded during LHC Run-1. We discuss the design of the project, its impact on the public, and the results of how the human volunteers performed relative to the computer algorithms in identifying displaced secondary vertices. People were better than existing algorithms at identifying displaced vertices for some masses and lifetimes, and showed good ability to recognize unexpected new features in the data.

  6. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    OpenAIRE

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-01-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA’s LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological ‘features of interest’. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and...

  7. The Effect of STEM Learning through the Project of Designing Boat Model toward Student STEM Literacy

    Science.gov (United States)

    Tati, T.; Firman, H.; Riandi, R.

    2017-09-01

    STEM Learning focusses on development of STEM-literate society, the research about implementation of STEM learning to develope students’ STEM literacy is still limited. This study is aimed to examine the effect of implementation STEM learning through the project of designing boat model on students STEM literacy in energy topic. The method of this study was a quasi-experiment with non-randomized pretest-posttest control group design. There were two classes involved, the experiment class used Project Based Learning with STEM approach and control class used Project-Based Learning without STEM approach. A STEM Literacy test instrument was developed to measure students STEM literacy which consists of science literacy, mathematics literacy, and technology-engineering literacy. The analysis showed that there were significant differences on improvement science literacy, mathematics technology-engineering between experiment class and control class with effect size more than 0.8 (large effect). The difference of improvement of STEM literacy between experiment class and control class is caused by the existence of design engineering activity which required students to apply the knowledge from every field of STEM. The challenge that was faced in STEM learning through design engineering activity was how to give the students practice to integrate STEM field in solving the problems. In additional, most of the students gave positive response toward implementation of STEM learning through design boat model project.

  8. Setting up crowd science projects

    NARCIS (Netherlands)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-01-01

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or

  9. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    Science.gov (United States)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  10. Student-Designed Service-Learning Projects in an Undergraduate Neurobiology Course

    Directory of Open Access Journals (Sweden)

    Katharine V. Northcutt

    2015-12-01

    Full Text Available One of the challenges in teaching a service-learning course is obtaining student buy-in from all students in the course. To circumvent this problem, I have let students in my undergraduate Neurobiology course design their own service-learning projects at the beginning of the semester. Although this can be chaotic because it requires last-minute planning, I have made it successful through facilitating student communication in the classroom, requiring thorough project proposals, meeting with students regularly, and monitoring group progress through written reflection papers. Most of my students have strong opinions about the types of projects that they want to carry out, and many students have used connections that they have already made with local organizations. Almost all projects that students have designed to this point involve teaching basic concepts of neurobiology to children of various ages while simultaneously sparking their interest in science. Through taking ownership of the project and designing it such that it works well with their strengths, interests, and weekly schedule, students have become more engaged in service learning and view it as a valuable experience. Despite some class time being shifted away from more traditional assignments, students have performed equally well in the course, and they are more eager to talk with others about course concepts. Furthermore, the feedback that I have received from community partners has been excellent, and some students have maintained their work with the organizations.

  11. A Case Study of Framing and Project Design Impacts on Participant Identity, Views, and Trust of Science in a Phenology Public Participatory Program

    Science.gov (United States)

    Sorensen, A. E.; Jordan, R.

    2016-12-01

    Recent literature has suggested public participatory research models (e.g., citizen science and similar) as a key opportunity for scientists to meaningfully engage and communicate with the public to increase support for science and encourage pro-science behavior. In this, there has been an inherent assumption that all models of engagement yield similar participant results with few examples of assessment of these programs. While many of these programs do share superficial similarities in their modes of participant engagement and participant motivation, there is a large disparity in participant engagement between them. This disparity suggests that framing of these projects (e.g., citizen science versus crowd sourcing) also plays an important role in decisions about participation. Additionally, participant outcomes, in terms of beliefs about scientific practices and scientific trust, between these two project types has not yet been investigated. To investigate the impact of framing, participants were recruited to a web-based tree phenology public participatory research program where half the participants were engaged in a citizen science framed program and the other were engaged in a crowdsourced framed project. The participants in each frame were engaged in the same task (reporting leaf budding/leaf drop), but the way the projects were framed differed. Post-participation we see that there are indeed statistically significant differences in participant outcomes between individuals who participated as a citizen scientist versus as a crowdsourcer. Particularly we see differences in terms of their views of science, identity, and trust of science. This work is the first to the authors' knowledge that aims to evaluate if projects can be treated synonymously when discussing potential for public engagement and broader trust and literacy outcomes.

  12. Cascade-sea : Computer Assisted Curriculum Analysis, Design & Evaluation for Science Education in Africa.

    NARCIS (Netherlands)

    McKenney, Susan; van den Akker, Jan; Maribe, Robert; Gustafson, Kent; Nieveen, Nienke; Plomp, Tjeerd

    1999-01-01

    The CASCADE-SEA program aims to support curriculum development within the context of secondary level science and mathematics education in sub-Saharan Africa. This project focuses on the iterative design of a computer-based curriculum development support system for the creation of classroom

  13. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  14. Current issues in the design of academic health sciences libraries: findings from three recent facility projects.

    Science.gov (United States)

    Nelson, Patricia P

    2003-07-01

    Planning a new health sciences library at the beginning of the twenty-first century is a tremendous challenge. Technology has radically changed the way libraries function in an academic environment and the services they provide. Some individuals question whether the library as place will continue to exist as information becomes increasingly available electronically. To understand how libraries resolve programming and building design issues, visits were made to three academic health sciences libraries that have had significant renovation or completed new construction. The information gathered will be valuable for planning a new library for the University of Colorado Health Sciences Center and may assist other health sciences librarians as they plan future library buildings.

  15. Designing Science Games and Science Toys from the Perspective of Scientific Creativity

    Science.gov (United States)

    Demir Kaçan, Sibel

    2015-01-01

    This study was conducted with the participation of 21 pre-service science teachers attending the faculty of education of a university in Turkey. The study aims to evaluate pre-service science teachers' science games and science toy designs in terms of scientific creativity. Participants were given a four-week period to design science games or…

  16. Pacific CRYSTAL Project: Explicit Literacy Instruction Embedded in Middle School Science Classrooms

    Science.gov (United States)

    Anthony, Robert J.; Tippett, Christine D.; Yore, Larry D.

    2010-01-01

    Science literacy leading to fuller and informed participation in the public debate about science, technology, society, and environmental (STSE) issues that produce justified decisions and sustainable actions is the shared and central goal of the Pacific CRYSTAL Project. There is broad agreement by science education researchers that learners need to be able to construct and interpret specific scientific discourses and texts to be literate in science. We view these capabilities as components in the fundamental sense of science literacy and as interactive and synergetic to the derived sense of science literacy, which refers to having general knowledge about concepts, principles, and methods of science. This article reports on preliminary findings from Years 1, 2, and 3 of the 5-year Pacific CRYSTAL project that aims to identify, develop, and embed explicit literacy instruction in science programs to achieve both senses of science literacy. A community-based, opportunistic, engineering research and development approach has been utilized to identify problems and concerns and to design instructional solutions for teaching middle school (Grades 6, 7, and 8) science. Initial data indicate (a) opportunities in programs for embedding literacy instruction and tasks; (b) difficulties generalist teachers have with new science curricula; (c) difficulties specialist science teachers have with literacy activities, strategies, genre, and writing-to-learn science tasks; and (d) potential literacy activities (vocabulary, reading comprehension, visual literacy, genre, and writing tasks) for middle school science. Preinstruction student assessments indicate a range of challenges in achieving effective learning in science and the need for extensive teacher support to achieve the project’s goals. Postinstructional assessments indicate positive changes in students’ ability to perform target reading and writing tasks. Qualitative data indicate teachers’ desire for external direction

  17. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  18. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    The purpose of this research was to develop descriptive accounts of precollege students' conceptions of the nature of science from two project-based classrooms, and track those conceptions over the course of an academic year. A model of the nature of science was developed and served as the criterion by which students' beliefs were evaluated. The model distinguishes between two major categories of science, the nature of the scientific enterprise and the nature of scientific knowledge. Five students were selected from each class and interviewed individually for 30-45 minutes each, six times over the year. Data from semi-structured, formal interviewing consisted of audio-recorded interviews which were transcribed verbatim. All passages were coded using codes which corresponded to the premises of the model of the nature of science. Passages in the transcripts were interpreted to develop a summary of the students' conceptions over the year. Qualitative methodologies, especially formal interviewing in conjunction with participant observation, were effective for uncovering students' conceptions of the nature of science, adding to the knowledge base in this field. The research design of the current study was a significant factor in explaining the inconsistencies seen between findings from this study and the literature. This study finds that participants at both classroom sites held fully formed conceptions of the nature of science for approximately 40 percent of the premises across the model. For two-thirds of the elements which comprise the premises, participants held full understandings. Participants held more complete understandings of the nature of scientific knowledge than the nature of the scientific enterprise. Most participants had difficulty distinguishing between science and non-science and held poor understandings of the role of questions in science. Students' beliefs generally remained unchanged over the year. When their conceptions did evolve, project

  19. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    Science.gov (United States)

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  20. Extending Sociotechnical design to project conception

    DEFF Research Database (Denmark)

    Kampf, Constance

    2009-01-01

    between knowledge and technology through knowledge communication processes, cultural and rhetorical contexts. This connection is examined from a process point of view through the development of project goals and objectives to situate technology. The data comes from a Project Management course in which...... the students were asked to design and plan projects to situate a mobile phone game in the social context around a museum in Helsinki or their online course management system.   The paper traces the evolution of students' project goals and objectives with respect to knowledge communication theory, demonstrating...... the potential of knowledge communication concepts for socio-technical design processes, as well as the implications of socio-technical design processes in extending our understanding of knowledge communication. Keywords: Knowledge Communication, Knowledge Management, Socio-Technical Design, Project Management....

  1. Creative Building Design for Innovative Earth Science Teaching and Outreach (Invited)

    Science.gov (United States)

    Chan, M. A.

    2009-12-01

    Earth Science departments can blend the physical “bricks and mortar” facility with programs and educational displays to create a facility that is a permanent outreach tool and a welcoming home for teaching and research. The new Frederick Albert Sutton building at the University of Utah is one of the first LEED (Leadership in Energy and Environmental Design) certified Earth Science buildings in the country. Throughout the structure, creative architectural designs are combined with sustainability, artful geologic displays, and community partnerships. Distinctive features of the building include: 1) Unique, inviting geologic designs such as cross bedding pattern in the concrete foundation; “a river runs through it” (a pebble tile “stream” inside the entrance); “confluence” lobby with spectacular Eocene Green River fossil fish and plant walls; polished rock slabs; and many natural stone elements. All displays are also designed as teaching tools. 2) Student-generated, energy efficient, sustainable projects such as: solar tube lights, xeriscape & rock monoliths, rainwater collection, roof garden, pervious cement, and energy monitoring. 3) Reinforced concrete foundation for vibration-free analytical measurements, and exposed lab ceilings for duct work and infrastructure adaptability. The spectacular displays for this special project were made possible by new partnerships within the community. Companies participated with generous, in-kind donations (e.g., services, stone flooring and slabs, and landscape rocks). They received recognition in the building and in literature acknowledging donors. A beautiful built environment creates space that students, faculty, and staff are proud of. People feel good about coming to work, and they are happy about their surroundings. This makes a strong recruiting tool, with more productive and satisfied employees. Buildings with architectural interest and displays can showcase geology as art and science, while highlighting

  2. Using a Design Science Perspective to Understand a Complex Design-Based Research Process

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2012-01-01

    The purpose of the paper is to demonstrate how a design science perspective can be used to describe and understand a set of related design-based research processes. We describe and analyze a case study in a manner that is inspired by design science. The case study involves the design of modeling......-based research processes. And we argue that a design science perspective may be useful for both researchers and practitioners....... tools and the redesign of an information service in a library. We use a set of guidelines from a design science perspective to organize the description and analysis of the case study. By doing this we demonstrate the usefulness of design science as an analytical tool for understanding related design...

  3. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  4. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    Science.gov (United States)

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  5. Cartographic science: a compendium of map projections, with derivations

    National Research Council Canada - National Science Library

    Fenna, Donald

    2007-01-01

    "From basic projecting to advanced transformations, Cartographic Science: A Compendium of Map Projections, with Derivations comprehensively explores the depiction of a curved world on a flat surface...

  6. Systematic design for trait introgression projects

    OpenAIRE

    Cameron, John N.; Han, Ye; Wang, Lizhi; Beavis, William D.

    2017-01-01

    Key message Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. Abstract We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into ...

  7. Smooth Transition for Advancement to Graduate Education (STAGE) for Underrepresented Groups in the Mathematical Sciences Pilot Project: Broadening Participation through Mentoring

    Science.gov (United States)

    Eubanks-Turner, Christina; Beaulieu, Patricia; Pal, Nabendu

    2018-01-01

    The Smooth Transition for Advancement to Graduate Education (STAGE) project was a three-year pilot project designed to mentor undergraduate students primarily from under-represented groups in the mathematical sciences. The STAGE pilot project focused on mentoring students as they transitioned from undergraduate education to either graduate school…

  8. SCIENCE TEACHERS’ INDIVIDUAL AND SOCIAL LEARNING RELATED TO IBSE IN A LARGE-SCALE, LONG- TERM, COLLABORATIVE TPD PROJECT

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin Krabbe

    2014-01-01

    It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities and collec......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities...... and collective participation, and is organised on principles of situated learning in Professional Learning Communities (PLCs). QUEST-activities follow a rhythm of full day seminars followed by a period of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education......-on experiences and fewer including students’ minds-on. Teachers’ reflections indicate that many are positive towards QUEST seminars based on trying out activities directly applicable in the classroom. Case studies indicate a potentially more sustainable development, where the teachers collaboratively re...

  9. Acid Rain: Science Projects.

    Science.gov (United States)

    Stubbs, Harriett S.

    1989-01-01

    Presented is a science activity designed to help students monitor the pH of rainfall. Materials, procedures and follow-up activities are listed. A list of domestic and foreign sources of information is provided. Topics which relate to acid precipitation are outlined. (CW)

  10. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  11. Mapping epistemic cultures and learning potential of participants in citizen science projects.

    Science.gov (United States)

    Vallabh, Priya; Lotz-Sisitka, Heila; O'Donoghue, Rob; Schudel, Ingrid

    2016-06-01

    The ever-widening scope and range of global change and interconnected systemic risks arising from people-environment relationships (social-ecological risks) appears to be increasing concern among, and involvement of, citizens in an increasingly diversified number of citizen science projects responding to these risks. We examined the relationship between epistemic cultures in citizen science projects and learning potential related to matters of concern. We then developed a typology of purposes and a citizen science epistemic-cultures heuristic and mapped 56 projects in southern Africa using this framework. The purpose typology represents the range of knowledge-production purposes, ranging from laboratory science to social learning, whereas the epistemic-cultures typology is a relational representation of scientist and citizen participation and their approach to knowledge production. Results showed an iterative relationship between matters of fact and matters of concern across the projects; the nexus of citizens' engagement in knowledge-production activities varied. The knowledge-production purposes informed and shaped the epistemic cultures of all the sampled citizen science projects, which in turn influenced the potential for learning within each project. Through a historical review of 3 phases in a long-term river health-monitoring project, we found that it is possible to evolve the learning curve of citizen science projects. This evolution involved the development of scientific water monitoring tools, the parallel development of pedagogic practices supporting monitoring activities, and situated engagement around matters of concern within social activism leading to learning-led change. We conclude that such evolutionary processes serve to increase potential for learning and are necessary if citizen science is to contribute to wider restructuring of the epistemic culture of science under conditions of expanding social-ecological risk. © 2016 Society for

  12. The Windows to the Universe Project: Using the Internet to Support K-12 Science Education

    Science.gov (United States)

    Gardiner, L.; Johnson, R.; Bergman, J.; Russell, R.; Genyuk, J.; La Grave, M.

    2003-12-01

    The World Wide Web can be a powerful tool for reaching the public as well as students and teachers around the world, supporting both formal and informal science education. The Windows to the Universe Project, initiated in 1995, provides a case study of approaches for the use of the web to support earth and space science education and literacy efforts. Through the use of innovative approaches such as easy to use design, multi-level content, and science concepts presented in a broader background context that includes connections to culture and the humanities, Windows to the Universe is an accessible format for individuals of various ages and learning styles. A large global audience regularly uses the web site to learn about earth and space science as well as related humanities content such as myths from around the world. User surveys show that the site has over 4 millions users per year, 65 percent of which are K-12 teachers and students. Approximately 46 percent of users access the site once per week or more. Recently, we have had the opportunity to expand our efforts while we continue to update existing content based on new scientific findings and events. Earth science content on Windows to the Universe is currently growing with a new geology section and development efforts are underway to expand our space weather content with a new curriculum. Educational games allow users to learn about space in a playful context, and an online journaling tool further integrates literacy into the learning experience. In addition, we are currently translating the entire Windows to the Universe web site into Spanish. We have included educators in the project as co-designers from its inception, and by aggressively utilizing and providing professional development opportunities for teachers, the web site is now used in thousands of classrooms around the world. In the past year we have continued to support K-12 educators by adding to our suite of classroom activities and leading

  13. Science Teacher Efficacy and Extrinsic Factors Toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning

    Science.gov (United States)

    Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu

    2013-02-01

    Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based curricula was employed to determine how science teacher's attitudes and efficacy where impacted while designing science-based video games. The study's mixed-method design ascertained teacher efficacy on five factors (General computer use, Science Learning, Inquiry Teaching and Learning, Synchronous chat/text, and Playing Video Games) related to technology and gaming using a web-based survey). Qualitative data in the form of online blog posts was gathered during the project to assist in the triangulation and assessment of teacher efficacy. Data analyses consisted of an Analysis of Variance and serial coding of teacher reflective responses. Results indicated participants who used computers daily have higher efficacy while using inquiry-based teaching methods and science teaching and learning. Additional emergent findings revealed possible motivating factors for efficacy. This professional development project was focused on inquiry as a pedagogical strategy, standard-based science learning as means to develop content knowledge, and creating video games as technological knowledge. The project was consistent with the Technological Pedagogical Content Knowledge (TPCK) framework where overlapping circles of the three components indicates development of an integrated understanding of the suggested relationships. Findings provide suggestions for development of standards-based science education software, its integration into the curriculum and, strategies for implementing technology into teaching practices.

  14. Can citizen science enhance public understanding of science?

    Science.gov (United States)

    Bonney, Rick; Phillips, Tina B; Ballard, Heidi L; Enck, Jody W

    2016-01-01

    Over the past 20 years, thousands of citizen science projects engaging millions of participants in collecting and/or processing data have sprung up around the world. Here we review documented outcomes from four categories of citizen science projects which are defined by the nature of the activities in which their participants engage - Data Collection, Data Processing, Curriculum-based, and Community Science. We find strong evidence that scientific outcomes of citizen science are well documented, particularly for Data Collection and Data Processing projects. We find limited but growing evidence that citizen science projects achieve participant gains in knowledge about science knowledge and process, increase public awareness of the diversity of scientific research, and provide deeper meaning to participants' hobbies. We also find some evidence that citizen science can contribute positively to social well-being by influencing the questions that are being addressed and by giving people a voice in local environmental decision making. While not all citizen science projects are intended to achieve a greater degree of public understanding of science, social change, or improved science -society relationships, those projects that do require effort and resources in four main categories: (1) project design, (2) outcomes measurement, (3) engagement of new audiences, and (4) new directions for research. © The Author(s) 2015.

  15. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  16. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  17. Against all odds: Tales of survival and growth of the Foundational Approaches in Science Teaching (FAST) project

    Science.gov (United States)

    Yamamoto, Karen Kina

    This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2

  18. Influences on teachers' curricular choices in project-based science classrooms

    Science.gov (United States)

    Laba, Karen Anne

    This descriptive research will present two case studies of experienced science teachers using project-based curricula in all or part of their secondary life science/biology courses. The purpose of this study is to reveal the underlying relationships between teachers' conceptions of the nature of science, their understanding of their role as science teachers and their expectations for appropriate and worthwhile student learning, and to describe the influence of these factors on their curricular choices within the project-based framework. Using a modification of Hewson, Kerby and Cook's (1995) Conceptions of Teaching Science protocol as a model, teachers' beliefs and intentions are classified and examined to identify organizing themes. Comparisons between teachers' beliefs and the actions they take in their project-based classroom are used to reveal relationships among the choices that result in students' learning experiences. Finally, the curricula presented by these two exemplary teachers are compared with the teaching standards and content goals defined in the National Science Education Standards (NRC, 1996). Recommendations for the application of the case study perspective of the evolution of learning experiences to reform efforts are offered to practitioners, policy makers, curriculum developers and teacher educators.

  19. The TULIP Project.

    Science.gov (United States)

    Gusack, Nancy, Ed.; And Others

    1995-01-01

    Contains 11 articles that describe different university access systems designed and built to provide access to journals via The University Licensing Program (TULIP), a science journal access project, involving Elsevier Science Publishing and major universities. The project produced insights to help with future electronic information delivery…

  20. Shell’s use of science in de-risking projects

    CSIR Research Space (South Africa)

    Rossouw, N

    2017-10-01

    Full Text Available This presentation discusses Shell’s use of science in de-risking projects. The presentation includes examples of applying science in the De-Risking process, supporting scientific research and De-Risking the Karoo Basin....

  1. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NARCIS (Netherlands)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-01-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics

  2. Social Science Methods Used in the RESTORE Project

    Science.gov (United States)

    Lynne M. Westphal; Cristy Watkins; Paul H. Gobster; Liam Heneghan; Kristen Ross; Laurel Ross; Madeleine Tudor; Alaka Wali; David H. Wise; Joanne Vining; Moira. Zellner

    2014-01-01

    The RESTORE (Rethinking Ecological and Social Theories of Restoration Ecology) project is an interdisciplinary, multi-institutional research endeavor funded by the National Science Foundation's Dynamics of Coupled Natural Human Systems program. The goal of the project is to understand the links between organizational type, decision making processes, and...

  3. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Science.gov (United States)

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  4. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    Science.gov (United States)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  5. NPP-Nuclear Island Design. From conceptual design to Project execution

    International Nuclear Information System (INIS)

    Lanchet, Dominique

    2014-01-01

    The second day opened with the lecture of Dominique Lanchet, Design Senior Vice President at AREVA Engineering and Project. Dominique Lanchet gave us an overview of the steps of a Nuclear Island Design creation from the conceptual design to the project execution, giving the examples of the EPR and ATMEA1 TM nuclear reactors

  6. Work-Based Curriculum to Broaden Learners' Participation in Science: Insights for Designers

    Science.gov (United States)

    Bopardikar, Anushree; Bernstein, Debra; Drayton, Brian; McKenney, Susan

    2018-05-01

    Around the globe, science education during compulsory schooling is envisioned for all learners regardless of their educational and career aspirations, including learners bound to the workforce upon secondary school completion. Yet, a major barrier in attaining this vision is low learner participation in secondary school science. Because curricula play a major role in shaping enacted learning, this study investigated how designers developed a high school physics curriculum with positive learning outcomes in learners with varied inclinations. Qualitative analysis of documents and semistructured interviews with the designers focused on the curriculum in different stages—from designers' ideas about learning goals to their vision for enactment to the printed materials—and on the design processes that brought them to fruition. This revealed designers' emphases on fostering workplace connections via learning goals and activities, and printed supports. The curriculum supported workplace-inspired, hands-on design-and-build projects, developed to address deeply a limited set of standards aligned learning goals. The curriculum also supported learners' interactions with relevant workplace professionals. To create these features, the designers reviewed other curricula to develop vision and printed supports, tested activities internally to assess content coverage, surveyed states in the USA receiving federal school-to-work grants and reviewed occupational information to choose unit topics and career contexts, and visited actual workplaces to learn about authentic praxis. Based on the worked example, this paper offers guidelines for designing work-based science curriculum products and processes that can serve the work of other designers, as well as recommendations for research serving designers and policymakers.

  7. Design methodology and projects for space engineering

    Science.gov (United States)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  8. Managing a big ground-based astronomy project: the Thirty Meter Telescope (TMT) project

    Science.gov (United States)

    Sanders, Gary H.

    2008-07-01

    TMT is a big science project and its scale is greater than previous ground-based optical/infrared telescope projects. This paper will describe the ideal "linear" project and how the TMT project departs from that ideal. The paper will describe the needed adaptations to successfully manage real world complexities. The progression from science requirements to a reference design, the development of a product-oriented Work Breakdown Structure (WBS) and an organization that parallels the WBS, the implementation of system engineering, requirements definition and the progression through Conceptual Design to Preliminary Design will be summarized. The development of a detailed cost estimate structured by the WBS, and the methodology of risk analysis to estimate contingency fund requirements will be summarized. Designing the project schedule defines the construction plan and, together with the cost model, provides the basis for executing the project guided by an earned value performance measurement system.

  9. Operational Design that Synthesizes Art and Science

    Science.gov (United States)

    2011-05-04

    FINAL 3. DATES COVERED (From - To) Feb - May 2011 4. TITLE AND SUBTITLE OPERATIONAL DESIGN THAT SYNTHESIZES ART AND SCIENCE 5a...TITLE AND SUBTITLE Operational Design That Synthesizes Art And Science 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...proponents of EBO view warfare as only a science and not a combination of art and science . 9 Another main point of contention centered on the term

  10. The Power Plant Mapping Student Project: Bringing Citizen Science to Schools

    Science.gov (United States)

    Tayne, K.; Oda, T.; Gurney, K. R.; O'Keeffe, D.; Petron, G.; Tans, P. P.; Frost, G. J.

    2014-12-01

    An emission inventory (EI) is a conventional tool to quantify and monitor anthropogenic emissions of greenhouse gases and air pollutants into the atmosphere. Gridded EI can visually show geographical patterns of emissions and their changes over time. These patterns, when available, are often determined using location data collected by regional governments, industries, and researchers. Datasets such as Carbon Monitoring and Action (CARMA, www.carma.org) are particularly useful for mapping emissions from large point sources and have been widely used in the EI community. The EI community is aware of potentially significant errors in the geographical locations of point sources, including power plants. The big challenge, however, is to review tens of thousands of power plant locations around the world and correct them where needed. The Power Plant Mapping Student Project (PPMSP) is a platform designed for students in 4th through 12th grade to improve the geographical location of power plants indicated in existing datasets to benefit international EI research. In PPMSP, we use VENTUS, a web-based platform (http://ventus.project.asu.edu/) that invites citizens to contribute power plant location data. Using VENTUS, students view scenes in the vicinity of reported power plant coordinates on Google Maps. Students either verify the location of a power plant or search for it within a designated radius using various indicators, an e-guide, and a power plant photo gallery for assistance. If the power plant cannot be found, students mark the plant as unverified. To assure quality for research use, the project contains multiple checkpoints and levels of review. While participating in meaningful research that directly benefits the EI research community, students are engaged in relevant science curricula designed to meet each grade level's Next Generation Science Standards. Students study energy, climate change, the atmosphere, and geographical information systems. The curricula is

  11. Whole-House Design and Commissioning in the Project Home Again Hot-Humid New Construction Community

    Energy Technology Data Exchange (ETDEWEB)

    Kerrigan, Philip [Building Science Corporation, Somerville, MA (United States)

    2012-09-01

    Building Science Corporation has been working with Project Home Again since 2008 and has consulted on the design of around 100 affordable, energy efficient new construction homes for victims of hurricanes Katrina and Rita. This report details the effort on the final two phases of the project: Phases V and VI, which resulted in a total of 25 homes constructed in 2011. The goal of this project was to develop and implement an energy efficiency package that will achieve at least 20% whole house source energy savings improvement over the B10 Benchmark.

  12. Selling science 2.0: What scientific projects receive crowdfunding online?

    Science.gov (United States)

    Schäfer, Mike S; Metag, Julia; Feustle, Jessica; Herzog, Livia

    2016-09-19

    Crowdfunding has emerged as an additional source for financing research in recent years. The study at hand identifies and tests explanatory factors influencing the success of scientific crowdfunding projects by drawing on news value theory, the "reputation signaling" approach, and economic theories of online payment. A standardized content analysis of 371 projects on English- and German-language platforms reveals that each theory provides factors influencing crowdfunding success. It shows that projects presented on science-only crowdfunding platforms have a higher success rate. At the same time, projects are more likely to be successful if their presentation includes visualizations and humor, the lower their targeted funding is, the less personal data potential donors have to relinquish and the more interaction between researchers and donors is possible. This suggests that after donors decide to visit a scientific crowdfunding platform, factors unrelated to science matter more for subsequent funding decisions, raising questions about the potential and implications of crowdfunding science. © The Author(s) 2016.

  13. Design Principles for "Thriving in Our Digital World": A High School Computer Science Course

    Science.gov (United States)

    Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory

    2016-01-01

    "Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…

  14. Conducting and publishing design science research : Inaugural essay of the design science department of the Journal of Operations Management

    NARCIS (Netherlands)

    van Aken, Joan; Chandrasekaran, Aravind; Halman, Joop

    2016-01-01

    The new Design Science department at the Journal of Operations Management invites submissions using a design science research strategy for operations management (OM) issues. The objective of this strategy is to develop knowledge that can be used in a direct and specific way to design and implement

  15. 78 FR 32637 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2013-05-31

    ..., Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and...

  16. The Science and Design of the AGIS Observatory

    Science.gov (United States)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  17. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  18. Using Design as Boundary Spanner Object in Climate Change Mitigation Projects

    Directory of Open Access Journals (Sweden)

    Walter Fernandez

    2010-01-01

    Full Text Available Climate change is a growing concern for society and the focus of numerous research initiatives across multiple fields of science. These initiatives often need to capitalize on the cross-specialized knowledge contributed by researchers from very different fields. The diversity of worldviews among key stakeholders requires an effective overall design strategy acting as a boundary spanner object. This study presents an account of the issues faced by a multidisciplinary research project and discusses the suitability of a design approach to help address issues such as equality, empowerment, autonomy, creativity, performance, reduction of innovation cycle times and also provide for the necessary balance between control, speediness and flexibility.

  19. UNH Project SMART 2017: Space Science for High School Students

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  20. COSEE-AK Ocean Science Fairs: A Science Fair Model That Grounds Student Projects in Both Western Science and Traditional Native Knowledge

    Science.gov (United States)

    Dublin, Robin; Sigman, Marilyn; Anderson, Andrea; Barnhardt, Ray; Topkok, Sean Asiqluq

    2014-01-01

    We have developed the traditional science fair format into an ocean science fair model that promoted the integration of Western science and Alaska Native traditional knowledge in student projects focused on the ocean, aquatic environments, and climate change. The typical science fair judging criteria for the validity and presentation of the…

  1. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  2. Management of a science and technology popularization project in the nuclear area

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Wellington Antonio; Maretti Junior, Fausto [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mail: soaresw@cdtn.br; fmj@cdtn.br

    2007-07-01

    The goal of this paper is to show the management results of the 2005-2007 project 'Nuclear energy: itinerant expositions' sponsored by the Foundation for Research Support of Minas Gerais (FAPEMIG), a state agency, in a science and technology popularization program. The project coordinated by the Nuclear Technology Development Center (CDTN/CNEN) in partnership with the Minas Commerce Association (ACMinas) was designed to students from public high school of the Belo Horizonte metropolitan region. It consisted of an exposition and a previous talk motivating the audience to the nuclear technology in connection with subjects taught at schools, like physics, chemistry, biology, mathematics, history, etc. Small scale models of nuclear and radioactive installations, irradiated food and fruits samples and colored gems by gamma rays were presented at the stand exposition. Designing, performing and evaluating the project required the following activities: searching of information on the target public, infrastructure mounting, team training, multimedia material elaboration, strategy for dealing with the students, talk presentation, distribution of booklet on nuclear themes, reception at the exposition, interviews with students and teachers by journalists, evaluation of the project by the schools, evaluation of the project by some students three months after the event and also reporting the project to the media. About forty people of CDTN took part in the project that reached thirty high schools and encompassed about 11,000 students. About five hundred state high school teachers of chemistry, physics and biology were reached by the experience of the project in a specialization course given by a local university. Only high approval was received by the project in the returned questionnaires. (author)

  3. Management of a science and technology popularization project in the nuclear area

    International Nuclear Information System (INIS)

    Soares, Wellington Antonio; Maretti Junior, Fausto

    2007-01-01

    The goal of this paper is to show the management results of the 2005-2007 project 'Nuclear energy: itinerant expositions' sponsored by the Foundation for Research Support of Minas Gerais (FAPEMIG), a state agency, in a science and technology popularization program. The project coordinated by the Nuclear Technology Development Center (CDTN/CNEN) in partnership with the Minas Commerce Association (ACMinas) was designed to students from public high school of the Belo Horizonte metropolitan region. It consisted of an exposition and a previous talk motivating the audience to the nuclear technology in connection with subjects taught at schools, like physics, chemistry, biology, mathematics, history, etc. Small scale models of nuclear and radioactive installations, irradiated food and fruits samples and colored gems by gamma rays were presented at the stand exposition. Designing, performing and evaluating the project required the following activities: searching of information on the target public, infrastructure mounting, team training, multimedia material elaboration, strategy for dealing with the students, talk presentation, distribution of booklet on nuclear themes, reception at the exposition, interviews with students and teachers by journalists, evaluation of the project by the schools, evaluation of the project by some students three months after the event and also reporting the project to the media. About forty people of CDTN took part in the project that reached thirty high schools and encompassed about 11,000 students. About five hundred state high school teachers of chemistry, physics and biology were reached by the experience of the project in a specialization course given by a local university. Only high approval was received by the project in the returned questionnaires. (author)

  4. Systematic design for trait introgression projects.

    Science.gov (United States)

    Cameron, John N; Han, Ye; Wang, Lizhi; Beavis, William D

    2017-10-01

    Using an Operations Research approach, we demonstrate design of optimal trait introgression projects with respect to competing objectives. We demonstrate an innovative approach for designing Trait Introgression (TI) projects based on optimization principles from Operations Research. If the designs of TI projects are based on clear and measurable objectives, they can be translated into mathematical models with decision variables and constraints that can be translated into Pareto optimality plots associated with any arbitrary selection strategy. The Pareto plots can be used to make rational decisions concerning the trade-offs between maximizing the probability of success while minimizing costs and time. The systematic rigor associated with a cost, time and probability of success (CTP) framework is well suited to designing TI projects that require dynamic decision making. The CTP framework also revealed that previously identified 'best' strategies can be improved to be at least twice as effective without increasing time or expenses.

  5. Computer Assisted Project-Based Instruction: The Effects on Science Achievement, Computer Achievement and Portfolio Assessment

    Science.gov (United States)

    Erdogan, Yavuz; Dede, Dinçer

    2015-01-01

    The purpose of this study is to compare the effects of computer assisted project-based instruction on learners' achievement in a science and technology course, in a computer course and in portfolio development. With this aim in mind, a quasi-experimental design was used and a sample of 70 seventh grade secondary school students from Org. Esref…

  6. Teaching Earth Sciences as an interdisciplinary subject: Novel module design involving research literature

    Science.gov (United States)

    Tong, Vincent C. H.

    2010-05-01

    The study of Earth Sciences requires an interdisciplinary approach as it involves understanding scientific knowledge originating from a wide spectrum of research areas. Not only does it include subjects ranging from, for instance, hydrogeology to deep crustal seismology and from climate science to oceanography, but it also has many direct applications in closely related disciplines such as environmental engineering and natural resources management. While research crossing traditional disciplinary boundaries in geosciences is becoming increasingly common, there is only limited integration of interdisciplinary research in the teaching of the subject. Given that the transition from undergraduate education based on subject modules to postgraduate interdisciplinary research is never easy, such integration is a highly desirable pedagogical approach at both undergraduate and postgraduate levels. My presentation is based on a recent teaching project involving novel design of an undergraduate course. The course is implemented in order to address the synergy between research and teaching (Tong, 2009). This project has been shown to be effective and successful in teaching geosciences undergraduates at the University of London. The module consists of studying core geophysical principles and linking them directly to a selection of recently published research papers in a wide range of interdisciplinary applications. Research reviewing and reporting techniques are systematically developed, practised and fully integrated into teaching of the core scientific theories. A fully-aligned assignment with a feedback website invites the students to reflect on the scientific knowledge and the study skills related to research literature they have acquired in the course. This teaching project has been recognized by a teaching award (http://www.clpd.bbk.ac.uk/staff/BETA). In this presentation, I will discuss how undergraduate teaching with a focus on research literature in Earth Sciences can

  7. Science Teacher Efficacy and Extrinsic Factors toward Professional Development Using Video Games in a Design-Based Research Model: The Next Generation of STEM Learning

    Science.gov (United States)

    Annetta, Leonard A.; Frazier, Wendy M.; Folta, Elizabeth; Holmes, Shawn; Lamb, Richard; Cheng, Meng-Tzu

    2013-01-01

    Designed-based research principles guided the study of 51 secondary-science teachers in the second year of a 3-year professional development project. The project entailed the creation of student-centered, inquiry-based, science, video games. A professional development model appropriate for infusing innovative technologies into standards-based…

  8. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  9. Opportunity recognition in entrepreneurship education, design principles on fostering competent entrepreneurs in the science domain

    NARCIS (Netherlands)

    Nab, J.; Beugels, J.; van Keulen, H.; Oost, H.; Pilot, A.

    2008-01-01

    This paper is part of a research project focusing on educational design principles that should help students with a background in Science to become competent with respect to opportunity recognition in business. The recognition of business opportunities is one of the basic competencies of

  10. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    Science.gov (United States)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  11. Computer-aided design and computer science technology

    Science.gov (United States)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  12. Real Life Science with Dandelions and Project BudBurst

    Directory of Open Access Journals (Sweden)

    Katherine A. Johnson

    2015-12-01

    Full Text Available Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone.

  13. Real Life Science with Dandelions and Project BudBurst.

    Science.gov (United States)

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  14. Results of Needs Assessments Related to Citizen Science Projects

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  15. The impact of natural science contextual teaching through project method to students’ achievement in MTsN Miri Sragen

    Directory of Open Access Journals (Sweden)

    Anik Sunarsih

    2017-12-01

    Full Text Available This study aims to describe the science learning skills among students’ who follow contextual learning through project method with experiment method. The population of this research is the students’ of class VII MTS Negeri Miri Kab. Sragen on the teaching period of 2016/2017. Cluster random sampling technique is used as sample. This research was designed using contextual teaching through project method as an independent variable. The results of this Improvement show that there is a difference in the achievement of students' learning skill that follows contextual learning through the project method with the experimental method with Fobs = 8,83 and significant number 4,04 (p <0,05. Based on these findings contextual learning through the project is one of the learning methods that provide a positive influence on improving the achievement of science learning skills. This ain increase, because CTL is can help students’ understand the material by relating the problems that exist. Project methods are used by students’ in solving problems.

  16. Comb-e-Chem: an e-science research project

    OpenAIRE

    Frey, Jeremy G.

    2003-01-01

    The background to the Comb-e-Chem e-Science pilot project funded under the UK -Science Programme is presented and the areas being addresses within chemistry and more specifically combinatorial chemistry are disucssed. The ways in which the ideas underlying the application of computer technology can improve the production, analysis and dissemination of chemical information and knowledge in a collaborative environment are discussed.

  17. Visualization and characterization of users in a citizen science project

    Science.gov (United States)

    Morais, Alessandra M. M.; Raddick, Jordan; Coelho dos Santos, Rafael D.

    2013-05-01

    Recent technological advances allowed the creation and use of internet-based systems where many users can collaborate gathering and sharing information for specific or general purposes: social networks, e-commerce review systems, collaborative knowledge systems, etc. Since most of the data collected in these systems is user-generated, understanding of the motivations and general behavior of users is a very important issue. Of particular interest are citizen science projects, where users without scientific training are asked for collaboration labeling and classifying information (either automatically by giving away idle computer time or manually by actually seeing data and providing information about it). Understanding behavior of users of those types of data collection systems may help increase the involvement of the users, categorize users accordingly to different parameters, facilitate their collaboration with the systems, design better user interfaces, and allow better planning and deployment of similar projects and systems. Behavior of those users could be estimated through analysis of their collaboration track: registers of which user did what and when can be easily and unobtrusively collected in several different ways, the simplest being a log of activities. In this paper we present some results on the visualization and characterization of almost 150.000 users with more than 80.000.000 collaborations with a citizen science project - Galaxy Zoo I, which asked users to classify galaxies' images. Basic visualization techniques are not applicable due to the number of users, so techniques to characterize users' behavior based on feature extraction and clustering are used.

  18. Design Science Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Venable, John; Baskerville, Richard L.

    2017-01-01

    This workshop is an applied tutorial, aimed at novice and experienced researchers who wish to learn more about Design Science Research (DSR) and/or to develop and progress their own DSR work. During the workshop, attendees will be introduced to various DSR concepts and current trends, to create...

  19. Construction principles and design rules in the case of circular design

    NARCIS (Netherlands)

    Romme, A.G.L.; Endenburg, G.

    2006-01-01

    This paper proposes science-based organization design that uses construction principles and design rules to guide practitioner-academic projects. Organization science implies construction principles for creating and implementing designs. These principles serve to construct design rules that are

  20. Constructive Synergy in Design Science Research: A Comparative Analysis of Design Science Research and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2014-01-01

    Information systems research is focused on creating knowledge which can be applied in organizations. Design science research, which specifically aims at applying existing knowledge to solve interesting and relevant business problems, has been steadily gaining support in information systems research....... However, design science research is not the only design-oriented research framework available. Accordingly, this raises the question of whether there is something to learn between the different approaches. This paper contributes to answering this question by comparing design science research...... with the constructive research approach. The conclusion is that the two approaches are similar and compatible, save for details in practical requirements and partly underlying philosophical assumptions. The main finding that arises from the comparison is, however, that there is a potential problem in claiming knowledge...

  1. Constructive Synergy in Design Science Research: A Comparative Analysis of Design Science Research and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2014-01-01

    with the constructive research approach. The conclusion is that the two approaches are similar and compatible, save for details in practical requirements and partly underlying philosophical assumptions. The main finding that arises from the comparison is, however, that there is a potential problem in claiming knowledge......Information systems research is focused on creating knowledge which can be applied in organizations. Design science research, which specifically aims at applying existing knowledge to solve interesting and relevant business problems, has been steadily gaining support in information systems research....... However, design science research is not the only design-oriented research framework available. Accordingly, this raises the question of whether there is something to learn between the different approaches. This paper contributes to answering this question by comparing design science research...

  2. Project Solaris, a Global Network of Autonomous Observatories: Design, Commissioning, and First Science Results

    Science.gov (United States)

    Kozłowski, S. K.; Sybilski, P. W.; Konacki, M.; Pawłaszek, R. K.; Ratajczak, M.; Hełminiak, K. G.; Litwicki, M.

    2017-10-01

    We present the design and commissioning of Project Solaris, a global network of autonomous observatories. Solaris is a Polish scientific undertaking aimed at the detection and characterization of circumbinary exoplanets and eclipsing binary stars. To accomplish this, a network of four fully autonomous observatories has been deployed in the Southern Hemisphere: Solaris-1 and Solaris-2 in the South African Astronomical Observatory in South Africa; Solaris-3 in Siding Spring Observatory in Australia; and Solaris-4 in Complejo Astronomico El Leoncito in Argentina. The four stations are nearly identical and are equipped with 0.5-m Ritchey-Crétien (f/15) or Cassegrain (f/9, Solaris-3) optics and high-grade 2 K × 2 K CCD cameras with Johnson and Sloan filter sets. We present the design and implementation of low-level security; data logging and notification systems; weather monitoring components; all-sky vision system, surveillance system; and distributed temperature and humidity sensors. We describe dedicated grounding and lighting protection system design and robust fiber data transfer interfaces in electrically demanding conditions. We discuss the outcomes of our design, as well as the resulting software engineering requirements. We describe our system’s engineering approach to achieve the required level of autonomy, the architecture of the custom high-level industry-grade software that has been designed and implemented specifically for the use of the network. We present the actual status of the project and first photometric results; these include data and models of already studied systems for benchmarking purposes (Wasp-4b, Wasp-64b, and Wasp-98b transits, PG 1663-018, an eclipsing binary with a pulsator) as well J024946-3825.6, an interesting low-mass binary system for which a complete model is provided for the first time.

  3. [The role of science in policy making--EuSANH-ISA project, framework for science advice for health].

    Science.gov (United States)

    Cianciara, Dorota; Piotrowicz, Maria; Bielska-Lasota, Magdalena; Wysocki, Mirosław J

    2012-01-01

    Governments and other authorities (including MPs) should be well informed on issues of science and technology. This is particularly important in the era of evidence-based practice. This implies the need to get expert advice. The process by which scientific knowledge is transmitted, along with proposals how to solve the problem, is called science advice. The main aim of the article is to discuss the issue of science advice--definitions, interaction between science and policymaking, and its position in contemporary policies. The second aim is to present European Science Advisory Network for Health (EuSANH), EuSANH-ISA project, and framework for science advice for health which was developed by participants. Furthermore, the role of civil society in decision-making process and science advice is also discussed. Interaction between scientists and policy-makers are described in terms of science-push approach (technocratic model), policy-pull (decisionistic) and simultaneous push-pull approach (pragmatic). The position of science advice is described in historical perspective from the 50s, especially in the last two decades. Description relies to USA, Canada and UK. Principles of scientific advice to government (Government Office for Science, UK) are quoted. Some important documents related to science advice in EU and UN are mentioned. EuSANH network is described as well as EuSANH-ISA project, with its objectives and outcomes. According to findings of this project, the process of science advice for health should follow some steps: framing the issue to be covered; planning entire process leading to the conclusion; drafting the report; reviewing the report and revision; publishing report and assessing the impact on policy.

  4. Project Stakeholder Management: A Case Study of a Brazilian Science Park

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Pacagnella Júnior

    2015-07-01

    Full Text Available The stakeholder management has been a topic increasingly discussed in the literature about project management, though still existing, large gaps to be filled, especially in complex projects such as the implementation of science parks. Thus, in this paper is presented a case of a Brazilian Science Park which shows how the management team of the project identified key stakeholders and established strategies for engagement and collaboration that sought to increase their engagement, get resources and make use of specific capabilities that were required during the lifecycle of the project to the reaching of its goals.

  5. THEMES, DREAMS AND REAUTY: THE SCIENCE PROJECT ...

    African Journals Online (AJOL)

    Science Education Project (SEP) is a non-profit making educational trust ... us that many of them fail to survive the rigours of the school and ... environment) emphasis will be placed on in-service training and ... The 'status quo' is safe, everyone.

  6. Balancing Design Project Supervision and Learning Facilitation

    DEFF Research Database (Denmark)

    Nielsen, Louise Møller

    2012-01-01

    experiences and expertise to guide the students’ decisions in relation to the design project. This paper focuses on project supervision in the context of design education – and more specifically on how this supervision is unfolded in a Problem Based Learning culture. The paper explores the supervisor......’s balance between the roles: 1) Design Project Supervisor – and 2) Learning Facilitator – with the aim to understand when to apply the different roles, and what to be aware of when doing so. This paper represents the first pilot-study of a larger research effort. It is based on a Lego Serious Play workshop......In design there is a long tradition for apprenticeship, as well as tradition for learning through design projects. Today many design educations are positioned within the University context, and have to be aligned with the learning culture and structure, which they represent. This raises a specific...

  7. 23 CFR 710.313 - Design-build projects.

    Science.gov (United States)

    2010-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT RIGHT-OF-WAY AND REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build project, right-of-way must be acquired and cleared in accordance with the Uniform Relocation Assistance...

  8. SPECIAL REPORT - The KC EMPOWER Project: Designing More Accessible STEM Learning Activities

    OpenAIRE

    Bob Hirshon; Laureen Summers; Babette Moeller; Wendy Martin

    2016-01-01

    The overall purpose of the Kinetic City (KC) Empower project was to examine how informal science activities can be made accessible for students with disabilities. The premise of this project was that all students, including those with disabilities, are interested in and capable of engaging in science learning experiences, if these experiences are accessible to them. Drawing on resources from Kinetic City, a large collection of science experiments, games, and projects developed by the American...

  9. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  10. A Decade of Project 2061

    Science.gov (United States)

    Lagowski, J. J.

    1996-04-01

    Ten years ago the American Association for the Advancement of Science (AAAS) launched Project 2061, the first of the truly systemic projects focused on reform in K--12 science education. Project 2061 addresses science literacy for all people rather than only those in the more narrowly construed basic science disciplines; it includes the natural and social sciences, mathematics, and technology. Because it deals with the influence of science on all people's lives, Project 2061 is irrefutably systemic. The general strategy of Project 2061 was to forge a consensus on learning goals as the basis for all other changes to the system of science education. Up front, the designers of Project 2061 announced that it would require at least 25 years to achieve its goals. The fact that the project has survived its tenth year is a tribute to the funding agencies and their confidence in the 2061 concept and its designers. The original supporters--the Carnegie Corporation and the Andrew W. Mellon Foundation--continue to support Project 2061. From the start, Project 2061 emphasized the importance of science as one of the great human activities, much like the visual arts, literature, and music. The basic premise of the project was that the excitement in science should be made available to all students if they are to become science literate. The project's first major report, Science for All Americans, traced the lack of science literacy to problems derived from administrative and curricular issues like the crushing workloads of teachers; antiquated support systems; poor training; textbooks and methods of instruction that impede inquiry, critical thought, and recognition of connections among ideas; and an overstuffed curriculum that offered some topics in needless detail while overlooking ideas and skills critical to science literacy. The chief intent of Science for All Americans, was to provide a fresh, critical look at what science was most worth learning. Put another way, the

  11. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    Science.gov (United States)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  12. Southeast Regional Assessment Project for the National Climate Change and Wildlife Science Center, U.S. Geological Survey

    Science.gov (United States)

    Dalton, Melinda S.; Jones, Sonya A.

    2010-01-01

    expanded to address climate change-related impacts on all Department of the Interior (DOI) resources. The NCCWSC will establish a network of eight DOI Regional Climate Science Centers (RCSCs) that will work with a variety of partners to provide natural resource managers with tools and information that will help them anticipate and adapt conservation planning and design for projected climate change. The forecasting products produced by the RCSCs will aid fish, wildlife, and land managers in designing suitable adaptive management approaches for their programs. The DOI also is developing Landscape Conservation Cooperatives (LCCs) as science and conservation action partnerships at subregional scales. The USGS is working with the Southeast Region of the U.S. Fish and Wildlife Service (FWS) to develop science collaboration between the future Southeast RCSC and future LCCs. The NCCWSC Southeast Regional Assessment Project (SERAP) will begin to develop regional downscaled climate models, land cover change models, regional ecological models, regional watershed models, and other science tools. Models and data produced by SERAP will be used in a collaborative process between the USGS, the FWS (LCCs), State and federal partners, nongovernmental organizations, and academia to produce science at appropriate scales to answer resource management questions. The SERAP will produce an assessment of climate change, and impacts on land cover, ecosystems, and priority species in the region. The predictive tools developed by the SERAP project team will allow end users to better understand potential impacts of climate change and sea level rise on terrestrial and aquatic populations in the Southeastern United States. The SERAP capitalizes on the integration of five existing projects: (1) the Multi-State Conservation Grants Program project "Designing Sustainable Landscapes," (2) the USGS multidisciplinary Science Thrust project "Water Availability for Ecological Needs," (3) the USGS Southeast Pilot

  13. Geoscience Education Research Project: Student Benefits and Effective Design of a Course-Based Undergraduate Research Experience

    Science.gov (United States)

    Kortz, Karen M.; van der Hoeven Kraft, Katrien J.

    2016-01-01

    Undergraduate research has been shown to be an effective practice for learning science. While this is a popular discussion topic, there are few full examples in the literature for introductory-level students. This paper describes the Geoscience Education Research Project, an innovative course-based research experience designed for…

  14. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  15. Contrasting the Views and Actions of Data Collectors and Data Consumers in a Volunteer Water Quality Monitoring Project: Implications for Project Design and Management

    Directory of Open Access Journals (Sweden)

    Caren B. Cooper

    2017-12-01

    Full Text Available Data collection or generation is the primary way that the majority of volunteers advance the scientific goals of citizen science projects, but other activities such as data consumption also may influence learning, civic, and conservation outcomes. Project designers and managers balance goals for multiple outcomes and thus need to consider the influence of all project-related activities on outcomes. In a study of the kayak-based Citizen’s Water Quality Testing (CWQT Program in New York City, we compared the characteristics, perceptions, and behaviors of those collecting and using CWQT data (data collectors and those solely using the data (data consumers. Data collectors (n = 40 and consumers (n = 24 were similar in gender and political orientation, but collectors were younger, devoted more time to the project, and experienced far more face-to-face interactions related to the project. Data collectors and consumers had similar motivations for participation, except that collectors were more likely motivated by recognition for their efforts. Lack of free time was the largest barrier to participation for both types of participants, and a significantly greater barrier for consumers. Data collectors and consumers trusted volunteer-collected data more than government-collected data. Collectors and consumers both recognized multiple scientific, environmental, and social benefits associated with the project, and both were equally likely to use volunteer-collected data for a variety of purposes, such as informing decisions about conservation and recreation. Importantly, both groups were equally likely to undertake a suite of conservation behaviors. We synthesize and expand current conceptual frameworks of citizen science participation and outcomes, highlighting the need for further study to understand mechanisms and linkages between the varied activities of citizen science projects and broader social and ecological impacts. To achieve conservation goals

  16. Using implementation tools to design and conduct quality improvement projects for faster and more effective improvement.

    Science.gov (United States)

    Ovretveit, John; Mittman, Brian; Rubenstein, Lisa; Ganz, David A

    2017-10-09

    Purpose The purpose of this paper is to enable improvers to use recent knowledge from implementation science to carry out improvement changes more effectively. It also highlights the importance of converting research findings into practical tools and guidance for improvers so as to make research easier to apply in practice. Design/methodology/approach This study provides an illustration of how a quality improvement (QI) team project can make use of recent findings from implementation research so as to make their improvement changes more effective and sustainable. The guidance is based on a review and synthesis of improvement and implementation methods. Findings The paper illustrates how research can help a quality project team in the phases of problem definition and preparation, in design and planning, in implementation, and in sustaining and spreading a QI. Examples of the use of different ideas and methods are cited where they exist. Research limitations/implications The example is illustrative and there is little limited experimental evidence of whether using all the steps and tools in the one approach proposed do enable a quality team to be more effective. Evidence supporting individual guidance proposals is cited where it exists. Practical implications If the steps proposed and illustrated in the paper were followed, it is possible that quality projects could avoid waste by ensuring the conditions they need for success are in place, and sustain and spread improvement changes more effectively. Social implications More patients could benefit more quickly from more effective implementation of proven interventions. Originality/value The paper is the first to describe how improvement and implementation science can be combined in a tangible way that practical improvers can use in their projects. It shows how QI project teams can take advantage of recent advances in improvement and implementation science to make their work more effective and sustainable.

  17. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  18. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  19. Variables that impact the implementation of project-based learning in high school science

    Science.gov (United States)

    Cunningham, Kellie

    Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9

  20. Extending Sociotechnical Design to Project Conception

    DEFF Research Database (Denmark)

    Kampf, Constance Elizabeth

    2011-01-01

    Project management processes offer specific sites for understanding the interplay of the social and the technical. This article focuses on the connection between knowledge and technology through knowledge communication processes, cultural & rhetorical contexts in projects, and the iterative process...... and the Aarhus School of Business, University of Aarhus, Denmark. The analysis demonstrates the potential of knowledge communication concepts for social technical design and highlights the cultural context of the designers as a key factor to consider in socio-technical design....

  1. Adaptive Robotic Systems Design in University of Applied Sciences

    Directory of Open Access Journals (Sweden)

    Gunsing Jos

    2016-01-01

    Full Text Available In the industry for highly specialized machine building (small series with high variety and high complexity and in healthcare a demand for adaptive robotics is rapidly coming up. Technically skilled people are not always available in sufficient numbers. A lot of know how with respect to the required technologies is available but successful adaptive robotic system designs are still rare. In our research at the university of applied sciences we incorporate new available technologies in our education courses by way of research projects; in these projects students will investigate the application possibilities of new technologies together with companies and teachers. Thus we are able to transfer knowledge to the students including an innovation oriented attitude and skills. Last years we developed several industrial binpicking applications for logistics and machining-factories with different types of 3D vision. Also force feedback gripping has been developed including slip sensing. Especially for healthcare robotics we developed a so-called twisted wire actuator, which is very compact in combination with an underactuated gripper, manufactured in one piece in polyurethane. We work both on modeling and testing the functions of these designs but we work also on complete demonstrator systems. Since the amount of disciplines involved in complex product and machine design increases rapidly we pay a lot of attention with respect to systems engineering methods. Apart from the classical engineering disciplines like mechanical, electrical, software and mechatronics engineering, especially for adaptive robotics more and more disciplines like industrial product design, communication … multimedia design and of course physics and even art are to be involved depending on the specific application to be designed. Design tools like V-model, agile/scrum and design-approaches to obtain the best set of requirements are being implemented in the engineering studies from

  2. Using implementation science as the core of the doctor of nursing practice inquiry project.

    Science.gov (United States)

    Riner, Mary E

    2015-01-01

    New knowledge in health care needs to be implemented for continuous practice improvement. Doctor of nursing practice (DNP) programs are designed to increase clinical practice knowledge and leadership skills of graduates. This article describes an implementation science course developed in a DNP program focused on advancing graduates' capacity for health systems leadership. Curriculum and course development are presented, and the course is mapped to depict how the course objectives and assignments were aligned with DNP Essentials. Course modules with rational are described, and examples of how students implemented assignments are provided. The challenges of integrating this course into the life of the school are discussed as well as steps taken to develop faculty for this capstone learning experience. This article describes a model of using implementation science to provide DNP students an experience in designing and managing an evidence-based practice change project. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A rural virtual health sciences library project: research findings with implications for next generation library services.

    Science.gov (United States)

    Richwine, M P; McGowan, J J

    2001-01-01

    The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals. Based on the results of a needs assessment, a virtual medical library was created; various levels of training were provided. Virtual library users were asked to complete a Likert-type survey, which included questions on intent of use and impact of use. At the conclusion of the project period, structured interviews were conducted. Impact of the virtual health sciences library showed a strong correlation with the impact of information provided by health sciences librarians. Both interventions resulted in avoidance of adverse health events. Data collected from the structured interviews confirmed the perceived value of the virtual library. While librarians continue to hold a strong position in supporting information access for health care providers, their roles in the information age must begin to move away from providing information toward selecting and organizing knowledge resources and instruction in their use.

  4. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    Science.gov (United States)

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  5. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  6. Fostering Learner Autonomy in English for Science: A Collaborative Digital Video Project in a Technological Learning Environment

    Science.gov (United States)

    Hafner, Christoph A.; Miller, Lindsay

    2011-01-01

    This paper reports on the syllabus design and implementation of an English for Science and Technology (EST) course at an English-medium university in Hong Kong. The course combined elements of project-based learning and a "pedagogy for multiliteracies" (New London Group, 1996) to produce a strong learner autonomy focus. A major component…

  7. International Science Education: A Study of UNESCO Science Education Improvement Projects in Selected Anglophone Countries of Africa: Project Problems.

    Science.gov (United States)

    Nichter, Richard

    1984-01-01

    Discusses some of the problems faced by technical advisors implementing projects for the improvement of science education in Africa and reasons for these problems. Problem areas considered include underdevelopment, underestimating the process, finances, personality conflict and motivation, and opposition from key groups. (A list of major UNESCO…

  8. Construct-a-Boat. Science by Design Series.

    Science.gov (United States)

    Baroway, William

    This book is one of four books in the Science-by-Design Series created by TERC and funded by the National Science Foundation (NSF). It challenges high school students to investigate the physics of boat performance and work with systems and modeling. Through research, design, testing, and evaluation of a model boat, students experience the…

  9. Using Network Science to Support Design Research

    DEFF Research Database (Denmark)

    Parraguez Ruiz, Pedro; Maier, Anja

    2016-01-01

    and societal impact. This chapter contributes to the use of network science in empirical studies of design organisations. It focuses on introducing a network-based perspective on the design process and in particular on making use of network science to support design research and practice. The main contribution...... of this chapter is an overview of the methodological challenges and core decision points when embarking on network-based design research, namely defining the overall research purpose and selecting network features. We furthermore highlight the potential for using archival data, the opportunities for navigating...

  10. Disaster Relief and Emergency Medical Services Project (DREAMS TM): Clinical and Basic Science Projects

    National Research Council Canada - National Science Library

    Casscells, Ward

    1999-01-01

    DREAMS clinical and basic science projects complement the digital EMS effort by investigating the mechanisms of tissue injury in order to minimize the mortality and mortality of trauma and "natural...

  11. The Effect of a Computer Program Designed with Constructivist Principles for College Non-Science Majors on Understanding of Photosynthesis and Cellular Respiration

    Science.gov (United States)

    Wielard, Valerie Michelle

    2013-01-01

    The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…

  12. Learning from participatory design projects across industries

    DEFF Research Database (Denmark)

    Broberg, Ole; Souza da Conceição, Carolina

    2017-01-01

    Summative Statement: A preliminary framework for participatory design projects (PDP) was developed based on a retrospective analysis of five PDPs across different industries. The framework may serve as a guidance for planning and conducting PDPs. Problem statement: A growing number of experiences...... with participatory design or participatory ergonomics projects have been gained within the field of macro-ergonomics. It is suggested that the Participatory Ergonomics Framework (PEF) validated by Haines et al. (2002) needs to be updated based on these experiences and hence more focussed on design activities....... Research Objective / Question: The objective of this study was to update and design-orient the PEF based on experiences with PDPs within the last ten years. Methodology: Five participatory design projects across different industries were systematically analyzed and compared in order to develop a framework...

  13. Project time boxing and milestones as drivers for open design projects

    DEFF Research Database (Denmark)

    Tollestrup, Christian H. T.

    2015-01-01

    is very positive and that the structure, strict enforcement and rolling project management responsibility in a group work setting really helps them drive the project forward with high motivation. The main challenge lies in the balance between loading the teams with too many challenges and just providing......The Curriculums and programs in Problem Based Learning (PBL) utilizes the project-format in a team based setting for rehearsing the competencies of applying the design-oriented skills and knowledge learned in courses and workshops. If the project period is self-organised, there is a tendency......, because of the facilitated format where ‘disturbances’ are eliminated. If successful the state of creative flow is achieved. So how can we create a sense of urgency in longer project periods, not just workshop format, that would help a team of design students to engage and drive the project from the start...

  14. Is intelligent design science, and does it matter?

    Directory of Open Access Journals (Sweden)

    P W Bateman

    2007-09-01

    Full Text Available The debate between evolution and intelligent design is usually presented by evolutionary biologists as a clash between science and non-science (creationism and religion and therefore as a sterile argument which science wins by default. Countering this is intelligent design (ID and irreducible complexity (IC which posit that the diversity and complexity of life on earth indicates the hand of a designer, although the nature of that designer is not speculated on. In doing so, proponents of� ID and IC bring the argument squarely into the scientific camp and fulfil the requirements of being science, although this is difficult� to define. Here, we discuss the claims of ID and IC to provide an alternative to evolution and propose that science can adequately deal with and refute these claims. At the same time, ID and IC fulfil an important role as foils to �scientism�� � the belief that science is the best way of answering all questions. In the final analysis, however , despite their value in the debate, ID and IC are not found to be robust or reliable enough to replace evolution as the best way of explaining the diversity of life on earth.

  15. The creation of science projects in the physics teachers preparation

    Science.gov (United States)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Terms - project, projecting and the method of projecting - are nowadays frequently used in different relations. Those terms, especially as methods (of a cognitive process), are also transferred to the educational process. Before a new educational method comes to practice, the teacher should be familiar with it and preferably when it is done so during his university studies. An optional subject called Physics in a system of science subjects has been included into physics curricula for students of the fourth year of their studies at the Faculty of Science of Constantine the Philosopher University in Nitra. Its task is to make students aware of ways how to coordinate knowledge and instructions presented in these subjects through analysis of curricula and textbooks. As a part of their seminars students are asked to create integrated tasks and experiments which can be assessed from the point of view of either physics or chemistry or biology and which can motivate pupils and form their complex view on various phenomena in the nature. Therefore the article discusses theoretical and also practical questions related to experience that originates from placing the mentioned method and the subject Physics in a system of science subjects into the preparation of a natural sciences teacher in our workplace.

  16. New synchrotron radiation facility project. Panel on new synchrotron radiation facility project

    CERN Document Server

    Sato, S; Kimura, Y

    2003-01-01

    The project for constructing a new synchrotron radiation facility dedicated to the science in VUV (or EUV) and Soft X-ray (SX) region has been discussed for these two years at the Panel on New Synchrotron Radiation Facility Project. The Panel together with the Accelerator Design Working Group (WG), Beamline Design WG and Research Program WG suggested to the Ministry of Education, Science, Culture and Sports the construction of a 1.8 GeV electron storage ring suitable for 'Top-Up' operation and beamlines and monochromators designed for undulator radiation. The scientific programs proposed by nationwide scientists are summarized with their requirements of the characteristics of the beam. (author)

  17. Project management in interior design services

    OpenAIRE

    Şahinoglu, Alp

    1997-01-01

    Ankara : Bilkent University, Department of Interior Architecture and Environmental Design and Institute of Fine Arts, 1997. Thesis (Master's) -- Bilkent University, 1997. Includes bibliographical references. In this study, the concept of project management is analyzed within the framework of interior design services. Project management has been defined as the managing and coordination of all human and physical resources, in order to accomplish the predetermined goals (aim of the proj...

  18. Designing and Implementing Service Learning Projects in an Introductory Oceanography Course Using the ``8-Block Model''

    Science.gov (United States)

    Laine, E. P.; Field, C.

    2010-12-01

    The Campus Compact for New Hampshire (Gordon, 2003) introduced a practical model for designing service-learning exercises or components for new or existing courses. They divided the design and implementation process into eight concrete areas, the “8-Block Model”. Their goal was to demystify the design process of service learning courses by breaking it down into interconnected components. These components include: project design, community partner relations, the problem statement, building community in the classroom, building student capacity, project management, assessment of learning, and reflection and connections. The project design component of the “8-Block Model” asks that the service performed be consistent with the learning goals of the course. For science courses students carry out their work as a way of learning science and the process of science, not solely for the sake of service. Their work supports the goals of a community partner and the community partner poses research problems for the class in a letter on their letterhead. Linking student work to important problems in the community effectively engages students and encourages them to work at more sophisticated levels than usually seen in introductory science classes. Using team-building techniques, the classroom becomes a safe, secure learning environment that encourages sharing and experimentation. Targeted lectures, labs, and demonstrations build the capacity of students to do their research. Behind the scenes project management ensures student success. Learning is assessed using a variety of tools, including graded classroom presentations, poster sessions, and presentations and reports to community partners. Finally, students reflect upon their work and make connections between their research and its importance to the well being of the community. Over the past 10 years, we have used this approach to design and continually modify an introductory oceanography course for majors and non

  19. Citizen Sky, An Update on the AAVSO's New Citizen Science Project

    Science.gov (United States)

    Turner, Rebecca; Price, A.; Henden, A.; Stencel, R.; Kloppenborg, B.

    2011-01-01

    Citizen Sky is a multi-year, NSF-funded, citizen science project focusing on the bright variable star, epsilon Aurigae. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. The first year of the project, 2009-10, was dedicated to developing project infrastructure, educating participants about epsilon Aurigae, and training these participants to observe the star and report their data. Looking forward, years two and three of the project will focus on assembling teams of participants to work on their own analysis and research. Results will be published in a special issue of the peer-reviewed Journal of the AAVSO. This project has been made possible by the National Science Foundation.

  20. System engineering and science projects: lessons from MeerKAT

    Science.gov (United States)

    Kapp, Francois

    2016-08-01

    The Square Kilometre Array (SKA) is a large science project planning to commence construction of the world's largest Radio Telescope after 2018. MeerKAT is one of the precursor projects to the SKA, based on the same site that will host the SKA Mid array in the central Karoo area of South Africa. From the perspective of signal processing hardware development, we analyse the challenges that MeerKAT encountered and extrapolate them to SKA in order to prepare the System Engineering and Project Management methods that could contribute to a successful completion of SKA. Using the MeerKAT Digitiser, Correlator/Beamformer and Time and Frequency Reference Systems as an example, we will trace the risk profile and subtle differences in engineering approaches of these systems over time and show the effects of varying levels of System Engineering rigour on the evolution of their risk profiles. It will be shown that the most rigorous application of System Engineering discipline resulted in the most substantial reduction in risk over time. Since the challenges faced by SKA are not limited to that of MeerKAT, we also look into how that translates to a system development where there is substantial complexity in both the created system as well as the creating system. Since the SKA will be designed and constructed by consortia made up from the ten member countries, there are many additional complexities to the organisation creating the system - a challenge the MeerKAT project did not encounter. Factors outside of engineering, for instance procurement models and political interests, also play a more significant role, and add to the project risks of SKA when compared to MeerKAT.

  1. History, Philosophy, and Science in a Social Perspective: A Pedagogical Project

    Science.gov (United States)

    Guerra, Andreia; Braga, Marco; Reis, Jose Claudio

    2013-01-01

    Various studies have promoted instruction in the history and philosophy of science (HPS) in science classes, but the best way of putting this perspective into practice remains undetermined. To contribute to this issue, we developed a pedagogical project in some high schools in Brazil that aimed to present science content using an…

  2. Grass Roots Design for the Ocean Science of Tomorrow

    Science.gov (United States)

    Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.

    2010-12-01

    Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences

  3. Dissemination and Exploitation: Project Goals beyond Science

    Science.gov (United States)

    Hamann, Kristin; Reitz, Anja

    2017-04-01

    Dissemination and Exploitation are essential parts of public funded projects. In Horizon 2020 a plan for the exploitation and dissemination of results (PEDR) is a requirement. The plan should contain a clear vision on the objectives of the project in relation to actions for dissemination and potential exploitation of the project results. The actions follow the basic idea to spread the knowledge and results gathered within the project and face the challenge of how to bring the results into potentially relevant policy circle and how they impact the market. The plan follows the purpose to assess the impact of the project and to address various target groups who are interested in the project results. Simply put, dissemination concentrates on the transfer of knowledge and exploitation on the commercialization of the project. Beyond the question of the measurability of project`s impact, strategies within science marketing can serve purposes beyond internal and external communication. Accordingly, project managers are facing the challenge to implement a dissemination and exploitation strategy that ideally supports the identification of all partners with the project and matches the current discourse of the project`s content within the society, politics and economy. A consolidated plan might unite all projects partners under a central idea and supports the identification with the project beyond the individual research questions. Which applications, strategies and methods can be used to bring forward a PEDR that accompanies a project successfully and allows a comprehensive assessment of the project afterwards? Which hurdles might project managers experience in the dissemination process and which tasks should be fulfilled by the project manager?

  4. "Saturday Night Live" Goes to High School: Conducting and Advising a Political Science Fair Project

    Science.gov (United States)

    Allen, Meg; Brewer, Paul R.

    2010-01-01

    This article uses a case study to illustrate how science fair projects--which traditionally focus on "hard science" topics--can contribute to political science education. One of the authors, a high school student, conducted an experimental study of politics for her science fair project. The other author, a faculty member, was asked to advise the…

  5. Student projects in medicine: a lesson in science and ethics.

    Science.gov (United States)

    Edwards, Sarah J L

    2009-11-01

    Regulation of biomedical research is the subject of considerable debate in the bioethics and health policy worlds. The ethics and governance of medical student projects is becoming an increasingly important topic in its own right, especially in the U.K., where there are periodic calls to change it. My main claim is that there seems to be no good reason for treating student projects differently from projects led by qualified and more experienced scientists and hence no good grounds for changing the current system of ethics review. I first suggest that the educational objectives cannot be met without laying down standards of good science, whatever they may be. Weak science is unnecessary for educational purposes, and it is, in any case, unlikely to produce good researchers in the future. Furthermore, it is curious to want to change the system of ethics review specifically for students when it is the science that is at stake, and when the science now falls largely outside the ethics remit. I further show that ethics review is nevertheless important since students carry a new potential conflict of interests that warrants independent oversight which supervisory support does not offer. This potential conflict may become more morally troublesome the greater the risks to the subjects of the research, and students may impose greater risks on their subjects (relative to professional researchers) by virtue of being inexperienced, whatever the nature of the project. Pragmatic concerns may finally be allayed by organizing the current system more efficiently at critical times of the university calendar.

  6. Project-Based Learning and Design-Focused Projects to Motivate Secondary Mathematics Students

    Science.gov (United States)

    Remijan, Kelly W.

    2017-01-01

    This article illustrates how mathematics teachers can develop design-focused projects, related to project-based learning, to motivate secondary mathematics students. With first-hand experience as a secondary mathematics teacher, I provide a series of steps related to the engineering design process, which are helpful to teachers in developing…

  7. Videos Designed to Watch but Audience Required Telling stories is a cliché for best practice in videos. Frontier Scientists, a NSF project titled Science in Alaska: using Multimedia to Support Science Education stressed story but faced audience limitations. FS describes project's story process, reach results, and hypothesizes better scenarios.

    Science.gov (United States)

    O'Connell, E. A.

    2016-12-01

    Telling stories is a cliché for best practice in science videos. It's upheld as a method to capture audience attention in many fields. Findings from neurobiology research show character-driven stories cause the release of the neurochemical oxytocin in the brain. Oxytocin motivates cooperation with others and enhances a sense of empathy, in particular the ability to experience others' emotions. Developing character tension- as in our video design showcasing scientists along with their work- holds the viewers' attention, promotes recall of story, and has the potential to clearly broadcast the feelings and behaviors of the scientists. The brain chemical change should help answer the questions: Why should a viewer care about this science? How does it improve the world, or our lives? Is just a story-driven video the solution to science outreach? Answer: Not in our multi-media world. Frontier Scientists (FS) discovered in its three year National Science Foundation project titled 'Science in Alaska: using Multimedia to Support Science Education': the storied video is only part of the effort. Although FS created from scratch and drove a multimedia national campaign throughout the project, major reach was not achieved. Despite FS' dedicated web site, YouTube channel, weekly blog, monthly press release, Facebook and G+ pages, Twitter activity, contact with scientists' institutions, and TV broadcast, monthly activity on the web site seemed to plateau at about 3000 visitors to the FS website per month. Several factors hampered the effort: Inadequate funding for social media limited the ability of FS to get the word to untapped markets: those whose interest might be sparked by ad campaigns but who do not actively explore unfamiliar agencies' science education content. However, when institutions took advantage of promoting their scientists through the FS videos we saw an uptick in video views and the participating scientists were often contacted for additional stories or were

  8. Support of an Active Science Project by a Large Information System: Lessons for the EOS Era

    Science.gov (United States)

    Angelici, Gary L.; Skiles, J. W.; Popovici, Lidia Z.

    1993-01-01

    The ability of large information systems to support the changing data requirements of active science projects is being tested in a NASA collaborative study. This paper briefly profiles both the active science project and the large information system involved in this effort and offers some observations about the effectiveness of the project support. This is followed by lessons that are important for those participating in large information systems that need to support active science projects or that make available the valuable data produced by these projects. We learned in this work that it is difficult for a large information system focused on long term data management to satisfy the requirements of an on-going science project. For example, in order to provide the best service, it is important for all information system staff to keep focused on the needs and constraints of the scientists in the development of appropriate services. If the lessons learned in this and other science support experiences are not applied by those involved with large information systems of the EOS (Earth Observing System) era, then the final data products produced by future science projects may not be robust or of high quality, thereby making the conduct of the project science less efficacious and reducing the value of these unique suites of data for future research.

  9. A rural virtual health sciences library project: research findings with implications for next generation library services*

    Science.gov (United States)

    Richwine, Margaret (Peggy); McGowan, Julie J.

    2001-01-01

    Purpose: The Shared Hospital Electronic Library of Southern Indiana (SHELSI) research project was designed to determine whether access to a virtual health sciences library and training in its use would support medical decision making in rural southern Indiana and achieve the same level of impact seen by targeted information services provided by health sciences librarians in urban hospitals. Methods: Based on the results of a needs assessment, a virtual medical library was created; various levels of training were provided. Virtual library users were asked to complete a Likert-type survey, which included questions on intent of use and impact of use. At the conclusion of the project period, structured interviews were conducted. Results: Impact of the virtual health sciences library showed a strong correlation with the impact of information provided by health sciences librarians. Both interventions resulted in avoidance of adverse health events. Data collected from the structured interviews confirmed the perceived value of the virtual library. Conclusion: While librarians continue to hold a strong position in supporting information access for health care providers, their roles in the information age must begin to move away from providing information toward selecting and organizing knowledge resources and instruction in their use. PMID:11209799

  10. Developing Engineering and Science Process Skills Using Design Software in an Elementary Education

    Science.gov (United States)

    Fusco, Christopher

    This paper examines the development of process skills through an engineering design approach to instruction in an elementary lesson that combines Science, Technology, Engineering, and Math (STEM). The study took place with 25 fifth graders in a public, suburban school district. Students worked in groups of five to design and construct model bridges based on research involving bridge building design software. The assessment was framed around individual student success as well as overall group processing skills. These skills were assessed through an engineering design packet rubric (student work), student surveys of learning gains, observation field notes, and pre- and post-assessment data. The results indicate that students can successfully utilize design software to inform constructions of model bridges, develop science process skills through problem based learning, and understand academic concepts through a design project. The final result of this study shows that design engineering is effective for developing cooperative learning skills. The study suggests that an engineering program offered as an elective or as part of the mandatory curriculum could be beneficial for developing students' critical thinking, inter- and intra-personal skills, along with an increased their understanding and awareness for scientific phenomena. In conclusion, combining a design approach to instruction with STEM can increase efficiency in these areas, generate meaningful learning, and influence student attitudes throughout their education.

  11. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    Science.gov (United States)

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  12. Chemical Database Projects Delivered by RSC eScience

    OpenAIRE

    Williams, Antony

    2013-01-01

    This presentation is an overview of some of the projects we are involved with at RSC eScience. The presentation was given at the FDA Meeting regarding the “Development of a Freely Distributable Data System for the Registration of Substances"  

  13. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  14. Project Citizen: Promoting Action-Oriented Citizen Science in the Classroom

    Science.gov (United States)

    Green, Carie; Medina-Jerez, William

    2012-01-01

    In recent years, citizen science projects have emerged as a means to involve students in scientific inquiry, particularly in the fields of ecology and environmental science. A citizen scientist is "a volunteer who collects and/or processes data as part of a scientific inquiry" (Silverton 2009, p. 467). Participation in citizen science…

  15. Fermentation. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  16. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions

  17. National Academy of Sciences Recommends Continued Support of ALMA Project

    Science.gov (United States)

    2000-05-01

    A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes

  18. Student Interest in Engineering Design-Based Science

    Science.gov (United States)

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  19. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    Science.gov (United States)

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  20. Research oriented projects on design themese

    DEFF Research Database (Denmark)

    Tollestrup, Christian; Eriksen, Kaare; Ovesen, Nis

    2011-01-01

    How can design students do research-oriented projects about design themes? At the 3rd semester at the Industrial Design Master Program at Aalborg University this is done by taking research oriented learning objectives on design theories and methods and combining them with experimental case studie...... and professional self-reflection amongst students are improved....

  1. The Healy Clean Coal Project: Design verification tests

    International Nuclear Information System (INIS)

    Guidetti, R.H.; Sheppard, D.B.; Ubhayakar, S.K.; Weede, J.J.; McCrohan, D.V.; Rosendahl, S.M.

    1993-01-01

    As part of the Healy Clean Coal Project, TRW Inc., the supplier of the advanced slagging coal combustors, has successfully completed design verification tests on the major components of the combustion system at its Southern California test facility. These tests, which included the firing of a full-scale precombustor with a new non-storage direct coal feed system, supported the design of the Healy combustion system and its auxiliaries performed under Phase 1 of the project. Two 350 million BTU/hr combustion systems have been designed and are now ready for fabrication and erection, as part of Phase 2 of the project. These systems, along with a back-end Spray Dryer Absorber system, designed and supplied by Joy Technologies, will be integrated with a Foster Wheeler boiler for the 50 MWe power plant at Healy, Alaska. This paper describes the design verification tests and the current status of the project

  2. Design of a projection display screen with vanishing color shift for rear-projection HDTV

    Science.gov (United States)

    Liu, Xiu; Zhu, Jin-lin

    1996-09-01

    Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.

  3. Succesful Experience of the Project "ASTROTOP" in Israel: Space-astonomy Science education in form of independent reserch projects of pupils

    Science.gov (United States)

    Pustil'Nik, Lev

    We present more then 10 year experience of educational project in Space/Astrophysics/Environment field, realized on the base of National Science- Educational Center "Blossoms of Science" of the Jordan Valley College. Our approach is based on the natural curiosity of children as driver of their self-development from the first minutes of their life and even in adult state. This approach shift center of the weight in educational process from direct lectures, sermons, explanation from teacher to children on own attempts of children to investigate problem, what is interesting for them, by themselves (individually or in group). Our approach includes four levels of the projects: "nano-projects" for children garden and basic school (up to 10-12 years), "micro-projects" for intermediate school (12-16 years), "mini-projects" for high school (16-18 years), and "macro-projects" for the best graduates high schools and students of colleges (17-22 years). These levels and projects are interconnected one with another and sometimes participants, started on the micro-projects level in intermediate school, continue their activity up to macro-projects of the graduate's diploma level. For each level we organize courses for preparation of the teachers and instructors, interested in the using of our receipts, and published books and brochures for them. The content of our activity for different levels: a) Level of kinder gardens/basic schools- special software with interactive movie -nano-projects; b) Level of intermediate school: "Days of Science" in tens schools of Israel- first contact with astronomy; c) Summer astronomy camps (4-5 of one week camps on 200-300 pupils from all country) with introduce to astronomy and with preparation of micro-projects on themes - first successful experience of research in real science fields (hundreds projects); d) ASTROTOP - one year program of preparation of short projects, with solution on the quality level of chosen astrophysical problem - mini-projects

  4. Multi-Role Project (MRP): A New Project-Based Learning Method for STEM

    Science.gov (United States)

    Warin, Bruno; Talbi, Omar; Kolski, Christophe; Hoogstoel, Frédéric

    2016-01-01

    This paper presents the "Multi-Role Project" method (MRP), a broadly applicable project-based learning method, and describes its implementation and evaluation in the context of a Science, Technology, Engineering, and Mathematics (STEM) course. The MRP method is designed around a meta-principle that considers the project learning activity…

  5. Can design science be used for design?

    DEFF Research Database (Denmark)

    Rose, Jeremy; Markfoged, Kim; Andersen, Jesper Lund

    2010-01-01

    software development projects. They studied the literature, chose appropriate starting theories, designed their own development processes, used them to build small mobile applications, documented their experiences and evaluated those experiences by writing research articles. A more experienced researcher...

  6. Project-Based Learning versus Textbook/Lecture Learning in Middle School Science

    Science.gov (United States)

    Main, Sindy

    2015-01-01

    As schools continue to become more diverse, it is important to look at science teaching methods that will meet the needs of all students. In this study, 172 students in a middle school in Northwestern Illinois were taught using two methods of teaching science. Half of the students were taught using project-based science (PBS) and the other half of…

  7. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  8. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  9. Project Design Concept for Monitoring and Control System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    This Project Design Concept represents operational requirements established for use in design the tank farm Monitoring and Control System. These upgrades are included within the scope of Project W-314, Tank Farm Restoration and Safe Operations

  10. Decision-making in the Pre-design Stage of Sustainable Building Renovation Projects

    DEFF Research Database (Denmark)

    Gade, Anne Nørkjær; Jensen, Rasmus Lund; Larsen, Tine Steen

    2017-01-01

    There is a great potential in renovating our existing building stock, in terms of improving environmental, economic and social qualities. Meeting the increasing performance requirements for sustainable construction entails an increasing level of complexity in the design process of both new...... buildings and renovation projects. Decision support tools are one solution that can help the building owner manage this complexity. This study investigates the current decision-making processes among Danish professional building owners, in order to propose a conceptual framework for future decision support...... tools for sustainable renovation. Design Science Research Methodology has been used as the main methodological framework. Current practices for setting goals for sustainability, determining the current state of the buildings and prioritizing which buildings to renovate within a building portfolio, have...

  11. Hanford's 100-HX Pump and Treat Project - a Successful Blend of Science, Technology, Construction, and Project Management - 12412

    Energy Technology Data Exchange (ETDEWEB)

    Albin, Kenneth A.; Bachand, Marie T.; Biebesheimer, Fred H.; Neshem, Dean O.; Smoot, John L. [CH2M HILL Plateau Remediation Company, Richland, Washington 99352 (United States)

    2012-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) recently completed construction and start-up of the $25 million 100-HX Groundwater Pump and Treat Project for the Department of Energy (DOE) at its Hanford Reservation site in Washington State. From the onset, the 100-HX Project Leadership Team was able to successfully blend the science and technology of a state-of-the-art groundwater pump and treat system with the principles, tools, and techniques of traditional industrial-type construction and project management. From the 1940's through most of the 1980's, the United States used the Hanford Site to produce nuclear material for national defense at reactor sites located along the Columbia River. While the reactors were operational, large volumes of river water were treated with sodium dichromate (to inhibit corrosion of the reactor piping) and used as a coolant for the reactors. After a single pass through the reactor and before being discharged back to the river, the coolant water was sent to unlined retention basins to cool and to allow the short-lived radioactive contaminants to decay. As a result of these operations, hexavalent chromium was introduced to the vadose zone, and ultimately into the groundwater aquifer and the adjacent Columbia River. In addition, numerous leaks and spills of concentrated sodium dichromate stock solution over the lifetime of reactor operations led to higher concentrations of chromate in the vadose zone and groundwater in localized areas. As a result, the 100 Area was included in the National Priorities List sites under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA). The mission of the 100-HX Project is to significantly reduce the concentration of hexavalent chromium in the groundwater by treating up to 3.8 billion gallons (14,300 mega-liters) of contaminated water over its first nine years of operations. In order to accomplish this mission, groundwater scientists and geologists using

  12. COMUNICA Project: a commitment for strategic communication on Earth Sciences

    Science.gov (United States)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis

    2016-04-01

    The Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) has just celebrated its 50-year anniversary last year. It is a reference research center on Earth Sciences both national and international level. The Institute includes 4 research groups which focus their scientific activity on the structure and dynamics of the Earth, the environmental changes in the geological record, geophysical and geochemical modelling and crystallography and optical properties. Only when large geological disasters happens, mainly earthquakes and volcanic eruptions, some interaction between ICTJA-CSIC researchers and traditional media occurs, which is limited by the fact that the aim of the Institute is the scientific research and it has no responsibilities in the area of civil protection. This relationship reduces the knowledge of our activity to the general public. To overcome this situation, the ICTJA-CSIC has decided to take an active role in the social dissemination of geological and geophysical knowledge. Thus, the ICTJA-CSIC has launched the COMUNICA Project. The project is aimed to increase the social visibility of the ICTJA-CSIC and to promote the outreach of researchers. Therefore ICTJA-CSIC has created the Communication Unit, which is in charge of designing communication strategies to give to different audiences (media, students of secondary and higher education, general public) an overview of the scientific and institutional activity of the ICTJA-CSIC. A global communication plan is being designed to define the strategic actions, both internal and external. An important role has been reserved for digital channels, to promote ICTJA-CSIC activity on social networks such as Twitter, Facebook or Youtube, besides making a major effort in the renovation and maintenance of the corporate website. A strong effort will be done to collect and spread through press releases the major scientific milestones achieved by the researchers, to promote the interest of mass media. Communication

  13. Multiscale science for science-based stockpile stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.; Sharp, D.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project has been to develop and apply the methods of multi scale science to the problems of fluid and material mixing due to instability and turbulence, and of materials characterization. Our specific focus has been on the SBSS (science-based stockpile stewardship) issue of assessing the performance of a weapons with off-design, aged, or remanufactured components in the absence of full-scale testing. Our products are physics models, based on microphysical principles and parameters, and suitable for implementation in the large scale design and assessment codes used in the nuclear weapons program.

  14. Holistic Food Design in Danish Kindergartens

    DEFF Research Database (Denmark)

    Hermanssdottir, Sunna; Fisker, Anna Marie; Poulsen, Søren Bolvig

    The poster presents an ongoing case within a research through design project. The project is a part of the interdisciplinary research project, FRIDA, representing the core competencies of the three research groups at Aalborg University - Food Plus Design (Center for Food Science, Design...

  15. Changes in Participants’ Scientific Attitudes and Epistemological Beliefs During an Astronomical Citizen Science Project

    Science.gov (United States)

    Price, Aaron

    2012-01-01

    Citizen science projects offer opportunities for non-scientists to take part in scientific research. While their contribution to scientific data collection has been well documented, there is limited research on changes that may occur to their volunteer participants. In this study, we investigated (1) how volunteers’ attitudes towards science and beliefs in the nature of science changed over six months of participation in an astronomy-themed citizen science project and (2) how the level of project participation accounted for these changes. To measure attitudes towards science and beliefs about the nature of science, identical pre- and post-tests were used. We used pre-test data from 1,375 participants and post-test data collected from 175 participants. Responses were analyzed using the Rasch Rating Scale Model. The pre-test sample was used to create the Rasch scales for the two scientific literacy measures. For the pre/post-test comparisons, data from those who completed both tests were used. Fourteen participants who took the pre/post-tests were interviewed. Results show that overall scientific attitudes did not change, p = .812. However, we did find significant changes related towards two scientific attitude items about science in the news (positive change; p self-efficacy (negative change, p scale did not change much and this change was not related to any of our recorded project activity variables. The interviews suggest that the social aspect of the project is important to participants and the change in self-efficacy is not due to a lowering of esteem but rather a greater appreciation for what they have yet to learn.

  16. Mapping and industrial IT project to a 2nd semester design-build project

    DEFF Research Database (Denmark)

    Nyborg, Mads; Høgh, Stig

    2010-01-01

    CDIO means bringing the engineer's daily life and working practice into the educational system. In our opinion this is best done by selecting an appropriate project from industry. In this paper we describe how we have mapped an industrial IT project to a 2nd semester design-build project in the D......CDIO means bringing the engineer's daily life and working practice into the educational system. In our opinion this is best done by selecting an appropriate project from industry. In this paper we describe how we have mapped an industrial IT project to a 2nd semester design-build project...... in the Diploma IT program at the Technical University of Denmark. The system in question is a weighing system operating in a LAN environment. The system is used in the medical industry for producing tablets. We present the design of a curriculum to support the development of major components of the weighing...... system. A simple teaching model for software engineering is presented which combines technical disciplines with disciplines from section 2-4 in the CDIO syllabus. The implementation of a joint project involving several courses supports the CDIO perspective. Already the traditional IT-diploma education...

  17. Designing and Implementing a Unique Website Design Project in an Undergraduate Course

    Science.gov (United States)

    Kontos, George

    2016-01-01

    The following paper describes a distinctive collaborative service-learning project done in an undergraduate class on web design. In this project, students in a web design class contacted local community non-profit organizations to create websites (collections of web pages) to benefit these organizations. The two phases of creating a website,…

  18. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  19. Shifts in funding for science curriculum design and their (unintended) consequences

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Schunn, Christian; Bernstein, Debra; McKenney, Susan

    2016-01-01

    Federal agencies in the Unites States invest heavily in the development of science curriculum materials, which can significantly facilitate science education reform. The current study describes the characteristics of K-12 science curriculum materials produced by federally funded projects between

  20. [Analysis of ophthalmic projects granted by National Natural Science Foundation].

    Science.gov (United States)

    Shao, Jing-Jing; Mo, Xiao-Fen; Pan, Zhi-Qiang; Gan, De-Kang; Xu, Yan-Ying

    2008-09-01

    To understand the status of basic research work in the field of ophthalmology by analyzing the projects funded by the National Natural Science Foundation of China (NSFC) from the year of 1986 to 2007, and offer as a reference to the ophthalmologists and researchers. NSFC supported ophthalmology projects in the 22 year's period were collected from the database of NSFC. The field of funded projects, the research team and their achievements were analyzed. There were 228 applicants from 47 home institutions were funded in the field of ophthalmology during the past 22 years, 323 projects funded with 66.74 million Yuan in total, in which 165 projects were fulfilled before the end of 2006. The applied and funded projects mainly focus on six different kinds of research area related to retinal diseases, corneal diseases, glaucoma, optic nerve diseases, myopia and cataract, and 70% of them were basic research in nature. As a brief achievement of 165 fulfilled projects, more than 610 papers were published in domestic journals, over 140 papers were published in Science Citation Index journals, more than 600 people were trained, and over 20 scientific awards were obtained. The number of funded projects and achievement of fulfilled projects in the discipline of ophthalmology gradually increased over the past two decades, the research fields were concentrated in certain diseases. NSFC has played an important role in promoting the development of ophthalmology research and bringing up specialists in China. However, clinical research, continuously research, transforming from basic research to clinic applications and multidisciplinary cross studies should be strengthened.

  1. Adapt! – Agile Project Management Supported by Axiomatic Design

    Directory of Open Access Journals (Sweden)

    Weber Jakob

    2017-01-01

    Full Text Available This paper presents a novel approach for the use of Axiomatic Design Theory in combination with agile project management methods like Scrum for an effective, structured and combined product design and development process. Agile project management methods give a guideline how to manage a project, but there is only minor assistance regarding the actual product development process itself. Axiomatic Design can be used to support these methods in this point. In concrete terms, the results of the decomposition process of this theory can be used to formulate and structure the work packages for the agile project managing process. The Independence Axiom of Axiomatic Design Theory has a substantial contribution by ensuring the independence of the work packages which can be assigned to different project team members and can be processed independently by them. The combination of the different methods not only helps to ensure a good design solution but also helps to work more agile within a project team. The here proposed approach is one part of a holistic product design and development process for changeable production units – called Adapt! – and is described within a use case in the automotive sector.

  2. Ka Hana `Imi Na`auao: A Science Curriculum Project

    Science.gov (United States)

    Napeahi, K.; Roberts, K. D.; Galloway, L. M.; Stodden, R. A.; Akuna, J.; Bruno, B.

    2005-12-01

    In antiquity, the first people to step foot on what are now known as the Hawaiian islands skillfully traversed the Pacific Ocean using celestial navigation and learned observations of scientific phenomena. Long before the Western world ventured beyond the horizon, Hawaiians had invented the chronometer, built aqueduct systems (awai) that continue to amaze modern engineers, and had preventive health systems as well as a comprehensive knowledge of medicinal plants (including antivirals) which only now are working their way through trials for use in modern pharmacopia. Yet, today, Native Hawaiians are severely underrepresented in science-related fields, reflecting (in part) a failure of the Western educational system to nurture the potential of these resourceful students, particularly the many "at-risk" students who are presently over-represented in special education. A curriculum which draws from and incorporates traditional Hawaiian values and knowledge is needed to reinforce links to the inquiry process which nurtured creative thinking during the renaissance of Polynesian history. The primary goal of the Ka Hana `Imi Na`auao Project (translation: `science` or `work in which you seek enlightenment, knowledge or wisdom`) is to increase the number of Native Hawaiian adults in science-related postsecondary education and employment fields. Working closely with Native Hawaiian cultural experts and our high school partners, we will develop and implement a culturally responsive 11th and 12th grade high school science curriculum, infused with math, literacy and technology readiness skills. Software and assistive technology will be used to adapt instruction to individual learners` reading levels, specific disabilities and learning styles. To ease the transition from secondary to post-secondary education, selected grade 12 students will participate in planned project activities that link high school experiences with college science-related programs of study. Ka Hana `Imi Na

  3. Museums for Science Education: can we make the difference? The case of the EST project

    Directory of Open Access Journals (Sweden)

    Maria Xanthoudaki

    2007-06-01

    Full Text Available This paper addresses the role of museums in education in science and technology through the discussion of a specific project entitled EST “Educate in Science and Technology”. The Project puts together methodologies and activities through which museums can be used as resources for long-term project work. In-service training for teachers, work in class with learning kits or with materials brought in by a Science Van, and visits to the museum are planned and developed jointly by museum experts and teachers. The Project proposes a teaching and learning model which sees the museum experience as central and integral part of a teaching and learning process with more effective outcomes. The analysis of the Project activities and methodologies is based on the work carried out at the National Museum of Science and Technology Leonardo da Vinci, which perceives the learner (the visitor at the heart of its educational methodologies and provision.

  4. Seeking Constructive Synergy: Design Science and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2013-01-01

    Information systems research and management science create knowledge which can be applied in organizations. Design science specifically aims at applying existing knowledge to solve interesting and relevant business problems and has been steadily gaining support in information systems research....... However, design science is not the only design-oriented framework. Accordingly, this raises the question of whether it is possible to compare the results obtained from different brands of design-oriented research. This paper contributes to answering this question by comparing two research approaches......, enabling mutual learning possibilities and suggesting improvements in transparency and rigor. The objective of this paper is to compare design science research with the constructive research approach. The conclusion is that the two approaches are compatible, save for details in practical requirements...

  5. The epistemic culture in an online citizen science project: Programs, antiprograms and epistemic subjects.

    Science.gov (United States)

    Kasperowski, Dick; Hillman, Thomas

    2018-05-01

    In the past decade, some areas of science have begun turning to masses of online volunteers through open calls for generating and classifying very large sets of data. The purpose of this study is to investigate the epistemic culture of a large-scale online citizen science project, the Galaxy Zoo, that turns to volunteers for the classification of images of galaxies. For this task, we chose to apply the concepts of programs and antiprograms to examine the 'essential tensions' that arise in relation to the mobilizing values of a citizen science project and the epistemic subjects and cultures that are enacted by its volunteers. Our premise is that these tensions reveal central features of the epistemic subjects and distributed cognition of epistemic cultures in these large-scale citizen science projects.

  6. Homogenisation in project management for large German research projects in the Earth system sciences: overcoming the institutional coordination bias

    Science.gov (United States)

    Rauser, Florian; Vamborg, Freja

    2016-04-01

    The interdisciplinary project on High Definition Clouds and Precipitation for advancing climate prediction HD(CP)2 (hdcp2.eu) is an example for the trend in fundamental research in Europe to increasingly focus on large national and international research programs that require strong scientific coordination. The current system has traditionally been host-based: project coordination activities and funding is placed at the host institute of the central lead PI of the project. This approach is simple and has the advantage of strong collaboration between project coordinator and lead PI, while exhibiting a list of strong, inherent disadvantages that are also mentioned in this session's description: no community best practice development, lack of integration between similar projects, inefficient methodology development and usage, and finally poor career development opportunities for the coordinators. Project coordinators often leave the project before it is finalized, leaving some of the fundamentally important closing processes to the PIs. This systematically prevents the creation of professional science management expertise within academia, which leads to an automatic imbalance that hinders the outcome of large research programs to help future funding decisions. Project coordinators in academia often do not work in a professional project office environment that could distribute activities and use professional tools and methods between different projects. Instead, every new project manager has to focus on methodological work anew (communication infrastructure, meetings, reporting), even though the technological needs of large research projects are similar. This decreases the efficiency of the coordination and leads to funding that is effectively misallocated. We propose to challenge this system by creating a permanent, virtual "Centre for Earth System Science Management CESSMA" (cessma.com), and changing the approach from host- based to centre-based. This should

  7. Methane Digestors. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  8. Changes in Participants' Scientific Attitudes and Epistemological Beliefs during an Astronomical Citizen Science Project

    Science.gov (United States)

    Price, C. Aaron; Lee, Hee-Sun

    2013-01-01

    Citizen science projects provide non-scientists with opportunities to take part in scientific research. While their contribution to scientific data collection has been well documented, there is limited research on how participation in citizen science projects may affect their scientific literacy. In this study, we investigated (1) how volunteers'…

  9. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Rotman, Lauren; Tierney, Brian; Hester, Mary; Zurawski, Jason

    2013-08-13

    The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  10. Frames for Learning Science: Analyzing Learner Positioning in a Technology-Enhanced Science Project

    Science.gov (United States)

    Silseth, K.; Arnseth, H. C.

    2016-01-01

    In this article, we examine the relationship between how students are positioned in social encounters and how this influences learning in a technology-supported science project. We pursue this topic by focusing on the participation trajectory of one particular learner. The analysis shows that the student cannot be interpreted as one type of…

  11. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  12. Science in Action: How Middle School Students Are Changing Their World through STEM Service-Learning Projects

    Science.gov (United States)

    Newman, Jane L.; Dantzler, John; Coleman, April N.

    2015-01-01

    The purpose of Science in Action (SIA) was to examine the relationship between implementing quality science, technology, engineering, and math (STEM) service-learning (SL) projects and the effect on students' academic engagement in middle school science, civic responsibility, and resilience to at-risk behaviors. The innovative project funded by…

  13. Knowledge management in design teams using a project website

    NARCIS (Netherlands)

    Otter, den A.F.H.J.; Lima, C.P

    2007-01-01

    In this paper the sharing of knowledge in architectural design teams using a Project Website is discussed. The results of multiple case studies, being part of a recently finished PhD research project to communication and performance of design teams using a Project Website, show that systems for

  14. Partnering for science: proceedings of the USGS Workshop on Citizen Science

    Science.gov (United States)

    Hines, Megan; Benson, Abigail; Govoni, David; Masaki, Derek; Poore, Barbara; Simpson, Annie; Tessler, Steven

    2013-01-01

    What U.S. Geological Survey (USGS) programs use citizen science? How can projects be best designed while meeting policy requirements? What are the most effective volunteer recruitment methods? What data should be collected to ensure validation and how should data be stored? What standard protocols are most easily used by volunteers? Can data from multiple projects be integrated to support new research or existing science questions? To help answer these and other questions, the USGS Community of Data Integration (CDI) supported the development of the Citizen Science Working Group (CSWG) in August 2011 and funded the working group’s proposal to hold a USGS Citizen Science Workshop in fiscal year 2012. The stated goals for our workshop were: raise awareness of programs and projects in the USGS that incorporate citizen science, create a community of practice for the sharing of knowledge and experiences, provide a forum to discuss the challenges of—and opportunities for—incorporating citizen science into USGS projects, and educate and support scientists and managers whose projects may benefit from public participation in science.To meet these goals, the workshop brought together 50 attendees (see appendix A for participant details) representing the USGS, partners, and external citizen science practitioners from diverse backgrounds (including scientists, managers, project coordinators, and technical developers, for example) to discuss these topics at the Denver Federal Center in Colorado on September 11–12, 2012. Over two and a half days, attendees participated in four major plenary sessions (Citizen Science Policy and Challenges, Engaging the Public in Scientific Research, Data Collection and Management, and Technology and Tools) comprised of 25 invited presentations and followed by structured discussions for each session designed to address both prepared and ad hoc "big questions." A number of important community support and infrastructure needs were identified

  15. Undergraduate Research Involving Deaf and Hard-of-Hearing Students in Interdisciplinary Science Projects

    Directory of Open Access Journals (Sweden)

    Todd Pagano

    2015-05-01

    Full Text Available Scientific undergraduate research in higher education often yields positive outcomes for student and faculty member participants alike, with underrepresented students often showing even more substantial gains (academic, professional, and personal as a result of the experience. Significant success can be realized when involving deaf and hard-of-hearing (d/hh undergraduate students, who are also vastly underrepresented in the sciences, in interdisciplinary research projects. Even d/hh Associate degree level students and those in the first two years of their postsecondary careers can contribute to, and benefit from, the research process when faculty mentors properly plan/design projects. We discuss strategies, including the dissemination/communication of research results, for involving these students in research groups with different communication dynamics and share both findings of our research program and examples of successful chemical and biological research projects that have involved d/hh undergraduate students. We hope to stimulate a renewed interest in encouraging diversity and involving students with disabilities into higher education research experiences globally and across multiple scientific disciplines, thus strengthening the education and career pipeline of these students.

  16. Project Design Concept - Primary Ventilation System

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Tank Farm Restoration and Safe Operation (TFRSO), Project W-3 14 was established to provide upgrades that would improve the reliability and extend the system life of portions of the waste transfer, electrical, ventilation, instrumentation and control systems for the Hanford Site Tank Farms. An assessment of the tank farm system was conducted and the results are documented in system assessment reports. Based on the deficiencies identified in the tank farm system assessment reports, and additional requirements analysis performed in support of the River Protection Project (RPP), an approved scope for the TFRSO effort was developed and documented in the Upgrade Scope Summary Report (USSR), WHC-SD-W314-RPT-003, Rev. 4. The USSR establishes the need for the upgrades and identifies the specific equipment to be addressed by this project. This Project Design Concept (PDC) is in support of the Phase 2 upgrades and provides an overall description of the operations concept for the W-314 Primary Ventilation Systems. Actual specifications, test requirements, and procedures are not included in this PDC. The PDC is a ''living'' document, which will be updated throughout the design development process to provide a progressively more detailed description of the W-314 Primary Ventilation Systems design. The Phase 2 upgrades to the Primary Ventilation Systems shall ensure that the applicable current requirements are met for: Regulatory Compliance; Safety; Mission Requirements; Reliability; and Operational Requirements

  17. The history and science of the Manhatten project

    International Nuclear Information System (INIS)

    Reed, Bruce Cameron

    2014-01-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  18. The history and science of the Manhatten project

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Bruce Cameron [Alma College, Alma, MI (United States). Dept. of Physics

    2014-03-01

    This is the only popular-level history of the Project prepared by a writer who is a physicist and who has broad knowledge of the relevant scientific details. Ideal for readers who have no specialized scientific background but who want to learn more about how atomic bombs came to be. Relevant scientific concepts are explained in the text as they are needed. For readers who do possess some scientific background (high-school physics), this book will provide a deeper understanding of some of the technical issues involved in developing atomic bombs. An ideal text for a college-level ''general education'' history or science class. Based on years of research by the author into the physics of nuclear weapons, augmented by familiarity with relevant official archival documentation. The development of atomic bombs under the auspices of the U. S. Army's Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level ''Modern Physics'' course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the legacy of the Project as reflected in the current world stockpiles of nuclear weapons.

  19. Project Management in Instructional Design: ADDIE Is Not Enough

    Science.gov (United States)

    Van Rooij, Shahron Williams

    2010-01-01

    In the digital age, instructional designers must possess both a sound instructional design knowledge base and solid project management skills that will enable them to complete courseware projects on time, on budget and in conformance with client expectations. Project management skills include the ability to apply repeatable processes, along with…

  20. Designing EvoRoom: An Immersive Simulation Environment for Collective Inquiry in Secondary Science

    Science.gov (United States)

    Lui, Michelle Mei Yee

    This dissertation investigates the design of complex inquiry for co-located students to work as a knowledge community within a mixed-reality learning environment. It presents the design of an immersive simulation called EvoRoom and corresponding collective inquiry activities that allow students to explore concepts around topics of evolution and biodiversity in a Grade 11 Biology course. EvoRoom is a room-sized simulation of a rainforest, modeled after Borneo in Southeast Asia, where several projected displays are stitched together to form a large, animated simulation on each opposing wall of the room. This serves to create an immersive environment in which students work collaboratively as individuals, in small groups and a collective community to investigate science topics using the simulations as an evidentiary base. Researchers and a secondary science teacher co-designed a multi-week curriculum that prepared students with preliminary ideas and expertise, then provided them with guided activities within EvoRoom, supported by tablet-based software as well as larger visualizations of their collective progress. Designs encompassed the broader curriculum, as well as all EvoRoom materials (e.g., projected displays, student tablet interfaces, collective visualizations) and activity sequences. This thesis describes a series of three designs that were developed and enacted iteratively over two and a half years, presenting key features that enhanced students' experiences within the immersive environment, their interactions with peers, and their inquiry outcomes. Primary research questions are concerned with the nature of effective design for such activities and environments, and the kinds of interactions that are seen at the individual, collaborative and whole-class levels. The findings fall under one of three themes: 1) the physicality of the room, 2) the pedagogical script for student observation and reflection and collaboration, and 3) ways of including collective

  1. The Science DMZ: A Network Design Pattern for Data-Intensive Science

    Directory of Open Access Journals (Sweden)

    Eli Dart

    2014-01-01

    Full Text Available The ever-increasing scale of scientific data has become a significant challenge for researchers that rely on networks to interact with remote computing systems and transfer results to collaborators worldwide. Despite the availability of high-capacity connections, scientists struggle with inadequate cyberinfrastructure that cripples data transfer performance, and impedes scientific progress. The Science DMZ paradigm comprises a proven set of network design patterns that collectively address these problems for scientists. We explain the Science DMZ model, including network architecture, system configuration, cybersecurity, and performance tools, that creates an optimized network environment for science. We describe use cases from universities, supercomputing centers and research laboratories, highlighting the effectiveness of the Science DMZ model in diverse operational settings. In all, the Science DMZ model is a solid platform that supports any science workflow, and flexibly accommodates emerging network technologies. As a result, the Science DMZ vastly improves collaboration, accelerating scientific discovery.

  2. Data Driven Professional Development Design for Out-of-School Time Educators Using Planetary Science and Engineering Educational Materials

    Science.gov (United States)

    Clark, J.; Bloom, N.

    2017-12-01

    Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.

  3. Design project management mode as the introduction

    International Nuclear Information System (INIS)

    Zhang Xiaoping

    2014-01-01

    This article consider nuclear power plant's current design schedule management mode as the introduction, analysis of current management in-depth, summed up the advantage and disadvantage of the existing management mode. It makes use of mature closed loop cycle project management, and submits progress tracking model assumptions. It also introduces the purpose and background of the progress automation model, the theoretical assumptions of the model, the design criteria and evaluation system of indicators of progress. Based on the achievement process model, this article mainly discusses the specific processes and key points of the project closed loop cycle, and the improvement of the process of project management. (author)

  4. Design science research methods and patterns innovating information and communication technology

    CERN Document Server

    Vaishnavi, Vijay K

    2015-01-01

    Presenting innovative research methods, this second edition of a bestseller describes a simple and practical methodology for conducting cutting-edge design science research (DSR). It provides comprehensive guidance on how to conduct such research and supplies in-depth treatment of design science theory and the different types of theory that can be generated in design science research.Making novel use of the concept of patterns, it presents 84 research patterns for conducting effective DSR. It emphasizes design science theory throughout and is filled with practical examples of using patterns to

  5. Project HealthDesign: enhancing action through information.

    Science.gov (United States)

    Brennan, Patricia Flatley; Casper, Gail; Downs, Stephen; Aulahk, Veenu

    2009-01-01

    Project HealthDesign is a country-wide initiative in the United States designed to stimulate innovation in personal health records (PHRs). Nine grantee teams engaged in an 18-month long design and prototyping process. Two teams addressed the needs of children and adolescents; three created novel approaches to help adults prevent or manage metabolic syndrome; three groups employed interface innovations to assist patients with chronic care management and one team devised a novel calendaring system to assist patients undergoing complex medical/surgical treatments to integrate care processes into their daily lives. These projects not only included development and testing of novel personal health records applications, but also served as the starting point to specify and implement a common technical core platform. The project advanced PHR development in two key ways: intensive user-centered design and a development architecture that separates applications of PHRs from the infrastructure that supports them. The initiative also allowed systematic investigation of significant ethical, legal and social issues, including how privacy considerations are changed when information technology innovations are used in the home and the rebalancing of the authority structure of health care decision making when patient-centered approaches guide the design of PHRs.

  6. A Symbiosis between Instructional Systems Design and Project Management

    Science.gov (United States)

    Pan, Cheng-Chang

    2012-01-01

    This study is intended to explore a complementary relationship between instructional systems design (ISD) and project management in an attempt to build a plausible case for integrating project management as a distinct course in the core of the graduate instructional systems design programs. It is argued that ISD and project management should form…

  7. A Study on the Evaluation of Science Projects of Primary School Students Based on Scientific Criteria

    Science.gov (United States)

    Gungor, Sema Nur; Ozer, Dilek Zeren; Ozkan, Muhlis

    2013-01-01

    This study re-evaluated 454 science projects that were prepared by primary school students between 2007 and 2011 within the scope of Science Projects Event for Primary School Students. Also, submitted to TUBITAK BIDEB Bursa regional science board by MNE regional work groups in accordance with scientific research methods and techniques, including…

  8. Investigation of the Relationship between Green Design and Project Delivery Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bilec, Melissa M.; Ries, Robert J.

    2008-04-24

    The selection of the project delivery method (PDM) for any project is critical--it establishes communication, coordination, and contractual issues between the owner, contractor, and designer. With an increase in the number of green design projects, understanding the relationship between the PDM and green design is paramount to project and contract management. It is reasonable to assume that a positive relationship between green design and design-build (DB) exists since both theoretically are intended to foster an integrated, holistic, and collaborative project. This research examines the relationship between the design-bid-build (DBB), construction management (CM), and DB PDMs and green design with the goal of establishing best practices and identifying potential synergies between them. The research collected information by conducting primarily telephone interviews with approximately twenty-five individuals, including owners, contractors, and designers involved in completed green design projects, mainly in the public sector. The interviews developed a general understanding of the current state of knowledge and experience and not a rigorous quantitative analysis. Upon completion of the interviews, the tabulated results were summarized and green project characteristics and project-PDM interactions emerged. Existing published research was evaluated to reveal aspects of PDMs independent of green design. Best practices were ascertained by combining information from the interviews and published research. Best practices are as follows: (1) Project implementation features--The decision to use DB as PDM on green design or other projects should be based on the specific project features; e.g., well-defined scope and adequate owner staffing. DB will not produce successful results on all projects. (2) Collaboration--Project team collaboration early in the design and construction process is an important aspect of green projects, and collaboration was considered somewhat more

  9. Core designs of modern VVER projects

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Kushmanov, S.; Vjalitsyn, V.; Vasilchenko, R.

    2015-01-01

    The presented operational experience of TVS - 2M (pilot-commercial operation started in 2006 at Balakovo NPP -1) enables to use it as reference for new projects because of similarity in designs and operational conditions. In the paper main parameters of fuel cycles, stability to impact of damaging factors, pilot operation of MG, new alloys, ADF and NTMC, upgrade of FA - 2M for the further power uprating, profiling of Gd-fuel rods for 18-month Fuel Cycle (FC) and perfection of absorber element design are the discussed issues. At the end author concluded that: 1) Core designs of new projects AES-2006 and VVER-TOI are based on extensive successful operational experience of the close prototype of TVS - 2M. 2) All improvements both of technical and economic parameters of fuel are subjected to representative examination by pilot operation at the power units with VVER-1000 being close prototypes of new designs

  10. The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science.

    Science.gov (United States)

    Siew, Nyet Moi; Amir, Nazir; Chong, Chin Lu

    2015-01-01

    Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.

  11. Using design science research to develop online enhanced pharmaceutical care services.

    Science.gov (United States)

    Lapão, Luís Velez; Gregório, João; Mello, Diogo; Cavaco, Afonso; Mira Da Silva, Miguel; Lovis, Christian

    2014-01-01

    The ePharmaCare project aims at assessing the potential of eHealth services for the provision of pharmaceutical services interacting actively with patients. The results presented here focus on the first three steps of Design Science Research Methodology. A mixed methods approach was used with an online survey to collect data on use of information technologies in community pharmacy, followed by an exploratory observational time and business processes study, which use the shadowing method to identify and assess the opportunity to lunch online services. Combining this with the Service Experiment Blueprint and the Dáder method an enhanced pharmaceutical service was designed. Next, an artifact is developed and a prototype is implemented to demonstrate the value of online pharmaceutical services' delivery. This new service could represent a new perspective for pharmaceutical services integration within the health system.

  12. The Elwha Science Education Project (ESEP): Engaging an Entire Community in Geoscience Education

    Science.gov (United States)

    Young, R. S.; Kinner, F.

    2008-12-01

    Native Americans are poorly represented in all science, technology and engineering fields. This under- representation results from numerous cultural, economic, and historical factors. The Elwha Science Education Project (ESEP), initiated in 2007, strives to construct a culturally-integrated, geoscience education program for Native American young people through engagement of the entire tribal community. The ESEP has developed a unique approach to informal geoscience education, using environmental restoration as a centerpiece. Environmental restoration is an increasingly important goal for tribes. By integrating geoscience activities with community tradition and history, project stakeholders hope to show students the relevance of science to their day-to-day lives. The ESEP's strength lies in its participatory structure and unique network of partners, which include Olympic National Park; the non-profit, educational center Olympic Park Institute (OPI); a geologist providing oversight and technical expertise; and the Lower Elwha Tribe. Lower Elwha tribal elders and educators share in all phases of the project, from planning and implementation to recruitment of students and discipline. The project works collaboratively with tribal scientists and cultural educators, along with science educators to develop curriculum and best practices for this group of students. Use of hands-on, place-based outdoor activities engage students and connect them with the science outside their back doors. Preliminary results from this summer's middle school program indicate that most (75% or more) students were highly engaged approximately 90% of the time during science instruction. Recruitment of students has been particularly successful, due to a high degree of community involvement. Preliminary evaluations of the ESEP's outcomes indicate success in improving the outlook of the tribe's youth towards the geosciences and science, in general. Future evaluation will be likewise participatory

  13. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    Science.gov (United States)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  14. Design management of general contractor under nuclear power project EPC mode

    International Nuclear Information System (INIS)

    Su Shaojian

    2013-01-01

    Design management has not yet formed a theoretical system recognized, general contractor design managers under nuclear power project EPC Mode lack the clear theory basis. This paper aims to discuss Design management from the angle of general contractor under nuclear power project EPC mode, Gives the concept of design management Clearly, by Combining the characteristics of nuclear power project, Gives the specific content and meaning of the design management of nuclear power project. (authors)

  15. Science teachers’ individual and social learning related to IBSE in the frames of a large-scale, long-term, collaborative TPD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin

    of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education (IBSE) recommended as a focus to improve science education internationally. The research presented focuses on the participating teachers’ intertwined levels of individual and social learning. Data from...... repeated surveys and case studies reveal a positive attitude towards trying IBSE in the own classroom, however with the main part of the reflections focused on students’ hands-on experiences and fewer including students manipulating science ideas, like posing hypotheses. Teachers’ reflections indicate......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project (“Qualifying in-service Education of Science Teachers”) is designed using widely agreed criteria for effective TPD: content focus, active learning...

  16. Mega-science accelerator projects in China and their impact on economy

    International Nuclear Information System (INIS)

    Zhang Chuang

    2012-01-01

    Along with the rapid development of national economy in China, a number of mega-science projects have been or being constructed. In respect to the large accelerator-based projects, the Beijing Electron-Positron Colliders (BEPC) and its upgrading project BEPCⅡ, the Hefei Light Source (HLS), the Heavy Ion Research Facility in Lanzhou (HIRFL) and its Cooling Storage Rings (HIRFL-CSR) and the Shanghai Synchrotron Radiation Facility (SSRF) were successfully constructed and put into operation. The Beijing Radioactive Ion Facility (BRIF) and the China Spallation Neutron Source (CSNS) are under construction. A particle accelerator is an integration of many HI-tech components. In order to reach the scientific goal of an accelerator project, a great deal new technologies need to be developed during its construction and operation and thus speed up technology development and this will positively impact on the economy. In this paper, the mega-science accelerator projects are briefly described and applications of accelerators in the economy are reviewed. The paper emphasizes spin-off of the accelerator technology developed during R and D and construction of the projects. Approaches of collaboration between academia and industry are discussed. With some examples, the benefits experienced in the laboratory-industry collaboration and approach of its economic compact are illustrated. (author)

  17. 75 FR 60091 - Science and Technology Reinvention Laboratory Personnel Management Demonstration Project...

    Science.gov (United States)

    2010-09-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and... project; correction. SUMMARY: On September 9, 2010 (75 FR 55199), DoD published a notice concerning the...

  18. Designing the visualization of information

    CSIR Research Space (South Africa)

    Engelbrecht, L

    2015-04-01

    Full Text Available The construction of an artifact to visually represent information is usually required by Information Visualization research projects. The end product of design science research is also an artifact and therefore it can be argued that design science...

  19. Business System Planning Project, Preliminary System Design

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time

  20. Communicating through humour: A project of stand-up comedy about science.

    Science.gov (United States)

    Pinto, Bruno; Marçal, David; Vaz, Sofia G

    2015-10-01

    A study of a project on science stand-up comedy developed in Portugal between 2009 and 2013 is presented, in which thirteen scientists, coordinated by a science communicator and a professional actor, created and presented comedy acts. Eleven of these scientists were asked about their motivations to participate, the process of performance development and the perceived value of the project. Personal motivations were highly important, but professional reasons were also mentioned. Working in a group with the guidance of coordinators, testing and re-writing the texts and gradually gaining confidence on stage were considered fundamental in the development of the shows. Additionally, a questionnaire revealed that the audience, most of whom were young adults, and held a higher education degree, were satisfied with the show. Overall, both participating scientists and audience members considered that stand-up comedy has potential for science communication. © The Author(s) 2013.

  1. Cultivating Collaborations: Site Specific Design for Embodied Science Learning.

    Science.gov (United States)

    Gill, Katherine; Glazier, Jocelyn; Towns, Betsy

    2018-05-21

    Immersion in well-designed outdoor environments can foster the habits of mind that enable critical and authentic scientific questions to take root in students' minds. Here we share two design cases in which careful, collaborative, and intentional design of outdoor learning environments for informal inquiry provide people of all ages with embodied opportunities to learn about the natural world, developing the capacity for understanding ecology and the ability to empathize, problem-solve and reflect. Embodied learning, as facilitated by and in well-designed outdoor learning environments, leads students to develop new ways of seeing, new scientific questions, new ways to connect with ideas, with others and new ways of thinking about the natural world. Using examples from our collaborative practices as experiential learning designers, we illustrate how creating the habits of mind critical to creating scientists, science-interested, and science-aware individuals benefits from providing students spaces to engage in embodied learning in nature. We show how public landscapes designed in creative partnerships between educators, scientists, designers and the public have potential to amplify science learning for all.

  2. A National contribution to the GEO Science and Technology roadmap: GIIDA Project

    Science.gov (United States)

    Nativi, Stefano; Mazzetti, Paolo; Guzzetti, Fausto; Oggioni, Alessandro; Pirrone, Nicola; Santolieri, Rosalia; Viola, Angelo; Tartari, Gianni; Santoro, Mattia

    2010-05-01

    The GIIDA (Gestione Integrata e Interoperativa dei Dati Ambientali) project is an initiative of the Italian National Research Council (CNR) launched in 2008 as an inter-departmental project, aiming to design and develop a multidisciplinary e-infrastructure (cyber-infrastructure) for the management, processing, and evaluation of Earth and Environmental resources -i.e. data, services, models, sensors, best practices. GIIDA has been contributing to the implementation of the GEO (Group of Earth Observation) Science and Technology (S&T) roadmap by: (a) linking relevant S&T communities to GEOSS (GEO System of Systems); (b) ensuring that GEOSS is built based on state-of-the-art science and technology. GIIDA co-ordinates the CNR's digital infrastructure development for Earth Observation resources sharing and cooperates with other national agencies and existing projects pursuing the same objective. For the CNR, GIIDA provides an interface to European and international interoperability programmes (e.g. INSPIRE, and GMES). It builds a national network for dialogue and resolution of issues at varying scientific and technical levels. To achieve such goals, GIIDA introduced a set of guidance principles: • To shift from a "traditional" data centric approach to a more advanced service-based solution for Earth System Science and Environmental information. • To shift the focus from Data to Information Spatial Infrastructures in order to support decision-making. • To be interoperable with analogous National (e.g. SINAnet, and the INSPIRE National Infrastructure) and international initiatives (e.g. INSPIRE, GMES, SEIS, and GEOSS). • To reinforce the Italian presence in the European and international programmes concerning digital infrastructures, geospatial information, and the Mega-Science approach. • To apply the National and International Information Technology (IT) standards for achieving multi-disciplinary interoperability in the Earth and Space Sciences (e.g. ISO, OGC

  3. Plants and Medicines. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  4. Optimising Impact in Astronomy for Development Projects

    Science.gov (United States)

    Grant, Eli

    2015-08-01

    Positive outcomes in the fields of science education and international development are notoriously difficult to achieve. Among the challenges facing projects that use astronomy to improve education and socio-economic development is how to optimise project design in order to achieve the greatest possible benefits. Over the past century, medical scientists along with statisticians and economists have progressed an increasingly sophisticated and scientific approach to designing, testing and improving social intervention and public health education strategies. This talk offers a brief review of the history and current state of `intervention science'. A similar framework is then proposed for astronomy outreach and education projects, with applied examples given of how existing evidence can be used to inform project design, predict and estimate cost-effectiveness, minimise the risk of unintended negative consequences and increase the likelihood of target outcomes being achieved.

  5. The State of Design : A Comprehensive Literature Review to Chart the Design Science Research Discourse

    NARCIS (Netherlands)

    Thakurta, Rahul; Mueller, Benjamin; Ahlemann, Frederik; Hoffman, David

    Design science is an increasingly popular research paradigm in the information systems discipline. De- spite a recognition of the design science research par- adigm, questions are being raised about the nature of its existence and its contributions. Central to this ar- gument is the understanding of

  6. Project HEAT: Temperature as an Organizing Theme for Inquiry-Based Learning in the Environmental Sciences

    Science.gov (United States)

    Albright, T. P.; Howard, K. L.; Ewing-Taylor, J.

    2014-12-01

    Professionals in science, technology, engineering, and mathematics (STEM) fields do not reflect the diversity of the US population. Among the most effective ways to attract and retain underrepresented students in STEM disciplines is to provide opportunities for participation in the scientific process and interaction with practicing scientists. Project HEAT (Hot Environments, Animals, & Temperature) is "boot-camp"-style workshop aimed at increasing interest in STEM topics among underrepresented, first-generation, college-bound middle school students. Linking to our NASA-funded research project "Desert Birds in a Warming World", we focused on how surprisingly variable temperature is in space and time, why temperature is important to plants, animals, and people, and how we measure temperature in the field and from space. Perhaps more importantly, this theme was a vehicle for students to experience science as a process: field observations, brainstorming questions and hypotheses, designing experiments to test them, and analyzing and reporting their data. The centerpiece was a set of experiments with small temperature sensors and radiation shields that teams of students designed, executed at a local park, analyzed, and reported. Two years of pre and post assessments revealed that Project HEAT participants increased understanding in content areas and showed slight increases in STEM interest. Year two results were markedly stronger than year one in both assessments as well as our perception. We attribute this to earlier summer timing of the workshop, a change from two half-day weeks to one full-day week, and a more age-homogeneous selection of students. In comments, participants expressed their special enjoyment of the hands-on nature of the program and the outdoor learning. Though providing such opportunities can be challenging, our experience here suggests that it can be worth while. Project HEAT also benefited our cadre of graduate student mentors by providing exposure

  7. Teaching science to 8th graders by engaging them in a design and technology activity: A case study

    Science.gov (United States)

    Sidawi, Mai M.

    This study described how students can apply science concepts to a Design and Technology task. It also examined whether the students could transfer their scientific knowledge to their design of technology. The study was conducted at an urban school in Philadelphia where a sample of 36 eighth grade students were taught a science unit, Energy, Machines, and Motion, and engaged in a technology design task that was chosen based on the scientific content of the unit. Two approaches of relating teaching science to technological design were observed and described. Through the first approach, the students were given technology lessons in addition to their science lessons. This was to provide them with the technological knowledge that they needed in designing technology such as learning about the design process, selection of appropriate materials, and selection of appropriate tools and how to use them. Also, the students were taught the social skills that will enable them to develop an effective collaborative relationship with their peers such as conflict-management and brainstorming. Through the second approach, the students were taught the science unit and then at the end of the unit the students were given the design task as an assessment of their scientific knowledge. The students' experience of designing technology for each approach was described. The study was conducted using multiple tools and instruments such as observation, videotaping, interviews, and testing. The students were also given the survey PATT-USA to measure their attitude toward technology. The study showed that the students' learning of science was impacted by their weak prerequisite knowledge in science, their poor verbal and written communication skills and their style as dependent learners. Also, the study showed the great impact of the school and classroom cultures on the participation of the students in a Design and Technology activity. The students in this study showed great resistant to

  8. Student design projects in applied acoustics.

    Science.gov (United States)

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques. © 2012 Acoustical Society of America

  9. [Earth and Space Sciences Project Services for NASA HPCC

    Science.gov (United States)

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  10. FACTORS AFFECTING EFFICIENT CONSTRUCTION PROJECT DESIGN DEVELOPMENT: A PERSPECTIVE FROM INDIA

    Directory of Open Access Journals (Sweden)

    Devanshu Pandit

    2015-12-01

    Full Text Available Internationally projects exhibit time and cost overrun. It is observed that problems during design development contribute significantly to delays. In India, projects undertaken by government were largely planned and designed by departmental planners and engineers. However, after globalization, projects have increased in number resulting in design outsourcing, but with attendant challenges. The paper is aimed at identifying and analysing factors in the design development phase that can have impact on project success. 30 factors related to design development were identified through two separate brainstorming sessions. A questionnaire was then administered to determine importance ranking of these factors. Relative importance index (RII was used to prioritise these factors. Top ten factors in design development identified using RII include structural design parameters, soil investigations, design quality control, topographic survey, and architectural design parameters. The results can help firms improve their design development practices by prioritising activities that could have more impact on project performance.

  11. A Comparison of Creativity in Project Groups in Science and Engineering Education in Denmark and China

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Valero, Paola

    2015-01-01

    Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China.......Different pedagogical strategies influence the development of creativity in project groups in science and engineering education. This study is a comparison between two cases: Problem-Based Learning (PBL) in Denmark and Project-Organized Learning (POL) in China....

  12. Science and mathematics teachers of the future

    DEFF Research Database (Denmark)

    Michelsen, Claus; Nielsen, Jan Alexis; Petersen, Morten Rask

    2008-01-01

    This paper presents the project Science and Mathematics Teachers of the Future. The aim of the project is to develop and implement a graduate level equivalent degree program in mathematics and science instruction for in-service teachers of lower secondary education. This aim is achieved...... in the programme through involving the teachers in design, implementation and evaluation of innovative instructional sequences, which deals with a wide range of aspects of mathematics and science, e.g. modern science and the importance of science in society. In the program contemporary science and mathematics...... education research serves as a basis for the design and development of warranted practices with which the teachers may experiment in their classroom. We will focus on the outcomes of offering a program which is intimately tied to (i) contemporary science and mathematics education research, (ii) modern...

  13. Science and design: identical twins?

    DEFF Research Database (Denmark)

    Galle, Per; Kroes, Peter

    2014-01-01

    explicit arguments’ in its defence. This calls for an in-depth conceptual clarification of the science-design relationship. The aims of the present paper are to take up the gauntlet thrown by Farrell and Hooker, and in so doing, to provide such a clarification. We first analyse Farrell & Hooker's arguments...

  14. Use of a Laboratory Field Project in an Introductory Crop Science Course.

    Science.gov (United States)

    Lane, Robert A.

    1986-01-01

    Assesses the benefits resulting from a laboratory field project and report for agricultural students in an introductory crop science course. Student responses to evaluation statements indicated that the project helped them identify crops, understand cultural and management practices, and recognize environmental influences that affect crop…

  15. STEM Projects: Should We Add the "TEM" to Science?

    Science.gov (United States)

    Hall, Angela

    2012-01-01

    A recent curriculum development from the Nuffield Foundation rose to the challenge of producing a set of resources to establish STEM (Science, Technology, Engineering and Mathematics) as a curriculum focus. The result is two STEM cross-curricular projects: "Games," inspired by the London Olympics, and "Futures," a novel…

  16. Construction management research at the interface of design and explanatory science

    NARCIS (Netherlands)

    Voordijk, Johannes T.

    2011-01-01

    Purpose – The purpose of this study is to characterize construction management research at the interface of explanatory science and design science. Design/methodology/approach – The dual nature of construction management research is analyzed by relating this field of research to natural science,

  17. Children Designing & Engineering: Contextual Learning Units in Primary Design and Technology

    Science.gov (United States)

    Hutchinson, Patricia

    2002-01-01

    The Children Designing & Engineering (CD&E) Project at the College of New Jersey is a collaborative effort of the College's Center for Design and Technology and the New Jersey Chamber of Commerce. The Project, funded by the National Science Foundation (NSF), has been charged to develop instructional materials for grades K-5. The twelve…

  18. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  19. An analysis of program planning in schools with emerging excellence in science instructional design

    Science.gov (United States)

    Carroll, Karen Marie

    Science educators agree on many of the program elements that characterize exemplary science instructional programs, but it has not been clear how the processes of planning and implementation lead to excellence in program design. This study focuses on two K--12 school clusters located in unified school districts and one K--12 school cluster spanning two non-unified districts that are in the midst of building new science programs. The clusters were selected for support by an organization of educators, scientists, and businesspersons because they were recognized as likely to produce good programs. The investigation centers on three research questions: (1) To what extent have schools engaged in science education reform achieved excellence? (2) How did schools engaged in science program improvement go about achieving their goals, and (3) What contextual factors are most closely related to the realization of quality program elements? The degree to which each program studied met indicators of quality suggested by the National Science Education Standards (NSES) are described according to an Innovation Configuration (IC) Chart. Using a Stream Diagnostic method of analysis, levels of practice were associated with contextual factors categorized as Social, Organizing, and Resource. Findings reveal the importance of a balanced and synchronized function of all components, including administrative commitment, teacher participation, and favorable logistical aspects. Individual reform projects were more likely to be successful if they included exemplary program elements and mechanisms for program managers to access district personnel and procedures needed to implement programs. A review of the cluster case histories also revealed the positive impact of cooperation between the funding organization and the project, the degree to which professional development is directly related to the new program, and the availability of resources and support for each exemplary program element.

  20. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    Science.gov (United States)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  1. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  2. Conceptual Design Plan SM-43 Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  3. An Interdisciplinary Team Project: Psychology and Computer Science Students Create Online Cognitive Tasks

    Science.gov (United States)

    Flannery, Kathleen A.; Malita, Mihaela

    2014-01-01

    We present our case study of an interdisciplinary team project for students taking either a psychology or computer science (CS) course. The project required psychology and CS students to combine their knowledge and skills to create an online cognitive task. Each interdisciplinary project team included two psychology students who conducted library…

  4. A Software Engineering Paradigm for Quick-turnaround Earth Science Data Projects

    Science.gov (United States)

    Moore, K.

    2016-12-01

    As is generally the case with applied sciences professional and educational programs, the participants of such programs can come from a variety of technical backgrounds. In the NASA DEVELOP National Program, the participants constitute an interdisciplinary set of backgrounds, with varying levels of experience with computer programming. DEVELOP makes use of geographically explicit data sets, and it is necessary to use geographic information systems and geospatial image processing environments. As data sets cover longer time spans and include more complex sets of parameters, automation is becoming an increasingly prevalent feature. Though platforms such as ArcGIS, ERDAS Imagine, and ENVI facilitate the batch-processing of geospatial imagery, these environments are naturally constricting to the user in that they limit him or her to the tools that are available. Users must then turn to "homemade" scripting in more traditional programming languages such as Python, JavaScript, or R, to automate workflows. However, in the context of quick-turnaround projects like those in DEVELOP, the programming learning curve may be prohibitively steep. In this work, we consider how to best design a software development paradigm that addresses two major constants: an arbitrarily experienced programmer and quick-turnaround project timelines.

  5. Implementing an online pharmaceutical service using design science research.

    Science.gov (United States)

    Lapão, Luís Velez; da Silva, Miguel Mira; Gregório, João

    2017-03-27

    The rising prevalence of chronic diseases is pressing health systems to introduce reforms. Primary healthcare and multidisciplinary models have been suggested as approaches to deal with this challenge, with new roles for nurses and pharmacists being advocated. More recently, implementing healthcare based on information systems and technologies (e.g. eHealth) has been proposed as a way to improve health services. However, implementing online pharmaceutical services, including their adoption by pharmacists and patients, is still an open research question. In this paper we present ePharmacare, a new online pharmaceutical service implemented using Design Science Research. The Design Science Research Methodology (DSRM) was chosen to implement this online service for chronic diseases management. In the paper, DSRM's different activities are explained, from the definition of the problem to the evaluation of the artifact. During the design and development activities, surveys, observations, focus groups, and eye-tracking glasses were used to validate pharmacists' and patients' requirements. During the demonstration and evaluation activities the new service was used with real-world pharmacists and patients. The results show the contribution of DSRM in the implementation of online services for pharmacies. We found that pharmacists spend only 50% of their time interacting with patients, uncovering a clear opportunity to implement online pharmaceutical care services. On the other hand, patients that regularly visit the same pharmacy recognize the value in patient follow-up demanding to use channels such as the Internet for their pharmacy interactions. Limitations were identified regarding the high workload of pharmacists, but particularly their lack of know-how and experience in dealing with information systems (IST) for the provision of pharmaceutical services. This paper summarizes a research project in which an online pharmaceutical service was proposed, designed, developed

  6. Designing Observatories for the Hydrologic Sciences

    Science.gov (United States)

    Hooper, R. P.

    2004-05-01

    The need for longer-term, multi-scale, coherent, and multi-disciplinary data to test hypotheses in hydrologic science has been recognized by numerous prestigious review panels over the past decade (e.g. NRC's Basic Research Opportunities in Earth Science). Designing such observatories has proven to be a challenge not only on scientific, but also technological, economic and even sociologic levels. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) has undertaken a "paper" prototype design of a hydrologic observatory (HO) for the Neuse River Basin, NC and plans to solicit proposals and award grants to develop implementation plans for approximately 10 basins (which may be defined by topographic or groundwater divides) during the summer of 2004. These observatories are envisioned to be community resources with data available to all scientists, with support facilities to permit their use by both local and remote investigators. This paper presents the broad design concepts which were developed from a national team of scientists for the Neuse River Basin Prototype. There are three fundamental characteristics of a watershed or river basin that are critical for answering the major scientific questions proposed by the NRC to advance hydrologic, biogeochemical and ecological sciences: (1) the store and flux of water, sediment, nutrients and contaminants across interfaces at multiple scales must be identified; (2) the residence time of these constituents, and (3) their flowpaths and response spectra to forcing must be estimated. "Stores" consist of subsurface, land surface and atmospheric volumes partitioned over the watershed. The HO will require "core measurements" which will serve the communities of hydrologic science for long range research questions. The core measurements will also provide context for shorter-term or hypothesis-driven research investigations. The HO will support "mobile measurement facilities" designed to support teams

  7. New challenges for Life Sciences flight project management

    Science.gov (United States)

    Huntoon, C. L.

    1999-01-01

    Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.

  8. The Manhattan Project: Science in the Second World War

    Energy Technology Data Exchange (ETDEWEB)

    Gosling, F.G.

    1990-08-01

    The Manhattan Project: Science in the Second World War'' is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details of the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  9. ASSESSMENT OF THE INQUIRY-BASED PROJECT IMPLEMENTATION PROCESS IN SCIENCE EDUCATION UPON STUDENTS’ POINTS OF VIEWS

    Directory of Open Access Journals (Sweden)

    Orhan AKINOGLU

    2008-01-01

    Full Text Available Aim of the study is to assess how students in 6th, 7th and 8th grades of primary education see the project works made in science education and their implementation processes. The study was fulfilled upon the descriptive survey model to collect data. Participants of the research were 100 students who had project implementation experiences in science education, and they were from 24 primary schools in 7 districts randomly chosen in the city of Istanbul in Turkey. Data of the study were collected by using a semi-constructed interview form offered to students during the 2005-2006 teaching year. In the research, following items were examined: The extent to which students are inspired from the previously made projects during their own project selection process, the level of scientific document survey and the effects of contemporary events, science and technology class topics and students’ interest areas. It was seen that internet is the mostly used source to obtain information. For students, one of the most problematic issues faced during the project implementation is the time limits set out by teacher. It was found that the most obvious benefit obtained by students from the project works is their increasing interest towards science and technology class. The most significant change seen by students regarding project preparation is their increasing grades in exams during and following the project works.

  10. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    International Nuclear Information System (INIS)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform

  11. The Environmental and Molecular Sciences Laboratory project -- Continuous evolution in leadership

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, D.E.; McClusky, J.K.

    1994-10-01

    The Environmental and Molecular Sciences Laboratory (EMSL) construction project at Pacific Northwest Laboratory (PNL) in Richland, Washington, is a $230M Major Systems Acquisition for the US Department of Energy (DOE). The completed laboratory will be a national user facility that provides unparalleled capabilities for scientists involved in environmental molecular science research. This project, approved for construction by the Secretary of Energy in October 1993, is underway. The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of thousands of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. The present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform.

  12. Exploratory Shaft, Phase 1, Project B-314: Title 1 design report system design description

    International Nuclear Information System (INIS)

    Hanlen, D.F.

    1983-01-01

    The report describes the project and the project systems, the principal design bases, and principal hazards and project interfaces. This report also contains the Title 1 Estimate Summary. 5 figs., 8 tabs

  13. The Camp Hill Project: Objectives and Design

    Science.gov (United States)

    Mattingly, John B.

    1976-01-01

    Available from: EC 090 474. Outlined are the problems and objectives of Pennsylvania's Camp Hill Project--a program designed to complete psychological needs assessments for juveniles incarcerated at Camp Hill, to develop project policies and guidelines in preparation for meeting with juvenile court judges, and to hire staff. (SBH)

  14. 1L Mark-IV Target Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-16

    This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.

  15. Building a Futuristic Telescope on the Moon - A Fun Project for Research, Science Teaching, and Outreach

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas M.; Haas, J. Patrick; Mirel, Paul

    2018-01-01

    We present the design and demonstrate the operation of a model lunar observatory. While this is a research project, it is also intended to stimulate student interest in space science, astronomy, physics, chemistry, and engineering. First, we discuss the science objectives of a lunar observatory. The Moon is a great location for astronomy. Why? What science can best be done from there? What are exoplanets? We would like to see what planets around other stars look like. Why is it so difficult? What are optical interferometers and why do we need them? Next, we discuss the physics, chemistry, and engineering principles involved. The lunar environment is totally different from Earth. It features high vacuum, low gravity, very slow rotation rate, cryogenic temperatures, and dust. How can an observatory be designed that not only survives, but can take advantage of the environment? We present a “cool” solution (the model uses liquid nitrogen) that combines the following elements: high temperature superconductors, telescope mirrors made of “moondust”, novel telescope support system, an observatory structure made of simulated lunar soil, 3D printing, and methods for dust mitigation. Information will be provided on how similar systems can be built and what further refinements (e.g. voice control, precision stepper drives, autonomous operation, and telerobotics) can be added.

  16. A projective approach to a language of landscape design

    Directory of Open Access Journals (Sweden)

    Catherine Ward Thompson

    1997-10-01

    Full Text Available Building on the work of Kelly (1955 in personal construct psychology, and Peled (1976, I990 in ecoanalysis, this paper develops projective techniques-which use concepts of personal and phenomenological space-as a means for articulating approaches to landscape design. The projective approach involves two stages. In stage one, projective techniques are used to elicit personal constructs (which may be held at a pre-conscious or sub-conscious level, allowing the holistic experience of landscape to be explored. In stage two, using a 'projection location task' derived from the way we experience and construe the regions of our own bodies, elements of these constructs can then be articulated so as to inform the way we interact and engage with the space around us. This gives insight into the meaning of spatial layouts, which can then be translated into a design language for the structural ordering of space. The author draws on original research conducted with children as well as adults, using projective techniques to draw out their desires and needs in relation to designing their landscape environment. The paper discusses the value of such methods for landscape designers and their clients, and outlines some ongoing research to test the validity of the projection location task.

  17. Primary teachers conducting inquiry projects : the effect on attitude towards science and inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2015-01-01

    This paper presents the results of a theoretically informed professionalisation project that was set up to improve primary teachers’ attitudes towards science and attitude towards inquiry. A positive attitude towards science is of fundamental importance for teachers when stimulating interest in

  18. A process model for design team communication within fast-track building projects using project websites

    NARCIS (Netherlands)

    Otter, den A.F.H.J.; Reymen, I.M.M.J.

    2008-01-01

    The factor time within building projects is on high pressure because of the increasing need for faster delivery of buildings. Within fast track, complex building projects the design process is an important key. Through case analyses offart-hack design processes it became obvious that process and

  19. [SciELO: A cooperative project for the dissemination of science].

    Science.gov (United States)

    Bojo Canales, C; Fraga Medín, C; Hernández Villegas, S; Primo Peña, E

    2009-10-01

    The article describes the SciELO (Scientific Electronic Library Online) model for the electronic publication and dissemination of scientific journals, its origin and evolution, methodology, components, services and potential, and its implantation in Spain. It consists of thirteen participant countries with eight certified web portals, with another 5 under development and another two thematic ones. In February 2009 Scielo.org had 611 magazines and 195,789 articles of which 46% were about health sciences. Spain became a project member in 1999 and launched the SciELO web portal in 2001, as well as 4 magazines. It currently has 39 titles in the field of Health Sciences; one of which is the Revista Española de Sanidad Penitenciaria, which joined the project in 2007 and which currently has 6 issues from 2007 and 2008 available. This makes it one of the most important open access initiatives existing. The report concludes by stating that the SciELO model contributes to the development of research and science by offering an effective and efficient method of promoting and increasing the dissemination of scientific publications in Latin America.

  20. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  1. Analog circuit design art, science, and personalities

    CERN Document Server

    Williams, Jim

    1991-01-01

    Analog Circuit Design: Art, Science, and Personalities discusses the many approaches and styles in the practice of analog circuit design. The book is written in an informal yet informative manner, making it easily understandable to those new in the field. The selection covers the definition, history, current practice, and future direction of analog design; the practice proper; and the styles in analog circuit design. The book also includes the problems usually encountered in analog circuit design; approach to feedback loop design; and other different techniques and applications. The text is

  2. Children and their 4-H animal projects: How children use science in agricultural activity

    Science.gov (United States)

    Emo, Kenneth Roy

    Many children are introduced to science through informal educational programs. 4-H, an educational youth program, has a history of introducing scientific practices into agriculture. The purpose of this ethnographically-driven case study is to examine how science informs the actions of children raising market animals in a 4-H project. For two years the researcher collected data on 4-H children with market animal projects. Observations, interviews, and artifacts gathered are interpreted using the framework of activity theory. This study provides evidence for how the context of an activity system influences individual actions. Rules developed by the organization guide the actions of children to incorporate physical and psychological tools of science into their project to achieve the object: producing animals of proper weight and quality to be competitive in the county fair. Children learn the necessary actions from a community of practitioners through which expertise is distributed. Children's learning is demonstrated by the way their participation in their project changes with time, from receiving assistance from others to developing expertise in which they provide assistance to others. The strength of this educational experience is how children apply specific tools of science in ways that provide meaning and relevancy to their 4-H activity.

  3. Streaking into middle school science: The Dell Streak pilot project

    Science.gov (United States)

    Austin, Susan Eudy

    A case study is conducted implementing the Dell Streak seven-inch android device into eighth grade science classes of one teacher in a rural middle school in the Piedmont region of North Carolina. The purpose of the study is to determine if the use of the Dell Streaks would increase student achievement on standardized subject testing, if the Streak could be used as an effective instructional tool, and if it could be considered an effective instructional resource for reviewing and preparing for the science assessments. A mixed method research design was used for the study to analyze both quantitative and qualitative results to determine if the Dell Streaks' utilization could achieve the following: 1. instructional strategies would change, 2. it would be an effective instructional tool, and 3. a comparison of the students' test scores and benchmark assessments' scores would provide statistically significant difference. Through the use of an ANOVA it was determined a statistically significant difference had occurred. A Post Hoc analysis was conducted to identify where the difference occurred. Finally a T-test determined was there was no statistically significance difference between the mean End-of-Grade tests and four quarterly benchmark scores of the control and the experimental groups. Qualitative research methods were used to gather results to determine if the Streaks were an effective instructional tool. Classroom observations identified that the teacher's teaching styles and new instructional strategies were implemented throughout the pilot project. Students had an opportunity to complete a questionnaire three times during the pilot project. Results revealed what the students liked about using the devices and the challenges they were facing. The teacher completed a reflective questionnaire throughout the pilot project and offered valuable reflections about the use of the devices in an educational setting. The reflection data supporting the case study was drawn

  4. Design dimensions: In-depth retrospective studies of K-12 science curriculum design

    NARCIS (Netherlands)

    Bernstein, Deborah; McKenney, Susan; Barber, Jacquey; Bopardikar, Anushree; Drayton, Brian; Walkup, Sara; Pareja Roblin, Natalie; Schunn, Christian

    2015-01-01

    Design and development are critically important to the educational enterprise. Unfortunately, there is little research on which design and development processes produce optimal outcomes for curricular materials intended for large-scale implementation. The Design Dimensions project asks: Across

  5. Improving Environmental Literacy through GO3 Citizen Science Project

    Science.gov (United States)

    Wilkening, B.

    2011-12-01

    In the Global Ozone (GO3) Project students measure ground-level ozone on a continuous basis and upload their results to a global network used by atmospheric scientists and schools. Students learn important concepts such as chemical measurement methods; instrumentation; calibration; data acquisition using computers; data quality; statistics; data analysis and graphing; posting of data to the web; the chemistry of air pollution; stratospheric ozone depletion and global climate change. Students collaborate with researchers and other students globally in the GO3 network. Wilson K-8 School is located in a suburban area in Pima County, Arizona. Throughout the year we receive high ozone alert days. Prior to joining the GO3 project, my students were unaware of air pollution alerts, risks and causes. In the past when Pima County issued alerts to the school, they were posted on signs around the school. No explanation was provided to the students and the signs were often left up for days. This discounted the potential health effects of the situation, resulting in the alerts effectively being ignored. The GO3 project is transforming both my students and our school community. Now my students are: Performing science research Utilizing technology and increasing their skills Collaborating in a responsible manner on the global GO3 social network Communicating their work to the community Issuing their own ozone alerts to their school Advocating for actions that will improve air quality My students participation in this citizen science project is creating a more cognizant and active community in regards to air pollution.

  6. Delivering Science from Big Data

    Science.gov (United States)

    Quinn, Peter Joseph

    2015-08-01

    The SKA will be capable of producing a stream of science data products that are Exa-scale in terms of their storage and processing requirements. This Google-scale enterprise is attracting considerable international interest and excitement from within the industrial and academic communities. In this paper we examine the data flow, storage and processing requirements of a number of key SKA survey science projects to be executed on the baseline SKA1 configuration. Based on a set of conservative assumptions about trends for HPC and storage costs, and the data flow process within the SKA Observatory, it is apparent that survey projects of the scale proposed will potentially drive construction and operations costs beyond the current anticipated SKA1 budget. This implies a sharing of the resources and costs to deliver SKA science between the community and what is contained within the SKA Observatory. A similar situation was apparent to the designers of the LHC more than 10 years ago. We propose that it is time for the SKA project and broader community to consider the effort and process needed to design and implement a distributed science data system that leans on the lessons of other projects and looks to recent developments in Cloud technologies to ensure an affordable, effective and global achievement of science goals.

  7. Southeast Region Headboat Survey-PPS Survey Design Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a record of trips selected during pilot procedures for the PPS design project designed to track the port agents ability to follow the PPS design and...

  8. Project of the JAERI superconducting AVF cyclotron for applications in biotechnology and materials science

    International Nuclear Information System (INIS)

    Miyawaki, Nobumasa; Kurashima, Satoshi; Okumura, Susumu; Chiba, Atsuya; Agematsu, Takashi; Kamiya, Tomihiro; Kaneko, Hirohisa; Nara, Takayuki; Saito, Yuichi; Ishii, Yasuyuki; Sakai, Takuro; Mizuhashi, Kiyoshi; Fukuda, Mitsuhiro; Yokota, Watalu; Arakawa, Kazuo

    2005-01-01

    A project for expanding TIARA (Takasaki Ion accelerators for Advanced Radiation Application) facilities of JAERI has been proposed to broaden application region of biotechnology and materials science. As a result of the investigation of TIARA facility user's request, energy increase up to more than 100 MeV/n for heavy ions and up to 300 MeV for proton are strongly required. The magnet of a superconducting AVF cyclotron with a K number of 900 has been designed to cope with acceleration of both 150 MeV/n heavy ions and 300 MeV protons. The lower limit of energies has been investigated to overlap the energy region covered by the JAERI AVF cyclotron, required to increase beam time for present users. We have designed a beam transport system to satisfy various requirements of the applications. (author)

  9. The randomised controlled trial design: unrecognized opportunities for health sciences librarianship.

    Science.gov (United States)

    Eldredge, Jonathan D

    2003-06-01

    to describe the essential components of the Randomised Controlled Trial (RCT) and its major variations; to describe less conventional applications of the RCT design found in the health sciences literature with potential relevance to health sciences librarianship; to discuss the limited number of RCTs within health sciences librarianship. narrative review supported to a limited extent with PubMed and Library Literature database searches consistent with specific search parameters. In addition, more systematic methods, including handsearching of specific journals, to identify health sciences librarianship RCTs. While many RCTs within the health sciences follow more conventional patterns, some RCTs assume certain unique features. Selected examples illustrate the adaptations of this experimental design to answering questions of possible relevance to health sciences librarians. The author offers several strategies for controlling bias in library and informatics applications of the RCT and acknowledges the potential of the electronic era in providing many opportunities to utilize the blinding aspects of RCTs. RCTs within health sciences librarianship inhabit a limited number of subject domains such as education. This limited scope offers both advantages and disadvantages for making Evidence-Based Librarianship (EBL) a reality. The RCT design offers the potential to answer far more EBL questions than have been addressed by the design to date. Librarians need only extend their horizons through use of the versatile RCT design into new subject domains to facilitate making EBL a reality.

  10. The Proof of the Pudding?: A Case Study of an "At-Risk" Design-Based Inquiry Science Curriculum

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin

    2013-12-01

    When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.

  11. Evaluating design-based formative assessment practices in outdoor science teaching

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Stevenson, Matthew Peter; Bentsen, Peter

    2016-01-01

    Background and purpose: Research in formative assessment often pays close attention to the strategies which can be used by teachers. However, less emphasis in the literature seems to have been paid to study the application of formative assessment designs in practice. In this paper, we argue...... that a formative assessment design that we call Eva-Mapping, which is developed on the principles of design-based research, can be a productive starting point for disseminating and further developing formative assessment practices in outdoor science teaching. Sample, design and methods: We conducted an evaluation...... of the design, based on video-elicited focus group interviews with two groups of experienced science teachers. Both groups consisted of teachers who taught science outside the classroom on a regular basis. These groups watched identical video sequences which were recorded during lessons in which teachers...

  12. Bridging the gap between building science and design studios

    Energy Technology Data Exchange (ETDEWEB)

    Papamichael, Konstantinos; Pal, Vineeta

    2002-02-06

    Design studios and building science courses have been conducted independent of each other, mainly due to a lack of tools that allow quick and easy consideration of building science criteria, such as comfort and energy requirements, during the design process. Existing tools are not user-friendly and their use requires significant effort in gaining familiarity with the input requirements, understanding the modeling assumptions and interpreting the output. This paper is about the Building Design Advisor (BDA), an evolving computer-based tool intended to bridge the gap between design studios and building science considerations by addressing the above-mentioned limitations of existing tools. BDA allows automatic preparation of input files to multiple simulation tools while the user is working in a CAD environment. BDA automatically activates the relevant simulation tools when the user selects performance parameters to be computed and provides the results in a graphical form, allowing comparison of multiple design options with respect to multiple performance criteria. The paper includes considerations for the use of the BDA in the design studio and ends with a description of the current development efforts and future plans.

  13. Systems approach for design control at Monitored Retrievable Storage Project

    International Nuclear Information System (INIS)

    Kumar, P.N.; Williams, J.R.

    1994-01-01

    This paper describes the systems approach in establishing design control for the Monitored Retrievable Storage Project design development. Key elements in design control are enumerated and systems engineering aspects are detailed. Application of lessons learned from the Yucca Mountain Project experience is addressed. An integrated approach combining quality assurance and systems engineering requirements is suggested to practice effective design control

  14. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  15. (abstract) Science-Project Interaction in the Low-Cost Mission

    Science.gov (United States)

    Wall, Stephen D.

    1994-01-01

    Large, complex, and highly optimized missions have performed most of the preliminary reconnaisance of the solar system. As a result we have now mapped significant fractions of its total surface (or surface-equivalent) area. Now, however, scientific exploration of the solar system is undergoing a major change in scale, and existing missions find it necessary to limit costs while fulfilling existing goals. In the future, NASA's Discovery program will continue the reconnaisance, exploration, and diagnostic phases of planetary research using lower cost missions, which will include lower cost mission operations systems (MOS). Historically, one of the more expensive functions of MOS has been its interaction with the science community. Traditional MOS elements that this interaction have embraced include mission planning, science (and engineering) event conflict resolution, sequence optimization and integration, data production (e.g., assembly, enhancement, quality assurance, documentation, archive), and other science support services. In the past, the payoff from these efforts has been that use of mission resources has been highly optimized, constraining resources have been generally completely consumed, and data products have been accurate and well documented. But because these functions are expensive we are now challenged to reduce their cost while preserving the benefits. In this paper, we will consider ways of revising the traditional MOS approach that might save project resources while retaining a high degree of service to the Projects' customers. Pre-launch, science interaction can be made simplier by limiting numbers of instruments and by providing greater redundancy in mission plans. Post launch, possibilities include prioritizing data collection into a few categories, easing requirements on real-time of quick-look data delivery, and closer integration of scientists into the mission operation.

  16. The history and science of the Manhattan project

    CERN Document Server

    Reed, Bruce Cameron

    2014-01-01

    The development of atomic bombs under the auspices of the U. S. Army’s Manhattan Project during World War II is considered to be the outstanding news story of the twentieth century. In this book, a physicist and expert on the history of the Project presents a comprehensive overview of this momentous achievement. The first three chapters cover the history of nuclear physics from the discovery of radioactivity to the discovery of fission, and would be ideal for instructors of a sophomore-level “Modern Physics” course. Student-level exercises at the ends of the chapters are accompanied by answers. Chapter 7 covers the physics of first-generation fission weapons at a similar level, again accompanied by exercises and answers. For the interested layman and for non-science students and instructors, the book includes extensive qualitative material on the history, organization, implementation, and results of the Manhattan Project and the Hiroshima and Nagasaki bombing missions. The reader also learns about the l...

  17. Windmills by Design: Purposeful Curriculum Design to Meet Next Generation Science Standards in a 9-12 Physics Classroom

    Science.gov (United States)

    Concannon, James; Brown, Patrick L.

    2017-01-01

    The "Next Generation Science Standards" (NGSS) challenges science teachers to think beyond specific content standards when considering how to design and implement curriculum. This lesson, "Windmills by Design," is an insightful lesson in how science teachers can create and implement a cross-cutting lesson to teach the concepts…

  18. Knowledge management in design teams using a project website

    OpenAIRE

    Otter, den, A.F.H.J.; Lima, C.P

    2007-01-01

    In this paper the sharing of knowledge in architectural design teams using a Project Website is discussed. The results of multiple case studies, being part of a recently finished PhD research project to communication and performance of design teams using a Project Website, show that systems for sharing of knowledge in such teams are hard to change and better systems are difficult to implement for various reasons. Sharing of knowledge in such teams is important for collective understanding of ...

  19. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    Science.gov (United States)

    Gritsevich, M.

    2017-12-01

    Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently

  20. Engineering Encounters: Designing Healthy Ice Pops. A STEM Enrichment Project for Second Graders Incorporates Nutrition and Design Principles

    Science.gov (United States)

    Bubnick, Laura; Enneking, Katie; Egbers, Julie

    2016-01-01

    Science, technology, engineering, and math (STEM) education piques students' innate curiosity and opens their eyes to hundreds of career possibilities. This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a STEM enrichment project for second graders that incorporates nutrition and…

  1. Project designing of Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Krychtalek, Z.; Linek, V.

    1989-01-01

    The geological and seismic parameters are listed of the Temelin nuclear power plant. The division of the site in building zones is described. The main zones consist of the power generation unit zone with the related auxiliary buildings of hot plants and of the auxiliary buildings of the nonactive part with industrial buildings. The important buildings are interconnected with communication and technology bridges. Cooling towers and spray pools and the entrance area are part of the urbanistic design. The architectonic design of the buildings uses standard building elements and materials. The design of the buildings is based on the requirements on their function and on structural load and on the demands of maximal utilization of the type of the reinforced concrete prefab structure system. The structure is made of concrete or steel cells. The project design is based on Soviet projects. The layout is shown of the main power generation units and a section is presented of a 1,000 MW unit. (J.B.). 2 figs

  2. Examining Teacher Talk in an Engineering Design-Based Science Curricular Unit

    Science.gov (United States)

    Aranda, Maurina L.; Lie, Richard; Selcen Guzey, S.; Makarsu, Murat; Johnston, Amanda; Moore, Tamara J.

    2018-03-01

    Recent science education reforms highlight the importance for teachers to implement effective instructional practices that promote student learning of science and engineering content and their practices. Effective classroom discussion has been shown to support the learning of science, but work is needed to examine teachers' enactment of engineering design-based science curricula by focusing on the content, complexity, structure, and orchestration of classroom discussions. In the present study, we explored teacher-student talk with respect to science in a middle school curriculum focused on genetics and genetic engineering. Our study was guided by the following major research question: What are the similarities and differences in teacher talk moves that occurred within an engineering design-based science unit enacted by two teachers? Through qualitative and quantitative approaches, we found that there were clear differences in two teachers' use of questioning strategies and presentation of new knowledge that affected the level of student involvement in classroom discourse and the richness and details of student contributions to the conversations. We also found that the verbal explanations of science content differed between two teachers. Collectively, the findings in this study demonstrate that although the teachers worked together to design an engineering designed-based science curriculum unit, their use of different discussion strategies and patterns, and interactions with students differed to affect classroom discourse.

  3. International and interlaboratory collaboration on Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    For effectiveness of facility development for Neutron Science Projects at JAERI, international and interlaboratory collaborations have been extensively planned and promoted, especially in the areas of accelerator and target technology. Here status of two collaborations relevant to a spallation neutron target development is highlighted from those collaborations. The two collaborations are experiments on BNL-AGS spallation target simulation and PSI materials irradiation. Both are planned to start in spring of 1997. (author)

  4. [Neurophenomenology: Project for a Science of Past Experiences].

    Science.gov (United States)

    Segovia-Cuellar, Andrés

    2012-09-01

    Since the middle of 20(th) Century, cognitive science has been recognized as the genuine convergence field for all scientific advances in human mind studies with the mechanisms enabling knowledge. Since then, it has become a multidisciplinary area where several research disciplines and actors have acquired citizenship, allowing new expectations on the scientific study of human uniqueness. Critical assessment of the discussion that the discourse of theoretical biology has been assuming regarding the study of the cognitive phenomenon with special attention to the enactive project and, extensively, to the neuro-phenomenology of Francisco J. Varela. Starting with a brief and synthesized history of cognitive science, we will establish the key principles for understanding the emergence of the enactive paradigm and the "embodied" turn influenced by continental phenomenology in the cognitive science, as well as the general guidelines of Neurophenomenology. The "hard problem" of consciousness still faces several types of reductionism relegating the cognitive issue to a kind of merely rational, individual, abstract and disembodied mechanism, thus strengthening the functionalist paradigm in mind philosophy. A solution to classic dichotomies in mind sciences must start rejecting such assumptions. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  5. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    Engineering Fair (NAISEF) and EXPO at the Albuquerque, NM Convention Center. Albuquerque is also the home of the AISES national office. The AISES staff also recruits volunteers to assist with implementation of the science and math bowl event. In 2011, there were 7 volunteers; in 2012, 15 volunteers, and in 2013, 19 volunteers. Volunteers are recruited from a variety of local sources, including Sandia Laboratories, Southwest Indian Polytechnic Institute students, Department of Defense, as well as family members of AISES staff. For AISES, the goals of the Intertribal Middle School Science and Math Bowl project are to have more Native students learn science, for them to gain confidence in competing, and to reward their effort in order to motivate them to pursue studies in the sciences and engineering. For DOE, the goals of the project are to get more Native students to compete at the National Science Bowl, held in Washington, DC.

  6. Collaborative Project-Based Learning: An Integrative Science and Technological Education Project

    Science.gov (United States)

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-01-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…

  7. Project Management Approaches for Online Learning Design

    Science.gov (United States)

    Eby, Gulsun; Yuzer, T. Volkan

    2013-01-01

    Developments in online learning and its design are areas that continue to grow in order to enhance students' learning environments and experiences. However, in the implementation of new technologies, the importance of properly and fairly overseeing these courses is often undervalued. "Project Management Approaches for Online Learning Design"…

  8. ScienceOrganizer System and Interface Summary

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2001-01-01

    ScienceOrganizer is a specialized knowledge management tool designed to enhance the information storage, organization, and access capabilities of distributed NASA science teams. Users access ScienceOrganizer through an intuitive Web-based interface that enables them to upload, download, and organize project information - including data, documents, images, and scientific records associated with laboratory and field experiments. Information in ScienceOrganizer is "threaded", or interlinked, to enable users to locate, track, and organize interrelated pieces of scientific data. Linkages capture important semantic relationships among information resources in the repository, and these assist users in navigating through the information related to their projects.

  9. The NASA-Macquarie University Pilbara Education Project: Connecting the public to `science in the making' via virtual reality and the Internet

    Science.gov (United States)

    Oliver, C. A.; Fergusson, J.; Bruce, G.; Gaskins, T.

    2006-12-01

    A 2005 international field trip to a key Mars analogue site in Western Australia was used to create a hi-tech education resource for use internationally. The NASA-Macquarie University Pilbara Education Project aims to engage high school students and the broader general community with `science in the making'. A team of educators and communicators, including a US documentary TV crew, joined 25 geologists, microbiologists, geochemists and other experts on the field trip to the Pilbara. The education team captured scientists debating different interpretations of what appears to be the best earliest evidence of life on Earth 3.5 billion years ago in situ. Initially the project was designed as a curriculum product, but difficulties in a range of areas persuaded researchers to chart a different course. While still maintaining high schools as a primary audience, designers refocused on the possibilities outside of the school gates and beyond. The paper describes the prompt for the project, its design and the impact of testing it with end users -- the students and their teachers -- in Australia and the UK.

  10. The NPOESS Preparatory Project Science Data Segment: Brief Overview

    Science.gov (United States)

    Schweiss, Robert J.; Ho, Evelyn; Ullman, Richard; Samadi, Shahin

    2006-01-01

    The NPOESS Preparatory Project (NPP) provides remotely-sensed land, ocean, atmospheric, ozone, and sounder data that will serve the meteorological and global climate change scientific communities while also providing risk reduction for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), the U.S. Government s future low-Earth orbiting satellite system monitoring global weather and environmental conditions. NPOESS and NPP are a new era, not only because the sensors will provide unprecedented quality and volume of data but also because it is a joint mission of three federal agencies, NASA, NOAA, and DoD. NASA's primary science role in NPP is to independently assess the quality of the NPP science and environmental data records. Such assessment is critical for making NPOESS products the best that they can be for operational use and ultimately for climate studies. The Science Data Segment (SDS) supports science assessment by assuring the timely provision of NPP data to NASA s science teams organized by climate measurement themes. The SDS breaks down into nine major elements, an input element that receives data from the operational agencies and acts as a buffer, a calibration analysis element, five elements devoted to measurement based quality assessment, an element used to test algorithmic improvements, and an element that provides overall science direction. This paper will describe how the NPP SDS will leverage on NASA experience to provide a mission-reliable research capability for science assessment of NPP derived measurements.

  11. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    Directory of Open Access Journals (Sweden)

    Lawton Shaw

    2013-12-01

    Full Text Available Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU science project courses allow distance education students to complete research project courses by working with research supervisors in their local area, coordinated at a distance by AU faculty. This paper presents demographics and course performance for 155 students over five years. Pass rates were similar to other distance education courses. Research students were surveyed by questionnaire, and external supervisors and AU faculty were interviewed, to examine the outcomes of these project courses for each group. Students reported high levels of satisfaction with the course, local supervisors, and faculty coordinators. Students also reported that the experience increased their interest in research, and the probability that they would pursue graduate or additional certification. Local supervisors and faculty affirmed that the purposes of project courses are to introduce the student to research, provide opportunity for students to use their cumulative knowledge, develop cognitive abilities, and independent thinking. The advantages and challenges associated with this course model are discussed.

  12. The ATLAS Computing Agora: a resource web site for citizen science projects

    CERN Document Server

    Bourdarios, Claire; The ATLAS collaboration

    2016-01-01

    The ATLAS collaboration has recently setup a number of citizen science projects which have a strong IT component and could not have been envisaged without the growth of general public computing resources and network connectivity: event simulation through volunteer computing, algorithms improvement via Machine Learning challenges, event display analysis on citizen science platforms, use of open data, etc. Most of the interactions with volunteers are handled through message boards, but specific outreach material was also developed, giving an enhanced visibility to the ATLAS software and computing techniques, challenges and community. In this talk the Atlas Computing Agora (ACA) web platform will be presented as well as some of the specific material developed for some of the projects.

  13. Assessing the influence of Environmental Impact Assessments on science and policy: an analysis of the Three Gorges Project.

    Science.gov (United States)

    Tullos, Desiree

    2009-07-01

    projections. These analyses also suggest a lack of direct feedback between the EIA process and emerging science, as indicated by the failure of literature to focus on issues related to the design and management of TGP, ultimately challenging the environmental sustainability of the project. While the EIA process has enormous potential for improving both the basic sciences and the planning and sustainability of hydrodevelopment, important institutional changes need to occur for this potential to be realized. This paper concludes with recommendations about those institutional changes needed to improve the feedback between the science and policy, and ultimately the environmental sustainability, of large dams.

  14. An Integrated Mixed Methods Research Design: Example of the Project Foreign Language Learning Strategies and Achievement: Analysis of Strategy Clusters and Sequences

    OpenAIRE

    Vlčková Kateřina

    2014-01-01

    The presentation focused on an so called integrated mixed method research design example on a basis of a Czech Science Foundation Project Nr. GAP407/12/0432 "Foreign Language Learning Strategies and Achievement: Analysis of Strategy Clusters and Sequences". All main integrated parts of the mixed methods research design were discussed: the aim, theoretical framework, research question, methods and validity threats. Prezentace se zaměřovala na tzv. integrovaný vícemetodový výzkumný design na...

  15. A University-Wide Collaborative Effort to Designing a Makerspace at an Academic Health Sciences Library.

    Science.gov (United States)

    Herron, Jennifer; Kaneshiro, Kellie

    2017-01-01

    This article describes the planning and development of a 3D printing makerspace at an academic health sciences library. At the start of 2015, a new library Technology Team was formed consisting of a team leader, an emerging technologies librarian, and a library systems analyst. One of the critical steps in the development of the proposal and with the planning of this project was collaborating and partnering with different departments and units outside the library. These connections helped shape the design of the makerspace.

  16. Citizen participation, indispensable factor in the generation of urban design projects that respond to the needs of users in Mexico

    Directory of Open Access Journals (Sweden)

    Flavio Franco Muñoz

    2015-09-01

    Full Text Available The relationship between urban design projects with users, it is evident that the importance of public participation in the development of the realization and implementation of these projects; being one of the aspects that aroused the interest in developing the research project "Citizen Participation and rehabilitation of public spaces in the downtown area of Aguascalientes. The cases of Madero and Venustiano Carranza Zaragoza streets" in the which it aims to propose a model for the process of developing an urban design project that incorporates citizen participation effectively, based on the analysis of cases of Madero and Venustiano Carranza Zaragoza streets and analysis theoretical framework of the research project; This research is being done within the Doctorate of Science of the Anthropic Areas, which is being conducted at the Autonomous University of Aguascalientes. The aim expose in this paper is the importance of public participation in a key stage in the process of realization and implementation of a project of urban design, urban planning stage, to substantiate the development stage of the project design city; this proposal derived from the analysis of the knowledge acquired through the research project being conducted within the PhD. The set in our research project to develop the stages in the process of realization and implementation of an urban design project, made up, urban planning, studies to substantiate the project, zoning scheme, the draft, the project executive, project implementation and monitoring, control and evaluation of urban design project realized; allowed to establish the stages where citizen participation is essential, and these stages, identifying the aspects that will be enriched with the knowledge gained from this participation. Considering the participation of citizens from the realization of urban development programs, whether in cities, partial, sectoral or development schemes localities, allow to be

  17. Investigating Science Interest in a Game-Based Learning Project

    Science.gov (United States)

    Annetta, Leonard; Vallett, David; Fusarelli, Bonnie; Lamb, Richard; Cheng, Meng-Tzu; Holmes, Shawn; Folta, Elizabeth; Thurmond, Brandi

    2014-01-01

    The purpose of this study was to examine the effect Serious Educational Games (SEGs) had on student interest in science in a federally funded game-based learning project. It can be argued that today's students are more likely to engage in video games than they are to interact in live, face-to-face learning environments. With a keen eye on…

  18. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    Science.gov (United States)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  19. Effective teaching in the contexts of Internet science projects: American and Russian teachers' perspectives of best practices

    Science.gov (United States)

    Mumma, Brian

    Statement of the problem. Science education literature had agreed that an important goal in students' learning is the development of scientific and technological literacy. One effort that teachers have integrated into their practices for addressing this goal has been teaching within the contexts of Internet Science Projects. Greater awareness of teachers' perspectives of their best practices and their beliefs and reasons for these practices in the contexts of Internet Science Projects can improve the quality of science education programs. Methods. A series of pilot interviews was conducted during the 2000--2001 school year to develop the guiding questions for inquiring into teachers' perspectives of their best practices within the contexts of Internet Science Projects. This series of interviews resulted in the understanding of the need to select teachers with experiences with Internet Science Projects and to conduct in-depth phenomenological interviews for learning from their voices. Two teachers were purposefully selected as the participant-informants for this study, one an American elementary teacher from Walker County, Georgia, and one a Russian teacher from St. Petersburg, Russia. The study was conducted from October through December 2001. The data collected for this qualitative study consisted of a series of in-depth phenomenological interviews, classroom observations, and the collection and analysis of various artifacts including teacher journals, student products, and e-mail/bulletin board transcripts. The interview structure was based upon a modification of expanding Seidman's (1998) three interview series into multiple interviews concluded upon the determination of saturation of the topic. The series of interviews were composed of (1) life history focus; (2) the details of the experience of teaching within the contexts of Internet Science Projects; and (3) reflection on the meanings. The data analysis consisted of applying Strauss & Corbin's (1990) open

  20. D4SCIENCE-II - Report on inter-projects coordination and collaboration

    OpenAIRE

    Castelli, Donatella; Zoppi, Franco

    2010-01-01

    This deliverable reports on the collaborations with other FP7 projects and R&D programmes established by D4Science-II from the beginning of the project until July 2010. The collaborations described are of different nature, as they range from purely technical exchanges involving mutual exploitation of technologies to the sharing of e- Infrastructure resources and to the joint organization of networking and dissemination events. The deliverable presents these collaborations clustered into: (i) ...

  1. Project 8, Phase III Design: Placing an eV-Scale Limit on the Neutrino Mass using Cyclotron Radiation Emission Spectroscopy

    Science.gov (United States)

    Oblath, Noah; Project 8 Collaboration

    2016-09-01

    We report on the design concept for Phase III of the Project 8 experiment. In the third phase of Project 8 we aim to place a limit on the neutrino mass that is similar to the current limits set by tritium beta-decay experiments, mν radioastronomy will be employed to search for and track electron signals in the fiducial volume. This talk will present the quantitative design concept for the phased-array receiver, and illustrate how we are progressing towards the Phase IV experiment, which will have sensitivity to the neutrino mass scale allowed by the inverted mass hierarchy. This work is supported by the DOE Office of Science Early Career Research Program, and the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory.

  2. Examining of the Predictors of Pre-Service Teachers' Perceptions of the Quality of the Science Fair Projects in Turkey

    Science.gov (United States)

    Tortop, Hasan Said

    2014-01-01

    This study aimed at examining the predictors of quality of science fair (SF) projects in the light of pre-service teachers' evaluation of SF rubric' domains. These projects were selected by judges in A city for the A Regional Exhibition of Science and Mathematics Project Study for Primary School Students: The SF projects were evaluated by thirty…

  3. Delft Aerospace Design Projects 2016 : Inspring Designs in Aeronautics, Astronautics and Wind Energy

    NARCIS (Netherlands)

    Melkert, J.A.

    2016-01-01

    This book presents an overview of the results of the Fall Design Synthesis Exercise 2015 and the Spring Design Synthesis Exercise of 2016, based on summaries of each of the projects. The Design Synthesis Exercise Coordination Committee, responsible for the organisation and execution of the exercise,

  4. Delft Aerospace Design Projects 2014 : New Designs in Aeronautics, Astronautics and Wind Energy

    NARCIS (Netherlands)

    Melkert, J.A.

    2014-01-01

    This book presents an overview of the results of the Fall Design Synthesis Exercise 2013 and the Spring Design Synthesis Exercise of 2014, based on summaries of each of the projects. The Design Synthesis Exercise Coordination Committee, responsible for the organisation and execution of the exercise,

  5. SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists

    Science.gov (United States)

    Méndez, B. J. H.

    2008-06-01

    In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.

  6. The SCIDIP-ES project - towards an international collaboration strategy for long term preservation of earth science data

    Science.gov (United States)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability and collaboration, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach promotes international collaboration between researchers and will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong business cases for the long term support of that data. This paper will describe our progress to date, including the results of community engagement and user consultation exercises designed to specify and scope the required tools and services. Our user engagement methodology, ensuring that we are capturing the views of a representative sample of institutional users, will be described. Key

  7. Design Fixation and Cooperative Learning in Elementary Engineering Design Project: A Case Study

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2015-09-01

    Full Text Available This paper presents a case study examining 3rd, 4th and 5th graders’ design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP, was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes. Students’ design journals and reflections were also analyzed for an inductive qualitative analysis. The findings indicate three major themes of design fixation: 1 fixation on common features of things; 2 fixation on popular teenage culture; 3 fixation on the first design idea. In the cooperative learning process of elementary engineering design project, although pupils had demonstrated some abilities to solve concrete problems in a logical fashion, the participants encountered a number of obstacles in the group. Dominance, social loafing, and other problems occurring in the group process might have offset certain benefits of cooperative learning. Implications of the findings are also discussed.

  8. Design fixation and cooperative learning in elementary engineering design project: A case study

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2015-09-01

    Full Text Available This paper presents a case study examining 3rd, 4th and 5th graders’ design fixation and cooperative learning in an engineering design project. A mixed methods instrument, the Cooperative Learning Observation Protocol (CLOP, was adapted to record frequency and class observation on cooperative learning engagement through detailed field notes. Students’ design journals and reflections were also analyzed for an inductive qualitative analysis. The findings indicate three major themes of design fixation: 1 fixation on common features of things; 2 fixation on popular teenage culture; 3 fixation on the first design idea. In the cooperative learning process of elementary engineering design project, although pupils had demonstrated some abilities to solve concrete problems in a logical fashion, the participants encountered a number of obstacles in the group. Dominance, social loafing, and other problems occurring in the group process might have offset certain benefits of cooperative learning. Implications of the findings are also discussed.

  9. Recognizing Risk-of-Failure in Communication Design Projects

    Science.gov (United States)

    Yee, Joyce; Lievesley, Matthew; Taylor, Louise

    2009-01-01

    The pace of commercial graphic design practice presents very few opportunities to conduct user research after a project's launch. This makes the design team's ability to anticipate and address risks during the design development phase even more important, recognized in the astute observation from Tim Brown, CEO of leading international design…

  10. Capstone Engineering Design Projects for Community Colleges

    Science.gov (United States)

    Walz, Kenneth A.; Christian, Jon R.

    2017-01-01

    Capstone engineering design courses have been a feature at research universities and four-year schools for many years. Although such classes are less common at two-year colleges, the experience is equally beneficial for this population of students. With this in mind, Madison College introduced a project-based Engineering Design course in 2007.…

  11. The socio-technical design of a library and information science collaboratory

    DEFF Research Database (Denmark)

    Lassi, Monica; Sonnenwald, Diane H.

    2013-01-01

    Introduction. We present a prototype collaboratory, a socio-technical platform to support sharing research data collection instruments in library and information science. No previous collaboratory has attempted to facilitate sharing digital research data collection instruments among library...... and information science researchers.  Method. We have taken a socio-technical approach to design, which includes a review of previous research on collaboratories; an empirical study of specific needs of library and information science researchers; and a use case design method to design the prototype collaboratory....... Scenarios of future interactions, use cases, were developed using an analytically-driven approach to scenario design. The use cases guided the implementation of the prototype collaboratory in the MediaWiki software package.  Results. The prototype collaboratory design is presented as seven use cases, which...

  12. Development of an ICT in IBSE course for science teachers: A design-based research

    Science.gov (United States)

    Tran, Trinh-Ba

    2018-01-01

    Integration of ICT tools for measuring with sensors, analyzing video, and modelling into Inquiry-Based Science Education (IBSE) is a need globally recognized. The challenge to teachers is how to turn manipulation of equipment and software into manipulation of ideas. We have developed a short ICT in IBSE course to prepare and support science teachers to teach inquiry-based activities with ICT tools. Within the framework of design-based research, we first defined the pedagogical principles from the literature, developed core materials for teacher learning, explored boundary conditions of the training in different countries, and elaborated set-ups of the course for the Dutch, Slovak, and Vietnamese contexts. Next, we taught and evaluated three iterative cycles of the Dutch course set-ups for pre-service science teachers from four teacher-education institutes nationwide. In each cycle, data on the teacher learning was collected via observations, questionnaires, interviews, and documents. These data were then analyzed for the questions about faithful implementation and effectiveness of the course. Following the same approach, we taught and evaluated two cycles of the Slovak course set-ups for in-service science teachers in the context of the national accreditation programme for teacher professional development. In addition, we investigated applicability of the final Dutch course set-up in the context of the physics-education master program in Vietnam with adaptations geared to educational and cultural difference. Through the iterations of implementation, evaluation, and revision, eventually the course objectives were achieved to certain extent; the pedagogical principles and core materials proved to be effective and applicable in different contexts. We started this research and design project with the pedagogical principles and concluded it with these principles (i.e. complete theory-practice cycle, depth first, distributed learning, and ownership of learning) as the

  13. Environmental Education & Ecology in a Life Science Course for Preservice K-8 Teachers Using Project Wildlife in Learning Design

    Science.gov (United States)

    Nelson, Allan

    2010-01-01

    During laboratory sessions devoted to ecology, 182 preservice K-8 teachers participated in a Project Wildlife in Learning Design (WILD) workshop. Participants rated the workshop highly, indicated they would use more inquiry-based activities, and were more interested in teaching ecology following the workshop. Post-test scores indicated an…

  14. Construction management and economics: the epistemology of a multidisciplinary design science

    NARCIS (Netherlands)

    Voordijk, Johannes T.

    2009-01-01

    Research in the field of construction management and economics (CME) can be characterized as a multidisciplinary design science. Results from the sciences and humanities are necessary inputs for this field of research that deals with design, production and operation of the built environment. The

  15. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits and chall......Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...... and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  16. Fuels planning: science synthesis and integration; fact sheet: The Fuels Synthesis Project overview

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The geographic focus of the "Fuels Planning: Science Synthesis and Integration" project #known as the Fuels Synthesis Project# is on the dry forests of the Western United States. Target audiences include fuels management specialists, resource specialists, National Environmental Policy Act #NEPA# planning team leaders, line officers in the USDA Forest Service...

  17. Tactical Approaches for Trading Science Objectives Against Measurements and Mission Design: Science Traceability Techniques at the Jet Propulsion Laboratory

    Science.gov (United States)

    Nash, A. E., III

    2017-12-01

    The most common approaches to identifying the most effective mission design to maximize science return from a potential set of competing alternative design approaches are often inefficient and inaccurate. Recently, Team-X at the Jet Propulsion Laboratory undertook an effort to improve both the speed and quality of science - measurement - mission design trade studies. We will report on the methodology & processes employed and their effectiveness in trade study speed and quality. Our results indicate that facilitated subject matter expert peers are the keys to speed and quality improvements in the effectiveness of science - measurement - mission design trade studies.

  18. The PERFORM project: using performing arts to increase engagement and understanding of science.

    Science.gov (United States)

    James, Jon

    2017-04-01

    This commentary describes some of the current challenges for science education in the UK and how an EU educational project (PERFORM) is seeking to use performing arts to engage young people with science, its values and the processes of research. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Computer-integrated design and information management for nuclear projects

    International Nuclear Information System (INIS)

    Gonzalez, A.; Martin-Guirado, L.; Nebrera, F.

    1987-01-01

    Over the past seven years, Empresarios Agrupados has been developing a comprehensive, computer-integrated system to perform the majority of the engineering, design, procurement and construction management activities in nuclear, fossil-fired as well as hydro power plant projects. This system, which is already in a production environment, comprises a large number of computer programs and data bases designed using a modular approach. Each software module, dedicated to meeting the needs of a particular design group or project discipline, facilitates the performance of functional tasks characteristic of the power plant engineering process

  20. Estimating design costs for first-of-a-kind projects

    International Nuclear Information System (INIS)

    Banerjee, Bakul; Fermilab

    2006-01-01

    Modern scientific facilities are often outcomes of projects that are first-of-a-kind, that is, minimal historical data are available for project costs and schedules. However, at Fermilab, there was an opportunity to execute two similar projects consecutively. In this paper, a comparative study of the design costs for these two projects is presented using earned value methodology. This study provides some insights into how to estimate the cost of a replicated project

  1. Research Design

    DEFF Research Database (Denmark)

    2019-01-01

    Gunnar Scott Reinbacher (editor) Antology.  Research Design : Validation in Social Sciences. Gunnar Scott Reinbacher: Introduction. Research design and validity. 15p Ole Riis: Creative Research design. 16 p Lennart Nørreklit: Validity in Research Design. 24p Gitte Sommer Harrits: Praxeological...... Scott Reinbacher: Multidisciplinary Research Designs in Problem Based Research. The case of an european project on chronical diseases, the Tandem project (Training Alternmative Networking Skills in Diabetes Management). 15p Niels Nørgaard Kristensen: A qualitative bottom up approach to post modern...... knowledge: An integrated strategy for combining "explaining" and "understanding". 22p Heidi Houlberg Salomonsen & Viola Burau: Comparative research designs. 40p Rasmus Antoft & Heidi Houlberg Salomonsen: Studying organizations by a Pragmatic Research Design: the case of qualitative case study  designs. 31p...

  2. A Community-University Exchange Project Modeled after Europe's Science Shops

    Science.gov (United States)

    Tryon, Elizabeth; Ross, J. Ashleigh

    2012-01-01

    This article describes a pilot project of the Morgridge Center for Public Service at the University of Wisconsin-Madison for a new structure for community-based learning and research. It is based on the European-derived science shop model for democratizing campus-community partnerships using shared values of mutual respect and validation of…

  3. Effect of project work on secondary school students science process ...

    African Journals Online (AJOL)

    The study investigated the effect of students' project work on secondary school science process skills acquisition in Biology. The study was carried out in Owerri North Local Government Area of Imo State. Three research questions guided the study and three null hypotheses were postulated and tested at 0.05 level of ...

  4. A web-based online collaboration platform for formulating engineering design projects

    Science.gov (United States)

    Varikuti, Sainath

    Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 6 ... and ongoing seismicity of northeastern Kumaun Himalaya, Uttarakhand, India ... areas of hazard prone and also planning and designing of the socio-economic projects. ... from Darjeeling, eastern Himalaya: Textural relationship and P–T conditions.

  6. Managing Actors, Resources, and Activities in Innovation Ecosystems – A Design Science Approach

    OpenAIRE

    Valkokari , Katri; Amitrano , Cristina ,; Bifulco , Francesco; Valjakka , Tiina

    2016-01-01

    Part 13: Design Science and Business Models - Design Science Research; International audience; Through a design science approach, the paper explores how actors in a network create and sustain competitive advantage independently and through participation in a system of actors (i.e., a collaborative network) who are not hierarchically managed but, rather, act toward their own goals within the innovation ecosystem. In accordance with design studies, the relevance of research and its quality are ...

  7. Conceptual Model of Artifacts for Design Science Research

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    2015-01-01

    We present a conceptual model of design science research artifacts. The model views an artifact at three levels. At the artifact level a selected artifact is viewed as a combination of material and immaterial aspects and a set of representations hereof. At the design level the selected artifact...

  8. Examining the relationship between leadership and mega science projects

    CERN Document Server

    Eggleton, David Christopher; Tang, Puay

    A development over the past 70 to 80 years within scientific research has been the need for very large pieces of apparatus to enable the exploration of new scientific topics, particularly within particle physics and space science. These ‘megascience projects’ are generally undertaken as cooperative ventures by countries seeking to pursue scientific experimental opportunities in these fields. Such projects, a subcategory of large/megaprojects that have a minimum budget of one billion US dollars, are characterised by high levels of technological uncertainty, given that their success depends on the development of new, highly-advanced technologies . However, there is a notable lack of research into the leadership of megascience projects - an important consideration when embarking on a substantial project. The leadership literature traditionally categorises leaders into five discrete leadership styles, but there is a gap when it comes to understanding the characteristics and development of leaders of megascien...

  9. The Acadia Learning Project: Lessons Learned from Engaging High School Teachers and Students in Citizen Science Supporting National Parks

    Science.gov (United States)

    Nelson, S. J.; Zoellick, B.; Davis, Y.; Lindsey, E.

    2009-12-01

    In 2007 the authors initiated a citizen science research project, supported with funding from the Maine Department of Education, designed to extend research at Acadia National Park to a broader geographic area while also providing high school students and teachers with an opportunity to engage in authentic research in cooperation with working scientists. The scientific focus of the work has been on providing information about the mercury burden of organisms at different trophic levels across different geographic and environmental settings. The pedagogical focus has been on providing students with immersion in a substantial, field-based project, including background research, hypothesis formulation, data collection and analysis, and presentation of research findings. Starting work with 6 teachers in two schools the first year, the project expanded to involve more than 20 teachers and 350 students in a dozen schools in its second year. In coming years, with support from NOAA and cooperation from other National Parks in the region, the project will expand to include work in other states along the coast of the Gulf of Maine. In this paper the authors describe evolution in the use of the Internet over the first two years of the project, a sharpened focus on professional development for teachers, survey results regarding student views of the nature of science, the importance of focusing on rigorous, useful data collection from an educational perspective, success in establishing that samples collected by students are useful in research, the disjuncture between scientific and pedagogical outcomes, an assessment of the value of student poster presentations, and lessons learned about preparation and use of curriculum support materials. The authors also describe future directions, which include an increased focus on professional development and student work with graphs, a narrower focus in sample collection, and increased use of the Internet to provide participating teachers

  10. Looking at Life. Study Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  11. Design iteration in construction projects – Review and directions

    Directory of Open Access Journals (Sweden)

    Purva Mujumdar

    2018-03-01

    Full Text Available Design phase of any construction project involves several designers who exchange information with each other most often in an unstructured manner throughout the design phase. When these information exchanges happen to occur in cycles/loops, it is termed as design iteration. Iteration is an inherent and unavoidable aspect of any design phase which requires proper planning. Till date, very few researchers have explored the design iteration (“complexity” in construction sector. Hence, the objective of this paper was to document and review the complexities of iteration during design phase of construction projects for efficient design planning. To achieve this objective, exhaustive literature review on design iteration was done for four sectors – construction, manufacturing, aerospace, and software development. In addition, semi-structured interviews and discussions were done with a few design experts to verify the different dimensions of iteration. Finally, a design iteration framework was presented in this study that facilitates successful planning. Keywords: Design iteration, Types of iteration, Causes and impact of iteration, Models of iteration, Execution strategies of iteration

  12. Information management needs for Fort Calhoun's design basis reconstitution project

    International Nuclear Information System (INIS)

    Beach, D.R.; Erickson, E.A.; Gambhir, S.K.; Parsons, R.D.

    1989-01-01

    While the need for information management is not new to the nuclear industry or Omaha Public Power District (OPPD), the interrelationship among design information, multiple systems, and design basis issues has necessitated the management of this information in new ways. The project team involved in the reconstitution of the design basis for OPPD's Fort Calhoun nuclear station has experienced the need for the developed effective methods for managing the vast amount of interrelated information associated with this effort. This management of information has been necessary to ensure that design basis documents (DBDs) adequately reflect the interrelated nature of component, system, and plant design; are complete and accurate; and are produced and maintained in a cost-effective manner. Fort Calhoun's aggressive design basis reconstitution project began in early 1987. The present scope of the project includes the production of 52 system and plant level DBDs; currently the project is ∼50% complete with DBDs in various stages of completion, from pilot DBDs through DBDs with approved formats, which have been issued for use. The experience in producing these documents has lead to a growing understanding of the special need for information management in each stage of the project. The development of the information tracking and management processes for the various stages of DBD development has proven to be cost-effective and gives a level of assurance that information has been included in the DBDs consistently and accurately

  13. Designing forestry projects for climate action plan implementation

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N. [American Forests, Washington, DC (United States)

    1995-11-01

    Forests play an important role in sequestering and storing carbon in terrestrial ecosystems, so countries considering ways to mitigate greenhouse gas emissions are looking at forestry projects as one option. Designing forestry projects that accomplish desired goals is no simple task however, as many past failures attest. This paper proposes that, to be successful, climate change mitigation forestry projects need to: (a) feature other socially, economically and environmentally desirable goals as primary motivators; (b) be designed in cooperation with, and in the interests of, local populations, and (c), feature cooperative efforts between government, industry, and volunteer associations. Volunteer associations can often be assisted in being a more capable partner through an organizational training and support process, and this is one of the services offered to cooperating countries through American Forests. 21 refs.

  14. High School Students' Reasons for Their Science Dispositions: Community-Based Innovative Technology-Embedded Environmental Research Projects

    Science.gov (United States)

    Ebenezer, Jazlin; Kaya, Osman Nafiz; Kasab, Dimma

    2018-05-01

    The purpose of this investigation was to qualitatively describe high school students' reasons for their science dispositions (attitude, perception, and self-confidence) based on their long-term experience with innovative technology-embedded environmental research projects. Students in small groups conducted research projects in and out of school with the help of their teachers and community experts (scientists and engineers). During the 3-year period of this nationally funded project, a total of 135 students from five schools in a mid-west State participated in research activities. Of the 135 students, 53 students were individually interviewed to explore reasons for their science dispositions. Students' reasons for each disposition were grouped into categories, and corresponding frequency was converted to a percentage. The categories of reasons were not only attributed to the use of innovative technologies in environmental research but also the contexts and events that surrounded it. The reasons that influenced students' science dispositions positively were because engaging in environmental research projects with technology contributed to easing fear and difficulty, building a research team, disseminating findings, communicating with the community, researching with scientists, training by teachers, and acknowledging teachers' knowledge. These results advanced how and why students develop science dispositions in the positive direction, which are as follows: building science teacher capacity, developing a community of inquirers, and committing to improve pedagogical practices.

  15. Project first and eye on the sky: strategies for teaching space science in the early grades

    Science.gov (United States)

    Paglierani, R.; Hawkins, I.

    Elementary educators typically have only limited opportunity to teach substantive science units. This is due, in great part, to the current primary focus on literacy and mathematics instruction in the early grades. It is not surprising then, that the time and resources allocated to science teaching are significantly less than those allocated to language arts and mathematics. The integration of elementary science curricula with language arts provides one means of addressing the challenge of maintaining a robust science presence in the elementary classroom. Project FIRST's Eye on the Sky suggests a model for the successful integration of science instruction with language arts through inquiry-based learning. The model has been adopted by other Education/Public Outreach efforts, most recently, the Cassini- Huygens Mission and the Space Telescope Institute. We will present Eye on the Sky: Our Star the Sun, a suite of integrated, inquiry-based lessons designed specifically for K-4 students and discuss data showing the program's impact on the user audience. These materials offer an exciting opportunity to explore the dynamic Sun and share research discoveries of NASA's Sun-Earth Connection with the elementary education community. The lessons were developed and tested by UC Berkeley educators and NASA scientists in partnership with classroom teachers. We will review the program components and examine the benefits and challenges inherent in implementing such a program in the elementary school setting.

  16. Community College Economics Instruction: Results from a National Science Foundation Project

    Science.gov (United States)

    Maier, Mark; Chi, W. Edward

    2016-01-01

    The principal investigator of a National Science Foundation project, "Economics at Community Colleges," surveyed community college economics faculty and organized workshops, webinars, and regional meetings to address community college faculty isolation from new ideas in economics and economics instruction. Survey results, combined with…

  17. Design and Evaluation of Dedicated Smartphone Applications for Collaborative Science Education

    Science.gov (United States)

    Fertitta, John A., Jr.

    2011-12-01

    Over the past several years, the use of scientific probes is becoming more common in science classrooms. The goal of teaching with these science probes is to engage students in inquiry-based learning. However, they are often complicated and stationary, forcing experiments to remain in the classroom and limiting their use. The Internet System for Networked Sensor Experimentation (iSENSE) was created to address these limitations. iSENSE is a web-system for storing and visualizing sensor data. The project also includes a hardware package, the PINPoint, that interfaces to existing probes, and acts as a probe itself. As the mobile phone industry continues to advance, we are beginning to see smartphones that are just as powerful, if not more powerful, than many desktop computers. These devices are often equipped with advanced sensors, making them as capable as some science probes at a lower cost. With this background, this thesis explores the use of smartphones in secondary school science classrooms. By collaborating with one teacher, three custom applications were developed for four separate curriculum-based learning activities. The smartphones replaced existing traditional tools and science probes. Some data collected with the smartphones were uploaded to the iSENSE web-system for analysis. Student use of the smartphones and the subsequent scientific visualizations using the iSENSE web-system were observed. A teacher interview was conducted afterward. It was found that a collaborative design process involving the teacher resulted in the successful integration of smartphone applications into learning activities. In one case, the smartphones and use of iSENSE did not improve the students' understanding of the learning objectives. In several others, however, the smartphones out-performed traditional probeware as a data collector, and with the classroom teachers guidance, the iSENSE web-system facilitated more in-depth discussions of the data.

  18. Instructional Design and Project Management: Complementary or Divergent?

    Science.gov (United States)

    van Rooij, Shahron Williams

    2011-01-01

    This paper reports the results of a study to identify the extent to which organizations that develop educational/training products are committed to project management, as measured by their project management implementation maturity, as a methodology that is separate and distinct from the processes of instructional design. A Web survey was…

  19. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    International Nuclear Information System (INIS)

    Renfro, G.G.

    1994-01-01

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices

  20. Group Projects in Interior Design Studio Classes: Peer Feedback Benefits

    Science.gov (United States)

    Jurado, Juan A.

    2011-01-01

    Group projects have been shown to be effective for providing peer feedback in classrooms. While students in regular enrollment classes benefit from peer feedback, low-enrollment classes face many challenges. This study compares peer feedback effectiveness between two interior design studio classes with different design projects. In one class,…

  1. Design-Based Research in Science Education: One Step Towards Methodology

    Directory of Open Access Journals (Sweden)

    Kalle Juuti

    2012-10-01

    Full Text Available Recently, there has been critiques towards science education research, as the potential of this research has not been actualised in science teaching and learning praxis. The paper describes an analysis of a design-based research approach (DBR that has been suggested as a solution for the discontinuation between science education research and praxis. We propose that a pragmatic frame helps to clarify well the design-based research endeavour. We abstracted three aspects from the analysis that constitute design-based research: (a a design process is essentially iterative starting from the recognition of the change of the environment of praxis, (b it generates a widely usable artefact, (c and it provides educational knowledge for more intelligible praxis. In the knowledge acquisition process, the pragmatic viewpoint emphasises the role of a teacher’s reflected actions as well as the researches’ involvement in the authentic teaching and learning settings.

  2. Design considerations for the Yucca Mountain project exploratory shaft facility

    International Nuclear Information System (INIS)

    Bullock, R.L. Sr.

    1990-01-01

    This paper reports on the regulatory/requirements challenges of this project which exist because this is the first facility of its kind to ever be planned, characterized, designed, and built under the purview of a U.S. Nuclear Regulatory Agency. The regulations and requirements that flow down to the Architect/Engineer (A/E) for development of the Exploratory Shaft Facility (ESF) design are voluminous and unique to this project. The subsurface design and construction of the ESF underground facility may eventually become a part of the future repository facility and, if so, will require licensing by the Nuclear Regulatory Commission (NRC). The Fenix and Scisson of Nevada-Yucca Mountain Project (FSN-YMP) group believes that all of the UMP design and construction related activities, with good design/construct control, can be performed to meet all engineering requirements, while following a strict quality assurance program that will also meet regulatory requirements

  3. Science Through ARts (STAR)

    Science.gov (United States)

    Kolecki, Joseph; Petersen, Ruth; Williams, Lawrence

    2002-01-01

    Science Through ARts (STAR) is an educational initiative designed to teach students through a multidisciplinary approach to learning. This presentation describes the STAR pilot project, which will use Mars exploration as the topic to be integrated. Schools from the United Kingdom, Japan, the United States, and possibly eastern Europe are expected to participate in the pilot project.

  4. Translational Science Project Team Managers: Qualitative Insights and Implications from Current and Previous Postdoctoral Experiences.

    Science.gov (United States)

    Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A

    2014-07-01

    The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.

  5. Science against Crime.

    Science.gov (United States)

    Cooke, Julia

    2002-01-01

    Describes a project involving students in forensic science and crime prevention to improve their investigative skills using a DNA fingerprinting workshop and designing burglar alarms, investigating blood splatter patterns, investigating vehicle collisions, and researching crime prevention advice on the Internet. (YDS)

  6. The FIFE Project at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Box, D. [Fermilab; Boyd, J. [Fermilab; Di Benedetto, V. [Fermilab; Ding, P. [Fermilab; Dykstra, D. [Fermilab; Fattoruso, M. [Fermilab; Garzoglio, G. [Fermilab; Herner, K. [Fermilab; Levshina, T. [Fermilab; Kirby, M. [Fermilab; Kreymer, A. [Fermilab; Mazzacane, A. [Fermilab; Mengel, M. [Fermilab; Mhashilkar, P. [Fermilab; Podstavkov, V. [Fermilab; Retzke, K. [Fermilab; Sharma, N. [Fermilab

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  7. Designing pilot projects as boundary objects a Brazilian case study in the promotion of sustainable design

    CERN Document Server

    Zurlo, Francesco

    2016-01-01

    This book describes a collaborative Design Pilot Project held in Brazil (called MODU.Lares) involving micro and small enterprises and other actors in the furniture sector. The experience was based on an action research method and evaluated by using a tool, in order to assess the value of pilot project as a boundary object capable of fostering innovation and sustainability. The impact of the Design Pilot Project in triggering change in a fragmented local system with a poor environmental and social record, as well as management and innovation issues, were assessed with the help of the same tool, taking into account environmental, technological, economic, sociocultural, and organizational indicators. The collaborative network established was chiefly based on four elements: prototypes, meetings, exhibitions and the Pilot Project (as an overall process). The results indeed demonstrate that a Design Pilot Project can be a valid instrument for establishing a collaborative environment that promotes sustainability an...

  8. Design training activity for teachers and students on environmental science topic in the frame of ENVRIPLUS project

    Science.gov (United States)

    D'Addezio, G.; Beranzoli, L.; Antonella, M.

    2016-12-01

    We elaborated actions to improve the content of the ENVRIPLUS e-Training Platform for multimedia education of secondary school level teachers and students. The purpose is to favor teacher training and consequently students training on selected scientific themes faced within the ENVRIPLUS Research Infrastructures. In particular we address major thematic research areas and challenges on Biodiversity and Ecosystem Services, Greenhouse effect and Earth Warming, Ocean acidifications and Environmental sustainability. First we identified "Best practices" that could positively impacts on students by providing motivation on promoting scientific research and increase the awareness of the Earth System complexity and Environmental challenges for its preservation and sustainability,). Best practice teaching strategies represent an inherent part of a curriculum that exemplifies the connection and relevance identified in education research. To realize the training platform we start detailed study and analysis of teaching and multimedia information materials already available. We plan the realization of a digital repository for access to teachers and students with opportunities to develop original content, with standardization of the design methods of the scientific and technical content, classification / cataloging of information in digital form and definition of a logical model for the provision of thematic content in a single digital environment. To better design the actions and to catch teacher needs, we prepare a questionnaire that will be administered to a large sample of international secondary school level teachers. The first part focused on objective information about the formal, quantitative and qualitative position of science class in schools and the content and methods of teaching in different countries. The second part investigate subjective teacher experiences and their views on what can improve training offer for environmental science lessons and courses.

  9. Evaluating an artifact in design science research

    CSIR Research Space (South Africa)

    Herselman, M

    2015-09-01

    Full Text Available In this paper, we describe the iterative evaluation of an artifact developed through the application of Design Science Research (DSR) methodology in a resource constrained environment. In the DSR process the aspect of evaluation is often done...

  10. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    International Nuclear Information System (INIS)

    Phillips, Ann Marie

    2003-01-01

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D and D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D and D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D and D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D and D basic research projects will directly impact and provide solutions to DOE's D and D problems

  11. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  12. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  13. Visual Literacy and Science Education: Results of a Qualitative Research Project

    Directory of Open Access Journals (Sweden)

    Regula Fankhauser

    2008-10-01

    Full Text Available In the didactics of science the role of pictures—mainly photographs and diagrams—as learning media and their function in the acquisition of knowledge have been discussed. However, the specific problems understanding pictures have seldom been reflected systematically. The aim of the project described in this paper was to address this deficiency. In a first step I refer to theoretical concepts of understanding pictures that were generated within the context of qualitative social research. Next I generate a theoretical model of visual literacy. The focus is on the understanding of pictures used in science education. The model includes aesthetic, epistemological, technical, and pragmatic dimensions. This model was then empirically tested. Thirty-five students were interviewed regarding their reception of scientific pictures. The results reveal that students have difficulties in describing the aesthetic features of pictures. The interviews clarified the epistemological frame theory on which picture understanding is based: most of the students consider the picture as a realistic copy of the object represented. Only a few students showed a more constructivist frame theory. Furthermore, the results revealed no connection between the epistemological theory and the technical knowledge of the students. The discussion of the design and the method of interpretation reflects the results of the study; the students' patterns of picture understanding are surprisingly homogeneous. On the one hand this could be reduced to the method of content analysis; on the other hand it could be an effect of the single sided view of the design. I explored only the subjective reception of pictures. Further research must consider other perspectives and focus on the way teachers work with visual material in classroom teaching. URN: urn:nbn:de:0114-fqs090129

  14. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  15. Evaluation of authentic science projects on climate change in secondary schools : a focus on gender differences

    NARCIS (Netherlands)

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects, which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects

  16. The GeoBus project: a mobile Earth science outreach project for secondary schools in the UK

    Science.gov (United States)

    Robinson, R. A.; Roper, K. A.; Macfarlane, D.; Pike, C.

    2013-12-01

    GeoBus is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews. It is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (high) schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. These linkages are important for introducing career opportunities in Earth sciences. Since its launch, GeoBus has visited over 140 different schools across the length and breadth of Scotland. Over 20,000 pupils will have been involved in practical hands-on Earth science learning activities by December 2013, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run workshops, field excursions and Enterprise Challenges. GeoBus provides 16 workshops which can be adapted for different learning levels. Workshops are 50 to 80 minute sessions for up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. The Enterprise Challenges are half or full day sessions for up to 100 pupils. Current topics are Drilling for Oil, Renewable Energy, a Journey to Mars and Scotland

  17. An Interactive Robotic Fish Exhibit for Designed Settings in Informal Science Learning

    Science.gov (United States)

    Phamduy, Paul; Leou, Mary; Milne, Catherine; Porfiri, Maurizio

    2017-01-01

    Informal science learning aims to improve public understanding of STEM. Free-choice learners can be engaged in a wide range of experiences, ranging from watching entertaining educational videos to actively participating in hands-on projects. Efforts in informal science learning are often gauged by their ability to elicit interaction, to foster…

  18. Adoption of ICT in Science Education: A Case Study of Communication Channels in a Teachers' Professional Development Project

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo

    2009-01-01

    This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…

  19. Designing a CTSA-Based Social Network Intervention to Foster Cross-Disciplinary Team Science.

    Science.gov (United States)

    Vacca, Raffaele; McCarty, Christopher; Conlon, Michael; Nelson, David R

    2015-08-01

    This paper explores the application of network intervention strategies to the problem of assembling cross-disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic-web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross-disciplinary scientific teams in CTSA institutions. © 2015 Wiley Periodicals, Inc.

  20. Whitehead Policy Symposium. The Human Genome Project: Science, law, and social change in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, E.K.

    2000-02-17

    Advances in the biomedical sciences, especially in human genomics, will dramatically influence law, medicine, public health, and many other sectors of our society in the decades ahead. The public already senses the revolutionary nature of genomic knowledge. In the US and Europe, we have seen widespread discussions about genetic discrimination in health insurance; privacy issues raised by the proliferation of DNA data banks; the challenge of interpreting new DNA diagnostic tests; changing definitions of what it means to be healthy; and the science and ethics of cloning animals and human beings. The primary goal of the Whitehead/ASLME Policy Symposium was to provide a bridge between the research community and professionals, who were just beginning to grasp the potential impact of new genetic technologies on their fields. The ''Human Genome Project: Science, Law, and Social Change in the 21st Century'' initially was designed as a forum for 300-500 physicians, lawyers, consumers, ethicists, and scientists to explore the impact of new genetic technologies and prepare for the challenges ahead.

  1. Mapping Project on Energy and the Social Sciences. Progress report, October 1, 1978-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.A.; Doob, L.W.; Gould, L.C.

    1979-01-01

    This is a progress report of activities in the fourth year of the Yale Institution for Social and Policy Studies Mapping Project on Energy and the Social Sciences. The Mapping Project evaluates past and present social and behavioral science energy studies, assesses the potential for social and behavioral science contributions to a resolution of the energy problems in the future, and diffuses social and behavioral science information and perspectives to policymakers and others concerned with US or world energy developments. Activities in FY 1979 included meetings, workshops, collecting bibliographic material, publications, evaluating DOE programs in buildings and transportation, performing a special study of potential social impacts of 4 coal technologies, and developing plans for 10 specific research studies on energy.

  2. Scientific Knowledge and Attitude Change: The Impact of a Citizen Science Project. Research Report

    Science.gov (United States)

    Brossard, Dominique; Lewenstein, Bruce; Bonney, Rick

    2005-01-01

    This paper discusses the evaluation of an informal science education project, The Birdhouse Network (TBN) of the Cornell Laboratory of Ornithology. The Elaboration Likelihood Model and the theory of Experiential Education were used as frameworks to analyse the impact of TBN on participants' attitudes toward science and the environment, on their…

  3. Problem based Learning versus Design Thinking in Team based Project work

    DEFF Research Database (Denmark)

    Denise J. Stokholm, Marianne

    2014-01-01

    project based learning issues, which has caused a need to describe and compare the two models; in specific the understandings, approaches and organization of learning in project work. The PBL model viewing the process as 3 separate project stages including; problem analysis, problem solving and project......All educations at Aalborg University has since 1974 been rooted in Problem Based Learning (PBL). In 1999 a new education in Industrial design was set up, introducing Design Based Learning (DBL). Even though the two approaches have a lot in common they also hold different understandings of core...... report, with focus on problem solving through analysis. Design Based Learning viewing the process as series of integrated design spaces including; alignment, research, mission, vision, concept, product and process report, with focus on innovative ideation though integration. There is a need of renewing...

  4. Spent Nuclear Fuel (SNF) Project Design Verification and Validation Process

    International Nuclear Information System (INIS)

    OLGUIN, L.J.

    2000-01-01

    This document provides a description of design verification and validation activities implemented by the Spent Nuclear Fuel (SNF) Project. During the execution of early design verification, a management assessment (Bergman, 1999) and external assessments on configuration management (Augustenburg, 1999) and testing (Loscoe, 2000) were conducted and identified potential uncertainties in the verification process. This led the SNF Chief Engineer to implement corrective actions to improve process and design products. This included Design Verification Reports (DVRs) for each subproject, validation assessments for testing, and verification of the safety function of systems and components identified in the Safety Equipment List to ensure that the design outputs were compliant with the SNF Technical Requirements. Although some activities are still in progress, the results of the DVR and associated validation assessments indicate that Project requirements for design verification are being effectively implemented. These results have been documented in subproject-specific technical documents (Table 2). Identified punch-list items are being dispositioned by the Project. As these remaining items are closed, the technical reports (Table 2) will be revised and reissued to document the results of this work

  5. Application of project design peer review to improve quality assurance

    International Nuclear Information System (INIS)

    McClure, F.E.

    1989-01-01

    DOE ORDER 5481.1B Safety Analysis and Review Systems and DOE ORDER 6430.1A General Design Criteria require that the design of facilities shall incorporate the necessary Quality Assurance review requirements to assure that the established program quality assurance objectives are met in the design criteria and the construction documents. The use of Project Design Peer Review to satisfy these requirements is presented. The University of California manages the Lawrence Berkeley Laboratory, the Lawrence Livermore National Laboratory, and the Los Alamos National Scientific Laboratory. The 1988 University Seismic Safety Policy requires the use of independent Project Design Peer Review in its capital improvement and seismic reconstruction program

  6. The Citizen Science Project 'Mueckenatlas' Helps Monitor the Distribution and Spread of Invasive Mosquito Species in Germany.

    Science.gov (United States)

    Walther, Doreen; Kampen, Helge

    2017-11-07

    The citizen science project 'Mueckenatlas' (mosquito atlas) was implemented in early 2012 to improve mosquito surveillance in Germany. Citizens are asked to support the spatiotemporal mapping of culicids by submitting mosquito specimens collected in their private surroundings. The Mueckenatlas has developed into an efficient tool for data collection with close to 30,000 mosquitoes submitted by the end of 2015. While the vast majority of submissions included native mosquito species, a small percentage represented invasive species. The discovery of Aedes albopictus (Skuse) (Diptera: Culicidae), Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) and Aedes koreicus (Edwards) (Diptera: Culicidae) specimens via the Mueckenatlas project prompted targeted monitoring activities in the field which produced additional information on the distribution of these species in Germany. Among others, Mueckenatlas submissions led to the detection of three populations of Ae. j. japonicus in West, North and Southeast Germany in 2012, 2013, and 2015, respectively. As demonstrated by on-site monitoring, the origins of Ae. j. japonicus specimens submitted to the Mueckenatlas mirror the distribution areas of the four presently known German populations as found by active field sampling (the fourth population already reported prior to the launch of the Mueckenatlas). The data suggest that a citizen science project such as the Mueckenatlas may aid in detecting changes in the mosquito fauna and can therefore be used to guide the design of more targeted field surveillance activities. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  7. Delft Aerospace Design Projects 2015 : Challenging New Designs in Aeronautics, Astronautics and Wind Energy

    NARCIS (Netherlands)

    Melkert, J.A.

    2015-01-01

    This book presents an overview of the results of the Fall Design Synthesis Exercise 2014 and the Spring Design Synthesis Exercise of 2015, based on summaries of each of the projects. The Design Synthesis Exercise Coordination Committee, responsible for the organisation and execution of the exercise,

  8. A series of student design projects for improving and modernizing safety helmets

    NARCIS (Netherlands)

    Beurden, van K.M.M. (Karin); Boer, de J. (Johannes); Stilma, M. (Margot); Teeuw, W.B. (Wouter)

    2014-01-01

    The Saxion Research Centre for Design and Technology employs many students during research projects. This paper discusses a series of student design projects on safety helmets in the Safety@Work project. At construction sites workers are required to wear personal protective equipment during their

  9. Project Assessment Framework through Design (PAFTD) - A Project Assessment Framework in Support of Strategic Decision Making

    Science.gov (United States)

    Depenbrock, Brett T.; Balint, Tibor S.; Sheehy, Jeffrey A.

    2014-01-01

    Research and development organizations that push the innovation edge of technology frequently encounter challenges when attempting to identify an investment strategy and to accurately forecast the cost and schedule performance of selected projects. Fast moving and complex environments require managers to quickly analyze and diagnose the value of returns on investment versus allocated resources. Our Project Assessment Framework through Design (PAFTD) tool facilitates decision making for NASA senior leadership to enable more strategic and consistent technology development investment analysis, beginning at implementation and continuing through the project life cycle. The framework takes an integrated approach by leveraging design principles of useability, feasibility, and viability and aligns them with methods employed by NASA's Independent Program Assessment Office for project performance assessment. The need exists to periodically revisit the justification and prioritization of technology development investments as changes occur over project life cycles. The framework informs management rapidly and comprehensively about diagnosed internal and external root causes of project performance.

  10. Alternative Evaluation Designs for Data-Centered Technology-Based Geoscience Education Projects

    Science.gov (United States)

    Zalles, D. R.

    2012-12-01

    This paper will present different strategies for how to evaluate contrasting K-12 geoscience classroom-based interventions with different goals, leveraging the first author's experiences as principal investigator of four NSF and NASA-funded geoscience education projects. Results will also be reported. Each project had its own distinctive features but all had in common the broad goal of bringing to high school classrooms uses of real place-based geospatial data to study the relationships of Earth system phenomena to climate change and sustainability. The first project's goal was to produce templates and exemplars for curriculum and assessment designs around studying contrasting geoscience topics with different data sets and forms of data representation. The project produced a near transfer performance assessment task in which students who studied climate trends in Phoenix turned their attention to climate in Chicago. The evaluation looked at the technical quality of the assessment instrument as measured by inter-rater reliability. It then analyzed the assessment results against student responses to the instructional tasks about Phoenix. The evaluation proved useful in pinpointing areas of student strength and weakness on different inquiry tasks, from simple map interpretation to analysis of contrasting claims about what the data indicate. The goal of the second project was to produce an exemplar curriculum unit that bridges Western science and traditional American Indian ecological knowledge for student learning and skill building about local environmental sustainability issues. The evaluation looked at the extent to which Western and traditional perspectives were incorporated into the design of the curriculum. The curriculum was not constructed with a separate assessment, yet evidence centered design was utilized to extrapolate from the exemplar unit templates for future instructional and assessment tasks around other places, other sustainability problems, and

  11. Attracting Girls to Science, Engineering and Technology: An Australian Perspective

    Science.gov (United States)

    Little, Alison J.; Leon de la Barra, Bernardo A.

    2009-01-01

    This paper describes a project undertaken by the school outreach team at the School of Engineering, University of Tasmania, Australia, to attract girls to science, engineering and technology (SET). The project was a pilot program designed to engage female students from upper primary to senior secondary in the teaching of physical sciences. A…

  12. Science and Civics: Sustaining Wildlife

    Science.gov (United States)

    Council for Environmental Education, 2011

    2011-01-01

    Project WILD's new high school curriculum, "Science and Civics: Sustaining Wildlife", is designed to serve as a guide for involving students in environmental action projects aimed at benefitting the local wildlife found in a community. It involves young people in decisions affecting people, wildlife, and their shared habitat in the community. The…

  13. InterScience and fusion: Projects, collaborations, and spin-offs

    International Nuclear Information System (INIS)

    Castracane, J.

    1995-01-01

    InterScience, Inc. is a small, high technology research and development company which participates in the mission of the fusion energy research program in a variety of ways. The company specializes in basic physics and advanced technologies applied to research and commercial opportunities. InterScience has numerous federal and private sponsors for research and development activities in plasma physics, electro-optics, materials science, electronics, and biomedical engineering. The company currently has several direct research and development projects which involve the assembly of diagnostic hardware for installation and operation at tokamak facilities both in the U.S. and abroad. In addition, the company works in a technical support capacity for both the magnetic and inertial confinement fusion programs. Successful participation in the Small Business Innovation Research (SBIR) program has provided an avenue for the transfer of expertise from the fusion program to alternate agencies and research areas. Examples of this include fiberoptic sensors with data acquisition systems, advanced spectral imaging and image processing, fiberoptic imaging interferometry for biomedical instrumentation development and, micro-electro-mechanical systems

  14. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  15. Introducing Project-Based Learning to Design Enterprises for Creativity

    DEFF Research Database (Denmark)

    Wang, Feng; Zhou, Chunfang; Chen, Hongbing

    2013-01-01

    This paper aims to emphasize the necessity of introducing Project-Based Learning (PBL) to design enterprises in order to foster designers creativity and facilitate innovation of design enterprises. According to the literature review, creativity can be viewed as the first stage of innovation; PBL...

  16. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... personnel management demonstration project for eligible TARDEC employees. Within that notice the table...

  17. Project LASER: Learning about science, engineering, and research

    Science.gov (United States)

    1990-01-01

    The number of American students entering science and engineering careers and their ranking in comparison with other countries is on the decline. This decline has alarmed Congress which, in 1987, established a Task Force on Women, Minorities, and the Handicapped in Science and Technology to define the problem and find solutions. If left unchanged, the task force has warned that the prospects for maintaining an advanced industrial society will diminish. NASA is supportive of the six goals outlined by the task force, which are paraphrase herein, and is carefully assessing its education programs to identify those offering the greatest potential for achieving the task force objectives with a reasonable range of resources. A major initiative is under way on behalf of NASA at its Marshall Space Flight Center, where highly effective features of several NASA education programs along with innovations are being integrated into a comprehensive pilot program. This program, dubbed Project LASER, is discussed.

  18. Project LASER

    Science.gov (United States)

    1990-01-01

    NASA formally launched Project LASER (Learning About Science, Engineering and Research) in March 1990, a program designed to help teachers improve science and mathematics education and to provide 'hands on' experiences. It featured the first LASER Mobile Teacher Resource Center (MTRC), is designed to reach educators all over the nation. NASA hopes to operate several MTRCs with funds provided by private industry. The mobile unit is a 22-ton tractor-trailer stocked with NASA educational publications and outfitted with six work stations. Each work station, which can accommodate two teachers at a time, has a computer providing access to NASA Spacelink. Each also has video recorders and photocopy/photographic equipment for the teacher's use. MTRC is only one of the five major elements within LASER. The others are: a Space Technology Course, to promote integration of space science studies with traditional courses; the Volunteer Databank, in which NASA employees are encouraged to volunteer as tutors, instructors, etc; Mobile Discovery Laboratories that will carry simple laboratory equipment and computers to provide hands-on activities for students and demonstrations of classroom activities for teachers; and the Public Library Science Program which will present library based science and math programs.

  19. Dagik Earth: A Digital Globe Project for Classrooms, Science Museums, and Research Institutes

    Science.gov (United States)

    Saito, A.; Tsugawa, T.

    2017-12-01

    Digital globe system is a powerful tool to make the audiences understand phenomena on the Earth and planets in intuitive way. Geo-cosmos of Miraikan, Japan uses 6-m spherical LED, and is one of the largest systems of digital globe. Science on a Sphere (SOS) by NOAA is a digital globe system that is most widely used in science museums around the world. These systems are so expensive that the usage of the digital globes is mainly limited to large-scale science museums. Dagik Earth is a digital globe project that promotes educational programs using digital globe with low cost. It aims to be used especially in classrooms. The cost for the digital globe of Dagik Earth is from several US dollars if PC and PC projector are available. It uses white spheres, such as balloons and balance balls, as the screen. The software is provided by the project with free of charge for the educational usage. The software runs on devices of Windows, Mac and iOS. There are English and Chinese language versions of the PC software besides Japanese version. The number of the registered users of Dagik Earth is about 1,400 in Japan. About 60% of them belongs to schools, 30% to universities and research institutes, and 8% to science museums. In schools, it is used in classes by teachers, and science activities by students. Several teachers have used the system for five years and more. In a students' activity, Dagik Earth contents on the typhoon, solar eclipse, and satellite launch were created and presented in a school festival. This is a good example of the usage of Dagik Earth for STEM education. In the presentation, the system and activity of Dagik Earth will be presented, and the future expansion of the project will be discussed.

  20. The International Science and Technology Center: Scope of activities and scientific projects in the field of nuclear data

    International Nuclear Information System (INIS)

    Klepatsky, Alexander B.

    2002-01-01

    The review of the ISTC (The International Science and Technology Center) Programs and activities including Science Project Program, Partner Program, Seminar Program and others is presented. Project funding by technology area, by funding Parties, by CIS (Commonwealth of Independent States) States etc. is demonstrated with emphasis on projects in the field of nuclear data. The ISTC opportunities for international cooperation in the fields of nuclear data measurements, calculation, evaluation and dissemination are discussed. (author)